

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

WiSe 2018/19

Prof. Dr. Thomas Vogel Daniel Räde

Symplectic geometry

Exercise sheet 3

Exercise 1. Let $V = \mathbb{C}^n \simeq \mathbb{R}^{2n}$ be the standard symplectic vector space (with standard complex /symplectic/Hermitian/Euclidean structure). Recall that $\langle \cdot, \cdot \rangle = g(\cdot, \cdot) - i\omega(\cdot, \cdot)$ where $\langle \cdot, \cdot \rangle$ is the standard Hermitian product.

Show that $L \subset \mathbb{C}^n$ is Lagrangian if and only if $L^{\perp_g} = iL$. Assume that e_1, \ldots, e_n is an orthonormal basis of the real subspace $L \subset \mathbb{C}^n$. Prove that $(e_i)_i$ is a unitary basis of \mathbb{C}^n . Conversely, show that the real space spanned by a unitary basis of \mathbb{C}^n is Lagrangian.

Let $i\varphi : \mathbb{R}^n \longrightarrow i\mathbb{R}^n$ be linear. Prove that the graph $\{x + i\varphi(x) \mid x \in \mathbb{R}^n\}$ of φ is Lagrangian if and only if φ is symmetric.

Exercise 2. Use the results of the previous exercise to show that the graph of a function $F : \mathbb{R}^n \longrightarrow i\mathbb{R}^n$ is Lagrangian in $\mathbb{C}^n = \mathbb{R}^n \oplus i\mathbb{R}^n$ if and only if there is a function $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ so that $F = i\nabla f$.

Exercise 3. We use the statements of exercise 1 to study the space/set of Lagrangian subspaces of \mathbb{C}^n

 $\Lambda_n = \{ L \subset \mathbb{C}^n \, | \, P \text{ is a Lagrangian subspace} \}.$

We will need to understand a few properties of Λ_n later.

a) Prove that U(n) acts transitively on Λ_n and that the stabilizer of $L = \mathbb{R}^n$ in U(n) is O(n). This implies that the map

$$U(n)/O(n) \longrightarrow \Lambda_n$$
$$[A] \longmapsto A \cdot \mathbb{R}^n$$

is a well defined bijection which we use to equip the set Λ_n with the structure of a topological space/smooth manifold.

b) Compute the dimension of Λ_n .

Exercise 4. Let $P_x(X) = X^{n+1} + x_1 X^{n-1} + \dots + x_{n-1} X$ be a polynomial with real coefficients $x = (x_1, \dots, x_{n-1})$. Consider the map

$$f: \mathbb{R}^{n-1} \times \mathbb{R} \longrightarrow \mathbb{R}$$
$$(x, a) \longmapsto P_x(a).$$

- a) Show that $V = \left\{ (x, a) \in \mathbb{R}^{n-1} \times \mathbb{R} \mid \frac{\partial f}{\partial a} = 0 \right\}$ is a submanifold of $\mathbb{R}^{n-1} \times \mathbb{R}$.
- b) Give the explicit form of the Lagrangian immersion obtained by reduction from f.

c) For $P_x(X) = X^4 + x_1 X^2 + x_2 X$ one gets

$$V = \{ (x_1, x_2, a) \in \mathbb{R}^2 \times \mathbb{R} \mid f_x(a) = 4a^3 + 2x_1a + x_2 = 0 \}$$

Recall that the polynomial $f_x(X)$ has degenerate real solutions if and only if the discriminant

$$D(x_1, x_2) = \frac{x_1^3}{27} + \frac{x_2^2}{8}$$

vanishes, and that f_x has exactly one real solution if and only if $D(x_1, x_2)$ is positive. Use these facts to sketch V in a neighborhood of the origin.

d) Find a function $H: V \longrightarrow \mathbb{R}$ so that $dH = \lambda|_V$. Try to sketch the wave front of V, i.e. the projection of the set

$$\left\{ \left(x_1, x_2, a^2, a, z = H(x_1, x_2, a)\right) \mid (x_1, x_2, a) \in V \right\}$$

to the (x_1, x_2, z) -space (may be for one fixed value $x_1 < 0$ and one fixed value $x_1 > 0$.

Hand in on Wednesday November, 7 during the exercise class.