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Asymptotic analysis of random objects

Levels of complexity:
1. Asymptotic enumeration
2. Distribution of (shape) parameters

3. Asymptotic shape (= continuous limiting object)



Contents 1

I. COMBINATORIAL RANDOM TREES

e Catalan trees and Cayley trees
e Functional equations and algebraic singularities
e A combinatorial central limit theorem

e [ he degree distribution of random trees



Random Trees

Catalan trees
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A

rooted, ordered (or plane) tree




Random Trees

Catalan trees. g, = number of Catalan trees of size n; |G(x) =

> gna"

n>1

RIS

G@) =a(14+G@) +G@)* +-) = _2@:)
l—-+v1-—-4zx 12n—2 4n—1
G(2) = =5 = o= _("_") alvanT

(Catalan numbers)




Random Trees

Catalan trees with singularity analysis (to be discussed later)




Random Trees

Number of leaves of Catalan trees

gn k. = Number of Catalan trees of size n with k leaves.

T

xG(x,u)
1 —G(xz,u)

G(z,u) = zu 4+ 2(G(z,u) + G(z,u)° + - = zu +

— G(zc,u)=%( —I—(u—l)w—\/1—2(u—|—1):v—|-(u—1)2x2>

NIS

= gn,k=i(n)(n_l>wMexp(—(kl_f 2) for k ~
a



Random Trees

Number of leaves of Catalan trees

T

p(u)

G(z,u) = g(x,u) — h(a:,u)\/l —

for certain analytic function g(x,u), h(x,u), and p(u).

—>  gup =777



Random Trees

ofoRG S 0-&
Y \
olG ® @

labelled, rooted, unordered (or non-plane) tree



Random Trees

n
Cayley Trees. r, =number of Cayley trees of size n; |R(z) = > _ frnx—l
n:

Ao+/i\+m+ﬁ/\+m

R(m)za;(l—l—R(x)—l—R( )" | E@) +> _ L JR(@)

21 3!

— |rp = n1 by Lagrange inversion




Random Trees

Number of leaves of Cayley trees

rnk = nhumber of Cayley trees of size n with k leaves.

.

R(x,u)?
21

R(x,u) =2zu—+x <R(:1:, u) +

_|_

R(z,u)3

3!

—|—> = 2@ 4 gy — 1)

—> R(z,u) =777




Functional equations

Catalan trees: G(x,u) = zu + 2G(z,u) /(1 — G(x,u))

Cayley trees: R(z,u) = rel(zu) 4 x(u—1)

Recursive structure leads to functional equation for gen. func.:

A(z,u) = ©(x,u, A(z,u))




Functional equations

Linear functional equation: ®(z,u,a) = ®g(z,u) + adPq(x, u)

Do (z, u)
1 —Py(x,u)

— A(x,u) =

Usually these kinds of generating functions are easy to handle, since
they are explicit.



Functional equations

Non-linear functional equations: ®.,(x,u,a) # 0.

Suppose that |A(x,uv) = ®(z,u, A(x,u))|, where ®(z,u,a) has a power
series expansion at (0,0, 0) with non-negative coefficients and
Cbaa(x7u7a) # O

Let g > 0, ag > O (inside the region of convergence) satisfy the system
of equations:

ag = P(xg,1,ag9), 1= Pu(xp,1,a0)|

Then there exists analytic function g(x,u), h(x,u), and p(u) such that
locally

X

p(u) |

A(xz,u) = g(x,u) — h(m,u)\/l —




Functional equations

Idea of the Proof.

Set |F(xz,u,a) = &(x,u,a) —a|l. Then we have

F(xg,1,a9) =0
Fo(xp,1,a09) =0
Fr(zo,1,a0) # 0
Faa(z0,1,a0) # O.
Weierstrass preparation theorem implies that there exist analytic func-
tions H(xz,u,a), p(xz,u), g(x,u) with H(zg, 1,a9) 7= 0, p(xg,1) = q(xp,1) =
O and

F(z,u,a) = H(z,u,a)((a — a0)® + p(z,u)(a — ag) + q(z,u)) |




Functional equations

F(z,u,a) =0 <= (a — ao)2 + p(z,u)(a —ag) + g(x,u) = 0|

Consequently

_p(@w) | w?(w,u)?

A(x,u) = ag 5 4

T Q($7u>

X

p(u)

~

= |g(x,u) — h(a:,u)\/l —

where we write

r, U 2
p( ;1 ) —q(z,uv) = K(z,u)(z — p(u))

which is again granted by the Weierstrass preparation theorem and we
set

PO g ey = K )

g9(z,u) = ag —



Random Trees

Catalan Trees G(z,u) = zu + 133—%?:22)

X

—> G(z,uv) =g(x,u) — h(w,u)\/l —

p(u)
x 1
G(x,1) = G(z) = g(z,1) — h(x, 1>¢1 -t =
Cayley Trees T(x,u) = rel (z,u) + x(u—1)
—> T(x,u) =g(z,u) — h(m,u)\/l _ 7
p(u)
x 1
T(x,1) =T(x) —g(:zc,l)—h(a:,l)\/l—p(l)7 (1) ==



Algebraic Singularities

Singular expansion

T

A(z) = g(z) — h(z),/1 -
- (90+91(w—p)+92(m—p)2_|_...)
_I_<ho+h1($_p)+h2(a?—p)2—|-...> 1_%

5 2
:aO_l'al(1_£>2+a2(1—§>2—|—a3<1_£> 4.
P 0 P

R R (R

NIW



Algebraic Singularities

Singular expansion

A(z) =|g(z) — h(=)

- (90+91($—p)+92(:I:—p)2_|_...>

+ (ho + hi(z = p) + hole = p)* + - )

=ao+a1<

1 - Z

%
)+l
I,

=ao+a1<

-I-CLQ(

1 -2

5
:c) + a3 <1
I

x
1 — =

I

)+




Algebraic Singularities

Singularity Analysis

Lemma 1 Suppose that

y(x) = <1 — £>_ :
0

Yn = (—1)"(_;)5’35” =

T hen

Remark: This asymptotic expansion is uniform in o if o varies in a
compact region of the complex plane.



Algebraic Singularities

Singularity Analysis

Lemma 2 (Flajolet and Odlyzko) Let
y(z) = > yna"

n>0
be analytic in a region

A ={x:|z| <zo+mn, |arg(z — z0)| > 6},
xg>0,1n1>0, 0<d6<m/2.

Suppose that for some real «

y(z) =0 ((1-2/20)™%)  (z€A),

T hen

yn = O (xanno‘_1> .




Algebraic Singularities

A-region




Algebraic Singularities

Singularity Analysis

Suppose that

A(z) = g(z) — h(z), |1 - =
P

1
= ao + a1 (1—f)2+a2<

P

for x € A then

1 *

)l

1 — =

an = [z"] A(x) =

h 3
(p) =3

2ym

(1o

1

n

)]

T

I,

)

3
2

|



Algebraic Singularities

Singularity Analysis

Suppose that

T

p(u)

L 3
— ao(w) + a1 (w) <1 = p(u)> + ao(u) (1 — p(u)> + O ((1 - p(U)> )

forx €¢ A = A(uw) then

Al(z,u) = g(x,u) — h(w,u)\/l —

an(u) = [2"] A(z,u) = h(g(% u)p(u)_nn_% <1 + O (%)) .




Probabilistic Model

an ... humber of objects of size n

Qp f e number of objects of size n, where a certain parameter has

value k

If all objects of size n are considered to be equally likely then the
parameter can be considered as a random variable X,, with distribution

S

P{X, = k} = k|

an,




Probabilistic Model

Generating functions and the probability generating function

A(z,u) =) an,ka:nuk
n,k

— |Eu'"|= Y P{X, =k} u”
k>0

@ A 0)| an(u)
[z"] A(x, 1) an




Probabilistic Model

Generating functions and the probability generating function

A(x,u) = g(x,u) — h(a:,u)\/l —

p(u)

_ [ Az, w)
"] A(z, 1)

00 (140 (2)
h(P(1)71)p(1)—nn—% (1 +0 (%))

2w
KRB (o)




Probabilistic Model

Quasi-Power Theorem (Hwang)

Let X,, be a sequence of random variables with the property that

EuXn = A(w) - B(u)™ - (1 40 (f))

n

holds uniformly in a complex neighborhood of v = 1, |\, — oco| and
on — oo, and A(u) and B(w) are analytic functions in a neighborhood
of u =1 with A(1) = B(1) = 1. Set

u=B'(1) and ¢°=B"(1)+ B'(1) - B'(1)~

VXn = 0?An+ O (14 M\n/dn)

— |EXp=pu\n+0 14+ \n/dn)

~
~

Xn—EXn d
VY Xn

» N(0,1)| (o2 # 0).




Probabilistic Model

Sums of independent random variables

Xn=2£&81 +& + -+ &, where §; are i.i.d.
B(u) = Eu%

—  Eu¥n = Eyfitéettén

— Full . Ful2...FEuén
= B(u)".



Probabilistic Model

COMBINATORIAL CENTRAL LIMIT THEOREM

Suppose that a sequence of random variables X,, has distribution

P{X, = k} =

an
where the generating function A(x,u) = Zan,k:c”u’“ satisfies a func-
n,k
tional equation of the form |A(z,u) = ®(z,u, A(z,u))|, where ®(x,u,a)
has a power series expansion at (0,0,0) with non-negative coefficients
and ®gq(x,u,a) #= 0.

Let g > 0, ag > O (inside the region of convergence) satisfy the system
of equations:

ag = P(zq,1,a0), 1= Pa(z0,1,a0)|




Probabilistic Model

COMBINATORIAL CENTRAL LIMIT THEOREM (cont.)
Set

Py
H = ;
2 _ 2 L D2( Do Py — D)) — 2P, D (PraPay — Puzrd
o —,u—l—,u -|— 3 ;,;( aa ¥ uu au) x u( aa~¥xTu ax au)
:EOCquDaa

+ D2(Daq Dy — <1>§x)),

(where all partial derivatives are evaluated at the point (xg,aqg, 1))

Then we have

E X, =un—4+ O(1)| and |VarX, = c’n—+ O(1)

and if o2 > 0 then

X, —EX,
VYar X,

— N(0,1) |\




Random Trees

Leaves in Catalan trees

The number of leaves in Catalan trees of size n satisfy a central limit

theorem with mean ~ %n and variance ~ %n

Leaves in Cayley trees

The number of leaves in Cayley trees of size n satisfy a central limit
theorem with mean ~ 1n and variance ~ <€i2 -+ l) n

e



Random Trees

Nodes of out-degree d in Catalan trees

L

_ L _ Y
G(w,u)—l_G@j,u)—l—az(u 1)G(x,u)

The number Xﬁbd) of nodes with out-degree d in Catalan trees of size n
satisfy a central limit theorem with mean ~ uyn and variance ~ afln,
where

1
Hd = 5a+1

1 n 1 (d—1)?
2d+1 ' 52(d+1)  92d+3

and O'Czl =



Random Trees

Nodes of out-degree d in Cayley trees

L

R(z,u)®

d!
The number of nodes with out-degree d in Cayley trees of size n satisfy
a central limit theorem with mean ~ pyn and variance ~ adQn, where

R(x,u) = relt(@u) 4 x(u—1)

1 5 1+@d-1)?% 1
= d p—
Ha = gy 9N 9d 22 ea




Random Trees

Degree distribution for Catalan trees

Pn,d --- Probability that a random node in a random Catalan tree of
size n has out-degree d:

d
EX =np,q

_ 1
Pq -— lim Pn.d — ~d+1 — HKd

n—oo

Probability generating function of the out-degree distribution:

1

. d

p(w) = ) pjuw = ——
4>0 2 —w




Random Trees

Degree distribution for Cayley trees

Pn,d --- Probability that a random node in a random Cayley tree of size
n has out-degree d:

d
EX?% ) — N Pn.d

1

Pd = 1M Pna = —5 = Hd

Probability generating function of the out-degree distribution:

p(w) := Y pguw’ = e
d>1




Contents 2

I. COMBINATORIAL RANDOM TREES

e Maximum degree

e Unrooted trees

II. PATTERN COUNTS IN RANDOM TREES

e Pattern in trees

e Systems of functional equations



Random Trees

Maximum degree

A, ... maximum out-degree

X7g>d) = X7§d+1) + qud+2) + --- ... number of nodes of out-degree
> d.

An>d — xPDs o




Random Trees

First moment method

X ... a discrete random variable on non-negative integers.

— |P{X >0} <min{l,EX}

Proof

EX =) kP{X =k}> > P{X =k}=P{X >0}
k>0 k>1



Random Trees

Second moment method

X is a non-negative random variable with finite second moment.

(E X)?
E (X2)

— |P{X >0}>

Proof

EX=F (X : 1[X>O]> < \/IE(XQ)\/]E (1Fx>q)) = VE(X?)/P{X > 0}.




Random Trees

Tail estimates and expected value
o P{A,>d} <min{l,EX{N

(EX5 )2
E(X5)2
ExFN2  varxFY

Ex$D)2 5 (xFD)2

d>0



Random Trees

Maximum degree of Catalan trees

IEXf,(fd) N

d+1 T 22(d+1)  22d+3

. 2
Y S W E

) n
— P{An>d}§m|n{l,ﬁ},

P{A, <d} =1—P{Ap > d}

1 1 d—1)2
< 1 >d+1 + 22(d+1) (22d—|—3 2d+1
>~ - 1 ~
n 52(d+1) n

—> | A, is concentrated at logon + O(1)




Random Trees

Maximum degree of Catalan trees (Carr, Goh and Schmutz)

P{Ay < k} = exp (-2~ (F1092n+1)) 4 o(1)

EA, = logon + O(1)




Random Trees

Unrooted trees

pn ... Number of different embeddings of unrooted trees of size n in
the plane, |P(z) = ) ppa"|
n>1

~

P(x) =2 Y Ze, (G(z),G(z2),...,G(zF)) - %G@)Q + %G(mz)
k>0

where G(z) = z/(1 — G(z)) = (1 — /1 —4x)/2 and

1 k/d
Ze(@r,az, .o yxy) = 1 p(d)ay
d|k

is the cycle index of the cyclic group €, of k elements



Random Trees

Unrooted trees

Cancellation of the /1 — 4x-term:;:

1—-—+v1-4 1
G(z) = > ’ —> P(x) = ao—l—a2(1—4:13)—|—6(1—4g3)3/2+...

_ 1 n 52 1
— pn—8ﬁ4n (1+0(n™h)




Random Trees

Degree distribution of unrooted trees

fld) ... humber of nodes of degree d in trees of size n
P(z,u) =z Y. Z¢, (G(z,u),G(a?, u?),...,G(z",u"))
k#d

+:cuZ¢d(G(:U,u),G(:C2,u2),---,G(fUdaud))
1 >, 1.2 2
QG(SC,U) -+ QG(JZ ,U),

where
X

d—1
I~ Gl + z(u — 1)G(z,u)* .

G(x,u) =




Random Trees

Degree distribution of unrooted trees

Cancellation of the /1 — 4x-term:;:

T

p(u)

G(z,u) = g(x,u) — h(:c,u)\/l —

NIW

— P(CE,U) = CLO(U) + CLQ(U) (1 — p(xu)> -+ a,3(u) (1 — p(xu>> + ...

— X,,gd) satisfies a central limit theorem with mean ~ py;_1n and
variance ~ o2_;n, where

1 1 (d—1)2

1
od+1 T 22(d+1)  22d+3 -

Hd — >d+1

and UCQz =




Random Trees

Degree distribution of unrooted trees

Pnd - probability that a random node in a tree of size n has degree d:

d
EX% ) — N Pn,.d

1

pd = 1M Pnd = Hi-1 = 53

Probability generating function of the degree distribution:

w
p(w) = Z Pdwd — 5> _w
d>1 —w




Random Trees

Maximum degree for unrooted trees

A, ... maximum degree of unrooted trees of size n

Ay is concentrated at logon

EA, =logsn + O(1)




Random Trees

Unrooted labelled trees

th = rn/n = n™ "2 ... number of different unrooted labelled trees of
n
size n: |T(z) = ) tnw—l :
n>1 n!

~»

ai—ajeR(x)—l z)2 = :13—1 )2
7(z) = LR(@)? = R(z) - LR()

where R(z) = zeli(®) (note that T'(z) = R(z)/z)

Cancellation of the 1 — ex-term:

R() = g()-h(VI—ex = T(x) = agtar(1-42)+(1-e)®/ 4



Random Trees

Degree distribution of unrooted labelled trees

fld) ... humber of nodes of degree d in trees of size n
R d 1
T(x,u) = relt(@u) + z(u—1) (Z ) — ER(az,u)Q,
where
R(z,u)%1

R(x,u) = relt(@u) 4 z(u—1)



Random Trees

Degree distribution of unrooted labelled trees

Cancellation of the /1 — 4x-term:;:

I

p(u)

R(x,u) = g(x,u) — h(w,u)\/l —

NI

— T(:U,U) = ao(U) —+ CLQ(u) (1 — p(xu)) -+ a3(u) (1 — p(xu)> + ...

— X,,gd) satisfies a central limit theorem with mean ~ py;_1n and
variance ~ o2_;n, where
1

— = 2 _
'ud_ed! and o7 =

1+ (d—1)2 n 1
e2(d!)? ed!

(Note again that (%T(w,u) = R(x,u)/x)



Random Trees

Star pattern

O

O

x4

number of nodes of degree d in trees of size n

number of star pattern with d rays in trees of size n



Patterns in Trees

Pattern M

O—O



Patterns in Trees

Pattern M




Patterns in Trees

o

Occurrence of a pattern M

I



Patterns in Trees

Occurrence of a pattern M ©




Patterns in Trees

el

Occurrence of a pattern M ©

s N
i \
N ~\~ e N
i \ i \
\ /
~ - ~ -
[
; -

O S




Patterns in Trees

el

Occurrence of a pattern M ©

N LT
N




Patterns in Trees

el

Occurrence of a pattern M °in a labelled tree

10 -




Patterns in Trees

Cayley’s formula
Ty = n"~1 ... number of rooted labelled trees with n nodes
tn, = n™”=2 ... number of labelled trees with n nodes

Generating functions

R(z) = ) rnﬁi

|
n>1 M

R(x) = relt (@)

a,/.n

T(x) = R(z) — %R(a:)2

(Note that zT'(z) = R(x) so that we also have T'(z) = [ R(z)/x dz.)



Patterns in Trees

T heorem
M ... be a given finite tree.
Xn ... number of occurrences of of M in a labelled tree of size n

—> X, satisfies a central limit theorem with

EXnp~upun and VX, ~ on.

u > 0 and o2 > 0 depend on the pattern M and can be computed
explicitly and algorithmically and can be represented as polynomials
(with rational coefficients) in 1/e.



Patterns in Trees

Partition of trees in classes (L1 ... out-degree different from 2)




Patterns in Trees

Recurrences | Az = xAgAos + tAgA3 + cAQA,

?‘%: :/‘ +£§%;:/‘
a % B —
SR NP

n

€T
Aj(z) = Z%’;ng
n.k )

aj., ... humber of trees of size n in class j



Patterns in Trees

Recurrences | A3 = xuAgAos + xuAgAsz + xuAgAg

5 5

QZ'n k
Aj(@,u) = Zaj;n,kg“
n,k

aj.nk .-~ humber of trees of size n in class j with k occurrences of M



Patterns in Trees

10 00 "
AO:Ao(QU,u)ICC—FxZAZ'—FQU Z L (ZA) )

i=0 n=3"'

Al = Aq(z,u) = %xAQ,

As = Ap(z,u) = zAgAy,

Az = Az(z,u) = zAp(A2 + A3 + Ag)u,

Agq = Ag(z,u) = zAo(As + Ag + A7 + Ag + Ag + A1p)u”,

Ag = Ag(x,u) = %xA%u

Ag = Ap(z,u) = zA1 (A2 + Az + Ag)u?,

A7 = A7(z,u) = 241 (As + Ag + A7 + Ag + Ag + A10)u’,

Ag = Ag(z,u) = %w(Az + Az + Ag)%u’,

Ag = Ag(w,u) = 2(As + Az + A4)(As + Ag + A7 + Ag + Ag + A1o)u®,
A0 = A1o(z,u) = %w(z% + Ag + A7 + Ag + Ag + A1g)%u”.



Systems of Functional equations

COMBINATORIAL CENTRAL LIMIT THEOREM 11

Suppose that a sequence of random variables X,, has distribution

P[X,, = k] = 2nk

an,

k

where the generating function A(z,u) =) a, pz"u" is given by

n,k

A(z,u) = V(x,u, A1 (z,u),..., Ar(x,u))

for an analytic function W and the generating functions

Al(.ﬁlj, u) — Z a’l;n,kukxna cee 7A7“(x7 U’) — Z a’?“;n,kukxn
n,k n,k

satisfy a system of non-linear equations

Ai(z,u) = P(x,u, A1(z,u),..., Ar(z,u))|, (1 <5< 7).




Systems of Functional equations

COMBINATORIAL CENTRAL LIMIT THEOREM 1I (cont.)

Suppose that at least one of the functions CDj(a:,u,al,...,ar) IS non-
linear in a1,...,ar and they all have a power series expansion at (0,0,0)
with non-negative coefficients.

Let 9 > 0, ag = (ap,0,---,ar0) > 0 (inside the region of convergence)
satisfy the system of equations: (& = (Pq,...,Pr))

agp = ®(zp,1,ap), O =det(l— Pa(zo,1,a9)

such that the spectral radius of the Jacobian ®,5 equals 1. Suppose
further, that the dependency graph of the system

a= ®(x,u,a) is strongly connected (which means that no subsystem
can be solved before the whole system).



Systems of Functional equations

COMBINATORIAL CENTRAL LIMIT THEOREM 1I (cont.)

Then there exists analytic function g;(z,u),h;j(z,u), and p(u) (that is
independent of j) such that locally

Aj(z,u) = gj(z,u) — hj(:c,u)\/l — p(CCu) :
and consequently (for some g(xz,u), h(z,u))
A(x,u) = g(x,u) — h(w,u)\/l — oY

Consequently the random variable X, satisfies a central limit theorem
with

E X, ~np| and |Var X, ~ no?|,

where 1 and o2 can be computed.



Patterns in Trees

o

Final Result for M =

Central limit theorem with

5

= — =0.0311169177...
H 8e3

and
> 20e3+ 72e? + 84e — 175

= 0.0764585401....
32¢6

o



Contents 3

III. CONTINUOUS LIMITING OBJECTS

e Weak Convergence

e [ he Depth-First-Search of Rooted Trees
e [ he Continuum Random Tree

e [ he Profile of Galton-Watson trees

e Scaling Limit of Series-Parallel Graphs



Asymptotics on Random Discrete Objects

Levels of complexity:
1. Asymptotic enumeration
2. Distribution of (shape) parameters

3. Asymptotic shape (= continuous limiting object)



Weak Convergence

Xn, X ... (real) random variables:

lim P{X, <z} =P{X <z}

n—oo

for all points of continuity
of Fx(x) =P{X <z}

lim EG(Xn) = EG(X)

for all bounded continuous
functionals G : R — R

lim Ee™*n = Ee™*
n—oo

for all real t
(Levy's criterion)




Weak Convergence

Polish space: (S,d) ... complete, separable, metric space

Examples: R, R* C[0, 1], Mp(X) (probability measures on X)

S-valued random variable: X : 2 — S| ... measurable function

S = R: random variable
S = RF: k-dimensional random vector
S = C|[0, 1]: stochastic process (X (t),0<t<1)

S = Mp(X): random measure



Weak Convergence

Definition

Xn, X :Q— S ... S-valued random variables ((S,d) ... Polish space)

x, -4 x

=

im EG(Xn) = EG(X)

n—oo

for all bounded continuous
functionals G: S —- R



Weak Convergence

Stochastic process: random function
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Weak Convergence

Stochastic process

Xn : Q2 — C]0, 1] sequence of stochastic processes, X : Q2 — C[0, 1]
o X, o x = F(Xn) 4, F(X) for all continuous F': S — §'.
e X, L X —  X,(to) - X(tg) for all fixed tg € [0,1].

d d
e Xpn — X — (Xn(t1),...,Xn(tr)) — (X({1),...,X ()
for all k> 1 and all fixed ¢1,...,t, € [0, 1].

The converse statement is not necessarily true, one needs tightness.



Weak Convergence

Stochastic process
Xn : Q2 — C][0, 1] sequence of stochastic processes, X : Q2 — C[0, 1]

d
1. (Xn(t1),. -, Xn(tr)) — (X (1), ..., X ()
for all k> 1 and all fixed tq,...,t; € [0, 1]

2. E(|xn(0)) < C
for some constant ¢ > 0 and an exponent 8> 0

3. E (IXn(t) = Xn(s)|P) < CJt — 5| for all 5,t € [0,1]
for some constant C > 0 and exponents o« > 1 and 3 > 0.

Then

(Xn(),0<t<1) -4 (X(1),0<t< 1)




Depth-First-Search

Rooted trees and discrete excursions

N
$

[ x()

Bijection between

Catalan trees <+—  Dyck paths

random trees of sizen <+— random Dyck paths of length 2n



Depth-First-Search

Brownian excursion (e(t),0 <t < 1)

16

14 |

12 |

0.8 -

0.6 -

04

0.2

-0.2

Rescaled Brownian motion between 2 zeros.

Random function in C[0,1].



Depth-First-Search

Kaigh’s Theorem

(Xn(t),0<t<2n) ... random Dyck path of length 2n.

1 d
— (\/T_an(Qnt),O <t< 1) 25 (2e(),0 <t < 1).

Remark. This theorem also holds for more general random walks with
independent increments conditioned to be an excursion.



Real Trees

T ... tree, T ... embedding of T into the plane R?

— T is a metric space (and a real tree in the following sense):
Definition

A metric space (T,d) is a real tree if the following two properties hold
for every z,y € T.

1. There is a unique isometric map hgzy @ [0,d(z,y)] — T such that

2. If ¢ is a continuous injective map from [0, 1] into 7 with ¢(0) =z
and ¢(1) = y then

q([0,1]) = hay([0, d(z, y)]).

A rooted real tree (7,d) is a real tree with a distinguished vertex
r = r(7) called the root.



Real Trees

Two real trees (771,d1), (72,d>) are equivalent if there is a root-
preserving isometry that maps 77 onto 7».

T ... set of all equivalence classes of rooted compact real trees.

Gromov-Hausdorff Distance dgy(71,72) of two real trees 71,75 is
the infimum of the Hausdorff distance of all isometric embeddings of
T1, 7> into the same metric space.

Hausdorff distance: dyaus(X,Y) = max{sup inf d(x,vy), sup inf d(x, y)}
reX yE yeY z€X

T heorem

The metric space (T,dgH) is a Polish space.



Real Trees

g :[0,1] — [0,00) ... continuous, >0, g(0) =¢(1) =0

dg(s,t) = g(s) +g(t) —2 min{sjt}éggmax{s’t}g(w

dg (S, t) =1+2-2=1

s~t <= dg(s,t) =0 Tg =[0,1]/ ~

—> | (Tg,dg) is a compact real tree.




Real Trees

Construction of a real tree 7,

A

The mapping C[0,1] = T, g — T4 is continuous.



Real Trees

Catalan trees as real trees

- X(i)

n



Real Trees

Continuum random tree 75, (with Brownian excursion e(t))
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Real Trees

T heorem

(Xn(t),0<t<2n) ... random Dyck paths of length 2n
or the depth-first-search process of Catalan trees of size n.

1
— —TXn i> Toe

V2n

In other words...

Scaled Catalan trees (interpreted as “real trees’) converge weakly to
the continuum random tree.



Galton-Watson Trees

Galton-Watson branching process

¢ ... offspring distribution, ¢, = P{¢ = k}, @9 >0

O



Galton-Watson Trees

Galton-Watson branching process

¢ ... offspring distribution, ¢, = P{¢ = k}, @9 >0

I\



Galton-Watson Trees

Galton-Watson branching process

¢ ... offspring distribution, ¢, = P{¢ = k}, @9 >0

%
fﬂ@%



Galton-Watson Trees

Galton-Watson branching process

¢ ... offspring distribution, ¢, = P{¢ = k}, @9 >0
Q/R Q
45 5



Galton-Watson Trees

Galton-Watson branching process

¢ ... offspring distribution, ¢, = P{¢ = k}, @9 >0

%
fﬂ 2

\ o

O O



Galton-Watson Trees

Galton-Watson branching process

¢ ... offspring distribution, ¢, = P{¢ = k}, @9 >0

%
fﬂ 2

A



Galton-Watson Trees

Galton-Watson branching process. (Zk)kzo

Zo=1,and for k> 1

N
&
|
bm/'\
o
N’

where the (¢)), ; are iid random variables distributed as ¢.
Zy. ... number of nodes in k-th generation

Z=Zo+ 21+ Zo+--- ... total progeny



Galton-Watson Trees

Generating functions

yn = P{Z = n}, y(z) = ) yna"
n>1

d(w) = Fws = Z gokwk
k>0

—  |y(z) =z P(y(z))

Conditioned Galton-Watson tree

GW-branching process conditioned on the total progeny Z = n.



Galton-Watson Trees

Example. P{¢ =k} =271 &(w) =1/(2 — w)
= all trees of size n have the same probability

— conditioned GW-tree of size n is the same model as the Catalan
tree model (with the uniform distribution on trees of size n)

Example. ®(w) = %(1 + w)?2: binary trees with n internal nodes.
Example. ®(w) = (1 + w + w?): Motzkin trees

Example. ®(w) = e?~1: Cayley trees



Galton-Watson Trees

General assumption: |E€ =1, |0 < Var¢é = 02 < oo

Theorem (Aldous)

Xn(t) ... depth-first-search of conditioned GW-trees of size n

— <LXn(2nt),o <t< 1) e, 0<t<1)]|
mn

2v/n

Corollary

o)

Jn

d
TXn — ’7—26




Galton-Watson Trees

Corollary H,, ... height of conditioned GW-trees of size n:

— | Ly, 92 max (1)
— — e
Jn o o 0<t<1

Remark. Distribution function of max e(t):
0<t<1

21.2
P{max e(t) <z} =1-2) (42%k? -1 —2z%k
{oétﬁle() ) k 1( . e



Galton-Watson Trees

Profile
Lr(k) ... number of nodes at distance k£ from the root
(L7(k))g>0 ... profile of T

(L7(s),s > 0) ... linearly interpolated profile of T

K

L(K)




Galton-Watson Trees

Value distribution

> Lp(k) 6y

k>0

pp =
|T|

0 ... o-distribution concentrated at z



Galton-Watson Trees

Occupation measure: random measure on R

p(A) = [ 1aCe(t) dt

measure how long e(t) stays in set A
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Galton-Watson Trees

Theorem (Aldous)

(Ln(k),k > 0) ... random profile of conditioned GW-trees of size n

1
= |2 Lalk) oo oyt~ i
" >0




Galton-Watson Trees

Local time of the Brownian excursion: random density of u

1
1
I(s) = lim = O/ (IO

Theorem (D.4Gittenberger)

(Ln(s),s > 0) ... random profile of conditioned GW-trees of size n

— (%Ln(s\/ﬁ), s > O) BN (%l <gs> .8 > O)

Proof with asymptotics on generating functions (very involved)!!!



Galton-Watson Trees

Width

W = max L(k) = max L(t),
na (k) na; (t)

maximal number of nodes in a level.

Corollary

1 W, 95 2 sup ()
N 2 0<t<1

Remark. sup;>gl(t) = 2supg<;<1e(t) (in distribution)



Series-Parallel Graphs

Connected Series-Parallel Graphs

Series-parallel extension of a tree (or no K4 as a minor)

Series-extension: . o —> — o o4

. ® ® —
Parallel-extension: ~~



Scaling Limit of Series Parallel Graphs

A typcial series-parallel graph of size n has ~ cin 2-connected compo-
nents that form a tree

The 2-connected components do not scale in distribution, their ex-
pected size is finite and they behave almost) independent and identi-
cally distributed.

So, series-parallel graphs look tree-like.



Scaling Limit of Series Parallel Graphs

Theorem (Panagiotou, Stufler, and Weller)

Chn ... connected, vertex labelled series-parallel graphs with n vertices

C

NG

Cr -5 To,

for some constant ¢ > 0.

Remark. The same result holds for so-called subcricital graph classes
like cacti-graphs, outerplanar graphs etc. In all these graph classes the
diameter is of oder \/n.



Contents 4

IV. SUBGRAPH COUNTS IN SERIES PARALLEL GRAPHS

e Sub-critical graph classes

e Asymptotic counting of sub-critical graph classes
e Series parallel graphs are sub-critical

e Subgraph counting

e A combinatorial CLT for infinite systems



Block-Decomposition




Block-Decomposition




Block-Decomposition




Block-Decomposition

block: 2-connected component (= maximal 2-connected subgraph)

Block-stable graph class G: G contains the one-edge graph and G € G
if and only if all blocks of G are contained in G.

Equivalently, the 2-connected graphs of G and the one-edge graph
generate all graphs of G.

Examples: Planar graphs, series-parallel graphs, minor-closed graph
classes etc.

B(x) ... GF for 2-connected graphs in G
C(x) ... GF for connected graphs in G

[We will consider here only connected graphs]



Generating Functions for Block-Decomposition

Vertex-rooted graphs: one vertext (the root) is distinguished (and
usually discounted, that is, it gets no label)

le-

Generating function: (in den labelled case)

G*(z) = G/ (x)




Generating Functions for Block-Decomposition

(in the labelled case)

C*(z) = B° @0 (@)




Generating Functions for Block-Decomposition

(in the labelled case)




Labelled Trees

Rooted Trees:

le—0O
B®(x) ==z

R(x) = xC*®(x) ... generating function of rooted, labelled trees

C*(z) = B @) | — | R(z) = el

Remark: T'(x) ... GF for unrooted labelled trees:

T(x) = %R(x) —  T(z) = R(z) — %R(@Q



Outerplanar Graphs

All vertices are on the infinite face.



Outerplanar Graphs

Generating functions

C*(z) = B @C*(@))

Y

1—|—5:c—\/1—6:13—|—x2

B*(z) = 5

2-connected outerplanar graphs = dissections of the n-gon



Series-Parallel Graphs

Series-parallel extension of a tree (if we restict to connected graphs)

Series-extension: . o —> - o o

Parallel-extension: * * D e



Series-Parallel Graphs

Equivalent Definitions
° EX(K4)
o tree-width < 2

e nested ear decomposition (if connected)



Series-Parallel Graphs

Generating functions

~»

z(P(z,y) + y)?
1 —z(P(z,y) +y)

P(z,y) = (@Y — 1 — 5(z,y)) + y(5@Y) — 1),

S(z,y) =



Sub-critical Graphs

Repetition: Functional equations

Suppose that | A(x) = ®(x, A(x))|, where d(x,a) has a power series
expansion at (0,0) with non-negative coefficients and
Cba,a(xa CL) # O

Let zg > 0, ag > O (inside the region of convergence of &) satisfy
the system of equations:

ag — @(CL’O,CLO), 1= CDCL(LUO,CLO) .

Then there exists analytic function g(x), h(x) such that locally

A(z) = g(z) — h(z), |1 — ;—O .

Remark. If there is no xg, ag inside the region of convergence of &
then the singular behaviour of ® determines the singular behaviour of
A(x) NI



Sub-critical Graphs

A(z) = 2C°(z), ®(z,a) = 2eB°(@), |20%(z) = 2B (@0 (@)

—> |A(z) = ©(x, A(x))

A block-stable graph class is called sub-critical if the system (note
that B*(x) = B'(z))

ag = :BOeB,(CLO), 1= xoeB/(aO)B”(ao)
has positive solutions xq, ag inside the region of convergence of ®(x,a) =

zeB*(@) In particular we get a squareroot singularity for C*(x).

This means that “ag 1s smaller than the radius of convergence 7
of B*".

Eliminating zo leads to |agB”(ag) = 1| or that

nB"(n) > 1
where n is the radius of convergence of B(x).




Sub-critical Graphs

e Trees are sub-critical
e Outerplanar graphs are sub-critical

e Series-parallel graphs are sub-critical



Sub-critical Graphs

Lemma. Suppose that B(x) has radius of convergence n € (0, oo].

lim B"(z) = o0 = sub-critical.
r—

Corollary If B*(z) = B'(x) is entire or has a squareroot singularity:
° xr
B*(z) = g(z) — h(z), /1 — m

then we are in the sub-critical case.

This applies for outerplanar and series-parallel graphs.



Sub-critical Graphs

What does ‘“sub-critical” mean?

In a sub-critical graph class the average size of the 2-connected
components is bounded.

— T his leads to a tree like structure.

—> T he law of large numbers should apply so that we can expect
universal behaviors that are independent of the the precise structure
of 2-connected components.



Sub-critical Graphs

Universal properties
e Asymptotic enumeration:

L abelled case:

—5/2p—n

Cn ~ CTN n!

Unlabelled case:

—5/2p—n

Cn ~CN

(c > 0, p ... radius of convergence of C(z))

[D.+Fusy+Kang+Kraus+Rue 2011]



Sub-critical Graphs

e Asymptotic enumeration:

C.(ZC) — eB’(xC.(ZC)

— aC%(@) =aC'(@) = g(a) —h(a), 1

—  [2"zC(2) = ncln ~ cn_3/2p_n
n!

—  lep ~ cn_5/2p_nn! :




Additive Parameters in Subcritical Graph Classes

Theorem 1 [D.+Fusy+Kang+Kraus+Rue]

Xn ... humber of edges / number of blocks / number of cut-vertices
/ number of vertices of degree k

X _
— 2T H L N(0,02)

NG

with > 0 and o2 > 0.

Remark. There is an easy to check “combinatorial condition” that
ensures o2 > 0.



Additive Parameters in Subcritical Graph Classes

Proof Methods:
Refined versions of the functional equation C*(z) = eB*(2C*(@)),
+ singularity analysis (always squareroot singularity)

E.g: nhumber of edges:
C'(x7 y) — eB.(CCC.(ZL‘,y),y)
or number of 2-connected components:

C*(x,y) = VB (@C*(zy))

) = g(a,y) — h(a, Wl _r
p(y)

—  [2"C%(x,y) ~ c(y)p(y) "n 32

+ application of Quasi-Power-Theorem (by Hwang).



Graph Limits

Te ... continuum random tree (CRT)
Theorem [Panagiotou-Stufler+Weller]

C ... sub-critical graph class of connected graphs

— | ——CnoTe

vn
with respect to the Gromov-Hausdorff metric, where ¢ > 0 is a con-
stant.

Corollary. The diameter D,, as well as a typical distance in a sub-
critical graph is or order \/n.



Subgraph Counting

Theorem [D.+Ramos+Rue]

G ... sub-critial graph class, |H € G| fixed.

éH) ... humber of occurences of H as a subgraph in graphs of size n

() _
—> - A, N(0,0?)

NG

with > 0 and o2 > 0.

Remark. The proof is easy if H is 2-connected = additive parame-
ter!!!



Subgraph Counting

H = P>|... path of length 2

B]'-(wl,wg,w?,, ...;u) .... generating function of blocks in G, where the
root has degree j, where w; counts the number of non-root vertices of
degree i, and where u counts the number of occurrences of H = P».

C’;(a:, w) ... generating function of connected rooted graphs in G, where
the root vertex has degree j, where x counts the number of (all)
vertices and u the number of occurrences of H = P5.



Subgraph Counting

System of infinite number of equations

C;(CE,U):Z; Z U 1<tp /11712

§20 7" ji+-Fjs=J

S
x |] B;-Z, (az > ulezl(:c,u),a: > UQEQCZQ(SU,U),---iU)a
1=1

¢1>0 €>>0
(j = 0)

C%(x,1) = Z% S I B (2C*(2),5C(z), .. 1)

>0 57 jittje=j i=1

C*(z) = > Cj(z,1)

£>0



Subgraph Counting

System of infinite number of equations

Suppose that|A(z) = (A4,(2))j>0 = ®(z,A(z))|is a positive, non-linear,
infinite and strongly connected system such that the Jacobian ®4(z, a)
is compact for z > 0 and a > 0.

Let zg > 0, ag = (a;0);>0 (inside the region of convergence) satisfy
the system of equations:

ag = ®(20,ap), 71(Pal(z0,a0)) =1
where r(-) denotes the spectral radius.

~

Then there exists analytic function g;(z),h;(z) 7 0 such that locally

Ai(2) = g;(2) — hy(2) 1 — % |

with gj(ZO) = a; 0 and h](ZO) > 0.



Infinite Systems of Functional Equations

COMBINATORIAL CENTRAL LIMIT THEOREM III

Suppose that |A(z,u) = (A;(2,u)) >0 = P(z,u,A(2,u))| is a positive,
non-linear, infinite and strongly connected system such that the
Jacobian ®4(z,1,a) is compact for z > 0 and a > 0.

Let zg > 0, ag = (a;,0)j>0 (inside the region of convergence) satisfy
the system of equations:

ag = ®(20,1,a9), r(Pa(z0,1,a9))=1|

where r(-) denotes the spectral radius.

Then there exists analytic function g;(z,u),h;(z,u) 7 0 and p(u) such
that locally

z

p(u) |

Ai(z,u) = gj(z,u) — hj(z,u)\/l —

with g;(z0,1) = a0, hj(z0,1) > 0, and p(1) = 2.



Infinite Systems of Functional Equations

COMBINATORIAL CENTRAL LIMIT THEOREM III (cont.)

Suppose that A(z,u) = V(z,u,(Aj(z,u));>0), Where W is analytic with
non-negative coefficients.

z

p(u)

— [ A(z,u) ~ C(w)p(u) n3/2

—> A(z,u) = g(z,u) — h(z,u)\/l —

Consider the random variable X,, giben by
P{X, =k} = 20k
an

where a, j = ["u*] A(z,u) and an = [2"] A(#,1). Then X, satisfies a
central limit theorem with E X,, ~ un and Vrmar X, ~ o°n.

Y



Subgraph Counting

Special case of infinite system

A; = ®,(2,u,Ag, A1,...), j >0,

with

qu(Z?]'?AO)A].)"-) :CT)](Z7AO+A]_+)

so that |A = Ag + A1 + - -- | satisfies

A=®(z, A)

~

where

Bz, A) = Y ®;(z,A) = 3 (2,1, Ag, Ay, . .
7=0 5>0

OP ,
5 (z,1,a) does not depend on i
a;

—> | Py(z,1,a) is compact




T hank You!



