Conditional Reasoning
in Mathematics Education



A conditional consists of two parts, an antecedent A and a consequent C. In the traditional interpretation, A is sufficient, but not necessary for C (Evans & Over, 2004).
Conditionals can be phrased in different ways, for example If A, then C, or C, if A. Conditionals can also be phrased with or without the negation of antecedent and consequent. In relation to these two aspects, phrasings are often different between and within mathematics textbooks for elementary as well as secondary school students.
Thus, in a first step, we investigate (a) if there is an impact of the way of phrasing on elementary school students' skills to draw correct inferences, and (b) if scaffolds that refer to specific mental actions for abstracting the logic of conditional statements (based on a model by Dawkins and Norton, 2022) support elementary school students' reasoning.

  • Dawkins, P. C., & Norton, A. (2022). Identifying Mental Actions for Abstracting the Logic of Conditionals. The Journal of Mathematical Behavior, 66, 100954.
  • Evans, J. S. B. T., & Over, D. E. (2004). If. Oxford: Oxford University Press.

  • Wenden Sie sich gerne an link Simon Weixler, wenn Sie Interesse haben an...

    • projektbezogener eigener Forschung im Rahmen eines Zulassungsarbeitsthemas (Studierende).
    • einer Studienteilnahme mit Ihrer eigenen Klasse (Lehrkräfte).

    Direkte Informationen

    Für Studierende
    link Studium und Prüfungen
    link Lehrveranstaltungen
    link Studienberatung
    link Prüfungsamt PANI
    link Prüfungsamt PAGS

    Für Lehrkräfte
    link Angebote

    Für alle
    link Forschungsprojekte
    link MCLS
    link MZL