

Prof. Dr. Thomas Vogel
Daniel Räde

Symplectic geometry

Exercise sheet 10

Exercise 1. Let $U_{1}, \ldots U_{n}$ be an open cover of S^{n} by balls. Show that at least one of the sets contains a pair of antipodal points. Argue be contradiction and use the covering $S^{n} \longrightarrow \mathbb{R} \mathbb{P}^{n}$.

You may use the fact that the cup-length of $\mathbb{R} \mathbb{P}^{n}$ is $n+1$.

Exercise 2. Let L be the zero section of $T^{*} S^{1}$ with the standard symplectic structure and ϕ a Hamiltonian isotopy of $T^{*} S^{1}$. Prove that

$$
|L \cap \phi(L)| \geq 2^{1}
$$

Remark: This statement remains true when S^{1} is replaced by T^{n} and 2^{1} is replaced by 2^{n}.

Exercise 3. Let (M, ω) be a symplectic manifold, $L \subset M$ a Lagrangian submanifold and $\phi_{t} \in$ $\operatorname{Ham}(M, \omega), t \in S^{1}$, a loop of Hamiltonian diffeomorphisms generated by the smooth family of functions $H_{t}, t \in S^{1}$ 。

One $T^{*} S^{1}$ we consider the standard symplectic forms and the coordinates $(r, t) \in \mathbb{R} \times S^{1} \simeq T^{*} S^{1}$. Show that

$$
\begin{aligned}
F: L \times S^{1} & \longrightarrow M \times T^{*} S^{1} \\
(l, t) & \longmapsto\left(\phi_{t}(x),-H_{t}\left(\phi_{t}(x)\right), t\right)
\end{aligned}
$$

is a Lagrangian in $\left(M \times T^{*} S^{1}, \sigma=\omega+d r \wedge d t\right)$.
Hand in on Wednesday January 9 during the exercise class.
Merry Christmas + Happy new year

