RANDOM TREES – AN ANALYTIC APPROACH

Michael Drmota

Institute of Discrete Mathematics and Geometry

TU Wien

A 1040 Wien, Austria

michael.drmota@tuwien.ac.at

http://www.dmg.tuwien.ac.at/drmota/

Munich Summer School, Discrete Random Systems, Schliersee, Sept. 28–30, 2022

I. COMBINATORIAL RANDOM TREES

II. PATTERN COUNTS IN RANDOM TREES

III. CONTINUOUS LIMITING OBJECTS

IV. SUBGRAPH COUNTS IN SERIES PARALLEL GRAPHS

References

Books

Michael Drmota,

Random Trees, Springer, Wien-New York, 2009.

Analytic Combinatorics, Cambridge University Press, 2009. (http://algo.inria.fr/flajolet/Publications/books.html)

Asymptotic analysis of random objects

Levels of complexity:

- 1. Asymptotic enumeration
- 2. Distribution of (shape) parameters
- 3. Asymptotic shape (= continuous limiting object)

Contents 1

I. COMBINATORIAL RANDOM TREES

- Catalan trees and Cayley trees
- Functional equations and algebraic singularities
- A combinatorial central limit theorem
- The degree distribution of random trees

Catalan trees

rooted, ordered (or plane) tree

Catalan trees. g_n = number of Catalan trees of size n; $G(x) = \sum_{n \ge 1} g_n x^n$

$$G(x) = x(1 + G(x) + G(x)^{2} + \dots) = \frac{x}{1 - G(x)}$$

$$G(x) = \frac{1 - \sqrt{1 - 4x}}{2} \quad \Longrightarrow \quad \left[g_n = \frac{1}{n} \binom{2n - 2}{n - 1} \sim \frac{4^{n - 1}}{\sqrt{\pi} \cdot n^{3/2}}\right]$$

(Catalan numbers)

Catalan trees with singularity analysis (to be discussed later)

$$G(x) = \frac{1 - \sqrt{1 - 4x}}{2} = \frac{1}{2} - \frac{1}{2}\sqrt{1 - 4x}$$
$$\implies g_n \sim -\frac{1}{2} \cdot \frac{4^n n^{-3/2}}{\Gamma(-\frac{1}{2})} = \frac{4^{n-1}}{\sqrt{\pi} \cdot n^{3/2}}$$

Number of leaves of Catalan trees

 $g_{n,k}$ = number of Catalan trees of size n with k leaves.

$$G(x,u) = xu + x(G(x,u) + G(x,u)^2 + \dots = xu + \frac{xG(x,u)}{1 - G(x,u)}$$

$$\implies G(x,u) = \frac{1}{2} \left(1 + (u-1)x - \sqrt{1 - 2(u+1)x + (u-1)^2 x^2} \right)$$

$$\implies g_{n,k} = \frac{1}{n} \binom{n}{k} \binom{n-1}{k} \sim \frac{4^n}{\pi n^2} \exp\left(-\frac{(k-\frac{n}{2})^2}{\frac{1}{4}n}\right) \quad \text{for } k \approx \frac{n}{2}$$

Number of leaves of Catalan trees

$$G(x,u) = g(x,u) - h(x,u)\sqrt{1 - \frac{x}{\rho(u)}}$$

for certain analytic function g(x, u), h(x, u), and $\rho(u)$.

$$\implies g_{n,k} = ???$$

Cayley Trees:

labelled, rooted, unordered (or non-plane) tree

Cayley Trees. r_n =number of Cayley trees of size n; $\left| R(x) = \sum_{n \ge 1} r_n \frac{x^n}{n!} \right|$

$$R(x) = x\left(1 + R(x) + \frac{R(x)^2}{2!} + \frac{R(x)^3}{3!} + \cdots\right) = x e^{R(x)}$$

 \implies $r_n = n^{n-1}$... by Lagrange inversion

Number of leaves of Cayley trees

 $r_{n,k}$ = number of Cayley trees of size n with k leaves.

$$R(x,u) = xu + x\left(R(x,u) + \frac{R(x,u)^2}{2!} + \frac{R(x,u)^3}{3!} + \cdots\right) = xe^{R(x,u)} + x(u-1)$$

$$\implies R(x,u) = ???$$

Catalan trees: G(x, u) = xu + xG(x, u)/(1 - G(x, u))

Cayley trees: $R(x, u) = xe^{R(x, u)} + x(u - 1)$

Recursive structure leads to functional equation for gen. func.:

$$A(x,u) = \Phi(x,u,A(x,u))$$

Linear functional equation: $\Phi(x, u, a) = \Phi_0(x, u) + a\Phi_1(x, u)$

$$\implies A(x,u) = \frac{\Phi_0(x,u)}{1 - \Phi_1(x,u)}$$

Usually these kinds of generating functions are easy to handle, since they are explicit.

Non-linear functional equations: $\Phi_{aa}(x, u, a) \neq 0$.

Suppose that $A(x,u) = \Phi(x,u,A(x,u))$, where $\Phi(x,u,a)$ has a power series expansion at (0,0,0) with non-negative coefficients and $\Phi_{aa}(x,u,a) \neq 0$.

Let $x_0 > 0$, $a_0 > 0$ (inside the region of convergence) satisfy the system of equations:

$$a_0 = \Phi(x_0, 1, a_0), \quad 1 = \Phi_a(x_0, 1, a_0).$$

Then there exists analytic function g(x, u), h(x, u), and $\rho(u)$ such that locally

$$A(x,u) = g(x,u) - h(x,u)\sqrt{1 - \frac{x}{\rho(u)}}$$

Idea of the Proof.

Set $F(x, u, a) = \Phi(x, u, a) - a$. Then we have $F(x_0, 1, a_0) = 0$ $F_a(x_0, 1, a_0) = 0$ $F_x(x_0, 1, a_0) \neq 0$ $F_{aa}(x_0, 1, a_0) \neq 0$.

Weierstrass preparation theorem implies that there exist analytic functions H(x, u, a), p(x, u), q(x, u) with $H(x_0, 1, a_0) \neq 0$, $p(x_0, 1) = q(x_0, 1) = 0$ and

$$F(x, u, a) = H(x, u, a) \left((a - a_0)^2 + p(x, u)(a - a_0) + q(x, u) \right).$$

$$F(x, u, a) = 0 \quad \iff \quad (a - a_0)^2 + p(x, u)(a - a_0) + q(x, u) = 0$$

Consequently

$$A(x,u) = a_0 - \frac{p(x,u)}{2} \pm \sqrt{\frac{p(x,u)^2}{4}} - q(x,u)$$
$$= \left[g(x,u) - h(x,u) \sqrt{1 - \frac{x}{\rho(u)}} \right],$$

where we write

$$\frac{p(x,u)^2}{4} - q(x,u) = K(x,u)(x - \rho(u))$$

which is again granted by the Weierstrass preparation theorem and we set

$$g(x,u) = a_0 - \frac{p(x,u)}{2}$$
 and $h(x,u) = \sqrt{-K(x,u)\rho(u)}.$

Catalan Trees $G(x, u) = xu + \frac{xG(x, u)}{1 - G(x, u)}$

$$\implies G(x,u) = g(x,u) - h(x,u) \sqrt{1 - \frac{x}{\rho(u)}}$$

$$G(x,1) = G(x) = g(x,1) - h(x,1)\sqrt{1 - \frac{x}{\rho(1)}}, \quad \rho(1) = \frac{1}{4}$$

Cayley Trees $T(x, u) = xe^{T(x, u)} + x(u - 1)$

$$\implies T(x,u) = g(x,u) - h(x,u) \sqrt{1 - \frac{x}{\rho(u)}}$$

$$T(x,1) = T(x) = g(x,1) - h(x,1)\sqrt{1 - \frac{x}{\rho(1)}}, \quad \rho(1) = \frac{1}{e}$$

Singular expansion

$$A(x) = g(x) - h(x)\sqrt{1 - \frac{x}{\rho}}$$

= $\left(g_0 + g_1(x - \rho) + g_2(x - \rho)^2 + \cdots\right)$
+ $\left(h_0 + h_1(x - \rho) + h_2(x - \rho)^2 + \cdots\right)\sqrt{1 - \frac{x}{\rho}}$
= $a_0 + a_1\left(1 - \frac{x}{\rho}\right)^{\frac{1}{2}} + a_2\left(1 - \frac{x}{\rho}\right)^{\frac{2}{2}} + a_3\left(1 - \frac{x}{\rho}\right)^{\frac{3}{2}} + \cdots$
= $a_0 + a_1\left(1 - \frac{x}{\rho}\right)^{\frac{1}{2}} + a_2\left(1 - \frac{x}{\rho}\right) + O\left(\left(1 - \frac{x}{\rho}\right)^{\frac{3}{2}}\right)$

Singular expansion

$$A(x) = \boxed{g(x) - h(x)\sqrt{1 - \frac{x}{\rho}}}$$

= $\left(g_0 + g_1(x - \rho) + g_2(x - \rho)^2 + \cdots\right)$
+ $\left(h_0 + h_1(x - \rho) + h_2(x - \rho)^2 + \cdots\right)\sqrt{1 - \frac{x}{\rho}}$
= $a_0 + a_1 \left(1 - \frac{x}{\rho}\right)^{\frac{1}{2}} + a_2 \left(1 - \frac{x}{\rho}\right)^{\frac{2}{2}} + a_3 \left(1 - \frac{x}{\rho}\right)^{\frac{3}{2}} + \cdots$
= $a_0 + a_1 \left[\left(1 - \frac{x}{\rho}\right)^{\frac{1}{2}}\right] + a_2 \left(1 - \frac{x}{\rho}\right) + O\left(\left(1 - \frac{x}{\rho}\right)^{\frac{3}{2}}\right)$

Singularity Analysis

Lemma 1 Suppose that

$$y(x) = \left(1 - \frac{x}{x_0}\right)^{-\alpha}$$

Then

$$y_{n} = (-1)^{n} {\binom{-\alpha}{n}} x_{0}^{-n} = \frac{n^{\alpha-1}}{\Gamma(\alpha)} x_{0}^{-n} + \mathcal{O}\left(n^{\alpha-2} x_{0}^{-n}\right).$$

Remark: This asymptotic expansion is uniform in α if α varies in a compact region of the complex plane.

Singularity Analysis

Lemma 2 (Flajolet and Odlyzko) Let

$$y(x) = \sum_{n \ge 0} y_n x^n$$

be analytic in a region

$$\Delta = \{x : |x| < x_0 + \eta, |\arg(x - x_0)| > \delta\},\$$

 $x_0 > 0, \ \eta > 0, \ 0 < \delta < \pi/2.$

Suppose that for some real α

$$y(x) = \mathcal{O}\left((1 - x/x_0)^{-\alpha}\right) \qquad (x \in \Delta).$$

Then

$$y_n = \mathcal{O}\left(x_0^{-n}n^{\alpha-1}\right).$$

 Δ -region

Singularity Analysis

Suppose that

$$A(x) = g(x) - h(x)\sqrt{1 - \frac{x}{\rho}}$$

= $a_0 + a_1 \left(1 - \frac{x}{\rho}\right)^{\frac{1}{2}} + a_2 \left(1 - \frac{x}{\rho}\right) + O\left(\left(1 - \frac{x}{\rho}\right)^{\frac{3}{2}}\right)$

for $x \in \Delta$ then

$$a_n = [x^n] A(x) = \frac{h(\rho)}{2\sqrt{\pi}} \rho^{-n} n^{-\frac{3}{2}} \left(1 + O\left(\frac{1}{n}\right) \right)$$

Singularity Analysis

Suppose that

$$A(x,u) = g(x,u) - h(x,u)\sqrt{1 - \frac{x}{\rho(u)}}$$

= $a_0(u) + a_1(u)\left(1 - \frac{x}{\rho(u)}\right)^{\frac{1}{2}} + a_2(u)\left(1 - \frac{x}{\rho(u)}\right) + O\left(\left(1 - \frac{x}{\rho(u)}\right)^{\frac{3}{2}}\right)$

for $x \in \Delta = \Delta(u)$ then

$$a_n(u) = [x^n] A(x, u) = \frac{h(\rho(u), u)}{2\sqrt{\pi}} \rho(u)^{-n} n^{-\frac{3}{2}} \left(1 + O\left(\frac{1}{n}\right)\right)$$

 $a_n \dots$ number of objects of size n

 $a_{n,k}$... number of objects of size n, where a certain **parameter** has value k

If all objects of size n are considered to be **equally likely** then the parameter can be considered as a random variable X_n with distribution

$$\mathbb{P}\{X_n = k\} = \frac{a_{nk}}{a_n}$$

Generating functions and the probability generating function

$$A(x,u) = \sum_{n,k} a_{n,k} x^n u^k$$

$$\implies \mathbb{E} u^{X_n} = \sum_{k \ge 0} \mathbb{P}\{X_n = k\} u^k$$
$$= \sum_{k \ge 0} \frac{a_{nk}}{a_n} u^k$$
$$= \frac{[x^n] A(x, u)}{[x^n] A(x, 1)} = \frac{a_n(u)}{a_n}$$

Generating functions and the probability generating function

$$A(x,u) = g(x,u) - h(x,u)\sqrt{1 - \frac{x}{\rho(u)}}$$

$$\implies \mathbb{E} u^{X_n} = \frac{[x^n] A(x, u)}{[x^n] A(x, 1)}$$
$$= \frac{\frac{h(\rho(u), u)}{2\sqrt{\pi}} \rho(u)^{-n} n^{-\frac{3}{2}} \left(1 + O\left(\frac{1}{n}\right)\right)}{\frac{h(\rho(1), 1)}{2\sqrt{\pi}} \rho(1)^{-n} n^{-\frac{3}{2}} \left(1 + O\left(\frac{1}{n}\right)\right)}$$
$$= \frac{h(\rho(u), u)}{h(\rho(1), 1)} \left(\frac{\rho(1)}{\rho(u)}\right)^n \left(1 + O\left(\frac{1}{n}\right)\right)$$

Quasi-Power Theorem (Hwang)

Let X_n be a sequence of random variables with the property that

$$\mathbb{E} u^{X_n} = A(u) \cdot B(u)^{\lambda_n} \cdot \left(1 + O\left(\frac{1}{\phi_n}\right)\right)$$

holds uniformly in a complex neighborhood of u = 1, $\lambda_n \to \infty$ and $\phi_n \to \infty$, and A(u) and B(u) are analytic functions in a neighborhood of u = 1 with A(1) = B(1) = 1. Set

$$\mu = B'(1)$$
 and $\sigma^2 = B''(1) + B'(1) - B'(1)^2$.

$$\implies \mathbb{E} X_n = \mu \lambda_n + O\left(1 + \lambda_n / \phi_n\right), \quad \mathbb{V} X_n = \sigma^2 \lambda_n + O\left(1 + \lambda_n / \phi_n\right),$$
$$\frac{X_n - \mathbb{E} X_n}{\sqrt{\mathbb{V} X_n}} \xrightarrow{\mathsf{d}} N(0, 1) \quad (\sigma^2 \neq 0).$$

Sums of independent random variables

 $X_n = \xi_1 + \xi_2 + \dots + \xi_n$, where ξ_j are i.i.d. $B(u) = \mathbb{E} u^{\xi_j}$

$$\implies \mathbb{E} u^{X_n} = \mathbb{E} u^{\xi_1 + \xi_2 + \dots + \xi_n}$$
$$= \mathbb{E} u^{\xi_1} \cdot \mathbb{E} u^{\xi_2} \cdots \mathbb{E} u^{\xi_n}$$
$$= B(u)^n.$$

COMBINATORIAL CENTRAL LIMIT THEOREM

Suppose that a sequence of random variables X_n has distribution

$$\mathbb{P}\{X_n = k\} = \frac{a_{nk}}{a_n},$$

where the generating function $A(x,u) = \sum_{n,k} a_{n,k} x^n u^k$ satisfies a functional equation of the form $A(x,u) = \Phi(x,u,A(x,u))$, where $\Phi(x,u,a)$ has a power series expansion at (0,0,0) with non-negative coefficients and $\Phi_{aa}(x,u,a) \neq 0$.

Let $x_0 > 0$, $a_0 > 0$ (inside the region of convergence) satisfy the system of equations:

$$a_0 = \Phi(x_0, 1, a_0), \quad 1 = \Phi_a(x_0, 1, a_0).$$

COMBINATORIAL CENTRAL LIMIT THEOREM (cont.) Set

$$\mu = \frac{\Phi_u}{x_0 \Phi_x},$$

$$\sigma^2 = \mu + \mu^2 + \frac{1}{x_0 \Phi_x^3 \Phi_{aa}} \Big(\Phi_x^2 (\Phi_{aa} \Phi_{uu} - \Phi_{au}^2) - 2\Phi_x \Phi_u (\Phi_{aa} \Phi_{xu} - \Phi_{ax} \Phi_{au}) + \Phi_u^2 (\Phi_{aa} \Phi_{xx} - \Phi_{ax}^2) \Big),$$

(where all partial derivatives are evaluated at the point $(x_0, a_0, 1)$)

Then we have

$$\mathbb{E} X_n = \mu n + O(1)$$
 and $\mathbb{V} \text{ar} X_n = \sigma^2 n + O(1)$

and if $\sigma^2 > 0$ then

$$\boxed{\frac{X_n - \mathbb{E} X_n}{\sqrt{\operatorname{Var} X_n}} \to N(0, 1)}$$

Leaves in Catalan trees

The number of leaves in Catalan trees of size n satisfy a **central limit** theorem with mean $\sim \frac{1}{2}n$ and variance $\sim \frac{1}{8}n$

Leaves in Cayley trees

The number of leaves in Cayley trees of size n satisfy a **central limit** theorem with mean $\sim \frac{1}{e}n$ and variance $\sim \left(\frac{1}{e^2} + \frac{1}{e}\right)n$

Nodes of out-degree d in Catalan trees

$$G(x, u) = \frac{x}{1 - G(x, u)} + x(u - 1)G(x, u)^d$$

The number $X_n^{(d)}$ of nodes with out-degree d in Catalan trees of size n satisfy a **central limit theorem** with mean $\sim \mu_d n$ and variance $\sim \sigma_d^2 n$, where

$$\mu_d = \frac{1}{2^{d+1}}$$
 and $\sigma_d^2 = \frac{1}{2^{d+1}} + \frac{1}{2^{2(d+1)}} - \frac{(d-1)^2}{2^{2d+3}}.$

Nodes of out-degree d in Cayley trees

$$\begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} = \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} + \\ \begin{array}{c} \\ \end{array} \\ \end{array} + \\ \begin{array}{c} \\ \end{array} \end{array} + \\ \begin{array}{c} \\ \end{array} \end{array} + \\ \begin{array}{c} \\ \end{array} \\ \end{array} + \\ \begin{array}{c} \\ \end{array} \end{array} + \\ \begin{array}{c} \\ \end{array} \\ \end{array} + \\ \end{array}$$

$$R(x, u) = xe^{R(x, u)} + x(u - 1)\frac{R(x, u)^d}{d!}$$

The number of nodes with out-degree d in Cayley trees of size n satisfy a **central limit theorem** with mean $\sim \mu_d n$ and variance $\sim \sigma_d^2 n$, where

$$\mu_d = \frac{1}{e \, d!}$$
 and $\sigma_d^2 = \frac{1 + (d-1)^2}{e^2 (d!)^2} + \frac{1}{e \, d!}$
Degree distribution for Catalan trees

 $p_{n,d}$... probability that a random node in a random Catalan tree of size n has out-degree d:

$$\mathbb{E} X_n^{(d)} = n \, p_{n,d}$$

$$p_d := \lim_{n \to \infty} p_{n,d} = \frac{1}{2^{d+1}} = \mu_d$$

Probability generating function of the out-degree distribution:

$$p(w) := \sum_{d \ge 0} p_d w^d = \frac{1}{2 - w}$$

Degree distribution for Cayley trees

 $p_{n,d}$... probability that a random node in a random Cayley tree of size n has out-degree d:

$$\mathbb{E} X_n^{(d)} = n \, p_{n,d}$$

$$p_d := \lim_{n \to \infty} p_{n,d} = \frac{1}{e \, d!} = \mu_d$$

Probability generating function of the out-degree distribution:

$$p(w) := \sum_{d \ge 1} p_d w^d = e^{w-1}$$

Contents 2

I. COMBINATORIAL RANDOM TREES

- Maximum degree
- Unrooted trees

II. PATTERN COUNTS IN RANDOM TREES

- Pattern in trees
- Systems of functional equations

Maximum degree

 Δ_n ... maximum out-degree

 $X_n^{(>d)} = X_n^{(d+1)} + X_n^{(d+2)} + \cdots$... number of nodes of out-degree > d.

$$\Delta_n > d \iff X_n^{(>d)} > 0$$

First moment method

 $X \dots$ a discrete random variable on non-negative integers.

$$\implies \mathbb{P}\{X > 0\} \le \min\{1, \mathbb{E}X\}$$

Proof

$$\mathbb{E} X = \sum_{k \ge 0} k \mathbb{P} \{ X = k \} \ge \sum_{k \ge 1} \mathbb{P} \{ X = k \} = \mathbb{P} \{ X > 0 \}.$$

Second moment method

X is a non-negative random variable with finite second moment.

$$\implies \mathbb{P}\{X > 0\} \ge \frac{(\mathbb{E} X)^2}{\mathbb{E} (X^2)}$$

Proof

$$\mathbb{E} X = \mathbb{E} \left(X \cdot \mathbf{1}_{[X>0]} \right) \le \sqrt{\mathbb{E} \left(X^2 \right)} \sqrt{\mathbb{E} \left(\mathbf{1}_{[X>0]}^2 \right)} = \sqrt{\mathbb{E} (X^2)} \sqrt{\mathbb{P} \{ X > 0 \}}.$$

Tail estimates and expected value

•
$$\mathbb{P}\{\Delta_n > d\} \le \min\{1, \mathbb{E}X_n^{(>d)}\}$$

•
$$\mathbb{P}\{\Delta_n > d\} \ge \frac{(\mathbb{E} X_n^{(>d)})^2}{\mathbb{E} (X_n^{(>d)})^2}$$

 $\implies \mathbb{P}\{\Delta_n \le d\} \le 1 - \frac{(\mathbb{E} X_n^{(>d)})^2}{\mathbb{E} (X_n^{(>d)})^2} = \frac{\operatorname{Var} X_n^{(>d)}}{\mathbb{E} (X_n^{(>d)})^2}$

•
$$\mathbb{E}\Delta_n = \sum_{d\geq 0} \mathbb{P}\{\Delta_n > d\}$$

Maximum degree of Catalan trees

$$\mathbb{E} X_n^{(>d)} \sim \frac{n}{2^{d+1}}, \quad \mathbb{V}ar \, (X_n^{(>d)})^2 \sim n \left(\frac{1}{2^{d+1}} + \frac{1}{2^{2(d+1)}} - \frac{(d-1)^2}{2^{2d+3}}\right)$$

$$\implies \mathbb{P}\{\Delta_n > d\} \le \min\left\{1, \frac{n}{2^{d+1}}\right\}, \\ \mathbb{P}\{\Delta_n \le d\} = 1 - \mathbb{P}\{\Delta_n > d\} \\ \le \frac{1}{n} \frac{\frac{1}{2^{d+1}} + \frac{1}{2^{2(d+1)}} - \frac{(d-1)^2}{2^{2d+3}}}{\frac{1}{2^{2(d+1)}}} \sim \frac{2^{d+1}}{n}$$

 Δ_n is concentrated at $\log_2 n + O(1)$

Maximum degree of Catalan trees (Carr, Goh and Schmutz)

$$\mathbb{P}\{\Delta_n \le k\} = \exp\left(-2^{-(k-\log_2 n+1)}\right) + o(1)$$

$$\mathbb{E}\Delta_n = \log_2 n + O(1)$$

Unrooted trees

 p_n ... number of different embeddings of **unrooted** trees of size n in the plane, $P(x) = \sum_{n \ge 1} p_n x^n$:

$$P(x) = x \sum_{k \ge 0} Z_{\mathfrak{C}_k}(G(x), G(x^2), \dots, G(x^k)) - \frac{1}{2}G(x)^2 + \frac{1}{2}G(x^2),$$

where $G(x) = x/(1 - G(x)) = (1 - \sqrt{1 - 4x})/2$ and

$$Z_{\mathfrak{C}_k}(x_1, x_2, \dots, x_k) = \frac{1}{k} \sum_{d|k} \varphi(d) x_d^{k/d}$$

is the cycle index of the cyclic group \mathfrak{C}_k of k elements

Unrooted trees

Cancellation of the $\sqrt{1-4x}$ -term:

$$G(x) = \frac{1 - \sqrt{1 - 4x}}{2} \implies P(x) = a_0 + a_2(1 - 4x) + \frac{1}{6}(1 - 4x)^{3/2} + \cdots$$
$$\implies p_n = \frac{1}{8\sqrt{\pi}} 4^n n^{-5/2} \left(1 + O(n^{-1})\right)$$

Degree distribution of unrooted trees

$$\begin{split} X_n^{(d)} & \dots \text{ number of nodes of degree } d \text{ in trees of size } n \\ P(x,u) &= x \sum_{k \neq d} Z_{\mathfrak{C}_k}(G(x,u), G(x^2, u^2), \dots, G(x^k, u^k)) \\ &+ x u Z_{\mathfrak{C}_d}(G(x,u), G(x^2, u^2), \dots, G(x^d, u^d)) \\ &- \frac{1}{2} G(x, u)^2 + \frac{1}{2} G(x^2, u^2), \end{split}$$

where

$$G(x,u) = \frac{x}{1 - G(x,u)} + x(u-1)G(x,u)^{d-1}$$

Degree distribution of unrooted trees

Cancellation of the $\sqrt{1-4x}$ -term:

$$G(x,u) = g(x,u) - h(x,u) \sqrt{1 - \frac{x}{\rho(u)}}$$

$$\implies P(x,u) = a_0(u) + a_2(u) \left(1 - \frac{x}{\rho(u)}\right) + a_3(u) \left(1 - \frac{x}{\rho(u)}\right)^{\frac{3}{2}} + \cdots$$

 $\implies X_n^{(d)}$ satisfies a **central limit theorem** with mean $\sim \mu_{d-1}n$ and variance $\sim \sigma_{d-1}^2 n$, where

$$\mu_d = \frac{1}{2^{d+1}}$$
 and $\sigma_d^2 = \frac{1}{2^{d+1}} + \frac{1}{2^{2(d+1)}} - \frac{(d-1)^2}{2^{2d+3}}.$

Degree distribution of unrooted trees

 $p_{n,d}$... probability that a random node in a tree of size n has degree d:

$$\mathbb{E} X_n^{(d)} = n \, p_{n,d}$$

$$p_d = \lim_{n \to \infty} p_{n,d} = \mu_{d-1} = \frac{1}{2^d}$$

Probability generating function of the degree distribution:

$$p(w) = \sum_{d \ge 1} p_d w^d = \frac{w}{2 - w}$$

Maximum degree for unrooted trees

 Δ_n ... maximum degree of unrooted trees of size n

 Δ_n is concentrated at $\log_2 n$

$$\mathbb{E}\Delta_n = \log_2 n + O(1)$$

Unrooted labelled trees

 $t_n = r_n/n = n^{n-2}$... number of different **unrooted** labelled trees of size n: $T(x) = \sum_{n \ge 1} t_n \frac{x^n}{n!}$:

$$T(x) = xe^{R(x)} - \frac{1}{2}R(x)^2 = R(x) - \frac{1}{2}R(x)^2$$

where $R(x) = xe^{R(x)}$ (note that T'(x) = R(x)/x)

Cancellation of the $\sqrt{1 - ex}$ -term:

$$R(x) = g(x) - h(x)\sqrt{1 - ex} \implies T(x) = a_0 + a_2(1 - 4x) + \frac{1}{6}(1 - ex)^{3/2} + \cdots$$

Degree distribution of unrooted labelled trees

 $X_n^{(d)}$... number of nodes of degree d in trees of size n $T(x,u) = xe^{R(x,u)} + x(u-1)\frac{R(x,u)^d}{d!} - \frac{1}{2}R(x,u)^2,$

where

$$R(x,u) = xe^{R(x,u)} + x(u-1)\frac{R(x,u)^{d-1}}{(d-1)!}.$$

Degree distribution of unrooted labelled trees

Cancellation of the $\sqrt{1-4x}$ -term:

$$R(x,u) = g(x,u) - h(x,u)\sqrt{1 - \frac{x}{\rho(u)}}$$

$$\implies T(x,u) = a_0(u) + a_2(u)\left(1 - \frac{x}{\rho(u)}\right) + a_3(u)\left(1 - \frac{x}{\rho(u)}\right)^{\frac{3}{2}} + \cdots$$

 $\implies X_n^{(d)}$ satisfies a **central limit theorem** with mean $\sim \mu_{d-1}n$ and variance $\sim \sigma_{d-1}^2 n$, where

$$\mu_d = \frac{1}{e \, d!}$$
 and $\sigma_d^2 = \frac{1 + (d-1)^2}{e^2 (d!)^2} + \frac{1}{e \, d!}$

(Note again that $\frac{\partial}{\partial x}T(x,u) = R(x,u)/x$)

Star pattern

 $X_n^{(d)}$ = number of nodes of degree d in trees of size n= number of star pattern with d rays in trees of size n

Pattern \mathcal{M}

Pattern \mathcal{M}

Occurrence of a pattern \mathcal{M}

Occurrence of a pattern \mathcal{M}

Occurrence of a pattern $\mathcal{M} \xrightarrow{\diamond \bullet \bullet \bullet}$

Occurrence of a pattern $\mathcal{M} \xrightarrow{\diamond \bullet \bullet \bullet}$

Occurrence of a pattern $\mathcal{M} \xrightarrow{\diamond \bullet \bullet}$ in a labelled tree

Cayley's formula

 $r_n = n^{n-1} \dots$ number of **rooted** labelled trees with *n* nodes

 $t_n = n^{n-2} \dots$ number of labelled trees with n nodes

Generating functions

$$R(x) = \sum_{n \ge 1} r_n \frac{x^n}{n!}$$

$$R(x) = x e^{R(x)}$$

$$T(x) = \sum_{n \ge 1} t_n \frac{x^n}{n!}$$

$$T(x) = R(x) - \frac{1}{2}R(x)^2$$

(Note that xT'(x) = R(x) so that we also have $T(x) = \int R(x)/x \, dx$.)

Theorem

 ${\mathcal M}$... be a given finite tree.

 X_n ... number of occurrences of of \mathcal{M} in a labelled tree of size n

\implies X_n satisfies a **central limit theorem** with

 $\mathbb{E} X_n \sim \mu n$ and $\mathbb{V} X_n \sim \sigma^2 n$.

 $\mu > 0$ and $\sigma^2 \ge 0$ depend on the pattern \mathcal{M} and can be computed explicitly and algorithmically and can be represented as polynomials (with rational coefficients) in 1/e.

Partition of trees in classes (\Box ... out-degree different from 2)

Recurrences
$$A_3 = xA_0A_2 + xA_0A_3 + xA_0A_4$$

$$A_j(x) = \sum_{n,k} a_{j;n} \frac{x^n}{n!}$$

 $a_{j;n}$... number of trees of size n in class j

Recurrences
$$A_3 = xuA_0A_2 + xuA_0A_3 + xuA_0A_4$$

$$A_j(x, \mathbf{u}) = \sum_{n,k} a_{j;n,k} \frac{x^n}{n!} \mathbf{u}^k$$

 $a_{j;n,k}$... number of trees of size n in class j with k occurrences of $\mathcal M$

$$A_{0} = A_{0}(x, u) = x + x \sum_{i=0}^{10} A_{i} + x \sum_{n=3}^{\infty} \frac{1}{n!} \left(\sum_{i=0}^{10} A_{i}\right)^{n},$$

$$A_{1} = A_{1}(x, u) = \frac{1}{2}xA_{0}^{2},$$

$$A_{2} = A_{2}(x, u) = xA_{0}A_{1},$$

$$A_{3} = A_{3}(x, u) = xA_{0}(A_{2} + A_{3} + A_{4})u,$$

$$A_{4} = A_{4}(x, u) = xA_{0}(A_{5} + A_{6} + A_{7} + A_{8} + A_{9} + A_{10})u^{2},$$

$$A_{5} = A_{5}(x, u) = \frac{1}{2}xA_{1}^{2}u,$$

$$A_{6} = A_{6}(x, u) = xA_{1}(A_{2} + A_{3} + A_{4})u^{2},$$

$$A_{7} = A_{7}(x, u) = xA_{1}(A_{5} + A_{6} + A_{7} + A_{8} + A_{9} + A_{10})u^{3},$$

$$A_{8} = A_{8}(x, u) = \frac{1}{2}x(A_{2} + A_{3} + A_{4})^{2}u^{3},$$

$$A_{9} = A_{9}(x, u) = x(A_{2} + A_{3} + A_{4})(A_{5} + A_{6} + A_{7} + A_{8} + A_{9} + A_{10})u^{4},$$

$$A_{10} = A_{10}(x, u) = \frac{1}{2}x(A_{5} + A_{6} + A_{7} + A_{8} + A_{9} + A_{10})^{2}u^{5}.$$

,

Systems of Functional equations

COMBINATORIAL CENTRAL LIMIT THEOREM II

Suppose that a sequence of random variables X_n has distribution

$$\mathbb{P}[X_n = k] = \frac{a_{nk}}{a_n},$$

where the generating function $A(x,u) = \sum_{n,k} a_{n,k} x^n u^k$ is given by

$$A(x,u) = \Psi(x, u, A_1(x, u), \dots, A_r(x, u))$$

for an analytic function $\boldsymbol{\Psi}$ and the generating functions

$$A_1(x,u) = \sum_{n,k} a_{1;n,k} u^k x^n, \dots, A_r(x,u) = \sum_{n,k} a_{r;n,k} u^k x^n$$

satisfy a system of non-linear equations

$$A_j(x,u) = \Phi_j(x,u,A_1(x,u),\ldots,A_r(x,u)), \quad (1 \le j \le r).$$

Systems of Functional equations

COMBINATORIAL CENTRAL LIMIT THEOREM II (cont.)

Suppose that at least one of the functions $\Phi_j(x, u, a_1, \dots, a_r)$ is nonlinear in a_1, \dots, a_r and they all have a power series expansion at (0, 0, 0) with non-negative coefficients.

Let $x_0 > 0$, $a_0 = (a_{0,0}, \ldots, a_{r,0}) > 0$ (inside the region of convergence) satisfy the system of equations: $(\Phi = (\Phi_1, \ldots, \Phi_r))$

$$a_0 = \Phi(x_0, 1, a_0), \quad 0 = \det(I - \Phi_a(x_0, 1, a_0))$$

such that the spectral radius of the Jacobian Φ_a equals 1. Suppose further, that the **dependency graph** of the system $a = \Phi(x, u, a)$ is **strongly connected** (which means that no subsystem can be solved before the whole system).

Systems of Functional equations

COMBINATORIAL CENTRAL LIMIT THEOREM II (cont.)

Then there exists analytic function $g_j(x,u), h_j(x,u)$, and $\rho(u)$ (that is **independent of** j) such that locally

$$A_j(x,u) = g_j(x,u) - h_j(x,u) \sqrt{1 - \frac{x}{\rho(u)}}$$

and consequently (for some g(x, u), h(x, u))

$$A(x,u) = g(x,u) - h(x,u)\sqrt{1 - \frac{x}{\rho(u)}}$$

Consequently the random variable X_n satisfies a **central limit theorem** with

$$\mathbb{E} X_n \sim n\mu$$
 and $\mathbb{V} \text{ar} X_n \sim n\sigma^2$,

where μ and σ^2 can be computed.

Final Result for
$$\mathcal{M} = \overset{\diamond}{\overset{\diamond}{}} \overset{\bullet}{} \overset{\bullet}{\phantom}} \overset{\bullet}{} \overset{\bullet}{} \overset{\bullet}{} \overset{\bullet}{} \overset{\bullet$$

Central limit theorem with

$$\mu = \frac{5}{8e^3} = 0.0311169177\dots$$

and

$$\sigma^2 = \frac{20e^3 + 72e^2 + 84e - 175}{32e^6} = 0.0764585401\dots$$
Contents 3

III. CONTINUOUS LIMITING OBJECTS

- Weak Convergence
- The Depth-First-Search of Rooted Trees
- The Continuum Random Tree
- The Profile of Galton-Watson trees
- Scaling Limit of Series-Parallel Graphs

Asymptotics on Random Discrete Objects

Levels of complexity:

- 1. Asymptotic enumeration
- 2. Distribution of (shape) parameters
- 3. Asymptotic shape (= continuous limiting object)

 X_n , X ... (real) random variables:

$$X_n \xrightarrow{\mathsf{d}} X$$
 : \Longleftrightarrow $\lim_{n \to \infty} \mathbb{P}\{X_n \le x\} = \mathbb{P}\{X \le x\}$

for all points of continuity of $F_X(x) = \mathbb{P}\{X \le x\}$

$$\iff \lim_{n \to \infty} \mathbb{E} G(X_n) = \mathbb{E} G(X)$$

for all **bounded** continuous functionals $G : \mathbb{R} \to \mathbb{R}$

$$\iff \lim_{n \to \infty} \mathbb{E} e^{itX_n} = \mathbb{E} e^{itX}$$

for all real t (Levy's criterion)

Polish space: (S, d) ... complete, separable, metric space

Examples: \mathbb{R} , \mathbb{R}^k , C[0,1], $\mathcal{M}_0(X)$ (probability measures on X)

S-valued random variable: $X : \Omega \to S$... measurable function

 $S = \mathbb{R}$: random variable

 $S = \mathbb{R}^k$: k-dimensional random vector

S = C[0, 1]: stochastic process $(X(t), 0 \le t \le 1)$

 $S = \mathcal{M}_0(X)$: random measure

Definition

 $X_n, X : \Omega \to S \dots$ S-valued random variables ((S,d) ... Polish space)

$$X_n \xrightarrow{\mathsf{d}} X$$
 : $\iff \qquad \boxed{\lim_{n \to \infty} \mathbb{E} G(X_n) = \mathbb{E} G(X)}$

for all **bounded** continuous

functionals $G: S \to \mathbb{R}$

Stochastic process: random function

Stochastic process

 $X_n : \Omega \to C[0,1]$ sequence of stochastic processes, $X : \Omega \to C[0,1]$

•
$$X_n \xrightarrow{\mathsf{d}} X \implies F(X_n) \xrightarrow{\mathsf{d}} F(X)$$
 for all continuous $F : S \to S'$.

•
$$X_n \xrightarrow{d} X \implies X_n(t_0) \xrightarrow{d} X(t_0)$$
 for all fixed $t_0 \in [0, 1]$.

•
$$X_n \xrightarrow{d} X \implies (X_n(t_1), \dots, X_n(t_k)) \xrightarrow{d} (X(t_1), \dots, X(t_k))$$

for all $k \ge 1$ and all fixed $t_1, \dots, t_k \in [0, 1]$.

The converse statement is not necessarily true, one needs **tightness**.

Stochastic process

 $X_n : \Omega \to C[0,1]$ sequence of stochastic processes, $X : \Omega \to C[0,1]$

- 1. $(X_n(t_1), \ldots, X_n(t_k)) \xrightarrow{d} (X(t_1), \ldots, X(t_k))$ for all $k \ge 1$ and all fixed $t_1, \ldots, t_k \in [0, 1]$
- 2. $\mathbb{E}(|X_n(0)|^{\beta}) \leq C$ for some constant C > 0 and an exponent $\beta > 0$
- 3. $\mathbb{E}\left(|X_n(t) X_n(s)|^{\beta}\right) \le C|t s|^{\alpha}$ for all $s, t \in [0, 1]$ for some constant C > 0 and exponents $\alpha > 1$ and $\beta > 0$.

Then

$$(X_n(t), 0 \leq t \leq 1) \xrightarrow{\mathsf{d}} (X(t), 0 \leq t \leq 1)$$

Depth-First-Search

Rooted trees and discrete excursions

Bijection between

Catalan trees \leftrightarrow Dyck paths random trees of size $n \leftrightarrow$ random Dyck paths of length 2n

Depth-First-Search

Brownian excursion $(e(t), 0 \le t \le 1)$

Rescaled Brownian motion between 2 zeros.

Random function in C[0, 1].

Depth-First-Search

Kaigh's Theorem

 $(X_n(t), 0 \le t \le 2n) \dots$ random Dyck path of length 2n. $\implies \left(\frac{1}{\sqrt{2n}}X_n(2nt), 0 \le t \le 1\right) \stackrel{\mathsf{d}}{\longrightarrow} (2e(t), 0 \le t \le 1).$

Remark. This theorem also holds for more general random walks with independent increments conditioned to be an excursion.

T ... tree, ${\mathcal T}$... embedding of T into the plane ${\mathbb R}^2$

 \implies \mathcal{T} is a metric space (and a **real tree** in the following sense):

Definition

A metric space (\mathcal{T}, d) is a **real tree** if the following two properties hold for every $x, y \in \mathcal{T}$.

- 1. There is a unique isometric map $h_{x,y} : [0, d(x,y)] \to \mathcal{T}$ such that $h_{x,y}(0) = x$ and $h_{x,y}(d(x,y)) = y$.
- 2. If q is a continuous injective map from [0,1] into \mathcal{T} with q(0) = xand q(1) = y then

$$q([0,1]) = h_{x,y}([0,d(x,y)]).$$

A rooted real tree (\mathcal{T}, d) is a real tree with a distinguished vertex $r = r(\mathcal{T})$ called the root.

Two real trees (\mathcal{T}_1, d_1) , (\mathcal{T}_2, d_2) are **equivalent** if there is a rootpreserving isometry that maps \mathcal{T}_1 onto \mathcal{T}_2 .

 ${\mathbb T}$... set of all equivalence classes of rooted compact real trees.

Gromov-Hausdorff Distance $d_{GH}(\mathcal{T}_1, \mathcal{T}_2)$ of two real trees $\mathcal{T}_1, \mathcal{T}_2$ is the infimum of the Hausdorff distance of all isometric embeddings of $\mathcal{T}_1, \mathcal{T}_2$ into the same metric space.

Hausdorff distance:
$$\delta_{\text{Haus}}(X,Y) = \max \left\{ \sup_{x \in X} \inf_{y \in Y} d(x,y), \sup_{y \in Y} \inf_{x \in X} d(x,y) \right\}$$

Theorem

The metric space $(\mathbb{T}, d_{\mathsf{GH}})$ is a Polish space.

 $g: [0,1] \to [0,\infty) \dots$ continuous, $\geq 0, g(0) = g(1) = 0$ $d_g(s,t) = g(s) + g(t) - 2 \inf_{\min\{s,t\} \le u \le \max\{s,t\}} g(u)$

$$\begin{array}{ccc} s \sim t & \Longleftrightarrow & d_g(s,t) = 0 \end{array} & \overline{\mathcal{T}_g = [0,1]/\sim} \\ \\ \Longrightarrow & \overline{(\mathcal{T}_g,d_g)} & \text{is a compact real tree.} \end{array}$$

Construction of a real tree T_g

The mapping $C[0,1] \to \mathbb{T}$, $g \mapsto \mathcal{T}_g$ is **continuous**.

Catalan trees as real trees

 $T_n X_n = X_{T_n} \mathcal{T}_{X_n}$

Continuum random tree \mathcal{T}_{2e} (with Brownian excursion e(t))

Theorem

 $(X_n(t), 0 \le t \le 2n)$... random Dyck paths of length 2nor the depth-first-search process of Catalan trees of size n.

$$\implies \quad \boxed{\frac{1}{\sqrt{2n}} \,\mathcal{T}_{X_n} \stackrel{\mathrm{d}}{\longrightarrow} \mathcal{T}_{2e}}$$

In other words...

Scaled Catalan trees (interpreted as "real trees") converge weakly to the continuum random tree.

Galton-Watson branching process

 ξ ... offspring distribution, $\varphi_k = \mathbb{P}\{\xi = k\}, \varphi_0 > 0$

Galton-Watson branching process

 ξ ... offspring distribution, $\varphi_k = \mathbb{P}\{\xi = k\}, \varphi_0 > 0$

Galton-Watson branching process

 ξ ... offspring distribution, $\varphi_k = \mathbb{P}\{\xi = k\}, \ \varphi_0 > 0$

Galton-Watson branching process

 ξ ... offspring distribution, $\varphi_k = \mathbb{P}\{\xi = k\}, \varphi_0 > 0$

Galton-Watson branching process

 ξ ... offspring distribution, $\varphi_k = \mathbb{P}\{\xi = k\}, \varphi_0 > 0$

Galton-Watson branching process

 ξ ... offspring distribution, $\varphi_k = \mathbb{P}\{\xi = k\}, \ \varphi_0 > 0$

Galton-Watson branching process. $(Z_k)_{k>0}$

 $Z_0 = 1$, and for $k \ge 1$

$$Z_k = \sum_{j=1}^{Z_{k-1}} \xi_j^{(k)},$$

where the $(\xi_j^{(k)})_{k,j}$ are iid random variables distributed as ξ .

 Z_k ... number of nodes in k-th generation

 $Z = Z_0 + Z_1 + Z_2 + \cdots$... total progeny

Generating functions

$$y_n = \mathbb{P}\{Z = n\}, \qquad y(x) = \sum_{n \ge 1} y_n x^n$$
$$\Phi(w) = \mathbb{E} w^{\xi} = \sum_{k \ge 0} \varphi_k w^k$$
$$\implies y(x) = x \Phi(y(x))$$

Conditioned Galton-Watson tree

GW-branching process conditioned on the total progeny Z = n.

Example. $\mathbb{P}\{\xi = k\} = 2^{-k-1}, \ \Phi(w) = 1/(2-w)$

 \implies all trees of size *n* have the same probability

 \implies conditioned GW-tree of size *n* is the same model as the **Catalan tree model** (with the uniform distribution on trees of size *n*)

Example. $\Phi(w) = \frac{1}{2}(1+w)^2$: **binary trees** with *n* internal nodes.

Example. $\Phi(w) = \frac{1}{3}(1 + w + w^2)$: Motzkin trees

Example. $\Phi(w) = e^{w-1}$: Cayley trees

General assumption:
$$\mathbb{E}\xi = 1$$
, $0 < \mathbb{V}$ ar $\xi = \sigma^2 < \infty$

Theorem (Aldous)

 $X_n(t)$... depth-first-search of conditioned GW-trees of size n

$$\implies \left(\frac{\sigma}{2\sqrt{n}}X_n(2nt), 0 \le t \le 1\right) \xrightarrow{\mathsf{d}} (e(t), 0 \le t \le 1)$$

Corollary

$$\boxed{\frac{\sigma}{\sqrt{n}} \, \mathcal{T}_{X_n} \stackrel{\mathsf{d}}{\longrightarrow} \mathcal{T}_{2e}}$$

Corollary H_n ... height of conditioned GW-trees of size n:

$$\implies \frac{1}{\sqrt{n}}H_n \stackrel{\mathrm{d}}{\longrightarrow} \frac{2}{\sigma} \max_{0 \le t \le 1} e(t)$$

Remark. Distribution function of $\max_{0 \le t \le 1} e(t)$:

$$\mathbb{P}\{\max_{0 \le t \le 1} e(t) \le x\} = 1 - 2\sum_{k=1}^{\infty} (4x^2k^2 - 1)e^{-2x^2k^2}$$

Profile

 $L_T(k)$... number of nodes at distance k from the root

 $(L_T(k))_{k\geq 0}$... profile of T

 $(L_T(s), s \ge 0)$... linearly interpolated profile of T

Value distribution

$$\mu_T = \frac{1}{|T|} \sum_{k \ge 0} L_T(k) \,\delta_k$$

 δ_x ... $\delta\text{-distribution}$ concentrated at x

Occupation measure: random measure on \mathbb{R}

$$\mu(A) = \int_0^1 \mathbf{1}_A(e(t) \, dt)$$

measure how long e(t) stays in set A

Theorem (Aldous)

 $(L_n(k), k \ge 0)$... random profile of conditioned GW-trees of size n

$$\implies \frac{1}{n} \sum_{k \ge 0} L_n(k) \,\delta_{(\sigma/2)k/\sqrt{n}} \stackrel{\mathsf{d}}{\longrightarrow} \mu$$

Local time of the Brownian excursion: random density of μ

$$l(s) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_{0}^{1} \mathbf{1}_{[s,s+\varepsilon]}(e(t)) dt$$

Theorem (D.+Gittenberger)

 $(L_n(s), s \ge 0)$... random profile of conditioned GW-trees of size n

$$\implies \left(\frac{1}{\sqrt{n}} L_n(s\sqrt{n}), \, s \ge 0 \right) \stackrel{\mathsf{d}}{\longrightarrow} \left(\frac{\sigma}{2} l\left(\frac{\sigma}{2} s \right), \, s \ge 0 \right)$$

Proof with asymptotics on generating functions (very involved)!!!

Width

$$W = \max_{k \ge 0} L(k) = \max_{t \ge 0} L(t),$$

maximal number of nodes in a level.

Corollary

$$\frac{1}{\sqrt{n}}W_n \xrightarrow{\mathsf{d}} \frac{\sigma}{2} \sup_{0 \le t \le 1} l(t)$$

Remark. $\sup_{t\geq 0} l(t) = 2 \sup_{0\leq t\leq 1} e(t)$ (in distribution)

Series-Parallel Graphs

Connected Series-Parallel Graphs

Series-parallel extension of a tree (or no K_4 as a minor)

Scaling Limit of Series Parallel Graphs

A typcial series-parallel graph of size n has $\approx c_1 n$ 2-connected components that form a **tree**

The 2-connected components do not scale in distribution, their expected size is finite and they behave *almost*) *independent and identically distributed*.

So, series-parallel graphs look tree-like.

Scaling Limit of Series Parallel Graphs

Theorem (*Panagiotou*, *Stufler*, *and Weller*)

 C_n ... connected, vertex labelled series-parallel graphs with n vertices

$$\frac{c}{\sqrt{n}} C_n \xrightarrow{\mathsf{d}} \mathcal{T}_{2e}$$

for some constant c > 0.

Remark. The same result holds for so-called **subcricital graph classes** like cacti-graphs, outerplanar graphs etc. In all these graph classes the diameter is of oder \sqrt{n} .

Contents 4

IV. SUBGRAPH COUNTS IN SERIES PARALLEL GRAPHS

- Sub-critical graph classes
- Asymptotic counting of sub-critical graph classes
- Series parallel graphs are sub-critical
- Subgraph counting
- A combinatorial CLT for infinite systems

block: 2-connected component (= maximal 2-connected subgraph)

Block-stable graph class \mathcal{G} : \mathcal{G} contains the one-edge graph and $G \in \mathcal{G}$ if and only if all blocks of G are contained in \mathcal{G} .

Equivalently, the 2-connected graphs of \mathcal{G} and the one-edge graph generate all graphs of \mathcal{G} .

Examples: *Planar graphs, series-parallel graphs, minor-closed graph classes etc.*

B(x) ... GF for 2-connected graphs in \mathcal{G}

C(x) ... GF for connected graphs in \mathcal{G}

[We will consider here only connected graphs]

Generating Functions for Block-Decomposition

Vertex-rooted graphs: one vertext (the **root**) is distinguished (and usually discounted, that is, it gets no label)

Generating function: (in den labelled case)

$$G^{\bullet}(x) = G'(x)$$

Generating Functions for Block-Decomposition

(in the labelled case)

$$C^{\bullet}(x) = e^{B^{\bullet}(xC^{\bullet}(x))}$$

Generating Functions for Block-Decomposition

(in the labelled case)

$$\left|\frac{\partial C(x,y)}{\partial x} = \exp\left(\frac{\partial B}{\partial x}\left(x\frac{\partial C(x,y)}{\partial x},y\right)\right)\right|$$

Labelled Trees

Rooted Trees:

$$B^{\bullet}(x) = x$$

 $R(x) = xC^{\bullet}(x)$... generating function of rooted, labelled trees

$$C^{\bullet}(x) = e^{B^{\bullet}(xC^{\bullet}(x))} \Longrightarrow R(x) = xe^{R(x)}$$

Remark: T(x) ... *GF* for unrooted labelled trees:

$$T(x)' = \frac{1}{x}R(x) \implies T(x) = R(x) - \frac{1}{2}R(x)^2$$

Outerplanar Graphs

All vertices are on the infinite face.

Outerplanar Graphs

Generating functions

$$C^{\bullet}(x) = e^{B^{\bullet}(xC^{\bullet}(x))},$$
$$B^{\bullet}(x) = \frac{1 + 5x - \sqrt{1 - 6x + x^2}}{8}$$

2-connected outerplanar graphs = dissections of the *n*-gon

Series-Parallel Graphs

Series-parallel extension of a tree (if we restict to connected graphs)

Series-Parallel Graphs

Equivalent Definitions

- $Ex(K_4)$
- tree-width ≤ 2
- nested ear decomposition (if connected)

Series-Parallel Graphs

Generating functions

$$\frac{\partial C(x,y)}{\partial x} = \exp\left(\frac{\partial B}{\partial x}\left(x\frac{\partial C(x,y)}{\partial x},y\right)\right),$$

$$\frac{\partial B(x,y)}{\partial y} = \frac{x^2}{2} e^{S(x,y)},$$

$$S(x,y) = \frac{x(P(x,y) + y)^2}{1 - x(P(x,y) + y)},$$
$$P(x,y) = (e^{S(x,y)} - 1 - S(x,y)) + y(e^{S(x,y)} - 1).$$

Repetition: Functional equations

Suppose that $A(x) = \Phi(x, A(x))$, where $\Phi(x, a)$ has a power series expansion at (0, 0) with non-negative coefficients and $\Phi_{aa}(x, a) \neq 0$.

Let $x_0 > 0$, $a_0 > 0$ (inside the region of convergence of Φ) satisfy the system of equations:

$$a_0 = \Phi(x_0, a_0), \quad 1 = \Phi_a(x_0, a_0).$$

Then there exists analytic function g(x), h(x) such that locally

$$A(x) = g(x) - h(x)\sqrt{1 - \frac{x}{x_0}}$$

Remark. If there is no x_0 , a_0 inside the region of convergence of Φ then the singular behaviour of Φ determines the singular behaviour of A(x) !!!

$$A(x) = xC^{\bullet}(x), \ \Phi(x, a) = xe^{B^{\bullet}(a)}, \ xC^{\bullet}(x) = xe^{B^{\bullet}(xC^{\bullet}(x))}$$
$$\implies A(x) = \Phi(x, A(x))$$

A block-stable graph class is called **sub-critical** if the system (note that $B^{\bullet}(x) = B'(x)$)

$$a_0 = x_0 e^{B'(a_0)}, \quad 1 = x_0 e^{B'(a_0)} B''(a_0)$$

has positive solutions x_0, a_0 inside the region of convergence of $\Phi(x, a) = xe^{B^{\bullet}(a)}$. In particular we get a squareroot singularity for $C^{\bullet}(x)$.

This means that " a_0 is smaller than the radius of convergence η of B^{\bullet} ".

Eliminating x_0 leads to $a_0B''(a_0) = 1$ or that

$$\eta B''(\eta) > 1$$

where η is the radius of convergence of B(x).

- **Trees** are sub-critical
- Outerplanar graphs are sub-critical
- Series-parallel graphs are sub-critical

Lemma. Suppose that B(x) has radius of convergence $\eta \in (0, \infty]$.

$$\lim_{x \to \eta} B''(x) = \infty \implies \text{sub-critical}.$$

Corollary If $B^{\bullet}(x) = B'(x)$ is entire or has a squareroot singularity:

$$B^{\bullet}(x) = g(x) - h(x)\sqrt{1 - \frac{x}{\eta}},$$

then we are in the **sub-critical** case.

This applies for outerplanar and series-parallel graphs.

What does "sub-critical" mean?

In a sub-critical graph class the average size of the 2-connected components is bounded.

 \implies This leads to a tree like structure.

 \implies The law of large numbers should apply so that we can expect universal behaviors that are independent of the the precise structure of 2-connected components.

Universal properties

• Asymptotic enumeration:

Labelled case:

$$c_n \sim c \, n^{-5/2} \rho^{-n} n!$$

Unlabelled case:

$$c_n \sim c \, n^{-5/2} \rho^{-n}$$

 $(c > 0, \rho \dots radius of convergence of C(z))$

[D.+Fusy+Kang+Kraus+Rue 2011]

• Asymptotic enumeration:

$$C^{\bullet}(x) = e^{B^{\bullet}(xC^{\bullet}(x))}$$

$$\longrightarrow xC^{\bullet}(x) = xC'(x) = g(x) - h(x)\sqrt{1 - \frac{x}{\rho}}$$

$$\longrightarrow [x^{n}]xC'(x) = \frac{n c_{n}}{n!} \sim c n^{-3/2}\rho^{-n}$$

$$\longrightarrow [c_{n} \sim c n^{-5/2}\rho^{-n}n!].$$

Additive Parameters in Subcritical Graph Classes

Theorem 1 [D.+Fusy+Kang+Kraus+Rue]

 $X_n \dots$ number of edges / number of blocks / number of cut-vertices / number of vertices of degree k

$$\implies \frac{X_n - \mu n}{\sqrt{n}} \to N(0, \sigma^2)$$

with $\mu > 0$ and $\sigma^2 \ge 0$.

Remark. There is an easy to check "combinatorial condition" that ensures $\sigma^2 > 0$.

Additive Parameters in Subcritical Graph Classes

Proof Methods:

Refined versions of the functional equation $C^{\bullet}(x) = e^{B^{\bullet}(xC^{\bullet}(x))}$, + singularity analysis (always squareroot singularity)

E.g: number of edges:

$$C^{\bullet}(x,y) = e^{B^{\bullet}(xC^{\bullet}(x,y),y)}$$

or number of 2-connected components:

$$C^{\bullet}(x,y) = e^{yB^{\bullet}(xC^{\bullet}(x,y))}$$

$$\longrightarrow C^{\bullet}(x,y) = g(x,y) - h(x,y) \sqrt{1 - \frac{x}{\rho(y)}}$$

$$\longrightarrow$$
 $[x^n]C^{\bullet}(x,y) \sim c(y)\rho(y)^{-n}n^{-3/2}$

+ application of Quasi-Power-Theorem (by Hwang).

Graph Limits

 \mathcal{T}_e ... continuum random tree (CRT)

Theorem [Panagiotou+Stufler+Weller]

 $\ensuremath{\mathcal{C}}\xspace$... sub-critical graph class of connected graphs

$$\implies \quad \left| \frac{c}{\sqrt{n}} \mathcal{C}_n \to \mathcal{T}_e \right|$$

with respect to the Gromov-Hausdorff metric, where c > 0 is a constant.

Corollary. The diameter D_n as well as a typical distance in a subcritical graph is or order \sqrt{n} .

Theorem [D.+Ramos+Rue]

 \mathcal{G} ... sub-critial graph class, $H \in \mathcal{G}$ fixed. $X_n^{(H)}$... number of occurences of H as a subgraph in graphs of size n

$$\implies \frac{X_n^{(H)} - \mu n}{\sqrt{n}} \to N(0, \sigma^2)$$

with $\mu > 0$ and $\sigma^2 \ge 0$.

Remark. The proof is easy if *H* is 2-connected = additive parameter!!!

 $H = P_2$... path of length 2

 $B_j^{\bullet}(w_1, w_2, w_3, ...; u)$ generating function of blocks in \mathcal{G} , where the root has degree j, where w_i counts the number of non-root vertices of degree i, and where u counts the number of occurrences of $H = P_2$.

 $C_j^{\bullet}(x, u)$... generating function of connected rooted graphs in \mathcal{G} , where the root vertex has degree j, where x counts the number of (all) vertices and u the number of occurrences of $H = P_2$.

System of infinite number of equations

$$C_{j}^{\bullet}(x,u) = \sum_{s \ge 0} \frac{1}{s!} \sum_{j_{1} + \dots + j_{s} = j} u^{\sum_{i_{1} < i_{2}} j_{i_{1}} j_{i_{2}}} \\ \times \prod_{i=1}^{s} B_{j_{i}}^{\bullet} \left(x \sum_{\ell_{1} \ge 0} u^{\ell_{1}} C_{\ell_{1}}^{\bullet}(x,u), x \sum_{\ell_{2} \ge 0} u^{2\ell_{2}} C_{\ell_{2}}^{\bullet}(x,u), \dots; u \right), \\ (j \ge 0)$$

$$C_{j}^{\bullet}(x,1) = \sum_{s \ge 0} \frac{1}{s!} \sum_{j_{1}+\dots+j_{s}=j} \prod_{i=1}^{s} B_{j_{i}}^{\bullet}(xC^{\bullet}(x), xC^{\bullet}(x), \dots; 1)$$
$$C^{\bullet}(x) = \sum_{\ell \ge 0} C_{\ell}^{\bullet}(x,1)$$

System of infinite number of equations

Suppose that $A(z) = (A_j(z))_{j\geq 0} = \Phi(z, A(z))$ is a positive, non-linear, infinite and strongly connected system such that the Jacobian $\Phi_a(z, a)$ is compact for z > 0 and a > 0.

Let $z_0 > 0$, $\mathbf{a}_0 = (a_{j,0})_{j \ge 0}$ (inside the region of convergence) satisfy the system of equations:

$$\mathbf{a}_0 = \Phi(z_0, \mathbf{a}_0), \quad r(\Phi_{\mathbf{a}}(z_0, \mathbf{a}_0)) = 1$$

where $r(\cdot)$ denotes the spectral radius.

Then there exists analytic function $g_j(z), h_j(z) \neq 0$ such that locally

$$A_j(z) = g_j(z) - h_j(z) \sqrt{1 - \frac{z}{z_0}}$$

with $g_j(z_0) = a_{j,0}$ and $h_j(z_0) > 0$.

Infinite Systems of Functional Equations

COMBINATORIAL CENTRAL LIMIT THEOREM III

Suppose that $A(z,u) = (A_j(z,u))_{j\geq 0} = \Phi(z,u,A(z,u))$ is a positive, non-linear, infinite and strongly connected system such that the Jacobian $\Phi_a(z,1,a)$ is compact for z > 0 and a > 0.

Let $z_0 > 0$, $a_0 = (a_{j,0})_{j \ge 0}$ (inside the region of convergence) satisfy the system of equations:

$$\mathbf{a}_0 = \Phi(z_0, 1, \mathbf{a}_0), \quad r(\Phi_{\mathbf{a}}(z_0, 1, \mathbf{a}_0)) = 1$$

where $r(\cdot)$ denotes the spectral radius.

Then there exists analytic function $g_j(z,u), h_j(z,u) \neq 0$ and $\rho(u)$ such that locally

$$A_j(z,u) = g_j(z,u) - h_j(z,u) \sqrt{1 - \frac{z}{\rho(u)}}$$

with $g_j(z_0, 1) = a_{j,0}$, $h_j(z_0, 1) > 0$, and $\rho(1) = z_0$.

Infinite Systems of Functional Equations

COMBINATORIAL CENTRAL LIMIT THEOREM III (cont.)

Suppose that $A(z, u) = \Psi(z, u, (A_j(z, u))_{j \ge 0})$, where Ψ is analytic with non-negative coefficients.

$$\implies A(z,u) = g(z,u) - h(z,u) \sqrt{1 - \frac{z}{\rho(u)}}$$
$$\longrightarrow [z^n] A(z,u) \sim C(u) \rho(u)^{-n} n^{-3/2}$$

Consider the random variable X_n giben by

$$\mathbb{P}\{X_n = k\} = \frac{a_{nk}}{a_n},$$

where $a_{n,k} = [z^n u^k] A(z, u)$ and $a_n = [z^n] A(z, 1)$. Then X_n satisfies a central limit theorem with $\mathbb{E} X_n \sim \mu n$ and $\mathbb{V}rmar X_n \sim \sigma^2 n$.

Special case of infinite system

$$A_j = \Phi_j(z, u, A_0, A_1, \ldots), \qquad j \ge 0,$$

with

$$\Phi_j(z, 1, A_0, A_1, \ldots) = \tilde{\Phi}_j(z, A_0 + A_1 + \cdots),$$

so that $A = A_0 + A_1 + \cdots$ satisfies
 $A = \tilde{\Phi}(z, A),$

where

$$\tilde{\Phi}(z,A) = \sum_{j\geq 0} \tilde{\Phi}_j(z,A) = \sum_{j\geq 0} \Phi(z,1,A_0,A_1,\ldots)$$

$$\implies \frac{\partial \Phi_j}{\partial a_i}(z, 1, \mathbf{a}) \quad \text{does not depend on } i$$
$$\implies \Phi_{\mathbf{a}}(z, 1, \mathbf{a}) \quad \text{is compact}$$

Thank You!