LUDWIG-mAXIMILIANSUNIVERSITÄT münchen

Prof. Dr. Thomas Vogel
Daniel Räde

Symplectic geometry

Exercise sheet 6

Exercise 1. Let $h: A \longrightarrow A$ be a homeomorphism of a region $A \subset \mathbb{R}^{2}$. Assume that p is an isolated fixed point of h in the interior of A. The index $\operatorname{ind}_{h}(p)$ is defined as the index of a simple closed loop around p so that p is the only fixed point lying in of the closed disc bounded by the loop.
a) Let $A=\mathbb{R}^{2}$ and $h(u, v)=(\lambda u, \mu v)$ with $\lambda \mu \neq 0$. Compute $\operatorname{ind}_{h}(0)$ in terms of the signs of (λ, μ).
b) Assume that $\widetilde{h}: \widetilde{A} \longrightarrow \widetilde{A}$ is the lift of a homeomorphism h to the universal cover \widetilde{A} of A where A is an annulus and assume that all fixed points of \widetilde{h} are isolated and lie in the interior of \widetilde{A}. Let p_{1}, \ldots, p_{k} be representatives of all classes of fixed points of \widetilde{h} (if there are any). Prove that

$$
\sum_{i=1}^{k} \operatorname{ind}_{\tilde{h}}\left(p_{i}\right)=0 .
$$

c) Let h be an area preserving twist map of the annulus A with finitely many fixed points. Prove that h has a fixed point with negative index.

Exercise 2. Let r, φ be polar coordinates on the annulus $A=\left\{0<a^{2} \leq r \leq b^{2}\right\}$ and

$$
h(\varphi, r)=\left(\varphi+r^{2}, r\right) .
$$

Prove that h is an area preserving map and find a generating function.

Exercise 3. a) Let ω be symplectic form and α a closed 1 -form. Show that there is a unique vector field X_{α} so that $\omega\left(X_{\alpha}, \cdot\right)=\alpha$. Prove that the flow of X_{α} preserves ω and α.
b) Now assume that $\omega=d \lambda$ is exact. Show that there is a unique vector field Y (the Liouville vector field) so that $i_{Y} \omega=\lambda$. Compare ω and $\phi_{t}^{*} \omega$ where ϕ_{t} is the time- t-flow of Y.
c) Let $I \subset\left(M^{2 n}, \omega=d \lambda\right)$ be a submanifold which is tangent to the Liouville vector field Y and $p \in I$ a point so that for every compact set $K \subset I$ and $\varepsilon>0$ there is t_{K} so that $\phi_{t_{K}}(K) \subset B_{\varepsilon}(p) \cap L$. Show that I is isotropic, in particular its dimension is $\leq n$.

Exercise 4. Compute the Liouville vector field on $\mathbb{R}^{2 n}$ for the 1 -forms

$$
\alpha_{k}=-\sum_{i=1}^{n-k}\left(\frac{1}{2} q_{i} d p_{i}-\frac{1}{2} p_{i} d q_{i}\right)-\sum_{i=n-k+1}^{n}\left(+2 q_{i} d p_{i}+p_{i} d q_{i}\right)
$$

with $k \in\{0, \ldots, n\}$. Compare the Liouville vector fields L_{k} with the gradient vector fields of the functions (Morse functions)

$$
f_{k}=\frac{1}{4} \sum_{i=1}^{n-k}\left(q_{i}^{2}+p_{i}^{2}\right)+\sum_{i=n-k+1}^{n}\left(q_{i}^{2}-p_{i}^{2} / 2\right) .
$$

Try to exhibit I_{k} with the properties as in exercise 3 .

Hand in on Wednesday November, 28 during the exercise class.

