

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Spring 2024

Prof. D. Kotschick Dr. Jonas Stelzig

Riemannian Geometry

sheet 04

Exercise 1. Let (M, g) be a connected Riemannian metric of dimension at least 3. Assume that for any point $p \in M$, the sectional curvature K is independent of the plane. I.e., for all 2-planes $\sigma \subset T_pM$, one has $K_p(\sigma) = K_0(p)$ for some $K_0(p) \in \mathbb{R}$. Show that then the sectional curvature is already globally constant, i.e. $K_0(p) = K_0(p')$ for all $p \in \mathbb{R}$.

Exercise 2. Let M be a complete Riemannian manifold, and let $n \subset M$ be a closed submanifold of M. Let $p \in M \setminus N$ and let $d(p, N) = \inf\{d(p, q) \mid q \in N\}$ be the distance from p to N. Show that there exists a point $q_{min} \in N$ such that $d(p, N) = d(p, q_{min})$ and that a minimizing geodesic joining p and q_{min} is orthogonal to N at q_{min} .

Exercise 3. Given a complete Riemannian metric on \mathbb{R}^2 , show that

$$\lim_{r \to \infty} (\inf_{x^2 + y^2 \ge r^2} K(x, y)) \le 0,$$

where $(x, y) \in \mathbb{R}^2$ and K(x, y) denotes the sectional curvature of the given metric at (x, y).

Exercise 4. Let M be a Riemannian manifold of constant sectional curvature K, and let $\gamma : [0, l] \to M$ be a geodesic parametrized by arc length. Further, let J be a Jacobi field along γ , normal to γ' . Show that in this case the Jacobi equation simplifies to

$$\frac{D^2J}{dt^2} + KJ = 0.$$

Given a parallel field w(t) along γ with $\langle \gamma'(t), w(t) \rangle = 0$ and |w(t)| = 1, find a solution for the Jacobiequation with initial conditions J(0) = 0 and J'(0) = w(0). Distinguish three cases according to the sign of K.