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Asymptotic analysis of random objects

Levels of complexity:

1. Asymptotic enumeration

2. Distribution of (shape) parameters

3. Asymptotic shape (= continuous limiting object)



Contents 1

I. COMBINATORIAL RANDOM TREES

• Catalan trees and Cayley trees

• Functional equations and algebraic singularities

• A combinatorial central limit theorem

• The degree distribution of random trees



Random Trees

Catalan trees

root

rooted, ordered (or plane) tree



Random Trees

Catalan trees. gn = number of Catalan trees of size n; G(x) =
∑
n≥1

gnx
n

= + + + ...+

G(x) = x(1 +G(x) +G(x)2 + · · · ) =
x

1−G(x)

G(x) =
1−
√

1− 4x

2
=⇒ gn =

1

n

(2n− 2

n− 1

)
∼

4n−1

√
π · n3/2

(Catalan numbers)



Random Trees

Catalan trees with singularity analysis (to be discussed later)

G(x) =
1−
√

1− 4x

2
=

1

2
−

1

2

√
1− 4x

=⇒ gn ∼ −
1

2
·

4nn−3/2

Γ(−1
2)

=
4n−1

√
π · n3/2



Random Trees

Number of leaves of Catalan trees

gn,k = number of Catalan trees of size n with k leaves.

= + + + ...+

G(x, u) = xu+ x(G(x, u) +G(x, u)2 + · · · = xu+
xG(x, u)

1−G(x, u)

=⇒ G(x, u) =
1

2

(
1 + (u− 1)x−

√
1− 2(u+ 1)x+ (u− 1)2x2

)

=⇒ gn,k =
1

n

(n
k

)(n− 1

k

)
∼

4n

πn2
exp

−(k − n
2)2

1
4 n

 for k ≈ n
2



Random Trees

Number of leaves of Catalan trees

G(x, u) = g(x, u)− h(x, u)

√
1−

x

ρ(u)

for certain analytic function g(x, u), h(x, u), and ρ(u).

=⇒ gn,k =???



Random Trees

Cayley Trees:

1 2

3

4

5

6

root

=1

2 2

1

3 3

4 4

labelled, rooted, unordered (or non-plane) tree



Random Trees

Cayley Trees. rn =number of Cayley trees of size n; R(x) =
∑
n≥1

rn
xn

n!

= + + + ...+

R(x) = x

(
1 +R(x) +

R(x)2

2!
+
R(x)3

3!
+ · · ·

)
= x eR(x)

=⇒ rn = nn−1 . . . by Lagrange inversion



Random Trees

Number of leaves of Cayley trees

rn,k = number of Cayley trees of size n with k leaves.

= + + + ...+

R(x, u) = xu+ x

(
R(x, u) +

R(x, u)2

2!
+
R(x, u)3

3!
+ · · ·

)
= xeR(x,u) + x(u− 1)

=⇒ R(x, u) =???



Functional equations

Catalan trees: G(x, u) = xu+ xG(x, u)/(1−G(x, u))

Cayley trees: R(x, u) = xeR(x,u) + x(u− 1)

Recursive structure leads to functional equation for gen. func.:

A(x, u) = Φ(x, u,A(x, u))



Functional equations

Linear functional equation: Φ(x, u, a) = Φ0(x, u) + aΦ1(x, u)

=⇒ A(x, u) =
Φ0(x, u)

1−Φ1(x, u)

Usually these kinds of generating functions are easy to handle, since

they are explicit.



Functional equations

Non-linear functional equations: Φaa(x, u, a) 6= 0.

Suppose that A(x, u) = Φ(x, u,A(x, u)) , where Φ(x, u, a) has a power

series expansion at (0,0,0) with non-negative coefficients and

Φaa(x, u, a) 6= 0.

Let x0 > 0, a0 > 0 (inside the region of convergence) satisfy the system

of equations:

a0 = Φ(x0,1, a0), 1 = Φa(x0,1, a0) .

Then there exists analytic function g(x, u), h(x, u), and ρ(u) such that

locally

A(x, u) = g(x, u)− h(x, u)

√
1−

x

ρ(u)
.



Functional equations

Idea of the Proof.

Set F (x, u, a) = Φ(x, u, a)− a . Then we have

F (x0,1, a0) = 0

Fa(x0,1, a0) = 0

Fx(x0,1, a0) 6= 0

Faa(x0,1, a0) 6= 0.

Weierstrass preparation theorem implies that there exist analytic func-

tions H(x, u, a), p(x, u), q(x, u) with H(x0,1, a0) 6= 0, p(x0,1) = q(x0,1) =

0 and

F (x, u, a) = H(x, u, a)
(
(a− a0)2 + p(x, u)(a− a0) + q(x, u)

)
.



Functional equations

F (x, u, a) = 0 ⇐⇒ (a− a0)2 + p(x, u)(a− a0) + q(x, u) = 0 .

Consequently

A(x, u) = a0 −
p(x, u)

2
±

√
p(x, u)2

4
− q(x, u)

= g(x, u)− h(x, u)

√
1−

x

ρ(u)
,

where we write

p(x, u)2

4
− q(x, u) = K(x, u)(x− ρ(u))

which is again granted by the Weierstrass preparation theorem and we

set

g(x, u) = a0 −
p(x, u)

2
and h(x, u) =

√
−K(x, u)ρ(u).



Random Trees

Catalan Trees G(x, u) = xu+ xG(x,u)
1−G(x,u)

=⇒ G(x, u) = g(x, u)− h(x, u)

√
1−

x

ρ(u)

G(x,1) = G(x) = g(x,1)− h(x,1)

√
1−

x

ρ(1)
, ρ(1) =

1

4

Cayley Trees T (x, u) = xeT (x,u) + x(u− 1)

=⇒ T (x, u) = g(x, u)− h(x, u)

√
1−

x

ρ(u)

T (x,1) = T (x) = g(x,1)− h(x,1)

√
1−

x

ρ(1)
, ρ(1) =

1

e



Algebraic Singularities

Singular expansion

A(x) = g(x)− h(x)

√
1−

x

ρ

=
(
g0 + g1(x− ρ) + g2(x− ρ)2 + · · ·

)
+
(
h0 + h1(x− ρ) + h2(x− ρ)2 + · · ·

)√
1−

x

ρ

= a0 + a1

(
1−

x

ρ

)1
2

+ a2

(
1−

x

ρ

)2
2

+ a3

(
1−

x

ρ

)3
2

+ · · ·

= a0 + a1

(
1−

x

ρ

)1
2

+ a2

(
1−

x

ρ

)
+O

(1−
x

ρ

)3
2





Algebraic Singularities

Singular expansion

A(x) = g(x)− h(x)

√
1−

x

ρ

=
(
g0 + g1(x− ρ) + g2(x− ρ)2 + · · ·

)
+
(
h0 + h1(x− ρ) + h2(x− ρ)2 + · · ·

)√
1−

x

ρ

= a0 + a1

(
1−

x

ρ

)1
2

+ a2

(
1−

x

ρ

)2
2

+ a3

(
1−

x

ρ

)3
2

+ · · ·

= a0 + a1

(
1−

x

ρ

)1
2

+ a2

(
1−

x

ρ

)
+ O

(1−
x

ρ

)3
2





Algebraic Singularities

Singularity Analysis

Lemma 1 Suppose that

y(x) =

(
1−

x

x0

)−α
.

Then

yn = (−1)n
(−α
n

)
x−n0 =

nα−1

Γ(α)
x−n0 +O

(
nα−2x−n0

)
.

Remark: This asymptotic expansion is uniform in α if α varies in a

compact region of the complex plane.



Algebraic Singularities

Singularity Analysis

Lemma 2 (Flajolet and Odlyzko) Let

y(x) =
∑
n≥0

yn x
n

be analytic in a region

∆ = {x : |x| < x0 + η, | arg(x− x0)| > δ},

x0 > 0, η > 0, 0 < δ < π/2.

Suppose that for some real α

y(x) = O
(
(1− x/x0)−α

)
(x ∈∆).

Then

yn = O
(
x−n0 nα−1

)
.



Algebraic Singularities

∆-region

D

x0



Algebraic Singularities

Singularity Analysis

Suppose that

A(x) = g(x)− h(x)

√
1−

x

ρ

= a0 + a1

(
1−

x

ρ

)1
2

+ a2

(
1−

x

ρ

)
+O

(1−
x

ρ

)3
2


for x ∈∆ then

an = [xn]A(x) =
h(ρ)

2
√
π
ρ−nn−

3
2

(
1 +O

(
1

n

))
.



Algebraic Singularities

Singularity Analysis

Suppose that

A(x, u) = g(x, u)− h(x, u)

√
1−

x

ρ(u)

= a0(u) + a1(u)

(
1−

x

ρ(u)

)1
2

+ a2(u)

(
1−

x

ρ(u)

)
+O

(1−
x

ρ(u)

)3
2


for x ∈∆ = ∆(u) then

an(u) = [xn]A(x, u) =
h(ρ(u), u)

2
√
π

ρ(u)−nn−
3
2

(
1 +O

(
1

n

))
.



Probabilistic Model

an ... number of objects of size n

an,k ... number of objects of size n, where a certain parameter has

value k

If all objects of size n are considered to be equally likely then the

parameter can be considered as a random variable Xn with distribution

P{Xn = k} =
ank
an

.



Probabilistic Model

Generating functions and the probability generating function

A(x, u) =
∑
n,k

an,kx
nuk

=⇒ EuXn =
∑
k≥0

P{Xn = k}uk

=
∑
k≥0

ank
an

uk

=
[xn]A(x, u)

[xn]A(x,1)
=
an(u)

an



Probabilistic Model

Generating functions and the probability generating function

A(x, u) = g(x, u)− h(x, u)

√
1−

x

ρ(u)

=⇒ EuXn =
[xn]A(x, u)

[xn]A(x,1)

=

h(ρ(u),u)
2
√
π

ρ(u)−nn−
3
2
(
1 +O

(
1
n

))
h(ρ(1),1)

2
√
π

ρ(1)−nn−
3
2
(
1 +O

(
1
n

))

=
h(ρ(u), u)

h(ρ(1),1)

(
ρ(1)

ρ(u)

)n (
1 +O

(
1

n

))
.



Probabilistic Model

Quasi-Power Theorem (Hwang)

Let Xn be a sequence of random variables with the property that

EuXn = A(u) ·B(u)λn ·
(

1 +O

(
1

φn

))

holds uniformly in a complex neighborhood of u = 1, λn →∞ and

φn →∞ , and A(u) and B(u) are analytic functions in a neighborhood

of u = 1 with A(1) = B(1) = 1. Set

µ = B′(1) and σ2 = B′′(1) +B′(1)−B′(1)2.

=⇒ EXn = µλn +O (1 + λn/φn) , VXn = σ2λn +O (1 + λn/φn) ,

Xn − EXn√
VXn

d−→ N(0,1) (σ2 6= 0).



Probabilistic Model

Sums of independent random variables

Xn = ξ1 + ξ2 + · · ·+ ξn, where ξj are i.i.d.

B(u) = Euξj

=⇒ EuXn = Euξ1+ξ2+···+ξn

= Euξ1 · Euξ2 · · ·Euξn

= B(u)n.



Probabilistic Model

COMBINATORIAL CENTRAL LIMIT THEOREM

Suppose that a sequence of random variables Xn has distribution

P{Xn = k} =
ank
an

,

where the generating function A(x, u) =
∑
n,k

an,kx
nuk satisfies a func-

tional equation of the form A(x, u) = Φ(x, u,A(x, u)) , where Φ(x, u, a)

has a power series expansion at (0,0,0) with non-negative coefficients

and Φaa(x, u, a) 6= 0.

Let x0 > 0, a0 > 0 (inside the region of convergence) satisfy the system

of equations:

a0 = Φ(x0,1, a0), 1 = Φa(x0,1, a0) .



Probabilistic Model

COMBINATORIAL CENTRAL LIMIT THEOREM (cont.)

Set

µ =
Φu

x0Φx
,

σ2 = µ+ µ2 +
1

x0Φ3
xΦaa

(
Φ2
x(ΦaaΦuu −Φ2

au)− 2ΦxΦu(ΦaaΦxu −ΦaxΦau)

+ Φ2
u(ΦaaΦxx −Φ2

ax)
)
,

(where all partial derivatives are evaluated at the point (x0, a0,1))

Then we have

EXn = µn+O(1) and VarXn = σ2n+O(1)

and if σ2 > 0 then

Xn − EXn√
VarXn

→ N(0,1) .



Random Trees

Leaves in Catalan trees

The number of leaves in Catalan trees of size n satisfy a central limit

theorem with mean ∼ 1
2n and variance ∼ 1

8n

Leaves in Cayley trees

The number of leaves in Cayley trees of size n satisfy a central limit

theorem with mean ∼ 1
en and variance ∼

(
1
e2 + 1

e

)
n



Random Trees

Nodes of out-degree d in Catalan trees

= + + + ...+

G(x, u) =
x

1−G(x, u)
+ x(u− 1)G(x, u)d

The number X(d)
n of nodes with out-degree d in Catalan trees of size n

satisfy a central limit theorem with mean ∼ µdn and variance ∼ σ2
dn,

where

µd =
1

2d+1
and σ2

d =
1

2d+1
+

1

22(d+1)
−

(d− 1)2

22d+3
.



Random Trees

Nodes of out-degree d in Cayley trees

= + + + ...+

R(x, u) = xeR(x,u) + x(u− 1)
R(x, u)d

d!
The number of nodes with out-degree d in Cayley trees of size n satisfy

a central limit theorem with mean ∼ µdn and variance ∼ σ2
dn, where

µd =
1

e d!
and σ2

d =
1 + (d− 1)2

e2(d!)2
+

1

e d!



Random Trees

Degree distribution for Catalan trees

pn,d ... probability that a random node in a random Catalan tree of

size n has out-degree d:

EX(d)
n = n pn,d

pd := lim
n→∞ pn,d =

1

2d+1
= µd

Probability generating function of the out-degree distribution:

p(w) :=
∑
d≥0

pdw
d =

1

2− w



Random Trees

Degree distribution for Cayley trees

pn,d ... probability that a random node in a random Cayley tree of size

n has out-degree d:

EX(d)
n = n pn,d

pd := lim
n→∞ pn,d =

1

e d!
= µd

Probability generating function of the out-degree distribution:

p(w) :=
∑
d≥1

pdw
d = ew−1



Contents 2

I. COMBINATORIAL RANDOM TREES

• Maximum degree

• Unrooted trees

II. PATTERN COUNTS IN RANDOM TREES

• Pattern in trees

• Systems of functional equations



Random Trees

Maximum degree

∆n ... maximum out-degree

X
(>d)
n = X

(d+1)
n + X

(d+2)
n + · · · ... number of nodes of out-degree

> d.

∆n > d ⇐⇒ X
(>d)
n > 0



Random Trees

First moment method

X ... a discrete random variable on non-negative integers.

=⇒ P{X > 0} ≤ min{1,EX}

Proof

EX =
∑
k≥0

k P{X = k} ≥
∑
k≥1

P{X = k} = P{X > 0}.



Random Trees

Second moment method

X is a non-negative random variable with finite second moment.

=⇒ P{X > 0} ≥
(EX)2

E (X2)

Proof

EX = E
(
X · 1[X>0]

)
≤
√
E (X2)

√
E (12

[X>0]) =
√
E(X2)

√
P{X > 0}.



Random Trees

Tail estimates and expected value

• P{∆n > d} ≤ min{1,EX(>d)
n }

• P{∆n > d} ≥
(EX(>d)

n )2

E (X(>d)
n )2

=⇒ P{∆n ≤ d} ≤ 1−
(EX(>d)

n )2

E (X(>d)
n )2

=
VarX(>d)

n

E (X(>d)
n )2

• E∆n =
∑
d≥0

P{∆n > d}



Random Trees

Maximum degree of Catalan trees

EX(>d)
n ∼

n

2d+1
, Var (X(>d)

n )2 ∼ n
(

1

2d+1
+

1

22(d+1)
−

(d− 1)2

22d+3

)

=⇒ P{∆n > d} ≤ min
{

1,
n

2d+1

}
,

P{∆n ≤ d} = 1− P{∆n > d}

≤
1

n

1
2d+1 + 1

22(d+1) −
(d−1)2

22d+3

1
22(d+1)

∼
2d+1

n

=⇒ ∆n is concentrated at log2 n+O(1)



Random Trees

Maximum degree of Catalan trees (Carr, Goh and Schmutz)

P{∆n ≤ k} = exp
(
−2−(k−log2 n+1)

)
+ o(1)

E∆n = log2 n+O(1)



Random Trees

Unrooted trees

pn ... number of different embeddings of unrooted trees of size n in

the plane, P (x) =
∑
n≥1

pnx
n :

P (x) = x
∑
k≥0

ZCk
(G(x), G(x2), . . . , G(xk))−

1

2
G(x)2 +

1

2
G(x2) ,

where G(x) = x/(1−G(x)) = (1−
√

1− 4x)/2 and

ZCk
(x1, x2, . . . , xk) =

1

k

∑
d|k

ϕ(d)x
k/d
d

is the cycle index of the cyclic group Ck of k elements



Random Trees

Unrooted trees

Cancellation of the
√

1− 4x-term:

G(x) =
1−
√

1− 4x

2
=⇒ P (x) = a0 +a2(1−4x) +

1

6
(1−4x)3/2 + · · ·

=⇒ pn =
1

8
√
π

4nn−5/2
(
1 +O(n−1)

)



Random Trees

Degree distribution of unrooted trees

X
(d)
n ... number of nodes of degree d in trees of size n

P (x, u) = x
∑
k 6=d

ZCk
(G(x, u), G(x2, u2), . . . , G(xk, uk))

+ xuZCd
(G(x, u), G(x2, u2), . . . , G(xd, ud))

−
1

2
G(x, u)2 +

1

2
G(x2, u2),

where

G(x, u) =
x

1−G(x, u)
+ x(u− 1)G(x, u)d−1.



Random Trees

Degree distribution of unrooted trees

Cancellation of the
√

1− 4x-term:

G(x, u) = g(x, u)− h(x, u)

√
1−

x

ρ(u)

=⇒ P (x, u) = a0(u) + a2(u)

(
1−

x

ρ(u)

)
+ a3(u)

(
1−

x

ρ(u)

)3
2

+ · · ·

=⇒ X
(d)
n satisfies a central limit theorem with mean ∼ µd−1n and

variance ∼ σ2
d−1n, where

µd =
1

2d+1
and σ2

d =
1

2d+1
+

1

22(d+1)
−

(d− 1)2

22d+3
.



Random Trees

Degree distribution of unrooted trees

pn,d ... probability that a random node in a tree of size n has degree d:

EX(d)
n = n pn,d

pd = lim
n→∞ pn,d = µd−1 =

1

2d

Probability generating function of the degree distribution:

p(w) =
∑
d≥1

pdw
d =

w

2− w



Random Trees

Maximum degree for unrooted trees

∆n ... maximum degree of unrooted trees of size n

∆n is concentrated at log2 n

E∆n = log2 n+O(1)



Random Trees

Unrooted labelled trees

tn = rn/n = nn−2 ... number of different unrooted labelled trees of

size n: T (x) =
∑
n≥1

tn
xn

n!
:

T (x) = xeR(x) −
1

2
R(x)2 = R(x)−

1

2
R(x)2 ,

where R(x) = xeR(x) (note that T ′(x) = R(x)/x)

Cancellation of the
√

1− ex-term:

R(x) = g(x)−h(x)
√

1− ex =⇒ T (x) = a0+a2(1−4x)+
1

6
(1−ex)3/2+· · ·



Random Trees

Degree distribution of unrooted labelled trees

X
(d)
n ... number of nodes of degree d in trees of size n

T (x, u) = xeR(x,u) + x(u− 1)
R(x, u)d

d!
−

1

2
R(x, u)2,

where

R(x, u) = xeR(x,u) + x(u− 1)
R(x, u)d−1

(d− 1)!
.



Random Trees

Degree distribution of unrooted labelled trees

Cancellation of the
√

1− 4x-term:

R(x, u) = g(x, u)− h(x, u)

√
1−

x

ρ(u)

=⇒ T (x, u) = a0(u) + a2(u)

(
1−

x

ρ(u)

)
+ a3(u)

(
1−

x

ρ(u)

)3
2

+ · · ·

=⇒ X
(d)
n satisfies a central limit theorem with mean ∼ µd−1n and

variance ∼ σ2
d−1n, where

µd =
1

e d!
and σ2

d =
1 + (d− 1)2

e2(d!)2
+

1

e d!

(Note again that ∂
∂xT (x, u) = R(x, u)/x)



Random Trees

Star pattern

d = 5

X
(d)
n = number of nodes of degree d in trees of size n

= number of star pattern with d rays in trees of size n



Patterns in Trees

Pattern M



Patterns in Trees

Pattern M



Patterns in Trees

Occurrence of a pattern M
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Patterns in Trees

Occurrence of a pattern M in a labelled tree

2

3
11

1
13

84

12

6

910

5

7

14

15



Patterns in Trees

Cayley’s formula

rn = nn−1 ... number of rooted labelled trees with n nodes

tn = nn−2 ... number of labelled trees with n nodes

Generating functions

R(x) =
∑
n≥1

rn
xn

n!
:

R(x) = xeR(x)

T (x) =
∑
n≥1

tn
xn

n!
:

T (x) = R(x)−
1

2
R(x)2

(Note that xT ′(x) = R(x) so that we also have T (x) =
∫
R(x)/x dx.)



Patterns in Trees

Theorem

M ... be a given finite tree.

Xn ... number of occurrences of of M in a labelled tree of size n

=⇒ Xn satisfies a central limit theorem with

EXn ∼ µn and VXn ∼ σ2n.

µ > 0 and σ2 ≥ 0 depend on the pattern M and can be computed

explicitly and algorithmically and can be represented as polynomials

(with rational coefficients) in 1/e.



Patterns in Trees

Partition of trees in classes ( ... out-degree different from 2)

a a

a

a

aa

a

a a a a
7

65

0

43

21

98 10



Patterns in Trees

Recurrences A3 = xA0A2 + xA0A3 + xA0A4

a3

a0
a2 a3

a4

= + +
a0 a0

Aj(x) =
∑
n,k

aj;n
xn

n!

aj;n ... number of trees of size n in class j



Patterns in Trees

Recurrences A3 = xuA0A2 + xuA0A3 + xuA0A4

a3

a0
a2 a3

a4

= + +
a0 a0

Aj(x, u) =
∑
n,k

aj;n,k
xn

n!
uk

aj;n,k ... number of trees of size n in class j with k occurrences of M



Patterns in Trees

A0 = A0(x, u) = x+ x
10∑
i=0

Ai + x
∞∑
n=3

1

n!

 10∑
i=0

Ai

n ,
A1 = A1(x, u) =

1

2
xA2

0,

A2 = A2(x, u) = xA0A1,

A3 = A3(x, u) = xA0(A2 +A3 +A4)u,

A4 = A4(x, u) = xA0(A5 +A6 +A7 +A8 +A9 +A10)u2,

A5 = A5(x, u) =
1

2
xA2

1u,

A6 = A6(x, u) = xA1(A2 +A3 +A4)u2,

A7 = A7(x, u) = xA1(A5 +A6 +A7 +A8 +A9 +A10)u3,

A8 = A8(x, u) =
1

2
x(A2 +A3 +A4)2u3,

A9 = A9(x, u) = x(A2 +A3 +A4)(A5 +A6 +A7 +A8 +A9 +A10)u4,

A10 = A10(x, u) =
1

2
x(A5 +A6 +A7 +A8 +A9 +A10)2u5.



Systems of Functional equations

COMBINATORIAL CENTRAL LIMIT THEOREM II

Suppose that a sequence of random variables Xn has distribution

P[Xn = k] =
ank
an

,

where the generating function A(x, u) =
∑
n,k

an,kx
nuk is given by

A(x, u) = Ψ(x, u,A1(x, u), . . . , Ar(x, u))

for an analytic function Ψ and the generating functions

A1(x, u) =
∑
n,k

a1;n,ku
kxn, . . . , Ar(x, u) =

∑
n,k

ar;n,ku
kxn

satisfy a system of non-linear equations

Aj(x, u) = Φj(x, u,A1(x, u), . . . , Ar(x, u)) , (1 ≤ j ≤ r).



Systems of Functional equations

COMBINATORIAL CENTRAL LIMIT THEOREM II (cont.)

Suppose that at least one of the functions Φj(x, u, a1, . . . , ar) is non-

linear in a1, . . . , ar and they all have a power series expansion at (0,0,0)

with non-negative coefficients.

Let x0 > 0, a0 = (a0,0, . . . , ar,0) > 0 (inside the region of convergence)

satisfy the system of equations: (Φ = (Φ1, . . . ,Φr))

a0 = Φ(x0,1, a0), 0 = det(I−Φa(x0,1, a0)

such that the spectral radius of the Jacobian Φa equals 1. Suppose

further, that the dependency graph of the system

a = Φ(x, u, a) is strongly connected (which means that no subsystem

can be solved before the whole system).



Systems of Functional equations

COMBINATORIAL CENTRAL LIMIT THEOREM II (cont.)

Then there exists analytic function gj(x, u), hj(x, u), and ρ(u) (that is

independent of j) such that locally

Aj(x, u) = gj(x, u)− hj(x, u)

√
1−

x

ρ(u)
.

and consequently (for some g(x, u), h(x, u))

A(x, u) = g(x, u)− h(x, u)

√
1−

x

ρ(u)
.

Consequently the random variable Xn satisfies a central limit theorem

with

EXn ∼ nµ and VarXn ∼ nσ2 ,

where µ and σ2 can be computed.



Patterns in Trees

Final Result for M =

Central limit theorem with

µ =
5

8e3
= 0.0311169177 . . .

and

σ2 =
20e3 + 72e2 + 84e− 175

32e6
= 0.0764585401 . . . .
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III. CONTINUOUS LIMITING OBJECTS

• Weak Convergence

• The Depth-First-Search of Rooted Trees

• The Continuum Random Tree

• The Profile of Galton-Watson trees

• Scaling Limit of Series-Parallel Graphs



Asymptotics on Random Discrete Objects

Levels of complexity:

1. Asymptotic enumeration

2. Distribution of (shape) parameters

3. Asymptotic shape (= continuous limiting object)



Weak Convergence

Xn, X ... (real) random variables:

Xn
d−→ X :⇐⇒ lim

n→∞P{Xn ≤ x} = P{X ≤ x}

for all points of continuity

of FX(x) = P{X ≤ x}

⇐⇒ lim
n→∞EG(Xn) = EG(X)

for all bounded continuous

functionals G : R→ R

⇐⇒ lim
n→∞E eitXn = E eitX

for all real t

(Levy’s criterion)



Weak Convergence

Polish space: (S, d) ... complete, separable, metric space

Examples: R, Rk, C[0,1], M0(X) (probability measures on X)

S-valued random variable: X : Ω→ S ... measurable function

S = R: random variable

S = Rk: k-dimensional random vector

S = C[0,1]: stochastic process (X(t),0 ≤ t ≤ 1)

S =M0(X): random measure



Weak Convergence

Definition

Xn, X : Ω→ S ... S-valued random variables ((S, d) ... Polish space)

Xn
d−→ X :⇐⇒ lim

n→∞EG(Xn) = EG(X)

for all bounded continuous

functionals G : S → R



Weak Convergence

Stochastic process: random function
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Weak Convergence

Stochastic process

Xn : Ω→ C[0,1] sequence of stochastic processes, X : Ω→ C[0,1]

• Xn d−→ X =⇒ F (Xn)
d−→ F (X) for all continuous F : S → S′.

• Xn d−→ X =⇒ Xn(t0)
d−→ X(t0) for all fixed t0 ∈ [0,1].

• Xn d−→ X =⇒ (Xn(t1), . . . , Xn(tk))
d−→ (X(t1), . . . , X(tk))

for all k ≥ 1 and all fixed t1, . . . , tk ∈ [0,1].

The converse statement is not necessarily true, one needs tightness.



Weak Convergence

Stochastic process

Xn : Ω→ C[0,1] sequence of stochastic processes, X : Ω→ C[0,1]

1. (Xn(t1), . . . , Xn(tk))
d−→ (X(t1), . . . , X(tk))

for all k ≥ 1 and all fixed t1, . . . , tk ∈ [0,1]

2. E
(
|Xn(0)|β

)
≤ C

for some constant C > 0 and an exponent β > 0

3. E
(
|Xn(t)−Xn(s)|β

)
≤ C|t− s|α for all s, t ∈ [0,1]

for some constant C > 0 and exponents α > 1 and β > 0.

Then

(Xn(t),0 ≤ t ≤ 1)
d−→ (X(t),0 ≤ t ≤ 1) .



Depth-First-Search

Rooted trees and discrete excursions

i

x(i)

Bijection between

Catalan trees ←→ Dyck paths

random trees of size n ←→ random Dyck paths of length 2n



Depth-First-Search

Brownian excursion (e(t),0 ≤ t ≤ 1)
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Rescaled Brownian motion between 2 zeros.

Random function in C[0,1].



Depth-First-Search

Kaigh’s Theorem

(Xn(t),0 ≤ t ≤ 2n) ... random Dyck path of length 2n.

=⇒
(

1√
2n
Xn(2nt),0 ≤ t ≤ 1

)
d−→ (2e(t),0 ≤ t ≤ 1).

Remark. This theorem also holds for more general random walks with

independent increments conditioned to be an excursion.



Real Trees

T ... tree, T ... embedding of T into the plane R2

=⇒ T is a metric space (and a real tree in the following sense):

Definition

A metric space (T , d) is a real tree if the following two properties hold
for every x, y ∈ T .

1. There is a unique isometric map hx,y : [0, d(x, y)] → T such that
hx,y(0) = x and hx,y(d(x, y)) = y.

2. If q is a continuous injective map from [0,1] into T with q(0) = x
and q(1) = y then

q([0,1]) = hx,y([0, d(x, y)]).

A rooted real tree (T , d) is a real tree with a distinguished vertex
r = r(T ) called the root.



Real Trees

Two real trees (T1, d1), (T2, d2) are equivalent if there is a root-

preserving isometry that maps T1 onto T2.

T ... set of all equivalence classes of rooted compact real trees.

Gromov-Hausdorff Distance dGH(T1, T2) of two real trees T1, T2 is

the infimum of the Hausdorff distance of all isometric embeddings of

T1, T2 into the same metric space.

Hausdorff distance: δHaus(X,Y ) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}

Theorem

The metric space (T, dGH) is a Polish space.



Real Trees

g : [0,1]→ [0,∞) ... continuous, ≥ 0, g(0) = g(1) = 0

dg(s, t) = g(s) + g(t)− 2 inf
min{s,t}≤u≤max{s,t}

g(u)

s t

d  (s,t)=1+2-2=1g

s ∼ t ⇐⇒ dg(s, t) = 0 Tg = [0,1]/ ∼

=⇒ (Tg, dg) is a compact real tree.



Real Trees

Construction of a real tree Tg

The mapping C[0,1]→ T, g 7→ Tg is continuous.



Real Trees

Catalan trees as real trees

i

x(i)

Tn Xn = XTn TXn



Real Trees

Continuum random tree T2e (with Brownian excursion e(t))



Real Trees

Theorem

(Xn(t),0 ≤ t ≤ 2n) ... random Dyck paths of length 2n

or the depth-first-search process of Catalan trees of size n.

=⇒ 1√
2n
TXn

d−→ T2e

In other words...

Scaled Catalan trees (interpreted as “real trees”) converge weakly to

the continuum random tree.



Galton-Watson Trees

Galton-Watson branching process

ξ ... offspring distribution, ϕk = P{ξ = k}, ϕ0 > 0
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Galton-Watson Trees

Galton-Watson branching process

ξ ... offspring distribution, ϕk = P{ξ = k}, ϕ0 > 0



Galton-Watson Trees

Galton-Watson branching process. (Zk)k≥0

Z0 = 1, and for k ≥ 1

Zk =
Zk−1∑
j=1

ξ
(k)
j ,

where the (ξ(k)
j )k,j are iid random variables distributed as ξ.

Zk ... number of nodes in k-th generation

Z = Z0 + Z1 + Z2 + · · · ... total progeny



Galton-Watson Trees

Generating functions

yn = P{Z = n}, y(x) =
∑
n≥1

ynx
n

Φ(w) = Ewξ =
∑
k≥0

ϕkw
k

=⇒ y(x) = xΦ(y(x))

Conditioned Galton-Watson tree

GW-branching process conditioned on the total progeny Z = n.



Galton-Watson Trees

Example. P{ξ = k} = 2−k−1, Φ(w) = 1/(2− w)

=⇒ all trees of size n have the same probability

=⇒ conditioned GW-tree of size n is the same model as the Catalan

tree model (with the uniform distribution on trees of size n)

Example. Φ(w) = 1
2(1 + w)2: binary trees with n internal nodes.

Example. Φ(w) = 1
3(1 + w + w2): Motzkin trees

Example. Φ(w) = ew−1: Cayley trees



Galton-Watson Trees

General assumption: E ξ = 1 , 0 < Var ξ = σ2 <∞

Theorem (Aldous)

Xn(t) ... depth-first-search of conditioned GW-trees of size n

=⇒
(

σ

2
√
n
Xn(2nt),0 ≤ t ≤ 1

)
d−→ (e(t),0 ≤ t ≤ 1) .

Corollary

σ
√
n
TXn

d−→ T2e



Galton-Watson Trees

Corollary Hn ... height of conditioned GW-trees of size n:

=⇒ 1
√
n
Hn

d−→
2

σ
max

0≤t≤1
e(t)

Remark. Distribution function of max
0≤t≤1

e(t):

P{ max
0≤t≤1

e(t) ≤ x} = 1− 2
∞∑
k=1

(4x2k2 − 1)e−2x2k2



Galton-Watson Trees

Profile

LT (k) ... number of nodes at distance k from the root

(LT (k))k≥0 ... profile of T

(LT (s), s ≥ 0) ... linearly interpolated profile of T

k

L(k)



Galton-Watson Trees

Value distribution

µT =
1

|T |
∑
k≥0

LT (k) δk

δx ... δ-distribution concentrated at x



Galton-Watson Trees

Occupation measure: random measure on R

µ(A) =
∫ 1

0
1A(e(t) dt

measure how long e(t) stays in set A



Galton-Watson Trees

Theorem (Aldous)

(Ln(k), k ≥ 0) ... random profile of conditioned GW-trees of size n

=⇒ 1

n

∑
k≥0

Ln(k) δ(σ/2)k/
√
n

d−→ µ



Galton-Watson Trees

Local time of the Brownian excursion: random density of µ

l(s) = lim
ε→0

1

ε

1∫
0

1[s,s+ε](e(t)) dt

Theorem (D.+Gittenberger)

(Ln(s), s ≥ 0) ... random profile of conditioned GW-trees of size n

=⇒
(

1
√
n
Ln(s

√
n), s ≥ 0

)
d−→

(
σ

2
l

(
σ

2
s

)
, s ≥ 0

)

Proof with asymptotics on generating functions (very involved)!!!



Galton-Watson Trees

Width

W = max
k≥0

L(k) = max
t≥0

L(t),

maximal number of nodes in a level.

Corollary

1
√
n
Wn

d−→
σ

2
sup

0≤t≤1
l(t)

Remark. supt≥0 l(t) = 2 sup0≤t≤1 e(t) (in distribution)



Series-Parallel Graphs

Connected Series-Parallel Graphs

Series-parallel extension of a tree (or no K4 as a minor)

Series-extension:

Parallel-extension:



Scaling Limit of Series Parallel Graphs

A typcial series-parallel graph of size n has ≈ c1n 2-connected compo-

nents that form a tree

The 2-connected components do not scale in distribution, their ex-

pected size is finite and they behave almost) independent and identi-

cally distributed.

So, series-parallel graphs look tree-like.



Scaling Limit of Series Parallel Graphs

Theorem (Panagiotou, Stufler, and Weller)

Cn ... connected, vertex labelled series-parallel graphs with n vertices

c
√
n
Cn

d−→ T2e

for some constant c > 0.

Remark. The same result holds for so-called subcricital graph classes

like cacti-graphs, outerplanar graphs etc. In all these graph classes the

diameter is of oder
√
n.



Contents 4

IV. SUBGRAPH COUNTS IN SERIES PARALLEL GRAPHS

• Sub-critical graph classes

• Asymptotic counting of sub-critical graph classes

• Series parallel graphs are sub-critical

• Subgraph counting

• A combinatorial CLT for infinite systems



Block-Decomposition



Block-Decomposition



Block-Decomposition



Block-Decomposition

block: 2-connected component (= maximal 2-connected subgraph)

Block-stable graph class G: G contains the one-edge graph and G ∈ G
if and only if all blocks of G are contained in G.

Equivalently, the 2-connected graphs of G and the one-edge graph

generate all graphs of G.

Examples: Planar graphs, series-parallel graphs, minor-closed graph

classes etc.

B(x) ... GF for 2-connected graphs in G

C(x) ... GF for connected graphs in G

[We will consider here only connected graphs]



Generating Functions for Block-Decomposition

Vertex-rooted graphs: one vertext (the root) is distinguished (and

usually discounted, that is, it gets no label)

1

24

3

Generating function: (in den labelled case)

G•(x) = G′(x)



Generating Functions for Block-Decomposition

(in the labelled case)

B° B°

B°

xC°
xC°

xC°xC°

xC°
xC°

xC°

C•(x) = eB
•(xC•(x))



Generating Functions for Block-Decomposition

(in the labelled case)

B° B°

B°

xC°
xC°

xC°xC°

xC°
xC°

xC°

∂C(x, y)

∂x
= exp

(
∂B

∂x

(
x
∂C(x, y)

∂x
, y

))



Labelled Trees

Rooted Trees:

B•(x) = x

1

R(x) = xC•(x) ... generating function of rooted, labelled trees

C•(x) = eB
•(xC•(x)) =⇒ R(x) = xeR(x)

Remark: T (x) ... GF for unrooted labelled trees:

T (x)′ =
1

x
R(x) =⇒ T (x) = R(x)−

1

2
R(x)2



Outerplanar Graphs

4

1

3

7

8

62

5
9

27
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25 21
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12
10 17
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31

34

30

32

20

All vertices are on the infinite face.



Outerplanar Graphs

Generating functions

C•(x) = eB
•(xC•(x)) ,

B•(x) =
1 + 5x−

√
1− 6x+ x2

8
.

2-connected outerplanar graphs = dissections of the n-gon



Series-Parallel Graphs

Series-parallel extension of a tree (if we restict to connected graphs)

Series-extension:

Parallel-extension:



Series-Parallel Graphs

Equivalent Definitions

• Ex(K4)

• tree-width ≤ 2

• nested ear decomposition (if connected)



Series-Parallel Graphs

Generating functions

∂C(x, y)

∂x
= exp

(
∂B

∂x

(
x
∂C(x, y)

∂x
, y

))
,

∂B(x, y)

∂y
=
x2

2
eS(x,y),

S(x, y) =
x(P (x, y) + y)2

1− x(P (x, y) + y)
,

P (x, y) = (eS(x,y) − 1− S(x, y)) + y(eS(x,y) − 1).



Sub-critical Graphs

Repetition: Functional equations

Suppose that A(x) = Φ(x,A(x)) , where Φ(x, a) has a power series
expansion at (0,0) with non-negative coefficients and
Φaa(x, a) 6= 0.

Let x0 > 0, a0 > 0 (inside the region of convergence of Φ) satisfy
the system of equations:

a0 = Φ(x0, a0), 1 = Φa(x0, a0) .

Then there exists analytic function g(x), h(x) such that locally

A(x) = g(x)− h(x)

√
1−

x

x0
.

Remark. If there is no x0, a0 inside the region of convergence of Φ
then the singular behaviour of Φ determines the singular behaviour of
A(x) !!!



Sub-critical Graphs

A(x) = xC•(x), Φ(x, a) = xeB
•(a), xC•(x) = xeB

•(xC•(x))

=⇒ A(x) = Φ(x,A(x))

A block-stable graph class is called sub-critical if the system (note
that B•(x) = B′(x))

a0 = x0e
B′(a0), 1 = x0e

B′(a0)B′′(a0)

has positive solutions x0, a0 inside the region of convergence of Φ(x, a) =
xeB

•(a). In particular we get a squareroot singularity for C•(x).

This means that “a0 is smaller than the radius of convergence η

of B•”.

Eliminating x0 leads to a0B
′′(a0) = 1 or that

ηB′′(η) > 1

where η is the radius of convergence of B(x).



Sub-critical Graphs

• Trees are sub-critical

• Outerplanar graphs are sub-critical

• Series-parallel graphs are sub-critical



Sub-critical Graphs

Lemma. Suppose that B(x) has radius of convergence η ∈ (0,∞].

lim
x→ηB

′′(x) =∞ =⇒ sub-critical.

Corollary If B•(x) = B′(x) is entire or has a squareroot singularity:

B•(x) = g(x)− h(x)

√
1−

x

η
,

then we are in the sub-critical case.

This applies for outerplanar and series-parallel graphs.



Sub-critical Graphs

What does “sub-critical” mean?

In a sub-critical graph class the average size of the 2-connected

components is bounded.

=⇒ This leads to a tree like structure.

=⇒ The law of large numbers should apply so that we can expect

universal behaviors that are independent of the the precise structure

of 2-connected components.



Sub-critical Graphs

Universal properties

• Asymptotic enumeration:

Labelled case:

cn ∼ c n−5/2ρ−nn!

Unlabelled case:

cn ∼ c n−5/2ρ−n

(c > 0, ρ ... radius of convergence of C(z))

[D.+Fusy+Kang+Kraus+Rue 2011]



Sub-critical Graphs

• Asymptotic enumeration:

C•(x) = eB
•(xC•(x)

−→ xC•(x) = xC′(x) = g(x)− h(x)

√
1−

x

ρ

−→ [xn]xC′(x) =
n cn

n!
∼ c n−3/2ρ−n

−→ cn ∼ c n−5/2ρ−nn! .



Additive Parameters in Subcritical Graph Classes

Theorem 1 [D.+Fusy+Kang+Kraus+Rue]

Xn ... number of edges / number of blocks / number of cut-vertices

/ number of vertices of degree k

=⇒ Xn − µn√
n

→ N(0, σ2)

with µ > 0 and σ2 ≥ 0.

Remark. There is an easy to check “combinatorial condition” that

ensures σ2 > 0.



Additive Parameters in Subcritical Graph Classes

Proof Methods:

Refined versions of the functional equation C•(x) = eB
•(xC•(x)),

+ singularity analysis (always squareroot singularity)

E.g: number of edges:

C•(x, y) = eB
•(xC•(x,y),y)

or number of 2-connected components:

C•(x, y) = eyB
•(xC•(x,y))

−→ C•(x, y) = g(x, y)− h(x, y)

√
1−

x

ρ(y)

−→ [xn]C•(x, y) ∼ c(y)ρ(y)−nn−3/2

+ application of Quasi-Power-Theorem (by Hwang).



Graph Limits

Te ... continuum random tree (CRT)

Theorem [Panagiotou+Stufler+Weller]

C ... sub-critical graph class of connected graphs

=⇒ c
√
n
Cn → Te

with respect to the Gromov-Hausdorff metric, where c > 0 is a con-

stant.

Corollary. The diameter Dn as well as a typical distance in a sub-

critical graph is or order
√
n.



Subgraph Counting

Theorem [D.+Ramos+Rue]

G ... sub-critial graph class, H ∈ G fixed.

X
(H)
n ... number of occurences of H as a subgraph in graphs of size n

=⇒ X
(H)
n − µn
√
n

→ N(0, σ2)

with µ > 0 and σ2 ≥ 0.

Remark. The proof is easy if H is 2-connected = additive parame-

ter!!!



Subgraph Counting

H = P2 ... path of length 2

B•j (w1, w2, w3, . . . ;u) .... generating function of blocks in G, where the

root has degree j, where wi counts the number of non-root vertices of

degree i, and where u counts the number of occurrences of H = P2.

C•j (x, u) ... generating function of connected rooted graphs in G, where

the root vertex has degree j, where x counts the number of (all)

vertices and u the number of occurrences of H = P2.



Subgraph Counting

System of infinite number of equations

C•j (x, u) =
∑
s≥0

1

s!

∑
j1+···+js=j

u
∑
i1<i2

ji1ji2

×
s∏

i=1

B•ji

x ∑
`1≥0

u`1C•`1(x, u), x
∑
`2≥0

u2`2C•`2(x, u), . . . ;u

 ,
(j ≥ 0)

C•j (x,1) =
∑
s≥0

1

s!

∑
j1+···+js=j

s∏
i=1

B•ji
(
xC•(x), xC•(x), . . . ; 1

)
C•(x) =

∑
`≥0

C•` (x,1)



Subgraph Counting

System of infinite number of equations

Suppose that A(z) = (Aj(z))j≥0 = Φ(z,A(z)) is a positive, non-linear,

infinite and strongly connected system such that the Jacobian Φa(z, a)

is compact for z > 0 and a > 0.

Let z0 > 0, a0 = (aj,0)j≥0 (inside the region of convergence) satisfy

the system of equations:

a0 = Φ(z0, a0), r(Φa(z0, a0)) = 1 ,

where r(·) denotes the spectral radius.

Then there exists analytic function gj(z), hj(z) 6= 0 such that locally

Aj(z) = gj(z)− hj(z)

√
1−

z

z0
.

with gj(z0) = aj,0 and hj(z0) > 0.



Infinite Systems of Functional Equations

COMBINATORIAL CENTRAL LIMIT THEOREM III

Suppose that A(z, u) = (Aj(z, u))j≥0 = Φ(z, u,A(z, u)) is a positive,
non-linear, infinite and strongly connected system such that the
Jacobian Φa(z, 1, a) is compact for z > 0 and a > 0.

Let z0 > 0, a0 = (aj,0)j≥0 (inside the region of convergence) satisfy
the system of equations:

a0 = Φ(z0,1, a0), r(Φa(z0,1, a0)) = 1 ,

where r(·) denotes the spectral radius.

Then there exists analytic function gj(z, u), hj(z, u) 6= 0 and ρ(u) such
that locally

Aj(z, u) = gj(z, u)− hj(z, u)

√
1−

z

ρ(u)
.

with gj(z0,1) = aj,0, hj(z0,1) > 0, and ρ(1) = z0.



Infinite Systems of Functional Equations

COMBINATORIAL CENTRAL LIMIT THEOREM III (cont.)

Suppose that A(z, u) = Ψ(z, u, (Aj(z, u))j≥0), where Ψ is analytic with

non-negative coefficients.

=⇒ A(z, u) = g(z, u)− h(z, u)

√
1−

z

ρ(u)

−→ [zn]A(z, u) ∼ C(u)ρ(u)−nn−3/2

Consider the random variable Xn giben by

P{Xn = k} =
ank
an

,

where an,k = [znuk]A(z, u) and an = [zn]A(z,1). Then Xn satisfies a

central limit theorem with EXn ∼ µn and VrmarXn ∼ σ2n.



Subgraph Counting

Special case of infinite system

Aj = Φj(z, u,A0, A1, . . .), j ≥ 0,

with

Φj(z, 1, A0, A1, . . .) = Φ̃j(z,A0 +A1 + · · · ) ,

so that A = A0 +A1 + · · · satisfies

A = Φ̃(z,A) ,

where

Φ̃(z,A) =
∑
j≥0

Φ̃j(z,A) =
∑
j≥0

Φ(z,1, A0, A1, . . .)

=⇒
∂Φj

∂ai
(z,1, a) does not depend on i

=⇒ Φa(z,1, a) is compact



Thank You!


