Riemannian Geometry

sheet 04

Exercise 1. Let (M, g) be a connected Riemannian metric of dimension at least 3. Assume that for any point $p \in M$, the sectional curvature K is independent of the plane. I.e., for all 2-planes $\sigma \subset T_{p} M$, one has $K_{p}(\sigma)=K_{0}(p)$ for some $K_{0}(p) \in \mathbb{R}$. Show that then the sectional curvature is already globally constant, i.e. $K_{0}(p)=K_{0}\left(p^{\prime}\right)$ for all $p \in \mathbb{R}$.

Exercise 2. Let M be a complete Riemannian manifold, and let $n \subset M$ be a closed submanifold of M. Let $p \in M \backslash N$ and let $d(p, N)=\inf \{d(p, q) \mid q \in N\}$ be the distance from p to N. Show that there exists a point $q_{\text {min }} \in N$ such that $d(p, N)=d\left(p, q_{\text {min }}\right)$ and that a minimizing geodesic joining p and $q_{\min }$ is orthogonal to N at $q_{m i n}$.

Exercise 3. Given a complete Riemannian metric on \mathbb{R}^{2}, show that

$$
\lim _{r \rightarrow \infty}\left(\inf _{x^{2}+y^{2} \geq r^{2}} K(x, y)\right) \leq 0
$$

where $(x, y) \in \mathbb{R}^{2}$ and $K(x, y)$ denotes the sectional curvature of the given metric at (x, y).

Exercise 4. Let M be a Riemannian manifold of constant sectional curvature K, and let $\gamma:[0, l] \rightarrow M$ be a geodesic parametrized by arc length. Further, let J be a Jacobi field along γ, normal to γ^{\prime}. Show that in this case the Jacobi equation simplifies to

$$
\frac{D^{2} J}{d t^{2}}+K J=0
$$

Given a parallel field $w(t)$ along γ with $\left\langle\gamma^{\prime}(t), w(t)\right\rangle=0$ and $|w(t)|=1$, find a solution for the Jacobiequation with initial conditions $J(0)=0$ and $J^{\prime}(0)=w(0)$. Distinguish three cases according to the sign of K.

