

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

WiSe 2018/19

Prof. Dr. Thomas Vogel Daniel Räde

Symplectic geometry

Exercise sheet 8

Exercise 1. Let $\omega = d\lambda$ be an exact symplectic form on a manifold and ϕ a compactly support symplectomorphism which is isotopic to the identity in $\operatorname{Symp}_0^c(M, \omega)$.

- a) Show that $\phi^* \lambda \lambda$ represents a class $F(\phi) \in H^1_{cpt}(M)$ (compactly supported de Rham cohomology).
- b) Prove that $F: \operatorname{Symp}_0^c(M, \omega) \longrightarrow H^1_{cpt}(M)$ is a group homomorphism.
- c) Show that $F(\phi) = 0$ for $\phi \in \operatorname{Ham}^{c}(M, \omega)$.

Exercise 2. The definition in exercise 1 works in the same way for $\phi \in \text{Symp}_0(M, \omega)$. Consider the case $(M = T^*N, \omega = d\lambda_{st})$ in this setting and for a closed 1-form $\alpha \in \Omega^1(N)$ define

$$\phi_{\alpha}: T^*N \longrightarrow T^*N$$
$$\gamma \in T^*_n N \longrightarrow \gamma + \alpha(n)$$

- a) Prove that ϕ_{α} is a symplectomorphism.
- b) Determine $F(\phi_{\alpha})$.

Exercise 3. Assume that $(M, d\lambda)$ is symplectic. We consider $\operatorname{Symp}_0^c(M, \omega)$ with the direct limit C^1 -topology. Out goal is to show that $\operatorname{Ham}^c(M, \omega)$ is not simple. For this we define a homomorphism

Cal: Ham^c(M,
$$\omega$$
) $\longrightarrow \mathbb{R}$
 $\phi \longmapsto \int_M F \omega^n$

where $\phi^* \lambda - \lambda = dF$ and F has compact support.

- a) Show that Cal is a homomorphism.
- b) Assume that H is compactly supported and let ϕ be the Hamiltonian time 1-map associated to H. Compute Cal (ϕ) . This shows that $\operatorname{Ham}^{c}(M, \omega)$ is not simple.

Exercise 4. Assume that λ and λ' are two primitives of ω . Show that defining Cal using λ or λ' gives the same result. Use that $\lambda - \lambda' = \alpha$ is closed and $\phi^* \alpha - \alpha \in H^1_{cpt}$ is exact because ϕ^* is homotopic to the identity through compactly supported diffemorphisms.

Hand in on Wednesday December 12 during the exercise class.