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Applications of SiC bulk single crystals

Light-emitting diodes:

Lifetime: ≈ 10 years

Light extraction efficiency> 32 %

(light bulb:≈ 10 %)

Blue laser:

Its application in the DVD player

admits up to 10-fold capacity of disc

SiC-based electronics still works

at 600 deg. Celsius,

SiC sensors placed close to car

engines can save resources and costs



SiC growth by physical vapor transport (PVT)
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• polycrystalline SiC powder

sublimates inside induction-

heated graphite crucible at 2000

– 3000 K and≈ 20 hPa

• a gas mixture consisting of Ar

(inert gas), Si, SiC2, Si2C, . . .

is created

• an SiC single crystal grows on a

cooled seed



Problems:

• Needed: Perfect single crystals as large and as quick as

possible (currently:∅ 5 – 10 cm, one growth run: 2 – 3

days)

• High energy costs, high costs for apparatus replacement

(every 10 runs)

• Wrong control parameters(setup, position of induction

coil, heating power)⇒ (costly !) failure of growth run

• High temperatures prevent measurements inside growth

apparatus⇒ experimental optimization of process is dif-

ficult and costly
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Goal:

Stationary and transientoptimal controlof process, using mathematical modeling,

numerical simulation.



Model includes

1. Heat conduction in gas, graphite, powder, crystal

2. Radiative heat transfer between cavity surfaces (nonlocal integral operators)

3. Semi-transparency of crystal (band model)

4. Induction heating (Maxwell’s equations)

5. Mass transport in gas, powder, graphite (Euler equations, porous media equations,

. . . )

6. Chemical reactions in gas (reaction-diffusion equations)

7. Crystal growth, sublimation of source powder, decomposition of graphite walls

(multiple free boundaries)



Mathematical results

• Discrete existence and uniqueness of a solution to a finite volumes scheme for the

nonlinear (quasilinear), nonlocal heat transfer with mixed boundary conditions.

DiscreteL∞-L1 a priori estimates.

• DiscreteL∞-L∞ a priori estimates, discrete maximum principle in the semilinear,

nonlocal case.

• Existence of a (continuous) optimal control in the nonlocal, semilinear case

(approximate a prescribed gradient field in the gas phase by controling the heat

sources). Necessary optimality conditions were established.



Numerical results: Temperature evolution of the powder charge:Pmax = 7 kW
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Numerical results: Optimization of temperature field

(a): T (P = 10.0 kW, zrim = 24.0 cm, f = 10.0 kHz)
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(b): T (P = 7.98 kW, zrim = 22.7 cm, f = 165 kHz), Nelder-Mead res. forFr,2(T )
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SiC powder
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2314 K
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(c): T (P = 10.3 kW, zrim = 12.9 cm, f = 84.9 kHz), Nelder-Mead res. forFr,2(T )−Fz,2(T )
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Thank You for Your Attention !

Publications / More Information:

http://www.ima.umn.edu/˜philip/sic/#Publications

http://www.ima.umn.edu/˜philip/sic/

• See poster during lunch session.

• Extended 1-hour talk tomorrow,

Applied Mathematics and Numerical Analysis Seminar

School of Mathematics

Thu, Sep 16, 11:15 a.m., Vincent Hall 570.


