RANDOM TREES AN ANALYTIC APPROACH

Michael Drmota

Institute of Discrete Mathematics and Geometry
TU Wien
A 1040 Wien, Austria
michael.drmota@tuwien.ac.at
http://www.dmg.tuwien.ac.at/drmota/

Munich Summer School, Discrete Random Systems, Schliersee, Sept. 28-30, 2022

Contents

I. COMBINATORIAL RANDOM TREES

II. PATTERN COUNTS IN RANDOM TREES
III. CONTINUOUS LIMITING OBJECTS
IV. SUBGRAPH COUNTS IN SERIES PARALLEL GRAPHS

References

Books

Michael Drmota,
Random Trees, Springer, Wien-New York, 2009.

Philippe Flajolet and Robert Sedgewick,

Random Trees
Analytic Combinatorics, Cambridge University Press, 2009. (http://algo.inria.fr/flajolet/Publications/books.html)

Asymptotic analysis of random objects

Levels of complexity:

1. Asymptotic enumeration
2. Distribution of (shape) parameters
3. Asymptotic shape ($=$ continuous limiting object)

Contents 1

I. COMBINATORIAL RANDOM TREES

- Catalan trees and Cayley trees
- Functional equations and algebraic singularities
- A combinatorial central limit theorem
- The degree distribution of random trees

Random Trees

Catalan trees

rooted, ordered (or plane) tree

Random Trees

Catalan trees. $g_{n}=$ number of Catalan trees of size $n ; G(x)=\sum_{n \geq 1} g_{n} x^{n}$

$$
G(x)=x\left(1+G(x)+G(x)^{2}+\cdots\right)=\frac{x}{1-G(x)}
$$

$$
G(x)=\frac{1-\sqrt{1-4 x}}{2} \Longrightarrow g_{n}=\frac{1}{n}\binom{2 n-2}{n-1} \sim \frac{4^{n-1}}{\sqrt{\pi} \cdot n^{3 / 2}}
$$

(Catalan numbers)

Random Trees

Catalan trees with singularity analysis (to be discussed later)

$$
\begin{aligned}
& G(x)=\frac{1-\sqrt{1-4 x}}{2}=\frac{1}{2}-\frac{1}{2} \sqrt{1-4 x} \\
& \Longrightarrow \quad g_{n} \sim-\frac{1}{2} \cdot \frac{4^{n} n^{-3 / 2}}{\Gamma\left(-\frac{1}{2}\right)}=\frac{4^{n-1}}{\sqrt{\pi} \cdot n^{3 / 2}}
\end{aligned}
$$

Random Trees

Number of leaves of Catalan trees

$g_{n, k}=$ number of Catalan trees of size n with k leaves.

$$
\begin{aligned}
& G(x, u)=x u+x\left(G(x, u)+G(x, u)^{2}+\cdots=x u+\frac{x G(x, u)}{1-G(x, u)}\right. \\
& \Longrightarrow \quad G(x, u)=\frac{1}{2}\left(1+(u-1) x-\sqrt{1-2(u+1) x+(u-1)^{2} x^{2}}\right) \\
& \Longrightarrow \quad g_{n, k}=\frac{1}{n}\binom{n}{k}\binom{n-1}{k} \sim \frac{4^{n}}{\pi n^{2}} \exp \left(-\frac{\left(k-\frac{n}{2}\right)^{2}}{\frac{1}{4} n}\right) \quad \text { for } k \approx \frac{n}{2}
\end{aligned}
$$

Random Trees

Number of leaves of Catalan trees

$$
G(x, u)=g(x, u)-h(x, u) \sqrt{1-\frac{x}{\rho(u)}}
$$

for certain analytic function $g(x, u), h(x, u)$, and $\rho(u)$.

$$
\Longrightarrow \quad g_{n, k}=? ? ?
$$

Random Trees

Cayley Trees:

labelled, rooted, unordered (or non-plane) tree

Random Trees

Cayley Trees. $r_{n}=$ number of Cayley trees of size $n ; R(x)=\sum_{n \geq 1} r_{n} \frac{x^{n}}{n!}$

$$
R(x)=x\left(1+R(x)+\frac{R(x)^{2}}{2!}+\frac{R(x)^{3}}{3!}+\cdots\right)=x e^{R(x)}
$$

$\Longrightarrow r_{n}=n^{n-1} \ldots$ by Lagrange inversion

Random Trees

Number of leaves of Cayley trees
$r_{n, k}=$ number of Cayley trees of size n with k leaves.

$$
R(x, u)=x u+x\left(R(x, u)+\frac{R(x, u)^{2}}{2!}+\frac{R(x, u)^{3}}{3!}+\cdots\right)=x e^{R(x, u)}+x(u-1)
$$

$$
\Longrightarrow \quad R(x, u)=? ? ?
$$

Functional equations

Catalan trees: $G(x, u)=x u+x G(x, u) /(1-G(x, u))$
Cayley trees: $R(x, u)=x e^{R(x, u)}+x(u-1)$

Recursive structure leads to functional equation for gen. func.:

$$
A(x, u)=\Phi(x, u, A(x, u))
$$

Functional equations

Linear functional equation: $\Phi(x, u, a)=\Phi_{0}(x, u)+a \Phi_{1}(x, u)$

$$
\Longrightarrow \quad A(x, u)=\frac{\Phi_{0}(x, u)}{1-\Phi_{1}(x, u)}
$$

Usually these kinds of generating functions are easy to handle, since they are explicit.

Functional equations

Non-linear functional equations: $\Phi_{a a}(x, u, a) \neq 0$.

Suppose that $A(x, u)=\Phi(x, u, A(x, u))$, where $\Phi(x, u, a)$ has a power series expansion at (0,0,0) with non-negative coefficients and $\Phi_{a a}(x, u, a) \neq 0$.

Let $x_{0}>0, a_{0}>0$ (inside the region of convergence) satisfy the system of equations:

$$
a_{0}=\Phi\left(x_{0}, 1, a_{0}\right), \quad 1=\Phi_{a}\left(x_{0}, 1, a_{0}\right)
$$

Then there exists analytic function $g(x, u), h(x, u)$, and $\rho(u)$ such that locally

$$
A(x, u)=g(x, u)-h(x, u) \sqrt{1-\frac{x}{\rho(u)}} .
$$

Functional equations

Idea of the Proof.

Set $F(x, u, a)=\Phi(x, u, a)-a$. Then we have

$$
\begin{aligned}
F\left(x_{0}, 1, a_{0}\right) & =0 \\
F_{a}\left(x_{0}, 1, a_{0}\right) & =0 \\
F_{x}\left(x_{0}, 1, a_{0}\right) & \neq 0 \\
F_{a a}\left(x_{0}, 1, a_{0}\right) & \neq 0
\end{aligned}
$$

Weierstrass preparation theorem implies that there exist analytic functions $H(x, u, a), p(x, u), q(x, u)$ with $H\left(x_{0}, 1, a_{0}\right) \neq 0, p\left(x_{0}, 1\right)=q\left(x_{0}, 1\right)=$ 0 and

$$
F(x, u, a)=H(x, u, a)\left(\left(a-a_{0}\right)^{2}+p(x, u)\left(a-a_{0}\right)+q(x, u)\right) \text {. }
$$

Functional equations

$$
F(x, u, a)=0 \Longleftrightarrow\left(a-a_{0}\right)^{2}+p(x, u)\left(a-a_{0}\right)+q(x, u)=0 .
$$

Consequently

$$
\begin{aligned}
A(x, u) & =a_{0}-\frac{p(x, u)}{2} \pm \sqrt{\frac{p(x, u)^{2}}{4}-q(x, u)} \\
& =g(x, u)-h(x, u) \sqrt{1-\frac{x}{\rho(u)}}
\end{aligned}
$$

where we write

$$
\frac{p(x, u)^{2}}{4}-q(x, u)=K(x, u)(x-\rho(u))
$$

which is again granted by the Weierstrass preparation theorem and we set

$$
g(x, u)=a_{0}-\frac{p(x, u)}{2} \quad \text { and } \quad h(x, u)=\sqrt{-K(x, u) \rho(u)}
$$

Random Trees

Catalan Trees $G(x, u)=x u+\frac{x G(x, u)}{1-G(x, u)}$

$$
\left.\begin{array}{c}
\Longrightarrow \quad G(x, u)=g(x, u)-h(x, u) \sqrt{1-\frac{x}{\rho(u)}} \\
G(x, 1)
\end{array}\right)=G(x)=g(x, 1)-h(x, 1) \sqrt{1-\frac{x}{\rho(1)}}, \quad \rho(1)=\frac{1}{4} .
$$

Cayley Trees $T(x, u)=x e^{T(x, u)}+x(u-1)$

$$
\begin{aligned}
& \Longrightarrow \quad T(x, u)=g(x, u)-h(x, u) \sqrt{1-\frac{x}{\rho(u)}} \\
& T(x, 1)=T(x)=g(x, 1)-h(x, 1) \sqrt{1-\frac{x}{\rho(1)}}, \quad \rho(1)=\frac{1}{e}
\end{aligned}
$$

Algebraic Singularities

Singular expansion

$$
\begin{aligned}
A(x)= & g(x)-h(x) \sqrt{1-\frac{x}{\rho}} \\
= & \left(g_{0}+g_{1}(x-\rho)+g_{2}(x-\rho)^{2}+\cdots\right) \\
& +\left(h_{0}+h_{1}(x-\rho)+h_{2}(x-\rho)^{2}+\cdots\right) \sqrt{1-\frac{x}{\rho}} \\
= & a_{0}+a_{1}\left(1-\frac{x}{\rho}\right)^{\frac{1}{2}}+a_{2}\left(1-\frac{x}{\rho}\right)^{\frac{2}{2}}+a_{3}\left(1-\frac{x}{\rho}\right)^{\frac{3}{2}}+\cdots \\
= & a_{0}+a_{1}\left(1-\frac{x}{\rho}\right)^{\frac{1}{2}}+a_{2}\left(1-\frac{x}{\rho}\right)+O\left(\left(1-\frac{x}{\rho}\right)^{\frac{3}{2}}\right)
\end{aligned}
$$

Algebraic Singularities

Singular expansion

$$
\begin{aligned}
A(x)= & g(x)-h(x) \sqrt{1-\frac{x}{\rho}} \\
= & \left(g_{0}+g_{1}(x-\rho)+g_{2}(x-\rho)^{2}+\cdots\right) \\
& +\left(h_{0}+h_{1}(x-\rho)+h_{2}(x-\rho)^{2}+\cdots\right) \sqrt{1-\frac{x}{\rho}} \\
= & a_{0}+a_{1}\left(1-\frac{x}{\rho}\right)^{\frac{1}{2}}+a_{2}\left(1-\frac{x}{\rho}\right)^{\frac{2}{2}}+a_{3}\left(1-\frac{x}{\rho}\right)^{\frac{3}{2}}+\cdots \\
= & a_{0}+a_{1}\left(1-\frac{x}{\rho}\right)^{\frac{1}{2}}+a_{2}\left(1-\frac{x}{\rho}\right)+O\left(\left(1-\frac{x}{\rho}\right)^{\frac{3}{2}}\right)
\end{aligned}
$$

Algebraic Singularities

Singularity Analysis

Lemma 1 Suppose that

$$
y(x)=\left(1-\frac{x}{x_{0}}\right)^{-\alpha}
$$

Then

$$
y_{n}=(-1)^{n}\binom{-\alpha}{n} x_{0}^{-n}=\frac{n^{\alpha-1}}{\Gamma(\alpha)} x_{0}^{-n}+\mathcal{O}\left(n^{\alpha-2} x_{0}^{-n}\right)
$$

Remark: This asymptotic expansion is uniform in α if α varies in a compact region of the complex plane.

Algebraic Singularities

Singularity Analysis

Lemma 2 (Flajolet and Odlyzko) Let

$$
y(x)=\sum_{n \geq 0} y_{n} x^{n}
$$

be analytic in a region

$$
\begin{aligned}
& \Delta=\left\{x:|x|<x_{0}+\eta,\left|\arg \left(x-x_{0}\right)\right|>\delta\right\}, \\
& x_{0}>0, \eta>0,0<\delta<\pi / 2 .
\end{aligned}
$$

Suppose that for some real α

$$
y(x)=\mathcal{O}\left(\left(1-x / x_{0}\right)^{-\alpha}\right) \quad(x \in \Delta)
$$

Then

$$
y_{n}=\mathcal{O}\left(x_{0}^{-n} n^{\alpha-1}\right)
$$

Algebraic Singularities

Δ-region

Algebraic Singularities

Singularity Analysis

Suppose that

$$
\begin{aligned}
A(x) & =g(x)-h(x) \sqrt{1-\frac{x}{\rho}} \\
& =a_{0}+a_{1}\left(1-\frac{x}{\rho}\right)^{\frac{1}{2}}+a_{2}\left(1-\frac{x}{\rho}\right)+O\left(\left(1-\frac{x}{\rho}\right)^{\frac{3}{2}}\right)
\end{aligned}
$$

for $x \in \Delta$ then

$$
a_{n}=\left[x^{n}\right] A(x)=\frac{h(\rho)}{2 \sqrt{\pi}} \rho^{-n} n^{-\frac{3}{2}}\left(1+O\left(\frac{1}{n}\right)\right)
$$

Algebraic Singularities

Singularity Analysis

Suppose that

$$
\begin{aligned}
A(x, u) & =g(x, u)-h(x, u) \sqrt{1-\frac{x}{\rho(u)}} \\
& =a_{0}(u)+a_{1}(u)\left(1-\frac{x}{\rho(u)}\right)^{\frac{1}{2}}+a_{2}(u)\left(1-\frac{x}{\rho(u)}\right)+O\left(\left(1-\frac{x}{\rho(u)}\right)^{\frac{3}{2}}\right)
\end{aligned}
$$

for $x \in \Delta=\Delta(u)$ then

$$
a_{n}(u)=\left[x^{n}\right] A(x, u)=\frac{h(\rho(u), u)}{2 \sqrt{\pi}} \rho(u)^{-n} n^{-\frac{3}{2}}\left(1+O\left(\frac{1}{n}\right)\right) .
$$

Probabilistic Model

$a_{n} \ldots$ number of objects of size n
$a_{n, k} \ldots$ number of objects of size n, where a certain parameter has value k

If all objects of size n are considered to be equally likely then the parameter can be considered as a random variable X_{n} with distribution

$$
\mathbb{P}\left\{X_{n}=k\right\}=\frac{a_{n k}}{a_{n}} .
$$

Probabilistic Model

Generating functions and the probability generating function

$$
\begin{aligned}
A(x, u) & =\sum_{n, k} a_{n, k} x^{n} u^{k} \\
\Longrightarrow \quad \mathbb{E} u^{X_{n}} & =\sum_{k \geq 0} \mathbb{P}\left\{X_{n}=k\right\} u^{k} \\
& =\sum_{k \geq 0} \frac{a_{n k}}{a_{n}} u^{k} \\
& =\frac{\left[x^{n}\right] A(x, u)}{\left[x^{n}\right] A(x, 1)}=\frac{a_{n}(u)}{a_{n}}
\end{aligned}
$$

Probabilistic Model

Generating functions and the probability generating function

$$
\begin{aligned}
A(x, u) & =g(x, u)-h(x, u) \sqrt{1-\frac{x}{\rho(u)}} \\
\Longrightarrow \mathbb{E} u^{X_{n}} & =\frac{\left[x^{n}\right] A(x, u)}{\left[x^{n}\right] A(x, 1)} \\
& =\frac{\frac{h(\rho(u), u)}{2 \sqrt{\pi}} \rho(u)^{-n} n^{-\frac{3}{2}}\left(1+O\left(\frac{1}{n}\right)\right)}{\frac{h(\rho(1), 1)}{2 \sqrt{\pi}} \rho(1)^{-n} n^{-\frac{3}{2}}\left(1+O\left(\frac{1}{n}\right)\right)} \\
& =\frac{h(\rho(u), u)}{h(\rho(1), 1)}\left(\frac{\rho(1)}{\rho(u)}\right)^{n}\left(1+O\left(\frac{1}{n}\right)\right) .
\end{aligned}
$$

Probabilistic Model

Quasi-Power Theorem (Hwang)

Let X_{n} be a sequence of random variables with the property that

$$
\mathbb{E} u^{X_{n}}=A(u) \cdot B(u)^{\lambda_{n}} \cdot\left(1+O\left(\frac{1}{\phi_{n}}\right)\right)
$$

holds uniformly in a complex neighborhood of $u=1, \lambda_{n} \rightarrow \infty$ and $\phi_{n} \rightarrow \infty$, and $A(u)$ and $B(u)$ are analytic functions in a neighborhood of $u=1$ with $A(1)=B(1)=1$. Set

$$
\begin{gathered}
\mu=B^{\prime}(1) \quad \text { and } \quad \sigma^{2}=B^{\prime \prime}(1)+B^{\prime}(1)-B^{\prime}(1)^{2} . \\
\Longrightarrow \\
\mathbb{E} X_{n}=\mu \lambda_{n}+O\left(1+\lambda_{n} / \phi_{n}\right), \quad \mathbb{V} X_{n}=\sigma^{2} \lambda_{n}+O\left(1+\lambda_{n} / \phi_{n}\right),
\end{gathered}
$$

$$
\frac{X_{n}-\mathbb{E} X_{n}}{\sqrt{\mathbb{V} X_{n}}} \xrightarrow{\mathrm{~d}} N(0,1) \quad\left(\sigma^{2} \neq 0\right) .
$$

Probabilistic Model

Sums of independent random variables
$X_{n}=\xi_{1}+\xi_{2}+\cdots+\xi_{n}$, where ξ_{j} are i.i.d.

$$
\begin{gathered}
B(u)=\mathbb{E} u^{\xi_{j}} \\
\Longrightarrow \mathbb{E} u^{X_{n}}=\mathbb{E} u^{\xi_{1}+\xi_{2}+\cdots+\xi_{n}} \\
=\mathbb{E} u^{\xi_{1}} \cdot \mathbb{E} u^{\xi_{2}} \cdots \mathbb{E} u^{\xi_{n}} \\
\\
=B(u)^{n}
\end{gathered}
$$

Probabilistic Model

COMBINATORIAL CENTRAL LIMIT THEOREM

Suppose that a sequence of random variables X_{n} has distribution

$$
\mathbb{P}\left\{X_{n}=k\right\}=\frac{a_{n k}}{a_{n}}
$$

where the generating function $A(x, u)=\sum_{n, k} a_{n, k} x^{n} u^{k}$ satisfies a functional equation of the form $A(x, u)=\Phi(x, u, A(x, u))$, where $\Phi(x, u, a)$ has a power series expansion at ($0,0,0$) with non-negative coefficients and $\Phi_{a a}(x, u, a) \neq 0$.

Let $x_{0}>0, a_{0}>0$ (inside the region of convergence) satisfy the system of equations:

$$
a_{0}=\Phi\left(x_{0}, 1, a_{0}\right), \quad 1=\Phi_{a}\left(x_{0}, 1, a_{0}\right) .
$$

Probabilistic Model

COMBINATORIAL CENTRAL LIMIT THEOREM (cont.)

 Set$$
\begin{aligned}
\mu= & \frac{\Phi_{u}}{x_{0} \Phi_{x}} \\
\sigma^{2}= & \mu+\mu^{2}+\frac{1}{x_{0} \Phi_{x}^{3} \Phi_{a a}}\left(\Phi_{x}^{2}\left(\Phi_{a a} \Phi_{u u}-\Phi_{a u}^{2}\right)-2 \Phi_{x} \Phi_{u}\left(\Phi_{a a} \Phi_{x u}-\Phi_{a x} \Phi_{a u}\right)\right. \\
& \left.+\Phi_{u}^{2}\left(\Phi_{a a} \Phi_{x x}-\Phi_{a x}^{2}\right)\right)
\end{aligned}
$$

(where all partial derivatives are evaluated at the point $\left(x_{0}, a_{0}, 1\right)$)

Then we have

$$
\mathbb{E} X_{n}=\mu n+O(1) \quad \text { and } \quad \operatorname{Var} X_{n}=\sigma^{2} n+O(1)
$$

and if $\sigma^{2}>0$ then

$$
\frac{X_{n}-\mathbb{E} X_{n}}{\sqrt{\operatorname{Var} X_{n}}} \rightarrow N(0,1)
$$

Random Trees

Leaves in Catalan trees

The number of leaves in Catalan trees of size n satisfy a central limit theorem with mean $\sim \frac{1}{2} n$ and variance $\sim \frac{1}{8} n$

Leaves in Cayley trees

The number of leaves in Cayley trees of size n satisfy a central limit theorem with mean $\sim \frac{1}{e} n$ and variance $\sim\left(\frac{1}{e^{2}}+\frac{1}{e}\right) n$

Random Trees

Nodes of out-degree d in Catalan trees

The number $X_{n}^{(d)}$ of nodes with out-degree d in Catalan trees of size n satisfy a central limit theorem with mean $\sim \mu_{d} n$ and variance $\sim \sigma_{d}^{2} n$, where

$$
\mu_{d}=\frac{1}{2^{d+1}} \quad \text { and } \quad \sigma_{d}^{2}=\frac{1}{2^{d+1}}+\frac{1}{2^{2(d+1)}}-\frac{(d-1)^{2}}{2^{2 d+3}}
$$

Random Trees

Nodes of out-degree d in Cayley trees

The number of nodes with out-degree d in Cayley trees of size n satisfy a central limit theorem with mean $\sim \mu_{d} n$ and variance $\sim \sigma_{d}^{2} n$, where

$$
\mu_{d}=\frac{1}{e d!} \quad \text { and } \quad \sigma_{d}^{2}=\frac{1+(d-1)^{2}}{e^{2}(d!)^{2}}+\frac{1}{e d!}
$$

Random Trees

Degree distribution for Catalan trees

$p_{n, d} \ldots$ probability that a random node in a random Catalan tree of size n has out-degree d :

$$
\begin{gathered}
\mathbb{E} X_{n}^{(d)}=n p_{n, d} \\
p_{d}:=\lim _{n \rightarrow \infty} p_{n, d}=\frac{1}{2^{d+1}}=\mu_{d}
\end{gathered}
$$

Probability generating function of the out-degree distribution:

$$
p(w):=\sum_{d \geq 0} p_{d} w^{d}=\frac{1}{2-w}
$$

Random Trees

Degree distribution for Cayley trees

$p_{n, d} \ldots$ probability that a random node in a random Cayley tree of size n has out-degree d :

$$
\begin{gathered}
\mathbb{E} X_{n}^{(d)}=n p_{n, d} \\
p_{d}:=\lim _{n \rightarrow \infty} p_{n, d}=\frac{1}{e d!}=\mu_{d}
\end{gathered}
$$

Probability generating function of the out-degree distribution:

$$
p(w):=\sum_{d \geq 1} p_{d} w^{d}=e^{w-1}
$$

Contents 2

I. COMBINATORIAL RANDOM TREES

- Maximum degree
- Unrooted trees

II. PATTERN COUNTS IN RANDOM TREES

- Pattern in trees
- Systems of functional equations

Random Trees

Maximum degree

$\Delta_{n} \ldots$ maximum out-degree
$X_{n}^{(>d)}=X_{n}^{(d+1)}+X_{n}^{(d+2)}+\cdots \ldots$ number of nodes of out-degree $>d$.

$$
\Delta_{n}>d \Longleftrightarrow X_{n}^{(>d)}>0
$$

Random Trees

First moment method

X ... a discrete random variable on non-negative integers.

$$
\Longrightarrow \mathbb{P}\{X>0\} \leq \min \{1, \mathbb{E} X\}
$$

Proof

$$
\mathbb{E} X=\sum_{k \geq 0} k \mathbb{P}\{X=k\} \geq \sum_{k \geq 1} \mathbb{P}\{X=k\}=\mathbb{P}\{X>0\}
$$

Random Trees

Second moment method

X is a non-negative random variable with finite second moment.

$$
\Longrightarrow \mathbb{P}\{X>0\} \geq \frac{(\mathbb{E} X)^{2}}{\mathbb{E}\left(X^{2}\right)}
$$

Proof

$$
\mathbb{E} X=\mathbb{E}\left(X \cdot 1_{[X>0]}\right) \leq \sqrt{\mathbb{E}\left(X^{2}\right)} \sqrt{\mathbb{E}\left(1_{[X>0]}^{2}\right)}=\sqrt{\mathbb{E}\left(X^{2}\right)} \sqrt{\mathbb{P}\{X>0\}}
$$

Random Trees

Tail estimates and expected value

- $\mathbb{P}\left\{\Delta_{n}>d\right\} \leq \min \left\{1, \mathbb{E} X_{n}^{(>d)}\right\}$
- $\mathbb{P}\left\{\Delta_{n}>d\right\} \geq \frac{\left(\mathbb{E} X_{n}^{(>d)}\right)^{2}}{\mathbb{E}\left(X_{n}^{(>d)}\right)^{2}}$

$$
\Longrightarrow \mathbb{P}\left\{\Delta_{n} \leq d\right\} \leq 1-\frac{\left(\mathbb{E} X_{n}^{(>d)}\right)^{2}}{\mathbb{E}\left(X_{n}^{(>d)}\right)^{2}}=\frac{\operatorname{Var} X_{n}^{(>d)}}{\mathbb{E}\left(X_{n}^{(>d)}\right)^{2}}
$$

- $\mathbb{E} \Delta_{n}=\sum_{d \geq 0} \mathbb{P}\left\{\Delta_{n}>d\right\}$

Random Trees

Maximum degree of Catalan trees

$$
\left.\begin{array}{c}
\mathbb{E} X_{n}^{(>d)} \sim \frac{n}{2^{d+1}}, \quad \operatorname{Var}\left(X_{n}^{(>d)}\right)^{2} \sim n\left(\frac{1}{2^{d+1}}+\frac{1}{2^{2(d+1)}}-\frac{(d-1)^{2}}{2^{2 d+3}}\right) \\
\Longrightarrow \mathbb{P}\left\{\Delta_{n}>d\right\}
\end{array}\right) \leq \min \left\{1, \frac{n}{\left.2^{d+1}\right\}}, ~ \begin{array}{rl}
\mathbb{P}\left\{\Delta_{n} \leq d\right\} & =1-\mathbb{P}\left\{\Delta_{n}>d\right\} \\
& \leq \frac{1}{n} \frac{1}{2^{d+1}}+\frac{1}{2^{2(d+1)}}-\frac{(d-1)^{2}}{2^{2 d+3}} \\
\frac{1}{2^{2(d+1)}} & 2^{d+1} \\
n
\end{array}\right]
$$

Random Trees

Maximum degree of Catalan trees (Carr, Goh and Schmutz)

$$
\mathbb{P}\left\{\Delta_{n} \leq k\right\}=\exp \left(-2^{-\left(k-\log _{2} n+1\right)}\right)+o(1)
$$

$$
\mathbb{E} \Delta_{n}=\log _{2} n+O(1)
$$

Random Trees

Unrooted trees

$p_{n} \ldots$ number of different embeddings of unrooted trees of size n in the plane, $P(x)=\sum_{n \geq 1} p_{n} x^{n}$:

$$
P(x)=x \sum_{k \geq 0} Z_{\mathfrak{C}_{k}}\left(G(x), G\left(x^{2}\right), \ldots, G\left(x^{k}\right)\right)-\frac{1}{2} G(x)^{2}+\frac{1}{2} G\left(x^{2}\right)
$$

where $G(x)=x /(1-G(x))=(1-\sqrt{1-4 x}) / 2$ and

$$
Z_{\mathfrak{C}_{k}}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\frac{1}{k} \sum_{d \mid k} \varphi(d) x_{d}^{k / d}
$$

is the cycle index of the cyclic group \mathfrak{C}_{k} of k elements

Random Trees

Unrooted trees

Cancellation of the $\sqrt{1-4 x}$-term:

$$
\begin{gathered}
G(x)=\frac{1-\sqrt{1-4 x}}{2}
\end{gathered} \begin{gathered}
\Longrightarrow P(x)=a_{0}+a_{2}(1-4 x)+\frac{1}{6}(1-4 x)^{3 / 2}+\cdots \\
\Longrightarrow p_{n}=\frac{1}{8 \sqrt{\pi}} 4^{n} n^{-5 / 2}\left(1+O\left(n^{-1}\right)\right)
\end{gathered}
$$

Random Trees

Degree distribution of unrooted trees

$X_{n}^{(d)} \ldots$ number of nodes of degree d in trees of size n

$$
\begin{aligned}
P(x, u) & =x \sum_{k \neq d} Z_{\mathfrak{C}_{k}}\left(G(x, u), G\left(x^{2}, u^{2}\right), \ldots, G\left(x^{k}, u^{k}\right)\right) \\
& +x u Z_{\mathfrak{C}_{d}}\left(G(x, u), G\left(x^{2}, u^{2}\right), \ldots, G\left(x^{d}, u^{d}\right)\right) \\
& -\frac{1}{2} G(x, u)^{2}+\frac{1}{2} G\left(x^{2}, u^{2}\right),
\end{aligned}
$$

where

$$
G(x, u)=\frac{x}{1-G(x, u)}+x(u-1) G(x, u)^{d-1}
$$

Random Trees

Degree distribution of unrooted trees

Cancellation of the $\sqrt{1-4 x}$-term:

$$
\begin{aligned}
G(x, u) & =g(x, u)-h(x, u) \sqrt{1-\frac{x}{\rho(u)}} \\
\Longrightarrow \quad P(x, u) & =a_{0}(u)+a_{2}(u)\left(1-\frac{x}{\rho(u)}\right)+a_{3}(u)\left(1-\frac{x}{\rho(u)}\right)^{\frac{3}{2}}+\cdots
\end{aligned}
$$

$\Longrightarrow X_{n}^{(d)}$ satisfies a central limit theorem with mean $\sim \mu_{d-1} n$ and variance $\sim \sigma_{d-1}^{2} n$, where

$$
\mu_{d}=\frac{1}{2^{d+1}} \quad \text { and } \quad \sigma_{d}^{2}=\frac{1}{2^{d+1}}+\frac{1}{2^{2(d+1)}}-\frac{(d-1)^{2}}{2^{2 d+3}}
$$

Random Trees

Degree distribution of unrooted trees

$p_{n, d} \ldots$ probability that a random node in a tree of size n has degree d :

$$
\begin{gathered}
\mathbb{E} X_{n}^{(d)}=n p_{n, d} \\
p_{d}=\lim _{n \rightarrow \infty} p_{n, d}=\mu_{d-1}=\frac{1}{2^{d}}
\end{gathered}
$$

Probability generating function of the degree distribution:

$$
p(w)=\sum_{d \geq 1} p_{d} w^{d}=\frac{w}{2-w}
$$

Random Trees

Maximum degree for unrooted trees

$\Delta_{n} \ldots$ maximum degree of unrooted trees of size n

$$
\Delta_{n} \text { is concentrated at } \log _{2} n
$$

$$
\mathbb{E} \Delta_{n}=\log _{2} n+O(1)
$$

Random Trees

Unrooted labelled trees

$t_{n}=r_{n} / n=n^{n-2} \ldots$ number of different unrooted labelled trees of
size $n: T(x)=\sum_{n \geq 1} t_{n} \frac{x^{n}}{n!}$:

$$
T(x)=x e^{R(x)}-\frac{1}{2} R(x)^{2}=R(x)-\frac{1}{2} R(x)^{2}
$$

where $R(x)=x e^{R(x)}$ (note that $T^{\prime}(x)=R(x) / x$)

Cancellation of the $\sqrt{1-e x}$-term:
$R(x)=g(x)-h(x) \sqrt{1-e x} \quad \Longrightarrow \quad T(x)=a_{0}+a_{2}(1-4 x)+\frac{1}{6}(1-e x)^{3 / 2}+\cdots$

Random Trees

Degree distribution of unrooted labelled trees

$X_{n}^{(d)} \ldots$ number of nodes of degree d in trees of size n

$$
T(x, u)=x e^{R(x, u)}+x(u-1) \frac{R(x, u)^{d}}{d!}-\frac{1}{2} R(x, u)^{2}
$$

where

$$
R(x, u)=x e^{R(x, u)}+x(u-1) \frac{R(x, u)^{d-1}}{(d-1)!}
$$

Random Trees

Degree distribution of unrooted labelled trees

Cancellation of the $\sqrt{1-4 x}$-term:

$$
\begin{aligned}
R(x, u) & =g(x, u)-h(x, u) \sqrt{1-\frac{x}{\rho(u)}} \\
\Longrightarrow \quad T(x, u) & =a_{0}(u)+a_{2}(u)\left(1-\frac{x}{\rho(u)}\right)+a_{3}(u)\left(1-\frac{x}{\rho(u)}\right)^{\frac{3}{2}}+\cdots
\end{aligned}
$$

$\Longrightarrow X_{n}^{(d)}$ satisfies a central limit theorem with mean $\sim \mu_{d-1} n$ and variance $\sim \sigma_{d-1}^{2} n$, where

$$
\mu_{d}=\frac{1}{e d!} \quad \text { and } \quad \sigma_{d}^{2}=\frac{1+(d-1)^{2}}{e^{2}(d!)^{2}}+\frac{1}{e d!}
$$

(Note again that $\frac{\partial}{\partial x} T(x, u)=R(x, u) / x$)

Random Trees

Star pattern

$$
d=5
$$

$X_{n}^{(d)}=$ number of nodes of degree d in trees of size n

$$
=\text { number of star pattern with } d \text { rays in trees of size } n
$$

Patterns in Trees

Pattern \mathcal{M}

Patterns in Trees

Pattern \mathcal{M}

Patterns in Trees

Occurrence of a pattern \mathcal{M}

Patterns in Trees

Occurrence of a pattern \mathcal{M}

Patterns in Trees

Occurrence of a pattern \mathcal{M}

Patterns in Trees

Occurrence of a pattern \mathcal{M}

Patterns in Trees

Occurrence of a pattern $\mathcal{M}{ }^{\cdots}$ in a labelled tree

Patterns in Trees

Cayley's formula
$r_{n}=n^{n-1} \ldots$ number of rooted labelled trees with n nodes
$t_{n}=n^{n-2} \ldots$ number of labelled trees with n nodes

Generating functions

$R(x)=\sum_{n \geq 1} r_{n} \frac{x^{n}}{n!}:$

$$
R(x)=x e^{R(x)}
$$

$T(x)=\sum_{n \geq 1} t_{n} \frac{x^{n}}{n!}:$

$$
T(x)=R(x)-\frac{1}{2} R(x)^{2}
$$

(Note that $x T^{\prime}(x)=R(x)$ so that we also have $T(x)=\int R(x) / x d x$.)

Patterns in Trees

Theorem

$\mathcal{M} \ldots$ be a given finite tree.
$X_{n} \ldots$ number of occurrences of of \mathcal{M} in a labelled tree of size n
$\Longrightarrow X_{n}$ satisfies a central limit theorem with

$$
\mathbb{E} X_{n} \sim \mu n \quad \text { and } \quad \mathbb{V} X_{n} \sim \sigma^{2} n
$$

$\mu>0$ and $\sigma^{2} \geq 0$ depend on the pattern \mathcal{M} and can be computed explicitly and algorithmically and can be represented as polynomials (with rational coefficients) in $1 / e$.

Patterns in Trees

Partition of trees in classes $(\square \ldots$ out-degree different from 2)

Patterns in Trees

Recurrences $A_{3}=x A_{0} A_{2}+x A_{0} A_{3}+x A_{0} A_{4}$

$$
A_{j}(x)=\sum_{n, k} a_{j ; n} \frac{x^{n}}{n!}
$$

$a_{j ; n} \quad$... number of trees of size n in class j

Patterns in Trees

Recurrences $A_{3}=x u A_{0} A_{2}+x u A_{0} A_{3}+x u A_{0} A_{4}$

$$
A_{j}(x, u)=\sum_{n, k} a_{j ; n, k} \frac{x^{n}}{n!} u^{k}
$$

$a_{j ; n, k} \quad \ldots$ number of trees of size n in class j with k occurrences of \mathcal{M}

Patterns in Trees

$$
\begin{aligned}
A_{0} & =A_{0}(x, u)=x+x \sum_{i=0}^{10} A_{i}+x \sum_{n=3}^{\infty} \frac{1}{n!}\left(\sum_{i=0}^{10} A_{i}\right)^{n}, \\
A_{1} & =A_{1}(x, u)=\frac{1}{2} x A_{0}^{2} \\
A_{2} & =A_{2}(x, u)=x A_{0} A_{1}, \\
A_{3} & =A_{3}(x, u)=x A_{0}\left(A_{2}+A_{3}+A_{4}\right) u \\
A_{4} & =A_{4}(x, u)=x A_{0}\left(A_{5}+A_{6}+A_{7}+A_{8}+A_{9}+A_{10}\right) u^{2}, \\
A_{5} & =A_{5}(x, u)=\frac{1}{2} x A_{1}^{2} u \\
A_{6} & =A_{6}(x, u)=x A_{1}\left(A_{2}+A_{3}+A_{4}\right) u^{2}, \\
A_{7} & =A_{7}(x, u)=x A_{1}\left(A_{5}+A_{6}+A_{7}+A_{8}+A_{9}+A_{10}\right) u^{3}, \\
A_{8} & =A_{8}(x, u)=\frac{1}{2} x\left(A_{2}+A_{3}+A_{4}\right)^{2} u^{3}, \\
A_{9} & =A_{9}(x, u)=x\left(A_{2}+A_{3}+A_{4}\right)\left(A_{5}+A_{6}+A_{7}+A_{8}+A_{9}+A_{10}\right) u^{4}, \\
A_{10} & =A_{10}(x, u)=\frac{1}{2} x\left(A_{5}+A_{6}+A_{7}+A_{8}+A_{9}+A_{10}\right)^{2} u^{5}
\end{aligned}
$$

Systems of Functional equations

COMBINATORIAL CENTRAL LIMIT THEOREM II

Suppose that a sequence of random variables X_{n} has distribution

$$
\mathbb{P}\left[X_{n}=k\right]=\frac{a_{n k}}{a_{n}}
$$

where the generating function $A(x, u)=\sum_{n, k} a_{n, k} x^{n} u^{k}$ is given by

$$
A(x, u)=\Psi\left(x, u, A_{1}(x, u), \ldots, A_{r}(x, u)\right)
$$

for an analytic function Ψ and the generating functions

$$
A_{1}(x, u)=\sum_{n, k} a_{1 ; n, k} u^{k} x^{n}, \ldots, A_{r}(x, u)=\sum_{n, k} a_{r ; n, k} u^{k} x^{n}
$$

satisfy a system of non-linear equations

$$
A_{j}(x, u)=\Phi_{j}\left(x, u, A_{1}(x, u), \ldots, A_{r}(x, u)\right), \quad(1 \leq j \leq r)
$$

Systems of Functional equations

COMBINATORIAL CENTRAL LIMIT THEOREM II (cont.)

Suppose that at least one of the functions $\Phi_{j}\left(x, u, a_{1}, \ldots, a_{r}\right)$ is nonlinear in a_{1}, \ldots, a_{r} and they all have a power series expansion at $(0,0,0)$ with non-negative coefficients.

Let $x_{0}>0, \mathbf{a}_{0}=\left(a_{0,0}, \ldots, a_{r, 0}\right)>0$ (inside the region of convergence) satisfy the system of equations: $\left(\Phi=\left(\Phi_{1}, \ldots, \Phi_{r}\right)\right)$

$$
\mathbf{a}_{0}=\Phi\left(x_{0}, 1, \mathbf{a}_{0}\right), \quad 0=\operatorname{det}\left(\mathbb{I}-\mathbf{\Phi}_{\mathbf{a}}\left(x_{0}, 1, \mathbf{a}_{0}\right)\right.
$$

such that the spectral radius of the Jacobian Φ_{a} equals 1. Suppose further, that the dependency graph of the system
$\mathbf{a}=\Phi(x, u, \mathbf{a})$ is strongly connected (which means that no subsystem can be solved before the whole system).

Systems of Functional equations

COMBINATORIAL CENTRAL LIMIT THEOREM II (cont.)

Then there exists analytic function $g_{j}(x, u), h_{j}(x, u)$, and $\rho(u)$ (that is independent of j) such that locally

$$
A_{j}(x, u)=g_{j}(x, u)-h_{j}(x, u) \sqrt{1-\frac{x}{\rho(u)}}
$$

and consequently (for some $g(x, u), h(x, u)$)

$$
A(x, u)=g(x, u)-h(x, u) \sqrt{1-\frac{x}{\rho(u)}} .
$$

Consequently the random variable X_{n} satisfies a central limit theorem with

$$
\mathbb{E} X_{n} \sim n \mu \quad \text { and } \quad \operatorname{Var} X_{n} \sim n \sigma^{2}
$$

where μ and σ^{2} can be computed.

Patterns in Trees

Final Result for $\mathcal{M}=$

Central limit theorem with

$$
\mu=\frac{5}{8 e^{3}}=0.0311169177 \ldots
$$

and

$$
\sigma^{2}=\frac{20 e^{3}+72 e^{2}+84 e-175}{32 e^{6}}=0.0764585401 \ldots
$$

Contents 3

III. CONTINUOUS LIMITING OBJECTS

- Weak Convergence
- The Depth-First-Search of Rooted Trees
- The Continuum Random Tree
- The Profile of Galton-Watson trees
- Scaling Limit of Series-Parallel Graphs

Asymptotics on Random Discrete Objects

Levels of complexity:

1. Asymptotic enumeration
2. Distribution of (shape) parameters
3. Asymptotic shape ($=$ continuous limiting object)

Weak Convergence

$X_{n}, X \ldots$ (real) random variables:

$$
\begin{aligned}
X_{n} \xrightarrow{\mathrm{~d}} X & \Longleftrightarrow \\
& \lim _{n \rightarrow \infty} \mathbb{P}\left\{X_{n} \leq x\right\}=\mathbb{P}\{X \leq x\} \\
& \text { for all points of continuity } \\
& \text { of } F_{X}(x)=\mathbb{P}\{X \leq x\} \\
\Longleftrightarrow & \lim _{n \rightarrow \infty} \mathbb{E} G\left(X_{n}\right)=\mathbb{E} G(X)
\end{aligned}
$$

for all bounded continuous
functionals $G: \mathbb{R} \rightarrow \mathbb{R}$

$$
\Longleftrightarrow \quad \lim _{n \rightarrow \infty} \mathbb{E} e^{i t X_{n}}=\mathbb{E} e^{i t X}
$$

for all real t
(Levy's criterion)

Weak Convergence

Polish space: $(S, d) \ldots$ complete, separable, metric space

Examples: $\mathbb{R}, \mathbb{R}^{k}, C[0,1], \mathcal{M}_{0}(X)$ (probability measures on X)
S-valued random variable: $X: \Omega \rightarrow S \ldots$ measurable function
$S=\mathbb{R}$: random variable
$S=\mathbb{R}^{k}: k$-dimensional random vector
$S=C[0,1]:$ stochastic process $(X(t), 0 \leq t \leq 1)$
$S=\mathcal{M}_{0}(X)$: random measure

Weak Convergence

Definition

$X_{n}, X: \Omega \rightarrow S \ldots S$-valued random variables $((S, d) \ldots$ Polish space)

$$
X_{n} \xrightarrow{\mathrm{~d}} X \quad: \Longleftrightarrow \lim _{n \rightarrow \infty} \mathbb{E} G\left(X_{n}\right)=\mathbb{E} G(X)
$$

for all bounded continuous functionals $G: S \rightarrow \mathbb{R}$

Weak Convergence

Stochastic process: random function

Weak Convergence

Stochastic process

$X_{n}: \Omega \rightarrow C[0,1]$ sequence of stochastic processes, $X: \Omega \rightarrow C[0,1]$

- $X_{n} \xrightarrow{\mathrm{~d}} X \quad F\left(X_{n}\right) \xrightarrow{\mathrm{d}} F(X)$ for all continuous $F: S \rightarrow S^{\prime}$.
- $X_{n} \xrightarrow{\mathrm{~d}} X \quad X_{n}\left(t_{0}\right) \xrightarrow{\mathrm{d}} X\left(t_{0}\right)$ for all fixed $t_{0} \in[0,1]$.
- $X_{n} \xrightarrow{\mathrm{~d}} X \Longrightarrow \quad\left(X_{n}\left(t_{1}\right), \ldots, X_{n}\left(t_{k}\right)\right) \xrightarrow{\mathrm{d}}\left(X\left(t_{1}\right), \ldots, X\left(t_{k}\right)\right)$ for all $k \geq 1$ and all fixed $t_{1}, \ldots, t_{k} \in[0,1]$.

The converse statement is not necessarily true, one needs tightness.

Weak Convergence

Stochastic process

$X_{n}: \Omega \rightarrow C[0,1]$ sequence of stochastic processes, $X: \Omega \rightarrow C[0,1]$

1. $\left(X_{n}\left(t_{1}\right), \ldots, X_{n}\left(t_{k}\right)\right) \xrightarrow{\mathrm{d}}\left(X\left(t_{1}\right), \ldots, X\left(t_{k}\right)\right)$
for all $k \geq 1$ and all fixed $t_{1}, \ldots, t_{k} \in[0,1]$
2. $\mathbb{E}\left(\left|X_{n}(0)\right|^{\beta}\right) \leq C$ for some constant $C>0$ and an exponent $\beta>0$
3. $\mathbb{E}\left(\left|X_{n}(t)-X_{n}(s)\right|^{\beta}\right) \leq C|t-s|^{\alpha}$ for all $s, t \in[0,1]$ for some constant $C>0$ and exponents $\alpha>1$ and $\beta>0$.

Then

$$
\left(X_{n}(t), 0 \leq t \leq 1\right) \xrightarrow{\mathrm{d}}(X(t), 0 \leq t \leq 1) .
$$

Depth-First-Search

Rooted trees and discrete excursions

Bijection between

$$
\text { Catalan trees } \longleftrightarrow \text { Dyck paths }
$$

random trees of size $n \quad \longleftrightarrow$ random Dyck paths of length $2 n$

Depth-First-Search

Brownian excursion $(e(t), 0 \leq t \leq 1)$

Rescaled Brownian motion between 2 zeros.

Random function in $C[0,1]$.

Depth-First-Search

Kaigh's Theorem

($\left.X_{n}(t), 0 \leq t \leq 2 n\right) \ldots$ random Dyck path of length $2 n$.

$$
\Longrightarrow \quad\left(\frac{1}{\sqrt{2 n}} X_{n}(2 n t), 0 \leq t \leq 1\right) \xrightarrow{\mathrm{d}}(2 e(t), 0 \leq t \leq 1) .
$$

Remark. This theorem also holds for more general random walks with independent increments conditioned to be an excursion.

Real Trees

$T \ldots$ tree, $\mathcal{T} \ldots$ embedding of T into the plane \mathbb{R}^{2}
$\Longrightarrow \quad \mathcal{T}$ is a metric space (and a real tree in the following sense):

Definition

A metric space (\mathcal{T}, d) is a real tree if the following two properties hold for every $x, y \in \mathcal{T}$.

1. There is a unique isometric map $h_{x, y}:[0, d(x, y)] \rightarrow \mathcal{T}$ such that $h_{x, y}(0)=x$ and $h_{x, y}(d(x, y))=y$.
2. If q is a continuous injective map from [0, 1] into \mathcal{T} with $q(0)=x$ and $q(1)=y$ then

$$
q([0,1])=h_{x, y}([0, d(x, y)]) .
$$

A rooted real tree $(\mathcal{T}, d$) is a real tree with a distinguished vertex $r=r(\mathcal{T})$ called the root.

Real Trees

Two real trees $\left(\mathcal{T}_{1}, d_{1}\right)$, $\left(\mathcal{T}_{2}, d_{2}\right)$ are equivalent if there is a rootpreserving isometry that maps \mathcal{T}_{1} onto \mathcal{T}_{2}.
$\mathbb{T} \ldots$ set of all equivalence classes of rooted compact real trees.

Gromov-Hausdorff Distance $d_{\mathrm{GH}}\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)$ of two real trees $\mathcal{T}_{1}, \mathcal{T}_{2}$ is the infimum of the Hausdorff distance of all isometric embeddings of $\mathcal{T}_{1}, \mathcal{T}_{2}$ into the same metric space.

Hausdorff distance: $\delta_{\text {Haus }}(X, Y)=\max \left\{\sup _{x \in X} \inf _{y \in Y} d(x, y), \sup _{y \in Y} \inf _{x \in X} d(x, y)\right\}$
Theorem
The metric space $\left(\mathbb{T}, d_{\mathrm{GH}}\right)$ is a Polish space.

Real Trees

$$
g:[0,1] \rightarrow[0, \infty) \ldots \text { continuous, } \geq 0, g(0)=g(1)=0
$$

$$
d_{g}(s, t)=g(s)+g(t)-2 \inf _{\min \{s, t\} \leq u \leq \max \{s, t\}} g(u)
$$

$$
s \sim t \quad \Longleftrightarrow \quad d_{g}(s, t)=0 \quad \mathcal{T}_{g}=[0,1] / \sim
$$

$\Longrightarrow \quad\left(\mathcal{T}_{g}, d_{g}\right) \quad$ is a compact real tree.

Real Trees

Construction of a real tree \mathcal{T}_{g}

γ

The mapping $C[0,1] \rightarrow \mathbb{T}, g \mapsto \mathcal{T}_{g}$ is continuous.

Real Trees

Catalan trees as real trees

T_{n}
$X_{n}=X_{T_{n}}$
$\mathcal{T}_{X_{n}}$

Real Trees

Continuum random tree $\mathcal{T}_{2 e}$ (with Brownian excursion $e(t)$)

Real Trees

Theorem

($\left.X_{n}(t), 0 \leq t \leq 2 n\right) \ldots$ random Dyck paths of length $2 n$ or the depth-first-search process of Catalan trees of size n.

$$
\Longrightarrow \quad \frac{1}{\sqrt{2 n}} \mathcal{T}_{X_{n}} \xrightarrow{\mathrm{~d}} \mathcal{T}_{2 e}
$$

In other words...

Scaled Catalan trees (interpreted as "real trees") converge weakly to the continuum random tree.

Galton-Watson Trees

Galton-Watson branching process
$\xi \ldots$ offspring distribution, $\varphi_{k}=\mathbb{P}\{\xi=k\}, \varphi_{0}>0$

Galton-Watson Trees

Galton-Watson branching process
$\xi \ldots$ offspring distribution, $\varphi_{k}=\mathbb{P}\{\xi=k\}, \varphi_{0}>0$

Galton-Watson Trees

Galton-Watson branching process
$\xi \ldots$ offspring distribution, $\varphi_{k}=\mathbb{P}\{\xi=k\}, \varphi_{0}>0$

Galton-Watson Trees

Galton-Watson branching process
$\xi \ldots$ offspring distribution, $\varphi_{k}=\mathbb{P}\{\xi=k\}, \varphi_{0}>0$

Galton-Watson Trees

Galton-Watson branching process
$\xi \ldots$ offspring distribution, $\varphi_{k}=\mathbb{P}\{\xi=k\}, \varphi_{0}>0$

Galton-Watson Trees

Galton-Watson branching process
$\xi \ldots$ offspring distribution, $\varphi_{k}=\mathbb{P}\{\xi=k\}, \varphi_{0}>0$

Galton-Watson Trees

Galton-Watson branching process. $\left(Z_{k}\right)_{k \geq 0}$
$Z_{0}=1$, and for $k \geq 1$

$$
Z_{k}=\sum_{j=1}^{Z_{k-1}} \xi_{j}^{(k)}
$$

where the $\left(\xi_{j}^{(k)}\right)_{k, j}$ are iid random variables distributed as ξ.
$Z_{k} \ldots$ number of nodes in k-th generation
$Z=Z_{0}+Z_{1}+Z_{2}+\cdots \ldots$ total progeny

Galton-Watson Trees

Generating functions

$$
\begin{gathered}
y_{n}=\mathbb{P}\{Z=n\}, \quad y(x)=\sum_{n \geq 1} y_{n} x^{n} \\
\Phi(w)=\mathbb{E} w^{\xi}=\sum_{k \geq 0} \varphi_{k} w^{k} \\
\Longrightarrow \quad y(x)=x \Phi(y(x))
\end{gathered}
$$

Conditioned Galton-Watson tree
GW-branching process conditioned on the total progeny $Z=n$.

Galton-Watson Trees

Example. $\mathbb{P}\{\xi=k\}=2^{-k-1}, \Phi(w)=1 /(2-w)$
$\Longrightarrow \quad$ all trees of size n have the same probability
$\Longrightarrow \quad$ conditioned GW-tree of size n is the same model as the Catalan tree model (with the uniform distribution on trees of size n)

Example. $\Phi(w)=\frac{1}{2}(1+w)^{2}$: binary trees with n internal nodes.
Example. $\Phi(w)=\frac{1}{3}\left(1+w+w^{2}\right)$: Motzkin trees

Example. $\Phi(w)=e^{w-1}$: Cayley trees

Galton-Watson Trees

General assumption: $\mathbb{E} \xi=1,0<\operatorname{Var} \xi=\sigma^{2}<\infty$
Theorem (Aldous)
$X_{n}(t) \ldots$ depth-first-search of conditioned GW-trees of size n

$$
\Longrightarrow \quad\left(\frac{\sigma}{2 \sqrt{n}} X_{n}(2 n t), 0 \leq t \leq 1\right) \xrightarrow{\mathrm{d}}(e(t), 0 \leq t \leq 1) .
$$

Corollary

$$
\frac{\sigma}{\sqrt{n}} \mathcal{T}_{X_{n}} \xrightarrow{\mathrm{~d}} \mathcal{T}_{2 e}
$$

Galton-Watson Trees

Corollary $H_{n} \ldots$ height of conditioned GW-trees of size n :

$$
\Longrightarrow \frac{1}{\sqrt{n}} H_{n} \xrightarrow{\mathrm{~d}} \frac{2}{\sigma} \max _{0 \leq t \leq 1} e(t)
$$

Remark. Distribution function of $\max _{0 \leq t \leq 1} e(t)$:

$$
\mathbb{P}\left\{\max _{0 \leq t \leq 1} e(t) \leq x\right\}=1-2 \sum_{k=1}^{\infty}\left(4 x^{2} k^{2}-1\right) e^{-2 x^{2} k^{2}}
$$

Galton-Watson Trees

Profile

$L_{T}(k) \ldots$ number of nodes at distance k from the root
$\left(L_{T}(k)\right)_{k \geq 0} \ldots$ profile of T
$\left(L_{T}(s), s \geq 0\right) \ldots$ linearly interpolated profile of T

Galton-Watson Trees

Value distribution

$$
\mu_{T}=\frac{1}{|T|} \sum_{k \geq 0} L_{T}(k) \delta_{k}
$$

$\delta_{x} \ldots \delta$-distribution concentrated at x

Galton-Watson Trees

Occupation measure: random measure on \mathbb{R}

$$
\mu(A)=\int_{0}^{1} \mathbf{1}_{A}(e(t) d t
$$

measure how long $e(t)$ stays in set A

Galton-Watson Trees

Theorem (Aldous)
($\left.L_{n}(k), k \geq 0\right) \ldots$ random profile of conditioned GW-trees of size n

$$
\Longrightarrow \frac{1}{n} \sum_{k \geq 0} L_{n}(k) \delta_{(\sigma / 2) k / \sqrt{n}} \xrightarrow{\mathrm{~d}} \mu
$$

Galton-Watson Trees

Local time of the Brownian excursion: random density of μ

$$
l(s)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int_{0}^{1} 1_{[s, s+\varepsilon]}(e(t)) d t
$$

Theorem (D.+Gittenberger)
($\left.L_{n}(s), s \geq 0\right) \ldots$ random profile of conditioned GW-trees of size n

$$
\Longrightarrow\left(\frac{1}{\sqrt{n}} L_{n}(s \sqrt{n}), s \geq 0\right) \xrightarrow{\mathrm{d}}\left(\frac{\sigma}{2} l\left(\frac{\sigma}{2} s\right), s \geq 0\right)
$$

Proof with asymptotics on generating functions (very involved)!!!

Galton-Watson Trees

Width

$$
W=\max _{k \geq 0} L(k)=\max _{t \geq 0} L(t)
$$

maximal number of nodes in a level.

Corollary

$$
\frac{1}{\sqrt{n}} W_{n} \xrightarrow{\mathrm{~d}} \frac{\sigma}{2} \sup _{0 \leq t \leq 1} l(t)
$$

Remark. $\sup _{t \geq 0} l(t)=2 \sup _{0 \leq t \leq 1} e(t)$ (in distribution)

Series-Parallel Graphs

Connected Series-Parallel Graphs

Series-parallel extension of a tree (or no K_{4} as a minor)

Series-extension:

Parallel-extension:

Scaling Limit of Series Parallel Graphs

A typcial series-parallel graph of size n has $\approx c_{1} n 2$-connected components that form a tree

The 2-connected components do not scale in distribution, their expected size is finite and they behave almost) independent and identically distributed.

So, series-parallel graphs look tree-like.

Scaling Limit of Series Parallel Graphs

Theorem (Panagiotou, Stufler, and Weller)
$C_{n} \ldots$ connected, vertex labelled series-parallel graphs with n vertices

$$
\frac{c}{\sqrt{n}} C_{n} \xrightarrow{\mathrm{~d}} \mathcal{T}_{2 e}
$$

for some constant $c>0$.

Remark. The same result holds for so-called subcricital graph classes like cacti-graphs, outerplanar graphs etc. In all these graph classes the diameter is of oder \sqrt{n}.

Contents 4

IV. SUBGRAPH COUNTS IN SERIES PARALLEL GRAPHS

- Sub-critical graph classes
- Asymptotic counting of sub-critical graph classes
- Series parallel graphs are sub-critical
- Subgraph counting
- A combinatorial CLT for infinite systems

Block-Decomposition

Block-Decomposition

Block-Decomposition

Block-Decomposition

block: 2-connected component (= maximal 2-connected subgraph)

Block-stable graph class $\mathcal{G}: \mathcal{G}$ contains the one-edge graph and $G \in \mathcal{G}$ if and only if all blocks of G are contained in \mathcal{G}.

Equivalently, the 2-connected graphs of \mathcal{G} and the one-edge graph generate all graphs of \mathcal{G}.

Examples: Planar graphs, series-parallel graphs, minor-closed graph classes etc.
$B(x) \ldots$ GF for 2-connected graphs in \mathcal{G}
$C(x) \ldots$ GF for connected graphs in \mathcal{G}
[We will consider here only connected graphs]

Generating Functions for Block-Decomposition

Vertex-rooted graphs: one vertext (the root) is distinguished (and usually discounted, that is, it gets no label)

Generating function: (in den labelled case)

$$
G^{\bullet}(x)=G^{\prime}(x)
$$

Generating Functions for Block-Decomposition

(in the labelled case)

$$
C^{\bullet}(x)=e^{B^{\bullet}\left(x C^{\bullet}(x)\right)}
$$

Generating Functions for Block-Decomposition

(in the labelled case)

$$
\frac{\partial C(x, y)}{\partial x}=\exp \left(\frac{\partial B}{\partial x}\left(x \frac{\partial C(x, y)}{\partial x}, y\right)\right)
$$

Labelled Trees

Rooted Trees:

$$
B^{\bullet}(x)=x
$$

$R(x)=x C^{\bullet}(x) \ldots$ generating function of rooted, labelled trees

$$
C^{\bullet}(x)=e^{B^{\bullet}\left(x C^{\bullet}(x)\right)} \Longrightarrow R(x)=x e^{R(x)}
$$

Remark: $T(x)$... GF for unrooted labelled trees:

$$
T(x)^{\prime}=\frac{1}{x} R(x) \quad \Longrightarrow \quad T(x)=R(x)-\frac{1}{2} R(x)^{2}
$$

Outerplanar Graphs

All vertices are on the infinite face.

Outerplanar Graphs

Generating functions

$$
\begin{aligned}
& C^{\bullet}(x)=e^{B^{\bullet}\left(x C^{\bullet}(x)\right)} \\
& B^{\bullet}(x)=\frac{1+5 x-\sqrt{1-6 x+x^{2}}}{8}
\end{aligned}
$$

2-connected outerplanar graphs $=$ dissections of the n-gon

Series-Parallel Graphs

Series-parallel extension of a tree (if we restict to connected graphs)

Series-extension:

Parallel-extension:

Series-Parallel Graphs

Equivalent Definitions

- Ex $\left(K_{4}\right)$
- tree-width ≤ 2
- nested ear decomposition (if connected)

Series-Parallel Graphs

Generating functions

$$
\begin{aligned}
& \frac{\partial C(x, y)}{\partial x}=\exp \left(\frac{\partial B}{\partial x}\left(x \frac{\partial C(x, y)}{\partial x}, y\right)\right) \\
& \frac{\partial B(x, y)}{\partial y}=\frac{x^{2}}{2} e^{S(x, y)} \\
& S(x, y)=\frac{x(P(x, y)+y)^{2}}{1-x(P(x, y)+y)} \\
& P(x, y)=\left(e^{S(x, y)}-1-S(x, y)\right)+y\left(e^{S(x, y)}-1\right)
\end{aligned}
$$

Sub-critical Graphs

Repetition: Functional equations

Suppose that $A(x)=\Phi(x, A(x))$, where $\Phi(x, a)$ has a power series expansion at (0,0) with non-negative coefficients and $\Phi_{a a}(x, a) \neq 0$.

Let $x_{0}>0, a_{0}>0$ (inside the region of convergence of Φ) satisfy the system of equations:

$$
a_{0}=\Phi\left(x_{0}, a_{0}\right), \quad 1=\Phi_{a}\left(x_{0}, a_{0}\right) .
$$

Then there exists analytic function $g(x), h(x)$ such that locally

$$
A(x)=g(x)-h(x) \sqrt{1-\frac{x}{x_{0}}} .
$$

Remark. If there is no x_{0}, a_{0} inside the region of convergence of Φ then the singular behaviour of Φ determines the singular behaviour of $A(x)!!!$

Sub-critical Graphs

$$
\begin{aligned}
A(x)=x C^{\bullet}(x), \Phi(x, a) & =x e^{B^{\bullet}(a)}, x C^{\bullet}(x)=x e^{B^{\bullet}\left(x C^{\bullet}(x)\right)} \\
& \Longrightarrow A(x)=\Phi(x, A(x))
\end{aligned}
$$

A block-stable graph class is called sub-critical if the system (note that $\left.B^{\bullet}(x)=B^{\prime}(x)\right)$

$$
a_{0}=x_{0} e^{B^{\prime}\left(a_{0}\right)}, \quad 1=x_{0} e^{B^{\prime}\left(a_{0}\right)} B^{\prime \prime}\left(a_{0}\right)
$$

has positive solutions x_{0}, a_{0} inside the region of convergence of $\Phi(x, a)=$ $x e^{B^{\bullet}(a)}$. In particular we get a squareroot singularity for $C^{\bullet}(x)$.

This means that " a_{0} is smaller than the radius of convergence η of B^{\bullet} ".

Eliminating x_{0} leads to $a_{0} B^{\prime \prime}\left(a_{0}\right)=1$ or that

$$
\eta B^{\prime \prime}(\eta)>1
$$

where η is the radius of convergence of $B(x)$.

Sub-critical Graphs

- Trees are sub-critical
- Outerplanar graphs are sub-critical
- Series-parallel graphs are sub-critical

Sub-critical Graphs

Lemma. Suppose that $B(x)$ has radius of convergence $\eta \in(0, \infty]$.

$$
\lim _{x \rightarrow \eta} B^{\prime \prime}(x)=\infty \quad \Longrightarrow \quad \text { sub-critical. }
$$

Corollary If $B^{\bullet}(x)=B^{\prime}(x)$ is entire or has a squareroot singularity:

$$
B^{\bullet}(x)=g(x)-h(x) \sqrt{1-\frac{x}{\eta}},
$$

then we are in the sub-critical case.

This applies for outerplanar and series-parallel graphs.

Sub-critical Graphs

What does "sub-critical" mean?
In a sub-critical graph class the average size of the 2-connected components is bounded.
\Longrightarrow This leads to a tree like structure.
\Longrightarrow The law of large numbers should apply so that we can expect universal behaviors that are independent of the the precise structure of 2-connected components.

Sub-critical Graphs

Universal properties

- Asymptotic enumeration:

Labelled case:

$$
c_{n} \sim c n^{-5 / 2} \rho^{-n} n!
$$

Unlabelled case:

$$
c_{n} \sim c n^{-5 / 2} \rho^{-n}
$$

($c>0, \rho \ldots$ radius of convergence of $C(z)$)
[D.+Fusy+Kang+Kraus+Rue 2011]

Sub-critical Graphs

- Asymptotic enumeration:

$$
\begin{gathered}
C^{\bullet}(x)=e^{B^{\bullet}\left(x C^{\bullet}(x)\right.} \\
\longrightarrow \quad x C^{\bullet}(x)=x C^{\prime}(x)=g(x)-h(x) \sqrt{1-\frac{x}{\rho}} \\
\longrightarrow \quad\left[x^{n}\right] x C^{\prime}(x)=\frac{n c_{n}}{n!} \sim c n^{-3 / 2} \rho^{-n} \\
\longrightarrow \quad c_{n} \sim c n^{-5 / 2} \rho^{-n} n!.
\end{gathered}
$$

Additive Parameters in Subcritical Graph Classes

Theorem 1 [D. + Fusy + Kang + Kraus + Rue $]$
$X_{n} \ldots$ number of edges / number of blocks / number of cut-vertices / number of vertices of degree k

$$
\Longrightarrow \frac{X_{n}-\mu n}{\sqrt{n}} \rightarrow N\left(0, \sigma^{2}\right)
$$

with $\mu>0$ and $\sigma^{2} \geq 0$.

Remark. There is an easy to check "combinatorial condition" that ensures $\sigma^{2}>0$.

Additive Parameters in Subcritical Graph Classes

Proof Methods:

Refined versions of the functional equation $C^{\bullet}(x)=e^{B^{\bullet}\left(x C^{\bullet}(x)\right)}$, + singularity analysis (always squareroot singularity)
E.g: number of edges:

$$
C^{\bullet}(x, y)=e^{B^{\bullet}\left(x C^{\bullet}(x, y), y\right)}
$$

or number of 2-connected components:

$$
\begin{gathered}
C^{\bullet}(x, y)=e^{y B^{\bullet}\left(x C^{\bullet}(x, y)\right)} \\
\longrightarrow \quad C^{\bullet}(x, y)=g(x, y)-h(x, y) \sqrt{1-\frac{x}{\rho(y)}} \\
\longrightarrow \quad\left[x^{n}\right] C^{\bullet}(x, y) \sim c(y) \rho(y)^{-n} n^{-3 / 2}
\end{gathered}
$$

+ application of Quasi-Power-Theorem (by Hwang).

Graph Limits

$\mathcal{T}_{e} \ldots$ continuum random tree $(C R T)$
Theorem [Panagiotou + Stufler + Weller]
\mathcal{C}... sub-critical graph class of connected graphs

$$
\Longrightarrow \quad \frac{c}{\sqrt{n}} \mathcal{C}_{n} \rightarrow \mathcal{T}_{e}
$$

with respect to the Gromov-Hausdorff metric, where $c>0$ is a constant.

Corollary. The diameter D_{n} as well as a typical distance in a subcritical graph is or order \sqrt{n}.

Subgraph Counting

Theorem [D. + Ramos + Rue]
\mathcal{G}... sub-critial graph class, $H \in \mathcal{G}$ fixed.
$X_{n}^{(H)} \ldots$ number of occurences of H as a subgraph in graphs of size n

$$
\Longrightarrow \frac{X_{n}^{(H)}-\mu n}{\sqrt{n}} \rightarrow N\left(0, \sigma^{2}\right)
$$

with $\mu>0$ and $\sigma^{2} \geq 0$.

Remark. The proof is easy if H is 2-connected $=$ additive parameter!!!

Subgraph Counting

$$
H=P_{2} \ldots \text { path of length } 2
$$

$B_{j}^{\bullet}\left(w_{1}, w_{2}, w_{3}, \ldots ; u\right) \ldots$ generating function of blocks in \mathcal{G}, where the root has degree j, where w_{i} counts the number of non-root vertices of degree i, and where u counts the number of occurrences of $H=P_{2}$.
$C_{j}^{\bullet}(x, u) \ldots$ generating function of connected rooted graphs in \mathcal{G}, where the root vertex has degree j, where x counts the number of (all) vertices and u the number of occurrences of $H=P_{2}$.

Subgraph Counting

System of infinite number of equations

$$
\begin{aligned}
C_{j}^{\bullet}(x, u)= & \sum_{s \geq 0} \frac{1}{s!} \sum_{j_{1}+\cdots+j_{s}=j} u^{\sum_{i_{1}<i_{2}} j_{i_{1}} j_{i_{2}}} \\
& \times \prod_{i=1}^{s} B_{j_{i}}^{\bullet}\left(x \sum_{\ell_{1} \geq 0} u^{\ell_{1}} C_{\ell_{1}}^{\bullet}(x, u), x \sum_{\ell_{2} \geq 0} u^{2 \ell_{2}} C_{\ell_{2}}^{\bullet}(x, u), \ldots ; u\right), \\
& (j \geq 0)
\end{aligned}
$$

$$
\begin{aligned}
C_{j}^{\bullet}(x, 1) & =\sum_{s \geq 0} \frac{1}{s!} \sum_{j_{1}+\cdots+j_{s}=j} \prod_{i=1}^{s} B_{j_{i}}^{\bullet}\left(x C^{\bullet}(x), x C^{\bullet}(x), \ldots ; 1\right) \\
C^{\bullet}(x) & =\sum_{\ell \geq 0} C_{\ell}^{\bullet}(x, 1)
\end{aligned}
$$

Subgraph Counting

System of infinite number of equations

Suppose that $\mathbf{A}(z)=\left(A_{j}(z)\right)_{j \geq 0}=\boldsymbol{\Phi}(z, \mathbf{A}(z))$ is a positive, non-linear, infinite and strongly connected system such that the Jacobian $\Phi_{\mathbf{a}}(z, \mathbf{a})$ is compact for $z>0$ and $\mathbf{a}>0$.

Let $z_{0}>0, \mathbf{a}_{0}=\left(a_{j, 0}\right)_{j \geq 0}$ (inside the region of convergence) satisfy the system of equations:

$$
\mathbf{a}_{0}=\boldsymbol{\Phi}\left(z_{0}, \mathbf{a}_{0}\right), \quad r\left(\Phi_{\mathbf{a}}\left(z_{0}, \mathbf{a}_{0}\right)\right)=1
$$

where $r(\cdot)$ denotes the spectral radius.

Then there exists analytic function $g_{j}(z), h_{j}(z) \neq 0$ such that locally

$$
A_{j}(z)=g_{j}(z)-h_{j}(z) \sqrt{1-\frac{z}{z_{0}}}
$$

with $g_{j}\left(z_{0}\right)=a_{j, 0}$ and $h_{j}\left(z_{0}\right)>0$.

Infinite Systems of Functional Equations

COMBINATORIAL CENTRAL LIMIT THEOREM III

Suppose that $\mathbf{A}(z, u)=\left(A_{j}(z, u)\right)_{j \geq 0}=\Phi(z, u, \mathbf{A}(z, u))$ is a positive, non-linear, infinite and strongly connected system such that the Jacobian $\Phi_{\mathbf{a}}(z, 1, \mathbf{a})$ is compact for $z>0$ and $\mathbf{a}>0$.

Let $z_{0}>0, \mathbf{a}_{0}=\left(a_{j, 0}\right)_{j \geq 0}$ (inside the region of convergence) satisfy the system of equations:

$$
\mathbf{a}_{0}=\Phi\left(z_{0}, 1, \mathbf{a}_{0}\right), \quad r\left(\Phi_{\mathbf{a}}\left(z_{0}, 1, \mathbf{a}_{0}\right)\right)=1
$$

where $r(\cdot)$ denotes the spectral radius.
Then there exists analytic function $g_{j}(z, u), h_{j}(z, u) \neq 0$ and $\rho(u)$ such that locally

$$
A_{j}(z, u)=g_{j}(z, u)-h_{j}(z, u) \sqrt{1-\frac{z}{\rho(u)}}
$$

with $g_{j}\left(z_{0}, 1\right)=a_{j, 0}, h_{j}\left(z_{0}, 1\right)>0$, and $\rho(1)=z_{0}$.

Infinite Systems of Functional Equations

COMBINATORIAL CENTRAL LIMIT THEOREM III (cont.)

Suppose that $A(z, u)=\Psi\left(z, u,\left(A_{j}(z, u)\right)_{j \geq 0}\right)$, where Ψ is analytic with non-negative coefficients.

$$
\begin{gathered}
\Longrightarrow \quad A(z, u)=g(z, u)-h(z, u) \sqrt{1-\frac{z}{\rho(u)}} \\
\longrightarrow \quad\left[z^{n}\right] A(z, u) \sim C(u) \rho(u)^{-n} n^{-3 / 2}
\end{gathered}
$$

Consider the random variable X_{n} giben by

$$
\mathbb{P}\left\{X_{n}=k\right\}=\frac{a_{n k}}{a_{n}}
$$

where $a_{n, k}=\left[z^{n} u^{k}\right] A(z, u)$ and $a_{n}=\left[z^{n}\right] A(z, 1)$. Then X_{n} satisfies a central limit theorem with $\mathbb{E} X_{n} \sim \mu n$ and $\operatorname{Vrmar} X_{n} \sim \sigma^{2} n$.

Subgraph Counting

Special case of infinite system

$$
A_{j}=\Phi_{j}\left(z, u, A_{0}, A_{1}, \ldots\right), \quad j \geq 0
$$

with

$$
\Phi_{j}\left(z, \mathbf{1}, A_{0}, A_{1}, \ldots\right)=\widetilde{\Phi}_{j}\left(z, A_{0}+A_{1}+\cdots\right)
$$

so that $A=A_{0}+A_{1}+\cdots$ satisfies

$$
A=\widetilde{\Phi}(z, A)
$$

where

$$
\begin{gathered}
\tilde{\Phi}(z, A)=\sum_{j \geq 0} \tilde{\Phi}_{j}(z, A)=\sum_{j \geq 0} \Phi\left(z, 1, A_{0}, A_{1}, \ldots\right) \\
\Longrightarrow \frac{\partial \Phi_{j}}{\partial a_{i}}(z, 1, \mathbf{a}) \text { does not depend on } i \\
\\
\Longrightarrow \Phi_{\mathbf{a}}(z, 1, \mathbf{a}) \text { is compact }
\end{gathered}
$$

Thank You!

