

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

WiSe 2018/19

Prof. Dr. Thomas Vogel Daniel Räde

Symplectic geometry

Exercise sheet 13

Exercise 1. In the setting of Thursdays lecture, prove that if x(t) is a 1-periodic solution of $\dot{x}(t) = J\nabla \overline{H}(x(t))$ with |x(0)| > r, then $\overline{\Phi}(x) \le 0$. Show in addition, that if x(t) is constant, then $\Phi(x) \le 0$.

Exercise 2. In the same setting, show that $\overline{\Phi}(x) \leq b$ for all $x \in \Sigma_{\tau}$ and that $\overline{\Phi} \leq 0$ on $\partial \Sigma_{\tau}$ for τ large.

Exercise 3. Let $J = \begin{pmatrix} 0 & -id \\ id & 0 \end{pmatrix}$ and consider the Liouville form $\lambda = \frac{1}{2} \sum_{i} (x_i dy_i - y_i dx_i)$ on \mathbb{R}^{2n} . Show that

$$\int_0^1 \frac{1}{2} \langle -J\dot{z}(t), z(t) \rangle dt = \int_{S^1} z^* \lambda$$

for a smooth loop $z = (x, y) : S^1 = \mathbb{R}/\mathbb{Z} \longrightarrow \mathbb{R}^{2n}$.

Exercise 4. Assume that X is a Liouville vector field on \mathbb{R}^{2n} which is transverse to the closed hypersurface S. Show that $\alpha = i_X \omega$ is a contact form on S, i.e. $\alpha \wedge (d\alpha)^{n-1}$ vanishes nowwhere.

Hand in on Wednesday January 23 during the exercise class.