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1 MOTIVATING EXAMPLES 4

1 Motivating Examples

As motivating examples, we will consider several variants of optimal heating problems.
Further examples of applied problems can be found in Sections 1.2 and 1.3 of [Trö05].

1.1 Stationary Optimal Heating Problems

1.1.1 General Setting

The equilibrium distribution of the absolute temperature y : Ω −→ R+ inside a body
Ω ⊆ R3 (see Fig. 1) is determined by the stationary heat equation

− div(κ ∇ y) = f, (1.1)

where κ is the body’s thermal conductivity, and f : Ω −→ R+
0 represents possible

heat sources. In the simplest situation, κ is a positive constant, but, in general, it can
depend on both y and on the space coordinate x ∈ Ω.

Ω

ν

ν

Γ

ν

Figure 1: Visualization of the space domain Ω.

To complete the problem description for the determination of the equilibrium temper-
ature distribution in Ω, one still needs to formulate boundary conditions on Γ := ∂Ω.
The appropriate choice of boundary condition depends on the physical situation to be
modeled as well as on what quantity can be physically measured and controlled in the
situation of interest. If the temperature on Γ is known, then one will use a Dirichlet
boundary condition, i.e.

y = yD on Γ, (1.2)

where yD : Γ −→ R+ is the known temperature on Γ. For example, if the interior
of some apparatus is heated in a room temperature environment, then, by choosing
Ω sufficiently large, one can ensure that yD is known to be room temperature. In a
different situation, the temperature distribution yD on Γ might also be known if it is
controlled by means of a heating device.
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We are now in a position to formulate some first optimal control problems. The general
idea is to vary (i.e. control) an input quantity (called the control, typically denoted
by u) such that some output quantity (called the state, typically denoted by y) has a
desired property. This desired property is measured according to some function J , called
the objective function or the objective functional (if it is defined on a space of infinite
dimension, as is the case when controlling partial differential equations). Usually, the
objective functional is formulated such that the desired optimal case coincides with a
minimum of J . In general, J can depend on both the control u and on the state y.
However, if there exists a unique state for each control (i.e. if there is a map S : u 7→
y = S(u)), then J can be considered as a function of the control alone. We will mostly
concentrate on this latter situation, considering partial differential equations that admit
a unique solution y for each control u.

When controlling partial differential equations (PDE), the state y is the quantity de-
termined as the solution of the PDE, whereas the control can be an input function
prescribed on the boundary Γ (so-called boundary control) or an input function pre-
scribed on the volume domain Ω (so-called distributed control).

In the context of optimal heating, where the state y is the absolute temperature de-
termined as a solution of the heat equation (1.1), we will now consider one example of
boundary control (Sec. 1.1.2) and one example of distributed control (Sec. 1.1.3).

1.1.2 Boundary Control

Consider the case that, for a desired application, the optimal temperature distribution
yΩ : Ω −→ R+ is known and that heating elements can control the temperature u := yD
at each point of the boundary Γ. The goal is to find u such that the actual temperature
y approximates yΩ. This problem leads to the minimization of the objective functional

J(y, u) :=
1

2

∫
Ω

(
y(x)− yΩ(x)

)2
dx +

λ

2

∫
Γ

u(x)2 ds(x) , (1.3)

where λ > 0, and s is used to denote the surface measure on Γ. The second integral
in (1.3) is a typical companion of the first in this type of problem. It can be seen as a
measure for the expenditure of the control. For instance, in the present example, it can
be interpreted as measuring the energy costs of the heating device. In mathematical
terms, the second integral in (1.3) has a regularizing effect; it is sometimes called a
Tychonoff regularization. It counteracts the tendency of the control to become locally
unbounded and rugged as J approaches its infimum.

Due to physical and technical limitations of the heating device, one needs to impose
some restrictions on the control u. Physical limitations result from the fact that any
device will be destroyed if its temperature becomes to high or to low. However, the
technical limitations of the heating device will usually be much more restrictive, provid-
ing upper and lower bounds for the temperatures that the device can impose. Hence,
one is led to the control constraints

a ≤ u ≤ b on Γ, (1.4)
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where 0 < a < b. Control constraints of this form are called box constraints.

If, apart from the control, the system does not contain any heat sources, then f ≡ 0 in
(1.1) and the entire optimal control problem can be summarized as follows:

Minimize J(y, u) =
1

2

∫
Ω

(
y(x)− yΩ(x)

)2
dx +

λ

2

∫
Γ

u(x)2 ds(x) , (1.5a)

subject to the PDE constraints

− div(κ ∇ y) = 0 in Ω, (1.5b)

y = u on Γ, (1.5c)

and control constraints
a ≤ u ≤ b on Γ. (1.5d)

In a slightly more realistic setting, one might only be able to control the temperature on
some part Γc of Γ with Γc ( Γ. For example, the goal might be to homogeneously heat
a room to a temperature θopt, where the heating element has already been installed
at a fixed location with boundary Γc. In this case, (1.5a) needs to be replaced by
a version where the second integral is only carried out over Γc. The result is (1.7a)
below, where yΩ ≡ θopt was used as well. Since the control is now only given on Γc,
(1.5c) and (1.5d) also need to be modified accordingly, leading to (1.7c) and (1.7e),
respectively. In consequence, one still needs to specify a boundary condition on Γ \ Γc.
If the surrounding environment is at temperature yext, then, according to the Stefan-
Boltzmann law of (emitted heat) radiation, the boundary condition reads

∇ y · ν = α (y4ext − y4) on Γ \ Γc, (1.6)

where ν denotes the outer unit normal on Γ, and α is a positive constant.

Summarizing this modified optimal control problem yields the following system (1.7):

Minimize J(y, u) =
1

2

∫
Ω

(
y(x)− θopt

)2
dx +

λ

2

∫
Γc

u(x)2 ds(x) , (1.7a)

subject to the PDE constraints

− div(κ ∇ y) = 0 in Ω, (1.7b)

y = u on Γc, (1.7c)

∇ y · ν = α (y4ext − y4) on Γ \ Γc, (1.7d)

and control constraints
a ≤ u ≤ b on Γc. (1.7e)
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Ω

ν

ν

Γ \ Γc

A ⊂ R3 \ Ω

Γc

ν

Figure 2: Visualization of the space domain Ω for the optimal heating problem (1.7).

1.1.3 Distributed Control

We now consider the case that we can control the heat sources f inside the domain
Ω, setting f = u in (1.1). The control is no longer concentrated on the boundary
Γ, but distributed over Ω. Such distributed heat sources occur, for example, during
electromagnetic or microwave heating.

As u now lives on Ω, the corresponding integration in the objective functional (cf. (1.5a)
and (1.7a)) has to be performed over Ω. Similarly, the control constraints now have to
be imposed on Ω rather than on the boundary. Thus, keeping the Dirichlet condition
from (1.2), the complete optimal control problem reads as follows:

Minimize J(y, u) =
1

2

∫
Ω

(
y(x)− yΩ(x)

)2
dx +

λ

2

∫
Ω

u(x)2 dx , (1.8a)

subject to the PDE constraints

− div(κ ∇ y) = u in Ω, (1.8b)

y = yD on Γ, (1.8c)

and control constraints
a ≤ u ≤ b on Ω. (1.8d)

In Sec. 1.1.2 on boundary control, we had considered a second more realistic example,
where the goal was to heat a room to a homogeneous temperature θopt, but where the
control could only be imposed on some strict subset of the boundary. We now consider
the analogous situation for distributed control. Here, the control u can usually only be
imposed on a strict subset Ωc of Ω, where Ωc represents the heating element (see Fig.
3). Then the domain for the second integral in (1.8a) as well as the domain for the
control constraints is merely Ωc. Assuming that there are no uncontrolled heat sources
in Ω, (1.8b) has to be replaced by the two equations (1.9b) and (1.9c). If, as in (1.7),
one replaces the Dirichlet condition (1.8c) by a Stefan-Boltzmann emission condition,
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then one obtains the following modified version of the optimal control problem (1.8):

Minimize J(y, u) =
1

2

∫
Ω

(
y(x)− θopt

)2
dx +

λ

2

∫
Ωc

u(x)2 dx , (1.9a)

subject to the PDE constraints

− div(κ ∇ y) = u in Ωc, (1.9b)

− div(κ ∇ y) = 0 in Ω \ Ωc, (1.9c)

∇ y · ν = α (y4ext − y4) on Γ, (1.9d)

and control constraints
a ≤ u ≤ b on Ωc. (1.9e)

Ω

ν

ν

Γ

Ωc ⊆ Ω

ν

Figure 3: Visualization of the space domain Ω for the distributed control problem (1.9).

1.2 Transient Optimal Heating Problems

1.2.1 General Setting

While (1.1) describes the equilibrium temperature distribution inside a body, if the
temperature is (still) changing with time t, then it is governed by the transient heat
equation

∂t y − div (κ∇ y) = f, (1.10)

that merely differs from (1.1) by the presence of the partial derivative with respect to
time. Of course, in general, the temperature y and the heat sources f can now depend
on time as well as on the space coordinate, i.e. they are defined on the so-called time-
space cylinder [0, T ]×Ω, where T > 0 represents a final time. Here and in the following,
we use 0 as the initial time, which is a customary convention. In the transient situation,
one needs another condition for a complete problem formulation. One usually starts
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the evolution from a known temperature distribution at the initial time t = 0, i.e. one
starts with an initial condition

y(0, ·) = y0 in Ω, (1.11)

where y0 : Ω −→ R+ is the known initial temperature in Ω.

Each of the optimal control examples considered in Sec. 1.1 can also be considered
in a corresponding time-dependent setting. Instead of trying to generate a desired
equilibrium temperature yΩ, one might want to reach yΩ already for t = T . At the
same time, it might be possible to vary the control u with time. As in Sec. 1.1, we
consider the case, where u controls the temperature on (some part of) the boundary
(boundary control, see Sec. 1.2.2), and the case, where u controls the heat sources inside
(some part of) Ω (see Sec. 1.2.3).

1.2.2 Boundary Control

The objective functional J (cf. 1.5a) needs to be modified to be suitable for the time-
dependent situation. As the temperature y now depends on both time and space, and
as the desired temperature field yΩ should be approximated as good as possible at the
final time T , y(T, ·) occurs in the first integral in J . The second integral, involving the
control u, now needs to be carried out over the time domain as well as over the space
domain (see (1.12a)). In the PDE and control constraints, the only modifications are
that the constraints are now considered in the respective time-space cylinders and that
the initial condition (1.11) is added. Thus, the transient version of (1.5) reads:

Minimize J(y, u) =
1

2

∫
Ω

(
y(T, x)− yΩ(x)

)2
dx +

λ

2

∫ T

0

∫
Γ

u(t, x)2 ds(x) dt , (1.12a)

subject to the PDE constraints

∂t y − div (κ∇ y) = 0 in [0, T ]× Ω, (1.12b)

y = u on [0, T ]× Γ, (1.12c)

y(0, ·) = y0 in Ω, (1.12d)

and control constraints
a ≤ u ≤ b on [0, T ]× Γ. (1.12e)

Similarly, one obtains the following transient version of (1.7):

Minimize J(y, u) =
1

2

∫
Ω

(
y(T, x)− θopt

)2
dx +

λ

2

∫ T

0

∫
Γc

u(t, x)2 ds(x) dt , (1.13a)

subject to the PDE constraints

∂t y − div (κ∇ y) = 0 in [0, T ]× Ω, (1.13b)

y = u on [0, T ]× Γc, (1.13c)

∇ y · ν = α (y4ext − y4) on [0, T ]× (Γ \ Γc), (1.13d)

y(0, ·) = y0 in Ω, (1.13e)
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and control constraints
a ≤ u ≤ b on [0, T ]× Γc. (1.13f)

1.2.3 Distributed Control

The way one passes from the stationary to the corresponding transient control problems
is completely analogous to the boundary control problems. The first integral in the
objective functional J now involves the temperature at the final time T while the
second integral is over both space and time. Furthermore, space domains are replaced
by time-space cylinders and the initial condition (1.11) is added. Thus, one obtains the
transient version of (1.8):

Minimize J(y, u) =
1

2

∫
Ω

(
y(T, x)− yΩ(x)

)2
dx +

λ

2

∫ T

0

∫
Ω

u(t, x)2 dx dt , (1.14a)

subject to the PDE constraints

∂t y − div (κ∇ y) = u in [0, T ]× Ω, (1.14b)

y = yD on [0, T ]× Γ, (1.14c)

y(0, ·) = y0 in Ω, (1.14d)

and control constraints
a ≤ u ≤ b on [0, T ]× Ω. (1.14e)

Analogously, one obtains the transient version of (1.9):

Minimize J(y, u) =
1

2

∫
Ω

(
y(T, x)− θopt

)2
dx +

λ

2

∫ T

0

∫
Ωc

u(t, x)2 dx dt , (1.15a)

subject to the PDE constraints

∂t y − div(κ ∇ y) = u in [0, T ]× Ωc, (1.15b)

∂t y − div(κ ∇ y) = 0 in [0, T ]× Ω \ Ωc, (1.15c)

∇ y · ν = α (y4ext − y4)on [0, T ]× Γ, (1.15d)

y(0, ·) = y0 in Ω, (1.15e)

and control constraints
a ≤ u ≤ b on [0, T ]× Ωc. (1.15f)

2 Convexity

It is already well-known from finite-dimensional optimization that a unique minimum
of the objective function can, in general, not be expected if the objective function is
not convex. On the other hand, as we will see in Th. 2.17, strict convexity of the
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objective function does guarantee uniqueness. Therefore, according to the properties of
the considered objective functional, optimal control problems are often classified into
convex and nonconvex problems.

We start by reviewing the basic definitions of convex sets and functions in Sec. 2.1,
where we will also study sufficient conditions for functions to be convex. These will
later be useful to determine the convexity properties of objective functionals.

In Sec. 2.2, we provide the relevant results regarding the relation between the uniqueness
of extreme values of functions and the functions’ convexity properties.

2.1 Basic Definitions and Criteria for Convex Functions

Definition 2.1. A subset C of a real vector space X is called convex if, and only if,
for each (x, y) ∈ C2 and each 0 ≤ α ≤ 1, one has αx+ (1− α) y ∈ C.

Lemma 2.2. Let X, Y be real vector spaces, let C1 ⊆ X, C2 ⊆ Y be convex. Then
C1 × C2 is a convex subset of X × Y .

Proof. Let (x1, x2) ∈ C2
1 , (y1, y2) ∈ C2

2 , α ∈ [0, 1]. Then

α (x1, y1) + (1− α) (x2, y2) =
(
αx1 + (1− α) x2, α y1 + (1− α) y2

)
∈ C1 × C2 (2.1)

as αx1 + (1−α) x2 ∈ C1 and α y1 + (1−α) y2 ∈ C2 due to the convexity of C1 and C2,
respectively. �

Definition 2.3. Let C be a convex subset of a real vector space X.

(a) A function J : C −→ R∪{+∞} is called convex if, and only if, for each (x, y) ∈ C2

and each 0 ≤ α ≤ 1:

J
(
αx+ (1− α) y

)
≤ αJ(x) + (1− α) J(y). (2.2a)

If the inequality in (2.2a) is strict whenever x 6= y and 0 < α < 1, then J is called
strictly convex.

(b) A function S : C −→ Y , where Y is another real vector space, is said to preserve
convex combinations if, and only if, (x, y) ∈ C2 and each 0 ≤ α ≤ 1:

S
(
αx+ (1− α) y

)
= αS(x) + (1− α)S(y). (2.2b)

Note that, if S preserves convex combinations, then S(C) is also convex: If a, b ∈
S(C), then there are x, y ∈ C such that S(x) = a and S(y) = b, and, if 0 ≤ α ≤ 1
and S preserve convex combinations, then

αa+ (1− α)b = αS(x) + (1− α)S(y) = S
(
αx+ (1− α)y

)
,

showing αa+ (1− α)b ∈ S(C).
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Remark 2.4. Let X,Y be a real vector spaces, let C ⊆ X be convex. Then S : C −→
Y preserves convex combinations if, and only if, S is the restriction of an affine map
A : X −→ Y (i.e. if, and only if, there exists a linear map L : X −→ Y and a ∈ X such
that A = L+ a and S = A�C : Suppose S is the restriction of an affine map A = L+ a
with L and a as above. Then, for each (x, y) ∈ C2 and each 0 ≤ α ≤ 1,

S
(
αx+ (1− α) y

)
= αLx+ (1− α)Ly + a = α (Lx+ a) + (1− α) (Ly + a)

= αS(x) + (1− α)S(y), (2.3)

showing that S preserves convex combinations. Conversely, assume S preserves convex
combinations. Fix c ∈ C. Then there exists a linear map L : X −→ Y such that L(x) =
S(x+ c)− S(c) for each x ∈ X with x+ c ∈ C (as S preserves convex combinations, it
canonically extends to the affine hull aff(C) of C, i.e. L(x) = S(x+ c)− S(c) defines a
linear map on the linear subspace V := aff(C) − c of X, which can then be extended
to all of X). Thus, letting a := −L(c) + S(c), we obtain, for each x ∈ C: A(x) =
L(x) + a = L(x)− L(c) + S(c) = L(x− c) + S(c) = S(x− c+ c)− S(c) + S(c) = S(x).

If S preserves convex combinations and X = R, then S is convex, but not strictly
convex if C consists of more than one point.

Lemma 2.5. Let X be a real vector space, let C ⊆ X be convex.

(a) If Y is a real vector space, f : C −→ Y preserves convex combinations and g :
f(C) −→ R is convex, then g ◦ f is convex. If, moreover, f is one-to-one and g is
strictly convex, then g ◦ f is strictly convex.

(b) Suppose f : C −→ R, let I ⊆ R be convex such that f(C) ⊆ I and g : I −→ R. If
f and g are both convex and g is increasing, then g ◦ f is convex. If, in addition,
at least one of the following conditions (i), (ii) holds, where
(i) f is strictly convex and g is strictly increasing,
(ii) f is one-to-one and g is strictly convex,
then g ◦ f is strictly convex.

(c) If λ ∈ R+ and f : C −→ R is (strictly) convex, then λf is (strictly) convex.

Proof. Let (x, y) ∈ C2, α ∈ [0, 1].

(a): The hypotheses on f and g yield

(g ◦ f)
(
αx+ (1− α) y

)
= g
(
f
(
αx+ (1− α) y

))
= g
(
α f(x) + (1− α) f(y)

)
≤ α g

(
f(x)

)
+ (1− α) g

(
f(y)

)
= α (g ◦ f)(x) + (1− α) (g ◦ f)(y), (2.4)

showing that g ◦ f is convex. If f is one-to-one and g is strictly convex, then the
inequality in (2.4) is strict for x 6= y and 0 < α < 1, showing that g ◦ f is strictly
convex.
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(b): The convexity of f yields

f
(
αx+ (1− α) y

)
≤ α f(x) + (1− α) f(y). (2.5)

As g is increasing, one obtains from (2.5)

(g ◦ f)
(
αx+ (1− α) y

)
= g
(
f
(
αx+ (1− α) y

))
≤ g
(
α f(x) + (1− α) f(y)

)
≤ α g

(
f(x)

)
+ (1− α) g

(
f(y)

)
= α (g ◦ f)(x) + (1− α) (g ◦ f)(y), (2.6)

showing the convexity of g ◦ f . If, in addition, condition (i) is satisfied, then, for x 6= y
and 0 < α < 1, the inequality (2.5) is strict as well as the first inequality in (2.6),
proving the strict convexity of g ◦ f . If condition (ii) is satisfied, then, for x 6= y and
0 < α < 1, the second inequality in (2.6) is strict, again proving the strict convexity of
g ◦ f .
(c): Here λ > 0 and the convexity of f imply

λf
(
αx+ (1− α) y

)
≤ αλ f(x) + (1− α)λ f(y). (2.7)

If f is strictly convex, then the inequality in (2.7) is strict whenever x 6= y and 0 < α <
1. Thus, λf is (strictly) convex given that f is (strictly) convex. �

Example 2.6. (a) The function f : R −→ R, f(x) := |x|, is convex, but not strictly
convex. More generally, if C is a convex subset of a normed vector space X (see
Def. 4.1), then N : C −→ R, N(x) := ‖x‖ is convex, however not strictly convex if
C contains a segment S of a one-dimensional subspace, i.e. S = {λx0 : a ≤ λ ≤ b}
for suitable x0 ∈ X \ {0} and real numbers 0 ≤ a < b.

(b) For each p ∈]1,∞[, the function fp : R −→ R, fp(x) := |x|p, is strictly convex.

(c) If C is a convex subset of a normed vector space X and p ∈]1,∞[, then Np : C −→
R, Np(x) := ‖x‖p, is convex, which follows from (a) and (b) and Lem. 2.5(b) since
fp from (b) is increasing on [0,∞[. The question, whether Np is strictly convex, is
more subtle, cf. Ex. 2.9 below.

Definition 2.7. (a) Let C be a convex subset of a real vector space X. Then p is
called an extreme point of C if, and only if, p = αx+ (1− α) y with x, y ∈ C and
0 < α < 1 implies p = x = y or, equivalently, if, and only if, p± x ∈ C with x ∈ X
implies x = 0. The set of all extreme points of C is denoted by ex(C).

(b) A normed vector space X is called strictly convex if, and only if, the set of extreme
points of its closed unit ball B1(0) is its entire unit sphere S1(0), i.e. ex

(
B1(0)

)
=

S1(0) (see Not. 4.6).

Example 2.8. (a) Every Hilbert space X (see Def. 4.12) is strictly convex, as, for each
p ∈ S1(0) and x ∈ X with p ± x ∈ B1(0): 1 ≥ ‖p ± x‖2 = ‖p‖2 ± 2〈p, x〉 + ‖x‖2,
i.e. ‖x‖2 ≤ ∓2〈p, x〉, i.e. x = 0.
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(b) Clearly, for n > 1, (Rn, ‖ · ‖1) and (Rn, ‖ · ‖max) are not strictly convex. The space
L1[0, 1] is an example, where even ex

(
B1(0)

)
= ∅.

Example 2.9. Let p ∈]1,∞[.

(a) If C is a convex subset of a strictly convex normed vector space X, then Np : C −→
R, Np(x) := ‖x‖p, is strictly convex: Suppose x, y ∈ C and 0 < α < 1. Then∥∥αx+ (1− α) y

∥∥p = α ‖x‖p + (1− α) ‖y‖p (2.8)

implies ‖x‖ = ‖y‖ by Ex. 2.6(b). If ‖x‖ = 0, then x = y = 0. Otherwise, let
x̃ := x/‖x‖ and ỹ := y/‖x‖ such that x̃, ỹ ∈ S1(0). Then∥∥α x̃+(1−α) ỹ

∥∥p = ‖x‖−p
∥∥αx+(1−α) y

∥∥p (2.8)
= α ‖x̃‖p+(1−α) ‖ỹ‖p = 1, (2.9)

showing α x̃+ (1− α) ỹ ∈ S1(0) and, thus, x̃ = ỹ as well as x = y by the assumed
strict convexity of X.

(b) IfX is a normed vector space that is not strictly convex, then there are x, y ∈ S1(0),
x 6= y, and 0 < α < 1 such that z := αx + (1 − α)y ∈ S1(0). Then 1 = ‖z‖p =
α‖x‖p + (1 − α)‖y‖p, showing that Np : X −→ R, Np(x) := ‖x‖p, is not strictly
convex.

Lemma 2.10. Let X, Y be real vector spaces, let C1 ⊆ X, C2 ⊆ Y be convex, and
consider f1 : C1 −→ R, f2 : C2 −→ R.

(a) If f1 and f2 are (strictly) convex, then

(f1 + f2) : C1 × C2 −→ R, (f1 + f2)(y, u) := f1(y) + f2(u), (2.10)

is (strictly) convex.

(b) If f1 and f2 are convex, and S : C2 −→ C1 preserves convex combinations, then

f : C2 −→ R, f(u) := f1(S(u)) + f2(u), (2.11)

is convex. If at least one of the following additional hypotheses (i) or (ii) is satisfied,
then f is strictly convex:

(i) f1 is strictly convex and S is one-to-one.

(ii) f2 is strictly convex.

Proof. (a): According to Lem. 2.2, C1 ×C2 is a convex subset of X × Y . Let (y1, u1) ∈
C1 × C2, (y2, u2) ∈ C1 × C2, and α ∈ [0, 1]. Then

(f1 + f2)
(
α (y1, u1) + (1− α) (y2, u2)

)
= (f1 + f2)

(
αy1 + (1− α)y2, αu1 + (1− α)u2

)
= f1

(
αy1 + (1− α)y2

)
+ f2

(
αu1 + (1− α)u2

)
≤ αf1(y1) + (1− α)f1(y2) + αf2(u1) + (1− α)f2(u2)

= α(f1 + f2)(y1, u1) + (1− α)(f1 + f2)(y2, u2). (2.12)
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If f1 and f2 are strictly convex, then equality in (2.12) can only hold for α ∈ {0, 1} or
(y1, u1) = (y2, u2), showing the strict convexity of f1 + f2.

(b): Let u1, u2 ∈ U and α ∈ [0, 1]. Then

f
(
αu1 + (1− α)u2

)
= f1

(
αS(u1) + (1− α)S(u2)

)
+ f2

(
αu1 + (1− α)u2

)
≤ αf1

(
S(u1)

)
+ (1− α)f1

(
S(u2)

)
+ αf2(u1) + (1− α)f2(u2)

= αf(u1) + (1− α)f(u2), (2.13)

verifying the convexity of f . If at least one of the additional hypotheses (i) or (ii) is
satisfied, then equality in (2.13) can only occur for α ∈ {0, 1} or u1 = u2, showing that
f is strictly convex in that case. �

Lemma 2.11. Let X, Y be normed vector spaces and let C ⊆ Y , U ⊆ X be convex.
Given λ ∈ R+

0 and y0 ∈ Y , consider the functional

J : C × U −→ R, J(y, u) :=
1

2
‖y − y0‖2 +

λ

2
‖u‖2. (2.14)

(a) J is convex.

(b) If X and Y are strictly convex and λ > 0, then J is strictly convex.

(c) If S : U −→ C preserves convex combinations, then

f : U −→ R, f(u) := J(Su, u) (2.15)

is convex. If at least one of the following additional hypotheses (i) or (ii) is satisfied,
then f is strictly convex:

(i) Y is strictly convex and S is one-to-one.

(ii) X is strictly convex and λ > 0.

Proof. (a) and (b): According to Lem. 2.2, C×U is a convex subset of Y ×X. Defining

f1 : C −→ R, f1(y) :=
1

2
‖y − y0‖2, (2.16a)

f2 : U −→ R, f2(u) :=
λ

2
‖u‖2, (2.16b)

and employing Lem. 2.10(a), it merely remains to show that f1 is convex (strictly convex
if Y is strictly convex), and f2 is convex (strictly convex if X is strictly convex and
λ > 0).

f1: The map y 7→ ‖y− y0‖2 is convex (strictly convex if Y is strictly convex) according
to Lem. 2.5(a), as it constitutes a composition of the one-to-one affine map y 7→ y− y0
(which preserves convex combinations due to Rem. 2.4) with the map ‖ · ‖p, which is
always convex according to Ex. 2.6(c) and strictly convex by Ex. 2.9(a), provided that
Y is strictly convex.
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f2 is trivially convex for λ = 0. For λ > 0, its convexity is a combination of Ex. 2.6(c)
with Lem. 2.5(c). If λ > 0 and X is strictly convex, then f2 is strictly convex according
to Ex. 2.9(a) and Lem. 2.5(c).

(c) now follows from the properties of f1 and f2 together with an application of Lem.
2.10(b). �

Lemma 2.12. Let X, Y be normed vector spaces, and let C ⊆ Y , U ⊆ X be convex,

J : C × U −→ R, S : U −→ C, f : U −→ R, f(u) = J(Su, u). (2.17)

If S preserves convex combinations and J is (strictly) convex, then f is (strictly) convex.

Proof. Let (u, v) ∈ U2 and 0 ≤ α ≤ 1. Then

f
(
αu+ (1− α)v

)
= J

(
αSu+ (1− α)Sv, αu+ (1− α)v

)
= J

(
α(Su, u) + (1− α)(Sv, v)

)
≤ αJ(Su, u) + (1− α)J(Sv, v) = αf(u) + (1− α)f(v), (2.18)

showing that f is convex. If J is strictly convex, then equality in (2.18) only holds for
α ∈ {0, 1} or (Su, u) = (Sv, v), i.e. only for α ∈ {0, 1} or u = v, showing that f is
strictly convex if J is strictly convex. �

Caveat 2.13. In Lem. 2.12, it is not sufficient to assume that J is convex in both
arguments. For example, consider J : R× R −→ R, J(y, u) = (y − 1)2 (u + 1)2. Then
J(·, u) is convex for each u ∈ R and J(y, ·) is convex for each y ∈ R (by restricting J
to C := [−1

2
, 1
2
]× [−1

2
, 1
2
], one can even get J to be strictly convex in both arguments).

However, J is not convex, and, letting S be the identity, one gets f(u) = (u−1)2 (u+1)2.
Then f is also not convex and has two different global minima, namely at u = −1 and
u = 1 (respectively at u = −1

2
and u = 1

2
if J is restricted to C).

Example 2.14. We investigate the convexity properties of the objective functional
from (1.5a), i.e. of

J(y, u) :=
1

2

∫
Ω

(
y(x)− yΩ(x)

)2
dx +

λ

2

∫
Γ

u(x)2 ds(x) (2.19)

(the other objective functionals from Sec. 1 can be treated analogously). We assume
that the corresponding PDE has a solution operator S that preserves convex combina-
tions (for example, any linear S will work). In other words, for each control u, there is
a unique solution y = S(u) to the PDE, and the mapping u 7→ S(u) preserves convex
combinations. Then, instead of J , one can consider the reduced objective functional

f(u) := J
(
S(u), u

)
=

1

2

∫
Ω

(
S(u)(x)− yΩ(x)

)2
dx +

λ

2

∫
Γ

u(x)2 ds(x) . (2.20)

Let U ⊆ L2(Γ) be a convex set of admissible control functions, and assume S(U) ⊆
L2(Ω). If S preserves convex combinations, then S(U) is convex and, since L2(Γ) and
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L2(Ω) are Hilbert spaces and, thus, strictly convex by Ex. 2.8(a), from Lem. 2.11(b),
we know

J : S(U)× L2(Γ) −→ R, J(y, u) :=
1

2
‖y − y0‖2L2(Ω) +

λ

2
‖u‖2L2(Γ), (2.21)

is strictly convex for λ > 0. Then Lem. 2.11(c)(ii) (also Lem. 2.12) shows f is strictly
convex as well.

If the control-to-state operator S does not preserve convex combinations, then f is, in
general, not convex. While convexity properties of solution operators of nonlinear PDE
are not easy to investigate, we will see an example of nonconvexity and nonuniqueness
in a finite-dimensional setting in the next section in Ex. 3.6.

2.2 Relation Between Convexity and the Uniqueness of Ex-
trema

As already mentioned, the uniqueness question with regard to solutions of optimal
control problems is linked to convexity properties. This link is due to the following
simple, but general, results. We start with a preparatory definition.

Definition 2.15. Let (X, ‖ · ‖) be a normed vector space (see Def. 4.1), A ⊆ X, and
f : A −→ R.

(a) Given x ∈ A, f has a (strict) global min at x if, and only if, f(x) ≤ f(y) (f(x) <
f(y)) for each y ∈ A \ {x}.

(b) Given x ∈ X, f has a (strict) local min at x if, and only if, there exists r > 0 such
that f(x) ≤ f(y) (f(x) < f(y)) for each y ∈ {y ∈ A : ‖y − x‖ < r} \ {x}.

Theorem 2.16. Let (X, ‖ · ‖) be a normed vector space (see Def. 4.1), C ⊆ X, and
f : C −→ R. Assume C is a convex set, and f is a convex function.

(a) If f has a local min at x0 ∈ C, then f has a global min at x0.

(b) The set of mins of f is convex.

Proof. (a): Suppose f has a local min at x0 ∈ C, and consider an arbitrary x ∈ C,
x 6= x0. As x0 is a local min, there is r > 0 such that f(x0) ≤ f(y) for each y ∈ Cr :=
{y ∈ C : ‖y − x0‖ < r}. Note that, for each α ∈ R,

x0 + α (x− x0) = (1− α)x0 + αx. (2.22)

Thus, due to the convexity of C, x0 + α (x − x0) ∈ C for each α ∈ [0, 1]. Moreover,
for sufficiently small α, namely for each α ∈ R :=

]
0,min{1, r/‖x0 − x‖}

[
, one has

x0+α (x−x0) ∈ Cr. As x0 is a local min and f is convex, for each α ∈ R, one obtains:

f(x0) ≤ f
(
(1− α) x0 + αx

)
≤ (1− α) f(x0) + α f(x). (2.23)
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After subtracting f(x0) and dividing by α > 0, (2.23) yields f(x0) ≤ f(x), showing
that x0 is actually a global min as claimed.

(b): Let x0 ∈ C be a min of f . From (a), we already know that x0 must be a global
min. So, if x ∈ C is any min of f , then it follows that f(x) = f(x0). If α ∈ [0, 1], then
the convexity of f implies that

f
(
(1− α) x0 + αx

)
≤ (1− α) f(x0) + α f(x) = f(x0). (2.24)

As x0 is a global min, (2.24) implies that (1− α)x0 + αx is also a global min for each
α ∈ [0, 1], showing that the set of mins of f is convex as claimed. �

Theorem 2.17. Let (X, ‖ · ‖) be a normed vector space (see Def. 4.1), C ⊆ X, and
f : C −→ R. Assume C is a convex set, and f is a strictly convex function. If x ∈ C
is a local min of f , then this is the unique local min of f , and, moreover, it is strict.

Proof. According to Th. 2.16, every local min of f is also a global min of f . Seeking a
contradiction, assume there is y ∈ C, y 6= x, such that y is also a min of f . As x and y
are both global mins, f(x) = f(y) is implied. Define z := 1

2
(x+ y). Then z ∈ C due to

the convexity of C. Moreover, due to the strict convexity of f ,

f(z) <
1

2

(
f(x) + f(y)

)
= f(x) (2.25)

in contradiction to x being a global min. Thus, x must be the unique min of f , also
implying that the min must be strict. �

3 Review: Finite-Dimensional Optimization

3.1 A Finite-Dimensional Optimal Control Problem

Consider the minimization of a real-valued J ,

min J(y, u),

where J is defined on a pair of finite-dimensional real vectors, i.e. J : Rn × Rm −→ R,
(m,n) ∈ N2. The function J to be optimized is called the objective function of the
optimization problem.

Simple examples (set m = n = 1) show that, in this generality, the problem can have
no solution (e.g. J = J1(y, u) := y + u, J = J2(y, u) := ey+u, J = J3(y, u) := y − u,
or J = J4(y, u) := yu), a unique solution (e.g. J = J5(y, u) := |y| + |u|), finitely
many solutions (e.g. J = J6(y, u) := (y2 − 1)2 + (u2 − 1)2), or infinitely many solutions
(e.g. J = J7(y, u) := c ∈ R, J = J8(y, u) := | sin y| + | sin u|, or J = J9(y, u) :=
(y + 1)2(y − 1)2(u+ 1)2(u− 1)2).
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Given linear maps A : Rn −→ Rn, B : Rm −→ Rn and a subset Uad of Rm of so-
called admissible vectors, one can consider the following modified finite-dimensional
optimization problem (see [Trö05, (1.1)]):

min J(y, u), (3.1a)

Ay = Bu, u ∈ Uad. (3.1b)

In (3.1), the minimization of the objective function J is subject to the constraints
Ay = Bu and u ∈ Uad.

In spite of the constraints, letting n = m = 1, A = B = Id, Uad = R (or Uad =]−5,∞[),
all the previous simple examples for J still work, showing that, in this generality,
the problem can still have no solution, a unique solution, finitely many solutions, or
infinitely many solutions. Moreover, for Uad = [0,∞], we now also have a unique
solution for J = J1, J = J2, J = J4, J = J6, or J = J9. It is desirable to find conditions
for J , A, B, and Uad, such that one can prove the existence of a unique solution. We
will soon encounter such conditions in Sec. 3.2.

Example 3.1. As a recurring standard example, we will consider the quadratic objec-
tive function

J : Rn × Uad −→ R, J(y, u) :=
1

2
|y − y0|2 +

λ

2
|u|2,

where Uad ⊆ Rm, y0 ∈ Rn, λ ∈ R+, and | · | denotes the Euclidian norm. Note that this
can be seen as a finite-dimensional version of the objective functionals J considered in
Sec. 1; also cf. Ex. 2.14.

—

A case of particular interest is the one where the map A in (3.1) is invertible. In that
case, one can define the maps

S : Uad −→ Rn, S := A−1 B, (3.2a)

f : Uad −→ R, f(u) := J(Su, u), (3.2b)

reformulating (3.1) as

min f(u), (3.3a)

y = Su, u ∈ Uad. (3.3b)

Thus, in the setting of (3.3), y is completely determined by u, such that u is the
only remaining unknown of this so-called reduced optimization problem. One calls u
the control, y = Su the state corresponding to the control u, and S the control-to-state
operator. In later sections, the constraint (3.1b) will be replaced by a partial differential
equation (PDE) (also cf. Sec. 1). The map S will then play the role of the solution
operator of this PDE.

Constraints provided in the form of an equality relation between the control u and the
state y (such as Ay = Bu in (3.1) and y = Su in (3.3)) are called equation constraints.
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In the present section, the equation constraints are given as a finite-dimensional linear
system. Later (as in Sec. 1), they will take the form of PDE. Constraints that involve
only the control (such as u ∈ Uad in (3.1) and (3.3)) are called control constraints. For
the time being, we will restrict ourselves to the consideration of equation and control
constraints. However, it can also make sense to consider constraints only involving the
state (e.g. of the form y ∈ Yad). Not surprisingly, such constraints are then called state
constraints.

3.2 Existence and Uniqueness

Definition 3.2. Within the setting of (3.2) and (3.3), a control ū ∈ Uad is called an
optimal control for the problem (3.3), if, and only if, f(ū) ≤ f(u) for each u ∈ Uad.
Moreover, ȳ = Sū is called the corresponding optimal state and the pair (ȳ, ū) is a
solution to the (reduced) optimal control problem (3.3).

—

One can now easily proof a first existence theorem ([Trö05, Th. 1.1]):

Theorem 3.3. Consider the reduced optimal control problem (3.3), i.e. (3.1) with an
invertible map A. If J is continuous on Rn × Uad and Uad is nonvoid, closed, and
bounded, then (3.3) has at least one optimal control as defined in Def. 3.2.

Proof. The continuity of J together with the continuity of A−1 and B implies the con-
tinuity of f , where f is defined in (3.2b). As Uad is assumed to be a closed and bounded
subset of the finite-dimensional space Rm, it is compact. Thus, f is a continuous map
defined on a nonempty, compact set, which, in turn, implies that there is at least one
ū ∈ Uad, where f assumes its minimum (i.e. where it satisfies f(ū) ≤ f(u) for each
u ∈ Uad), completing the proof of the theorem. �

Theorem 3.4. Consider the reduced optimal control problem (3.3), i.e. (3.1) with an
invertible map A. If Uad is nonvoid, convex, closed, and bounded; and J is continuous
and strictly convex on Rn × Uad, then (3.3) has a unique optimal control as defined in
Def. 3.2.

Proof. Let S and f be the functions defined in (3.2a) and (3.2b), respectively. Using
Lem. 2.12 with C := Rn and U := Uad, the strict convexity of J and the linearity of S
yield the strict convexity of f . Then the existence of an optimal control is provided by
Th. 3.3, while its uniqueness is obtained from Th. 2.17. �

Example 3.5. Let us apply Th. 3.4 to the objective function J introduced in Ex. 3.1,
i.e. to

J : Rn × Uad −→ R, J(y, u) :=
1

2
|y − y0|2 +

λ

2
|u|2,

y0 ∈ Rn, λ ∈ R+. If Uad ⊆ Rm is convex, then we can apply Lem. 2.11(b) with U := Uad,
X := Rm, Y := Rn, showing that J is strictly convex (where we have also used that Rm
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and Rn with the Euclidean norm constitute Hilbert spaces, which are strictly convex
according to Ex. 2.8(a)). As J is clearly continuous, if Uad ⊆ Rm is nonvoid, convex,
closed, and bounded (e.g. a compact interval or ball) and S and f are the functions
defined in (3.2a) and (3.2b), respectively, then Th. 3.4 yields the existence of a unique
optimal control for (3.3) as defined in Def. 3.2.

Example 3.6. The goal of the present example is to provide a counterexample to
uniqueness in the presence of nonlinearities. More precisely, we will see that a nonlinear
S combined with the strictly convex J of Ex. 3.1 can lead to a nonconvex f , which, in
turn, can lead to multiple (local and also global) minima. This can already be seen in
a one-dimensional setting. For the purposes of this example, we will now temporarily
leave the linear setting introduced in Sec. 3.1.

Let m := n := 1, y0 := 0, and Uad := [−2, 2]. Then J from Ex. 3.1 becomes

J : R× [−2, 2] −→ R, J(y, u) :=
1

2
y2 +

λ

2
u2, (3.4)

also recalling that λ > 0. Moreover, define

f : [−2, 2] −→ R, f(u) := (u− 1)2(u+ 1)2 + 3λ. (3.5)

Note that f(u) ≥ 3λ for all u ∈ [−2, 2] and −λu2 ≥ −4λ for all u ∈ [−2, 2]. Thus,
2 f(u)− λu2 ≥ 6λ− 4λ = 2λ > 0 for all u ∈ [−2, 2], and one can define

S : [−2, 2] −→ R, S(u) :=
√
2 f(u)− λu2. (3.6)

One computes

J(Su, u) =
1

2

(
2 f(u)− λu2

)
+

λ

2
u2 = f(u), (3.7)

showing that J , S, and f satisfy (3.2b) with Rn replaced by [−2, 2].

Moreover, f is continuous, nonconvex, having exactly two (local and global) minima,
namely at u = −1 and u = 1.

3.3 First Order Necessary Optimality Conditions, Variational
Inequality

In one-dimensional calculus, when studying differentiable functions f : R −→ R, one
learns that a vanishing first derivative f ′(ū) = 0 is a necessary condition for f to have a
(local, in particular, global) extremum (max or min) at ū. One also learns that simple
examples (e.g. f(u) = u3 at ū = 0) show that f ′(ū) = 0 is not sufficient for f to have a
(local, in particular, global) extremum at ū.

Similar necessary optimality conditions that are first order in the sense that they involve
only first derivatives can also be formulated in multiple finite dimensions (as will be
recalled in the present section) and even in infinite-dimensional cases such as the optimal
control of PDE as we will see subsequently.



3 REVIEW: FINITE-DIMENSIONAL OPTIMIZATION 22

Notation 3.7. If A is a matrix, then let A> denote the transpose of A.

Notation 3.8. Given a function f : Rm −→ R, (x1, . . . , xm) 7→ f(x1, . . . , xm), the
following notation is used:

Partial Derivatives: ∂1f, . . . , ∂mf, or
∂f

∂x1

, . . . ,
∂f

∂xm

.

Derivative: f ′ := (∂1f, . . . , ∂mf) =

(
∂f

∂x1

, . . . ,
∂f

∂xm

)
.

Gradient: ∇ f := (f ′)>.

Notation 3.9. Given vectors (u, v) ∈ Rm ×Rm, m ∈ N, the scalar product of u and v
is denoted by

〈u, v〉Rm := u • v :=
m∑
i=1

ui vi. (3.8)

As in [Trö05], for the sake of readability, both forms of denoting the scalar product
introduced in (3.8) will be subsequently used, depending on the situation.

—

If the objective function possesses directional derivatives, then they can be used to
formulate necessary conditions for an optimal control ū:

Theorem 3.10. Let Uad ⊆ Rm, and assume that ū ∈ Uad minimizes the function
f : Uad −→ R (not necessarily given by (3.2b)), i.e.

f(ū) ≤ f(u) for each u ∈ Uad. (3.9)

Consider u ∈ Uad. If ū+t (u− ū) ∈ Uad for each sufficiently small t > 0, and, moreover,
the directional derivative

δf(ū, u− ū) := lim
t↓0

1

t

(
f
(
ū+ t (u− ū)

)
− f(ū)

)
(3.10)

exists, then ū satisfies the variational inequality

δf(ū, u− ū) ≥ 0. (3.11)

Proof. Since ū+ t (u− ū) ∈ Uad for each sufficiently small t > 0, there exists ε > 0 such
that

ū+ t(u− ū) = (1− t)ū+ tu ∈ Uad, for each t ∈]0, ε]. (3.12)

By hypothesis, ū satisfies (3.9), implying, for each t ∈]0, ε]:

1

t

(
f
(
ū+ t(u− ū)

)
− f(ū)

) (3.9)

≥ 0. (3.13)

Thus, taking the limit for t → 0, (3.13) implies (3.11). �
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In Th. 3.10, we avoided imposing any a priori conditions on the set Uad – in consequence,
if Uad is very irregular, there might be few (or no) u ∈ Uad such that the directional
derivative δf(ū, u− ū) exists. We would now like to formulate a corollary for the case
that f is differentiable on Uad. A difficulty arises from the fact that the standard
definition for differentiability requires Uad to be open. On the other hand, in many
interesting cases, the optimal point ū lies in the boundary of Uad, so it is desirable
to allow sets Uad that contain boundary points. This is the reason for dealing with
differentiable extensions of f in the sense of the following Def. 3.11.

Definition 3.11. Let Uad ⊆ O ⊆ Rm, where O is open. A function F : O −→ R
is called a differentiable extension of a function f : Uad −→ R if, and only if, F is
differentiable and F �Uad

= f .

Corollary 3.12. Let Uad ⊆ O ⊆ Rm, where Uad is convex and O is open. If F : O −→
R is a differentiable extension of f : Uad −→ R (not necessarily given by (3.2b)), then
each minimizer ū ∈ Uad of f satisfies

F ′(ū) (u− ū) ≥ 0 for each u ∈ Uad. (3.14)

Proof. Let u ∈ Uad be arbitrary. The differentiability of F implies that the directional
derivative δF (ū, u− ū) exists and that δF (ū, u− ū) = F ′(ū)(u− ū). On the other hand,
the convexity of Uad yields that ū+ t (u− ū) ∈ Uad for each t ∈ [0, 1]. Therefore, using
that F is an extension of f , yields that δf(ū, u − ū) exists and equals δF (ū, u − ū) =
F ′(ū)(u− ū). The assertion (3.14) then follows from (3.11) in Th. 3.10. �

A further easy conclusion from Cor. 3.12 is that f ′(ū) = 0 if ū lies in the interior of
Uad (Cor. 3.13). In particular, f ′(ū) = 0 if Uad = Rm (no control constraints) or, more
generally, if Uad is open. The latter is often assumed when treating extrema in advanced
calculus text books. In general, the variational inequality can be strict as will be seen
in Ex. 3.14.

Corollary 3.13. Let Uad ⊆ Rm, and assume that ū ∈ Uad lies in the interior of Uad

and minimizes the function f : Uad −→ R (not necessarily given by (3.2b)), assumed
differentiable in the interior of Uad. Then f ′(ū) = 0. Special cases include Uad = Rm

(no control constraints) and any other case, where Uad is open.

Proof. If ū lies in the interior of Uad, then there is a (convex) open ball B with center
ū such that B ⊆ Uad. Then Cor. 3.12 yields that f ′(ū) (u − ū) ≥ 0 for each u ∈ B.
Let ei denote the i-th standard unit vector of Rm. If ε > 0 is sufficiently small, then
ū ± εei ∈ B for each i ∈ {1, . . . ,m}, implying f ′(ū) (ū ± εei − ū) = f ′(ū) (±εei) ≥ 0.
Thus, f ′(ū) = 0 as claimed. �

Example 3.14. Let m = 1, Uad = [0, 1], f : [0, 1] −→ R, f(u) = u. Then f is minimal
at ū = 0, f ′(ū) = (1) = Id, and f ′(ū)(u − ū) = u > 0 for each u ∈]0, 1], showing that
the variational inequality can be strict.
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Example 3.15. As already mentioned in the first paragraph of this section, the example
f : R −→ R, f(u) = u3, ū = 0, shows that, in general, the variational inequality is
not sufficient for ū to be a min of f (f ′(0) = (0), but 0 is not a min of f). As another
example, consider g : [0, 2π] −→ R, g(u) = sin(u). Then, g′(0) = (1) = Id, and
g′(0)(u− 0) = u > 0 for each u ∈]0, 2π], but the unique global min of g is at u = 3 π/2.

Remark 3.16. Even though the variational inequality is not sufficient for ū to be a
min of f , we will later see in the more general context of minimization and directional
derivatives in normed vector spaces (Th. 6.62), that the variational inequality is also
sufficient, if Uad is convex, f is convex, and δf(ū, u− ū) exists for each u ∈ Uad.

Theorem 3.17. In the setting of the reduced optimization problem (3.3), suppose that
Uad ⊆ O ⊆ Rm, where Uad is convex, O is open, and J : Rn × O −→ R, (m,n) ∈ N2,
is of class C1, that means all its partial derivatives ∂1J, . . . , ∂nJ, ∂n+1J, . . . , ∂n+mJ exist
and are continuous. If ū ∈ Uad is an optimal control for (3.3) in the sense of Def. 3.2,
then it satisfies (3.14) with F ′ replaced by f ′, and f being defined according to (3.2b),
except on O instead of Uad. Using the chain rule, one can compute f ′ explicitly in terms
of J , A, and B, namely, recalling S = A−1 B from (3.2),

f ′(u) = B> (A>)−1 ∇y J(Su, u) +∇u J(Su, u) for each u ∈ Rm, (3.15)

using the abbreviations ∇y J = (∂1J, . . . , ∂nJ)
>, ∇u J = (∂n+1J, . . . , ∂n+mJ)

>. Thus,
letting ȳ := Sū, (3.11) can be rewritten in the lengthy form (cf. [Trö05, (1.6)])〈

B> (A>)−1 ∇y J(ȳ, ū) +∇u J(ȳ, ū) , u− ū
〉
Rm ≥ 0 for each u ∈ Uad. (3.16)

Please recall that the vectors ū and u in (3.16) are interpreted as column vectors.

Proof. According to the definition of S and f in (3.2), one has S = A−1B and f(u) =
J(Su, u) for each u ∈ O. Introducing the auxiliary function

a : O −→ Rn × Rm, a(u) := (Su, u), (3.17)

it is f = J ◦ a. As a is linear, a = a′. Applying the chain rule yields, for each u ∈ O,

f ′(u) = J ′(a(u)) a′(u) = J ′(a(u)) a (3.18)

and, thus, for each (u, v) ∈ O ×O, abbreviating y := Su,

f ′(u)(v) = J ′(y, u)
(
Sv, v

)
=
〈
∇y J(y, u), A

−1Bv
〉
Rn +

〈
∇u J(y, u), v

〉
Rm

=
〈
B> (A>)−1∇y J(y, u), v

〉
Rm +

〈
∇u J(y, u), v

〉
Rm , (3.19)

thereby proving (3.15). Combining (3.15) and (3.14) (with f ′ instead of F ′) proves
(3.16). �
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Example 3.18. Let us compute the left-hand side of the variational inequality (3.16)
for the function J from Ex. 3.1, i.e. for

J : Rn × Rm −→ R, J(y, u) :=
1

2
|y − y0|2 +

λ

2
|u|2.

Recalling S = A−1B, since ∇y J(y, u) = (y − y0) and ∇u J(y, u) = λu, (3.15) implies
that

f ′(u) = B> (A>)−1 (A−1Bu− y0) + λu for each u ∈ Rm. (3.20)

Moreover, with ȳ = Sū = A−1Bū, (3.16) becomes〈
B> (A>)−1 ∇y J(ȳ, ū) +∇u J(ȳ, ū) , u− ū

〉
Rm

=
〈
B> (A>)−1 (ȳ − y0) + λ ū , u− ū

〉
Rm

=
〈
B> (A>)−1 (A−1Bū− y0) + λ ū , u− ū

〉
Rm ≥ 0 for each u ∈ Uad ⊆ Rm. (3.21)

In Ex. 3.20, we will see that the messy-looking condition (3.21) becomes more readable
after introducing the so-called adjoint state. Moreover, we will also see that it can be
reduced to a linear system in the case of Uad = Rm (no control constraints).

3.4 Adjoint Equation, Adjoint State

If the dimension n is large, then, in general, the inverse matrix (A>)−1 occurring in
(3.16) is not at hand (i.e. not easily computable), and it is useful to introduce the
quantity

p̄ := p̄(ȳ, ū) := (A>)−1 ∇y J(ȳ, ū) (3.22)

as an additional unknown of the considered problem. The quantity defined in (3.22)
is called the adjoint state corresponding to (ȳ, ū). Given (ȳ, ū), the adjoint state p̄ is
determined by the equation

A> p̄ = ∇y J(ȳ, ū), (3.23)

which is called the adjoint equation of the control problem (3.3).

Corollary 3.19. As in Th. 3.17, consider the setting of the problem (3.3), and suppose
that Uad ⊆ O ⊆ Rm, where Uad is convex, O is open, and J : Rn×O −→ R, (m,n) ∈ N2,
is of class C1. If ū ∈ Uad is an optimal control for (3.3) in the sense of Def. 3.2 with
corresponding state ȳ = Sū and adjoint state p̄ = (A>)−1 ∇y J(ȳ, ū), then (ȳ, ū, p̄)
satisfies the following system (cf. [Trö05, p. 12])

Aȳ = Bū, ū ∈ Uad, (3.24a)

A> p̄ = ∇y J(ȳ, ū), (3.24b)〈
B> p̄+∇u J(ȳ, ū) , u− ū

〉
Rm ≥ 0 for each u ∈ Uad, (3.24c)

called the system of optimality for the optimal control problem (3.3). �
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Example 3.20. As promised at the end of Ex. 3.18, we continue the investigation of the
function J from Ex. 3.1 by formulating the resulting system of optimality. According
to (3.24):

Aȳ = Bū, ū ∈ Uad, (3.25a)

A> p̄ = ȳ − y0, (3.25b)〈
B> p̄+ λ ū , u− ū

〉
Rm ≥ 0 for each u ∈ Uad. (3.25c)

In the case of no control constraints, i.e. Uad = Rm, one has f ′(ū) = 0 by Cor. 3.13.
Thus, according to (3.20), Uad = Rm implies that (3.25c) can be replaced with

B> (A>)−1 (A−1B ū− y0) + λ ū
(3.25a), (3.25b)

= B> p̄+ λ ū = 0. (3.26)

Using the assumption λ > 0 stated in Ex. 3.1, (3.26) yields

ū = −B> p̄

λ
. (3.27a)

By means of (3.25b), we also have an explicit equation for ȳ, namely

ȳ = A> p̄+ y0. (3.27b)

Plugging (3.27) into (3.25a) leads to the following linear system for p̄:

A(A> p̄+ y0) = −1

λ
B B> p̄, (3.28)

or, rearranged, (
AA> +

1

λ
B B>

)
p̄ = −Ay0. (3.29)

Thus, in this case, one can solve the system of optimality by determining the adjoint
state p̄ from the linear system (3.29). The optimal control ū and the optimal state ȳ
are then given by (3.27).

3.5 Lagrange Technique and Karush-Kuhn-Tucker Conditions

3.5.1 Lagrange Function

Introducing an auxiliary function depending on three variables (y, u, p), a so-called
Lagrange function, one can rewrite the conditions of the system of optimality (3.24)
(except for the control constraints ū ∈ Uad, at least for the time being) in terms of the
gradients of the Lagrange function with respect to the different variables (y, u, p). The
Lagrange function will be defined in the statement of the following Cor. 3.21 in (3.30).

Corollary 3.21. As in Th. 3.17, consider the setting of the problem (3.3), and suppose
that Uad ⊆ O ⊆ Rm, where Uad is convex, O is open, and J : Rn×O −→ R, (m,n) ∈ N2,
is of class C1. If ū ∈ Uad is an optimal control for (3.3) in the sense of Def. 3.2 with
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corresponding state ȳ = Sū and adjoint state p̄ = (A>)−1 ∇y J(ȳ, ū), then, introducing
the Lagrange function

L : R2n+m −→ R, L(y, u, p) := J(y, u)− 〈Ay −Bu , p〉Rn , (3.30)

(ȳ, ū, p̄) satisfies

∇p L(ȳ, ū, p̄) = 0, ū ∈ Uad, (3.31a)

∇y L(ȳ, ū, p̄) = 0, (3.31b)〈
∇u L(ȳ, ū, p̄) , u− ū

〉
Rm ≥ 0 for each u ∈ Uad. (3.31c)

Proof. From Cor. 3.19, we know that (ȳ, ū, p̄) satisfies the optimality system (3.24).
Moreover, (3.30) implies

∇p L(y, u, p) = −Ay +Bu, (3.32a)

∇y L(y, u, p) = ∇y J(y, u)− A>p, (3.32b)

∇u L(y, u, p) = ∇u J(y, u) +B>p, (3.32c)

showing that (3.31a) is the same as (3.24a), (3.31b) is the same as (3.24b), and (3.31c)
is the same as (3.24c). �

In the present context, the adjoint state p̄ is also called Lagrange multiplier.

3.5.2 Box Constraints and Karush-Kuhn-Tucker Optimality Conditions

For a special class of control constraints, so-called box constraints defined below, we
will deduce another system of first-order necessary optimality conditions (3.37), called
Karush-Kuhn-Tucker system. The Karush-Kuhn-Tucker system in a certain sense com-
pletes the task started with the formulation of (3.31) in the previous section. Now the
control constraints are also formulated in terms of partial gradients of an extended La-
grange function defined in (3.35). The Karush-Kuhn-Tucker system is also structurally
simpler than (3.31): Even though, at first glance, the Karush-Kuhn-Tucker system
consists of more conditions than (3.31), that is actually deceiving. While the Karush-
Kuhn-Tucker system only consists of a finite number of equations and inequalities, the
variational inequality (3.31c) actually consists of one condition for each u ∈ Uad, i.e.,
typically, uncountably many conditions.

Before proceeding to the definition of box constraints, we recall some notation:

Notation 3.22. For (u, v) ∈ Rm × Rm, m ∈ N, the inequality u ≤ v is meant compo-
nentwise, i.e. u ≤ v if, and only if, ui ≤ vi for each i ∈ {1, . . . ,m}. Analogously, one
defines u ≥ v, u < v, and u > v.

One speaks of box constraints for the control if the control constraints are prescribed
via upper and lower bounds. This type of control constraint occurs in numerous ap-
plications, for example, in each of the motivating examples of Sec. 1. In the present
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finite-dimensional setting, box constraints for the control mean that the admissible set
Uad has the form

Uad = {u ∈ Rm : ua ≤ u ≤ ub}, where (ua, ub) ∈ Rm × Rm, ua ≤ ub. (3.33)

The bounds ua and ub are considered as given and fixed.

Theorem 3.23. As in Cor. 3.19, consider the setting of the problem (3.3), now with the
additional assumption of box constraints for the control, i.e. Uad is assumed to satisfy
(3.33). Still suppose that Uad ⊆ O ⊆ Rm, where O is open and J : Rn × O −→ R,
(m,n) ∈ N2, is of class C1. If ū ∈ Uad is an optimal control for (3.3) in the sense of
Def. 3.2 with corresponding state ȳ = Sū and adjoint state p̄ = (A>)−1 ∇y J(ȳ, ū), then
ū = (ūi)i∈{1,...,m} satisfies, for each i ∈ {1, . . . ,m},

ūi =

{
ub,i where

(
B>p̄+∇u J(ȳ, ū)

)
i
< 0,

ua,i where
(
B>p̄+∇u J(ȳ, ū)

)
i
> 0.

(3.34)

Moreover, introducing the extended Lagrange function

L : R2n+3m −→ R,
L(y, u, p, a, b) := L(y, u, p) + 〈ua − u , a〉Rm + 〈u− ub , b〉Rm

= J(y, u)− 〈Ay −Bu , p〉Rn + 〈ua − u , a〉Rm + 〈u− ub , b〉Rm , (3.35)

and letting

µa := max
{
0, B>p̄+∇u J(ȳ, ū)

}
, µb := − min

{
0, B>p̄+∇u J(ȳ, ū)

}
, (3.36)

the 5-tuple (ȳ, ū, p̄, µa, µb) satisfies

∇p L(ȳ, ū, p̄, µa, µb) = 0, (3.37a)

∇y L(ȳ, ū, p̄, µa, µb) = 0, (3.37b)

∇u L(ȳ, ū, p̄, µa, µb) = 0, (3.37c)

∇a L(ȳ, ū, p̄, µa, µb) ≤ 0, (3.37d)

∇b L(ȳ, ū, p̄, µa, µb) ≤ 0, (3.37e)

µa ≥ 0, µb ≥ 0, (3.37f)

(ua,i − ūi)µa,i = (ūi − ub,i)µb,i = 0 for each i ∈ {1, . . . ,m}. (3.37g)

The system (3.37) is known as the Karush-Kuhn-Tucker optimality system; conditions
(3.37d) – (3.37g) are called complementary slackness conditions.

Proof. Note that (3.33) implies that Uad is convex. Thus, all hypotheses of Corollaries
3.19 and 3.21 are satisfied, and we know that (3.24) and (3.31) hold. We first show
(3.34), followed by the verification of (3.37).

For the convenience of the reader, (3.24c) is restated:〈
B> p̄+∇u J(ȳ, ū) , u− ū

〉
Rm ≥ 0 for each u ∈ Uad. (3.38)
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Slightly rearranging (3.38) yields〈
B> p̄+∇u J(ȳ, ū) , ū

〉
Rm ≤

〈
B> p̄+∇u J(ȳ, ū) , u

〉
Rm for each u ∈ Uad, (3.39)

showing that ū is a solution to the minimization problem

min
u∈Uad

〈
B> p̄+∇u J(ȳ, ū) , u

〉
Rm = min

u∈Uad

m∑
i=1

(
B> p̄+∇u J(ȳ, ū)

)
i
ui. (3.40)

Due to the special form of Uad, the components ui can be varied completely indepen-
dently, such that the sum in (3.40) attains its min if, and only if, each summand is
minimal. Thus, for each i ∈ {1, . . . ,m},(

B> p̄+∇u J(ȳ, ū)
)
i
ūi = min

ua,i≤ui≤ub,i

(
B> p̄+∇u J(ȳ, ū)

)
i
ui. (3.41)

Now, (3.34) is a direct consequence of (3.41).

As for (3.37), everything except (3.37g) is quite obvious: According to the defini-
tion of L in (3.35), it is ∇p L(ȳ, ū, p̄, µa, µb) = ∇p L(ȳ, ū, p̄) and ∇y L(ȳ, ū, p̄, µa, µb) =
∇y L(ȳ, ū, p̄) such that (3.37a) is the same as the equation in (3.31a) and (3.24a), and
(3.37b) is the same as (3.31b) and (3.24b). Next,

∇u L(ȳ, ū, p̄, µa, µb) = ∇u J(ȳ, ū) +B> p̄− µa + µb,

that means (3.37c) holds because of the way µa and µb were defined in (3.36). As
(3.35) implies ∇a L(ȳ, ū, p̄, µa, µb) = ua − ū and ∇b L(ȳ, ū, p̄, µa, µb) = ū − ub, (3.37d)
and (3.37e) are merely a restatement of the hypothesis ū ∈ Uad. The validity of (3.37f)
is immediate from (3.36). Finally, (3.37g) follows from (3.34): Let i ∈ {1, . . . ,m}.
According to (3.36), µa,i ≥ 0. If µa,i = 0, then (ua,i − ūi)µa,i = 0. If µa,i > 0, then(
B>p̄+∇u J(ȳ, ū)

)
i
> 0 by (3.36), i.e. ūi = ua,i by (3.34), again implying (ua,i−ūi)µa,i =

0. Analogously, according to (3.36), µb,i ≥ 0. if µb,i = 0, then (ūi − ub,i)µb,i = 0. If
µb,i > 0, then

(
B>p̄+∇u J(ȳ, ū)

)
i
< 0 by (3.36), i.e. ūi = ub,i by (3.34), again implying

(ūi − ub,i)µb,i = 0, thereby concluding the proof of (3.37g) as well as the proof of the
theorem. �

Analogous to p̄, the vectors µa and µb occurring in (3.37) are also referred to as Lagrange
multipliers. Note that (3.34) does not yield any information on the components ūi where(
B>p̄+∇u J(ȳ, ū)

)
i
= 0.

3.6 A Preview of Optimal Control of PDE

In many respects, and that is the reason for the somewhat detailed review of finite-
dimensional optimal control problems in this section, the optimal control theory of PDE
can be developed analogously to the finite-dimensional situation. Instead of a finite-
dimensional equation, Ay = Bu will represent a PDE, typically with A corresponding
to some differential operator and B corresponding to some coefficient or embedding
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operator. Guaranteeing the invertibility of A will usually mean restricting its domain to
suitable function spaces, e.g. to sets of functions satisfying suitable boundary conditions.
Then S = A−1B can be interpreted as the solution operator of the PDE, also called
control-to-state operator. The optimality conditions can then be formulated in a form
similar to the finite-dimensional case.

4 Review: Functional Analysis Tools

4.1 Normed Vector Spaces

Definition 4.1. Let X be a real vector space. A function ‖ · ‖ : X −→ R+
0 , x 7→ ‖x‖,

is called a norm on X if, and only if, the following conditions (i) – (iii) are satisfied:

(i) For each x ∈ X, one has ‖x‖ = 0 if, and only if, x = 0.

(ii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for each (x, y) ∈ X2.

(iii) ‖λx‖ = |λ| ‖x‖ for each x ∈ X, λ ∈ R.

If ‖ · ‖ is a norm on X, then (X, ‖ · ‖) is called a normed vector space. Frequently, the
norm on X is understood and X itself is referred to as a normed vector space.

Remark 4.2. If ‖ · ‖ satisfies (ii) and (iii) in Def. 4.1, but not necessarily (i), then
‖ · ‖ is called a seminorm on X and (X, ‖ · ‖) is called a seminormed vector space.
Seminormed vector spaces where (i) is violated have the significant disadvantage that
the corresponding topology does not satisfy the Hausdorff separation axiom.

Definition 4.3. Two norms ‖·‖1 and ‖·‖2 on a real vector space X are called equivalent
if, and only if, there exist positive constants (m,M) ∈ R2, 0 < m ≤ M , such that

m ‖x‖1 ≤ ‖x‖2 ≤ M ‖x‖1 for each x ∈ X. (4.1)

Definition 4.4. Let (xn)n∈N be a sequence in a normed vector space (X, ‖ · ‖).

(a) The sequence is called convergent (in X), if, and only if, there exists x ∈ X such
that

lim
n→∞

‖xn − x‖ = 0.

If such an x ∈ X exists, then it is called the limit of the sequence. This notion of
convergence is sometimes also called strong convergence and the limit the strong
limit of the sequence. This is typically done to avoid confusion with the notion of
weak convergence and weak limits that will be introduced in Def. 4.37 below.

(b) The sequence is called a Cauchy sequence if, and only if, for each ε > 0, there exists
some n0 ∈ N such that, for each (m,n) ∈ N2,

‖xn − xm‖ ≤ ε whenever n ≥ n0 and m ≥ n0.
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Definition 4.5. A normed vector space (X, ‖ · ‖) is called complete or a Banach space,
if, and only if, every Cauchy sequence in X is convergent in X (i.e. it has a limit x ∈ X).

Notation 4.6. Let (X, ‖·‖) be a normed vector space, x0 ∈ X. Then, for each r ∈ R+,
Br(x0) :=

{
x ∈ X : ‖x − x0‖ < r

}
, Br(x0) :=

{
x ∈ X : ‖x − x0‖ ≤ r

}
, and

Sr(x0) :=
{
x ∈ X : ‖x − x0‖ = r

}
respectively denote the open ball, the closed ball,

and the sphere of radius r with center x0.

Definition 4.7. A subset B of a normed vector space X is called bounded if, and only
if, there exists r ∈ R+ such that B ⊆ Br(0).

4.2 Bilinear Forms

This section summarizes some elementary properties of bilinear forms on (normed)
real vector spaces. Their importance for us is twofold. First, bilinear forms will be
encountered frequently as inner products in Hilbert spaces. Second, bilinear forms will
be used when studying elliptic linear PDE in Sec. 6.2.

Definition 4.8. Let X be a real vector space. A map b : X × X −→ R is called a
bilinear form if, and only if,

b
(
λ1x1 + λ2x2, y

)
= λ1 b(x1, y) + λ2 b(x2, y),

b
(
x, λ1y1 + λ2y2

)
= λ1 b(x, y1) + λ2 b(x, y2)

for each (x, x1, x2, y, y1, y2) ∈ X6, (λ1, λ2) ∈ R2.

(4.2)

Definition 4.9. Let b : X ×X −→ R be a bilinear form on a normed vector space X
(actually, (ii), (iii), (iv), and (v) use only the linear structure on X).

(i) b is called bounded if, and only if, there exists α0 ≥ 0 such that

|b(x, y)| ≤ α0 ‖x‖ ‖y‖ for each (x, y) ∈ X2. (4.3a)

(ii) b is called symmetric if, and only if,

b(x, y) = b(y, x) for each (x, y) ∈ X2. (4.3b)

(iii) b is called skew-symmetric or alternating if, and only if,

b(x, y) = −b(y, x) for each (x, y) ∈ X2. (4.3c)

(iv) b is called positive semidefinite if, and only if,

b(x, x) ≥ 0 for each x ∈ X. (4.3d)

(v) b is called positive definite if, and only if, b is positive semidefinite and(
b(x, x) = 0 ⇔ x = 0

)
for each x ∈ X. (4.3e)
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(vi) b is called coercive or elliptic if, and only if, there exists β0 > 0 such that

b(x, x) ≥ β0 ‖x‖2 for each x ∈ X. (4.3f)

Remark: More generally, one defines a function f : X −→ R to be coercive if,
and only if, ‖x‖ → ∞ implies f(x)/‖x‖ → ∞. Clearly, b is coercive if, and only
if, fb : X −→ R, fb(x) := b(x, x), is coercive.

(vii) b is called an inner product or scalar product on X if, and only if, b is symmetric
and positive definite. In that case, it is customary to write 〈x, y〉 instead of b(x, y).

Remark and Definition 4.10. Let b : X × X −→ R be a bilinear form on a real
vector space X. Then there exists a unique decomposition

b = σ + a (4.4)

such that σ is a symmetric bilinear form and a is an alternating bilinear form. Moreover,
σ and a can be written explicitly in terms of b as

σ : X ×X −→ R, σ(x, y) :=
1

2

(
b(x, y) + b(y, x)

)
, (4.5a)

a : X ×X −→ R, a(x, y) :=
1

2

(
b(x, y)− b(y, x)

)
. (4.5b)

The forms σ and a are called the symmetric and the alternating part of b.

Remark 4.11. If X is a finite-dimensional normed vector space with basis (e1, . . . , em),
then, for a bilinear form b : X × X −→ R with symmetric part σ, the following
statements are equivalent:

(i) b is positive definite.

(ii) σ is positive definite.

(iii) b is coercive.

(iv) σ is coercive.

(v) All the eigenvalues of the matrix S := (σij), defined by σij := σ(ei, ej), are positive.

4.3 Hilbert Spaces

Definition 4.12. Let X be a real vector space. If 〈·, ·〉 is an inner product on X, then(
X, 〈·, ·〉

)
is called an inner product space or a pre-Hilbert space. An inner product space

is called a Hilbert space if, and only if, (X, ‖ · ‖) is a Banach space, where the norm ‖ · ‖
is defined from the inner product via ‖x‖ :=

√
〈x, x〉. Frequently, the inner product on

X is understood and X itself is referred to as an inner product space or Hilbert space.
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Lemma 4.13. The following Cauchy-Schwarz inequality (4.6) holds in every inner
product space

(
X, 〈·, ·〉

)
:

|〈x, y〉| ≤ ‖x‖ ‖y‖ for each (x, y) ∈ X2. (4.6)

Proof. See, e.g., [Roy88, p. 245] or [Alt06, Lem. 0.2〈2〉]. �

Definition 4.14. Let
(
X, 〈·, ·〉

)
be an inner product space and A some (countable or

uncountable) index set. A family (xα)α∈A in X is called an orthonormal system if,
and only if, 〈xα, xβ〉 = 0 whenever (α, β) ∈ A2, α 6= β, and 〈xα, xα〉 = 1 for each
α ∈ A. Given an orthonormal system O = (xα)α∈A in X, for each x ∈ X, the numbers
x̂(α) := 〈x, xα〉 ∈ R, α ∈ A, are called the Fourier coefficients of x with respect to O.

Example 4.15. For each n ∈ N, define

xn : [0, 2π] −→ R, xn(t) :=
sinnt√

π
. (4.7)

Then (xn)n∈N constitutes an orthonormal system in the Hilbert space L2[0, 2π] endowed

with the inner product 〈x, y〉 =
∫ 2π

0
x y (such spaces will be properly introduced in Sec.

6.1 below, cf. Rem. 6.5): One computes

〈xn, xn〉 =
1

π

∫ 2π

0

sin2 nt dt =
1

π

[
t

2
− sinnt cosnt

2n

]2π
0

= 1 for each n ∈ N, (4.8a)

and

〈xm, xn〉 =
1

π

∫ 2π

0

sinmt sinnt dt

=
1

π

[
sinmt cosnt− cosmt sinnt

2(m− n)
− sinmt cosnt− cosmt sinnt

2(m+ n)

]2π
0

= 0 for each (m,n) ∈ N, m 6= n. (4.8b)

Bessel Inequality 4.16. Let X be an inner product space and let (xα)α∈A be an or-
thonormal system in X according to Def. 4.14. Then, for each x ∈ X, the Bessel
inequality ∑

α∈A

|x̂(α)| ≤ ‖x‖ (4.9)

holds. In particular, for each x ∈ X, only countably many of the Fourier coefficients
x̂(α) can be nonzero, and, for each sequence (αi)i∈N in A,

lim
i→∞

x̂(αi) = 0. (4.10)

Proof. See, e.g., [Rud87, Th. 4.17] or [Alt06, 7.6]. �
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Theorem 4.17. Let
(
X, 〈·, ·〉

)
be an inner product space and let (xα)α∈A be an or-

thonormal system in X according to Def. 4.14. Then the following statements (i) – (iii)
are equivalent:

(i) x =
∑

α∈A x̂(α) xα for each x ∈ X.

(ii) 〈x, y〉 =
∑

α∈A x̂(α) ŷ(α) for each (x, y) ∈ X2. This relation is known as Parseval’s
identity.

(iii) ‖x‖2 =
∑

α∈A |x̂(α)|2 for each x ∈ X.

Proof. See, e.g., [Alt06, 7.7] for the case of countable A, and [Rud87, Th. 4.18] for the
general case. �

Definition 4.18. An orthonormal system O in an inner product space X satisfying
the equivalent conditions (i) – (iii) in Th. 4.17 is called a complete orthonormal system
or an orthonormal basis.

Theorem 4.19. An orthonormal basis O exists in every Hilbert space H 6= {0}. More-
over, the cardinality of O is uniquely determined.

Proof. See, e.g., [Alt06, Th. 7.8] for the case where H has a countable orthonormal
basis, and [Rud87, Th. 4.22] for the general case. �

4.4 Bounded Linear Operators

Definition 4.20. Let A : X −→ Y be a function between two normed vector spaces
(X, ‖ · ‖X) and (Y, ‖ · ‖Y ).

(a) A is called continuous in x ∈ X if, and only if, for each sequence (xn)n∈N in X,
limn→∞ xn = x implies limn→∞A(xn) = A(x); A is called continuous if, and only if,
it is continuous in x for every x ∈ X; A is called uniformly continuous if, and only
if, for each ε > 0, there is δ > 0 such that (x1, x2) ∈ X2 and ‖x1−x2‖X < δ implies∥∥A(x1) − A(x2)

∥∥
Y
< ε; A is called isometric if, and only if,

∥∥A(x)∥∥
Y
= ‖x‖X for

each x ∈ X.

(b) A is called bounded if, and only if, there exists a constant C ≥ 0 such that

‖A(x)‖Y ≤ C‖x‖X for each x ∈ X. (4.11)

—

Linear functions between normed vector spaces are usually referred to as linear opera-
tors. Real-valued maps are called functionals, in particular, real-valued linear operators
are called linear functionals.
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Proposition 4.21. For a linear operator A : X −→ Y between two normed vector
spaces, the following statements are equivalent:

(a) A is uniformly continuous.

(b) A is continuous.

(c) There is x0 ∈ X such that A is continuous at x0.

(d) A is bounded.

Proof. The proof is straightforward; e.g., see [Roy88, Ch. 10, Prop. 2] or [Alt06, Lem.
3.1]. �
Definition and Remark 4.22. If A : X −→ Y is a bounded linear operator between
normed vector spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ), then there exists the minimum of
positive constants C satisfying (4.11). This minimum is denoted by ‖A‖ and is called
the operator norm of A. Moreover, it holds that

‖A‖ = sup

{
‖A(x)‖Y
‖x‖X

: x ∈ X, x 6= 0

}
= sup

{
‖A(x)‖ : x ∈ X, ‖x‖X = 1

}
. (4.12)

The vector space of all bounded linear operators between X and Y is denoted by
L(X,Y ).

Proposition 4.23. The operator norm constitutes, indeed, a norm on the vector space
L(X,Y ) of bounded linear operators between two normed vector spaces X and Y . More-
over, if Y is a Banach space, then L(X, Y ) is also a Banach space.

Proof. See, e.g., [Roy88, Ch. 10, Prop. 3] or [Alt06, Th. 3.3]. �
Definition and Remark 4.24. If X is a normed vector space, then the space L(X,R)
of all bounded linear functionals on X is called the dual of X. The dual of X is denoted
by X∗. According to (4.12), one has, for each f ∈ X∗,

‖f‖X∗ = sup
{
|f(x)| : x ∈ X, ‖x‖X = 1

}
. (4.13)

Moreover, according to Prop. 4.23, the fact that R is a Banach space implies that X∗

is always a Banach space.

Theorem 4.25. If X is a normed vector space and 0 6= x ∈ X, then there is f ∈ X∗

such that ‖f‖X∗ = 1 and f(x) = ‖x‖X .

Proof. See, e.g., [Yos74, Cor. IV.6.2] or [Alt06, 4.17〈1〉]. �
Remark 4.26. Let

(
X, 〈·, ·〉X

)
be an inner product space. For each y ∈ X, the map

fy : X −→ R, fy(x) := 〈x, y〉X (4.14)

defines a bounded linear functional on X. Moreover, (4.6) together with 〈y, y〉X = ‖y‖2X
implies

‖fy‖X∗ = sup
{
|〈x, y〉X | : x ∈ X, ‖x‖X = 1

}
= ‖y‖X . (4.15)
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Riesz Representation Theorem 4.27. Let
(
H, 〈·, ·〉H

)
be a Hilbert space. Then the

map
F : H −→ H∗, F (y) := fy, (4.16)

where fy is the functional defined in (4.14), constitutes an isometric isomorphism be-
tween H and H∗. In particular, for each functional f ∈ H∗, there is a unique y ∈ H
such that ‖y‖H = ‖f‖H∗ and f(x) = 〈x, y〉H for every x ∈ H.

Proof. See, e.g., [Roy88, Ch. 10, Prop. 28] or [Alt06, Th. 4.1]. �

Given a Hilbert space H, it is often convenient to use Th. 4.27 to write H = H∗,
identifying H with its dual H∗.

Definition 4.28. Let X be a normed vector space. The dual of X∗ is called the bidual
of X. One writes X∗∗ := (X∗)∗.

Theorem 4.29. Let X be a normed vector space. For each x ∈ X, define a functional
ϕx according to

ϕx : X∗ −→ R, ϕx(f) := f(x). (4.17)

Then ϕ provides an isometric isomorphism between X and a subspace ϕ(X) of X∗∗.

Proof. See, e.g., [Yos74, Sec. IV.8] or [Alt06, Sec. 6.2]. �

Definition 4.30. Given a normed vector space X, the map ϕ : X −→ X∗∗ defined
in Th. 4.29 is called the canonical embedding of X into X∗∗. The space X is called
reflexive if, and only if, the map ϕ is surjective, i.e. if, and only if, ϕ constitutes an
isometric isomorphism between X and its bidual.

Caveat 4.31. It can happen that a Banach space X is isometrically isomorphic to its
bidual, but not reflexive, i.e. the canonical embedding ϕ is not surjective, but there
exists a different isometric isomorphism φ : X ∼= X∗∗, φ 6= ϕ. An example of such a
Banach space was constructed by R.C. James in 1951 (see [Wer02, Excercise I.4.8] and
[Wer02, page 105] for the definition and further references).

Example 4.32. As a consequence of Th. 4.27, every Hilbert space is reflexive. More
examples of reflexive spaces are given by the spaces Lp(E), 1 < p < ∞, defined in Sec.
6.1 below (see Th. 6.6).

4.5 Adjoint Operators

Definition 4.33. Let X, Y be Banach spaces, and let A : X −→ Y be a bounded
linear operator. The map

A∗ : Y ∗ −→ X∗, A∗(f) := f ◦ A, (4.18)

is called the adjoint or dual operator of A.
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Theorem 4.34. Let X, Y be Banach spaces, and let A : X −→ Y be a bounded linear
operator. Then the adjoint operator A∗ of A according to Def. 4.33 is well-defined, i.e.
f ◦A ∈ X∗ for each f ∈ Y ∗. Moreover A∗ is a bounded linear operator and ‖A∗‖ = ‖A‖.

Proof. See, e.g., [RR96, Th. 7.55]. �

From the Riesz Representation Th. 4.27, we know that the structure of Hilbert spaces
is especially benign in the sense that they are isometrically isomorphic to their duals.
In Hilbert spaces, these isomorphisms can be used to pull back the adjoint operators
from the dual spaces to the original spaces:

Definition 4.35. Let H1, H2 be Hilbert spaces, and let A : H1 −→ H2 be a bounded
linear operator. Moreover, let F1 : H1 −→ H∗

1 and F2 : H2 −→ H∗
2 be the isometric

isomorphisms given by the Riesz Representation Th. 4.27. Then the Hilbert adjoint
operator A∗,H of A is defined by

A∗,H : H2 −→ H1, A∗,H := F−1
1 ◦ A∗ ◦ F2. (4.19)

In the literature, a certain sloppiness is customary, using the same symbol A∗ for both
the adjoint and the Hilbert adjoint. Outside the present section, we will also adhere to
this custom.

Proposition 4.36. Let H1, H2 be Hilbert spaces, and let A : H1 −→ H2 and B :
H2 −→ H1 be bounded linear operators. Then B is the Hilbert adjoint of A if, and only
if,

〈y,Ax〉H2 = 〈By, x〉H1 for each (x, y) ∈ H1 ×H2. (4.20)

Proof. Let F1 and F2 be as in Def. 4.35.

Suppose B = A∗,H = F−1
1 ◦ A∗ ◦ F2. Fix y ∈ H2 and set x0 := By. Then, for each

x ∈ H1,
F1(x0)(x) = 〈x, x0〉H1 (4.21a)

by (4.16) and (4.14). On the other hand

F1(x0) = F1(By) = (A∗ ◦ F2)(y) = A∗(F2(y)
)
=
(
F2(y)

)
◦ A,

and, thus, for each x ∈ H1,

F1(x0)(x) = F2(y)
(
Ax
)
= 〈Ax, y〉H2 (4.21b)

again by (4.16) and (4.14). Combining (4.21a) and (4.21b) yields

〈y, Ax〉H2 = 〈Ax, y〉H2 = F1(x0)(x) = 〈x, x0〉H1 = 〈x0, x〉H1 = 〈By, x〉H1 , (4.22)

showing the validity of (4.20).

Now assume that B : H2 −→ H1 is some operator satisfying (4.20). Fix y ∈ H2.
According to the the first part,

〈y, Ax〉H2 = 〈A∗,Hy, x〉H1 for each x ∈ H1. (4.23)
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Hence,
〈By, x〉H1 = 〈y, Ax〉H2 = 〈A∗,Hy, x〉H1 for each x ∈ H1, (4.24)

implying F1(By) = F1(A
∗,Hy), which, in turn, implies By = A∗,Hy. Since y ∈ H2 was

arbitrary, B = A∗,H , concluding the proof of the proposition. �

4.6 Weak Convergence

Definition 4.37. A sequence (xn)n∈N in a normed vector space X is called weakly
convergent to x ∈ X (denoted xn ⇀ x) if, and only if,

lim
n→∞

f(xn) = f(x) for each f ∈ X∗. (4.25)

Lemma 4.38. Weak limits in normed vector spaces are unique, i.e., given a sequence
(xn)n∈N in a normed vector space X, xn ⇀ x, xn ⇀ y, (x, y) ∈ X2, implies x = y.

Proof. According to Def. 4.37, for each f ∈ X∗,

f(x− y) = f(x)− f(y) = lim
n→∞

f(xn)− lim
n→∞

f(xn) = 0. (4.26)

Thus, Th. 4.25 implies that x− y = 0, i.e. x = y. �

Remark 4.39. Indeed, in every normed vector space X, strong convergence implies
weak convergence, but, in general, weak convergence does not imply strong convergence:
If (xn)n∈N is a sequence in X, converging strongly to x ∈ X, then, for each f ∈ X∗,∥∥f(xn)−f(x)

∥∥ ≤ ‖f‖ ‖xn−x‖ → 0, showing xn ⇀ x. For weakly convergent sequences
that do not converge strongly, see the following Ex. 4.40.

Example 4.40. Let
(
H, 〈·, ·〉

)
be a Hilbert space and O = (xn)n∈N an orthonormal

system in H. If f ∈ H∗, then, according to the Riesz Representation Th. 4.27, there is
y ∈ X such that f(x) = 〈x, y〉 for each x ∈ X. Thus,

f(xn) = 〈xn, y〉
Def. 4.14

= ŷ(n)
(4.10)→ 0 = f(0), (4.27)

showing xn ⇀ 0. On the other hand (xn)n∈N does not strongly converge to 0 – actually,
as

‖xm − xn‖ = 〈xm − xn , xm − xn〉
= ‖xm‖2 − 2〈xm, xn〉+ ‖xn‖2 = 2 for each m 6= n, (4.28)

it is not even a Cauchy sequence. According to Th. 4.19, every Hilbert space has
an orthonormal basis, and, thus, we see that, in every infinite-dimensional Hilbert
space, there are weakly convergent sequences that do not converge strongly. A concrete
example is given by the orthonormal sine functions xn from Ex. 4.15.

Definition 4.41. Consider a subset C of a normed vector space X.
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(a) C is called weakly sequentially closed if, and only if, for each sequence (xn)n∈N in
C, xn ⇀ x, x ∈ X, implies that x ∈ C.

(b) The subset of X consisting of all points such that there exists a sequence (xn)n∈N
in C satisfying xn ⇀ x is called the weak sequential closure of C. It is denoted by
clw(C).

(c) C is called relatively weakly sequentially compact if, and only if, each sequence
(xn)n∈N in C, has a subsequence that converges weakly to some x ∈ X.

(d) C is called weakly sequentially compact if, and only if, each sequence (xn)n∈N in C
has a subsequence that converges weakly to some x ∈ C.

Lemma 4.42. Let C be a subset of a normed vector space X. Assume C is relatively
weakly sequentially compact. Then C is weakly sequentially compact if, and only if, C
is weakly sequentially closed.

Proof. If (xn)n∈N is a sequence in C, then there is a subsequence that converges weakly
to x ∈ X. If C is weakly sequentially closed, then x ∈ C, showing that C is weakly
sequentially compact. Conversely, if C is weakly sequentially compact and xn ⇀ x ∈ X,
then every subsequence of (xn)n∈N also converges weakly to x, showing x ∈ C, i.e. C is
weakly sequentially closed. �

Remark 4.43. Let C be a subset of a normed vector space X. If C is weakly sequen-
tially closed, then it is strongly closed, but, in general, if C is strongly closed that does
not imply that C is weakly sequentially closed. Indeed, if (xn)n∈N is a sequence in C
that converges strongly to x ∈ X, then, by Rem. 4.39, (xn)n∈N converges weakly to
x. If C is weakly sequentially closed, then x ∈ C, showing that C is strongly closed.
For sets that are strongly closed without being weakly sequentially closed, see Ex. 4.45
below.

Caveat 4.44. One has to be especially careful when working with weak sequential
closures, as they can have pathological properties: The example of Exercise 9 in [Rud73,
Sec. 3] shows that, in general, the weak sequential closure of a set is not(!) weakly
sequentially closed. However, for convex sets C, clw(C) is weakly sequentially closed
(see Th. 4.47(c)).

Example 4.45. We come back to the situation considered in Ex. 4.40, i.e. an orthonor-
mal system O = (xn)n∈N in a Hilbert space H. It was shown in Ex. 4.40, that every
sequence of orthonormal elements converges weakly to 0. However, it follows from
(4.28), that a sequence of orthonormal elements can only converge strongly provided
that it is finally constant. Thus, as 0 can never be an element of an orthonormal system,
each infinite orthonormal system in a Hilbert space is strongly closed, but not weakly
sequentially closed. As in Ex. 4.40, a concrete example is given by the orthonormal
system of sine functions xn from Ex. 4.15.

Lemma 4.46. Let X be a normed vector space, and let A be a subset of a relatively
weakly sequentially compact set C ⊆ X. Then:
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(a) A is always relatively weakly sequentially compact.

(b) A is weakly sequentially compact if, and only if, it is weakly sequentially closed.

Proof. (a): Since each sequence in A is a sequence in C, it must have a subsequence
that converges weakly to some x ∈ X, showing that A is relatively weakly sequentially
compact.

(b): As A is relatively weakly sequentially compact by (a), A is weakly sequentially
compact if, and only if, it is weakly sequentially closed according to Lem. 4.42. �

Theorem 4.47. Let C be a convex subset of a normed vector space X.

(a) If C is closed, then C is weakly sequentially closed.

(b) The weak sequential closure of C is the same as its strong closure, i.e. clw(C) = C.

(c) clw(C) is weakly sequentially closed.

(d) Every strongly closed ball Br(0), r ∈ R+, is weakly sequentially closed. In particu-
lar, if B ⊆ X is bounded, then the weak sequential closure of B is also bounded.

Proof. (a): See, e.g., [Roy88, Ch. 10, Cor. 23] or [Alt06, Th. 6.13].

(b): clw(C) ⊇ C always holds as strong convergence xn → x ∈ C, xn ∈ C for n ∈ N,
implies weak convergence xn ⇀ x. Conversely, let x ∈ clw(C). Then there is a sequence
(xn)n∈N such that xn ⇀ x. Since (xn)n∈N is also a sequence in C, and C is convex and
closed, (a) implies x ∈ C.

(c): According to (b), clw(C) = C. In particular, clw(C) is closed and then (a) implies
that clw(C) is weakly sequentially closed.

(d): Since each Br(0), r ∈ R+, is closed and convex, it is weakly sequentially closed by
(a). �

Definition 4.48. Consider a function F : X −→ Y between two normed vector spaces
X and Y .

(a) F is called weakly sequentially continuous if, and only if, for each sequence (xn)n∈N
in X, xn ⇀ x, x ∈ X, implies F (xn) ⇀ F (x).

(b) In the special case Y = R, we call F weakly sequentially semicontinuous from
below if, and only if, for each sequence (xn)n∈N in X, xn ⇀ x, x ∈ X, implies
lim inf
n→∞

F (xn) ≥ F (x).

Lemma 4.49. Every bounded linear operator A : X −→ Y between two normed vector
spaces X and Y is weakly sequentially continuous.
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Proof. Let (xn)n∈N be a sequence in X, x ∈ X, such that xn ⇀ x. One needs to
show that A(xn) ⇀ A(x). To that end, let f ∈ Y ∗. Then f ◦ A ∈ X∗ and the
weak convergence xn ⇀ x implies that limn→∞(f ◦ A)(xn) = (f ◦ A)(x), establishing
A(xn) ⇀ A(x) as needed. �

Theorem 4.50. Let C be a closed and convex subset of a normed vector space X. If
f : C −→ R is convex and continuous then f is weakly sequentially semicontinuous
from below, i.e. for each sequence (xn)n∈N in C, x ∈ C, it holds that

xn ⇀ x ⇒ lim inf
n→∞

f(xn) ≥ f(x). (4.29)

Proof. The assertion is a consequence of Th. 4.47(a): For each c ∈ R, the set Ac :=
f−1] − ∞, c] = {x ∈ C : f(x) ≤ c} is closed and convex: It is closed in the relative
topology of C as the continuous inverse image of the closed set ] −∞, c]. Then, since
C is closed in X, Ac is also closed in X. To verify its convexity, let (x, y) ∈ A2

c and
α ∈ [0, 1]. Then, as f is convex,

f
(
αx+ (1− α) y

)
≤ α f(x) + (1− α) f(y) ∈ ]−∞, c] (4.30)

since f(x) ≤ c, f(y) ≤ c, and ]−∞, c] is convex. Thus, αx+(1−α) y ∈ Ac, showing that
Ac is convex. Seeking a contradiction, suppose xn ⇀ x in C and lim inf

n→∞
f(xn) < f(x).

Then there is c ∈ R, c < f(x), and a subsequence (xnk
)k∈N of (xn)n∈N such that

f(xnk
) ≤ c (i.e. xnk

∈ Ac) for each k ∈ N. Since (xnk
)k∈N is a subsequence of (xn)n∈N,

one has xnk
⇀ x such that Th. 4.47(a) implies x ∈ Ac, i.e. f(x) ≤ c in contradiction to

c < f(x). Thus, the assumption lim inf
n→∞

f(xn) < f(x) was false, thereby concluding the

proof of the theorem. �

Remark 4.51. The proof of Th. 4.50 shows that its assertion remains true if “convex,
continuous functional” is replaced by the weaker hypothesis “convex functional that is
semi-continuous from below”.

Example 4.52. Let X be a normed vector space and a ∈ X. The distance functional
Na : X −→ R, x 7→ ‖x − a‖ is continuous, convex, and weakly sequentially semicon-
tinuous from below (in particular, letting a := 0, the norm itself is continuous, convex,
and weakly sequentially semicontinuous from below): Let (xn)n∈N be a sequence in X
such that limn→∞ xn = x ∈ X. Then

∣∣‖xn − a‖ − ‖x − a‖
∣∣ ≤ ‖(xn − a) − (x − a)‖ =

‖xn − x‖ → 0, proving limn→∞ ‖xn − a‖ = ‖x − a‖ and, thus, the continuity of Na.
Convexity follows since, for each (x, y) ∈ X2 and α ∈ [0, 1], the triangle inequality
yields

∥∥α (x− a) + (1− α) (y − a)
∥∥ ≤ α ‖x− a‖+ (1− α) ‖y − a‖. Finally, continuity

and convexity imply the weak sequential semicontinuity from below via Th. 4.50.

Theorem 4.53. Every closed ball Br(0), r ∈ R+, in a reflexive Banach space X is
weakly sequentially compact.

Proof. See, e.g., [Yos74, Sec. 4 of App. to Ch. V, in particular, proof of “only if” part
on p. 143] or [Alt06, Th. 6.10]. �
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Corollary 4.54. Every bounded subset B of a reflexive Banach space X is relatively
weakly sequentially compact.

Proof. As B is bounded, there is r ∈ R+ such that B ⊆ Br(0). According to Th. 4.53,
Br(0) is weakly sequentially compact. Then Lem. 4.46(a) implies that B is relatively
weakly sequentially compact. �
Corollary 4.55. Every closed, bounded, and convex subset B of a reflexive Banach
space X is weakly sequentially compact.

Proof. B is relatively weakly sequentially compact by Cor. 4.54. As it is also weakly
sequentially closed by Th. 4.47(a), it is weakly sequentially compact by Lem. 4.42. �

5 Optimal Control in Reflexive Banach Spaces

5.1 Existence and Uniqueness

The following Th. 5.3 provides an abstract existence and uniqueness result for solutions
to optimal control problems in reflexive Banach spaces. Its subsequent application will
furnish existence and uniqueness results for the optimal control of PDE. It also has
numerous other applications that are of independent interest. A functional analysis
application with relevance to the theory of PDE is supplied in Sec. 5.2.1 below, namely
the existence of an orthogonal projection. This, in turn, is employed in the usual way
to prove the Lax-Milgram theorem in Sec. 5.2.2.

The basic idea of Th. 5.3 is to find conditions on f and Uad such that f : Uad −→ R
attains its infimum. If Uad is closed, bounded, and convex, then it is weakly sequentially
compact by Cor. 4.55, and it suffices for f to be bounded from below and weakly
sequentially semicontinuous from below. However, the condition on Uad to be bounded
is often too restrictive, e.g., one might not want to have any control conditions at all for
certain applications (i.e. Uad is equal to the entire space). The boundedness condition
is also too restrictive for the mentioned functional analysis application in Sec. 5.2.1. On
the other hand, one might know that f approaches its infimum inside some bounded
set, which turns out to suffice for the purpose of Th. 5.3. Even though this property of
f is quite self-explanatory, it seems sufficiently important for us, to be highlighted in a
formal definition.

Definition 5.1. Let Uad be a subset of a normed vector space U , f : Uad −→ R. If f
is bounded from below (i.e. if there exists m ∈ R such that f ≥ m), then it is said to
approach its infimum in a bounded set, if, and only if, there is r ∈ R+ and a sequence
(un)n∈N in Uad ∩Br(0), where Br(0) := {u ∈ U : ‖u‖ < r}, such that

inf{f(un) : n ∈ N} = inf{f(u) : u ∈ Uad} ∈ R. (5.1)

Lemma 5.2. Let Uad be a subset of a normed vector space U , let f : Uad −→ R be
bounded from below. Then either one of the following two criteria is sufficient for f to
approach its infimum in a bounded set:
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(a) Uad is bounded.

(b) Letting j := inf{f(u) : u ∈ Uad}, there is a bounded set B ⊆ U and ε ∈ R+ such
that

u ∈ Uad \B ⇒ f(u) ≥ j + ε. (5.2)

Proof. (a) is trivial. Let j and ε be as in (b). As B is bounded, there is r > 0 such that
B ⊆ Br(0). According to the definition of j, there is a sequence (un)n∈N in Uad such that
limn→∞ f(un) = j. Then (5.2) implies that there is n0 ∈ N such that un ∈ B ⊆ Br(0)
for each n > n0, showing that f approaches its infimum in a bounded set. �

Theorem 5.3. Let U be a reflexive Banach space (e.g. a Hilbert space), let Uad be a
nonempty, closed, and convex subset of U , and let f : Uad −→ R. If f is bounded
from below, f approaches its infimum in a bounded set, and f is weakly sequentially
semicontinuous from below, then the optimal control problem

min
u∈Uad

f(u) (5.3)

has at least one solution ū ∈ Uad. In particular, (5.3) has at least one solution if f is
bounded from below, continuous, convex, and approaches its infimum in a bounded set.
If, in addition, f is strictly convex, then (5.3) has a unique solution.

Proof. Since f is assumed to be bounded from below, the infimum of its range is a real
number, i.e.

j := inf
{
f(u) : u ∈ Uad

}
> −∞. (5.4)

Thus, we can choose a so-called minimizing sequence for f , that means a sequence
(un)n∈N in Uad such that limn→∞ f(un) = j. Moreover, as f is assumed to approach its
infimum inside a bounded set, we can choose a bounded minimizing sequence (un)n∈N,
i.e. we can choose the sequence such that the un remain in some ball Br(0) for a fixed
r > 0.

As a closed, bounded, and convex subset of a reflexive Banach space, Uad ∩ Br(0) is
weakly sequentially compact by Cor. 4.55. Hence, (un)n∈N has a subsequence (unk

)k∈N
that converges weakly to some ū ∈ Uad ∩ Br(0). Finally, since f is weakly sequentially
semicontinuous from below by hypothesis,

j = lim
k→∞

f(unk
) = lim inf

k→∞
f(unk

) ≥ f(ū). (5.5)

On the other hand, j ≤ f(ū) by the definition of j, yielding j = f(ū), showing that ū
is a solution to (5.3).

If f is continuous and convex, then it is weakly sequentially semicontinuous from below
by Th. 4.50, such that the first part applies if f is also bounded from below and
approaches its infimum in a bounded set. If the convexity of f is strict, then the
uniqueness of the solution ū to (5.3) is provided by Th. 2.17. �
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5.2 Applications

5.2.1 Existence of an Orthogonal Projection

We will now apply Th. 5.3 to a class of minimal distance problems, thereby obtaining
the existence of orthogonal projections on closed convex sets in reflexive Banach spaces.
Only the Hilbert space case will be used subsequently. However, Th. 5.3 yields the more
general result without extra difficulty.

Notation 5.4. Let X be a normed vector space, ∅ 6= A ⊆ X, x ∈ X. Define

dist(x,A) := inf
{
‖x− y‖ : y ∈ A

}
. (5.6)

Theorem 5.5. Let C be a nonempty, closed, and convex subset of a reflexive Banach
space X (e.g. a Hilbert space). Then, for each x ∈ X, the set

projC(x) :=
{
p ∈ C : ‖x− p‖ = dist(x,C)

}
(5.7)

is nonempty and convex; moreover, if X is a Hilbert space, then projC(x) contains
precisely one element, the so-called orthogonal projection of x onto C (cf. Th. 5.7
below).

Proof. Fix x ∈ X. Define

f : C −→ R, f(y) := ‖x− y‖. (5.8)

Then j := inf{f(y) : y ∈ C} = dist(x,C) ≥ 0, and, in particular, f is bounded from
below. Choose any ε > 0. Let B := Bj+ε(x) be the ball with center x and radius j + ε.
If y ∈ C \B, then f(y) = ‖y− x‖ ≥ j + ε. Since B is bounded, f satisfies criterion (b)
of Lem. 5.2, i.e. f approaches its infimum in a bounded set. According to Ex. 4.52, f
is also weakly sequentially semicontinuous from below. Thus, Th. 5.3 applies, showing
that the optimal control problem

min
y∈C

f(y) = min
y∈C

‖x− y‖ (5.9)

has at least one solution ȳ ∈ projC(x), showing projC(x) 6= ∅. Since the triangle
inequality shows that f is convex, projC(x) is convex according to Th. 2.16(b). If X is
a Hilbert space, then the parallelogram law holds:

‖a+ b‖2 + ‖a− b‖2 = 2
(
‖a‖2 + ‖b‖2

)
for each a, b ∈ X. (5.10)

As above, set j := dist(x,C), assume p, p̃ ∈ projC(x), and apply (5.10) with a := x− p,
b := x− p̃ to obtain

‖p− p̃‖2 = 2
(
‖x− p‖2 + ‖x− p̃‖2 − 2‖x− 1

2
(p− p̃)‖2

)
≤ 2
(
‖x− p‖2 + ‖x− p̃‖2 − 2j2

)
= 0,

(5.11)

showing p = p̃ (the estimate in (5.11) uses the definition of j and the fact that 1
2
(p−p̃) ∈

C as C is convex). �
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Remark 5.6. To see that set projC(x) of (5.7) can consist of more than one point if
the norm is not generated by the scalar product of a Hilbert space, one just needs to
recall that, for Rm with the max-norm, balls are actually (hyper)cubes. For example,
for C := [0, 1]2, x := (2, 0), we obtain projC(x) = {(1, t) : t ∈ [0, 1]}.

—

In Hilbert spaces, the orthogonal projection of Th. 5.5 can be represented via a varia-
tional inequality:

Theorem 5.7. Let C be a nonempty, closed, and convex subset of a Hilbert space X.
Then there exists a unique map p : X −→ C such that, for each x ∈ X,

‖x− p(x)‖ = dist(x,C), (5.12)

where p(x) ∈ C satisfies (5.12) if, and only if, the variational inequality

〈x− p(x), y − p(x)〉X ≤ 0 (5.13)

holds for each y ∈ C. Moreover, if C is a linear subspace of X, then p(x) ∈ C satisfies
(5.12) if, and only if, the variational equality

〈x− p(x), y〉X = 0 (5.14)

holds for each y ∈ C. The map p is called the orthogonal projection from X onto C.

Proof. The existence and uniqueness of the map p is immediate from the Hilbert space
case of Th. 5.5. Suppose p(x) satisfies (5.12). Fix y ∈ C. Due to the convexity of C,
for each ε ∈ [0, 1], it is (1− ε) p(x) + ε y ∈ C. One computes

‖x− p(x)‖2 =
(
dist(x,C)

)2 ≤ ∥∥x−
(
(1− ε)p(x) + εy

)∥∥2
=
∥∥x− p(x)− ε(y − p(x))

∥∥2
=
〈
x− p(x)− ε(y − p(x)), x− p(x)− ε(y − p(x))

〉
X

= ‖x− p(x)‖2 − 2 ε 〈x− p(x), y − p(x)〉X + ε2 ‖y − p(x)‖2, (5.15)

implying, for each 0 < ε ≤ 1,

2 〈x− p(x), y − p(x)〉X ≤ ε ‖y − p(x)‖2. (5.16)

Letting ε → 0 yields (5.13), thereby establishing the case.

Conversely, if p(x) satisfies (5.13) for y ∈ C, then

‖x− y‖2 = ‖x− p(x) + p(x)− y‖2

= ‖x− p(x)‖2 + 2 〈x− p(x), p(x)− y〉X + ‖p(x)− y‖2

≥ ‖x− p(x)‖2, (5.17)

showing that p(x) satisfies (5.12) provided that it satisfies (5.13) for each y ∈ C.
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Finally, let C be a linear subspace of X. Then, for each x ∈ X, y ∈ C, α ∈ R, it is
a := (1− α)p(x) + αy ∈ C. Furthermore,

〈x− p(x), a− p(x)〉X = 〈x− p(x), (1− α)p(x) + αy − p(x)〉X
= α 〈x− p(x), y − p(x)〉X . (5.18)

Hence, if p(x) satisfies (5.13), using (5.13) with y replaced by a, yields

0 ≥ 〈x− p(x), a− p(x)〉X = α 〈x− p(x), y − p(x)〉X . (5.19)

In particular, (5.19) holds for each α 6= 0, implying

〈x− p(x), y − p(x)〉X = 0 for each y ∈ C. (5.20)

Since C is a linear subspace, also −y ∈ C. Replacing y by −y in (5.20), we obtain

〈x− p(x), −y − p(x)〉X = 0 for each y ∈ C. (5.21)

Subtraction (5.21) from (5.20) proves (5.14).

Conversely, if p(x) satisfies (5.14) for each y ∈ C, then, as y − p(x) ∈ C if C is a
linear subspace, y can be replaced by y− p(x), immediately implying (5.13) (even with
equality). �

5.2.2 Lax-Milgram Theorem

A strikingly useful tool for establishing the existence of solutions to linear elliptic PDE
is provided by the Lax-Milgram Th. 5.8. The basic ingredients to its proof are the Riesz
Representation Th. 4.27 and Th. 5.7.

Lax-Milgram Theorem 5.8. Let X be a Hilbert space, and let a : X ×X −→ R be a
bilinear form. If a is bounded and coercive (i.e. there are α0 > 0 and β0 > 0 such that a
satisfies (4.3a) and (4.3f) with b = a), then there exists a unique function A : X −→ X
such that

a(y, x) = 〈y, Ax〉 for each (x, y) ∈ X2. (5.22)

Moreover, this unique function A is linear, bounded, and invertible, where

‖A‖ ≤ α0, ‖A−1‖ ≤ 1

β0

. (5.23)

Proof. Given x ∈ X, the map fx : X −→ R, fx(y) := a(y, x) is linear by the bilinearity
of a and bounded according to (4.3a). Thus, by the Riesz Representation Theorem
4.27, there is a unique xf ∈ X such that 〈y, xf〉 = fx(y) = a(y, x) for each y ∈ X.
This shows that A : X −→ X satisfies (5.22) if, and only if, Ax := xf for each x ∈ X,
proving both existence and uniqueness of A. It remains to verify the claimed properties
of A.
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A is linear: For each (y, x1, x2) ∈ X3, (α1, α2) ∈ R2, one computes

〈y, A(α1x1 + α2x2)〉 = a(y, α1x1 + α2x2) = α1 a(y, x1) + α2 a(y, x2)

= α1 〈y, Ax1〉+ α2 〈y, Ax2〉 = 〈y, α1Ax1 + α2 Ax2〉. (5.24)

As (5.24) holds for each y ∈ X, we obtainA(α1x1+α2x2) = α1 Ax1+α2 Ax2, establishing
the linearity of A.

‖A‖ ≤ α0: For x ∈ X, (5.22) and (4.3a) imply

‖Ax‖2 = 〈Ax, Ax〉 = a(Ax, x) ≤ α0 ‖Ax‖ ‖x‖, (5.25)

hence establishing the case.

For subsequent use, it is noted that (4.3f), (5.22), and (4.6) imply

β0 ‖x‖2 ≤ a(x, x) = 〈x, Ax〉 ≤ ‖x‖ ‖Ax‖ for each x ∈ X,

that means
β0 ‖x‖ ≤ ‖Ax‖ for each x ∈ X. (5.26)

The range of A, denoted by R(A), is a closed subspace of X: Suppose (xn)n∈N is a
sequence in X, y ∈ X, such that y = limn→∞Axn. Then, for each (m,n) ∈ N2, (5.26)
implies β0 ‖xm − xn‖ ≤ ‖Axm − Axn‖, i.e. (xn)n∈N is a Cauchy sequence. Since X is
a Hilbert space, there is x ∈ X such that x = limn→∞ xn. Then the continuity of A
yields Ax = limn→∞Axn = y, i.e. y ∈ R(A), thereby establishing that R(A) is closed.

A is surjective, i.e. R(A) = X: As R(A) is closed and convex, Th. 5.7 implies that
there is an orthogonal projection from X onto R(A), i.e., according to (5.14) (since
R(A) is a linear subspace of X), there is a map p : X −→ R(A) such that

〈x− p(x), y〉 = 0 for each x ∈ X, y ∈ R(A). (5.27)

Fix x ∈ X and define x0 := x− p(x). Then Ax0 ∈ R(A) and

a(x0, x0) = 〈x0, Ax0〉
(5.27)
= 0, (5.28)

which, together with (4.3f), implies x0 = 0. Thus x = p(x) ∈ R(A), showing that A is
surjective.

A is one-to-one, i.e. the kernel of A is {0}: If Ax = 0, then (5.26) yields x = 0.

We have shown that A is surjective and one-to-one, i.e. A is invertible. Finally, from
(5.26), for each x ∈ X, one has β0 ‖A−1x‖ ≤ ‖x‖, proving ‖A−1‖ ≤ (1/β0). �

Corollary 5.9. Let X be a Hilbert space, and let a : X ×X −→ R be a bilinear form.
Suppose there exist positive real constants α0 > 0 and β0 > 0 such that a satisfies (4.3a)
and (4.3f) with b = a as in Th. 5.8. Then, for each F ∈ X∗, there exists a unique y ∈ X
that satisfies

a(x, y) = F (x) for each x ∈ X. (5.29)
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Moreover, the unique y that satisfies (5.29) also satisfies

‖y‖ ≤ 1

β0

‖F‖. (5.30)

If the bilinear form is an inner product (i.e. symmetric), then the unique y that satisfies
(5.29) is the unique absolute min of the functional

f : X −→ R, f(x) :=
1

2
a(x, x)− F (x). (5.31)

Proof. The Riesz Representation Theorem 4.27 provides a unique xF ∈ X such that
‖xF‖ = ‖F‖ and F (x) = 〈x, xF 〉 for each x ∈ X. Then a(x, y) = F (x) can be rewritten
as a(x, y) = 〈x, xF 〉, such that Th. 5.8 shows that the unique y ∈ X is given by
y = A−1xF , where A is the unique function determined by (5.22). Moreover, (5.23)
implies ‖y‖ = ‖A−1xF‖ ≤ (1/β0) ‖F‖, i.e. (5.30). Finally, if a is symmetric, then, for
each x ∈ X,

f(x)− f(y) =
1

2

(
a(x, x)− a(y, y)

)
− F (x− y)

=
1

2

(
a(x, x)− a(y, y)

)
− a(x− y, y) =

1

2

(
a(x, x)− 2 a(y, x) + a(y, y)

)
=

1

2
a(x− y, x− y) ≥ β0 ‖x− y‖2, (5.32)

showing that f(x)− f(y) ≥ 0 with equality if, and only if, x = y. �

Remark 5.10. If the bilinear form a occurring in the Lax-Milgram Th. 5.8 is also
symmetric, then the surjectivity of the map A follows directly from the Riesz Represen-
tation Th. 4.27 (i.e. one can avoid using the existence of an orthogonal projection (Th.
5.7)). Indeed, if, in the setting of the Lax-Milgram Th. 5.8, a is also symmetric, then
a constitutes a new inner product on X with corresponding norm ‖x‖a :=

√
a(x, x). It

follows from a satisfying (4.3a) and (4.3f) that there are α0 > 0 and β0 > 0 such that

β0 ‖x‖2 ≤ a(x, x) ≤ α0 ‖x‖2, (5.33)

showing that ‖ · ‖a constitutes an equivalent norm on the Hilbert space X. If v ∈ X,
then, by Th. 4.27, there is fv ∈ X∗ such that fv(x) = 〈x, v〉 for each x ∈ X. Using Th.
4.27 again, this time with respect to the new inner product given by a, there is y ∈ X
such that fv(x) = a(x, y) for each x ∈ X. Combined,

a(x, y) = fv(x) = 〈x, v〉 for each x ∈ X. (5.34)

On the other hand, using the definition of A,

a(x, y) = 〈x, Ay〉 for each x ∈ X, (5.35)

showing v = Ay, i.e. A is surjective.
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6 Optimal Control of Linear Elliptic PDE

6.1 Sobolev Spaces

6.1.1 Lp-Spaces

Notation 6.1. For each m ∈ N, let λm denote m-dimensional Lebesgue measure.

Definition 6.2. Let E be a measurable subset of Rm, m ∈ N. For each p ∈ [1,∞[, let
Lp(E) denote the set of all measurable functions f : E −→ R such that∫

E

|f(x)|p dx < ∞. (6.1)

For each f ∈ Lp(E) define

‖f‖p :=
(∫

E

|f(x)|p dx
) 1

p

. (6.2)

Furthermore, define L∞(E) to be the set consisting of all measurable functions f :
E −→ R such that

‖f‖∞ := inf

{
sup

{
|f(x)| : x ∈ E \N

}
: N measurable and λm(N) = 0

}
< ∞. (6.3)

The number defined in (6.3) is also known as the essential supremum of f . In the usual
way, we define equivalence relations on the spaces Lp(E), p ∈ [1,∞], by considering
functions as equivalent if they only differ on sets of measure zero. The respective sets of
equivalence classes are denoted by Lp(E). A certain sloppiness is quite common in that
one often does not properly distinguish between elements of Lp(E) and Lp(E). This
sloppiness does not lead to confusion in most cases and it will occasionally be present
below.

Riesz-Fischer Theorem 6.3. For each measurable E ⊆ Rm and each p ∈ [1,∞],
the space

(
Lp(E), ‖ · ‖p

)
is a Banach space (whereas the Lp(E) are merely seminormed

spaces, which is the main reason for working with Lp(E)).

Proof. See, e.g., [Roy88, Ch. 11, Th. 25, Ch. 6, Th. 6] or [Els96, Ch. VI, Th. 2.5]. �

Hölder Inequality 6.4. Let E ⊆ Rm be measurable, (p, q) ∈ [1,∞]2 such that 1/p +
1/q = 1. If f ∈ Lp(E), g ∈ Lq(E), then f g ∈ L1(E) and∫

E

|f g| ≤ ‖f‖p ‖g‖q. (6.4)

Proof. See, e.g., [Roy88, Ch. 11, Th. 25, Ch. 6, Th. 4] or [Els96, Ch. VI, Th. 1.5]. �
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Remark 6.5. Observing that, for each measurable E ⊆ Rm, the map (f, g) 7→
∫
E
f g,

defines an inner product on L2(E) (note that f g ∈ L1(E) for f, g ∈ L2(E) by the
Hölder Ineq. 6.4), Th. 6.3 implies that L2(E) is a Hilbert space.

Riesz Representation Theorem 6.6. For each measurable E ⊆ Rm and each p ∈
[1,∞[, one has (Lp(E))∗ = Lq(E) (1/p + 1/q = 1) in the sense that, for each bounded
linear functional F on Lp(E), there exists a unique g ∈ Lq(E) satisfying

F (f) =

∫
E

f g for each f ∈ Lp(E), (6.5)

and, moreover, ‖F‖ = ‖g‖q. In particular, for 1 < p < ∞, Lp(E) is reflexive.

Proof. See, e.g., [Roy88, Ch. 11, Th. 29, Ch. 6, Th. 13] or [Els96, Ch. VII, Th. 3.2]. �

Remark 6.7. As a caveat, it is remarked that, in general, even though (L1(E))∗ =
L∞(E), one has (L∞(E))∗ 6= L1(E), implying that L1(E) is not reflexive. See [Yos74,
Ex. IV.9.5] for a representation of (L∞(E))∗.

Definition 6.8. Given E ⊆ Rm measurable and a measurable f : E −→ R, f is called
integrable if, and only if, f ∈ L1(E). Moreover, f is called locally integrable if, and only
if, for each compact K ⊆ E, the restriction of f to K is in L1(K), i.e. f is integrable
over every compact subset of E. The set of all locally integrable functions on E is
denoted by L1

loc(E).

6.1.2 Weak Derivatives

Definition 6.9. The support of a function f : Ω −→ R defined on a set Ω ⊆ Rm,
denoted supp(f), is the closure of the set of points, where f does not vanish, i.e.

supp(f) := {x ∈ Ω : f(x) 6= 0} ⊆ Ω. (6.6)

Notation 6.10. Let Ω ⊆ Rm be open, and let k ∈ N0.

(a) Let Ck(Ω) denote the set of all functions f : Ω −→ R such that f has continuous
partial derivatives up to order k (i.e. including those of order k). One also says that
functions in Ck(Ω) are of class Ck. Set C(Ω) := C0(Ω) and C∞(Ω) :=

⋂
k∈N0

Ck(Ω).

(b) Let Ck(Ω) denote the set of all functions from Ck(Ω) such that all their partial
derivatives up to order k extend continuously to Ω. Set C(Ω) := C0(Ω) and
C∞(Ω) :=

⋂
k∈N0

Ck(Ω).

(c) Let Ck
0 (Ω) denote the set of all functions f from Ck(Ω) that have a compact support

contained in Ω, i.e. supp(f) ⊆ Ω. Set C0(Ω) := C0
0(Ω) and C∞

0 (Ω) :=
⋂

k∈N0
Ck

0 (Ω).
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Remark 6.11. The elements φ ∈ C∞
0 (Ω) have numerous particularly benign and use-

ful properties that are subsequently exploited when defining weak derivatives. These
properties include the fact that φf is integrable for each f ∈ L1

loc(Ω), φ satisfies the
simplified integration by parts formula (6.11), and φ can be differentiated as often as
needed. Fortunately, elements of φ ∈ C∞

0 (Ω) are also very abundant as can be seen
from the next theorem.

Theorem 6.12. If Ω ⊆ Rm is open and p ∈ [1,∞[, then C∞
0 (Ω) is dense in Lp(Ω), i.e.

Lp(Ω) is the closure of C∞
0 (Ω) with respect to ‖ · ‖p.

Proof. See [Alt06, Th. 2.14〈3〉]. �

Fundamental Lemma of Variational Calculus 6.13. If Ω ⊆ Rm is open and f ∈
L1
loc(Ω), then ∫

Ω

f φ = 0 for each φ ∈ C∞
0 (Ω) (6.7)

implies that f = 0 almost everywhere.

Proof. See [Zei90, Prop. 18.36]. �

Notation 6.14. A multi-index α is a finite sequence of nonnegative integers, i.e. α =
(α1, . . . , αm) ∈ Nm

0 , m ∈ N, where |α| := α1 + · · · + αm is called the order of α. If
α = (α1, . . . , αm) is a multi-index, Ω ⊆ Rm is open, and f ∈ Ck(Ω), where k = |α|,
then Dαf denotes a partial derivative of f of order k, namely

Dαf :=

(
m∏
i=1

∂αi
i

)
f = ∂α1

1 · · · ∂αm
m f, (6.8)

where ∂0
i f := f . Thus, for example, if α = (1, 0, 2), then Dαf = ∂1∂3∂3f .

Remark 6.15. Note that the definition in (6.8) is biased with respect to the order
of partial derivatives (partial derivatives with respect to the mth variable are always
carried out first). Of course, for functions of class Ck, partial derivatives commute and
this bias is of no consequence.

Remark 6.16. For Ω ⊆ Rm open and bounded, k ∈ N0, and f ∈ Ck(Ω), let

‖f‖Ck(Ω) := max
x∈Ω

∑
α∈Nm

0 : |α|≤k

|Dαf(x)|. (6.9)

The numbers ‖f‖Ck(Ω) are well-defined as each of the continuous functions |Dαf | as-
sumes its maximum on the compact set Ω. Moreover, ‖·‖Ck(Ω) defines a norm on Ck(Ω)

that makes Ck(Ω) into a Banach space.

Remark 6.17. Let Ω ⊆ Rm be open. If f, g ∈ C1(Ω) and f or g is in C1
0(Ω), then the

following integration by parts formula holds:∫
Ω

g ∂if = −
∫
Ω

f ∂ig for each i ∈ {1, . . . ,m}. (6.10)
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To verify (6.10), one first uses the Fubini theorem to show

φ ∈ C1
0(Ω) ⇒

∫
Rm

∂iφ = 0 for each i ∈ {1, . . . ,m}. (6.11)

Then this implies (6.10) for Ω = Rm, which, in turn, extends to general open Ω via
noticing that fg has compact support inside Ω, i.e. extending fg by 0 yields an element
of C1

0(Rm).

—

One now uses (6.10) to define derivatives (so-called weak derivatives) for a larger class
of locally integrable functions.

Definition 6.18. Let Ω ⊆ Rm be open. If f ∈ L1
loc(Ω) and α ∈ Nm

0 is a multi-index,
then a function g ∈ L1

loc(Ω) is called a weak derivative with respect to α if, and only if,∫
Ω

f ∂αφ = (−1)|α|
∫
Ω

g φ for each φ ∈ C∞
0 (Ω). (6.12)

If (6.12) holds, then we will also write Dαf instead of g. The following Rem. 6.19
provides a justification for this notation.

Remark 6.19. Weak derivatives are unique: If g1 and g2 are weak derivatives of f
with respect to α, then (6.12) implies

∫
Ω
(g1 − g2)φ = 0 for each φ ∈ C∞

0 (Ω), yielding
g1 = g2 by Th. 6.13. The uniqueness of weak derivatives together with the integration
by parts formula in Rem. 6.17 shows that the weak derivative Dαf coincides with the
corresponding classical partial derivative of f provided that f ∈ Ck(Ω), where k := |α|.
As a caveat, it is noted that, if f does not have continuous partials up to order k, then
the weak derivatives can not be guaranteed to agree with the classical derivatives (see
[Rud73, Ex. 6.14] for examples). Here, in such cases, Dαf will always mean the weak
derivative of f .

Definition 6.20. Let Ω ⊆ Rm be open, (k, p) ∈ N0 × [1,∞]. By W k,p(Ω) we denote
the subset of L1

loc(Ω) consisting of all functions f such that the weak derivatives Dαf
exist and lie in Lp(Ω) for each multi-index α with |α| ≤ k. The spaces W k,p(Ω) are
referred to as Sobolev spaces. The case p = 2 is of particular interest, and one sets
Hk(Ω) := W k,2(Ω). Furthermore, for each f ∈ W k,p(Ω), p < ∞, define

‖f‖Wk,p(Ω) :=

 ∑
α∈Nm

0 : |α|≤k

∫
Ω

|Dαf |p
 1

p

=

 ∑
α∈Nm

0 : |α|≤k

‖Dαf‖pp

 1
p

, (6.13a)

and, for each f ∈ W k,∞(Ω),

‖f‖Wk,∞(Ω) := max
{
‖Dαf‖∞ : α ∈ Nm

0 , |α| ≤ k
}
. (6.13b)
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Theorem 6.21. Let Ω ⊆ Rm be open. For each (k, p) ∈ N0 × [1,∞], the Sobolev space
W k,p(Ω) is a Banach space. In particular, each Hk(Ω) = W k,2(Ω) is a Hilbert space
with respect to the inner product

〈f, g〉Hk(Ω) =
∑

α∈Nm
0 : |α|≤k

∫
Ω

Dαf Dαg =
∑

α∈Nm
0 : |α|≤k

〈Dαf,Dαg〉L2(Ω). (6.14)

Proof. See, e.g., [Alt06, p. 64] or [RR96, Th. 6.65]. The case p < ∞ is also treated in
[Yos74, Prop. I.9.5]. �

Definition 6.22. Let Ω ⊆ Rm be open. For each (k, p) ∈ N0 × [1,∞], let W k,p
0 (Ω)

denote the closure of the set C∞
0 (Ω) in W k,p(Ω), i.e. the closure of C∞

0 (Ω) with respect
to the ‖ · ‖Wk,p(Ω)-norm; let Hk

0 (Ω) := W k,2
0 (Ω).

Remark 6.23. As closed subspaces of Banach spaces, the W k,p
0 (Ω) are themselves

Banach spaces for each open Ω ⊆ Rm and each (k, p) ∈ N0 × [1,∞]; the Hk
0 (Ω) are

Hilbert spaces.

Poincaré-Friedrich Inequality 6.24. Let Ω ⊆ Rm be open and bounded. Then there
exists an Ω-dependent constant cΩ > 0 such that

‖f‖2L2(Ω) =

∫
Ω

|f |2 ≤ cΩ

∫
Ω

| ∇ f |2 = cΩ

∫
Ω

m∑
i=1

|∂if |2 for each f ∈ H1
0 (Ω). (6.15)

Proof. See, e.g., [Alt06, 4.7] or [RR96, Th. 6.101]. �

6.1.3 Boundary Issues

Our main goal is the solution and control of PDE. We will see in Sec. 6.2 that solutions
of PDE are typically found as elements of Sobolev spaces. On the other hand, as was
already seen in the motivating examples of Sec. 1, suitable boundary conditions are
an essential part of PDE. Thus, if one is to consider PDE on some open set Ω ⊆ Rm,
then one needs a workable notion of restriction (or trace) of elements of Sobolev spaces
(i.e. of weakly differentiable functions) with respect to ∂Ω. A problem arises from the
fact that W k,p(Ω) consists of equivalence classes of functions that only differ on sets
of measure zero (with respect to λm) and λm(∂Ω) = 0. Thus, if f ∈ W k,p(Ω), then
different functions representing f will, in general, have different restrictions on ∂Ω, and
using representatives to define a restriction (or trace) of f is not feasible. On the other
hand, continuous functions f ∈ C(Ω) do have a well-defined restriction on ∂Ω, and
it turns out that this can be used to define a useful notion of restriction (or trace) of
weakly differentiable functions (see Th. 6.35).

In a related issue, one has to address the regularity of ∂Ω. For general open sets Ω,
the boundary can be extremely pathological. On the other hand, requiring ∂Ω to
be smooth (e.g. of class C1) seems too restrictive, as surfaces with corners occur in
numerous applications. As it turns out, the notion of a Lipschitz boundary (Def. 6.27,
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cf. [Alt06, Sec. A6.2], [Trö05, Sec. 2.2.2], [Wlo82, Def. 2.4]) constitutes an effective
compromise. Moreover, we will restrict ourselves to the case, where Ω is bounded.

Roughly, a bounded open set Ω ⊆ Rm has a Lipschitz boundary if, and only if, the
boundary is locally representable as the graph of Lipschitz functions, where Ω lies on
only one side of that graph. The technical definition is somewhat tedious and needs
some preparation.

Remark 6.25. The case that Ω is an open bounded subset of R is particularly sim-
ple. However, the fact that ∂Ω is 0-dimensional requires some special treatment and
definitions. As in [Trö05], we will avoid this issue by stating subsequent definitions and
results only for Ω ⊆ Rm with m ≥ 2. With the appropriate modifications, the case
m = 1 is usually much simpler to treat. For example, a bounded open set Ω ⊆ R has
a Lipschitz boundary if, and only if, it consists of finitely many open intervals having
positive distance from each other.

Definition 6.26. Let Ω ⊆ Rm, m ∈ N. A map f : Ω −→ R is called Lipschitz
continuous if, and only if, there exists L ∈ R+

0 , such that, for each (x, y) ∈ Ω, |f(x) −
f(y)| ≤ L |x− y|, recalling that we use | · | to denote the Euclidian norm. The set of all
Lipschitz continuous maps on Ω is denoted by C0,1(Ω).

—

We will now state the definition of a set with Lipschitz boundary, followed by some
further explanation directly after the definition.

Definition 6.27. Let Ω ⊆ Rm, m ≥ 2, be open and bounded. Then Ω is said to have a
Lipschitz boundary if, and only if, there are finitely many open subsets of Rm, denoted by
U1, . . . , UM , M ∈ N, rotations ρj : Rm −→ Rm, reference points yj = (yj1, . . . , y

j
m−1) ∈

Rm−1, and Lipschitz continuous functions hj : Rm−1 −→ R, j ∈ {1, . . . ,M}, as well
as positive real numbers a > 0, b > 0, such that the following conditions (i) – (iii) are
satisfied:

(i) ∂Ω ⊆
⋃M

j=1 Uj.

(ii) For each j ∈ {1, . . . ,M}:

Uj = ρj

({
(x1, . . . , xm) : |yj − (x1, . . . , xm−1)| < a, |xm − hj(y

j)| < b
})

.

(iii) For each j ∈ {1, . . . ,M}:

Uj ∩ ∂Ω = ρj

({
(y, hj(y)) : |yj − y| < a

})
, (6.16a)

Uj ∩ Ω = ρj

({
(y, xm) : |yj − y| < a, hj(y) < xm < hj(y) + b

})
, (6.16b)

Uj \ Ω = ρj

({
(y, xm) : |yj − y| < a, hj(y)− b < xm < hj(y)

})
. (6.16c)

—
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The rotations ρj in Def. 6.27 are needed as, in general, some parts of ∂Ω are perpen-
dicular to the (m− 1)-dimensional hyperplane H := Rm−1 ×{0} ⊆ Rm. However, after
rotating H by applying ρj, no part of the small patch Uj ∩ ∂Ω is perpendicular to the
resulting hyperplane, i.e. to ρj(H). Moreover, shifting Uj ∩ ∂Ω for a small distance in
the direction perpendicular to ρj(H) either results in moving Uj ∩ ∂Ω entirely inside of
Ω (cf. (6.16b)) or entirely outside of Ω (cf. (6.16c)), i.e., locally, Ω lies only on one side
of Uj∩∂Ω. Moreover, a neighborhood Nj of y

j ∈ H can be deformed into Uj∩∂Ω using
hj in the sense that, after applying the rotation to the deformed piece, the resulting set
is identical to Uj ∩ ∂Ω (cf. (6.16a)).

Theorem 6.28. Let the bounded and open set Ω ⊆ Rm be a set with Lipschitz boundary.
Then the identity map provides an isomorphism between C0,1(Ω) and W 1,∞(Ω):

Id : C0,1(Ω) ∼= W 1,∞(Ω). (6.17)

More precisely, each f ∈ C0,1(Ω) represents an equivalence class that is an element of
W 1,∞(Ω) and each element of W 1,∞(Ω) contains precisely one representative that lies
in C0,1(Ω).

Proof. See [Alt06, Th. 8.5〈2〉]. The case where ∂Ω is of class C1 is also treated in
[Eva98, Sec. 5.8, Th. 4–6]. �

Theorem 6.29. Let the bounded and open set Ω ⊆ Rm be a set with Lipschitz boundary.
Then, for each 1 ≤ p < ∞ and each k ∈ N0, C

∞(Ω) is dense in W k,p(Ω).

Proof. See, e.g., [Alt06, Lem. A6.7] or (for the case p = 2) [Zei90, Cor. 21.15(a)]. �

Before formulating a boundary trace theorem for functions inW 1,p(Ω), we need to define
the space L2(∂Ω) or, more generally, Lp-spaces of functions living on ∂Ω. In particular,
we need to define a suitable measure on ∂Ω, the so-called surface measure. The strategy
for that is, given some x ∈ ∂Ω, to first work in a local neighborhood of x (such as the
sets Uj ∩ ∂Ω given by Def. 6.27), and then to patch everything together using a so-
called partition of unity. Finally, one needs to show that the resulting definitions do
not depend on the choice of local coordinates and the choice of partition of unity. The
following Def. 6.31 of a partition of unity is tailored for our purposes. In the literature,
one typically finds more general and sometimes slightly modified notions of partitions
of unity (see, e.g., [Alt06, 2.19], [Wlo82, Sec. 1.2]).

Definition 6.30. Let A ⊆ Rm, m ∈ N. A finite family (O1, . . . , ON), N ∈ N, of open
sets Oi ⊆ Rm is called a finite open cover of A if, and only if, A ⊆

⋃N
i=1 Oi.

Definition 6.31. Let A ⊆ Rm, m ∈ N. Given a finite open cover O = (O1, . . . , ON),
N ∈ N, of A, a family of functions (η1, . . . , ηN), ηi ∈ C∞

0 (Rm), is called a partition of
unity subordinate to O if, and only if, 0 ≤ ηi ≤ 1, supp(ηi) ⊆ Oi for each i ∈ {1, . . . , N},
and

N∑
i=1

ηi(x) = 1 for each x ∈ A. (6.18)
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Partition of Unity Theorem 6.32. Let A ⊆ Rm, m ∈ N. Given a finite open cover
O = (O1, . . . , ON), N ∈ N, of A, there exists a partition of unity subordinate to O.

Proof. See [Alt06, 2.19〈3〉]. �

Definition and Remark 6.33. Let the bounded and open set Ω ⊆ Rm be a set
with Lipschitz boundary, m ≥ 2. Let U1, . . . , UM , M ∈ N, ρj : Rm −→ Rm, yj =
(yj1, . . . , y

j
m−1) ∈ Rm−1, hj : Rm−1 −→ R, j ∈ {1, . . . ,M}, and a > 0, b > 0 be as in

Def. 6.27. Let U0 := Ω. Then, according to Def. 6.27(i), (U1, . . . , UM) forms a finite
open cover of ∂Ω and O := (U0, . . . , UM) forms a finite open cover of Ω. Thus, by Th.
6.32, we can choose a partition of unity (η0, . . . , ηM) subordinate to O.

(a) A function f : ∂Ω −→ R is called λm−1-measurable (respectively λm−1-integrable)
if, and only if, for each j ∈ {1, . . . ,m}, the function

fj : Rm−1 −→ R, fj(y) :=

{
(ηjf)

(
ρj
(
y, hj(y)

))
for y ∈ Ba(y

j),

0 for y ∈ Rm−1 \Ba(y
j)

(6.19)
is measurable (respectively integrable) in the usual sense. If f : ∂Ω −→ R is
integrable or nonnegative and measurable, then define∫

∂Ω

f dλm−1 :=
M∑
j=1

∫
Rm−1

fj(y)
√

1 + |∇hj(y)|2 dy , (6.20)

where it is noted that, as hj : Rm−1 −→ R is presumed to be Lipschitz continuous,
hj�Ba(yj)∈ W 1,∞(Ba(y

j)) according to (6.17).

Now, given A ⊆ ∂Ω, call A λm−1-measurable if, and only if, the characteristic
function 1A : ∂Ω −→ {0, 1} is λm−1-measurable. If A is λm−1-measurable, then
define

λm−1(A) :=

∫
∂Ω

1A dλm−1 . (6.21)

Then λm−1 defines, indeed, a measure on ∂Ω, called the surface measure. Moreover,
the integral defined in (6.20) coincides with the integral with respect to the surface
measure, thereby justifying the notation

∫
∂Ω

f dλm−1 .

(b) For each p ∈ [1,∞[, let Lp(∂Ω) denote the set of all λm−1-measurable functions
f : ∂Ω −→ R such that ∫

∂Ω

|f |p dλm−1 < ∞. (6.22)

For each f ∈ Lp(∂Ω) define

‖f‖p :=
(∫

∂Ω

|f |p dλm−1

) 1
p

. (6.23)
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Furthermore, define L∞(∂Ω) to be the set consisting of all λm−1-measurable func-
tions f : ∂Ω −→ R such that

‖f‖∞ := inf

{
sup

{
|f(x)| : x ∈ (∂Ω) \N

}
:

N λm−1-measurable and λm−1(N) = 0

}
< ∞.

(6.24)

Analogous to the λm-case, we define equivalence relations on the spaces Lp(∂Ω),
p ∈ [1,∞], by considering functions as equivalent if they only differ on sets of λm−1-
measure zero. The respective sets of equivalence classes are denoted by Lp(∂Ω).
Also analogous to the λm-case, it is quite common to permit a certain sloppiness,
not always properly distinguishing between elements of Lp(∂Ω) and Lp(∂Ω).

(c) We define a function
ν : ∂Ω −→ Rm, (6.25)

called the outer unit normal to Ω, as well as functions

τk : ∂Ω −→ Rm for each k ∈ {1, . . . ,m− 1}, (6.26)

called unit tangent vectors to Ω, as follows: Given x ∈ ∂Ω, there is j ∈ {1, . . . ,M}
such that x ∈ Uj ∩ ∂Ω. If x ∈ Uj ∩ ∂Ω, then, according to (6.16b), there is
yx ∈ Ba(y

j) such that
x = ρj

(
yx, hj(yx)

)
. (6.27)

Again recalling that hj�Ba(yj)∈ W 1,∞(Ba(y
j)), we define

ν(x) :=
(
1 + |∇hj(yx)|2

)− 1
2 ρj
(
∇hj(yx), −1

)
, (6.28)

and

τk(x) :=
(
1 +

(
∂khj(yx)

)2)− 1
2
ρj
(
τ 0(x)

)
for each k ∈ {1, . . . ,m− 1}, (6.29)

where

τ 0k,i(x) :=


1 for i = k,

∂khj(yx) for i = m,

0 for i ∈ {1, . . . ,m} \ {k,m}.
(6.30)

Theorem 6.34. Let the bounded and open set Ω ⊆ Rm be a set with Lipschitz boundary,
m ≥ 2. Then the surface measure λm−1 on ∂Ω, the measurability, the integrability, and
the integrals with respect to λm−1, as well as the spaces Lp(∂Ω) and Lp(∂Ω), p ∈ [1,∞],
the normal vector ν and the tangent space span{τ1, . . . , τm−1} to Ω spanned by the
tangent vectors, all defined in Def. and Rem. 6.33, are independent of the chosen sets
U1, . . . , UM , M ∈ N, ρj : Rm −→ Rm, yj = (yj1, . . . , y

j
m−1) ∈ Rm−1, hj : Rm−1 −→ R,

j ∈ {1, . . . ,M}, as well as independent of the chosen partition of unity (η0, . . . , ηM).
Note that the individual tangent vectors τ1, . . . , τm−1 do depend on the choice of local
coordinates hj and ρj.
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Moreover, Lp(∂Ω) is a Banach space for each p ∈ [1,∞]. The outer unit normal
ν : ∂Ω −→ Rm and the unit tangent vectors τk : ∂Ω −→ Rm, k ∈ {1, . . . ,m− 1}, have
the following properties: All components are bounded λm−1-measurable functions, i.e.
νi ∈ L∞(∂Ω) and τk,i ∈ L∞(∂Ω) for each i ∈ {1, . . . ,m}. Moreover, the vectors are,
indeed, unit vectors, i.e. |ν| ≡ 1 and |τk| ≡ 1. For λm−1-almost every x ∈ ∂Ω (more
precisely, using the notation from Def. and Rem. 6.33(c), for every x = ρj

(
yx, hj(yx)

)
∈

∂Ω such that hj is differentiable in yx ∈ Ba(y
j)), ν(x) is perpendicular to each τk(x),

i.e. 〈
ν(x), τk(x)

〉
Rm = 0 for each k ∈ {1, . . . ,m− 1}; (6.31)

and ν(x) is pointing outwards, i.e. there is ε0 > 0 such that x + εν(x) 6∈ Ω for each
0 ≤ ε < ε0.

Proof. See [Alt06, A.6.5〈1〉–〈3〉]. �

Theorem 6.35. Let the bounded and open set Ω ⊆ Rm be a set with Lipschitz boundary.
Then, for each 1 ≤ p ≤ ∞, there is a unique bounded linear map τ : W 1,p(Ω) −→
Lp(∂Ω), called the trace operator, such that, for each f ∈ C0(Ω) ∩ W 1,p(Ω), one has
τf = f �∂Ω, where f �∂Ω denotes the restriction of f to ∂Ω. The function τf is called
the trace of f on ∂Ω. Moreover, the trace operator is positive, i.e. if f ≥ 0 λm-almost
everywhere on Ω, then τf ≥ 0 λm−1-almost everywhere on ∂Ω.

Proof. See, e.g., [Alt06, Lem. A6.6] or (for the case p = 2) [Zei90, Th. 21.A(e)]. The
positivity of the trace operator follows by noting that, when proving Th. 6.29, for
f ∈ W 1,p(Ω) and f ≥ 0, one can choose the approximating functions fn ∈ C∞(Ω) to
be nonnegative as well (cf. [KS80, Prop. 5.2(ii)]). As τfn ≥ 0, the continuity of τ then
yields τf ≥ 0. �

Theorem 6.36. Let the bounded and open set Ω ⊆ Rm be a set with Lipschitz boundary.
Then, for each 1 ≤ p ≤ ∞,

W 1,p
0 (Ω) =

{
f ∈ W 1,p(Ω) : τf = 0

}
. (6.32)

Proof. The case p < ∞ is treated in [Alt06, Lem. A6.10]. The case p = ∞ follows from
Th. 6.28. �

6.2 Linear Elliptic PDE

6.2.1 Setting and Basic Definitions, Strong and Weak Formulation

Definition 6.37. An (m × m)-matrix (aij)(i,j)∈{1,...,m}2 of measurable functions aij :
Ω −→ R defined on a measurable set Ω ⊆ Rm is called uniformly elliptic if, and only
if, there exists α0 ∈ R+ such that

m∑
i,j=1

aij(x) ξi ξj ≥ α0 |ξ|2 for each ξ ∈ Rm and each x ∈ Ω. (6.33)
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It is called almost uniformly elliptic if, and only if, there exists α0 ∈ R+ such that (6.33)
holds for almost every x ∈ Ω.

Definition 6.38. Let Ω ⊆ Rm be bounded and open, m ≥ 2. Given hi ∈ C1(Ω), a
uniformly elliptic (m×m)-matrix of functions (aij)(i,j)∈{1,...,m}2 , each aij ∈ C1(Ω), g, b ∈
C0(Ω), b ≥ 0, we call the following equations (6.34) for the unknown y ∈ C2(Ω)∩C0(Ω),

−
m∑
i=1

∂i

(
m∑
j=1

aij∂jy + hi

)
+ by = g on Ω, (6.34a)

y = 0 on ∂Ω, (6.34b)

the corresponding elliptic boundary value problem (BVP) on Ω in strong form with
a homogeneous Dirichlet condition on the boundary. A function y ∈ C2(Ω) ∩ C0(Ω)
satisfying (6.34) is called a strong or classical solution to the problem.

Example 6.39. Let Ω ⊆ Rm be bounded and open as before. In the motivating
examples of Sec. 1, we considered the heat equation

− div(κ ∇ y) = g on Ω. (6.35)

The left-hand side can be written as

− div(κ ∇ y) = −
m∑
i=1

∂i(κ ∂iy), (6.36)

such that (6.35) corresponds to (6.34a) with b = 0, hi = 0, aii = κ, aij = 0 for i 6= j,
(i, j) ∈ {1, . . . ,m}2. For this choice of the aij, if ξ ∈ Rm, then

m∑
i,j=1

aij ξi ξj = κ |ξ|2. (6.37)

In particular, (aij)(i,j)∈{1,...,m}2 is uniformly elliptic if, and only if, the function κ : Ω −→
R is measurable and bounded away from 0 by α0 > 0. It is almost uniformly elliptic if,
and only if, κ is measurable and κ(x) ≥ α0 for almost every x ∈ Ω.

Remark 6.40. If (6.34b) in Def. 6.38 is replaced with “y = y0 on ∂Ω” with some
0 6= y0 ∈ C0(∂Ω), then one speaks of a nonhomogeneous Dirichlet condition. Here, for
simplicity, we will restrict ourselves to homogeneous Dirichlet conditions. Optimal con-
trol of PDE with nonhomogeneous Dirichlet conditions involve some special difficulties
(see, e.g., [Lio71, Sec. II.4.2]).

Lemma 6.41. In the setting of Def. 6.38, y ∈ C2(Ω) satisfies (6.34a) if, and only if,∫
Ω

(
m∑
i=1

(∂iv)

(
m∑
j=1

aij∂jy + hi

)
+ v (by − g)

)
dλm = 0 for each v ∈ C∞

0 (Ω).

(6.38)
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Proof. Suppose y ∈ C2(Ω) satisfies (6.34a). Multiplying (6.34a) by v ∈ C∞
0 (Ω) and

integrating the result over Ω yields

0 = −
∫
Ω

v

(
m∑
i=1

∂i

(
m∑
j=1

aij∂jy + hi

)
+ by − g

)
dλm . (6.39)

As v ∈ C∞
0 (Ω) implies v ∈ C1

0(Ω) and the hypotheses on the aij, hi, and y imply that
(
∑m

j=1 aij∂jy + hi) ∈ C1(Ω), the integration by parts formula (6.10) applies, and one
obtains (6.38).

Conversely, if y ∈ C2(Ω) satisfies (6.38) for each v ∈ C∞
0 (Ω), then the integration

by parts formula (6.10) yields that y satisfies (6.39) for each v ∈ C∞
0 (Ω). Applying

the Fundamental Lemma of Variational Calculus 6.13, one obtains that the equation
in (6.34a) holds for almost every x ∈ Ω. As the hypotheses imply that both sides of
(6.34a) are a continuous function on Ω, it follows that the equation in (6.34a) actually
holds everywhere in Ω. �

Using (6.38), we now proceed to formulate the weak form of (6.34) in Def. 6.42 below.
The key observation is that (6.38) makes sense if the differentiability and continuity
conditions occurring in Def. 6.38 for the functions hi, aij, g, and b are replaced by
suitable integrability and boundedness conditions (see Def. 6.42), and, in that case, it
is no longer necessary to require y ∈ C2(Ω) ∩ C0(Ω), but it suffices to demand that y
be weakly differentiable, i.e. y ∈ H1(Ω). If Ω is a set with Lipschitz boundary (see Def.
6.27), then the homogeneous Dirichlet condition (6.34b) can be incorporated into the
weak formulation by requiring y ∈ H1

0 (Ω). For our subsequent considerations, the weak
formulation will turn out to provide the appropriate setting.

Definition 6.42. Let the bounded and open set Ω ⊆ Rm be a set with Lipschitz
boundary, m ≥ 2. Given hi ∈ L2(Ω), an almost uniformly elliptic (m ×m)-matrix of
functions (aij)(i,j)∈{1,...,m}2 , each aij ∈ L∞(Ω), g ∈ L2(Ω), b ∈ L∞(Ω), b ≥ 0 almost
everywhere, we call the following equation (6.40) for the unknown y ∈ H1

0 (Ω),∫
Ω

(
m∑
i=1

(∂iv)

(
m∑
j=1

aij∂jy + hi

)
+ v (by − g)

)
dλm = 0 for each v ∈ H1

0 (Ω),

(6.40)

the corresponding elliptic boundary value problem (BVP) on Ω in weak form with a
homogeneous Dirichlet condition on the boundary. A function y ∈ H1

0 (Ω) satisfying
(6.40) is called a weak solution to the problem.

6.2.2 Existence and Uniqueness of Weak Solutions

Theorem 6.43. Let the bounded and open set Ω ⊆ Rm be a set with Lipschitz boundary,
m ≥ 2. Given hi ∈ L2(Ω), aij ∈ L∞(Ω), (i, j) ∈ {1, . . . ,m}2, g ∈ L2(Ω), b ∈ L∞(Ω),
b ≥ 0 almost everywhere, the corresponding elliptic BVP on Ω in weak form with a
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homogeneous Dirichlet condition on the boundary has a unique weak solution y ∈ H1
0 (Ω).

More precisely, if (aij)(i,j)∈{1,...,m}2 is almost uniformly elliptic, satisfying (6.33) with
α0 > 0, then there is a unique y ∈ H1

0 (Ω) satisfying (6.40), and, moreover,

‖y‖H1(Ω) ≤ C max
({

‖g‖L2(Ω)

}
∪
{
‖hi‖L2(Ω) : i ∈ {1, . . . ,m}

})
, (6.41)

where C ∈ R+ is the constant defined in (6.52) below.

Keeping the hi, aij, and b fixed with hi = 0 for each i ∈ {1, . . . ,m}, the solution operator

S : L2(Ω) −→ H1
0 (Ω), g 7→ y, (6.42)

is a bounded linear operator that is one-to-one. Furthermore, S is also a bounded linear
operator when interpreted as a map S : L2(Ω) −→ L2(Ω).

Proof. With the intention of applying Cor. 5.9, we define a bilinear form a and inves-
tigate its properties.

Claim 1. Under the hypotheses of Th. 6.43, the map

a : H1
0 (Ω)×H1

0 (Ω) −→ R, a(u, v) :=
m∑

i,j=1

∫
Ω

(∂iu) aij∂jv dλm +

∫
Ω

u b v dλm , (6.43)

defines a bounded and coercive bilinear form.

Proof. Note that a is well-defined: If u, v ∈ H1(Ω), then u, v, ∂iu, and ∂jv all are in
L2(Ω). Since aij ∈ L∞(Ω) and b ∈ L∞(Ω), one has aij∂jv ∈ L2(Ω) and bv ∈ L2(Ω).
Then (∂iu) aij∂jv ∈ L1(Ω) and u b v ∈ L1(Ω) such that all the integrals in (6.43) exist
as real numbers.

The bilinearity of a is implied by the linearity of the weak derivatives and by the
linearity of the integral.

To verify that a is bounded, we estimate for u, v ∈ H1(Ω):

|a(u, v)| ≤
m∑

i,j=1

‖aij‖L∞(Ω) ‖∂iu‖L2(Ω) ‖∂jv‖L2(Ω) + ‖b‖L∞(Ω) ‖u‖L2(Ω) ‖v‖L2(Ω)

≤
m∑

i,j=1

‖aij‖L∞(Ω) ‖u‖H1(Ω) ‖v‖H1(Ω) + ‖b‖L∞(Ω) ‖u‖H1(Ω) ‖v‖H1(Ω)

=

(
‖b‖L∞(Ω) +

m∑
i,j=1

‖aij‖L∞(Ω)

)
‖u‖H1(Ω) ‖v‖H1(Ω), (6.44)

showing that a is, indeed, bounded.

It remains to check that a is coercive. Since, by hypothesis, the aij satisfy the ellipticity
condition (6.33) and b ≥ 0, we obtain, for each u ∈ H1(Ω),

a(u, u) =
m∑

i,j=1

∫
Ω

aij (∂iu) (∂ju) dλm +

∫
Ω

b u2 dλm ≥ α0

∫
Ω

|∇ u|2 dλm . (6.45)
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Finally, using the Poincaré-Friedrich Inequality 6.24, we estimate, for each u ∈ H1
0 (Ω),

‖u‖2H1(Ω) = ‖u‖2L2(Ω) +
m∑
i=1

‖∂iu‖2L2(Ω) = ‖u‖2L2(Ω) +

∫
Ω

|∇ u|2 dλm

(6.15)

≤ (cΩ + 1)

∫
Ω

|∇ u|2 dλm

(6.45)

≤ cΩ + 1

α0

a(u, u), (6.46)

where cΩ > 0 is the constant from (6.15), showing that a is coercive. N

Still with the intention of applying Cor. 5.9, we define an element of H1
0 (Ω)

∗.

Claim 2. Under the hypotheses of Th. 6.43, the map

F : H1
0 (Ω) −→ R, F (v) := −

∫
Ω

(
m∑
i=1

hi ∂iv − gv

)
dλm , (6.47)

defines a bounded linear functional.

Proof. Once again, linearity is clear from the linearity of the derivatives and the integral.
To see that F is bounded, let

Chg := max
({

‖g‖L2(Ω)

}
∪
{
‖hi‖L2(Ω) : i ∈ {1, . . . ,m}

})
∈ R+

0 (6.48)

and compute, for each v ∈ H1
0 (Ω),

|F (v)| ≤
m∑
i=1

‖hi‖L2(Ω) ‖∂iv‖L2(Ω) + ‖g‖L2(Ω) ‖v‖L2(Ω)

≤ Chg

(
‖v‖L2(Ω) +

m∑
i=1

‖∂iv‖L2(Ω)

)
≤ Chg

√
1 +m

√√√√‖v‖2L2(Ω) +
m∑
i=1

‖∂iv‖2L2(Ω)

= Chg

√
1 +m ‖v‖H1(Ω), (6.49)

thereby establishing the case. N

We are now in a position to apply Cor. 5.9 with V = H1
0 (Ω). Since a and F satisfy the

hypotheses of Cor. 5.9, there is a unique y ∈ H1
0 (Ω) that satisfies (5.29), i.e.

a(v, y) =
m∑

i,j=1

∫
Ω

(∂iv) aij∂jy dλm +

∫
Ω

v b y dλm

= F (v) = −
∫
Ω

(
m∑
i=1

hi ∂iv − gv

)
dλm for each v ∈ H1

0 (Ω), (6.50)



6 OPTIMAL CONTROL OF LINEAR ELLIPTIC PDE 63

which is the same as

m∑
i,j=1

∫
Ω

(∂iv) aij∂jy dλm +

∫
Ω

v b y dλm +

∫
Ω

(
m∑
i=1

hi ∂iv − gv

)
dλm = 0

for each v ∈ H1
0 (Ω). (6.51)

As (6.51) is precisely the defining relation (6.40) for a weak solution of the homogeneous
elliptic boundary value problem on Ω, the proof of the existence and uniqueness part
of the theorem is complete. Also from Cor. 5.9, we know that the norm of y can be
estimated according to (5.30) by the norm of F and the constant occurring in the
coercivity condition for a. Using (6.46) and (6.49), one obtains the estimate

‖y‖H1(Ω) ≤ C Chg, C :=
(cΩ + 1)

√
1 +m

α0

, (6.52)

thereby verifying (6.41).

Claim 3. The solution operator S is linear.

Proof. Let g1, g2 ∈ L2(Ω), α, β ∈ R. By the definition of S, y1 := S(g1) and y2 := S(g2)
are the weak solutions corresponding to g1 and g2, respectively. According to (6.40),
using hi = 0, one obtains∫

Ω

(
m∑
i=1

(∂iv)
m∑
j=1

aij∂jy1 + v (by1 − g1)

)
dλm = 0 for each v ∈ H1

0 (Ω), (6.53a)

∫
Ω

(
m∑
i=1

(∂iv)
m∑
j=1

aij∂jy2 + v (by2 − g2)

)
dλm = 0 for each v ∈ H1

0 (Ω). (6.53b)

Adding (6.53a) and (6.53b) after multiplying by α and β, respectively, yields, for each
v ∈ H1

0 (Ω),∫
Ω

(
m∑
i=1

(∂iv)
m∑
j=1

aij∂j(α y1 + β y2) + v
(
b(α y1 + β y2)− α g1 − β g2

))
dλm = 0,

(6.54)
showing αy1 + βy2 = S(αg1 + βg2), which is the unique weak solution corresponding to
αg1 + βg2. N

Claim 4. The solution operator S is one-to-one.

Proof. Since S is linear, it suffices to show that Sg = 0 implies g = 0. If Sg = 0, that
means (6.40) holds with y = 0 and hi = 0:∫

Ω

v g dλm = 0 for each v ∈ H1
0 (Ω). (6.55)

According to Def. 6.22, we know C∞
0 (Ω) ⊆ H1

0 , such that (6.55) together with the
Fundamental Lemma of Variational Calculus 6.13 implies g = 0. N
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That S : L2(Ω) −→ H1
0 (Ω) is bounded follows directly from (6.41). That S : L2(Ω) −→

L2(Ω) is bounded follows from (6.41) together with ‖S(g)‖L2(Ω) ≤ ‖S(g)‖H1(Ω). �

Example 6.44. Letting Ω ⊆ Rm be bounded, open, and with Lipschitz boundary as
before, we come back to the heat equation

− div(κ ∇ y) = g on Ω, (6.56)

previously considered in Ex. 6.39 and Sec. 1. In Ex. 6.39, we noted that its coefficient
matrix is almost uniformly elliptic if, and only if, κ is measurable and κ(x) ≥ α0 > 0
for almost every x ∈ Ω. Applying Th. 6.43, it follows that, for (6.56), the corresponding
BVP in weak form with a homogeneous Dirichlet condition on the boundary, i.e. the
following equation (6.57) for the unknown y ∈ H1

0 (Ω),∫
Ω

(
m∑
i=1

κ (∂iv) (∂iy)− v g

)
dλm = 0 for each v ∈ H1

0 (Ω), (6.57)

has a unique weak solution y ∈ H1
0 (Ω), provided that κ ∈ L∞(Ω), κ ≥ α0 > 0 almost

everywhere, and g ∈ L2(Ω). Moreover, ‖y‖H1(Ω) ≤ C ‖g‖L2(Ω) and the solution operator
S is linear, bounded, and one-to-one.

6.3 Optimal Control Existence and Uniqueness

We will now define a class of (reduced) optimal control problems for linear elliptic
PDE as were studied in the previous Sec. 6.2. Combining Th. 6.43 on the existence
and uniqueness of weak solutions to linear elliptic PDE with Th. 5.3 on the existence
and uniqueness of optimal control in reflexive Banach spaces will provide existence and
uniqueness results for the optimal control of linear elliptic PDE.

Definition 6.45. This definition defines what we will call an elliptic optimal control
problem, an EOCP for short. We start with the general setting. An EOCP always
includes the following general assumptions (A-1) – (A-6):

(A-1) The set Ω ⊆ Rm is bounded and open with Lipschitz boundary, m ≥ 2.

(A-2) The functions aij ∈ L∞(Ω), (i, j) ∈ {1, . . . ,m}2, are such that (aij)(i,j)∈{1,...,m}2

is almost uniformly elliptic (cf. Def. 6.37).

(A-3) b ∈ L∞(Ω) with b ≥ 0 almost everywhere.

(A-4) Uad ⊆ L2(Ω).

(A-5) S : L2(Ω) −→ L2(Ω) is the solution operator according to Th. 6.43 (cf. (6.42))
for the corresponding elliptic BVP (with hi = 0 for each i ∈ {1, . . . ,m}) on Ω in
weak form with a homogeneous Dirichlet condition on the boundary.

(A-6) J : L2(Ω)× Uad −→ R.
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Given Assumptions (A-1) – (A-6), the EOCP is completed by the reduced optimal
control problem

min J(y, u), (6.58a)

u ∈ Uad, (6.58b)

y = Su, (6.58c)

where u is the control, y is the state, (6.58b) are the control constraints, (6.58c) are
the equation constraints (here, more precisely, elliptic PDE constraints), and S is the
control-to-state operator.

A function ū ∈ L2(Ω) is called an optimal control for the EOCP if, and only if, u = ū
satisfies (6.58).

Theorem 6.46. There exists an optimal control ū ∈ L2(Ω) for the elliptic optimal
control problem (EOCP) of Def. 6.45, provided that Uad is nonempty, closed, and convex;
J is continuous, convex and such that

f : Uad −→ R, f(u) := J(Su, u), (6.59)

is bounded from below and approaches its infimum in a bounded set (cf. Def. 5.1). If,
in addition, J is strictly convex, then the optimal control ū is unique.

Proof. As L2(Ω) is a Hilbert space and as Uad is assumed nonempty, closed, and convex,
Uad satisfies the hypotheses of Th. 5.3. Since f is assumed to be bounded from below
and to approach its infimum in a bounded set, for f to satisfy the hypotheses of Th. 5.3,
it remains to show that f is continuous and convex. According to Th. 6.43, the solution
operator S is a continuous linear operator from L2(Ω) into L2(Ω). This, together with
the assumed continuity of J , implies the continuity of f . Observing that we can apply
Lem. 2.12 to the present situation (with X := Y := C := L2(Ω) and U := Uad), the
linearity of S together with the assumed (strict) convexity of J implies the (strict)
convexity of f . Thus, Th. 5.3 applies, providing an optimal control ū ∈ Uad that is
unique if J is strictly convex. �

Example 6.47. In the setting of Def. 6.45, consider the objective functional

J : L2(Ω)× Uad −→ R, J(y, u) :=
1

2
‖y − yΩ‖2L2(Ω) +

λ

2
‖u‖2L2(Ω) (6.60)

with given yΩ ∈ L2(Ω), λ ∈ R+
0 . Note that this is precisely the objective functional

that was considered for several of the motivational examples of Sec. 1, e.g. in (1.8a).

It follows from Ex. 4.52 that J is continuous. If Uad is convex, then J is convex (and
even strictly convex for λ > 0) as a consequence of Lem. 2.11(a),(b) (with X := Y :=
C := L2(Ω) and U := Uad, also recalling that the Hilbert space L

2(Ω) is strictly convex).
To apply Th. 6.46, we need to consider f according to (6.59), i.e.

f : Uad −→ R, f(u) :=
1

2
‖Su− yΩ‖2L2(Ω) +

λ

2
‖u‖2L2(Ω). (6.61)
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Then f is always bounded from below by 0. Moreover, if λ > 0, then f approaches its
infimum in a bounded set: Let j := inf{f(u) : u ∈ Uad} ∈ R+

0 and choose an arbitrary
ε > 0. For the bounded set

B :=

{
u ∈ L2(Ω) : ‖u‖L2(Ω) ≤

√
2(j + ε)

λ

}
, (6.62)

one obtains

u ∈ Uad \B ⇒ f(u) =
1

2
‖Su− yΩ‖2L2(Ω)+

λ

2
‖u‖2L2(Ω) ≥

λ

2
‖u‖2L2(Ω) > j+ ε, (6.63)

such that criterion (b) of Lem. 5.2 implies that f approaches its infimum in a bounded
set. Hence, if λ > 0, then Th. 6.46 yields existence and uniqueness of an optimal control
ū whenever Uad is nonempty, closed, and convex.

For λ = 0, Th. 6.46 still yields existence under the additional assumption that Uad is
bounded. And even though strict convexity of J will generally fail for λ = 0, we still
obtain strict convexity of f via Lem. 2.11(c)(i), since S is one-to-one according to Th.
6.43. Thus, we still have uniqueness of ū even for λ = 0.

Notation 6.48. Let E be a measurable subset of Rm, m ∈ N. Given p ∈ [1,∞],
(a, b) ∈ Lp(E)× Lp(E) with a ≤ b almost everywhere, define

Lp
a,b(E) :=

{
f ∈ Lp(E) : a(x) ≤ f(x) ≤ b(x) for almost every x ∈ E

}
. (6.64)

Lemma 6.49. Let E be a measurable subset of Rm, m ∈ N, let p ∈ [1,∞], (a, b) ∈
Lp(E) × Lp(E) with a ≤ b almost everywhere. Then Lp

a,b(E) is a convex, closed, and
bounded subset of Lp(E) (i.e. closed with respect to ‖ · ‖Lp(E)) for each p ∈ [1,∞].

Proof. Let f, g ∈ Lp
a,b(E), α ∈ [0, 1]. Then, for almost every x ∈ E,

α a(x) ≤ α f(x) ≤ α b(x), (6.65a)

(1− α) a(x) ≤ (1− α) g(x) ≤ (1− α) b(x). (6.65b)

Adding (6.65a) and (6.65b) yields, for almost every x ∈ E,

a(x) ≤
(
αf + (1− α)g

)
(x) ≤ b(x), (6.66)

showing the convexity of Lp
a,b(E).

If a, b ∈ Lp(E), then the pointwise defined function F := |a| ∨ |b| := max{|a|, |b|} is
also in Lp(E). Moreover, for each f ∈ Lp

a,b(E), one has |f | ≤ F , and, thus, ‖f‖Lp(E) ≤
‖F‖Lp(E), showing that f is bounded in Lp(E).

To verify that Lp
a,b(E) is closed in Lp(E), consider fn ∈ Lp

a,b(E), n ∈ N, and f ∈ Lp(E)
such that

lim
n→∞

‖fn − f‖Lp(E) = 0. (6.67)
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Seeking a contradiction, assume f 6∈ Lp
a,b(E). Then there is ε > 0 and a measurable set

A ⊆ E, λm(A) > 0, such that f(x) ≥ b(x) + ε or f(x) ≤ a(x) − ε for each x ∈ A. If
p < ∞, then one computes, for each n ∈ N,

‖fn − f‖pLp(E) =

∫
E

|fn − f |p ≥
∫
A

|fn − f |p ≥
∫
A

εp = λm(A) ε
p > 0, (6.68)

in contradiction to (6.67). If p = ∞, then, for each n ∈ N,

‖fn − f‖Lp(E) ≥ ‖fn − f‖Lp(A) ≥ ε > 0, (6.69)

again in contradiction to (6.67). �
Example 6.50. In the setting of Def. 6.45, we consider special forms of the set of
admissible controls Uad.

(a) If Uad = L2
a,b(Ω) with a, b ∈ L2(Ω), a ≤ b, then one speaks of box constraints on

the control. Please note that this constitutes the infinite-dimensional version of
the finite-dimensional box constraints considered in Sec. 3.5.2 (in particular, cf.
(3.33)). According to Lem. 6.49, Uad is a bounded, closed, and convex subset of
L2(Ω). Thus, if J is defined according to (6.60), then we know from Ex. 6.47 that
the EOCP of Def. 6.45 has a unique solution ū ∈ Uad for each λ ≥ 0.

(b) Consider the case of no control constraints, i.e. Uad = L2(Ω). Again, considering
J defined according to (6.60), we know from Ex. 6.47 that the EOCP of Def. 6.45
has a unique solution ū ∈ Uad for each λ > 0. The case λ = 0 is now excluded due
to the unboundedness of Uad (cf. Ex. 6.47).

6.4 First Order Necessary Optimality Conditions, Variational
Inequality

6.4.1 Differentiability in Normed Vector Spaces

In the following Def. 6.51, we start by generalizing the notion of directional derivative
defined in Th. 3.10 to functions having their domain and range in general normed vector
spaces. In the same setting, we then proceed to definitions of increasingly strong notions
of derivatives.

Definition 6.51. Let U and V be normed vector spaces, Uad ⊆ U , f : Uad −→ V , and
consider some u ∈ Uad.

(a) Let h ∈ U . If u + t h ∈ Uad for each sufficiently small t > 0, and, moreover, the
limit

δf(u, h) := lim
t↓0

1

t

(
f
(
u+ t h

)
− f(u)

)
(6.70)

exists in V , then δf(u, h) is called the directional derivative of f at u in the direction
h. This definition actually still makes sense even if U is merely a real vector space;
it does not make use of any norm or topology on U .
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(b) Let u be in the interior of Uad. If the directional derivative δf(u, h) exists for each
h ∈ U , then the map

δf(u, ·) : U −→ V, h 7→ δf(u, h), (6.71)

is called the first variation of f at u (note that, if u is in the interior of Uad, then,
for each h ∈ U , u+ t h ∈ Uad for each sufficiently small t > 0).

If, in addition, the first variation constitutes a bounded linear operator, then it is
called the Gâteaux derivative of f at u. In that case, f is called Gâteaux differen-
tiable at u. If the first variation is a Gâteaux derivative, then one highlights this
by writing f ′

G(u) instead of δf(u, ·).

(c) As in (b), assume u to be in the interior of Uad. Then f is called Fréchet differen-
tiable at u if, and only if, there exists a bounded linear operator A : U −→ V such
that

h 6= 0, ‖h‖U → 0 ⇒
∥∥f(u+ h)− f(u)− Ah

∥∥
V

‖h‖U
→ 0. (6.72)

In that case, one writes f ′
F(u) instead of A and calls f ′

F(u) the Fréchet derivative
of f at u.

The function f is called Gâteaux (resp. Fréchet) differentiable if, and only if, it is
Gâteaux (resp. Fréchet) differentiable at each u ∈ Uad, Uad open.

Lemma 6.52. Let U and V be normed vector spaces, Uad ⊆ U open, f : Uad −→ V . If
f is Fréchet differentiable at u ∈ Uad, then the Fréchet derivative f ′

F(u) is unique and
equal to the Gâteaux derivative, i.e. f ′

F(u) = f ′
G(u). Moreover, f is continuous at u.

Proof. If f is Fréchet differentiable, then there is a bounded linear operator A : U −→ V
satisfying (6.72). For fixed 0 6= h ∈ U , letting t ↓ 0, yields ‖t h‖U → 0 such that (6.72)
implies

0 = lim
t↓0

∥∥f(u+ t h)− f(u)− A(t h)
∥∥
V

‖t h‖U
= lim

t↓0

∥∥∥∥1t (f(u+ t h
)
− f(u)

)
− Ah

∥∥∥∥
V

, (6.73)

thereby identifying Ah as δf(u, h) = f ′
G(u)(h). In particular, as the value δf(u, h) is

unique for each (u, h) ∈ Uad × U according to its definition, the Fréchet derivative is
unique. To see that f is continuous at u, consider a sequence (un)n∈N in Uad \ {u} such
that un → u. Letting hn := un − u, one obtains ‖hn‖U → 0. Applying (6.72) once
again, yields

0 = lim
n→∞

∥∥f(u+ hn)− f(u)− Ahn

∥∥
V

‖hn‖U
. (6.74)

Thus, there exists n0 ∈ N such that, for each n ≥ n0, ‖f(u+hn)−f(u)−Ahn

∥∥
V
< ‖hn‖U .

In consequence, for each n ≥ n0,∥∥f(un)− f(u)
∥∥
V
≤
∥∥f(un)− f(u)− Ahn

∥∥
V
+
∥∥Ahn

∥∥
V

=
∥∥f(u+ hn)− f(u)

∥∥
V
+
∥∥Ahn

∥∥
V

< ‖hn‖U + ‖A‖ ‖hn‖U → 0, (6.75)
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thereby showing f(un) → f(u), proving the continuity of f . �

Remark 6.53. If U is a normed vector space, Uad ⊆ U open, u ∈ Uad, and f : Uad −→
R is Gâteaux differentiable at u, then, according to Def. 6.51(b), f ′

G(u) ∈ U∗.

Remark 6.54. Let U and V be normed vector spaces, Uad ⊆ U , f : Uad −→ V ,
u ∈ Uad, h ∈ U . If δf(u, h) exists, then it is immediate from (6.70) that the function

f �Dh
, Dh := Uad ∩ {u+ th : t ∈ R+

0 } (6.76)

is continuous in u. In particular, if f has a first variation δf(u, ·) for each u ∈ U , then
f is continuous in every straight direction. However, the following Ex. 6.55 shows that
this does not imply that f has to be continuous.

Example 6.55. In (a), we first construct a function f : R2 −→ R that is Gâteaux
differentiable in (0, 0), but not continuous in (0, 0). Then, in (b), we show that by
working a little harder, we can even get f to be everywhere Gâteaux differentiable, but
still not continuous in (0, 0).

(a) Define

f : R2 −→ R, f(x, y) :=

{
1 if x > 0 and y = x2,

0 otherwise.
(6.77)

Since limn→∞(n−1, n−2) = (0, 0) and limn→∞ f(n−1, n−2) = 1 6= 0 = f(0, 0), f is
not continuous in (0, 0). On the other hand, we show that

δf
(
(0, 0), h

)
= 0 for each h = (h1, h2) ∈ R2, (6.78)

that means, in particular, f is Gâteaux differentiable at (0, 0) with f ′
G(0, 0) ≡ 0.

If h1 ≤ 0 or h2 ≤ 0, then, for each t > 0, we have f((0, 0) + th) = f(th1, th2) = 0,
showing δf

(
(0, 0), h

)
= 0. It remains the case, where h1 > 0 and h2 > 0. In that

case, we obtain t2h2
1 < th2 for each 0 < t < h2

h2
1
. Thus, for such t, f(th1, th2) = 0,

once again proving δf
(
(0, 0), h

)
= 0.

(b) For each a ∈ R2 and each ε > 0, let φa,ε ∈ C∞
0 (R2) satisfying φa,ε(a) = 1 and

supp(φa,ε) ⊆ Bε(a), where we consider R2 endowed with the max-norm. Let C :=
{(x, y) ∈ R2 : y = x2}. For each n ∈ N \ {1}, define

an := (n−1, n−3), (6.79a)

δn := dist
(
an, C

)
. (6.79b)

As an /∈ C and C is closed, we know δn > 0 for each n ∈ N \ {1}. Next, for each
n ∈ N, define

εn := min

{
dist(an, an+1)

2
,
1

n3
, δn

}
> 0, (6.79c)

B :=
⋃

n∈N\{1}

Bεn(an). (6.79d)
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Note that the Bn are all disjoint since dist(an, an+1) < dist(an, an−1). Thus, we can
define

f : R2 −→ R, f(x, y) :=

{
φan,εn(x, y) if (x, y) ∈ Bεn(an),

0 if (x, y) ∈ R2 \B.
(6.79e)

Due to the definition of εn, we have (0, 0) /∈ B. Thus, as f(an) = φan,εn(an) = 1
for each n ∈ N, f not being continuous in (0, 0) follows precisely as in (a).

To show f ∈ C∞(R2 \ {(0, 0)}
)
, we first compute the closure B of B:

Claim 1. B = {(0, 0)} ∪
⋃

n∈N\{1} Bεn(an).

Proof. For the inclusion “⊇”, merely observe that, for each point p in the right-
hand side, we can clearly find a sequence in B converging to p. For “⊆”, we show
that the right-hand side must contain all cluster points of sequences in B: Let
(bk)k∈N be a sequence in B that does not have a cluster point in any Bεn(an).
Thus, for each n ∈ N, the set {k ∈ N : bk ∈ Bεn(an)} must be finite. In other
words, for each ε > 0, Bε(0, 0) must contain all but finitely many of the bk, showing
limk→∞ = (0, 0). N

Claim 2. f ∈ C∞(R2 \ {(0, 0)}
)
.

Proof. Let (x, y) ∈ R2 \ {(0, 0)}. We consider several cases:

(x, y) ∈ B (i.e. (x, y) ∈ Bεn(an) for some n ∈ N \ {1}: f is C∞ in (x, y), since f
coincides with the C∞ function φan,εn on the open neighborhood Bεn(an) of (x, y).

(x, y) ∈ ∂Bεn(an) for some n ∈ N \ {1}: Let

η0 :=

{
min

{
dist

(
Bεn(an), Bεn+1(an+1)

)
, dist

(
Bεn(an), Bεn−1(an−1)

)}
for n > 2,

dist
(
Bεn(an), Bεn+1(an+1)

)
for n = 2.

(6.80)
Due to the choice of the εn, one has η0 > 0 and, in consequence,

η1 := min
{
ε0, dist

(
(x, y), supp(φan,εn)

)}
> 0. (6.81)

We now obtain that f is C∞ in (x, y), since f ≡ 0 on the open neighborhood
Bη1(x, y) of (x, y).

(x, y) ∈ R2 \ B: Since R2 \ B is open, there is ε > 0 such that Bε(x, y) ⊆ R2 \ B.
Thus, f is C∞ in (x, y), since f ≡ 0 on the open neighborhood Bε(x, y) of (x, y).

Due to Cl. 1, we have covered every possible case. N

As in (a), we show the validity of (6.78), that means, in particular, f is Gâteaux
differentiable at (0, 0) with f ′

G(0, 0) ≡ 0: Due to the choice of the εn, we have

B ⊆ {(x, y) ∈ R2 : 1 > x > 0 and x2 > y > 0}. (6.82)
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Thus, as f(x, y) = 0 for each (x, y) /∈ B, we can argue as in (a): If h1 ≤ 0 or h2 ≤ 0,
then, for each t > 0, we have f((0, 0) + th) = f(th1, th2) = 0 as (th1, th2) /∈ B,
showing δf

(
(0, 0), h

)
= 0. It remains the case, where h1 > 0 and h2 > 0, and, in

that case, we obtain t2h2
1 < th2 for each 0 < t < h2

h2
1
. Thus, for such t, we again

have (th1, th2) /∈ B and f(th1, th2) = 0, proving δf
(
(0, 0), h

)
= 0 also in this case.

Remark 6.56. In [IT79, p. 24], one can find an example of a function f where the first
variation δf(0, ·) is nonlinear, such that f is not Gâteaux differentiable at 0.

Example 6.57. (a) Each constant map f : U −→ V between normed vector spaces
U and V is Fréchet differentiable with f ′

F(u) = 0 for every u ∈ U : Just notice
that, for constant f and A = 0, the numerator in the conclusion of (6.72) vanishes
identically.

(b) A linear map f : U −→ V between normed vector spaces U and V always has a
first variation at each u ∈ U and δf(u, h) = f(h) for each h ∈ U . Moreover, if f is
linear, then the following statements are equivalent:

(i) f is continuous.

(ii) f is Gâteaux differentiable. In that case, f ′
G(u) = f for each u ∈ U .

(iii) f is Fréchet differentiable. In that case, f ′
F(u) = f for each u ∈ U .

First, note that, for linear f , the quantity in the limit of (6.70) equals f(h) for every
(u, h) ∈ U2 and each t > 0, showing δf(u, h) = f(h). Next, if f and A : U −→ V
are linear, then, for each u ∈ U and each 0 6= h ∈ U ,∥∥f(u+ h)− f(u)− Ah

∥∥
V

‖h‖U
=

∥∥f(h)− Ah
∥∥
V

‖h‖U
. (6.83)

Thus, if f is continuous, then one can choose A := f , causing the expression in
(6.83) to vanish identically, showing that (6.72) is satisfied. In particular, f is
Fréchet differentiable with f ′

F(u) = f . This shows that (i) implies (iii). According
to Lem. 6.52, (iii) implies (ii). If f is Gâteaux differentiable, then δf(u, ·) = f is a
continuous linear operator, establishing that (ii) implies (i).

(c) We consider the one-dimensional case, i.e. f : Uad −→ R, where Uad ⊆ R. Consider
u ∈ Uad and h > 0. If there is ε > 0 such that [u, u+ ε] ⊆ Uad, then δf(u, h) exists
if, and only if, f is differentiable from the right at u in the classical sense. In that
case δf(u, h) = h f ′

+(u), where f ′
+(u) denotes the derivative from the right of f at

u. Analogously, if there is ε > 0 such that [u− ε, u] ⊆ Uad, then δf(u,−h) exists if,
and only if, f is differentiable from the left at u. In that case δf(u,−h) = −h f ′

−(u),
where f ′

−(u) denotes the derivative from the left of f at u.

Claim 1. The following statements are equivalent:

(i) u is in the interior of Uad and f ′
+(u) = f ′

−(u), i.e. the classical derivative f
′(u)

of f at u exists.
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(ii) f is Gâteaux differentiable at u. In that case, f ′
G(u)(h) = h f ′(u).

(iii) f is Fréchet differentiable at u. In that case, f ′
F(u)(h) = h f ′(u).

Proof. (iii) implies (ii) according to Lem. 6.52. If f is Gâteaux differentiable at u,
then δf(u, h) exists for all h ∈ R, i.e. u must be an interior point of Uad. Moreover,
for h > 0, the linearity of δf(u, ·) yields

f ′
+(u) =

δf(u, h)

h
=

−δf(u, h)

−h
=

δf(u,−h)

−h
= f ′

−(u), (6.84)

showing that (ii) implies (i). Finally, assuming (i), one concludes, for h → 0, h 6= 0,

f(u+ h)− f(u)− h f ′(u)

h
=

f(u+ h)− f(u)

h
−f ′(u) → f ′(u)−f ′(u) = 0, (6.85)

i.e. (i) implies (iii), thereby establishing the case. N

(d) Let (a, b) ∈ R, a < b. We let U := C[a, b] endowed with the ‖ · ‖∞-norm, and
consider point functionals fx, i.e., for x ∈ [a, b],

fx : C[a, b] −→ R, fx(u) := u(x). (6.86)

Since, for each u ∈ C[a, b], |fx(u)| ≤ ‖u‖∞, fx is a bounded linear functional.
According to (b), fx is Fréchet differentiable, and, for each u ∈ U ,

(fx)
′
F(u)(h) = fx(h) = h(x). (6.87)

(e) Let H be a Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Consider

f : H −→ R, f(u) := ‖u‖2. (6.88)

Claim 1. The map f is Fréchet differentiable, and, for each (u, h) ∈ H2,

f ′
F(u)(h) = 〈2u, h〉. (6.89)

Proof. Fixing u ∈ H and letting

A : H −→ R, Ah := 〈2u, h〉, (6.90)

the Cauchy-Schwarz inequality shows that A is a bounded linear operator. To
verify the Fréchet differentiability of f , we compute, for each h ∈ U ,

F(h) := f(u+ h)− f(u)− Ah = 〈u+ h, u+ h〉 − ‖u‖2 − 〈2u, h〉 = ‖h‖2. (6.91)

If h → 0, h 6= 0, then F(h)/‖h‖ = ‖h‖ → 0, establishing the Fréchet differentia-
bility of f as well as A = f ′

F(u). N



6 OPTIMAL CONTROL OF LINEAR ELLIPTIC PDE 73

(f) We apply (e) to H = L2(E) for some measurable set E ⊆ Rm. Then

f : L2(E) −→ R, f(u) := ‖u‖2 =
∫
E

u2 dλm . (6.92)

From (e), we know that f is Fréchet differentiable with

f ′
F(u) : L

2(E) −→ R, f ′
F(u)(h) = 〈2u, h〉 = 2

∫
E

uh dλm . (6.93)

(g) Fix (a, b) ∈ R2 such that a < b, and ε ∈]0, 1[. Given a measurable function
u : [a, b] −→ R such that u(x) ≥ ε for almost every x ∈ [0, 1], let

A :=
{
x ∈ [a, b] : u(x) ≤ 1

}
, B :=

{
x ∈ [a, b] : u(x) > 1

}
. (6.94)

Thus, as ln(x) < x for each x ∈ R+,∫ b

a

∣∣ ln (u(x))∣∣ dx ≤ | ln(ε)|λ1(A) +

∫
B

u(x) dx . (6.95)

Letting, for p ∈ [1,∞],

Lp
ε :=

{
u ∈ Lp[a, b] : u ≥ ε a.e. on [a, b]

}
, (6.96)

(6.95) shows that

fp : L
p
ε −→ R, fp(u) :=

∫ b

a

ln
(
u(x)

)
dx , (6.97)

is well-defined for each p ∈ [1,∞]. Consider u0 ≡ 1. Then u0 ∈ Lp
ε since ε < 1.

Claim 1. For each 1 ≤ p < ∞, fp does not have a first variation at u0 ≡ 1.

Proof. For each 1 ≤ p < ∞, we have Lp[a, b] 6⊆ L∞[a, b], i.e. there is hp ∈ Lp[a, b]
such that hp is unbounded from below. Then, for each t > 0, thp is still unbounded
from below such that u0 + t hp 6∈ Lp

ε for every t > 0, showing, in particular, that fp
does not have a first variation at u0. N

Claim 2. For each p ∈ [1,∞] and each h ∈ L∞[a, b], fp has a directional derivative
at u0 ≡ 1 in direction h. Moreover, f∞ is Fréchet differentiable at u0 with

(f∞)′F(u0) : L
∞[a, b] −→ R, (f∞)′F(u0)(h) =

∫ b

a

h(x) dx . (6.98)

Proof. For h = 0, there is nothing to show. Thus, let 0 6= h ∈ L∞[a, b]. First, note
that, for each 0 < t < (1− ε)/‖h‖∞, one has, for almost every x ∈ [a, b],

|t h(x)| ≤ (1− ε) |h(x)|
‖h‖∞

≤ 1− ε, (6.99)
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such that u0 + th ∈ Lp
ε . Moreover, noting fp(u0) = 0, for each such t,

δ(t) :=
1

t

(
fp(u0 + th)− fp(u0)

)
=

1

t

∫ b

a

ln
(
1 + t h(x)

)
dx . (6.100)

As (6.99) implies |t h(x)| ≤ 1 − ε < 1, the Taylor expansion formula yields, for
almost every x ∈ [a, b], the existence of −t |h(x)| < ξ(t, x) < t |h(x)| such that

ln
(
1 + t h(x)

)
= t h(x)−

t2
(
h(x)

)2
2
(
1 + ξ(t, x)

)2 . (6.101)

Thus, ∣∣∣∣δ(t)− ∫ b

a

h(x) dx

∣∣∣∣ = ∫ b

a

t
(
h(x)

)2
2
(
1 + ξ(t, x)

)2 dx ≤ t (b− a) ‖h‖2∞
2 ε2

, (6.102)

showing that

δfp(u0, h) = lim
t↓0

δ(t) =

∫ b

a

h(x) dx . (6.103)

Since δfp(u0, h) is linear in h ∈ L∞[a, b], and since f∞(u0, ·) is bounded due to
|δfp(u0, h)| ≤ ‖h‖∞ (b− a), f∞ is Gâteaux differentiable at u0.

It remains to show that f∞ also has a Fréchet derivative at u0 ≡ 1, i.e.

h 6= 0, ‖h‖∞ → 0 ⇒

∣∣∣∫ b

a
ln
(
1 + h(x)

)
dx −

∫ b

a
h(x) dx

∣∣∣
‖h‖∞

→ 0. (6.104)

Again, we apply the Taylor expansion formula. For ‖h‖∞ < 1, one finds that, for
almost every x ∈ [a, b], there is −|h(x)| < ξ(x) < |h(x)| such that∣∣∣∣∫ b

a

ln
(
1 + h(x)

)
dx −

∫ b

a

h(x) dx

∣∣∣∣ = ∫ b

a

(
h(x)

)2
2
(
1 + ξ(x)

)2 dx ≤ (b− a) ‖h‖2∞
2 (1− ‖h‖∞)2

,

(6.105)
thereby proving the validity of (6.104) and the Fréchet differentiability of f∞. N

Lemma 6.58. Let U , V be normed vector spaces.

(a) Let Uad ⊆ U be open, u ∈ Uad. If α ∈ R and f : Uad −→ V has a directional
derivative in direction h ∈ U (resp. a first variation, a Gâteaux derivative, or a
Fréchet derivative) at u, then αf has a directional derivative in direction h (resp.
a first variation, a Gâteaux derivative, or a Fréchet derivative) at u, and it holds
that

δ(αf)(u, h) = α δf(u, h), (6.106a)

(αf)′G(u) = α f ′
G(u), (6.106b)

(αf)′F(u) = α f ′
F(u), (6.106c)

respectively.
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(b) Let Uad ⊆ U be open, u ∈ Uad. If f : Uad −→ V and g : Uad −→ V both
have a directional derivative in direction h ∈ U (resp. a first variation, a Gâteaux
derivative, or a Fréchet derivative) at u, then f + g has a directional derivative in
direction h (resp. a first variation, a Gâteaux derivative, or a Fréchet derivative)
at u, and it holds that

δ(f + g)(u, h) = δf(u, h) + δg(u, h), (6.107a)

(f + g)′G(u) = f ′
G(u) + g′G(u), (6.107b)

(f + g)′F(u) = f ′
F(u) + g′F(u), (6.107c)

respectively.

(c) The chain rule holds for Fréchet differentiable maps: Let U , V , Z be normed vector
spaces, let Uad ⊆ U and Vad ⊆ V be open, f : Uad −→ V , g : Vad −→ Z, f(Uad) ⊆
Vad. If f is Fréchet differentiable at u ∈ Uad, and g is Fréchet differentiable at
f(u), then g ◦ f is Fréchet differentiable at u and

(g ◦ f)′F(u) = g′F
(
f(u)

)
◦ f ′

F(u). (6.108)

Proof. (a): If the directional derivative δf(u, h) exists, then

δ(αf)(u, h) = lim
t↓0

1

t

(
α f
(
u+ t h

)
− α f(u)

)
= α lim

t↓0

1

t

(
f
(
u+ t h

)
− f(u)

)
= α δf(u, h), (6.109)

proving (6.106a) and (6.106b). Moreover, if f is Fréchet differentiable, then, for h 6= 0,
‖h‖U → 0,∥∥αf(u+ h)− αf(u)− αf ′

F(u)(h)
∥∥
V

‖h‖U
= |α|

∥∥f(u+ h)− f(u)− f ′
F(u)(h)

∥∥
V

‖h‖U
→ 0,

(6.110)
showing that the Fréchet differentiability of f implies that of αf as well as (6.106c).

(b): If the directional derivatives δf(u, h) and δg(u, h) exist, then

δ(f + g)(u, h) = lim
t↓0

1

t

(
(f + g)

(
u+ t h

)
− (f + g)(u)

)
= lim

t↓0

1

t

(
f
(
u+ t h

)
− f(u)

)
+ lim

t↓0

1

t

(
g
(
u+ t h

)
− g(u)

)
= δ(f + g)(u, h), (6.111)

proving (6.107a) and (6.107b). Moreover, if f is Fréchet differentiable, then, for h 6= 0,
‖h‖U → 0,∥∥(f + g)(u+ h)− (f + g)(u)− (f ′

F(u) + g′F(u))(h)
∥∥
V

‖h‖U

≤
∥∥f(u+ h)− f(u)− f ′

F(u)(h)
∥∥
V

‖h‖U
+

∥∥g(u+ h)− g(u)− g′F(u)(h)
∥∥
V

‖h‖U
→ 0, (6.112)
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showing that the Fréchet differentiability of f and g implies that of f + g as well as
(6.107c).

(c): Define

rf (h) := f(u+ h)− f(u)− f ′
F(u)(h), (6.113a)

rg(h) := g
(
f(u) + h

)
− g
(
f(u)

)
− g′F

(
f(u))(h), (6.113b)

rg◦f (h) := (g ◦ f)(u+ h)− (g ◦ f)(u)−
(
g′F
(
f(u)

)
◦ f ′

F(u)
)
(h), (6.113c)

where rf (h) and rg◦f (h) are defined for each h such that u + h ∈ Uad, and rg(h) is
defined for each h such that f(u) + h ∈ Vad. Then the Fréchet differentiability of f at
u and of g at f(u) imply

h 6= 0, ‖h‖U → 0 ⇒ ‖rf (h)‖V /‖h‖U → 0, (6.114a)

h 6= 0, ‖h‖V → 0 ⇒ ‖rg(h)‖Z/‖h‖V → 0, (6.114b)

whereas, one needs to show

h 6= 0, ‖h‖U → 0 ⇒ ‖rg◦f (h)‖V /‖h‖U → 0. (6.114c)

Since f ′
F(u) is bounded and h → 0 implies rf (h) → 0, for each sufficiently small h ∈ U ,

one has f(u) + f ′
F(u)(h) + rf (h) ∈ Vad. In the following, we only consider sufficiently

small h ∈ U such that f(u) + f ′
F(u)(h) + rf (h) ∈ Vad and, simultaneously, u+ h ∈ Uad.

Then

(g ◦ f)(u+ h) = g
(
f(u) + f ′

F(u)(h) + rf (h)
)

= g
(
f(u)

)
+ g′F

(
f(u))

(
f ′
F(u)(h) + rf (h)

)
+ rg

(
f ′
F(u)(h) + rf (h)

)
,

(6.115)

implying

rg◦f (h) = g′F
(
f(u))

(
rf (h)

)
+ rg

(
f ′
F(u)(h) + rf (h)

)
. (6.116)

Next, one notes that, for h 6= 0, ‖h‖U → 0,∥∥∥g′F(f(u))(rf (h))∥∥∥
Z

‖h‖U
≤
∥∥g′F(f(u))∥∥∥∥rf (h)∥∥V

‖h‖U
→ 0 as

∥∥rf (h)∥∥V
‖h‖U

→ 0. (6.117)

Thus, it merely remains to show that, for h 6= 0, ‖h‖U → 0,∥∥∥rg(f ′
F(u)(h) + rf (h)

)∥∥∥
Z

‖h‖U
→ 0. (6.118)

To that end, for 0 6= η ∈ V such that f(u) + η ∈ V , define

s(η) := rg(η)/‖η‖V . (6.119)
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This allows to rewrite the left-hand side (6.118) as∥∥∥rg(f ′
F(u)(h) + rf (h)

)∥∥∥
Z

‖h‖U
=

∥∥f ′
F(u)(h) + rf (h)

∥∥
V

∥∥∥s(f ′
F(u)(h) + rf (h)

)∥∥∥
Z

‖h‖U
. (6.120)

Now, if h 6= 0, ‖h‖U → 0, then y :=
(
f ′
F(u)(h) + rf (h)

)
→ 0 such that (6.119) and

(6.114b) imply ‖s(y)‖Z → 0. Finally, note that∥∥f ′
F(u)(h) + rf (h)

∥∥
V
/‖h‖U ≤

∥∥f ′
F(u)

∥∥+ ∥∥rf (h)∥∥V /‖h‖U , (6.121)

which remains bounded for ‖h‖U → 0, showing that both sides of (6.120) converge to
0 for ‖h‖U → 0, thereby proving (6.118) and part (c) of the lemma. �

Example 6.59. The following examples shows that, for the chain rule of Lem. 6.58(c)
to hold, it does not suffice for f to be Fréchet differentiable at u and g merely Gâteaux
differentiable at f(u).

(a) Let
f : R −→ R2, f(x) := (x, x2). (6.122a)

Then f is clearly Fréchet differentiable (even C∞) on R. If g is taken to be the
function f from Ex. 6.55(a), then g is Gâteaux differentiable at (0, 0) = f(0),
however,

g ◦ f : R −→ R, (g ◦ f)(x) = g(x, x2) =

{
0 for x ≤ 0,

1 for x > 0,
(6.122b)

is not Gâteaux differentiable at 0.

(b) By modifying g in (a), we can get g ◦ f to be an arbitrary function h : R −→ R:
Define

g : R2 −→ R, g(x, y) :=

{
h(x) if y = x2,

h(0) otherwise.
(6.123)

With the obvious minor modifications, the argument from Ex. 6.55(a) still shows
that g is Gâteaux differentiable at (0, 0) with g′G(0, 0) ≡ 0. Of course, h might or
might not be Gâteaux differentiable at 0 (it can be as irregular as one wants it to
be, e.g. nonmeasurable).

(c) By modifying f to
f : R −→ R2, f(x) := (x, x3), (6.124)

and setting g to f from Ex. 6.55(b), we can even get g to be everywhere Gâteaux
differentiable, while g ◦ f is still not Gâteaux differentiable at 0 (still not even
continuous at 0).
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Example 6.60. (a) Let (a, b) ∈ R2, a < b. We consider U := C[a, b] endowed with
the ‖ · ‖∞-norm, and investigate point functionals composed with a differentiable
map g. More precisely, let x ∈ [a, b], let g : R −→ R be differentiable (in the
classical sense), and consider

gx : C[a, b] −→ R, gx(u) := g
(
u(x)

)
. (6.125)

We know, according to Ex. 6.57(c), that g is Fréchet differentiable with g′F
(
u
)
(h) =

h g′
(
u
)
. We also know, according to Ex. 6.57(d), that fx : C[a, b] −→ R, fx(u) :=

u(x), is Fréchet differentiable with (fx)
′
F(u)(h) = h(x). Since gx = g ◦ fx, we can

apply the chain rule of Lem. 6.58(c) to conclude that gx is Fréchet differentiable
and, for each u ∈ C[a, b],

(gx)
′
F(u) : C[a, b] −→ R, (gx)

′
F(u)(h) = g′

(
u(x)

)
h(x). (6.126)

(b) We would now like to apply the chain rule to differentiate our favorite objective
functional. We reformulate it in a general Hilbert space setting: Let U and H be
Hilbert spaces, let S : U −→ H be a bounded linear operator, y0 ∈ H, λ ∈ R+

0 ,
and consider

f : U −→ R, f(u) :=
1

2
‖Su− y0‖2H +

λ

2
‖u‖2U . (6.127)

Note that f = f1 + f2, where

f1 : U −→ R, f1(u) :=
1

2
‖Su− y0‖2H , (6.128a)

f2 : U −→ R, f2(u) :=
λ

2
‖u‖2U . (6.128b)

We decompose f1 even further according to f1 = f12 ◦ f11, where

f11 : U −→ H, f11(u) := Su− y0, (6.129a)

f12 : H −→ R, f12(y) := ‖y‖2H/2. (6.129b)

First, observe that, according to Ex. 6.57(a),(b) and Lem. 6.58(b), f11 is Fréchet
differentiable and, for each u ∈ U ,

(f11)
′
F(u) : U −→ H, (f11)

′
F(u)(h) = Sh. (6.130a)

Second, according to Ex. 6.57(e) and Lem. 6.58(a), f12 is Fréchet differentiable and,
for each y ∈ H,

(f12)
′
F(y) : H −→ R, (f12)

′
F(y)(h) = 〈y, h〉H . (6.130b)

Third, applying the chain rule of Lem. 6.58(c) yields that f1 is Fréchet differentiable
and, for each u ∈ U ,

(f1)
′
F(u) : U −→ R, (f1)

′
F(u)(h) = 〈Su− y0, Sh〉H = 〈S∗(Su− y0), h〉U

= 〈Su, Sh〉H − 〈y0, Sh〉H , (6.130c)
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where S∗ is the (Hilbert) adjoint operator of S (see Sec. 4.5). Fourth, according to
Ex. 6.57(e) and Lem. 6.58(a), f2 is Fréchet differentiable and, for each u ∈ U ,

(f2)
′
F(u) : U −→ R, (f2)

′
F(u)(h) = λ 〈u, h〉U . (6.130d)

Fifth and last, according to Lem. 6.58(b), f is Fréchet differentiable and, for each
u ∈ U ,

f ′
F(u) : U −→ R, f ′

F(u)(h) = 〈Su− y0, Sh〉H + λ 〈u, h〉U
= 〈S∗(Su− y0) + λu, h〉U
= 〈Su, Sh〉H − 〈y0, Sh〉H + λ 〈u, h〉U . (6.130e)

6.4.2 Variational Inequality, Adjoint State

The key observation is that the proof of Th. 3.10 still works, basically without change,
in the infinite-dimensional case. Thus, as in the finite-dimensional case, we get a vari-
ational inequality involving the derivative of f at ū as a necessary condition for f to
be minimal at ū. Moreover, if f is convex, then the variational inequality also turns
out to be sufficient. All this is precisely stated and proved in Th. 6.62 below. For the
sufficiency part, we will use the following Lem. 6.61.

Lemma 6.61. Let U be a normed vector space, Uad ⊆ U , f : Uad −→ R. Consider
(ū, u) ∈ U2

ad such that

[ū, u] := conv{ū, u} :=
{
α ū+ (1− α)u : α ∈ [0, 1]

}
⊆ Uad. (6.131)

If f is convex on [ū, u] and the directional derivative of f at ū in the direction u − ū,
i.e. δf(ū, u− ū), exists, then

δf(ū, u− ū) ≤ f(u)− f(ū). (6.132)

In particular, if Uad is convex and f is convex on Uad, then (6.132) holds whenever
δf(ū, u− ū) exists.

Proof. Let t ∈]0, 1]. Then the convexity of f on [ū, u] yields

f
(
ū+ t(u− ū)

)
− f(ū) = f

(
tu+ (1− t)ū

)
− f(ū)

≤ tf(u) + (1− t)f(ū)− f(ū) = t
(
f(u)− f(ū)

)
. (6.133)

Dividing by t in (6.133) and taking the limit t ↓ 0 yields the claimed relation (6.132). �

Theorem 6.62. Let U be a normed vector space, Uad ⊆ U , and assume that ū ∈ Uad

minimizes the function f : Uad −→ R, i.e.

f(ū) ≤ f(u) for each u ∈ Uad. (6.134)
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Consider u ∈ Uad. If ū+t (u− ū) ∈ Uad for each sufficiently small t > 0, and, moreover,
the directional derivative

δf(ū, u− ū) = lim
t↓0

1

t

(
f
(
ū+ t (u− ū)

)
− f(ū)

)
(6.135)

exists in R, then ū satisfies the variational inequality

δf(ū, u− ū) ≥ 0. (6.136)

If, in addition, Uad is convex, f is convex, and δf(ū, u − ū) exists for each u ∈ Uad,
then the validity of (6.136) for each u ∈ Uad is both necessary and sufficient for ū to
minimize f .

Proof. Since ū+ t (u− ū) ∈ Uad for each sufficiently small t > 0, there exists ε > 0 such
that

ū+ t(u− ū) = (1− t)ū+ tu ∈ Uad, for each t ∈]0, ε]. (6.137)

By hypothesis, ū satisfies (6.134), implying, for each t ∈]0, ε]:

1

t

(
f
(
ū+ t(u− ū)

)
− f(ū)

) (6.134)

≥ 0. (6.138)

Thus, taking the limit for t ↓ 0, (6.138) implies (6.136).

If δf(ū, u− ū) exists for each u ∈ Uad, then the above considerations show that (6.134)
implies (6.136) for each u ∈ Uad. Conversely, if δf(ū, u− ū) exists for each u ∈ Uad, Uad

and f are convex, and (6.136) holds for each u ∈ Uad, then

0
(6.136)

≤ δf(ū, u− ū)
(6.132)

≤ f(u)− f(ū), (6.139)

thereby establishing the validity of (6.134). �

As in the finite-dimensional case (cf. Cor. 3.13), at interior points ū, we can strengthen
the variational inequality to a variational equality:

Corollary 6.63. Let U be a normed vector space and assume that ū ∈ Uad lies in the
interior of Uad ⊆ U . If f : Uad −→ R is Gâteaux differentiable at ū and f is minimal
at ū, then f ′

G(ū) = 0. Special cases include Uad = U (no control constraints) and any
other case, where Uad is open.

Proof. The proof is essentially the same as that of Cor. 3.13: If ū lies in the interior
of Uad, then there is a (convex) ball B with center ū such that B ⊆ Uad. Then (6.136)
implies

f ′
G(ū)(u− ū) = δf(ū, u− ū) ≥ 0 for each u ∈ B. (6.140)

Let v ∈ U be arbitrary. If ε > 0 is sufficiently small, then ū ± εv ∈ B, implying
f ′
G(ū) (ū± εv− ū) = f ′

G(ū) (±εv) ≥ 0. Thus, using the linearity of f ′
G(ū), f

′
G(ū) = 0 as

claimed. �
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Example 6.64. (a) We reconsider the situation from Ex. 6.60(b), i.e. Hilbert spaces
U and H, S : U −→ H linear and bounded, y0 ∈ H, λ ∈ R+

0 , and

f : U −→ R, f(u) :=
1

2
‖Su− y0‖2H +

λ

2
‖u‖2U . (6.141)

In Ex. 6.47, we remarked that f is convex, and in Ex. 6.60(b), we determined that
f is Fréchet differentiable with Fréchet derivative according to (6.130e). Thus, if
Uad is a convex subset of U , then we obtain from Th. 6.62 together with (6.130e)
that ū ∈ Uad minimizes f in Uad if, and only if, f satisfies the corresponding
variational inequality. More precisely, the following statements (6.142a) – (6.142c)
are equivalent:

f(ū) ≤ f(u) for each u ∈ Uad, (6.142a)

〈Sū− y0, S(u− ū)〉H + λ 〈ū, u− ū〉U ≥ 0 for each u ∈ Uad, (6.142b)

〈S∗(Sū− y0) + λ ū, u− ū〉U ≥ 0 for each u ∈ Uad. (6.142c)

(b) Let us now specialize (a) to the EOCP of Def. 6.45. In particular, H = U = L2(Ω),
and S : L2(Ω) −→ L2(Ω) is the solution operator of the corresponding elliptic
BVP on Ω with homogeneous Dirichlet condition on the boundary. We consider
the EOCP with the additional assumption that Uad ⊆ L2(Ω) is convex and that f :
Uad −→ R, f(u) = J(Su, u), coincides with f as given by (6.141), where, as before,
we choose to write yΩ instead of y0 in the context of the EOCP. Then ū ∈ Uad is an
optimal control for the EOCP if, and only if, there exists (ȳ, p̄) ∈ H1

0 (Ω)×H1
0 (Ω)

such that the triple (ū, ȳ, p̄) ∈ Uad ×H1
0 (Ω)×H1

0 (Ω) satisfies the following system
of optimality (6.143):

ū ∈ Uad, (6.143a)

ȳ = Sū, (6.143b)

p̄ = S∗(ȳ − yΩ), (6.143c)∫
Ω

(p̄+ λ ū) (u− ū) ≥ 0 for each u ∈ Uad, (6.143d)

where (6.143c) and (6.143d) can be combined into the following equivalent, albeit
S∗-free, form:∫

Ω

(ȳ − yΩ)(Su− ȳ) + λ

∫
Ω

ū (u− ū) ≥ 0 for each u ∈ Uad. (6.144)

The function p̄ determined by (6.143c) is called the adjoint state corresponding to
ū and ȳ. To make proper use of (6.143c) in this context, we need to determine S∗

more explicitly, which is related to the topic of the following section.

6.4.3 Adjoint Equation

As it turns out, the adjoint S∗ of the solution operator S : L2(Ω) −→ L2(Ω) of Th.
6.43 can itself be interpreted as the solution operator of a linear elliptic BVP with
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homogeneous Dirichlet boundary conditions. Moreover, to obtain the BVP for S∗, one
only needs to transpose the matrix (aij). In particular, S is self-adjoint, i.e. S = S∗,
if (aij) is symmetric. This is the contents of the following Prop. 6.65. The situation
of Th. 6.43 (i.e. the class of PDE under consideration) is still particularly simple. In
general, the relation between S and S∗ can be much more complicated, and, even for
symmetric (aij), one can not expect the solution operator of a PDE to be self-adjoint.

Proposition 6.65. Let S : L2(Ω) −→ L2(Ω) be the solution operator of Th. 6.43.
The precise setting is as in Def. 6.42 (with hi = 0): Let the bounded and open set
Ω ⊆ Rm be a set with Lipschitz boundary, m ≥ 2, let (aij)(i,j)∈{1,...,m}2, aij ∈ L∞(Ω),
be almost uniformly elliptic, and b ∈ L∞(Ω), b ≥ 0 almost everywhere. The adjoint
operator S∗ : L2(Ω) −→ L2(Ω) to S is the solution operator for the elliptic BVP
with homogeneous Dirichlet conditions on the boundary, where (aij)(i,j)∈{1,...,m}2 has been
replaced by its transpose, i.e. by (aji)(i,j)∈{1,...,m}2. In particular, if (aij)(i,j)∈{1,...,m}2 is
symmetric, then S is self-adjoint, i.e. S = S∗.

Proof. Let B : L2(Ω) −→ L2(Ω) denote the solution operator for the elliptic BVP with
homogeneous Dirichlet conditions on the boundary, where (aij)(i,j)∈{1,...,m}2 has been
replaced by its transpose. We need to show B = S∗, i.e. that B is the adjoint of S.
Here, when we speak of the adjoint operator of S, more precisely, we mean the Hilbert
adjoint in the sense of Sec. 4.5. Thus, following Prop. 4.36 and letting 〈·, ·〉 denote the
inner product in L2(Ω), we need to show that

〈y, Su〉 = 〈By, u〉 for each (u, y) ∈ L2(Ω)× L2(Ω). (6.145)

According to the definition of S in Th. 6.43, given (u, y) ∈ L2(Ω)× L2(Ω), Su and By
are the unique respective solutions to the following elliptic BVP in weak form with a
homogeneous Dirichlet condition on the boundary, namely (6.146) and (6.147). Here,
as is customary, for the sake of better readability, we write both BVP in strong form,
which, here, is nothing more than notational candy symbolizing the weak form:

−
m∑
i=1

m∑
j=1

∂i
(
aij∂j(Su)

)
+ b Su = u on Ω, (6.146a)

Su = 0 on ∂Ω, (6.146b)

−
m∑
i=1

m∑
j=1

∂i
(
aji∂j(By)

)
+ bBy = y on Ω, (6.147a)

By = 0 on ∂Ω. (6.147b)

If Su ∈ H1
0 (Ω) is the weak solution to (6.146), then (6.40) (with hi = 0 y replaced by

Su, and g replaced by u) holds for each v ∈ H1
0 (Ω). Choosing v = By yields∫

Ω

(
m∑
i=1

(∂i(By))
m∑
j=1

aij∂j(Su) +By (b Su− u)

)
dλm = 0. (6.148a)
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Analogously, if By ∈ H1
0 (Ω) is the weak solution to (6.147), then (6.40) (with hi = 0,

y replaced by By, and g replaced by y) holds for each v ∈ H1
0 (Ω). Choosing v = Su

yields ∫
Ω

(
m∑
i=1

(∂i(Su))
m∑
j=1

aji∂j(By) + Su (bBy − y)

)
dλm = 0. (6.148b)

Subtracting (6.148b) from (6.148a), one obtains∫
Ω

y Su dλm =

∫
Ω

uBy dλm , (6.149)

which is exactly (6.145), i.e. B = S∗ is verified. �

Example 6.66. As in Ex. 6.64(b), we consider the EOCP of Def. 6.45 with Uad convex
and f : Uad −→ R given by (6.141). We can now use Prop. 6.65 to reformulate
the system of optimality (6.143), explicitly stating the PDE which determine ȳ and
p̄: Under the stated hypotheses, ū ∈ Uad is an optimal control for the EOCP if, and
only if, there exists (ȳ, p̄) ∈ H1

0 (Ω)×H1
0 (Ω) such that (ū, ȳ, p̄) ∈ Uad ×H1

0 (Ω)×H1
0 (Ω)

satisfies

ū ∈ Uad, (6.150a)

−
m∑
i=1

m∑
j=1

∂i
(
aij∂j ȳ

)
+ b ȳ = ū on Ω, (6.150b)

ȳ = 0 on ∂Ω, (6.150c)

−
m∑
i=1

m∑
j=1

∂i
(
aji∂j p̄

)
+ b p̄ = ȳ − yΩ on Ω, (6.150d)

p̄ = 0 on ∂Ω, (6.150e)∫
Ω

(p̄+ λ ū) (u− ū) ≥ 0 for each u ∈ Uad, (6.150f)

where, again, (6.150b) – (6.150e) are supposed to mean that ȳ and p̄ are weak solutions
of the respective BVP. The BVP for the adjoint state p̄, consisting of (6.150d) and
(6.150e) is called the adjoint equation for the problem under consideration.

6.4.4 Pointwise Formulations of the Variational Inequality

For a while, we will now focus on the EOCP of Def. 6.45 with the objective functional

J : L2(Ω)× Uad −→ R, J(y, u) =
1

2
‖y − yΩ‖2L2(Ω) +

λ

2
‖u‖2L2(Ω), (6.151)

i.e.

f : Uad −→ R, f(u) = J(Su, u) =
1

2
‖Su− yΩ‖2L2(Ω) +

λ

2
‖u‖2L2(Ω), (6.152)
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where yΩ ∈ L2(Ω), λ ∈ R+
0 . Moreover, for simplicity, we will only consider the situation

where Uad = L2
a,b(Ω) with a, b ∈ L2(Ω), a ≤ b (see Not. 6.48, box constraints on the

control), and, alternatively, Uad = L2(Ω) (no control constraints). The main goal of the
present section is to formulate equivalent pointwise versions of the variational inequality
(6.143d) (also see (6.150f)). The validity of the equivalences actually has nothing to
do with the EOCP and the functions J and f above. Therefore, in Th. 6.68, the
equivalences are stated and proved independently of the specific context of the EOCP.
The EOCP is then considered as an application in Ex. 6.69.

Notation 6.67. Given (a, b) ∈ R2, a ≤ b, the projection from R onto the interval [a, b]
is denoted by P[a,b], i.e.

P[a,b] : R −→ [a, b], P[a,b](α) := min
{
b, max{a, α}

}
=


a for α < a,

α for α ∈ [a, b],

b for b < α.

(6.153)

Theorem 6.68. Let Ω ⊆ Rm be measurable and bounded, and let Uad ⊆ L2(Ω). Fur-
thermore, let g ∈ L2(Ω), ū ∈ Uad, and consider the following variational inequality:∫

Ω

g (u− ū) ≥ 0 for each u ∈ Uad. (6.154)

(a) If Uad = L2
a,b(Ω) with a, b ∈ L2(Ω), a ≤ b, then (6.154) is equivalent to each of the

following pointwise conditions (6.155a) – (6.155d) holding for almost every x ∈ Ω:

ū(x) =


a(x) for g(x) > 0,

∈ [a(x), b(x)] for g(x) = 0,

b(x) for g(x) < 0,

(6.155a)

g(x)
(
ξ − ū(x)

)
≥ 0 for each ξ ∈ [a(x), b(x)], (6.155b)

g(x) ū(x) ≤ g(x) ξ for each ξ ∈ [a(x), b(x)], (6.155c)

min
ξ∈[a(x),b(x)]

g(x) ξ = g(x) ū(x). (6.155d)

Here, (6.155b) and (6.155c) constitute pointwise variational inequalities in R,
whereas the form (6.155d) is known as the weak minimum principle. Moreover,
for each λ ≥ 0, if one defines p̄ := g − λ ū (i.e. g = p̄+ λ ū), then all the previous
conditions are also equivalent to the minimum principle

min
ξ∈[a(x),b(x)]

(
p̄(x)ξ +

λ ξ2

2

)
= p̄(x)ū(x) +

λ ū(x)2

2
. (6.155e)

If λ > 0, then all the previous conditions are also equivalent to the projection
formula

ū(x) = P[a(x),b(x)]

(
− p̄(x)

λ

)
, (6.155f)

where P[a(x),b(x)] is according to Not. 6.67.
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(b) If Uad = L2(Ω), then (6.154) is equivalent to

g(x) = 0 for almost every x ∈ Ω. (6.156)

Proof. (a): We start by showing the following implications: “(6.154) ⇒ (6.155a) ⇒
(6.155b) ⇒ (6.154)”, “(6.155b) ⇔ (6.155c)”, and “(6.155c) ⇔ (6.155d)”. Then (6.155e)
and (6.155f) are considered subsequently.

“(6.154) ⇒ (6.155a)”: Proceeding by contraposition, assume there is a measurable set
E ⊆ Ω such that λm(E) > 0, g > 0 on E, and ū > a on E. Then there is also ε > 0
and a measurable set Eε ⊆ E, λm(Eε) > 0, such that g(x) ≥ ε and ū(x) ≥ a(x) + ε for
every x ∈ Eε. In that case, one can define

u :=

{
a on Eε,

ū on Ω \ Eε.
(6.157)

Since a and ū are in L2
a,b(Ω), so is u. Furthermore,∫

Ω

g (u− ū) =

∫
Eε

g (a− ū) ≤ −ε2 λm(Eε) < 0, (6.158)

showing that (6.154) fails. Similarly, if there is a measurable set E ⊆ Ω such that
λm(E) > 0, g < 0 on E, and ū < b on E, then there is ε > 0 and a measurable set
Eε ⊆ E, λm(Eε) > 0, such that g(x) ≤ −ε and ū(x) ≤ b(x) − ε for every x ∈ Eε. In
that case, one can define

u :=

{
b on Eε,

ū on Ω \ Eε,
(6.159)

yielding ∫
Ω

g (u− ū) =

∫
Eε

g (b− ū) ≤ −ε2 λm(Eε) < 0, (6.160)

again proving failure of (6.154).

“(6.155a) ⇒ (6.155b)”: Let x ∈ Ω such that (6.155a) holds and fix ξ ∈ [a(x), b(x)]. If
g(x) > 0, then g(x)

(
ξ − ū(x)

)
= g(x)

(
ξ − a(x)

)
≥ 0 as ξ ≥ a(x). If g(x) = 0, then

g(x)
(
ξ− ū(x)

)
= 0. If g(x) < 0, then g(x)

(
ξ− ū(x)

)
= g(x)

(
ξ− b(x)

)
≥ 0 as ξ ≤ b(x).

Thus, (6.155b) holds in each case.

“(6.155b) ⇒ (6.154)”: If u ∈ L2
a,b(Ω), then u(x) ∈ [a(x), b(x)] for almost every x ∈

Ω. If (6.155b) holds for almost every x ∈ Ω and u ∈ L2
a,b(Ω), then, in consequence,

g(x)
(
u(x)− ū(x)

)
≥ 0 for almost every x ∈ Ω, which, in turn, implies (6.154).

(6.155b) and (6.155c) are trivially equivalent as they are merely simple algebraic rear-
rangements of each other.

The equivalence of (6.155c) and (6.155d) is also immediate due to the definition of the
minimum.

We now let λ ≥ 0 and consider p̄ := g− λ ū, i.e. g = p̄+ λ ū. We need to show that the
previous conditions are equivalent to the minimum principle (6.155e). If λ = 0, then
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(6.155e) and (6.155d) are identical and there is nothing to show. Thus, let λ > 0. Then,
for each x ∈ Ω such that a(x) ≤ b(x), one can apply Th. 6.62 to the minimization of
the convex function γ : [a(x), b(x)] −→ R, γ(ξ) := p̄(x) ξ + λ ξ2/2. According to Th.
6.62, γ is minimal at ξ̄ ∈ [a(x), b(x)] if, and only if,

(ξ − ξ̄) γ′(ξ̄) = (ξ − ξ̄)
(
p̄(x) + λ ξ̄

)
≥ 0 for each ξ ∈ [a(x), b(x)]. (6.161)

Thus, if (6.155e) holds, then (6.161) is valid with ξ̄ = ū(x), i.e.

ū(x)
(
p̄(x) + λ ū(x)

)
≤ ξ

(
p̄(x) + λ ū(x)

)
for each ξ ∈ [a(x), b(x)], (6.162)

which is the same as (6.155c). Conversely, if (6.155c) holds, then (6.161) is valid with
ξ̄ = ū(x), implying (6.155e) and establishing the case.

For (a), it only remains to verify that, in the case g = p̄ + λ ū, λ > 0, all the previous
conditions are also equivalent to (6.155f). We choose to carry out this verification by
showing “(6.155a) ⇔ (6.155f)”: To that end, note that g = p̄+ λ ū, λ > 0, implies

g(x) > 0 ⇔ − p̄(x)

λ
< ū(x), (6.163a)

g(x) = 0 ⇔ − p̄(x)

λ
= ū(x), (6.163b)

g(x) < 0 ⇔ − p̄(x)

λ
> ū(x). (6.163c)

Also, using (6.153), (6.155f) can be reformulated as

ū(x) =


a(x) for − p̄(x)

λ
< a(x),

− p̄(x)
λ

for − p̄(x)
λ

∈ [a(x), b(x)],

b(x) for b(x) < − p̄(x)
λ
.

(6.164)

According to (6.163), (6.164) is clearly the same as (6.155a), finishing the proof of (a).

(b): As in (a) for “(6.154) ⇒ (6.155a)”, proceeding by contraposition, assume there is
a measurable set E ⊆ Ω such that λm(E) > 0 and g 6= 0 on E. Then there is also ε > 0
such that at least one of the following two cases holds: (i) there is a measurable set
Eε ⊆ E, λm(Eε) > 0, such that g(x) ≥ ε for every x ∈ Eε, or (ii) there is a measurable
set Eε ⊆ E, λm(Eε) > 0, such that g(x) ≤ −ε for every x ∈ Eε. In case (i), define

u :=

{
ū− 1 on Eε,

ū on Ω \ Eε.
(6.165)

Since Ω is bounded, it is u ∈ L2(Ω). Furthermore,∫
Ω

g (u− ū) = −
∫
Eε

g ≤ −ε λm(Eε) < 0, (6.166)

showing that (6.154) fails. Likewise, in case (ii), define

u :=

{
ū+ 1 on Eε,

ū on Ω \ Eε.
(6.167)

A computation analogous to (6.166) verifies failure of (6.154) also in this case. �
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Example 6.69. As in Ex. 6.66 and Ex. 6.64(b), we consider the EOCP of Def. 6.45
with Uad convex and f : Uad −→ R given by (6.141). For the convenience of the reader,
we restate f and the system of optimality (6.143): If f is given by

f : Uad −→ R, f(u) :=
1

2

∫
Ω

(Su− yΩ)
2 +

λ

2

∫
Ω

u2, (6.168)

then ū ∈ Uad is an optimal control for the EOCP if, and only if, (ū, ȳ, p̄) ∈ Uad ×
H1

0 (Ω)×H1
0 (Ω) satisfies the system of optimality (6.169):

ū ∈ Uad, (6.169a)

ȳ = Sū, (6.169b)

p̄ = S∗(ȳ − yΩ), (6.169c)∫
Ω

(p̄+ λ ū) (u− ū) ≥ 0 for each u ∈ Uad. (6.169d)

Depending on the forms of Uad and λ, we can apply Th. 6.68 to replace (6.169d) with
equivalent pointwise statements, which can help to gain more insight into the problem
at hand.

(a) Consider λ = 0 and Uad = L2
a,b(Ω) with a, b ∈ L2(Ω), a ≤ b. Then Th. 6.68(a)

applies with g = p̄, i.e. one obtains that (6.169d) is equivalent to each of the
following pointwise conditions (6.170a) – (6.170d) holding for almost every x ∈ Ω:

ū(x) =


a(x) for p̄(x) > 0,

∈ [a(x), b(x)] for p̄(x) = 0,

b(x) for p̄(x) < 0,

(6.170a)

p̄(x)
(
ξ − ū(x)

)
≥ 0 for each ξ ∈ [a(x), b(x)], (6.170b)

p̄(x) ū(x) ≤ p̄(x) ξ for each ξ ∈ [a(x), b(x)], (6.170c)

min
ξ∈[a(x),b(x)]

p̄(x) ξ = p̄(x) ū(x). (6.170d)

In cases, where p̄ 6= 0 almost everywhere on Ω, (6.170a) shows that, almost every-
where, the optimal control ū coincides either with the upper bound b or with the
lower bound a. In this case, one says that the optimal control is bang-bang.

(b) Consider λ = 0 and Uad = L2(Ω). Then Th. 6.68(b) yields p̄ = 0 a.e. on Ω, which,
in turn, implies Sū = ȳ = yΩ a.e. In particular, in this case, the EOCP has an
optimal control ū if, and only if, yΩ is in the range of S. In particular, the EOCP
has no solution if yΩ ∈ L2(Ω) \H1

0 (Ω).

(c) Consider λ > 0 and Uad = L2
a,b(Ω) with a, b ∈ L2(Ω), a ≤ b. Then Th. 6.68(a)

applies with g = p̄+λ ū, i.e. (6.169d) is equivalent to each of the following pointwise
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conditions (6.171a) – (6.171f) holding for almost every x ∈ Ω:

ū(x) =


a(x) for p̄(x) + λ ū(x) > 0,

∈ [a(x), b(x)] for p̄(x) + λ ū(x) = 0,

b(x) for p̄(x) + λ ū(x) < 0,

(6.171a)

(
p̄(x) + λ ū(x)

) (
ξ − ū(x)

)
≥ 0 for each ξ ∈ [a(x), b(x)], (6.171b)(

p̄(x) + λ ū(x)
)
ū(x) ≤

(
p̄(x) + λ ū(x)

)
ξ for each ξ ∈ [a(x), b(x)],

(6.171c)

min
ξ∈[a(x),b(x)]

(
p̄(x) + λ ū(x)

)
ξ =

(
p̄(x) + λ ū(x)

)
ū(x), (6.171d)

min
ξ∈[a(x),b(x)]

(
p̄(x)ξ +

λ ξ2

2

)
= p̄(x)ū(x) +

λ ū(x)2

2
, (6.171e)

ū(x) = P[a(x),b(x)]

(
− p̄(x)

λ

)
, (6.171f)

where P[a(x),b(x)] is according to Not. 6.67.

(d) Consider λ > 0 and Uad = L2(Ω). Then Th. 6.68(b) yields p̄ + λ ū = 0 a.e. on Ω,
i.e.

ū = − p̄

λ
. (6.172)

Thus, in this case, the system of (6.169) can be reformulated as

ȳ = −S(p̄/λ), (6.173a)

p̄ = S∗(ȳ − yΩ), (6.173b)

or, using the more explicit form (6.150), as

−
m∑
i=1

m∑
j=1

∂i
(
aij∂j ȳ

)
+ b ȳ = −p̄/λ on Ω, (6.174a)

ȳ = 0 on ∂Ω, (6.174b)

−
m∑
i=1

m∑
j=1

∂i
(
aji∂j p̄

)
+ b p̄ = ȳ − yΩ on Ω, (6.174c)

p̄ = 0 on ∂Ω. (6.174d)

In particular, the optimal state ȳ and the adjoint state p̄ are the solution of the
system of coupled PDE (6.174). Given ȳ and p̄, the optimal control is provided by
(6.172).

6.4.5 Lagrange Multipliers and Karush-Kuhn-Tucker Optimality Condi-
tions

In Sec. 3.5.2, we used Lagrange multipliers to transform the variational inequality
(3.31c) of the finite-dimensional optimization problem (3.3) with box constraints on
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the control into a finite number of equations and inequalities formulated within the
Karush-Kuhn-Tucker optimality system (3.37). Thereby, we achieved a structural sim-
plification of the optimality system, as the variational inequality (3.31c) typically con-
sists of uncountably many conditions (one for each u ∈ Uad). In the present section,
we will proceed in an analogous fashion for the infinite-dimensional optimal control
problem (6.169).

Remark 6.70. For each real-valued function f : X −→ R, one can define its positive
part f+ : X −→ R and its negative part f− : X −→ R by letting

f+ :=
1

2

(
f + |f |

)
= max{0, f}, (6.175a)

f− :=
1

2

(
|f | − f

)
= −min{0, f}. (6.175b)

Then (6.175) immediately implies

f+ ≥ 0, f− ≥ 0, (6.176a)

f = f+ − f−. (6.176b)

Theorem 6.71. Let Ω ⊆ Rm be measurable and bounded, and Uad = L2
a,b(Ω), (a, b) ∈

L2(Ω) × L2(Ω), a ≤ b. Furthermore, let p̄ ∈ L2(Ω), ū ∈ Uad, and λ ≥ 0. Then the
following statements (i) – (iii) are equivalent:

(i)
∫
Ω
(p̄+ λ ū) (u− ū) ≥ 0 for each u ∈ Uad.

(ii) For almost every x ∈ Ω, the following complementary slackness conditions hold:(
p̄(x) + λ ū(x)

)+ (
a(x)− ū(x)

)
=
(
p̄(x) + λ ū(x)

)− (
ū(x)− b(x)

)
= 0. (6.177)

(iii) There exist µa ∈ L2(Ω) and µb ∈ L2(Ω) satisfying

µa ≥ 0, µb ≥ 0, (6.178a)

p̄+ λū− µa + µb = 0, (6.178b)

and the complementary slackness conditions

µa(x)
(
a(x)− ū(x)

)
= µb(x)

(
ū(x)− b(x)

)
= 0 (6.179)

for almost every x ∈ Ω. In this context, µa and µb are called Lagrange multipliers.

Proof. “(i) ⇒ (ii)”: We apply Th. 6.68(a) with g := p̄+ λū, obtaining that (i) implies
(6.155a). We need to show, for almost every x ∈ Ω,

g+(x)
(
a(x)− ū(x)

)
= g−(x)

(
ū(x)− b(x)

)
= 0. (6.180)

If g(x) > 0, then g−(x) = 0 and, by (6.155a), ū(x) = a(x), such that (6.180) holds. If
g(x) = 0, then g+(x) = g−(x) = 0 and (6.180) holds. If g(x) < 0, then g+(x) = 0 and,
by (6.155a), ū(x) = b(x), such that (6.180) also holds.
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“(ii) ⇒ (iii)”: Defining µa := (p̄+ λ ū)+, µb := (p̄+ λ ū)−, one observes that (6.178) is
identical to (6.176), and (6.179) is identical to (6.177).

“(iii) ⇒ (i)”: Let u ∈ Uad, i.e., in particular, a(x) ≤ u(x) ≤ b(x) for almost every x ∈ Ω.
We show that every x ∈ Ω satisfying (6.179) and a(x) ≤ u(x) ≤ b(x) also satisfies(

p̄(x) + λ ū(x)
) (

u(x)− ū(x)
)
≥ 0. (6.181)

Thus, assume x ∈ Ω satisfies (6.179). If a(x) = b(x), then u(x) = ū(x) and (6.181)
holds. If a(x) < ū(x) < b(x), then (6.179) implies µa(x) = µb(x) = 0, which, in
turn implies p̄(x) + λ ū(x) = 0 according to (6.178b). Hence, (6.181) holds. Next, if
b(x) > a(x) = ū(x), then u(x)− ū(x) ≥ 0 and (6.179) implies µb(x) = 0. Using (6.178)
yields

p̄(x) + λū(x)
(6.178b)
= µa(x)

(6.178a)

≥ 0, (6.182)

again showing that (6.181) holds. Finally, if a(x) < b(x) = ū(x), then u(x)− ū(x) ≤ 0
and (6.179) implies µa(x) = 0. Using (6.178) yields

p̄(x) + λū(x)
(6.178b)
= −µb(x)

(6.178a)

≤ 0, (6.183)

such that (6.181) holds in every case possible. Clearly, (6.181) implies (i). �

Example 6.72. If Uad = L2
a,b(Ω), then Th. 6.71 allows to rewrite the system of opti-

mality (6.169) as the Karush-Kuhn-Tucker optimality system

a ≤ ū ≤ b, (6.184a)

ȳ = Sū, (6.184b)

p̄ = S∗(ȳ − yΩ), (6.184c)

µa ≥ 0, µb ≥ 0, (6.184d)

p̄+ λū− µa + µb = 0, (6.184e)

µa (a− ū) = µb (ū− b) = 0. (6.184f)

More precisely, if Uad = L2
a,b(Ω), then ū ∈ Uad is an optimal control for the EOCP

of Def. 6.45 with f : Uad −→ R given by (6.168) if, and only if, (ū, ȳ, p̄, µa, µb) ∈
L2(Ω)×H1

0 (Ω)×H1
0 (Ω)×L2(Ω)×L2(Ω) satisfies the Karush-Kuhn-Tucker optimality

system (6.184).

7 Introduction to Numerical Methods

This section follows [Trö05, Sec. 2.12]. It is merely meant as a short introduction to
the topic of numerical methods for the optimal control of PDE. An extensive literature
on this topic is available, see, e.g., [Bet01, GS80, Kel99] as well as references therein.
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7.1 Conditional Gradient Method

7.1.1 Abstract Case: Hilbert Space

Let U be a Hilbert space, and consider a Gâteaux differentiable objective functional
f : U −→ R. Moreover, let Uad be a nonempty, closed, bounded, and convex subset of
U , and consider the optimal control problem

min
u∈Uad

f(u). (7.1)

The idea is to approximate a solution ū ∈ Uad to (7.1) by a sequence (un)n∈N in Uad. Of
course, without further conditions on f , we do not know, in general, if such a solution
ū exists. However, from Th. 6.62, we know that

f ′
G(ū)(u− ū) ≥ 0 for each u ∈ Uad (7.2)

is a necessary condition for ū to be a solution to (7.1).

Given the iterative solution un, the next iteration un+1 is found by determining a
direction of descent, i.e. vn ∈ U such that f , in some local neighborhood of un, is
decreasing in the direction vn − un. Once such a direction vn − un is found, one still
needs to determine a step size sn such that un+1 = un + sn(vn − un) is a suitable next
iteration in the approximating sequence.

Direction Search: The new direction vn − un is determined by the solution vn to the
auxiliary optimal control problem

min
v∈Uad

f ′
G(un) (v). (7.3)

The function gn : U −→ R, gn(v) := f ′
G(un) (v) is continuous and linear (in particular,

convex on Uad). Thus, by Th. 5.3, (7.3) has a solution vn ∈ Uad. In Sec. 7.1.2 below, we
will see how to determine such a solution vn in a concrete example. If f ′

G(un)(vn−un) ≥
0, then (7.3) implies, for each u ∈ Uad,

f ′
G(un)(u− un) ≥ f ′

G(un)(vn − un) ≥ 0, (7.4)

i.e. ū := un satisfies (7.2), i.e., if f is convex on Uad, then Th. 6.62 implies that ū := un

is a solution to (7.1). Otherwise,

f ′
G(un)(vn − un) < 0. (7.5)

Since

f ′
G(un)(vn − un) = lim

t↓0

1

t

(
f
(
un + t (vn − un)

)
− f(un)

)
, (7.6)

(7.5) implies that f
(
un + t (vn − un)

)
< f(un) for each sufficiently small t > 0. Thus,

in the direction vn − un, f is decreasing in some local neighborhood of un. Note that,
for convex Uad, the un + t (vn − un) are elements of Uad for each t ∈ [0, 1].
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Step Size Search: We now assume that, given un ∈ Uad, we have already found vn ∈ Uad

as a solution to (7.3). As noted above, if f ′
G(un)(vn − un) ≥ 0 and f is convex on Uad,

then un is already optimal, i.e. we can stop the iteration. However, one can also skip
the check if f ′

G(un)(vn − un) ≥ 0 and perform the step size search anyway. If un was
already optimal, then one will find sn = 0 (see below), if f is convex, then sn = 0 will
guarantee optimality of un. The new step size sn ∈ [0, 1] is determined as the solution
to another auxiliary minimization problem, namely, the one-dimensional problem

min
s∈[0,1]

f
(
un + s (vn − un)

)
. (7.7)

Even though Gâteaux differentiability of f does, generally, not imply continuity of f , it
does imply continuity of f �[un,vn], and, thus, of g : [0, 1] −→ R, g(s) := f

(
un + s (vn −

un)
)
. As g must attain its min on the compact set [0, 1], (7.7) must have a solution

sn. If (7.5) is satisfied, then sn > 0. Thus, sn = 0 implies f ′
G(un)(vn − un) ≥ 0, and

the converse holds if f is convex. If f is not convex, then sn > 0 can occur even if
f ′
G(un)(vn − un) ≥ 0. If f is locally convex at un, then this means one has luckily
espaced a local min of f at un. Again, we will solve (7.7) for a concrete situation in
Sec. 7.1.2 below.

Once both vn and sn are determined as described, one sets un+1 := un + sn (vn − un).

The described algorithm for the construction of the un is known as the conditional
gradient method. If f is continuous and convex on Uad, then we know from Th. 5.3,
that (7.1) has a solution ū ∈ Uad. In that case, one can also guarantee that the
conditional gradient method produces a monotonically decreasing sequence

(
f(un)

)
n∈N

(stricly decreasing unless un = ū). One can show that the un actually converge to a
solution ū of (7.1); a disadvantage is the generally rather slow convergence rate [GS80].

7.1.2 Application: Elliptic Optimal Control Problem

We apply the conditional gradient method to the EOCP of Def. 6.45 with f : Uad −→ R
given by (6.168), Uad = L2

a,b(Ω), (a, b) ∈ L2(Ω)×L2(Ω), a ≤ b. According to Examples
6.47 and 6.60(b), f is convex and Fréchet differentiable and, for each u ∈ U = L2(Ω),
f ′
G(u) = f ′

F(u) is given by (6.130e) as

f ′
F(u) : L

2(Ω) −→ R, f ′
F(u)(h) =

∫
Ω

(
S∗(Su− yΩ) + λu

)
h

=

∫
Ω

(
p+ λu

)
h, (7.8)

where, as usual, we have used the adjoint state p, i.e.

y = Su, (7.9a)

p = S∗(y − yΩ). (7.9b)

Each iteration of the conditional gradient method can be divided into five steps S1
– S5. We first describe these five steps consecutively, subsequently providing further
comments and details.
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S1 Given the control un ∈ Uad, determine the corresponding state yn = Sun as the
solution of the state equation.

S2 Given the state yn, determine the corresponding adjoint state pn = S∗(yn − yΩ) as
the solution of the adjoint equation.

S3 For the new direction vn − un, determine vn as a solution to (7.3), i.e. as a solution
to

min
v∈Uad

∫
Ω

(
pn + λun

)
v. (7.10)

S4 Determine the new step size sn ∈ [0, 1] as a solution to (7.7), i.e. as a solution to

min
s∈[0,1]

f
(
un + s (vn − un)

)
. (7.11)

If sn = 0, then un is an optimal control for the EOCP and the iteration is halted
(see comment below).

S5 Put un+1 := un + sn (vn − un) and, with n replaced by n+ 1, proceed to S1 for the
next iteration step.

S1 and S2 both require the solution of a PDE, and, typically, will have to be carried
out numerically. Thus, any convergence and error analysis of the method will have to
take into account the convergence and error analysis of the numerical method used for
solving the PDE.

According to Sec. 7.1.1, one should check in S3 if
(
pn+λun

)
(vn−un) ≥ 0, concluding

optimality and halting if this is the case (as f is convex), proceeding to S4 only if(
pn+λun

)
(vn−un) < 0. However, as also remarked in Sec. 7.1.1, checking if sn = 0 in

S4 is an equivalent (and, in practice, easier) way of checking for optimality on a convex
f : If

(
pn+λun

)
(vn−un) ≥ 0, then un is optimal, and S4 will yield sn = 0. Otherwise,

i.e. if
(
pn + λun

)
(vn − un) < 0, then necessarily sn > 0 in S4.

For S3, one needs to determine a solution vn to (7.10). As Uad is convex, and the
function to be minimized is linear (in particular, convex), according to Th. 6.62, vn ∈
Uad is a solution to (7.10) if, and only if,∫

Ω

(
pn + λun

)
(v − vn) ≥ 0 for each v ∈ Uad. (7.12)

From Th. 6.68(a), we see that

vn(x) :=


a(x) for pn(x) + λun(x) > 0,(
a(x) + b(x)

)
/2 for pn(x) + λun(x) = 0,

b(x) for pn(x) + λun(x) < 0,

(7.13)

is a possible choice for vn, where one should note that the middle case will hardly ever
occur during numerical calculations.
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Performing S4 is also easy for the f under consideration. We have to minimize g :
[0, 1] −→ R, where, using the abbreviations yn := Sun, wn := Svn,

g(s) = f
(
un + s (vn − un)

)
=

1

2

∥∥S(un + s (vn − un)
)
− yΩ

∥∥2
L2(Ω)

+
λ

2

∥∥(un + s (vn − un)
)∥∥2

L2(Ω)

=
1

2

∥∥yn + s (wn − yn)− yΩ
∥∥2
L2(Ω)

+
λ

2

∥∥(un + s (vn − un)
)∥∥2

L2(Ω)

=
1

2

∥∥yn − yΩ
∥∥2
L2(Ω)

+ s 〈yn − yΩ, wn − yn〉L2(Ω) +
s2

2

∥∥wn − yn
∥∥2
L2(Ω)

+
λ

2
‖un‖2L2(Ω) + λ s 〈un, vn − un〉L2(Ω) + s2

λ

2
‖vn − un‖2L2(Ω)

= g0 + g1 s+ g2 s
2, (7.14)

with

g0 :=
1

2

∥∥yn − yΩ
∥∥2
L2(Ω)

+
λ

2
‖un‖2L2(Ω), (7.15a)

g1 := 〈yn − yΩ, wn − yn〉L2(Ω) + λ 〈un, vn − un〉L2(Ω), (7.15b)

g2 :=
1

2

∥∥wn − yn
∥∥2
L2(Ω)

+
λ

2
‖vn − un‖2L2(Ω). (7.15c)

Thus, g is a quadratic function, with g2 ≥ 0 according to (7.15c). If g2 > 0, then the
min of g on [0, 1] is given by the projection of the zero of its derivative, i.e. by

sn := P[0,1]

(
− g1
2 g2

)
. (7.16)

If g2 = 0 and g1 > 0, then sn = 0. If g2 = 0 and g1 < 0, then sn = 1. If g2 = g1 = 0,
then g is constant and any sn ∈ [0, 1] will do.

7.2 Projected Gradient Method

The projected gradient method is similar to the conditional gradient method of the
previous section. For the projected gradient method, one always uses the antigradient,
i.e −(pn + λun), for the new direction vn − un. Thus, in S3 of Sec. 7.1.2, one sets

vn := un − (pn + λun). (7.17)

However, one now has the additional problem that, in general, even if un ∈ Uad, the
quantity un− s (pn+λun) can be nonadmissible (i.e. un− s (pn+λun) /∈ Uad) for every
s > 0. This is remedied by projecting un − s (pn + λun) back onto Uad. However, now,
instead of (7.7), for the new step size sn, one wants to solve the more difficult auxiliary
minimization problem

min
s∈[0,1]

f
(
P[a,b]

(
un + s (vn − un)

))
, (7.18)
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at least approximatively. This usually requires evaluations of f , and, thus, solving the
PDE, which can be numerically costly. Possible strategies mentioned in [Trö05, Sec.
2.12.2] are the bisection method and Armijo’s method.

Even though each step of the projected gradient method is typically more difficult than
the corresponding step of the conditional gradient method, in many situations, this is
more than compensated by a faster convergence rate. For more information on the
projected gradient method and its convergence theory, see, e.g., [GS80, Kel99].

7.3 Transformation into Finite-Dimensional Problems

Here, the general strategy is to use discretization techniques to transform the infinite-
dimensional optimal control problem of minimizing an objective functional with PDE
constraints into, possibly large, but finite-dimensional optimization problems, approxi-
mating the original problem. We will restrict ourselves to illustrating the technique in
a rather simple situation.

7.3.1 Finite-Dimensional Formulation in Nonreduced Form

For our illustrating example, we consider the particularly simple space domain

Ω :=]0, 1[×]0, 1[,

and we choose the optimal control problem

minimize J(y, u) :=
1

2
‖y − yΩ‖2L2(Ω) +

λ

2
‖u‖2L2(Ω),

subject to the PDE constraints

−∆y = u in Ω,

y = 0 on ∂Ω,

and control constraints
a ≤ u ≤ b on Ω,

where λ > 0 and yΩ, a, b ∈ L2(Ω), a ≤ b. The reason for choosing Ω to be the unit
square is its admitting simple discretizations into n2 (n ∈ N) small squares

Ω =
n⋃

i,j=1

Ωij, (7.19a)

Ωij : =

]
i− 1

n
,
i

n

[
×
]
j − 1

n
,
j

n

[
. (7.19b)

More complicated domains Ω are, in general, more difficult to discretize, but the prin-
cipal stretegy remains the same.
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To proceed further, we introduce the (n+ 1)2 points

xij := (hi, hj), h :=
1

n
, i, j = 0, . . . , n,

with neighborhoods
Ω̃ij := Bh

2
,‖·‖max

(xij).

Thus, the xij are precisely the vertices of the squares Ωij as well as the centers of the
Ω̃ij. The goal is to determine values yij as solutions to a suitable finite-dimensional
optimization problem such that yij ≈ y(xij), i.e. such that the yij are approximations
to the value of y at xij (or on Ω̃ij).

Using difference quotients of difference quotients, one obtains the classical approxima-
tion

−∆y(xij) = −∂1∂1y(xij)− ∂2∂2y(xij) ≈
4yij − (yi−1,j + yi,j−1 + yi+1,j + yi,j+1)

h2
. (7.20)

At the boundary of Ω, we use

y0j := yi0 := ynj := yin := 0 for each i, j = 0, . . . , n.

Analogous to the yij, we introduce approximations

uij ≈ u(xij), yΩ,ij ≈ yΩ(xij), aij ≈ a(xij), bij ≈ b(xij),

where yΩ,ij, aij, bij have to be computed from the given functions yΩ, a, b, respec-
tively, whereas the uij constitute additional unknowns to be determined from the finite-
dimensional optimization problem below. By employing an enumeration of the index
set {(i, j) : i, j = 1, . . . , n− 1}, we organize the yij, uij, yΩ,ij, aij, and bij into vectors

~y = (y1, . . . , y(n−1)2), ~u = (u1, . . . , u(n−1)2), ~yΩ = (yΩ,1, . . . , y(n−1)2),

~a = (a1, . . . , a(n−1)2), ~b = (b1, . . . , b(n−1)2),

respectively. Approximating the functions y, u, and yΩ as being constant on each Ω̃ij

with values according to the above approximations, one obtains

J(y, u) =
1

2

∫
Ω

(y − yΩ)
2 +

λ

2

∫
Ω

u2 =
1

2

n∑
i,j=0

∫
Ω̃ij

(
(y − yΩ)

2 + λu2
)

≈ 1

2

n−1∑
i,j=1

∫
Ω̃ij

(
(yij − yΩ,ij)

2 + λu2
ij

)
=

h2

2

n−1∑
i,j=1

(
(yij − yΩ,ij)

2 + λu2
ij

)
.

Thus, our original optimal control problem is translated into the finite-dimensional
optimization problem

minimize
1

2

(n−1)2∑
k=1

(
(yk − yΩ,k)

2 + λu2
k

)
,
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subject to the equation constraints

Ah ~y
> = ~u>,

and control constraints
~a ≤ ~u ≤ ~b

for the unknown components of ~y and ~u, where the entries of the matrix Ah are given
according to (7.20). Discrete optimization problems of this form can, for example, be
solved by the MATLAB function quadprog.

That the size of the discrete problem is typically large, is a drawback of the approach
considered in the present section. It is often useful to obtain smaller problems by
discretizing the reduced optimal control problem, which is discussed in the next section.

7.3.2 Finite-Dimensional Formulation in Reduced Form

The strategy of the previous section consists of discretizing the nonreduced optimal
control problem directly, i.e. the variable y is not eliminated by writing it as a function
of u. In contrast, in the following, we will employ the PDE’s solution operator S to
eliminate the variable y. We start by discretizing u. Here, the idea is to approximate
u as a finite linear combination of M basis functions e1, . . . , eM , M ∈ N,

u(x) ≈
M∑
k=1

uk ek(x), uk ∈ R.

Continueing to employ the notation introduced in the previous section, for the ek, we
choose the M = n2 characteristic functions

1Ωij
(x) :=

{
1 for x ∈ Ωij,

0 for x ∈ Ω \ Ωij.

Next, we introduce the functions

yk := S(ek), k = 1, . . . ,M,

where S : L2(Ω) −→ L2(Ω) is the PDE’s solution operator according to Th. 6.43.

In practice, the computation of the yk means the numerical solution of n2 PDE. And
as a fine discretization of Ω can be necessary to achieve an acceptable accuracy for the
approximation of u, this can be computationally costly. However, in Sec. 7.3.3 below,
we will see a trick to avoid the computation of the yk.

Plugging the approximations for u into J(y, u) = J(Su, u) yields the finite-dimensional
optimization problem

minimize fh(~u) = fh(u1, . . . , uM) :=
1

2

∥∥∥∥∥
M∑
k=1

uk yk − yΩ

∥∥∥∥∥
2

L2(Ω)

+
λ

2

∥∥∥∥∥
M∑
k=1

uk ek

∥∥∥∥∥
2

L2(Ω)

,

(7.21a)
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subject to the control constraints
~a ≤ ~u ≤ ~b (7.21b)

for the unknown components of ~u. In order to solve (7.21), we rewrite fh(~u) by making
use of the inner product in L2(Ω):

fh(~u) =
1

2
‖yΩ‖2L2(Ω) −

〈
yΩ,

M∑
k=1

uk yk

〉
+

1

2

〈
M∑
k=1

uk yk,
M∑
l=1

ul yl

〉

+
λ

2

〈
M∑
k=1

uk ek,
M∑
l=1

ul el

〉

=
1

2
‖yΩ‖2L2(Ω) −

M∑
k=1

uk 〈yΩ, yk〉+
1

2

M∑
k,l=1

ukul 〈yk, yl〉+
λ

2

M∑
k=1

ukul 〈ek, el〉.

Since 1
2
‖yΩ‖2L2(Ω) is constant, (7.21) is equivalent to

minimize f̃h(~u) := ~v ~u> +
1

2
~uC~u> +

λ

2
~uD~u>, (7.22a)

subject to the control constraints
~a ≤ ~u ≤ ~b (7.22b)

for the unknown components of ~u, where

~v := (vk)
M
k=1, vk := −〈yΩ, yk〉,

C := (ckl)
M
k,l=1, ckl := 〈yk, yl〉,

D := (dkl)
M
k,l=1, dkl := 〈ek, el〉.

Note that due to the choice of the ek as the characteristic functions of the disjoint sets
Ωij, the matrix D is diagonal:

〈ek, el〉 =

{
‖ek‖2L2(Ω) for k = l,

0 for k 6= l.

Once again, (7.22) can, for example, be solved by the MATLAB function quadprog.

7.3.3 Trick to Solve the Reduced Form Without Formulating it First

The numerical solution of the finite-dimensional optimization problem (7.22), requires
computations of expressions of the form D~x and C~x with x ∈ RM , where for large M
one should only store the nonzero elements of D and C. While expressions of the form
D~x are easy to compute, C~x is typically more involved, since C depends on the yk,
where yk resulted from solving the PDE with ek on the right-hand side.
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However, using the following trick, one can evaluate C~x without having to compute the
yk first: For each row vector ~x ∈ RM , we have

(C~x)k =
M∑
l=1

cklxl =
M∑
l=1

xl 〈yk, yl〉 =
M∑
l=1

xl 〈Sek, Sel〉 =

〈
S∗S

M∑
l=1

xlel, ek

〉
= 〈S∗Sxh, ek〉,

where xh :=
∑M

l=1 xlel.

Thus, instead of solving M = n2 PDE once, one now has to solve 2 PDE for every new
application of C. In general, it will depend on n and on the number of applications of
C needed during the solution of (7.22), which strategy is preferable.

7.4 Active Set Methods

For simplicity, we remain in the setting established in Sec. 7.3.1.

Active set methods are motivated by the observation that, if ū is an optimal control,
then

ū(x) =


a(x) for − p̄(x)

λ
< a(x),

− p̄(x)
λ

for − p̄(x)
λ

∈ [a(x), b(x)],

b(x) for b(x) < − p̄(x)
λ

(7.23)

where p̄ = S∗(Sū − yΩ) is the adjoint state (this is due to Ex. 6.69(c), where we have
written (6.170a) in the equivalent form from (6.164)). The relation (7.23) suggests

that the quantity − p̄(x)
λ

can be considered as a measure for the activity of the control
constraints.

The continuous version of the active set algorithm reads as follows:

S0 Choose arbitrary initial functions u0, p0 ∈ L2(Ω).

S1 Given the control un and the adjoint state pn, determine the new active sets A+
n+1

and A−
n+1 as well as the inactive set In+1:

A+
n+1 :=

{
x ∈ Ω : − pn(x)

λ
> b(x)

}
,

A−
n+1 :=

{
x ∈ Ω : − pn(x)

λ
< a(x)

}
,

In+1 := Ω \ (A+
n+1 ∪ A−

n+1).

S2 Determine yn+1 and pn+1 from the coupled system of PDE

−∆yn+1 =


a on A−

n+1,

− pn+1

λ
on In+1,

b on A+
n+1,

−∆pn+1 = yn+1 − yΩ.
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S3 Set

un+1 :=


a on A−

n+1,

− pn+1

λ
on In+1,

b on A+
n+1.

Proceed to S1 for the next iteration step.

Active set methods can be interpreted as Newton methods and, thus, show rapid con-
vergence rates [BIK99, KR02].

It remains to formulate the discrete version of the above algorithm. According to the
discretization approach from Sec. 7.3.2, we seek a solution ~u to (7.21). For our present
purposes, it will be useful to introduce the operator

Sh : RM −→ L2(Ω), Sh(~u) :=
M∑
k=1

uk yk,

which occurs on the right-hand side of (7.21a) (yk = S(ek) as before). Note that the
adjoint operator of Sh is a map S∗

h : L2(Ω) −→ RM .

Steps D2 and D3 of the algorithm below require the computation of expressions of the
form S∗

h(Sh~un − yΩ). As we have used ek to denote the basis functions, let εk denote
the standard unit vectors in RM , i.e.

εkl := δkl :=

{
1 for k = l,

0 for k 6= l.

Then, for u ∈ L2(Ω), the kth component of S∗
hu ∈ RM is

(S∗
hu)k = 〈S∗

hu, εk〉RM = 〈u, Shεk〉L2(Ω) =

〈
u,

M∑
l=1

δkl yl

〉
L2(Ω)

= 〈u, yk〉L2(Ω)

= 〈u, Sek〉L2(Ω) = 〈S∗u, ek〉L2(Ω). (7.24)

Thus, to compute S∗
hyΩ, it suffices to solve precisely one PDE, namely the one corre-

sponding to S∗yΩ. Given ~u ∈ RM , by setting u := Sh~u in (7.24), one obtains

(S∗
hSh~u)k =

〈
M∑
l=1

ulyl, yk

〉
L2(Ω)

=

〈
S∗S

(
M∑
l=1

ulel

)
, ek

〉
L2(Ω)

. (7.25)

In consequence, as in Sections 7.3.2 and 7.3.3, one has the choice of either computing
the yk by solving M = n2 PDE once, or solving two PDE whenever an expression of the
form S∗

h(Sh~un − yΩ) needs to be calculated. In general, it will depend on the situation
(e.g. size of M , desired accuracy, etc.), which strategy is faster.

The discrete active set algorithm can be formulated as follows:
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D0 Choose arbitrary initial vectors ~u0, ~p0 ∈ RM .

D1 Given ~un and ~pn, determine the new finite active sets A+
n+1 and A−

n+1 as well as the
finite inactive set In+1:

A+
n+1 :=

{
k ∈ {1, . . . ,M} : − pn,k

λ
> bk

}
,

A−
n+1 :=

{
k ∈ {1, . . . ,M} : − pn,k

λ
< ak

}
,

In+1 := {1, . . . ,M} \ (A+
n+1 ∪ A−

n+1).

D2 Determine ~un+1 from the linear system

un+1,k =


ak for k ∈ A−

n+1,

−λ−1
(
S∗
h(Sh~un − yΩ)

)
k
,

bk for k ∈ A+
n+1.

D3 Set ~pn+1 := S∗
h(Sh~un − yΩ).

Proceed to D1 for the next iteration step.

The iteration is halted once A+
n+1 = A+

n and A−
n+1 = A−

n . One can show that the active
sets must become stationary after finitely many steps and that, at this stage, one can
set ~u := ~un to obtain a solution to (7.21) (see [BIK99, KR02]).
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