

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

WiSe 2018/19

Prof. Dr. Thomas Vogel Daniel Räde

Symplectic geometry

Exercise sheet 10

Exercise 1. Let U_1, \ldots, U_n be an open cover of S^n by balls. Show that at least one of the sets contains a pair of antipodal points. Argue be contradiction and use the covering $S^n \longrightarrow \mathbb{RP}^n$.

You may use the fact that the cup-length of \mathbb{RP}^n is n+1.

Exercise 2. Let L be the zero section of T^*S^1 with the standard symplectic structure and ϕ a Hamiltonian isotopy of T^*S^1 . Prove that

$$|L \cap \phi(L)| \ge 2^1$$

Remark: This statement remains true when S^1 is replaced by T^n and 2^1 is replaced by 2^n .

Exercise 3. Let (M, ω) be a symplectic manifold, $L \subset M$ a Lagrangian submanifold and $\phi_t \in \text{Ham}(M, \omega), t \in S^1$, a loop of Hamiltonian diffeomorphisms generated by the smooth family of functions $H_t, t \in S^1$.

One T^*S^1 we consider the standard symplectic forms and the coordinates $(r, t) \in \mathbb{R} \times S^1 \simeq T^*S^1$. Show that

$$F: L \times S^1 \longrightarrow M \times T^*S^1$$
$$(l, t) \longmapsto (\phi_t(x), -H_t(\phi_t(x)), t)$$

is a Lagrangian in $(M \times T^*S^1, \sigma = \omega + dr \wedge dt)$.

Hand in on Wednesday January 9 during the exercise class. Merry Christmas + Happy new year