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Symplectic Geometry

Please note: These notes summarize the content of the lecture. Many details and
examples are omitted. Sometimes, but not always, I provide a reference for proofs,
examples or further reading. I will not attempt to give the first reference where a
theorem appeared. Some proofs might take two lectures although they appear in a
single lecture in these notes. Changes to this script are made without further notice
at unpredictable times. If you find any typos or errors, please let me know.

1. Lecture on October 15 – Definition, basics, linear algebra

• Definition: Let M2n be a smooth 2n-manifold. A symplectic form on M is
a smooth 2-form ω which is closed (dω = 0) and non-degenerate, i.e. for all
p ∈M and 0 6= X ∈ TpM there is Y ∈ TpM so that ω(X, Y ) 6= 0.
• Examples: Area forms on surfaces are symplectic forms. If (M1, ω1) and

(M,ω2) are symplectic, then pr∗1ω1 + pr∗2ω2 is symplectic.
• Example: The standard symplectic structure on R2n is

ω =
∑
i

dxi ∧ dyi.

• Fact: ω represents a deRham cohomology class. If you want to know what
that means see [Jä] or [BT].
• Definition: Let V be a real vector space of dimension 2n. A symplectic form

on V is a non-degenerate 2-form ω ∈ Λ2V ∗.
• If (M,ω) is a symplectic manifold, then (TpM,ωp) is a symplectic vector space

for all p ∈M .
• Example: Let U a real vector space. Then U⊕U∗ carries a natural symplectic

structure:

ω((v, α), (w, β)) = α(w)− β(v).

• Definition: Let (V, ω) be a symplectic vector space and U a subspace. Then

U⊥ω = {X ∈ V |ω(X, Y ) = 0 for all Y ∈ U}.
• Definition: Let (V, ω) be a symplectic vector space and U ⊂ V a subspace.

Then U is
isotropic ⇐⇒ ω|U = 0, i.e. U ⊂ U⊥ω .

coisotropic ⇐⇒ U⊥ω ⊂ U .
symplectic ⇐⇒ U ∩ U⊥ω = {0}, i.e. ωU is symplectic

Lagrangian ⇐⇒ U = U⊥ω .
• If (V, ω) is a symplectic vector space, then

V −→ V ∗

X 7−→ (Y 7−→ ω(X, Y ))

is an isomorphism. Hence, dim(U)+dim(U⊥ω) = dim(V ) for U ⊂ V a subspace.
In particular, dim(L) = dim(V )/2 if L ⊂ V is Lagrangian.
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• Definition: Let (V, ω) be a symplectic vector space. A symplectic basis is a
basis e1, . . . , en, f1, . . . , fn such that

ω(ei, ej) = ω(fi, fj) = 0 and ω(ei, fj) = δij.

• Lemma: Every symplectic vector space admits a symplectic basis.
• Relative versions of this statement hold: for example: Let e1, . . . , ek be a basis

of an isotropic subspace of V , then this basis extends to a symplectic basis of
V .
• Corollary: A 2-form on a 2n-vector space is non-degenerate if and only if
ω ∧ . . . ∧ ω = ωn is non-vanishing.
• Corollary: If (M,ω) is a closed symplectic manifold, then ωk 6= 0 ∈ H2k

dR(M)
for all 0 ≤ k ≤ n.
• This is an immediate consequence of Stokes theorem. In particular, symplectic

manifolds have a canonical volume form and orientation.
• Example: Symplectic structure on cotangent bundles:

Let M be a smooth manifold. Then define the tautological 1-form λst on
T ∗M using the projection pr : T ∗M −→M via

λst(v) = α(pr∗v) for v ∈ TαT ∗M.

Then ωst := dλst is symplectic: dωst = 0 follows from d2 = 0, non-degeneracy
follows from a computation in local coordinates induced by coordinates on M .

2. Lecture on October, 18 – Compatible (almost) complex structures

• Definition: Let V be a real vector space. A linear map J : V −→ V is a
complex structure if J2 = −IdV . A complex structure is compatible with a
symplectic form ω if and only if dJ(X, Y ) = ω(X, JY ) is a (positive definite)
Euclidean metric.
• Lemma: Let (V, ω) be symplectic. There is a continuous map

{g Euclidian sturcture on V } −→ {J complex structure compatible with ω}
so that gJ maps to J for every compatible complex structure J .
• Proof: For a Euclidean metric g choose an endomorphism Ag of V so that
ω(X, Y ) = g(AgX, Y ). Then Ag is antisymmetric. Let P be the unique positive
definite matrix so that P 2 = AAT and set Jg = P−1Ag.
• Corollary: The space of complex structures compatible with ω is contractible.
• Remark: If J is compatible with ω, then 〈X, Y 〉 = gJ(X, Y ) − iω(X, Y ) is a

Hermitian structure on V .
• Definition: Let (R2n, ωst) be the symplectic vector space. The symplectic

group Sp(2n) is

Sp(2n) = {ψ ∈ Gl(2n) |ψ∗ω = ω}.
• Example: Sp(2) = Sl(2,R) is non-compact.
• Warning: In the theory of Lie groups, there is a family of compact Lie groups

which are also called symplectic (cf. [BtD] p.8). They are quite different from
the symplectic groups we consider.
• Fact: Sp(2n) = {ψ ∈ Gl(2n,R) |ψTJψ = J} where J is the standard complex

structure on R2n ' Cn.
• Lemma:

1. Sp(2n) ⊂ Gl(2n,R) is a closed subgroups, hence a Lie subgroup. It is
closed under transposition, i.e. ψT ∈ Sp(2n) for ψ ∈ Sp(2n).
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2. det(ψ) = 1 for ψ ∈ Sp(2n).
3. If λ is an eigenvalue of ψ ∈ Sp(2n) then so is λ−1. If λ is a zero of

det(ψ − λId), then so are λ−1, λ, λ
−1

.
4. If λµ 6= 1, then the λ-eigenspace is ω-orthogonal to the µ-eigenspace.

• On R2n let J =

(
0 −id
id 0

)
. This is compatible with the standard symplectic

structure.
A complex matrix Z = X + iY acts on v = x + iy ∈ Rn ⊕ iRn via Zv =

(Xx− Y y) + i(Y x−Xy). In this way one identifies Gl(n,C) with a subgroup
of Gl(2n,R).
• Lemma: Sp(2n) ∩O(2n) = Sp(2n) ∩Gl(n,C) = O(2n) ∩Gl(n,C) = U(n).
• Proposition: ψ symplectic has a unique decomposition ψ = PQ with P

symplectic, symmetric and positive definite and unitary Q.
• Remark: One has to check that P = (ψψT )1/2 is symplectic.
• Remark: Considering Ps = (ψψT )s with s ∈ [0, 1] one obtains that U(n) is a

deformation retract of Sp(2n). In particular, π1(Sp(2n)) ' Z.
• Definition: An almost complex structure on a manifold M is a base point

preserving smooth map J : TM −→ TM so that J |TpM is a complex structure
for all p ∈M .
• Definition: A complex structure on a manifold M is a smooth atlas (ϕi : Ui ⊂
M −→ ϕi(Ui) ⊂ Cn)i so that transition functions are holomorphic.
• Remark: A complex structure induces an almost complex structure, but not

every almost complex structure is obtained in this way [McDS], p.123 ff.
• Definition: Let (M,ω) be a symplectic manifold. An almost complex structure

is adapted to ω if g(X, Y ) = ω(X, JY ) is a Riemannian metric.
• Definition: A Kähler manifold (M,J, ω) is a symplectic manifold with a com-

plex structure so that the induced almost complex structure is compatible with
ω.
• Theorem: Every symplectic manifold admits an adapted almost complex

structure.
• Proof: Choose a Riemannian metric and for each TpM choose a complex

structure as above.
• Observation: If (M,ω, J) is a manifold with almost complex structure com-

patible with the symplectic structure ω and N ⊂ M is a submanifold so that
J(TN) = TN , then ω|N is symplectic. Hence, complex submanifolds of Kähler
manifolds are symplectic. This is a rich supply of closed symplectic manifolds
with interesting topologies.

Using the fact that b2k+1(M) has to be even when M is Kähler, Thurston
[Th] provided an example of a closed manifold which is symplectic but does
not admit a Kähler structure.

3. Lecture on October, 21 – Moser method

• Reference: Section 3.2. of [McDS], see also Chapter 2 in [Ge]
• Reminder: Let X be a complete vector field on M , φt an isotopy (obtained

by integrating the time dependent vector fields Xt) and α ∈ Ω∗(M). Then
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LXα = iXdα + diXα and for αt a smooth family of forms

(1)
d

dt

∣∣∣∣
t=t0

(φ∗tαt) = φ∗t0

(
d

dt

∣∣∣∣
t=t0

αt + LXt0αt0

)
.

Let αt be a smooth family of exact forms. Then there is a family of primitives
βt (i.e. dβt = αt). There are several ways to do this, see for example [BT] for
an explicit construction or use Hodge theory [Jä].
• General Problem/Moser method: Let αt be a family of k-forms. Is there

a family (an isotopy) of diffeomorphism φt so that

φ∗tαt = α0

and φ0 = id. Differentiating this we get α̇t = −LXtαt. Conversely, if this
equation is satisfied for a smooth family of vector fields Xt, then the induced
isotopy φt has the desired property.
• Theorem (Moser): Let Ω0,Ω1 be two volume forms on the closed manifold
M with the same total volume. Then there is a diffeomorphism φ1 of M so
that φ∗1Ω1 = Ω0.
• Proof: Apply the Moser method to the family Ωt = tΩ1 + (1− t)Ω0, t ∈ [0, 1]

of volume forms. Since the total volume of Ωt is constant, Ω̇t is exact (it is
obviously closed as form of top degree). Let βt be a smooth family of primitives.
We look for a family of vector fields Xt so that

dβt = Ω̇t = −diXtΩt.

If Xt solves iXtΩt = −βt. This equation has a unique solution since Ωt is a
volume form.
• Theorem (Moser stability): Let M be closed and ωt a family of symplectic

forms such that [ωt] ∈ H2
dR(M) is constant. Then there is an isotopy φt so that

φ∗tωt = ω0.
• Proof: Same as above.
• Remark: It is hard to determine whether or not two symplectic forms are

connected by a path of symplectic forms. Therefore, the scope of the previous
theorem is limited. However, the Moser method can be applied to obtain
normal forms/coordinates in which a differential form has a nice (or standard)
representation. One then defines a local flow/isotopy of a neighborhood of a
subset of the manifold. completeness of vector fields is no longer needed.
• Theorem (Darboux): Let (M,ω) be symplectic and p ∈ M then there are

coordinates (x1, y1, . . . , xn, yn) around p so that ω0 = dx1∧dy1 + . . .+dxn∧dyn.
• Proof: Pick any coordinate system around p so that

∂

∂xi
= ei and

∂

∂yi
= fi

is a symplectic basis for TpM,ωp. On a neighborhood of p the family ωt =
tω + (1 − t)ω0, t ∈ [0, 1] is symplectic. Using the Moser method one finds a
family of vector fields Xt with the additional property that Xt(p) = 0 for all t.
Then one can define a local flow defined on a neighborhood of p which deforms
the coordinate system we have into the coordinate system that we want.
• Definition: Let (M,ω) be symplectic. Then a submanifoldN ⊂M is isotropic,

coisotropic, symplectic, Lagrangian if TpN ⊂ (TpM,ωp) has the corresponding
property for all p ∈ N .
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• Definition: Let (M,ω), (M ′, ω′) be symplectic. A diffeomorphism φ : M −→
M ′ is a symplectomorphism if and only if φ∗ω′ = ω.
• Definition: Let M be a manifold of dimension 2n+1. A 1-form α is a contact

form if α∧ (dα) is a volume form. A contact structure is a hyperplane field ξ in
TM such that around every point there is a contact form α so that ker(α) = ξ.
• Theorem (Gray): Let ξt be a family of contact structures on a closed manifold
M . Then there is φt and isotopy so that φt∗ξ0 = ξt.

4. Lecture on October, 25 – Neighborhoods of Lagrangians,
Reduction for symplectic vector spaces

• Reminder: We will make frequent/implicit use of the Tubular neighborhood
theorem, see for example Kapitel 12 in [BJ] or Section 4.5 in [Hi].
• Theorem (Weinstein): Let (M,ω) be symplectic and N ⊂ M be a closed

Lagrangian submanifold. Then N has a tubular neighborhood which is sym-
plectopmorphic to a neighborhood of the zero section in (T ∗N, dλst).
• Proof: This is yet another application of the Moser method similar to the

proof of the Darboux theorem. One shows that the map

TM/TN −→ T ∗N

v 7−→ (w 7−→ ω(v, w))

preserves the symplectic structure on a neighborhood of the zero section.
• Lemma: Let (V, ω) be symplectic, L ⊂ V Lagrangian and F ⊂ V coisotropic

so that L and F are transverse, i.e. L+ F = V . Then the map

F ∩ L −→ F/F⊥ω

is injective and its image is Lagrangian.
• Proof: Recall that F⊥ω ⊂ F and L = L⊥ω . ω induces a symplectic structure

on F/F⊥ω . The kernel of the map in the Lemma is

L ∩ F ∩ F⊥ω = L ∩ F⊥ω = L⊥ω ∩ F⊥ω

= (L+ F )⊥ω = {0}.
The image of the map is obviously isotropic. Finally,

dim(L ∩ F ) = dim(L) + dim(F )− dim(L+ V )

= dim(L) + dim(F )− 2n

= dim(F )− n.
dim(F/F⊥ω) = dim(F )− dim(F⊥ω)

= 2(dim(F )− n).

Hence, the image of L∩ F is an isotropic subspace of maximal (=half) dimen-
sion, i.e. it is Lagrangian.

5. Lecture on October, 29 – Construction of Lagrangians using
generating functions

• Consider a 1-form α on N . This can be viewed as a map α : N −→ T ∗N such
that pr ◦α = id where pr : T ∗N −→ N is the projection. In particular, α is an
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embedding of N into T ∗N . Then

α∗λst = α.

Hence, α has Lagrangian image if and only if dα ≡ 0. In this way one obtains
very special Lagrangian submanifolds. We want to generalize this.
• We will identify T ∗Rk with Ck = Rk ⊕ iRk, the imaginary part corresponds to

the forms. The coordinates on Rk are a1, . . . , ak.
• Let f : M × Rk −→ R be smooth. This induces a Lagrangian section df :
M×Rk −→ T ∗M×Ck of the bundle T ∗M×Ck −→M×Rk, we call the image
Vf and we assume that df is transverse to T ∗M × (Rk ⊕ i0). Then

Vf ∩ (T ∗M × {0}) =

{
∂f

∂a1

= . . . =
∂f

∂ak

}
.

The transversality condition using local coordinates x1, . . . , xn near p ∈M is

rank

(
∂2f

∂xi∂aj

∣∣∣∣ ∂2f

∂ai∂aj

)
= k

for all points in Vf ∩ (T ∗M × (Rk ⊕ i0)). (This makes sure that the condition
L + F = V will be satisfied when we apply the linear algebra lemma.) Then
Vf∩T ∗M×(Rk×{0}) is a submanifold in M×Rk of codimension k. Now apply
the linear algebra lemma to the Lagrangian subspace TpVf as Lagrangian, and
Fp = T ∗M × Rk × {0} ⊂ T ∗M × Ck as coisotropic subspace. Then

Vf ∩ T ∗M × (Rk × {0}) −→ T ∗M = (T ∗M × Ck)/(T ∗M × (Rk × {0}))⊥ω

is a Lagrangian immersion (the quotient map turns embeddings into immer-
sions, in general).
• Example: Take M = Rn and k = 1 and f(x, a) = a‖x‖2 + a3/3− a. Then

∂f

∂a
= ‖x‖2 + a2 − 1 = 0,

Then Vf ∩ (T ∗M × R× {0}) ' Sn with the transversality condition satisfied.
Now

df(x1, . . . , xn, a) = 2a(x1dx1 + . . .+ xndxn) + (‖x‖2 + a2 − 1)da.

Thus, we get

Sn ⊂ (Rn × R) −→ Cn = T ∗Rn

(x, a) 7−→ (x, 2ax) or (1 + 2ia)x under the identification T ∗Rn ' Cn.

This map is called the Whitney immersion. It is not an embedding since (0,±1)
map both to 0 ∈ T ∗0 Rn.
• Definition: Let f : L −→ (M,dλ) be a Lagrangian immersion into an exact

symplectic manifold with a fixed primitive λ of the symplectic form dλ = ω. f
is exact if f ∗λ is exact.
• Example: If H1

dR(L) = 0, then every Lagrangian immersion into an exact
symplectic manifold is exact.
• Example: If n = 1. then the Whitney immersion is parametrized by f : R −→
S1 −→ C as

f : α 7−→ (cos(α), sin(2α)).

If λ = ydx, then f ∗λ = d
(
−2

3
(sin(α))3

)
. The function in the bracket descends

from R to S1 showing that the Whitney immersion is exact when n = 1.
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6. Lecture on November, 5 – Contactisation of exact symplectic
manifolds, wave fronts

• Definition: Let (M,ω = dλ) be an exact symplectic manifold. Then its
contactisation is the manifold R ×M with the contact structure ξ defined by
dz − pr∗λ.
• Lemma: dz − pr∗λ is a contact form.
• Let f : L −→M be a Lagrangian immersion. If f ∗λ = dH is exact, then

F : L −→ R×M
p 7−→ (H(p), f(p))

is a Legendrian immersion, i.e. an immersion such that the tangent space of
the image is tangent to the contact structure, F∗(TpL) ⊂ ξ(F (p)). This is
equivalent to F ∗(dz − λ) = 0. F is a lift of the f : L −→M for the projection
prM : R×M −→M .

Thus, a Lagrangian immersion into an exact symplectic manifold lifts to the
contactisation if and only if it is exact. While f is not always exact, there is a

cover π : L̃ −→ L so that f ◦ π is exact.
• Remark: Let T ∗M and λ = λst be a cotangent bundle and π : T ∗M −→ M

the projection.
• Definition: The projection π ◦ (id×F ) to R×M of the image of the lift F of

an exact Lagrangian immersion f to the contactisation is called a wave front.
• Fact: The wave front L −→ R ×M is not an immersion, in general. If π ◦ f

is an immersion at some point, then the Lagrangian immersion (parametrized)
can be reconstructed from the (parametrized) wave front: dH can be read off
from the wave front since it contains H entirely. Since F ∗(dz − λst) = 0 one
can read of f ∗λst from the (parametrized) wave front:

dH(Y ) = f ∗λst(Y ) = λst(f∗Y )

= (f(p))︸ ︷︷ ︸
∈T ∗

π(f(p))
M

(π∗f∗(Y ))

Note that π∗f∗(Y ) can be determined from the wave front.
This determines the coordinate projected away by π : T ∗M −→M .

• One can constuct/draw wave fronts of Lagrangian immersions of an orientable
closed surface Σ into C2. Pictures can be found on p. 279 of [AL] or in [Giv]
(the later reference allows singularities).
• It would be interesting to know which manifolds admit Lagrangian embeddings

into a symplectic manifold, like Cn ' T ∗Rn. However, a full answer is out of
reach.
• Lemma: If f : L −→ Cn is a Lagrangian immersion, then TL ⊗ C is trivial

(as complex vector bundle).
• Reference: If you want to know more about vector bundles, I strongly recom-

mend [Mi-C], Chapter 2,3 and 13.
• Proof: By the Weinstein neighborhood theorem the normal bundle of the

immersion is isomorphic to J · f∗(TL). Thus, at each point of p ∈ L

f∗TpL⊗ J · (f∗TpL) = Tf(p)Cn ' Cn.
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• Remark: For all oriented closed manifolds of dimension 1, 2, 3, the bundle
TL ⊗ C is trivial. In higher dimensions, there are manifolds which do not
admit Lagrangian immersions.
• Remark: The necessary condition for the existence of a Lagrangian immersion

into Cn is also sufficient! The story for Lagrangian embeddings is far more
complicated.

7. Lecture on November, 8 – Lagrangian embeddings, rigidity, Maslov
class

• Theorem: If the closed oriented manifold L admits a Lagrangian embedding
into Cn, then χ(L) = 0.
• Corollary: No even dimensional sphere of positive dimension admits a La-

grangian embedding into M . (cf. Whitney immersion).
• Proof of Theorem: Assume f : L −→ Cn is a Lagrangian embedding. We

use a bunch of facts:
(1) By Weinsteins Lagrangian neighborhood theorem, the normal bundle of

L in Cn is isomorphic to T ∗L (which is isomorphic to TL via a choice of a
Riemannian metric on L).

(2) Let α be a generic section of T ∗L (i.e. transverse to the zero section).
Then α(L) and L have finitely many intersection points which can be equipped
with signs according to whether or not Tpα(L) ⊗ TpL ⊂ Tp(T

∗L) coincide as
oriented vector spaces. On the one hand, the sum of these signs computes
the self intersection number [L] · [L] ∈ H0(Cn) = Z of the (image of) the
fundamental/orientation class [L] ∈ Hn(Cn) which has to vanish since [L] =
Hn(Cn) = 0.

(3) On the other hand, the sum of the signs computes also χ(L) = 〈χ(T ∗L), [L]〉
by standard theorems from algebraic topology (see Cor. 12.5 on p. 380 in [Br],
and the section it is contained in, or Chapter 11 in [Mi-C]).

Also, note that χ(L) = 0 for all oriented manifolds of odd dimension.
• Reminder: (1) The Gauß-map associates to each immersion of a manifold into
Rn the orthogonal complement of the image of the tangent space.

(2) The space of Lagrangian submanifolds Λn in Cn is homeomorphic to
U(n)/O(n). The map

(det)2 : Λn = U(n)/O(n) −→ S1 ⊂ C
induces an isomorphism on fundamental groups.

(3) If (M,ω) is symplectic, and γ : S1 −→M is a loop, then γ∗TM is trivial.
The same is true when TM is viewed as a symplectic vector bundle (i.e. each
fibre is equipped with a symplectic structure). Therefore, also the bundle of
Lagrangian Grassmannians along γ is trivial. To each section of the Lagrangian
Grassmannian one can associate an element µ(γ) of π1(Λn) = Z.
• Definition: Let f : L −→ (M,ω) be symplectic. Then

µ : π1(L) −→ Z
[γ] 7−→ µ(γ)

is the Maslov class of f .
• The following question is interesting: Let f : L −→ (M,ω) be a Lagrangian

embedding. What can be said about the Maslov class? Unfortunately, we can
discuss only a trivial case.
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• Example: Let n = 1 and consider S1 −→ C. Then Λ1 = U(1)/O(1) = RP1

and the Maslov index is the winding number. In particular, if γ is a Lagrangian
embedding (i.e. a simple closed curve), then µ(γ) = ±2. Note that every even
number appears of µ(g) for some immersion g.
• Definition: Let µ be the Maslov class of a Lagrangian immersion. Then ‖µ‖

is the non-negative generator of µ(π1(L)).
• Remark: Unlike µ, ‖µ‖ does not refer to a particular Lagrangian immersion

but only to the image.
• Theorem (Viterbo): For a Lagrangian embedding f : T n −→ Cn

2 ≤ ‖µ‖ ≤ (n+ 1).

• The Maslov cycle, or ‖µ‖ can be used to show that two Lagrangian immersions
are not homotopic through Lagrangian immersions.

8. Lecture on November, 12 – Hamiltonian vector fields, Poisson
bracket, Ham(M,ω)

• Definition: Let (M,ω) be symplectic and H : M −→ R smooth. Then there
is a unique vector field XH on M so that

iXHω = −dH.

XH is the Hamiltonian vector field of the Hamiltonian function H.
• Example: M = R2n and ω =

∑
i dpi ∧ dqi. Then

dH =
∑
i

(
∂H

∂qi
dqi +

∂H

∂pi
dpi

)
.

Hence,

XH =
∑
i

(
−∂H
∂qi

∂

∂pi
+
∂H

∂pi

∂

∂qi

)
.

Thus, ṗi = −∂qiH and q̇i = ∂piH. These are the Hamiltonian equations from
classical mechanics.
• Example: In the previous example, let H = pi. Then XH = ∂

∂qi
. The Hamil-

tonian diffeomorphisms associated to this function is a family of translations.
Compactly supported symplectomorphisms can be obtained by multiplication
of H with a bump function.
• Example: Let S2 ⊂ R3 be the unit sphere and H(x1, x2, x3) = x3. The

symplectic form is ω = x1dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx1.
The Hamiltonian vector field of H is

XH = −
(
x1

∂

∂x2

− x2
∂

∂x1

)
• Lemma: XH preserves ω as well as H.
• Lemma: If XH and XG are Hamiltonian vector fields of a smooth function
H,G, then the same is true for [XH , XG]. The vector space of Hamiltonian
vector fields is a Lie algebra.
• Definition: Let Ham(M,ω) be the group generated by Hamiltonian vector

fields with (maybe time dependent) Hamiltonian function.
• Remark: The time dependence is assumed to be piecewise smooth to allow

for composition of paths. This turns out to be not necessary, see (2) below.
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• Remark: This definition requires some caution when M is not closed. Usually,
one assumes that H has compact support or some other fixed behavior outside
of a compact set which ensures completeness of the Hamiltonian vector field.
• We will not use the following notion much. However, it is important in var-

ious contexts (e.g. integrable dynamical systems, including those of infinite
dimension).
• Definition: Let (M,ω) be symplectic. The Poisson bracket of two smooth

functions H,G is
{H,G} = ω(XH , XG).

• Remark: {H,G} = ω(XH , XG) = (iXHω)(XG) = −LXGH. Hence, {·, G} is a
derivation. Obviously, {H,G} = −{G,H}. Moreover, since LXiY α− iYLXα =
i[X,Y ]α for all forms α one obtains

i[XH ,XG]ω = LXH iXGω = diXH (ω(XG, ·))
= −dω(XH , XG) = −d{H,G}.

Thus, [XH , XG] is the Hamiltonian vector field of the function {H,G}.
• Proposition: {·, ·} is a Lie algebra structure on C∞(M).
• Proof: R-bilinear and antisymmetry are obvious. The Jacobi identity follows

from a little computation using the fact that ω is closed!

0 = dω(X1, X2, X3)

= LX1(ω(X2, X3)) + LX2(ω(X3, X1)) + LX3(ω(X1, X2))

− ω([X1, X2], X3)− ω([X2, X3], X1)− ω([X3, X1], X2)

Assume that Xi is the Hamiltonian vector field associated to fi. Then

LX1(ω(X2, X3)) = LX1{f2, f3} = −{{f2, f3}, f1}
= −ω(X{f2,f3}, X1) = −ω([X2, X3], x1).

Combining this with the previous computation one obtains

0 = −2({{f2, f3}, f1}+ {{f3, f1}, f2}{{f1, f2}, f3}).
This is the Jacobi identity.
• Remark: Therefore, the linear map

(C∞(M), {·, ·}) −→ (Γ(M), [·, ·])
H 7−→ XH

is a homomorphism of Lie algebras.
• Definition: A Poisson structure on a manifold is a Lie-bracket {·, ·} on C∞(M).
• Remark: Symplectic structures induce Poisson structures, but there are oth-

ers.
• Example: Let (g, [·, ·]) be a finite dimensional Lie algebra. Then g∗ (viewed

as manifold) has a Poisson structure defined as follows: Let f, g be smooth
functions on g∗. Then dfα ∈ (Tαg

∗)∗ = (g∗)∗ = g. Thus, we can define

{f, g}(α) = 〈α, [df, dg]〉
The Jacobi identity follows from the analogous property of [·, ·]. g∗ can have
odd dimension, so the Poisson structure on g∗ does not come from a symplectic
structure in general.
• Remark: By a theorem of Weinstein [We], one can obtain symplectic struc-

tures on well organized immersed submanifolds from a Poisson structure.
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• Remark: Let (M,ω) be symplectic such that H1
dR(M) = 0. For a family

of symplectomorphism φt one can consider the vector field they generate, i.e.
Xτ (x) = d

dt

∣∣
t=τ

φt(φ
−1
τ (x)).

This is a symplectic vector field by (1), i.e. LXtω = 0 = d(iXtω). By
assumption, there is a function Ht so that iXtω = −dHt. Thus,

Symp0(M,ω) = Ham(M,ω)

if H1(M) = 0. We will describe the difference between Symp0(M,ω) and
Ham(M,ω) later.
• Proposition: Let ft, gt be Hamiltonian isotopies associated to the families of

Hamiltonian functions Ft, Gt. Then the product path ht = ftgt is a Hamiltonian
path generated by the Hamiltonian function

(2) H(x, t) = F (x, t) +G(f−1
t (x), t).

• Proof: By the chain rule

d

dt
(ft ◦ gt)(x) = Xft(ft(gt(x))) + ft∗ (Xgt(gt(x)))

The first summand is the symplectic gradient of ft, Xgt is the symplectic gra-
dient of gt. It is an exercise to show that the second summand is G(f−1

t (x), t).
• Remark: If XH is a Hamiltonian vector field of H, then it is also a Hamiltonian

vector field for H + c for all constants c ∈ R. A Hamiltonian function is said
to be normalized, if the average value is zero on closed manifolds, or when the
support is compact on open manifolds.

9. Lecture on November, 15 – Poincaré-Birkhoff fixed point theorem

• Let A = {(u, v) ∈ R2 | a2 ≤ u2 + v2 ≤ b2} for 0 < a < b. The universal cover

is Ã = {a ≤ y ≤ b} with covering projection φ(x, y) = (
√
y cos(x),

√
y sin(x)).

This map satisfies φ∗(du ∧ dv) = −dx ∧ dy/π.
• Definition: A map h : A −→ A is a twist map if it preserves the boundary

components of A individually and there is a lift h̃ = (f, g) to the universal
cover so that either

f(x, a) < x and f(x, b) > x for all x or

f(x, a) > x and f(x, b) < x for all x

• Theorem (Poincaré-Birkhoff) Let h : A −→ A be an area preserving twist
map. Then h has at least two fixed points.
• Remark: A collection of simple examples relevant to the condition/conclusion

of the theorem can be found on p. 270 in [McDS].
• What follows is essentially the proof from [BN]. It uses several steps/observations.

1. Let h̃ = (f, g) be a lift of h certifying that h is a twist map. h̃ preserves
the area form dx ∧ dy.

2. h̃ = (f, g) satisfies f(x + 2πk, y) = f(x, y) + 2πk and g(x + 2πk, y) =
g(x, y) because it is a lift.

3. We will show that h̃ has two fixed points which are geometrically distinct,
i.e. do not become equal after a translation in x direction by integer
multiples of 2π. This is somewhat stronger than what we have to show.
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4. Extend h̃ to R2 by

h̃ : R2 −→ R2

(x, y) 7−→

 (f(x, y), g(x, y)) a ≤ y ≤ b
(f(x, a), y) y ≤ a
(f(x, b), y) b ≤ y.

This is not smooth and it is area preserving with respect to dx∧dy only on

Ã in general. It is area preserving everywhere only when f(x, a) = x± c
and f(x, b) = x ∓ c′ for positive constants c, c′. Moreover, the extended

version of h̃ has the same periodicity properties as the original version.

5. Let c : [r, s] −→ R2 be a curve avoiding fixed points of h̃. We put

d(t) = h̃(c(t))−c(t)
‖h̃(c(t))−c(t)‖

∈ S1 and choose a lift d̃ : [a, b] −→ R of d to the

universal covering R −→ S1, τ −→ eiτ . Define

indh̃(c) =
d̃(s)− d̃(r)

2π
.

This measures the total number of turns the vector pointing from c(t)

to h̃(c(t)) makes as one moves along c. The index has some obvious

properties (continuity in h̃, c, orientation reversal of c, concatination of
curves,...) we will use. One of them is

(3) indh̃(c) = indh̃−1(h̃ ◦ c).

Since c is not closed, the index is not an integer, in general. Finally, the
index of a curve is a homotopy invariant as long as the homotopy avoids

fixed points of h̃ and endpoints do not move.
6. We will consider curves c so that c(r) ∈ {y ≤ a} and c(s) ∈ {b ≤ y}

which avoid fixed points of h̃.

7. Lemma: Assume that h̃ has at most one class of fixed points (x0 +

2kπ, y0), k ∈ Z. Let c, c′ be two curves avoiding fixed points of h̃ going
from {y ≤ a} to {b ≤ y}. Then

indh̃(c) = indh̃(c
′).

After reparameterization of the plane we may assume that x0 = 0 if h̃
has any fixed point.

8. For the proof of the Lemma, let c, c′ as above, connect to endpoint of c
with the starting point of −c′ by a straight line in {b ≤ y} connect the
endpoint of −c′ with the starting point of c by a straight line in {y ≤ a}.
We obtain a loop whose index does not change if the loop is homotoped

in the complement of the fixed points of h̃.
This loop is freely homotopic to a collection of rectangles connected to
a base point in one of its vertices so that the sides of the rectangle
are parallel to the x- or y-axis and every horizontal vertical segment is
contained in {x = (2k + 1)π, k ∈ Z}. Since the number of vertical sides
pointing down equals the number of sides pointing up, the index of the
loop is zero. By construction

indh̃(loop) = indh̃(c)− indh̃(c
′) = 0.
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9. We will now show that there are paths c, c′ going from {y ≤ a} to {b ≤
y} so that indh̃(c) = 1/2 and indh̃(c

′) = −1/2. This contradicts the

assumption that h̃ has at most one class of fixed points. The difficulty is
now to construct a path c as above and to compute its index with respect

to h̃. For this we consider a perturbation of h̃.

10. There is ε > 0 so that ‖h̃(x, y)−(x, y)‖ > 2ε when x ∈ (2πk+π/2, 2πk+
3π/2) with k ∈ Z. Let

Tλ : R2 −→ R2

(x, y) 7−→ (x, y + λε(| cos(x)| − cos(x)))

with λ ∈ [0, 1] and write T1 = T . Tλ is an area preserving homeomor-

phism of the plane with the same periodicity properties as h̃. Moreover,

h̃ and T ◦ h̃ have the same fixed point set. Instead of h̃ we will consider

(T ◦ h̃).

11. Let D0 =
(

(T ◦ h̃)−1(Ã)
)
∩ {y ≤ a} and Di = (T ◦ h̃)i(D0) for all i ∈ Z.

D0 has non-empty interior, the interiors of Di, Dk are disjoint if i 6= k.
By choice of T , D0 is convex.

12. Construction of c: Since T ◦ h̃ is area preserving on Ã, there is N so that
Di ∩ {b ≤ y} 6= ∅. Pick the smallest such N and pN ∈ DN with maximal

y-coordinate and let pi = (T ◦ h̃)i−N(pN). Note that pn−1 6= pn so we can

pick c0 to be the straight line from p−1 to p0 ∈ D0 and ci = (T ◦ h̃)i ⊂ Di.
Then the concatination c0c1c2 . . . cN+1 is embedded as the image under

(T ◦ h̃)N of c−N . . . c−1c0. We use [0, 1] as domain of c. The last curve can

be easily seen to be embedded because of the form of T ◦ h̃ on {y ≤ a}.
Now define

c = c0c1 . . . cN

This curve starts at p−1 below Ã and ends at pN above this strip.
13. For the computation of the index of c we assume that f(x, a) > x (hence

f(x, b) < x).
14. By the choice of pN , no point along c0c1c2 . . . cN has a bigger y-coordinate

than pN+1 since pN+1 lies above pN . Moreover, no point of (T ◦ h̃)(c) lies
below p−1.

15. c has some kind of positivity property with respect to T ◦ h̃: for all t, t′

with t′ ≥ t

c(t) 6= (T ◦ h̃)(c(t′)).

This allows us to determine indT◦h̃. By using a homotopy provided by
the simplex {(t, t′) ∈ [0, 1] | t′ > t}. Moving along the diagonal with
t(σ) = t′(σ) = σ and considering

(T ◦ h̃)(c(t′(σ)))− c(t(σ))

‖(T ◦ h̃)(c(t′(σ)))− c(t(σ))‖
we compute indT◦h̃(c). This map from an interval parametrizing the
diagonal in [0, 1]× [0, 1]to S1 is homotopic relative of to the endpoints to
a map corresponding to a path (t′(σ), t(σ)), σ ∈ [0, 1] following the other
two sides of the simplex{t′ ≥ t}. The direction considered now never
points vertically downwards. It therefore makes not a single full turn.
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Hence, the index is +1/2 up to an error which goes to zero when λ goes
to zero. Assuming that there is only one class of fixed points one can
homotope the curve relative to its endpoints so that as long as it is in

Ã, its x-coordinate is contained in [2kπ + π/2, 2kπ + 3π/2]. The index
of the result is close to 1/2, it remains an admissible curve as λ goes to

zero (i.e. it does no meet any fixed point of Tλ ◦ h̃) as λ goes from 1 to
0 (recall T0 = id).

16. Now apply the same construction to h̃−1 keeping the same T . Since
left/right are now reversed, this yields a curve c′′ of index −1/2 with

respect to h̃−1. By (3) this yields the contradiction we were looking for.

10. Lecture on November, 19 – Periodic points from
Poincaré-Birkhoff

• One can apply the theorem under weaker conditions than being a twist map.
• Corollary: Let h : A −→ A be an area preserving map of the annulus so that

a lift h̃ to Ã satisfies

m = max
x

(f(x, a)− x) < min
x

(f(x, b)− x) = M.

Then h has infinitely many distinct periodic points.

• Proof: Let h̃q = (f q, gq) for q ∈ {1, 2, 3, . . .}. Then

f q(x, a)− x =

q−1∑
j=0

(f j+1(x, a)− f j(x, a)) ≤ 2πqm

f q(x, b)− x =

q−1∑
j=0

(f j+1(x, b)− f j(x, a)) ≥ 2πqM

If q is chosen sufficiently large we can choose a lift h̃q of hq which certifies the
twist condition for hq. If q(M − m) > 1, then there is an integer p so that
mq < p < Mq. Then

f q(x, a)− 2πp < f q(x, a)− 2πqm ≤ x ≤ f q(x, b)− 2πqM < f q(x, b)− 2πp.

This shows that (f q−2πp, gq) is a lift of hq showing that hq is a twist map. By
the Poincaré-Birkhoff Theorem, hq has two fixed points which yield periodic
points of h whose period is divides q. Moreover, periodic points corresponding
to different ratios p/q are geometrically distinct.
• Reference: The following is basically Section 8.2/8.3 adapted to our notation.

• Generating functions: Let h : A −→ A be area preserving and h̃ = (f, g) :

(x0, y0) 7−→ (x1, y1) a lift to the univ. cover. We assume that h̃ certifies that h
is a twist map and f(x, a) < x. In addition, assume

(4)
∂f

∂y0

> 0

This is a version of the monotone twist condition and allows solving x1 =
f(x0, y0) for y0. Let

U = {(x0, x1) ∈ R2 | f(x0, a) ≤ x1 ≤ f(x0, b)}.
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• Lemma: There is a function S : U −→ R so that for (x0, y0), (x1, y1) ∈ Ã and
(x0, x1) ∈ U

h̃(x0, y0) = (x1, y1) iff y0 = − ∂S
∂x0

, y1 =
∂S

∂x1

• Proof:

Ã −→ U

(x0, y0) 7−→ (x0, f(x0, y0))

has an inverse of the form

U −→ Ã

(x0, x1) 7−→ (x0,−u(x0, x1))

Using u one can express y1 = g(x0, y0) = g(x0,−u(x0, x1)) = v(x0, x1). Then

h̃∗(y0dx0)− y0dx0 = y1dx1 − y0dx0

= v(x0, x1)dx1 + u(x0, x1)dx0

defines a closed form on U . Since π1(U) = {1} there is a function S(x0, x1) on
U so that dS = v(x0, x1)dx1 + u(x0, x1)dx0, i.e.

∂S

∂x1

= v = y1 and
∂S

∂x0

= −y0.(5)

• This function is unique up to addition of a constant. It generates a symplecto-
morphism from a Lagrangian section (i.e. a closed form) of T ∗U : Above (x0, x1)
the one form dS is −y0dx0 + y1dx1 so that y1 = g(x0, y0) and x1 = f(x0, y0).
• Properties of S: Differentiating

∂S

∂x0

(x0, f(x0, y0) = x1) = −y0

we get

∂2S

∂x0∂x1

(x0, x1)
∂f

∂y0

(x0, y0)︸ ︷︷ ︸
>0 by (4)

= −1⇒ ∂2S

∂x0∂x1

(x0, x1) < 0

The fact that boundary components of Ã are preserved implies

∂S

∂x0

(x0, x1) = −a and
∂S

∂x0

(x0, x1) = a

when x1 = f(x0, a). Moreover, recall U is invariant under translation by
2π(1, 1). S is also periodic

∂

∂xi
(S(x0 + 2π, x1 + 2π)− S(x0, y0)) = 0,
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so the difference which we differentiate is constant on ã. This difference can be
computed along segments γ(t) = (x0,+t, f(x0 + t, a)) of the boundary of Ã

S(x0 + 2π, f(x0 + 2π, a))− S(x0, f(x0, a)) =

∫
γ

dS

=

∫
γ

(
∂S

∂x0

dx0 +
∂S

∂x1

dx1

)
=

∫
γ

(−y0dx0 + y1dx1)

=

∫
γ

(−adx0 + adx1)

= 0.

• Remark: The existence of S allows giving yet another proof of the Poincaré-
Birkhoff fixed point theorem with monotone twist condition: Since S is invari-
ant under (2π, 2π) translation, it attains a minimum and a maximum along
the diagonal. At such critical points, the gradient of S is perpendicular to the
diagonal (i.e. (λ,−λ) for λ ∈ R), and by (5) this yields two fixed points.

11. Lecture on November, 22 – Discrete Hamiltonian mechanics,
convex billiard, Generating functions for Hamiltonian diffeos

• S allows to study the dynamical system (x0, y0) −→ (x1, y1) = h̃(x0, y0) from a
variational point of view: For given x0, x1, . . . , xl so that (xi+1, xi) ∈ U for all

i = 1, . . . , l. We look for y0, y1, . . . , yl so that (xi+1, yi+1) = h̃(xi, yi) for all i. If
there is such a sequence, then

∂S

∂x1

(xi−1, xi) +
∂S

∂x1

(xi, xi+1) = yi + (−yi) = 0

for i = 1, . . . , i− 1. Thus, if there are such y0, . . . , yl, then (x0, x1, . . . , xl−1, xl)
is a critical point of

Il(x0, x1, . . . , xl) =
l−1∑
j=0

S(xj, xj+1)

with respect to variations with fixed endpoints (x0, xl).
• Example (Convex billiards): Let γ : R −→ R2 a smooth curve (whose

image is an embedded circle), 2π-periodic so that the image bounds a strictly
convex disc D in R2 (i.e. tangents to the curve meet γ in exactly one point).
We assume that γ is parametrized by arclength. Let

S : R2 −→ R
(s0, s1) 7−→ −‖γ(s1)− γ(s0)‖.

The dynamical system associated to this function is the motion of a particle in
a convex billiards table with the usual reflection at the boundary.
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A computation shows that for t0 = angle(γ̇(s0), γ(s1) − γ(s0)) ∈ [0, π] and
t1 = angle(γ̇(s1), γ(s1)− γ(s0)) ∈ [0, π]

∂S

∂s0

= cos(t0)

∂S

∂s1

= − cos(t1)

(6)

This allows to verify the monotone twist condition for S. Differentiating the
second equation above with respect to s0 one gets

∂2S

∂s0∂s1

= sin(t1)
∂t1
∂s0

< 0

(as s0 moves towards s1, the angle t1 is decreasing). Thus, S defines an area
preserving map of the annulus R × [−1, 1] where the second variable is y =
− cos(t) (the −-sign accounts for the sign difference between the Lemma and
(6)). The boundary is preserved since by continuity t0 = 0 ⇔ t1 = π and
t1 = 0⇔ t0 = π.

Now s1 is well-defined only up to addition of multiples of 2πk. We may
assume f(x,−1) = x, this implies that f(x, 1) = x − 2π. The corollary of the
Poincaré-Birkhoff fixed point theorem implies that billiards in a convex domain
has infinitely many periodic orbits.
•
• The notion of generating function can be generalized to higher dimension. We

consider open subsets of R2n with the usual symplectic structure, let (x0, y0) ∈
R2n with x0 = (x0,1, . . . , x0,n), dx0 = . . . etc. Moreover, ∂S

∂x0
contains n-components

of the gradient of S.
• Let ψ = (f, g) : Ω ⊂ R2n −→ Ω′ ⊂ R2n be a symplectomorphism so that

Ω −→ U

(x0, y0) 7−→ (x0, f(x0, y0))
(7)

is a diffeomorphism. For dψ(z0) =

(
A B
C D

)
, then this is true on a neighbor-

hood of z0 if det(B) 6= 0. (7) implies, that ψ({x0}×Rn) is a submanifold of Ω′

which is every transverse to {z1} × Rn.
• Lemma: If Ω (hence U) is simply connected, then there is a function S : U −→
R so that for (x0, y0) ∈ Ω, (x1, y1) ∈ Ω′ with (x0, x1) ∈ U

(x1, y1) = ψ(x0, y0)⇔ y0 = − ∂S
∂x0

(x0, x1), y0 = − ∂S
∂x1

(x0, x1).

• Same as the lemma in the context of area preserving twist maps of the annulus.
Conversely:
• Lemma: Let U ⊂ R2n be open and S : U −→ R so that

F : U −→ Ω

(x0, x1) 7−→
(
x0,−

∂S

∂x0

)
is a diffeomorphism. Then

ψ : Ω −→ ψ(Ω) = Ω′ ⊂ R2n

(x0,−∂x0S(x0, x1)) 7−→ (x1, ∂x1S(x0, x1))
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is a symplectomorphism.
• Proof: We will show that (ψ ◦ F )∗(y1dx1) − F ∗(y0dx0) is exact. This implies

that ψ is a symplectomorphism.

(ψ ◦ F )∗(y1dx1)− F ∗(y0dx0) = F ∗(ψ)∗(y1dx1)− F ∗(y0dx0)

= ∂x1Sdx1+(∂x0S)dx0

= dS.

• Our main source for symplectomorphisms are obtained by integrating time-
dependent Hamiltonian vector fields. It is therefore important to know the
generating functions in this case (assuming that they exist!) The fact that we
did not really do any classical mechanics will haunt us now.
• Example: Let Ht;R2n −→ R be a smooth family of Hamiltonian functions and
ψ = φt0,t1H the associated symplectomorphism. Let z = (x, y) : [t0, t1] −→ R2n

be a C2-path and define the action functional

(8) ΦH(z) =

∫ t1

t0

(〈y(t), ẋ(t)〉 −H(t, x(t), y(t))) dt

The domain of this action functional are C∞-curves connecting given pairs of
points z0, z1. Consider the unique solution z(t) of the boundary value problem
x(0) = x0, x(1) = x1

ẋ(t) =
∂Ht

∂y
(x(t), y(t)) ẏ(t) = −∂Ht

∂x
(x(t), y(t)).

Solutions of these equations are critical points of the action functional with
fixed boundary conditions:

Let zs : [t0, t1] −→ R2n be a smooth 1-parameter family of smooth curves
and set

ξ(t) =
∂xs
∂s

(t)

∣∣∣∣
s=0

η(t) =
∂ys
∂s

(t)

∣∣∣∣
s=0

.

Differentiating (8) with respect to s and integrating by parts we get ((x(t), y(t)) =
zs=0(t))

∂Φ(zs)

∂s

∣∣∣∣
s=0

=

∫ t1

t0

(〈η(t), ẋ(t)〉 − 〈∂yH(t, x(t), y(t))), η(t)〉) dt

+

∫ t1

t0

(
〈y(t), ξ̇(t)− 〈∂xH(t, x(t), y(t)), ξ(t)〉

)
dt

=

∫ t1

t0

(〈η(t), ẋ(t)〉 − 〈∂yH(t, x(t), y(t))), η(t)〉) dt

−
∫ t1

t0

(〈ẏ(t), ξ(t)〉 − 〈∂xH(t, x(t), y(t)), ξ(t)〉) dt

+ 〈y(t1), ξ(t1)〉 − 〈y(t0), ξ(t0)〉.

(9)

If ξ(t0) = ξ(t1) = 0, i.e. we consider variation with partially fixed endpoints,
then critical points of the action functional are solutions of the Hamiltonian
equations.

We require (x0, x1) ∈ U , i.e. there is a unique solution z(t) = (x(t), y(t))
with x0 = x(t0) and x1 = x(t1) (this is again a consequence of the monotone
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twist condition/existence of S). Thus, we can consider

F : U −→ C∞([t0, t1],R2n)

(x0, x1) 7−→ (z : [t0, t1] −→ R2n)

• Lemma: If ψ = φt0,t1H admits a generating function, then SH(x0, x1) = ΦH(F (x0, x1))
is a generating function
• Proof: We vary the boundary condition by (x0 + sξ0, x1 + sξ1) and consider

the unique solutions zs(t) of the corresponding boundary value problems. Dif-
ferentiating Φ(zs) with respect to s one obtains by (9) and knowing that z(z)
satisfies the Hamiltonian equations

∂SH
∂x0

· ξ0 +
∂SH
∂x1

· ξ1 = 〈y1, ξ1〉 − 〈y0, ξ0〉.

This is true for all ξ0, ξ1, so this implies the claim.

12. Lecture on November 26, – Hamilton-Jacobi equation and
consequences

• Since we are free to choose t1 we let t1 vary in [t0, t1]. We get a smooth family
of functions S(t1, x(t0), x(t1)).
• Lemma: Using awful notation, this function satisfies the Hamilton-Jacobi

equation

(10)
∂S

∂t
(t, x, x(t)) +H

(
t, x(t), ∂x1S(t, x, x(t))

)
= 0.

• Proof: Let z(t) = (x(t), y(t)) be a solution of the Hamiltonian equations with
x(t0) = x. Then by the previous Lemma

S(t, x, x(t)) =

∫ t

t0

(〈y(τ), ẋ(τ)〉 −H(τ, x(τ), y(τ))) dτ.

Differentiating with respect to t and using the fact that S(t, ·) generates φt0,tH

we get

∂tS(t, x0, x(t)) + 〈∂x1S(t, x, x(t))︸ ︷︷ ︸
=y(t)

, ẋ(t)〉 = 〈y(t), ẋ(t)〉 −H(t, x, x(t)︸︷︷︸
=∂x1S(t,x,x(t))

).

• This has applications to the action of Hamiltonian flows on T ∗Rn on certain
Lagrangian submanifolds.
• Lemma: Let S : Rn −→ R be smooth and consider the connected Lagrangian

submanifold L given by the graph of dS in T ∗Rn. The Hamiltonian flow of the
time independent function H : T ∗Rn −→ R preserves L if and only if

(11) H(x, ∂xS) = c.

Thus, the graph of dS is invariant under the Hamiltonian flow if S solves the
Hamilton Jacobi equation.
• Proof: Assume that H is not constant on L, so dH(Y ) 6= 0 for some Y ∈ TlL

with l ∈ L. Then 0 = ω(XH , L) = −dH(L) cannot be satisfied for XH ∈ TlL.
If H|S is constant, but XH 6∈ TlL for some l, then since TlL

⊥ω = TlL there
is Y ∈ TlL so that 0 6= ω(XH , L) = −dH(L) = 0.
• Thus, solutions of the Hamilton Jacobi equation H(x, ∂xS) = c give rise to

invariant submanifolds.
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• Lemma: For U ⊂ Rn open, S : [t0, t1]×U −→ R smooth and H : [t0, t1]×U ×
Rn −→ R we have

∂tSt +H(t, x, dxSt) = c for some constant c iff

φt0,tH Lt0 = Lt

where Lt = graph(dSt).
• Proof: By the Weinstein neighborhood theorem it is enough to consider the

case t = 0 when dS0 describes the zero section of T ∗Rn. We are considering a
local statement which can be proved using local coordinates. The section Lt
moves in direction ∂t(dS(x)). In terms of local coordinates this is the vector∑

∂2St
∂qi∂t

∂
∂pi

.

The vector generating the Hamiltonian flow is

XH =
∑
i

(
−∂H
∂qi

∂

∂pi
+
∂H

∂pi

∂

∂qi

)
These two vectors have the same component in the fiber direction if and only
if

d∂tSt + d(dS)∗H = 0⇔ ∂tSt +H(t, x, ∂xS) = c.

for some constant c.
• Remark: As above, generating functions can be used to describe dynamical

systems with discrete time.
Assume that ψ : Ω −→ R2n is a symplectomorphism and consider sequences

of the form (xi+1, yi+1) = ψ(xi, yi) for i = 0, . . . , l− 1. If ψ admits a generating
function, then this sequence is completely determined by x = (x0, x1, x2, . . . , xl)
with (xi, xi+1) ∈ U and this sequence is a critical point of the functional

Il(x) =
l−1∑
i=0

S(xi, xi+1)

with respect to variations with fixed endpoints.
• In the following we will see that solutions of the Hamiltonian equation which

lie on an invariant Lagrangian give are not only critical points of the action
functional, but also minimizers.
• Lagrangian/Hamiltonian mechanics: So far, we have considered classical

mechanics from the Hamiltonian view point. The Lagrangian formalism is
equivalent: L(t, x, v) : ([t0, t1] × U) ⊂ R2n−1 −→ R is a smooth function. On
the space of paths C1([t0, t1],Rn) the action is defined as

I(x) =

∫ t1

t0

L(t, x(t), ẋ(t))dt.

Critical points of this functional with respect to variations with fixed endpoints
x(t0), x(t1) are solutions of the Euler-Lagrange equation

(12)
d

dt

∂L

∂v
(t, x(t), ẋ(t))︸ ︷︷ ︸
∈Rn

−∂L
∂x

(t, x(t), ẋ(t)) = 0
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The variational problem described above can be transformed if the Legendre
condition

(13) det

(
∂2L

∂vi∂vj

)
6= 0

is satisfied. The Legendre transformation transforms the second order system
(12) into a first order system. One introduces new variables (momenta)

yi =
∂L

∂vi
(x, v), i = 1, . . . , n.

(13) ensures by the implicit function theorem that one can recover vi from (x, y)
and L at least locally, i.e. there are local functions

vi = Gi(t, x, y).

The Hamiltonian function H : V −→ R, V ⊂ R×R2n associated to L (Legendre
transformation) is

(14) H(t, x, y) =

(∑
i

yivi

)
− L(t, x, v) =

(∑
i

yiGi

)
− L(t, x,G).

Differentiating H we get (using (12))

∂H

∂xk
= − ∂L

∂xk
+
∑
i

∑
j

yj
∂Gj

∂xk
+
∑
j

∂L

∂vj︸︷︷︸
=yj

∂Gj

∂xk


= − d

dt

∂L

∂vk
= −ẏk

∂H

∂yk
=

(
vk +

∑
i

yi
∂Gi

∂yk

)
−
∑
i

∂L

∂vi

∂Gi

∂yk

= vk = ẋk

• The following Lemma provides a sufficient condition ensuring that solutions of
the Euler-Lagrange equation are minimizers, not just critical points.
• time independent setting: Let S : Ω −→ R be a solution of the Hamilton-Jacobi

equation (11) with H : Ω× Rn −→ R so that(
∂2H

∂yi∂yj

)
is positive definite.

This condition implies the Legendre condition for the Legendre transform to
be possible and it yields:

L : Ω× Rn −→ R

Define f : Ω −→ Rn by

(15) f(x) = ∂yH(x, ∂xS(x))⇔ ∂xS(x) = ∂vL(x, f(x)).

Solutions of

ẋ(t) = f(x)

y(t) = ∂x(S(x(t))
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satisfy the Hamiltonian equations: The first one is automatic, the other follows
from (11)

0 =
d

dt
H(x(t),

=y(t)︷ ︸︸ ︷
∂xS(x(t)))

=
∂H

∂x
(x(t), y(t))ẋ(t) +

∂H

∂y
(x(t), y(t))︸ ︷︷ ︸
=f(x)=ẋ

ẏ(t)

• Lemma: Let L : Rn × Rn −→ R be a time-independent Lagrangian function

so that
(

∂2L
∂vi∂vj

)
is positive definite. Assume that x : [t0, t1] −→ Ω satisfies

ẋ(t) = f(x) for f : Ω −→ Rn defined above and ξ : [t0, t1] −→ Ω is another
path in Ω with the same endpoints. Then∫ t1

t0

L(x, ẋ)dt ≤
∫ t1

t0

L(ξ, ξ̇)dt

• Proof: Since
(

∂2L
∂vi∂vj

)
is positive definite, the function lies above the tangent

line of graph(L) which projects to a line in direction v − f(ξ), i.e.

(16) L(ξ, f(ξ)) + 〈∂vL(ξ, f(ξ)), v − f(ξ)〉 ≤ L(ξ, v)

with equality if and only if ξ = v. We have seen that

(x(t), ∂xS(x(t)) = y(t))

satisies the Hamilton equations. By (14) and the Hamilton-Jacobi equation
(10)

L(x, f(x)) = 〈∂xS(x)︸ ︷︷ ︸
=y

, f(x)〉 − H︸︷︷︸
=c

.

for all points x (including ξ(t)). Integrating the above inequality, we get∫ t1

t0

L(x, ẋ)dt =

∫ t1

t0

(〈∂xS(x(t)), f(x(t))〉 − c) dt

= S(x(t1))− S(x(t0))− c(t1 − t0)

=

∫ t1

t0

(
〈∂xS(ξ), ξ̇〉 − c

)
dt

=

∫ t1

t0

(
〈∂xS(ξ), ξ̇ − f(ξ)〉+ 〈∂xS(ξ), f(ξ)〉 − c

)
dt

=

∫ t1

t0

(
〈∂xS(ξ), ξ̇ − f(ξ)〉+ L(ξ, f(ξ))

)
dt

≤
∫ t1

t0

L(ξ, ξ̇)dt.

The inequality follows from (16) with v = ξ̇ and the second version of the
definition (15) of f .
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13. Lecture on November, 29 – Other generating functions,
Discussion of Arnol’d conjecture for (T 2n, ωst)

• Here is the theorem we want to prove before Christmas.
• Theorem (Arnol’d conjecture for T 2n): Let ψ be a Hamiltonian diffeo-

morphism of the 2n-torus with its standard symplectic structure given by
(R2n, ωst)/Z2n. Then ψ has at least as many fixed points as a function has
critical points (i.e. 2n + 1). If all fixed points are non-degenerate, than ψ has
as many fixed points as a Morse function (i.e. a function such that all critical
points are non-degenerate) has critical points (i.e. 22n).
• Remark: Of course we will consider the lift of ψ to R2n. Then we will decom-

pose the periodic symplectomorphism ψ into ψN−1 ◦ . . . ◦ ψ0 so that ψj has a
generating function Vj as in (18).

Another fact that we want to use is that these generating functions Vj are
invariant under decktransformations of the universal covering R2n −→ T 2n. So
far, we only know that V satisfies a condition V (x+ ej, y) = V (x, y) + αj and
V (x, y + ej) = V (x) + βj for constants αj, βj for all standard generators ej of
Z2n.

That Vj is the lift of a function on T 2n is important since we want to use prop-
erties of functions on T 2n. In order to show this we need to better understand
the difference between symplectomorphisms (isotopic to the identity through
symplectomorphisms) and Hamiltonian diffeomorphisms. Note that any trans-
lation of T 2n is symplectic and isotopic to the identity through translations.
However, many translations have no fixed points at all.

The final part of the proof will then be a study of the relationship between the
topology of T 2n and the action functional Φ : R2nN −→ R which is translation
invariant (under integral translations). This is the least symplectic part of this
discussion.
• Remark: The Lefschetz fixed point theorem gives no guarantee for the exis-

tence of fixed points of diffeomorphisms of T 2n isotopic to the identity since
χ(T 2n) = 0.

The example of translation of T 2n shows that symplectic/volume preserving
maps which are isotopic to the identity through symplectic/volume preserving
maps do not have fixed point in general. Thus, the Arnol’d conjecture theo-
rem shows that Hamiltonian diffeo’s are essentially less flexible than volume
preserving maps (the difference between Hamiltonian and symplectic can be
understood). More interestingly, it shows that

Ham(T 2n, ωst))
C0

∩Diff0(T 2n, µvol)

is a proper subgroup of the measure preserving diffeomorphisms. This is one of
the first results implying that the symplectic category is more rigid, that the
topological/smooth/measure preserving category.
• We will need a version generating function which is adapted to global symplec-

tomorphism ψ = (u, v) : R2n −→ R2n. If the condition

(17) ‖dψ − id‖ ≤ 1/2

is satisfied (operator norm), then the B-submatrix of dψ =

(
A B
C D

)
maybe

degenerate, but the A-part is non-degenerate.
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• Assume that the map (x0, y0) 7−→ (u(x0, y0), y0) is a diffeomorphism then we
can replace the independent variable (x0, y0) by (u(x0, y0) = x1, y0). Under the
condition (17) this is always the case!
• Fact: Let f : Rn −→ Rn be a smooth map so that ‖Df − id‖ ≤ 1/2. Then f

is a diffeomorphism.
• Proof of Fact: Let y ∈ Rn. We try to find f−1(y). For this consider Φ(x) =
x− f(x). Then the map

x 7−→ y + Φ(x)

is contracting and has a therefore a unique fixed point by the Banach fixed
point theorem which depends continuously on the input variables y and Φ.
Therefore, f is surjective and injective. By the assumption ‖Df − id‖ ≤ 1/2 it
is a local diffeomorphism everywhere. Thus, f is a diffeomorphism.
• Lemma: Given ψ as above, there exists a smooth function V on R2n so that

(x1, y1) = ψ(x0, y0) = (f(x0, y0), g(x0, y0)) if and only if

x1 − x0 =
∂V

∂y
(x1, y0)

y1 − y0 = −∂V
∂x

(x1, y0).

(18)

• Proof: There is a smooth inverse U : (x1, y0) 7−→ (u(x1, y0), y0) of F :
(x0, y0) 7−→ (f(x0, y0), y0). Set

y1 = g(x1, y0) = g(u(x1, y0), y0).

Then U∗(ψ∗(y1dx1) + x0dy0) = vdx1 + udy0 is closed since ψ is a symplec-
tomorphism and both xdy and −ydx are primitives of the same symplectic
form. Since R2n is simply connected there is a function W : R2n −→ R so that
dW = vdx1 +udy0. The function V (x1, y0) = 〈x1, y0〉−W (x1, y0) is the desired
function.
• There is a structural similarity between (18) and the Hamiltonian equation.

This suggest viewing W as a discrete time analogue for Hamiltonian functions.

14. Lecture on December, 3 – Fixed points of Hamiltonians and
critical points of a discrete action functional

• Let H(t, x, y) be a time dependent family of C2-functions on R × Rn × Rn so
that I is a compact interval and

sup
(t,z)∈R×R2n

(∥∥∥HessR
2n+1

Ht(z)
∥∥∥+

∥∥∥dR2n+1

H(t, z)
∥∥∥) <∞

The boundedness of the first summand ensures that XHt is Lipschitz, the second
part ensures that the length of XHt is bounded and varies in a Lipschitz fashion
with t. This implies that solutions of initial value problems exist for all times,
initial conditions and that these solutions are unique.

For t0 < t1 let φt0,t1H be the Hamiltonian diffeomorphism defined by Ht (initial
value problem with initial condition at t = t0). For big N the diffeomorphisms

φ
τj ,τj+1

H with τj = t0 +
j

N
(t1 − t0)
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satisfy the condition (17) and

φt0,t1H︸︷︷︸
=ψ

= φ
τN−1,τN
H︸ ︷︷ ︸
ψN−1

◦φτN−1,τN−2

H︸ ︷︷ ︸
ψN−2

◦ . . . ◦ φτ1,τ0H︸ ︷︷ ︸
ψ0

.

For each j = 0, . . . , N − 1, there is a function Vj as in (18) which determines
ψj. This can be used to describe solutions of (xN , yN) = ψ(x0, y0) in variational
terms.
• Let P = R2N+1n. Points in P are discrete paths (x0, y0, x1, y1, . . . , xN−1, yN−1, xN).

Let

Φ : P −→ R

(x0, y0, x1, y1, . . . , xN−1, yN−1, xN) 7−→
N−1∑
j=0

(〈yj, xj+1 − xj〉 − Vj(xj+1, yj)) .
(19)

This functional is of course suggested by (14). yN can be read of from (xN−1, yN−1)
and VN−1 via (18).
• Lemma: z ∈ P is critical for Φ with respect to variations ζ = (ξ0, ξ1, . . . , ξN , η0, . . . , ηN−1)

with ξ0 = ξN if and only if z satisfies the difference equations (18).
• Proof: This is a computation for j = 1, . . . , N − 1:

∂Φ

∂xj
= −yj + yj−1 −

∂Vj−1

∂x
(xj, yj−1)

∂Φ

∂yj
= xj+1 − xj −

∂Vj
∂y

(xj+1, yj).

(20)

The second computation works also for j = 0.
• The analogy between Vj and Hamiltonians Ht goes further: One can show that

if ψ admits a generating function S as on p. 19, then (x0, xN) determine the
critical point z = ((x0, y0), . . . (xN , yN)) uniquely. This defines a map R2n −→
P taking (x0, xN) to z and

S((x0, xN)) = Φ(z).

• Let

Pper = {z ∈ P |x0 = xN } ' {N − periodic sequences}

We extend ψj, Vj in a N -periodic fashion, ψj+N = ψj and Vj+N = Vj.
• Recall that a fixed point x of a diffeomorphism ψ of M is non-degenerate if the

graph of dψ in TxM × TxM is transverse to the diagonal. This is equivalent
to the condition that 1 is not an eigenvalue of dψ. Otherwise a fixed point is
degenerate.
• Lemma (ingredient # 1 for the Arnol’d conjecture for T 2n): z ∈ Pper

is a critical point of Φ : Pper −→ R if and only if (x0, y0) is a fixed point of ψ
and zj+1 = ψj(zj). It is a non-degenerate critical point if and only of (x0, y0) is
a non-degenerate fixed point.
• Proof: The identities (20) now hold for all j. If (x0, y0) is a fixed point of ψ

and (xj+1, yj+1) = ψj(xj, yj), then z is a critical point of Φ by (20) together
with the defining property (18) of Vj. The converse is just as obvious.
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For the second part we compute the Hessian of Φ at a critical point. This
gives rise to a symmetric linear operator

ξ′j+1 = ηj − ηj+1 −
∂2Vj
∂x2

(xj+1, yj)ξj+1 −
∂2Vj
∂x∂y

(xj+1, yj)ηj

η′j = ξj+1 − ξj −
∂2Vj
∂x∂y

(xj+1, yj)ξj+1 −
∂2Vj
∂2y

(xj+1, yj)ηj

(21)

so that

( ξ̂T η̂T ) Hess(Φ)

(
ξ
η

)
= ( ξ̂T η̂T )

(
ξ′

η′

)
We want to determine the kernel of this operator in terms of ψ. Recall that
from (18)

xj+1 − xj =
∂Vj
∂y

(xj+1, yj)

yj+1 − yj = −∂Vj
∂x

(xj+1, yj).

(22)

if and only if (xj+1, yj+1) = ψj(xj, yj). Differentiating this we get Dψj(ζj) =

ζ̂j+1, or in other terms

ξ̂j+1 − ξj =
∂2Vj
∂x∂y

ξ̂j+1 +
∂2Vj
∂2y

ηj

η̂j+1 − ηj = −∂
2Vj
∂x2

ξ̂j+1 −
∂2Vj
∂x∂y

ηj

(23)

Because ψj is a diffeomorphism, the solutions ξ̂j, η̂j of this linear system of equa-

tions (with given ξj, ηj) are unique and they exist. In particular, if (ξ̂N , η̂N) =

Dψ(ξ0, η0) = (ξ0, η0) = (ξN , ηN), then (ξj, ηj) = (ξ̂j, η̂j) for all j.
By (23) the kernel of the operator at a critical point (implying that (22)

holds) defined in (21) corresponds to of variations ζ so that ζj+1 = dψj(zj)ζj.
Applying the chain rule to ψ = ψN−1 ◦ . . . ◦ ψ0 we get

ζ0 = ζN+0 = dψ(z0)ζ0.

Since z and ζ are periodic, this implies that the kernel of the Hessian is empty
if and only if 1 is not an eigenvalue of dψ(z0).

Conversely, assume that (ξ0, η) is an eigenvector of d(ψ) with eigenvalue

1. This corresponds to a solution of (23) with ξ̂j = ξj and η̂j = ηj. This
is equivalent to a non-trivial solution (ξ′, η′) = 0,i.e. the degeneracy of the
Hessian of Φ.
• The previous Lemma relates properties of a quadratic form with properties of

a linear map. These things transfrom differently. Since quadradic forms and
linear maps transform differently one cannot expect very many such relation-
ships.

15. Lecture on December, 6 – Flux homomorphism, Ham versus Symp

• The second step in the proof of the Arnol’d conjecture for T 2n is showing that
if ψ = ψN−1 ◦ . . . ◦ ψ0 : R2n −→ R2n, is a lift of a Hamiltonian diffeomorphism
of T 2n,then Vj are lifts of functions on T 2n. Note that do far, we only used that
ψ is symplectic.)
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This will be a consequence of a broader discussion of the difference between
Symp0(M,ω) and Ham(M,ω) and some properties of these groups.
• Theorem (Weinstein): If (M,ω) is closed, then Symp0(M,ω) is locally path

connected in the C1-topology.
• Proof: Let ψ ∈ Symp(M,ω). Then the graph of ψ is a Lagrangian submanifold

of (M ×M, pr∗1ω − pr∗2ω).
If ψ is C0 close to the identity, then the graph is contained in a Weinstein

neighborhood N(∆) −→ ∆ with N(∆) being symplectomorphic to a neigh-
borhood N(M ⊂ T ∗M) of M ⊂ (T ∗M,dλ) of the diagonal ∆ (=graph of
the identity, and a Lagrangian). If the C1-distance between ψ and id is small
enough, then graph(Γ) is transverse to the fibers of the projection N(∆) −→ ∆
so that the inclusion M −→ N(∆) ' N(M ⊂ T ∗M) is induced by a 1-form
σ (this is true for ψ = id and we are dealing with an open condition). For
example id corresponds to σ ≡ 0.

Again restricting dC1(ψ, id) we may assume that all 1-forms sσ, s ∈ [0, 1]
intersect the fibers of the projection pr2 : M ×M −→ M transversely, so that
they define graphs of diffeomorphisms ψs of M . Since the graphs of all these
1-forms correspond to closed forms, so ψs is a symplectomorphism.
• Consequence: The connected component Symp0(M,ω) of id in Symp(M,ω)

is the path-connected component of the identity.
• Consequence of the proof: The proof shows more than stated, namely that

Symp(M,ω) is locally contractible. By standard theory of coverings this implies
that Symp0(M,ω) has a universal covering

S̃ymp0(M,ω) −→ Symp0(M,ω)

so that the covering projection is a homomorphism of groups, a local homeo-

morphism and S̃ymp0(M,ω) is simply connected. The group structure can be
obtained in two equivalent ways:

1. [φt] · [ψt] = [φt ◦ ψt] using the product structure on G.
2. [φt] · [ψt] is represented by the concatination of the two paths [φt] and

[φ1 ◦ ψt].
These two ways yield equivalent (homotopic) results (consider φt ◦ ψs).
• Proposition: Ham(M,ω) ⊂ Symp(M,ω) is a normal subgroup.
• Proof: Let H : M −→ R be smooth and φ ∈ Symp(M,ω). Then

−d(H ◦ φ)(Yx) = (φ∗(−dH))(Yx) = (φ∗(ω(XH , ·))) (Yx)

= ω(XH , φ∗(YX)) = (φ−1∗ω)(XH , φ∗(Yx))

= ω(φ−1
∗ XH , Yx) = ω(φ−1

∗ (XH(φ(x)))
(
Yx
)
.

Now assume that ψt is the Hamiltonian flow of Ht. Then d/dtψt = XHt ◦ ψt
and

d

dt

(
φ−1 ◦ ψt ◦ φ

)
(x) = φ−1

∗ (XHt(ψt ◦ φ(x)))

= φ−1
∗
(
XHt(φ ◦ φ−1 ◦ ψt ◦ φ(x))

)
= XHt◦φ(φ−1 ◦ ψt ◦ φ)(x).

Thus, Ht ◦ φ generates φ−1 ◦ ψt ◦ φ.
• Remark: According to a theorem of Banyaga, Ham(M,ω) is a simple group

when M is closed.
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• Definition: Let (M,dλ) be an exact symplectic manifold. Then Sympc(M,ω)
is the group of compactly supported symplectomorhpisms topologized as di-
rect limit the group SympK(M,ω) symplectomorphisms with support in com-
pact sets K. HamK(M,ω) is generated by functions with support in K and
Hamc(M,ω) is topologized in the same way as Sympc(M,ω).
• Proposition: Let (M,ω) be connected exact symplectic and φt an isotopy

connecting φ = φ1 to id = φ0. Then φt is a symplectic isotopy if and only
if φ∗tλ − λ is closed for all t ∈ [0, 1]. It is a Hamiltonian isotopy generated
by Ht if and only if φ∗tλ − λ = dFt for a smooth family of smooth functions
Ft : M −→ R and

(24) Ft =

∫ t

0

(iXsλ−Hs) ds

up to a function which depends only on t.
• Proof: The first part is obvious. Assume that φt is generated by the functions
Ht with Hamiltonian vector fields Xt. Then by (1)

d

dt
φ∗tλ = φ∗t (LXtλ)

= −dφ∗t (Ht − iXtλ)

d

dt
φ∗tλ =

d

dt
(λ+ dFt)

= dḞt

This is implies (24).
• The previous proposition characterizes Hamiltonian isotopy among symplectic

isotopies (and symplectic isotopies among smooth isotopies) when the symplec-
tic form is exact.
• Definition: The flux homomorphism of a closed symplectic manifold is

Flux : S̃ymp0(M,ω) −→ H1
dR(M)

[φt] 7−→
[∫ 1

0

iXtω dt

](25)

where φt is a symplectic isotopy of (M,ω), [φt] its homotopy class relative end
points and Xt satisfies

d

dt
φt = Xt ◦ φt.

• Lemma: This is well defined.
• Proof: iXtω is closed because φt is a symplectic isotopy. For γ : S1 −→M∫

S1

∫ 1

0

(γ∗(iXtω) dt) =

∫ 1

0

∫ 1

0

ω(Xt(γ(s)), γ̇(s)) dt ds

depends only on the free homotopy class of γ. Define β : S1 × [0, 1] −→ M as
β(s, t) = φ−1

t (γ(s))⇔ φt(β(s, t)) = γ(s). Then

γ̇(s) = dφt(β(s, t))
∂β

∂s
(s, t)

d

dt
φt(β(s, t)) = Xt(β(s, t)) + dφt(β(s, t))

∂β

∂t
(s, t)

= 0.
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We equip S1 × [0, 1] with the product orientation. Then

Flux(φt) =

∫ 1

0

∫ 1

0

ω (Xt(γ(s)), γ̇(s)) dt ds

=

∫ 1

0

∫ 1

0

ω

(
−dφt(β(s, t))

∂β

∂t
, dφt(β(s, t))

∂β

∂s

)
dt ds

= −
∫ 1

0

∫ 1

0

(φ∗tω)

(
∂β

∂t
,
∂β

∂s

)
dt ds

=

∫ 1

0

∫ 1

0

ω

(
∂β

∂s
,
∂β

∂t

)
dt ds.

Since ω is closed this depends only on the homotopy class of β so that the
boundary of the image consists of the fixed closed curves γ(s), s ∈ [0, 1],
φ1(γ(s)), s ∈ [0, 1, ] and β(1, t) = β(0, t) for all t. This is a standard appli-
cation of Stokes theorem (and the fact that integrals of 2-forms over closed
curves vanish).
• The last expression allows a geometric interpretation of the Flux: 〈Flux([φt]), γ〉

is the symplectic area swept out by the cylinder φt(γs)).
• Lemma: Flux is a homomorphism of groups.

• Proof: Let [φt], [ψt] ∈ S̃ymp0(M,ω) and view [φt] · [ψt] as concatination of
paths [φt] and [φ1 ◦ ψt]. Then the interpretation of the Flux and the fact that
φ1 is a symplectomorphism implies that 〈Flux(·), γ〉 is a homomorphism. This
implies Flux is a homomorphism.
• Example: Let α be a closed form and X so that ω(Xα, ·) = −α and φt the

flow of Xα. Then Flux([φt]) = −α. In particular, Flux is surjective.

16. Lecture on December, 10 – More Flux homomorphism, Ham versus
Symp

• The Flux-homomorphism can be used to characterize Hamiltonian diffeomor-
phisms.
• Theorem: φ ∈ Symp0(M,ω) is Hamiltonian if and only if there is a symplectic

isotopy φt so that φ0 = id, φ1 = φ and Flux([φt]) = 0.
• Proof: Assume φ is Hamiltonian, i.e. there is a family of functions Ht so that
XHt generates φt with φ = φ1. Then

Flux([φt]) =

[∫ 1

0

iXtωdt

]
=

[∫ 1

0

(−dHt)dt

]
= 0 ∈ H1

dR(M).

Conversly: Assume that φt is a symplectic isotopy with φ1 = φ and Flux([φt]) =
0. Using this last fact we want to modify the symplecic isotopy [φt] so that the
result φ′t is Hamiltonian for all t and φ′t = φt for t = 0, 1.

1. Step: Reduction from
∫ 1

0
iXtωdt = dF to

∫ 1

0
iXtωdt = 0. Let X be the

Hamiltonian vector field of F and ψt its Hamiltonian flow. We view
[φt] · [ψt] as a concatination of paths. Then the flux of this vanishes not
only in H1 but already in Ω1. If we find φ′t for the new isotopy [φt · ψt]
with the desired properties, then we achieved our goal for φ1 = φ since
the difference between φ1 ◦ ψ1 and φ1 is Hamiltonian.
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From now one we may assume that∫ 1

0

ω(Xt, ·)dt ≡ 0⇔
∫ 1

0

Xt dt ≡ 0.

2. Step: Let Yt = −
∫ t

0
Xτdτ . This is a symplectic vector field as an integral

of symplectic vector fields. For t fixed let ϑst be the flow of Yt (with time
parameter s). Then φ′t := ϑ1

t ◦ φt has constant vanishing flux since Flux
is a homomorphism: For 0 ≤ T ≤ 1 and by the homotopy invariance of
the flux in the first/second line

Flux([φ′t], 0 ≤ t ≤ T ) = Flux([ϑ1
t , 0 ≤ t ≤ T ]) + Flux([φt, 0 ≤ t ≤ T ])

= Flux([ϑsT , 0 ≤ s ≤ 1]) +

[∫ T

0

iXtω dt

]
=

[
iYTω +

∫ T

0

iXtω dt

]
= 0.

φ′t is homotopic to φt through symplectomorphisms relative to the end-
points (for this note that Y1 ≡ 0 ≡ Y0 so that the corresponding flows
are constant).

3. Step: If [φt, 0 ≤ t ≤ T ] has constant flux 0, then

0 =

[
d

dT
Flux([φt, 0 ≤ t ≤ T ])

]
= [iXTω] .

Therefore, XT is a Hamiltonian vector field for all T , the normalized
primitive depends smoothly on T .

• Fact: Assume that M is connected. There is an obvious exact sequence of
Lie-algebras

0 −→ R −→ (C∞(M), {·, ·}) −→ (χ(M,ω), [·, ·]) −→ H1
dR(M) −→ 0

Here χ(M,ω) = {X ∈ ΓTX |LXω = 0} is the space of symplectic vector fields
with the standard Lie bracket. The map to H1

dR(M) is X 7−→ iXω while the
map from C∞(M) assigns Hamiltonian vector fields to smooth functions.

The previous proposition allows to promote this sequence to groups.
• Corollary: Let M be closed. There is an exact sequence of simply connected

topological groups

1 −→ H̃am(M,ω) −→ S̃ymp0(M,ω) −→ H1
dR(M) −→ 0

The first map is the inclusion, the second map is the Flux-homomorphism.
• Originally, we were interested in Ham(M,ω) ⊂ Symp(M,ω) and not in univer-

sal covers. For this we will use yet another exact sequence:
• Lemma: Let (M,ω) be closed and symplectic. Then there is an exact sequence

0 −→ π1(Ham(M,ω) −→ π1(Symp0(M,ω)) −→ Γω −→ 0.

Here loops are viewed as paths in the universal covering, the map to from
π1(Symp0(M,ω)) is induced by the flux homomorphism and the image of the

restriction of Flux to π1(Symp0) ⊂ S̃ymp0 has image Γω. The map from
π1(Ham(M,ω)) is induced by inclusion. We use a topology on Ham(M,ω)
which could be finer a priori than the C1-topology/the subspace topology of
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Ham(M,ω) ⊂ Symp(M,ω): Namely, φ is ε-close to id if there is a time depen-
dent Hamiltonian flow φt so that φ1 = φ, φ0id and φt is ε-close (in the C1-norm)
to the identity. It turns out that this topology coincides (this is related to the
flux-conjecture which is no longer a conjecture) with the subspace topology.
What matters here is that the inclusion map Ham(M,ω) is continuous.

Using the topology we described, defining the universal cover of Ham(M,ω)
is standard since every point has a contractible neighborhood.
• Proof: The only non-trivial statement is the injectivity of the inclusion induced

map. Assume that [γ] ∈ π1(Ham(M,ω)) is a loop which is null homotopic in

Symp(M,ω). Then there is a continuous family of paths γ
(t)
s , s, t ∈ [0, 1] so that

γ
(t)
0 = id and γ1(t) = γ(t). Each of the curves γs ends at a symplectomorphism

with vanishing flux. The proof of the theorem allows to replace the path of

symplectomorphisms γ
(t)
s , s ∈ [0, 1], with a path γ̂

(t)
s in Ham(M,ω) with the

same endpoints.

The proof of the theorem implies that one can choose γ̂
(t)
s continuously in t,

so γ is null homotopic in Ham(M,ω) if it is null homotopic in Symp0(M,ω).
• Finally, we can establish a precise statement about the relationship between

Ham(M,ω) and Symp0(M,ω). It is an immediate consequence of what we
know.
• Proposition: There is an exact sequence

(26) 0 −→ Ham(M,ω) −→ Symp0(M,ω) −→ H1
dR(M)

Γω
−→ 0.

where the first map is inclusion and the second map is induced by the Flux-
homomorphism.
• Example: We will study Symp(T 2n, ωst) (not only the connected component

of id). We fix the universal cover R2n −→ R2n/Z2n = T 2n.

1. Observation: Let φ ∈ Symp(T 2n, ωst) and φ̃ : R2n −→ R2n a lift. For
l ∈ Z2n,

φ̃(w + l)− φ̃(w) = A(l) ∈ Z2n

is constant and A is Z-linear (look at φ̃(w + (l + m)) − φ̃(w) = φ̃(w +

(l +m))− φ̃(w + l)− (φ̃(w + l)− φ̃(w)). Since φ̃ is invertible, the same
is true for A, i.e. A ∈ Gl(2n,Z).
A is the identity iff φ acts trivially on H1(T 2n,Z).

2. Observation: A is a symplectic: If A represents the homomorphism
φ∗ : π1(T 2n) −→ π1(T 2n) ' H1(T 2n,Z) with respect to the standard
basis of Z2n, so AT represents the dual morphism on H1(T 2n,Z) with
respect to the dual basis dx1, dy1, . . . , dxn, dyn (via integration of forms).
H1(T 2n,R) has a symplectic structure

Ω([α], [β]) =

∫
T 2n

α ∧ β ∧ ωn−1
st .

Since φ∗ωst = ωst∫
φ(T 2n)

α ∧ β ∧ ωn−1
st =

∫
T 2n

Φ∗(α ∧ β ∧ ωn−1
st )

implies Ω([α], [β]) = Ω(φ∗[α], φ∗[β]).
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3. Proposition: Assume φt is a symplectic isotopy and φ̃t is the unique

lift with φ̃0 = idR2n . Then φ̃t(w + l) = φ̃t(w) + l with l ∈ Z2n and

(27) Flux([φt]) =

[
2n∑
j=1

ajdwj

]
with

a = (a1, . . . , a2n) = J0

∫
T 2n

(
φ̃1(w)− φ̃0(w)

)
︸ ︷︷ ︸

=lifts of functions on T 2n

ωn.

Proof: Fix a family of Hamiltonian functions Ht for φ̃t ( d
dt
φt is not a

Hamiltonian vector field on T 2n, but d
dt
φ̃t is Hamiltonian on R2n). These

functions do not descend to T 2n, in general. However, Ht(w+l)−Ht(w) is
a constant function on R2n for all l ∈ Z2n. So, there is a time dependent
vector h(t) = (h1(t), . . . , h2n(t)) such that

(28) Ht(w + l)−Ht(w) = 〈h, l〉 for all l ∈ Z2n

which measures the obstruction for Ht being the lift of a Hamiltonian
function on T 2n. For the Flux of [φt] we get

Flux([φt]) =

∫ 1

0

[iXtωst]

=

∫ 1

0

[dHt]︸ ︷︷ ︸
exact on R2n, not T 2n

dt

=

[
2n∑
j=1

(∫ 1

0

hj(t)dt

)
dwj

]
.

Now compute (sometimes T 2n denotes a fundamental domain of the Z2n

action on R2n or the 2n-torus).

a = J0

∫
T 2n

(φ̃1(w)− φ̃0(w))ωnst

= J0

∫
T 2n

∫ 1

0

(
d

dt
φ̃t

)
(φ̃t(w)) dt ωnst

= J0

∫
T 2n

∫ 1

0

(
− J0∇Ht(φ̃t(w))

)
dt ωnst

=

∫
T 2n

∫ 1

0

∇Ht(w) dt ωnst

=

∫ 1

0

h(t)dt

For the step from the third to the fourth line one uses that φt is a sym-
plectomorphism, for the next step one uses (28). This confirms (27).

4. Observation: The last statement implies H1
dR(M,Z) ⊂ Γωst . The vector

a can be interpreted as average displacement of points in T 2n by the
symplectomorphism φ1.
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5. Consequence: Assume that φt is a loop in Ham(T 2n, ω). Then the loop
t 7−→ φt(q) in T 2n is contractible for all q ∈ T 2n.

Proof: Choose the lift φ̃t of φt to R2n so that φ̃0 = id. Since φt is
Hamiltonian, Flux([φt]) = 0. Because φt is a loop, there is l ∈ Z2n so

that φ̃1(w) = w + l. Consider the linear curve γ which represents J0 · l.
Then using notation from above (β(s, t) = φ−1

t (γs))

〈Flux([φt]), γ〉 =

∫
β

ω

6= 0

because the cylinder β is homotopic relative to the boundary to a cylinder
in T 2n whose lift to R2n is contained in a plane parallel to the plane
spanned be l, J0l. The symplectic form is an area form on such planes
and the cylinder has two different boundary components. Thus, l = 0.
This implies the claim.

17. Lecture on December, 13 – Generating functionis for
Hamiltonian diffeo’s of T 2n

• Definition: A symplectomorphism φ of (T 2n, ωst) is called exact if it acts trivial

on homology (A = id in the notation from above) and admits a lift φ̃ so that

(29)

∫
T 2n

(φ̃(w)− w)ωnst = 0.

The last integral is over a fundamental domain. φ acts trivially on homology
if and only if it is homotopic to the identity.
• Fact: We have shown above that Hamiltonian diffeomorphisms of T 2n are

exact. (We did not determine Γω completely.) This will be used in the following
Lemma.
• Lemma: Let φ̃ : R2n −→ R2n be the lift of an exact symplectomorphism of

T 2n. If φ̃ is sufficiently close to id in the C1-topology, then there is a smooth
function V : R2n −→ R which generates ψ and satisfies

V (x+ k, y + l) = V (x, y)

for all k, l ∈ Zn.

Recall that generates means that φ̃(x0, y0) = (x1, y1) is equivalent to

x1 − x0 =
∂V

∂y
(x1, y0)

y1 − y0 = −∂V
∂x

(x1, y0).

• Proof: Since φ̃ is homotopic to the identity, there are functions p, q : R2n −→
Rn which are periodic (p(x+ k, y + l) = p(x, y) for k, l ∈ Zn) and

φ̃(x, y) = (x+ p(x, y), y + q(x, y)).

(29) implies ∫
T 2n

p ωnst = 0 =

∫
T 2n

q ωnst.
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Recall that (x, y) 7−→ (x + p(x, y), y) is a diffeomorphism of R2n. Hence, it
induces a diffeomorphism of T 2n. Because

p(x, y) =
∂V

∂y
(x+ p(x, y), y)

and p(x, y) descends to an Rn-valued function on T 2n, the same is true for
∂V/∂y. The same argument shows that ∂V/∂y is the lift of a function on T 2n

with values in Rn. Therefore, there are vectors a, b ∈ Rn so that

(30) V (x, y) = 〈(a, b), (x, y)〉+W (x, y)

for a function W which is 1-periodic in all variables. The fact that the average

displacement of φ̃ vanishes allows to determine (a, b) (this vector has to vanish).
Here are the details: Differentiating (30) with respect to x and y we get

a+
∂W

∂x
(x+ p(x, y), y) = −q(x, y)

b+
∂W

∂y
(x+ p(x, y), y) = p(x, y).

The second identity implies (differentiate by x):

∂2W

∂y∂x
(x+ p(x, y), y)

(
E +

∂p

∂x

)
= −∂p

∂x

Multiplying with (E + ∂p/∂x)−1 (the matrix is invertible by the C1-smallness
assumption (17)) we get

E− ∂2W

∂x∂y
(x+ p(x, y), y) =

(
E +

∂p

∂x
(x, y)

)−1

This allows to perform a change of variables (x′, y′) = (x + p(x, y), y) after
integrating the identity involving a over a fundamental domain of the
Z2n action on R2n we get

a = −
∫
T 2n

∂W

∂x
(x+ p(x, y), y) dx dy

= −
∫
T 2n

∂W

∂x′
(x′, y′)

dx′ dy′

det
(
E + ∂p

∂x
(x, y)

)
= −

∫
T 2n

∂W

∂x′
(x′, y′)det

(
E− ∂2W

∂x′∂y′
(x′, y′)

)
dx′ dy′

= −
∫
T 2n

det

(
E− ∂2W

∂x′∂y′
(x′, y′)

)
dW ∧ dx′2 ∧ . . . dx′n ∧ dy′1 ∧ . . . ∧ dyn

Again all integrals are over fundamental domains of the Z2n-action on R2n (it
does not matter which fundamental domain is used). The expression of the last
line is the pull-back of the 2n-form

(31) (dW )(x′′1, . . . , y
′′
n) ∧ dx′′2 ∧ . . . dx′′n ∧ dy′′1 ∧ . . . ∧ dy′′n

under the map

R2n −→ R2n

(x′, y′) 7−→
(
x′, y′ − ∂W

∂x′

)
= (x′′, y′′).
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This is a diffeomorphism of R2n because its first derivatives (i.e. the second
derivatives of W ) are as close to id as the first derivatives of ∂V ∂y. Moreover,
it is Z2n periodic.

Since the 2n-form given in (31) descends to an exact 2n-form manifold T 2n =
R2n/Z2n. This implies a = 0. b = 0 follows from a similar computation.

18. Lecture on December 17 ,– Conley index, non-degenerate case of
the Arnol’d conjecture

• Corollary: Let φ be a Hamiltonian diffeomorphism of T 2n. If φ is sufficiently
C1-close to id, then the Arnol’d conjecture holds for φ. Moreover, the dis-
cretized action (19) functional is defined on Pper/Z2n.
• Proof: The first part follows from the second if N = 1, i.e. is φ is so small

that it does admit a generating function V . For the second part recall that the
action is a linear combination of function Vj(xj+1, yj) and

∑N−1
j=0 〈yj, xj+1−xj〉.

Z2n acts by translation on Pper, i.e. for w ∈ Z2n and ((x0, y0), . . . , (xN−1, yN−1))
(with the convention xj+N = xj, yj+N = yj)

w · ((x0, y0), . . . , (xN−1, yN−1)) = ((x0, y0) + w, . . . , (xN−1, yN−1) + w).

So both the Vj-summands and the part
∑N−1

j=0 〈yj, xj+1−xj〉 are invariant under
this action. Thus, the discretized action functional descends to

(32) Φ : Pper/Z2n −→ R.

• Remark: The source is diffeomorphic to T 2n×R2n(N−1). To finish the proof of
the Arnold conjecture for T 2n we have to show that if Φ has only non-degenerate
critical points, then there are at least 22n of them and at least 2n + 1 critical
points in general and these critical points correspond to geometrically distinct
fixed points of Φ on T 2n.

Morse-theory is the standard tool to relate critical points of functions with
non-degenerate critical points (Morse functions) with the topology of the un-
derlying space. To estimate the number of critical points of a general function
from below one used the Lusternik-Schnirelman category.

Both these tools need to be adapted from their standard setting (discussed
for example in the first chapters of [Mi-M]) to the present one because Φ is not
bounded from below.

Let V be −∇Φ. This vector field is complete so that we consider the flow. We
will relate dynamical properties of V to the topology of X = R2nN/Z2n = M .
• Morse-theory and Conley index: Let V be a complete vector field on the

manifold M and ft its flow. It is not required that V be a gradient vector field
until later. However, it should be noted that gradient flows are simpler than
general flows because all recurrent trajectories (i.e. flowlines that accumulate
on themselves, for example closed leaves) are singular points.
• Definition: Λ ⊂ M is invariant if ft(Λ) = Λ. An invariant set is isolated if

there is a neighborhood N so that Λ = ∩tft(N).
• Definition: Let Λ be an isolated invariant set. A pair (N,L) (with L ⊂ N ⊂
M) of compact sets is an index pair for Λ if

1. N \ L isolates Λ, i.e. Λ = ∩tft(N \ L).
2. L is positively invariant, i.e. for all x ∈ L and t > 0 so that f[0,t](x) ∈ N

implies f[0,t] ⊂ L.
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3. a point in N passes trough L before leaving N , i.e. for all x ∈ N \ L
there is ε > 0 so that f[0,ε](x) ⊂ N .

• Theorem: For every isolated invariant set Λ, there is an index pair.
• Lemma: Given two index pairs (N,L), (N ′, L′) for Λ, then the spaces N/L

and N ′/L′ are homotopy equivalent.
• Definition: An index pair (N,L) is regular if L is a deformation retract of

neighborhood of L in N .

If (N,L) is regular, then H∗(N,L) = H̃∗(N/L). This is a measure for the
topological complexity of Λ which is stable under deformations of V as long as
(N,L) is still a (regular) index pair. It is convenient to organize information

about H̃∗(N/L) in the index polynomial

pλ(s) =
∑
k

dim(Hk(N,L;R))︸ ︷︷ ︸
bk(Λ)

sk.

In all cases we are concerned with, (N,L) will be a compact CW-pair. This
implies that (N,L) is regular and that H∗(N,L;R) has finite dimension. A
standard properties if H∗(·, ·)

pΛ∪Λ′s = pΛ(s) + pΛ′(s)

when the invariant sets Λ and Λ′ have disjoint isolating neighborhoods.
• Remark: The case when V = −∇f is the gradient flow of a smooth function

(assuming that the flow of V exists forever, i.e. that V is complete). Then
singular points are invariant sets and all other invariant sets are unions of
singular points and flow lines ”connecting” them.
• Example: Let f(x1, . . . , xn) = −x2

1− . . .−x2
k+x2

k+1 + . . .+x2
n be the standard

Morse singularity of index k on Rn = Rk × Rn−k. Write I = [−1, 1] and
V = −∇f . 0 is a singular point of V and N = In isolates 0. Tacking L =
(∂Ik) × In−k we get an index pair (N,L) and N/L ∼ Ik/(∂Ik) ' Sk where ∼
denotes homotopy equivalence. Recall

H̃l(S
k;R) '

{
R l = k
0 l 6= k.

k is the number of negative eigenvalues of the Hessian of f at a critical point.
• The following theorem is a standard result from Morse-theory which allows to

estimate the number of singular points of an invariant set of a gradient flow of
a Morse-function Φ on a manifold of dimension n in terms of the topology of
an isolating set of Λ. Let

ck(Λ) = |{x ∈ Λ |x is a critical point of index k}|.
• Theorem (Morse inequalities): For 0 ≤ k ≤ n

(33) ck(Λ)− ck−1(Λ) + . . . (−1)k+1c0(Λ) ≥ bk(Λ)− bk−1(Λ) + . . .+ (−1)k+1b0(Λ).

Equality holds for k = n. By induction, this implies that∑
k

ck ≥
∑
k

bk

• The proof of this relies on rebuilding (the homotopy type of) N from L using
the flow and information about the singular points.
• The right hand side of (33) does not really depend on Λ but on the index pair

(N,L) for Λ.
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19. Lecture on December, 20 – Arnol’d conjecture, finally

• Theorm (Arnol’d conjecture), non-degenerate case: Let φ be a Hamil-
tonian diffeomorphism of T 2n and assume that all fixed points are non-degenerate
(i.e. 1 is not an eigenvalue of dφ : TxT

2n −→ TxT
2n for a fixed point x of φ).

Then there are at least 22n fixed points.

• Proof: Let φ̃ be the endpoint of the lift of the the Hamiltonian flow of the
Hamiltonian functions defining φ to R2n −→ T2n. For big enough N , there are
functions Vj generating symplectomorphisms φj of R2n so that

φ̃ = φN−1 ◦ φN−2 ◦ . . . ◦ φ0

and the fixed points of φ correspond to (equivalence classes of) critical points
of the action functional (under the Z2n-action)

Φ : Pper/Z2n −→ R

[x0, y0, . . . , xN−1, yN−1] 7−→
N−1∑
j=0

(〈yj, xj+1 − xj〉 − Vj(xj+1, yj))

The domain of Φ is diffeomorphic to T 2n × R2n(N−1) via

z0 = z0 ∈ T 2n

ξj = xj − xj−1 ∈ Rn

ηj = yj − yj−1 ∈ Rn

for j = 1, . . . , N − 1. We denote ζ = (ξ, η). In these coordinates, Φ becomes

Φ : T 2n × R2n(N−1) −→ R
(z0, ζ) 7−→ 〈ζ, Pζ〉+W (z0, ζ1, . . . , ζN−1).

The matrix P is of the form P =

(
0 −B
−BT 0

)
with

B =


En En . . . En
0 En . . . En
...

...
. . .

...
0 0 . . . En


︸ ︷︷ ︸

(N−1) columns

The matrix P is symmetric and represents a non-degenerate quadratic form
with det(P ) = ±1. We want to determine the index of P (the index is the dif-
ference between the number of positive eigenvalues and the number of negative
eigenvalues).
P is homotopic through non-degenerate symmetric matrices to(

0 −E2n(N−1)

−E2n(N−1) 0

)
.

This matrix has index 0, so the same is true for P . Hence, there is a decompo-
sition E+⊕E− of R2n(N−1) so that the quadratic form P is positive definite on
E+ and negative definite on E−. From this we get an index pair for the unique
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critical point 0 of the quadratic form: For all K > 0

NK = {(e+, e−) ∈ E+ ⊕ E− | ‖e+‖ ≤ K, ‖e−‖ ≤ K}
LK = {(e+, e−) ∈ E+ ⊕ E− | ‖e+‖ ≤ K, ‖e−‖=K}

is an index pair for Λ = {0} ∈ R2n(N−1) of the negative gradient flow of the
quadratic form. NK is a product of two n(N − 1)-dimensional balls, LK is the
product of such a ball with a sphere of one dimension less. If Vj = 0 for all j,
then T 2n × (N,L) is an index pair for the negative gradient flow of Φ. If one
chooses K so that the negative gradient flow points out of NK precisely along
LK , then T 2n× (N,L) is an index pair for the negative gradient flow of Φ with
no-trivial given Vj. Such a K exists because Vj and its derivatives are bounded
functions on T 2n for all j. Hence, the Conley index of the union of all bounded
flow lines is

T 2n ×NK/T
2n × LK

One can compute the homology of this index pair:

bk+n(N−1)(T
2n ×NK , T

2n × LK) =

(
2n

k

)
This implies the claim.
• We still have to discuss the algebraic topology for the degenerate/topological

case. This is more delicate because we can only assume that the number of
critical points of Φ is finite, so that the critical points are isolated. The following
definitions provide tools to estimate the number of critical points from below.
• Definition: An open subset U of a manifold M is cohomologically trivial if the

inclusion induced map

ik : Hk
dR(M) −→ Hk

dR(U)

is zero for k ≥ 1. The Ljusternik-Schnirelmann category of a subset A ⊂M is

νLS = minimal number N so that there are cohomologically trivial

U1, . . . , UN ⊂M so that A ⊂ ∪jUj.

This defines a map νLS : PowerSet(M) −→ N0 satisfying a the following rules:
1. (continuity): For all A ⊂ N there is an open set U so that νLS(U) =
νLS(A).

2. (monotonicity): A ⊂ B implies νLS(A) ≤ νLS(B).
3. (subadditive): νLS(A ∪B) ≤ νLS(A) + νLS(B).
4. (normalization): νLS(∅) = 0 and νLS({x1, . . . , xN}) = 1 for all finite

subsets of M .
5. (naturaltiy): If φ : M −→ M is a homeomorphism, then νLS(φ(A)) =
νLS(A).

• Lemma: If M is of dimension n, then νLS(A) ≤ n+ 1 for all A ⊂M .
• Sketch of Proof: Fix a triangulation T of M and consider its first barycentric

subdivision T 1. The vertices of T 1 can be grouped into n + 1 classes Vj, j =
0, . . . n according to the dimension of the face they are a barycenter of. For
example, V0 are the vertices of T , V1 are mid points of edges of T etc.

The open star of a vertex of a triangulation is the union of all (open) sim-
plices whose closure contains the vertex. All open stars of a vertex in T 1

are contractible and the open stars of vertices in Vj (for fixed j) are pairwise
disjoint.
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• Definition: The cup-length cl(M) of the manifold M is the smallest number
N so that for all αi ∈ Hki

dR(M) with ki ≥ 1

α1 ∧ . . . ∧ αN = 0.

• Remark: If M is n-dimensional, then cl(M) ≤ n+ 1.
• Example: The cup-length of T 2n is 2n+ 1 since dx1∧ . . .∧ dyn is a non-trivial

class which is the product of 2n forms of degree 1.
• Lemma: Let M be compact. Then νLS(M) ≥ cl(M).
• Proof: This is an application of the exactness of the Mayer-Vietoris sequence:

Let U, V ⊂M be open. Then there is an exact sequence

. . . Hk−1
dR (U∩V ) −→ Hk

dR(U∪V ) −→ Hk
dR(U)⊕Hk

dR(V ) −→ Hk
dR(U∩V ) −→ Hk+1

dR (U∪V ) . . .

The second map is induced by inclusion, the third map is the difference of
the maps induced two restriction maps. The connecting homomorphisms are
constructed using a partition of unity subordinate to the open cover U, V of
U ∪ V .

Claim: Let α ∈ Ωk(U ∪ V ) be exact on U and on V . Let β ∈ Ωl(U ∪ V ) be
closed on U and exact on V . Then α ∧ β is exact on U ∪ V .

Proof of claim: α|U = dσU , αV = dσV , βV = dτV by assumption. Choose
an extension (denoted by σU) of σU to U ∪ V . Now the k + l − aq-form ρ is
defined by

ρ|U = σU ∧ β on U

ρ|V = σV ∧ β + (−1)k−1d((σU − σV ) ∧ τV ) on V.

The forms ρU , ρV coincide on U ∪ V , so they define a form on U ∪ V . One can
check that

dρ = α ∧ β.
Let U1, . . . , UN be an open covering of M by cohomologically trivial sets

and α1, . . . , αN forms of positive degree. Using induction we will show that
α1 ∧ . . . αk is exact on U1 ∪ . . . Uk for 1 ≤ k ≤ N . This is obvious for k = 1.
For the inductive step apply the claim to

α = α1 ∧ αk on U = U1 ∪ . . . Uk
β = αk+1 on V = Uk+1.

• Theorem (Lusternik-Schnirelmann): Let M be a compact manifold. Then
a (negative) gradient flow has at least νLS(M) critical points.
• Proof: Let f : M −→ R be smooth, and V = −∇f (using some Riemannian

metric). Let φt be the flow of V . We assume that f has finitely many critical
points so that they are isolated.

For c ∈ R let M c := f−1((−∞, c]). If c is not critical, then for sufficiently
small ε > 0 the flow φt allows to construct a homeomorphisms of M mapping
M c+ε heomeomorphically onto M c+ε. Then

νLS(M c+ε) = νLS(M c−ε)

by naturality. Let cj = sup{c ∈ R | νLS(M c) < j} for j = 1, . . . , νLS(M). Then
c1 = min(f(M)), and cj is a critical value of f for all j.

We are done once we show that the critical levels cj are pairwise distinct, i.e.
cj+1 > cj. Because there are only finitely many critical points, the critical level
f−1(cj) contains only finitely many of them: x1, . . . , xm. There are contractible
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neighborhoods Vi of xi and ε > 0 so that M cj+ε\∪iVi can be pushed into M cj−ε

by the flow. Hence,

νLS(M cj+ε) ≤ νLS(M cj−ε) + ν(∪iVi)
= νLS(M cj+ε) + 1

< j + 1.

This implies cj+1 > cj.
• Remark: We have used deRham cohomology to explain the Lusternik Schnirel-

mann category because it is assumed that we all know it. It would work in the
same way with most other cohomology theories (for example singular). It turns
out that Alexander-Spanier homology is better suited than singular or deRham
cohomology.

The reason for this is that in general Λ is a complicated space (not a manifold,
not a CW-complex). In the non-degenerate case this is not as big of a problem
because the singularities and the flow lines connecting them are very simple
(for a generic choice of Riemannian metric defining the gradient flow, we are
interested in the number of critical points which are not affected be the choice
of a metric.)

In the Alexander theory (like in singular cohomology) it is possible to define
a map

i∗ : Ȟ∗(N) −→ Ȟ∗(Λ)

which is induced by the inclusion Λ −→ N where (N,L) is an index pair. In
the Alexander theory, and not int the singular theory, one can define several
long exact sequences allowing to prove properties of i∗. For details see [Co],
p. 74ff.
• Idea of proof of the Arnol’d conjecture in the degenerate case: Let
π : T 2n × R2n(N−1) −→ T 2n be the projection. One has to show that

i∗ ◦ π∗ : Ȟ∗(T 2n) −→ Ȟ∗(Λ)

is injective. This is clear when Φ = id, i.e. when Vj ≡ 0 for all j and properties
of Alexander cohomology allow to prove the general case. The cup length can
be defined for all cohomology theories (and not only on manifolds but also on
compact metric spaces). The same holds for the notion of category. Also, the
proof of the Lusternik Schnirelmann theorem can be adapted to the setting of
flows on metric spaces like Λ (gradients are not really defined there, but one
can still talk about Lyapunov functions) .

Because the cup length of Ȟ∗(T 2n) is 2n+ 1 this implies that Λ contains at
least 2n+ 1 critical points.
• Remark: This is only the beginning of a long story, see [McDS], Section 11.

20. Lecture on January, 7 – Symplectic Capacities

• In the following symplectic manifolds are allowed to have boundary, they are
of dimension 2n. We denote

B(r) = {(x, y) ∈ R2n | |x|2 + |y|2 < 1} ⊂

(
R2n, ω0 =

∑
i

dyi ∧ dxi

)
Z(r) = {(x, y) ∈ R2n |x2

1 + y2
1 < 1} ⊂

(
R2n, ω0

)
.
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The symplectic form ω0 looks slightly non-standard, but it the standard sym-

plectic form on T ∗Rn ' R2n. The almost complex structure J =

(
0 id
−id 0

)
is adapted to ω0 and ω(−JX, Y ) = ω(X, JY ) is the standard Euclidean metric
on R2n. The Hamiltonian vector field is then XH = J∇H.
• Definition: A symplectic capacity c is a map (M,ω) 7−→ c(M,ω) ∈ R+

0 ∪{∞}
so that

1. (Monotonicity): If ψ : (N,ωN) −→ (M,ωM) is a symplectic embedding,
then

c(N,ωN) ≤ c(M,ωM).

2. (Conformal): c(M,αω) = |α|c(M,ω) for all α 6= 0.
3. (Nontrivial): c(B(1), ω0) = π = c(Z(1), ω0).

Sometimes one replaces the last property by the weaker requirement

0 < c(B(1), ω0) and c(Z(1), ω0) <∞.

Other restrictions, e.g. considering only open subsets in R2n are common.
• Remark: As it turns out there are many different capacities, in particular

when n > 1. The existence of a capacity is a non-trivial fact that we assume
for now.
• Remark: If n = 1, then c(M,ω) =

∫
M
ω is a symplectic capacity. If n > 1,

then

(M,ω) 7−→
(∫

M

ωn
)1/n

is monotone and conformal, but
∫
Z(1)

ωn =∞.

• Remark: If f : (M,ω) −→ (N,µ) is a symplectomorphism, then c(M,ω) =
c(N,µ). This is immediate from the monotonicity.
• Lemma: For U ⊂ (R2n, ω0) and α 6= 0

c(αU, ω0) = α2c(U, ω0)

where αU = {αu |u ∈ U} ⊂ R2n.
• Proof: The map

ψ : (αU, ω0) −→ (U, α2ω0)

(x, y) 7−→ (x, y)

α

is a symplectomorphism. Hence, c(αU, ω0) = c(U, α2ω0) = α2c(U, ω0) by con-
formality.
• In particular, c(B(r)) = r2c(B(1)) = r2π and c(Z(r)) = r2π. If n = 1,

c(B(1), ω0) = area(B(1)). Since B(r) ⊂ B(r) ≤ B(r + ε) for ε > 0, one has

c(B(r), ω0) = c(B(r), ω0).
• Proposition: If D ⊂ R2 is compact, connected domain with smooth boundary,

then c(D,ω0) = area(D).
• Proof Sketch: After removing a finite collection of curves we obtain D0 so that
D̊0 is diffeomorphic to a disc, i.e. there is a diffeomorphism φ : B(r) −→ D̊0

and area(D) = area(B(r)). For ε > 0 one finds r1 < r so that area(φ(B(r1))) ≥
area(D)− ε.
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By the proof of the Moser theorem, there is an ambient isotopy ψt of R2,
supported in D so that ψ1 ◦ φ is symplectic on B(r1). Then

area(D)−ε ≤ area(ψ1◦φ(B(r1))) = area(B(r1)) = c(B(r1)) ≤ c(ψ1◦φ(B(r1))) ≤ c(D).

Conversely, for all ε there is a diffeomorphism

φ : D −→ B(r) \ {finite set of balls with total area ≤ ε}

such that area(B(r))− ε = area(D) By Moser’s theorem one can again isotope
φ so that it is symplectic and has image contained in a disc B(R) so that
area(B(R)) ≤ area(D) + ε. Then

c(D) ≤ c(B(R)) ≤ area(D) + ε.

Thus, area(D)− ε ≤ c(D) ≤ area(D) + ε.

• Example: Let n > 1 and Ẑ(1) = {(x, y) ∈ R2n |x2
1 + x2

2 ≤ 1} ⊂ R2n. Then

c(Ẑ, ω0) =∞. This is true since for all N , there is a symplectic embedding of

B(N) into Ẑ, take (x, y) 7−→ (x/N,Ny), for example. This is generalized in
• Proposition: Let U be bounded, open, nonempty and W ⊂ R2n a subspace

of codimension 2. Then

c(U +W ) =∞ if W⊥ω is isotropic

0 < c(U +W ) <∞ if W⊥ω is not isotropic

• Of course, the concept of symplectic capacity grew out of an important theorem:
• Gromov’s non-squeezing theorem: There is a symplectic embedding

ψ : B(r) −→ Z(R)

if and only if r ≤ R.
• Proof assuming the existence of a symplectic capacity: If r ≤ R, then
B(r) ⊂ Z(R). Conversely, if there is a symplectic embedding ψ : B(r) −→
Z(R), then

r2π = c(B(r)) = c(ψ(B(r)) ≤ c(Z(R)) = R2π.

• Proposition: Fix n = 2. Let 0 < r1 ≤ r2 and 0 < s1 ≤ s2. There is a
symplectic diffeomorphism ψ : B2(r1) × B2(r2) −→ B2(s1) × B2(s2) ⊂ R4 if
and only if r1 = s1 and r2 = s2. (B2 denotes a disc in the x1, y1 or the x2, y2

plane.)
• Proof assuming the existence of a symplectic capacity: If ψ is such

a diffeomorphism, then since B4(r1) ⊂ B2(r1) × B2(r2). Moreover, B2(s1) ×
B2(s2) ⊂ Z(s1). Hence,

r2
1π = c(B4(r1)) ≤ c(B2(r1)×B2(r2)) ≤ c(B2(s1)×B2(s2)) ≤ c(Z(s1)) = s2

1π.

This implies r1 ≤ s1. Applying the same argument to ψ−1 we get s1 ≤ r1,i.e.
r1 = s1. Since ψ is also volume preserving, we get r1r2 = s1s2, so r2 = s2.
• So far, we have no idea what a symplectic capacity might measure. Still as-

suming the existence a capacity, the following theorem gives another, explicit
capacity called the Gromov width. It is still unclear whether there is a single
capacity for n ≥ 2.
• Theorem:

(M,ω) 7−→ D(M,ω) = sup
{
πr2 | there is a symp. embedding (B(r), ω0) −→ (M,ω)}
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is a symplectic capacity. It is minimal in the sense that D(M,ω) ≤ c(M,ω) for
all symplectic capacities c. For all compact symplectic manifolds (M,ω) one
has D(M,ω) <∞.
• Proof: Monotonicity is clear. Let ψ : (B(r), ω0) −→ (M,αω) be a symplectic

embedding. Then

ψ̂ : (B(r/
√
|α|), ω0) −→ (M,ω)

(x, y) 7−→ ψ(
√
|α|(x, y))

is a symplectic embedding for α > 0 since ψ̂∗ω =
√
|α|2ψ∗ω = ψ∗

(√
|α|2ω

)
=

|α|
α
ψ∗(αω) = |α|

α
ω0. If α < 0, one precomposes ψ̂ with the anti-symplectic invo-

lution (x, y) 7−→ (−x, y). This implies that to each embedding (B(r), ω0) −→
(M,αω) there is a symplectic embedding (B(r)/

√
|α|, ω0) −→ (M,ω) and vice

versa. This implies conformality.
D(B(1), ω0) = π: This is easy since the identity is a symplectic embedding

B(1) −→ B(1), hence D(B(1), ω0) ≥ π. The opposite inequality follows from
the fact that symplectic embeddings are volume preserving, i.e. if there is a
symplectic embedding ψ : B(R) −→ B(1), then R ≤ 1.
D(Z(1), ω0) = π: This is where the existence of a capacity is used via the

Gromov’s non-squeezing theorem. Assume that B(r) −→ Z(1) is a symplectic
embedding. Then r ≤ 1 by non-squeezing. The inequality D(Z(1), ω0) ≥ π is
obvious.

Let c be any capacity. If ψ : (B(r), ω0) −→ (M,ω) is a symplectic embedding,
then c(B(r), ω0) ≤ c(M,ω). The second to last claim follows.

The last claim follows from the fact that compact symplectic manifolds have
finite volume.
• Remark: Let ψj : R2n −→ R2n be a family of symplectic diffeomorphisms

which C1-converges (locally) to a map ψ : R2n −→ R2n. Then since

dψj(x)TJ0dψ(x) = J0

for all x, the limit ψ is also symplectic. Here J0 =

(
0 id
−id 0

)
is an al-

most complex structure compatible with ω0 yielding the standard Euclidean
structure. The following theorem is a vast generalization of this statement:
• Theorem (Gromov, Eliashberg): Let ψj : (M,ω) −→ (M,ω) be a sequence

of symplectic diffeomorphisms such that ψj converges locally uniformly to the
diffeomorphism ψ, then ψ is symplectic.
• By the Darboux theorem, this is a Corollary of the following
• Theorem: Let ψj : (B(1), ω0) −→ (R2n, ω0) be a sequence of symplectic em-

beddings converging to ψ : B(1) −→ M which is differentiable at the origin.
Then dφ(0) is symplectic.
• Convention: We extend a symplectic capacity to all subsets of R2n via

c(A) = inf{c(U) |A ⊂ U ⊂ R2n open }.
The monotonicity of c implies A ⊂ B ⇒ c(A) ≤ c(B). By invariance c(A) =
c(ψ(A)) if ψ is a symplectic diffeomorphism defined on an open set containing
A.
• Proof of the last Theorem:

Let H = dψ(0) and assume ψ(0) = 0.



44

1. ψ is measure preserving with respect to the standard symplectic
volume µ = ωn0 /n! : This follows from uniform convergence and∫

U

ψ∗µ :=

∫
ψ(U)

µ = lim
j→∞

∫
ψj(U)

µ = lim
j→∞

∫
U

ψ∗jµ =

∫
U

µ.

for all open sets in B(1).
2. H is an isomorphism: Since ψ is differentiable at 0, there is a map h

from a neighborhood of the origin to R2n with h(0) = 0 and |h(x)|/|x| →
0 as x→ 0 in the complement of the origin so that

ψ(x) = Hx+ h(x).

Then

lim
ε→0

µ(ψ(B(ε))

µ(B(ε))
= | det(H)|.

The previous step implies det(H) = ±1.
3. Lemma (Eliashberg): Assume H is a linear isomorphism which is not

conformally symplectic, i.e. H∗ω0 6= λω0 for all λ ∈ R. Then for all
a > 0 there are symplectic matrices U, V so that

U−1HV =

 a 0
0 a

0

∗ ∗


This will be postponed.

4. H is conformally symplectic: Assume not. Then by the Lemma we
can find a > 0 and symplectic matrices U, V so that U−1HV has the
form given above and U−1HV (B(1)) ⊂ Z(1/8) when a > 0 is sufficiently
small. Then U−1 ◦ ψ ◦ V maps B(ε) into Z(ε/4) for ε > 0 sufficiently
small. Because U−1 ◦ ψj ◦ V converges uniformly to U−1 ◦ ψ ◦ V on a
compact neighborhood of 0, we get

U−1 ◦ ψj ◦ V (B(ε)) ⊂ Z(ε/2)

for B(ε) contained in that neighborhood for sufficiently big j (such that
U−1 ◦ ψj ◦ V is ε/2 close to U−1 ◦ ψ ◦ V on the neighborhood). This is
a contradiction to Gromov’s non-squeezing theorem. Thus, H∗ω0 = λω0

for some λ ∈ R.
5. λ = 1: Consider the symplectic embeddings ψj ◦ id : B2n(1) × R2n −→

R2n×R2n with the product symplectic structure. This converges locally
uniformly to ψ̂ satisfying the assumptions of the theorem and

Dψ̂(0) =

(
H 0
0 id

)
.

This has to be conformally symplectic. Hence, λ = 1.
6. Proof of the Lemma: This requires some clever linear algebra. Let B

be the ω0-symplectic adjoint of H uniquely defined by

ω0(Hx, y) = ω0(x,By)

If B were conformally symplectic for some λ, then B ◦ H = λ · id, so
H would be conformally symplectic since B is an isomorphism (like H).
Let ω = B∗ω0.
Claim: There is x ∈ R2n so that ω(x, ·) is not a multiple of ω0(x, ·).



45

Proof of Claim: Assume not. Then for all x 6= 0 there is λ(x) so that
ω(x, ·) = λ(x)ω0(x, ·). Let ξ ∈ R2n so that ω0(x, ξ) 6= 0. Then

λ(ξ)ω0(ξ, y) = −ω(y, ξ)

= −λ(y)ω(x, ξ) = λ(y)ω0(ξ, x).

for y in a neighborhood of x where ω(y, ξ) 6= 0. Then λ(y) is constant
on that neighborhood. Since R2n \ {0} is connected, this implies that λ
is constant on R2n \ {0}. This concludes the proof of the claim.
For x from the claim the map

R2n −→ R2

u 7−→ (ω0(x, u), ω(x, u))

is surjective (since ω0(x, ·) and ω(x, ·) are linearly independent). For all
a > 0 there is y so that

ω0(x, y) = 1 and ω(x, y) = a2.

Since ω0(Bx,By) = ω(x, y) there are ω0 symplectic bases (ei, fi) and
(e′i, f

′
i) with

e1 = x f1 = y

e′1 =
Bx

a
f ′1 =

By

a

i.e. Be1 = ae′1 and Bf1 = af ′1. Since A = −J0B
TJ0 the map A in terms

of the basis (ei, fi) and (e′i, f
′
i) has the desired form.

21. Lecture on January, 10 – Existence of symplectic capacities

• For a smooth function H on a symplectic manifold the Hamiltonian vector field
XH is defined as the unique vector field such that ω(XH , ·) = −dH(·). What
follows is the definition of the Hofer-Zehnder capacity.
• Definition: Let H(M,ω) be the set of smooth functions H on M so that

1. H is constant (this constant is called oscillation and denoted by m(H))
outside of a compact set contained in the interior of M ,

2. There is a nonempty open set where H vanishes.
3. 0 ≤ H(x) ≤ m(H) for all x ∈M .

A function H ∈ H(M,ω) is admissible if all periodic solutions of XH are either
constant or have period T > 1.
• Definition: Let (M,ω) be symplectic. The Hofer-Zehnder capacity of (M,ω)

is

cHZ(M,ω) = sup{m(H) |H ∈ H(M,ω) is admissible}.

• Theorem (Hofer-Zehnder): This is a symplectic capacity.
• The proof of this will take some time. The most difficult step is to show
c(Z(1), ω0) ≤ π which requires to establish the existence of non-trivial periodic
orbits with period ≤ 1 for all Hamiltonian vector fields for functions H ∈
H(Z(1), ω0) with m(H) > π.
• Lemma: cHZ is monotone.
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• Proof: For a symplectic embedding ψ : (M,ω) −→ (N, σ) define ψ∗ : H(M,ω) −→
H(N, σ) via

(ψ∗(H))(x) =

{
m(H) if x 6∈ ψ(M)

H(ψ−1(x)) if x ∈ ψ(M)

Because ψ is symplectic, one has Xψ∗H(x) = 0 on the complement of ψ(M)
and Xψ∗H(x) = ψ∗(XH(ψ−1(x))) for x ∈ ψ(M). Therefore, non-trivial periodic
orbits of Xψ∗H are in one-to-one correspondence with non-trivial periodic orbits
of XH and the correspondence preserves periods. Therefore, ψ∗H is admissible
when H is admissible, so

cHZ(M,ω) ≤ cHZ(N, σ).

• Lemma: cHZ is conformal.
• Proof: Let α 6= 0 and consider

ψ∗ : H(M,ω) −→ H(M,αω)

H 7−→ |α|H.

Clearly, Xαω
|α|H = |α|

α
Xω
H . So admissible functions in H(M,ω) map to admissible

functions in H(M,αω).
• Lemma: cHZ(B(1), ω) ≥ π.
• Proof: For ε > 0 we have to construct functions H without fast periodic orbits

so that m(H) ≥ π − ε. We pick a smooth function

f : [0, 1] −→ [0,∞)

t 7−→
{

0 t near 0
π − ε t near 1

so that 0 ≤ f ′(t) < π for all t. Set H(x) = f(|x|2) for x ∈ B(1). Then
m(H) = π − ε, H vanishes on a neighborhood of the origin and H ≤ π − ε.
Then

XH = J∇H = Jf ′(|x|2)2x

so that Hamiltonian flow of H preserves the levels of the function x 7−→ |x|2.
Therefore, XH(x) = a(J0x) with 0 ≤ a = 2f ′(|x|2) < 2π constant along orbits.
Solutions of this ODE are either constant (when a = 0) or periodic with period
T = 2π/a > 1 when a 6= 0. Therefore, H is admissible with m(H) = π − ε.
• Remark: By monotonicity, cHZ(Z(1), ω0) ≥ cHZ(B(1), ω0) ≥ π. We are done

once we show π ≥ cHZ(Z(1), ω0).
• We will show that if m(H) > π for H ∈ H(Z(1), ω0), then H is not admissible,

i.e. there is a non-trivial periodic orbit with period T ≤ 1. Fix such an H.
First, we do some simple reductions and extend H.
• Without loss of generality, we may assume that H vanishes on a neighborhood

of the origin. This is because symplectomorphisms act transitively on connected
manifolds. Since H is constant near ∂Z(1) it would be easy to extend H to a
function on R2n constant outside of Z(1) but we want a different, modification.
• Choice of extension of H to R2n: For N ∈ N sufficiently large H ∈
H(Z(1), ω0) is constant outside of the ellipsoid

EN =

{
z = (x1, . . . , yn) ∈ R2n | qN(z) = x2

1 + y2
1 +

1

N2

∑
i

(x2
i + y2

i ) < 1

}
.
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We assumed that m(H) > π, i.e. there is ε > 0 so that π + ε < m(H). Let
f : R −→ R be smooth so that

f(s) = m(H) for s ≤ 1

f(s) ≥ (π + ε)s for all s ∈ R
f(s) = (π + ε)s for s sufficiently large

(34)

and 0 < f ′(s) ≤ π + ε when s > 1. The modification H of H is

H(z) =

{
H(z) for z ∈ E

f(qN(z)) for z 6∈ E.

Clearly, H is quadratic outside of a compact set, therefore the solutions of the
Hamiltonian equations of H are defined on R (i.e. the Hamiltonian vector field
is complete). From now on we denote H be H. Note that did not really extend
H, but we will refer to the new function as extension nevertheless.
• 1-Periodic orbits of the Hamiltonian system as critical points of an

action: Informal discussion: We consider a smooth Hamiltonian function,
smooth symplectic form etc. Thus, solutions of the Hamiltonian system are
smooth. A 1-periodic solution can be viewed as element of the loop space
Ω = C∞(S1,R2n) where S1 = R/(2πZ). With the smooth topology this a
Frechet space, we would like to deal with a Hilbert space later, with the C1-
topology it is incomplete. The tangent space of this vector space (point wise
addition etc.) will be identified with the space itself. We define

Φ : Ω −→ R

x(t) 7−→
∫ 1

0

(〈−Jẋ(t), x(t)〉 −H(x(t))) dt.
(35)

Computing the derivative of Φ with respect to the variation x(t) + εy(t) of x(t)
we get

Φ′(x)(y) =
d

dε

∣∣∣∣
ε=0

Φ(x(t) + εy(t))

=

∫ 1

0

(
1

2
(〈−Jẏ(t), x(t)〉+ 〈−Jẋ(t), y(t)〉)− 〈∇H(x(t)), y(t)〉

)
dt

=

∫ 1

0

(
1

2
(−〈−Jy(t), ẋ(t)〉+ 〈−Jẋ(t), y(t)〉)− 〈∇H(x(t)), y(t)〉

)
dt

=

∫ 1

0

〈−Jẋ(t)−∇H(x(t)), y(t)〉 dt.

For the third equality one uses partial integration and the fact that x(t), y(t)
are loops. Thus, critical points of Φ : Ω −→ R are precisely those loops which
satisfy the Hamiltonian equation −Jẋ(t) = ∇H(x(t)).
• Example: Consider the loops

xk(t) = cos(2πkt)x0 + sin(2πkt)Jx0

with ‖x‖0 = 1. Then ∫ 1

0

1

2
〈−Jẋk(t), xk(t)〉dt = πk
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and the L2-norm of xm(t) is one. Because the second summand of Φ(x(t)) is
bounded by m(H), the functional is not bounded from above or below. Finding
minimizers to establish the existence of critical points will not work.
• Characterization of periodic orbits with period T = 1 in EN : Let x(t)

be a 1-periodic solution of ẋ = XH(x). If

Φ(x) =

∫ 1

0

(
1

2
〈−Jẋ, x〉 −H(x(t))

)
dt > 0

then x is not constant and x(t) ⊂ EN for all t. Thus, x(t) is a non-constant,
1-periodic solution of the original Hamiltonian system (for non-extended H) in
Z(1).
• Proof: If x(t) is constant then the action is non-positive since H ≥ 0. Since
dH = 0 near ∂EN , the Hamiltonian vector field vanishes there. This implies
that a solution of the Hamiltonian system which starts in EN stays inside EN
for ever.

Solutions x(t) of the Hamiltonian system which live outside of EN satisfy

−Jẋ(t) = (∇H)(x(t)) = f ′(qN(x(t))(∇qN)(x(t))

where ∇ is the ordinary gradient with respect to the standard Euclidean struc-
ture on R2n. Outside of EN , the quadratic form qN is constant along solutions
of the Hamiltonian system, i.e. qN(x(t)) = τ for a constant τ depending on the
solution x(t). Because of

〈∇qN(z), z〉 = 2qN(z)

and of the definition of H outside of EN this implies for a solution x(t) outside
of EN that

Φ(x) =

∫ 1

0

(
1

2
〈−Jẋ, x〉 −H(x(t))

)
dt

=

∫ 1

0

(τf ′(τ)− f(τ)) dt

= τf ′(τ)− f(τ) ≤ 0

by the second condition in (34).

22. Lecture on January, 14 - Minimax, Analytic setting

• Reminder: Let E be a Hilbert space. A function f : E −→ R is differentiable
in e ∈ E if for all e ∈ E there is a linear form df ∈ E∗ (continuous) such that
f(e′) = f(e) + df(e′− e) + h(e′− e) for a function h defined on a neighborhood

of e such that lime′−e→0
h(e′−e)
‖e′−e‖ = 0. Moreover, f is C1 if it is differentiable

everywhere and the derivative depends continuously on e (in the operator norm
topology on E∗).

Since E is a Hilbert space, there is a unique ∇f ∈ E so that df(·) = 〈∇f, ·〉.
Critical points of f are defined to be zeroes of ∇f . If f is C1, then the negative
gradient flow ϕt : E −→ E is the solution of

ϕ0(x) = x

d

dt
(ϕt(x)) = −∇f(x(t))
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provided that this solution exists and is unique. A sufficient condition for this
is that ∇f is Lipschitz continuous. As usual, f(x(t)) is decreasing along the
negative gradient flow of f . More precisely, for positive t,

f(ϕt(x))− f(x) =

∫ t

0

d

ds
f(ϕs(x))ds =

∫ t

0

〈
∇f(ϕs(x)),

d

ds
ϕs(x)

〉
ds

= −
∫ t

0

‖∇f(ϕs(x))‖2ds.

(36)

A condition which is useful for finding critical points is the Palais-Smale con-
dition:

(PS) f satisfies PS is every sequence xj ∈ E with

∇f(xj)→ 0 ∈ E
|f(xj)| < c for some constant c

has a convergent subsequence.
The limit of this subsequence is a critical point since f is C1.

• Minimax Lemma: Let F be a family of subsets of E and f ∈ C1(E,R) such
that

– f satisfies (PS),
– the negative gradient flow of f is well-defined,
– F is positively invariant, i.e. if A ∈ F , then ϕt(A) ∈ F for all t > 0,
– the minimax c(f,F) of f with respect to F is a real number, i.e.

−∞ < c(f,F) := inf
A∈F

(
sup
x∈A

f(x)

)
<∞.

Then c(f,F) is a critical value.
• Example (Minimizers): Assume that f is bounded from below, satisfies (PS)

and has complete negative gradient flow. Then c(f,F) = inf f and choosing
F to consist of sets in E where f is bounded the Minimax Lemma ensures the
existence of a critical point x0 with f(x0) = c(f,F).
• Example (Mountain Pass Lemma): R ⊂ E is a mountain range relative to
f ∈ C1(E) if E \R is not connected, f |R is bounded from below by some α so
that each connected component of E \R contains a point e with f(e) < α. We
assume that f satisfies (PS) and that the negative gradient flow is well-defined.
Then there is a critical point xR with f(xR) ≥ infR f .

For the proof we need to find F suitable for the application of the Minimax
Lemma. This consists of images of paths in E passing from one side of the
mountain range to another. More precisely, let E0, E1 be two connected com-
ponents of E \R and α a lower bound for f |R. Let Γ of continuous paths in E
which start in E0 ∩ f−1((−∞, α)) and end in E1 ∩ f−1((−∞, α)) (both sets are
non-empty). Then set F = {image(γ) | γ ∈ Γ}.
• Non-example: Consider the function f(x, y) = e−x − y2 with the mountain

range R = f−1([0,∞)). This does not admit a mountain pass for lack of (PS).
• Proof of Minimax Lemma: Let c = c(f,F). We first observe that for all
ε > 0 the set f−1([c − ε, c + ε]) contains a point xε so that ‖∇f(xε)‖ < ε.
Assume this is not true. Then for some ε0 > 0 the gradient of f is bounded
away from 0 on f−1([c − ε0, c + ε0]). This implies that this set will be moved
away from itself by the negative gradient flow in finite positive time (see (36)).
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Thus, every set A ∈ F will be transported into another set A′ ∈ F such that
f < c− ε on A′. This contradicts the definition of the minimax c = c(f,F).

Applying this observation of εj = 1/j we obtain a sequence xj such that
‖∇f(xj)‖ < 1/j with |f(x) − x| ≤ 1/j. By (PS) this sequence contains a
subsequence converging to a critical point of f .
• Analytical setting: We want to find a Hilbert space E

1. containing the set of closed loops C∞(S1,R2n),
2. for which there is a convenient extension of Φ (defined in (35)) from
C∞(S1,R2n) to E.

Recall that smooth loops x ∈ C∞(S1,R2n) can be represented as Fourier
series

x(t) =
∑
k∈Z

e2πkJtxk

with Fourier coefficients xk ∈ R2n such that the series converges uniformly to
x(t) and the Fourier series of all derivatives obtained by differentiating the
Fourier series. For x, y ∈ C∞(S1,R2n) let

a(x, y) =
1

2

∫ 1

0

〈−Jẋ(t), y(t)〉dt

be the dominant (symplectic) part of Φ viewed as bilinear form (in Φ, one has
x(t) in the place of y(t)). This can be computed in terms of Fourier coefficients
of x, y and using the orthonormality relation∫ 1

0

〈
e2πkJtxk, e

2πlJtyl
〉
dt = δkl〈xk, yl〉

one obtains

a(x, y) = π

(∑
k>0

|k|〈xk, yk〉 −
∑
k<0

|k|〈xk, yk〉

)
.

This will motivate the choice of Hilbert space to which we will extend a and Φ.
• Definition: The Sobolev space Hs(S1,R2n) with s ≥ 0 is

Hs(S1,R2n) =

{
x =

∞∑
k=−∞

e2πkJtxk

∣∣∣∣∣
∞∑

k=−∞

|k2s||xk|2 <∞ for xk ∈ R2n

}
⊂ L2(S1,R2n).

The inner product is

〈x, y〉s = 〈x0, y0〉+ 2π
∑

k∈Z\{0}

|k|2s〈xk, yk〉.

The form of a in terms of Fourier coefficients suggests using s = 1/2 and
E = H1/2(S1,R2n). E has an orthogonal decomposition E = E0 ⊕ E+ ⊕ E−.
Let P±, P 0 be the corresponding projections. We decompose x = x0 +x+ +x−

in these terms and get

a(x, y) =
1

2
(〈x+, y+〉H1/2 − 〈x−, y−〉H1/2).

This is continuous and bilinear. The associated quadratic form a(x) := a(x, x) =
‖x+‖2−‖x−‖2

2
is a C1-function on E with derivative

da(x)(y) = 2a(x, y) = 〈x+ − x−, y〉H1/2 .
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Thus, ∇a(x) = x+−x− ∈ E. This is clearly Lipschitz and the negative gradient
flow of a is complete. The critical points of a are the constant functions.

We will need several standard facts from the theory of Sobolev spaces. There
are stronger/more general versions of the following statements.
• Rellich Lemma: The embeddings H t −→ Hs with t > s ≥ 0 map bounded

sets to precompact sets (i.e. sets with compact closure).
For example, a bounded sequence in H1/2 contains an L2-convergent subse-

quence.
• Sobolev embedding: if s > 1/2 and x ∈ Hs, then x is continuous and there

is a constant cs depending only on s so that

sup
t∈S1

|x(t)| ≤ cs‖x‖s for all x ∈ Hs.

Moreover, if s > 1/2 + r, then x ∈ Hs is a Cr-function and there is a constant
depending only on s so that

sup
t∈S1,0≤k≤r

|Dkx(t)| ≤ cs‖x‖s for all x ∈ Hs.

• Let j : H1/2 −→ L2 be the inclusion. The adjoint j∗ of j is defined via

(j(x), y)L2 = 〈x, j∗(y)〉1/2
for all x ∈ H1/2 and y ∈ L2. We can express x ∈ H1/2(S1,R2n) and y ∈
L2(S1,R2n) in terms of Fourier coefficients∑

k∈Z

〈xk, yk〉R2n = 〈x0, (j(y))0〉R2n + 2π
∑
k 6=0

|k|〈xk, (j∗(y))k〉R2n

This holds for all x ∈ H1/2. Therefore,

j∗(y) = y0 +
∑
k 6=0

1

2π|k|
e2πkJtyk

This implies ‖j∗(y)‖H1 ≤ ‖y‖L2 and the continuity of j∗

(37) j∗(L2) ⊂ H1 and ‖j∗(y)‖1 ≤ ‖y‖0 = ‖y‖L2 .

In particular, j∗ : L2 −→ H1 −→ H1/2 is a compact operator (Rellich Lemma).
This will be used for the study of the second summand of Φ.
• Not so elementary estimate: If u ∈ H1/2(S1,R), then u ∈ Lp(S1,R) for all

1 ≤ p < ∞ and the embeddings H1/2(S1,R) ↪→ Lp(S1,R) are continuous and
even compact.
• The second part of Φ(x) is (up to sign)

(38) b(x) =

∫ 1

0

H(x(t))dt.

We want to determine the H1/2-gradient of b.
• b as function on L2: Before doing this, note that |H(z)| ≤ M |z|2, so if
x ∈ L2(S1,R2n). Then, the integral (38) is well-defined. In particular, it
defined for x ∈ H1/2 but it is natural study b on L2.

Because H is differentiable

H(z + ζ) = H(t) + 〈∇H(z), ζ〉+

∫ 1

0

〈∇H(z + tζ)−∇H(z), ζ〉dt︸ ︷︷ ︸
=:R(x,ζ)
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Since ∇H(z) ≤ M |z| (recall that H vanishes near the origin and is quadratic
far out),

L2(S1,R2n) −→ R

ζ 7−→
∫ 1

0

〈∇H(x(t)), ζ(t)〉dt

is well-defined. We hope that this is the L2-derivative of b. This is the case
since the last term R(x, ζ) of H(x+ ζ) satisfies

|R(x, ζ)| ≤M‖ζ‖2
L2

For this recall that H is smooth and the coefficients of the Hessian of H are
uniformly bounded because H coincides with a fixed quadratic form outside
of EN . This yields the above estimate by the mean value theorem. In order
to show that b is a C1-function on L2, we have to verify that ∇b depends
continuously on x. Moreover, we would like to show that the gradient flow of
b is well-defined.
• Lemma: ∇b is Lipschitz on L2(S1,R2n).
• Proof:∣∣∣∣∣∣∣∣∣

∫ 1

0

〈∇H(x(t)), ζ(t)〉dt︸ ︷︷ ︸
=dL2b(x)(ζ)

−
∫ 1

0

〈∇H(y(t)), ζ(t)〉dt

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∫ 1

0

〈∇H(x(t))−∇H(y(t)), ζ(t)〉dt
∣∣∣∣

≤
∫ 1

0

M |x(t)− y(t)| · |ζ(t)|dt

≤M‖x− y‖L2 · ‖ζ‖L2 .

This shows that ∇b is Lipschitz, so b is a C1 function on L2 and the gradient
flow exists forever.
• b as function on H1/2: We now denote by b the function on L2. The function

we are really interested in is the composition b ◦ j with j : H1/2 −→ L2 the
inclusion. Since j is linear, this map is smooth and coincides with its own
derivative. By the chain rule

〈∇H1/2(b ◦ j)(x), y〉H1/2 = d(b ◦ j)(x)(y)

= db(j(x))(j(y))

= 〈(∇L2b)(j(x)), j(y)〉L2 = 〈j∗(∇L2b)(j(x)), y〉H1/2 .

Again, we want to ensure that ∇(b ◦ j) is a C1-function on H1/2.
• Lemma: ∇(b ◦ j) is Lipschitz and maps bounded sets to relatively compact

sets.
• Proof: This follows from the last Lemma and ∇H1/2(b ◦ j) = j∗(∇L2b) and the

fact that j∗ is compact.
• Remark: We have extended Φ from C∞(S1,R2n) to a C1-function onH1/2(S1,R2n)

with Lipschitz continuous gradient

(39) ∇H1/2Φ(x) = x+ − x− − j∗(∇L2b(j(x))).

Thus, the negative gradient flow of Φ is well-defined on H1/2(S1,R2n). We look
for critical points of Φ, i.e. for zeroes of ∇H1/2Φ. The most important condition
we need to establish for this is the Palais-Smale condition. Before we will do
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this, we show that the critical points of the extended functional are all smooth
loops, i.e. they are critical points of the original functional on C∞(S1,R2n).

23. Lecture on January, 14 - Smoothness of critical points, Palais
Smale condition for Φ

• Lemma: A critical point x ∈ H1/2(S1,R2n) of Φ lies in C∞(S1,R2n) and
satisfies Hamilton’s equation.
• Proof: By assumption x and ∇H(x) lie in L2, so we represent these functions

by Fourier series:

x =
∑
k∈Z

e2πkJtxk

∇H(x) =
∑
k∈Z

e2πkJtak

with ak, xk ∈ R2n. Because x is a critical point of Φ

〈x+ − x− − j∗b(j(x)), ζ〉H1/2 = 〈x+ − x−, ζ〉H1/2 − 〈∇H(j(x)), j(ζ)〉L2

= 0

for all ζ ∈ H1/2(S1,R2n) ⊂ L2(S1,R2n). We are free to pick ζ, and we choose
ζj(t) = e2πijJζ0 for ζ0 ∈ R2n. Using the definition of the H1/2-scalar product
we get

2π|j|xj = aj for j 6= 0

0 = a0
(40)

Since aj is square summable that same is true for jxj.
So far, we only knew x ∈ H1/2(S1,R2n). Now, we know x ∈ H1(S1,R2n).

Moreover, x is in C0(S1,R2n) by the Sobolev embedding theorems. Then
∇H(x(t)) is continuous, so

(41) ξ±(t) =

∫ t

0

J(∇H(x(t))±)dt

is a C1-function on R. The Fourier coefficients of ξ± coincide with those of
x± by (40) except for the zeroth coefficient, i.e. up to a constant ξ coincides
with x. This implies x(t) ∈ C1(S1,R2n) and x(t) solves ẋ(t) = J∇H(x(t)).
Therefore, x ∈ C2(S1,R2n). Iterating the argument starting at (41) we obtain
x ∈ C∞(S1,R2n).
• Remark: The following Lemma is stronger than (PS).
• Lemma: Assume that xk ∈ H1/2 satisfies limk∇H1/2Φ(xk) = 0. Then xk

contains a convergent subsequence.
• Proof: If xk is bounded, then j∗(∇b(j(xk))) contains a convergent subsequence

by the compactness of j∗. We assume that j∗(∇b(xk)) converges. This implies
that x+

k − x
−
k converges to the same value, i.e. x±k converges. x0

k is bounded,
like xk itself. So we have a convergent subsequence of xk so that the limit is a
critical point.

We want to show that xk is bounded. This will be done by contradiction, so
we assume ‖xk‖H1/2 →∞ and denote yk = xk/‖xk‖. Then since ∇L2b(j(ζ)) =
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(∇H(x), ζ)L2

(42) lim
k

(
y+
k − y

−
k − j

∗
(

1

‖xk‖
∇H(xk)

))
= 0 in H1/2

By the choice of H outside of EN and near the origin there is M so that
|∇H(z)| ≤M |z|. Therefore, 1

‖xk‖
∇H(xk) is bounded, j∗ is compact. As above,

this implies that yk has a convergent subsequence. The convergence is in H1/2

(and therefore also in L2) and therefore y+ = limk y
+
k . We assume that yk itself

converges and denote the limit by y. Recall that H is equal to

Q(x1, . . . , yn) = (π + ε)

(
x2

1 + y2
1 +

1

N2

n∑
m=2

(x2
m + y2

m)

)
︸ ︷︷ ︸

=qN

.

outside of a compact set. The Hamiltonian system ẋ = ∇Q(x) has no periodic
solutions with period 1 except for the constant solution at the origin. We will
compare the flow of ẋ = ∇Q(x) with xk which are an unbounded sequence of
solutions of ẋ = ∇H(x): Recall that yk = xk/‖xk‖∥∥∥∥∇H(xk)

‖xk‖
− ∇Q(y)

∥∥∥∥
L2

≤ 1

‖xk‖
‖∇H(xk)−∇Q(xk)‖L2 + ‖∇Q(yk)−∇Q(y)‖L2

Note that ∇Q is linear, and since yk → y in L2 the last summand goes to zero.
Moreover, |∇H(xj)−∇Q(xj)| is uniformly bounded because Q = H outside of
a compact set. Since we assume ‖xj‖ → ∞ we get

∇H(xj)

‖xj‖
→ ∇Q(y) in L2(S1,R2n).

Because j∗ is continuous we obtain

j∗
(
∇(b ◦ j)(xk)
‖xj‖

)
= j∗

(
∇H(xj)

‖xj‖

)
→ j∗ (∇Q(y)) in H1/2(S1,R2n).

By (42) this implies that y solves y+ − y− − j∗(∇Q(y)) = 0 and ‖y‖H1/2 = 1.
By the previous Lemma for Q instead of H implies that y is smooth and a
solution of ẏ = J∇Q(y) with period 1. Which is not the zero solution. But
this equation has no non-constant 1-periodic solutions except the zero solution
which does not satisfy ‖y‖ = 1. This is the desired contradiction, so ‖xj‖ is
bounded.
• Remark: This Lemma made use of the choice of H outside of a compact set

but you could probably talk your way out of this if you wished to.
• Remark: If H is constant, we can solve the differential equation ẋ = −(x+ −
x−) explicitly. According to the following lemma, the difference between this
solution and the actual solution differ by a map with a compactness property.

24. Lecture on January, 21 - Set up for Minimax

• Lemma: The flow ẋ = ∇H1/2Φ is

(43) x · t = etx− + x0 + e−tx+ +K(x, t)︸ ︷︷ ︸
=:y(t) for fixed x

where K : R×H1/2 −→ H1/2 is continuous and maps bounded sets to precom-
pact sets.
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• Proof: One makes the following Ansatz for K

K(t, x) = −
∫ t

0

(
et−sP− + P 0 + e−(t−s)P+

)
(∇(b ◦ j))(x · s)ds

= −j∗
∫ t

0

(
et−sP− + P 0 + e−(t−s)P+

)
(∇H)(j(x · s))ds

One verifies that ξ(t) = y(t) − x · t solves the initial value problem ξ̇(t) =
ξ+(t)− ξ−(t) with ξ(0) = 0. Therefore, ξ(t) ≡ 0.
• Remark: This was somewhat technical. The remaining part of the proof of

the existence of periodic orbit consists in applying minimax method cleverly to
establish the existence of a critical point x of Φ with Φ(x) > 0. We will find
two subsets ∂Σ and Γ in the Hilbert space H1/2 which are linked in way that
allows applying minimax methods.
• The set ∂Σ: Σ = Στ is defined as

Στ =
{
x
∣∣x = x− + x0 + se+ with 0 ≤ s ≤ τ and ‖x− + x0‖ ≤ τ

}
where e+ = e2πJte1 ∈ E+. This vector lies in E+ and ‖e+‖H1/2 = 2π, ‖e+‖L2 =
1. The set Σ is some kind of infinite dimensional square, and we take ∂Σ to be
the union of its faces, i.e. the set theoretic boundary of Σ in E− ⊕ E0 ⊕ Re1.
• Lemma: There is τ0 so that Φ is non-positive on ∂Σ.
• Proof: Recall that a(x) = 1

2

(
‖x+‖2

H1/2 − ‖x−‖2
H1/2

)
. Since H ≥ 0, this implies

the claim for Φ|E−⊕E0 (for s = 0). By the choice of H outside of EN

H(z) ≥ (π + ε)qN(z)− γ

for some constant γ > 0. Then

Φ(x) ≤ a(x)− (π + ε)

∫ 1

0

qN(x(t))dt

=
1

2

(
‖se+‖2

H1/2 − ‖x−‖2
H1/2

)
− (π + ε)

∫ 1

0

qN(x−(t) + x0(t) + se+)dt+ (π + ε)γ

=
1

2

(
2πs2 − ‖x−‖2

H1/2

)
− (π + ε)

∫ 1

0

qN(x−(t) + x0(t) + se+)dt+ (π + ε)γ

=
1

2

(
2πs2 − ‖x−‖2

H1/2

)
− (π + ε)

∫ 1

0

qN(x−(t)) + qN(x0(t)) + s2qN(e+(t)))dt+ (π + ε)γ

droping some negative terms

≤ 1

2

(
2πs2 − ‖x−‖2

H1/2

)
− (π + ε)s2‖e+‖L2 − (π + ε)qN(x0) + (π + ε)γ

= −εs2 − ‖x−‖H1/2 − (π + ε)qN(x0) + (π + ε)γ.

This is non-positive on {s = τ} ⊂ Σ when τ is sufficiently large and negative
on {‖x− + x0‖ = τ} again for τ sufficiently large.
• The set Γ: For α > 0 let Γα = {x ∈ E+ | ‖x‖H1/2 = α}.
• Lemma: For suitable α there is β > 0 so that Φ|Γα ≥ β > 0.
• Proof: By the not so elementary estimate, there are constants Mp so that

‖x‖Lp ≤Mp‖x‖H1/2
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for p ≥ 1 and suitable constant Mp. Since H vanishes on a neighborhood
of the origin, there is a constant c so that |H(z)| ≤ c|z|3. This implies that∫ 1

0

H(x(t))dt ≤ c‖x‖3
L3 ≤ cM3‖x‖H1/2 .

For x ∈ E+ we get Φ(x) = 1
2
‖x‖2

H1/2 − cM3‖x‖2
H1/2 . This implies the claim.

• Let ϕt be the flow of −∇H1/2Φ on E = H1/2. Clearly, Γ ∩ Σ 6= ∅, and one is
inclined to believe that Γ ∩ ϕt(Σ) 6= ∅ for all t. We assume this for now and
show that cHZ is a symplectic capacity.
• Assumption: We choose α < τ0. Then Γ and Σ intersect exactly once.

25. Lecture on January, 23 - End of Proof, Leray-Schauder degree

• Proof of the existence of a critical point x of Φ with Φ(x) > 0: Apply
the minimax method to the family F = {ϕt(Σ)|t ≥ 0} of subsets of Φ. The
minimax of this family is

c(Φ,F) = inf
t≥0

(sup{Φ(x) |x ∈ ϕt(Σ)})

The sup is ≥ β since ϕt(Σ) contains a point of Γ. Moreover, because the flow
maps bounded sets into bounded sets, the sup is also < ∞. Since ϕt is a
complete flow and Φ satisfies the (PS) condition, there is a critical point x with
Φ(x) ≥ β. This concludes the proof under the assumption Γ ∩ ϕt(Σ) 6= ∅ for
t ≥ 0.
• Remark: The Leray-Schauder degree will appear in this last step.
• Review of Leray-Schauder degree: Let X be a Banach space and F :
X −→ X continuous so that F maps bounded sets to sets with compact closure.
We go through the definition of the Leray-Schauder degree, but do not prove
anything beyond the facts needed to define it (omitting a proof that the Leray-
Schauder degree is well-defined). Following [De], we take the point of view an
analyst might want to take.

1. Let V ⊂ E have compact closure. For all ε > 0, there is a finite di-
mensional subspace Xε ⊂ X and projection Pε : V −→ Xε so that
|Pεx− x| ≤ ε.
Proof: There are finitely many points x1, . . . , xm ∈ V so that V ⊂
∪iB(xi, ε). Let gi(x) = max{0, ε− |x− xi|}. These functionals are con-

tinuous and
∑

i gi > 0 on V and we can define λi(x) = gi(x)/
(∑

j gj(x)
)

.

Define Xε to be the span of x1, . . . , xm and

Pε : V −→ Xε

x 7−→
∑
i

λi(x)xi.

Then |Pε(x)− x| < ε since λi(x) = 0 for x 6∈ B(xi, ε).
2. This implies that on a bounded set Ω the map F can be approximated by

a map with finite dimensional image: For all ε > 0 and the set V = F (Ω)
we pick Xε and Pε from above. Then Fε = Pε ◦ F satisfies

sup
x∈Ω
|F (x)− Fε(x)| < ε.
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3. The Leray-Schauder degree deg(Ω, G = Id − F, y) is defined when y 6∈
G(∂Ω) as follows. Since G(∂Ω) is compact, there is α > 0 so that
dist(y,G(∂Ω)) = α. According to the above, there is F1 : Ω −→ X1

with X1 of finite dimension (pick ε = α/2) and we may assume that
y ∈ X1 and Ω1 = Ω ∩X1 is not empty and open with compact closure.
The degree of

G1 = id− F1 : Ω1 −→ X1

with respect to y is defined via the signed count of solutions of G2(x) = y
with x ∈ Ω1 provided that y is a regular value of a smooth approximation
G2 of G1 so that supΩ1

|G2 −G1| ≤ α/2.
4. There are many things to be shown here: Most pressing are independence

of choices, and homotopy invariance. The latter infers that the degree is
constant when F varies through compact operators so that y never lies
in the image of the boundary of Ω.

• Theorem: The Leray-Schauder degree has the following properties:
1. deg(Ω, id, y) = 1 if y ∈ Ω and = 0 if y 6∈ Ω.
2. If deg(ω, id + F, y) 6= 0, then there is x ∈ Ω with x+ F (x) = y.
3. If H : [0, 1]×Ω −→ X is a homotopy mapping bounded sets to compact

ones so that y 6∈ H([0, 1]× ∂Ω), then

deg(Ω, Id +H(0, x), y) = deg(Ω, Id +H(1, x), y)

4. If Ω = ∪iΩi with Ωi ⊂ Ω, i = 1, . . . ,m, open and pairwise disjoint so that
y 6∈ ∂Ωi for all i, then

deg(Ω, Id + F, y) =
m∑
i=1

deg(Ωi, Id + F, y).

• Lemma: Γ ∩ ϕt(Σ) 6= ∅ for t ≥ 0.
• Proof: Points x ∈ Γ ∩ ϕt(Σ) solve the following equation

x ∈ Σ

P−ϕt(x) = P 0ϕt(x) = 0

‖ϕt(x)‖H1/2 = α

(44)

Since ϕt(x) = etx− + x0 + e−tx+ + K(t, x), (44) is equivalent to (multiply the
E−-coordinate by e−t):

x+ = se+ with 0 ≤ s ≤ τ

‖x− + x0‖ ≤ τ

x− + x0 + (e−tP− + P 0)K(t, x) = 0

‖ϕt(x)‖ = α

(45)

We define

(46) B(t, x) = (e−tP− + P 0)K(t, x) + P+
(
(‖ϕt(x)‖ − α)e+ − x

)
.

for x ∈ E− ⊕ E0 ⊕ Re+ = F . Note that B(t, x) ∈ F for x ∈ F .
Solutions of x + B(t, x) = 0 with x ∈ E+ ⊕ E0 ⊕ Re+ are solutions of the

third and fourth equation of (45): The third equation follows from the E+ ⊕
E0-component of x + B(t, x) = 0, the fourth equation is the E+-component.
Moreover, x ∈ E+ ⊕ E0 ⊕ Re+ reflects x ∈ Σ partially.
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We want to show that the equation x+B(t, x) = 0 has a solution in Σ ⊂ F .
Note that B(t, x) is the sum of two maps. The first maps bounded sets to
precompact sets. The second maps bounded sets to bounded sets in Re+.
Thus, B(t, x) maps bounded sets to precompact sets.

For operators of the form id + B(t, ·) where B is compact one can use the
Leray-Schauder degree to show the existence of a solution of 0 = x + B(t, x).
First, not that this equation cannot have a solution x ∈ ∂Σ because Φ(x) ≥
β > 0 for x ∈ Γα while Φ(ϕt(x)) ≤ Φ(x) ≤ 0 for all t ≥ 0 and x ∈ ∂Σ. By
homotopy invariance of the degree

deg(Σ, id +B(t, ·), 0) = deg(Σ, id +B(0, ·), 0)

for t ≥ 0. This simplifies matters because K(0, x) = 0. It remains to count
solutions of x + P+ ((‖ϕ0(x)‖ − α)e+ − x) = 0. The term in brackets is still
non-linear, but it is homotopic to a constant map (through compact maps):

deg(Σ, id +B(0, ·), 0) = deg
(
Σ, id + P+

(
(‖ϕ0(x)‖ − α)e+ − x

)
, 0
)

= deg
(
Σ, id + P+

(
(σ‖x‖ − α)e+ − σx

)
, 0
)

for 0 ≤ σ ≤ 1

= deg
(
Σ, id− αe+, 0

)
= 1

when τ > α.
• Remark: The proof above can be modified to prove the next theorem.

For this, we consider first an embedded surface S and a function H so that S
is a regular level set if H. Then ∇H is orthogonal to S, so the line field J∇H
is independent of the choice if H (as long as S is a regular level set.) This line
field generates a foliation of rank 1 (given by TS⊥ω), called the characteristic
foliation.

In the next theorem, will consider an embedding ψ : (−1, 1) × S2n−1 −→
R2n of a thickened closed hypersurface and a smooth function H so that
H(ψ(s, p)) = 1 + σ(s) for a strictly monotone function σ defined on a neigh-
borhood of 0 with σ(0) = 0

We seek closed leaves of this rank-1-foliation on Ss for varying s. The action
of such a leaf x is now defined to be

A(x) =
1

2

∫ T

0

〈−Jẋ, x〉dt

when x has period T .
• Theorem (Hofer-Zehnder, [HZ2]): Let ψ : (−1, 1)×S −→ R2n be a smooth

embedding of a closed, connected 2n− 1-manifold S. Then there is a constant
d(ψ) such that for all 0 < δ < 1 there is ε with |ε| < δ so that Sε = ψ({ε}×S)
has a periodic orbit x with 0 < A(x) < d.
• Proof: One has to modify the previous proof slightly. We fix a function H on
ψ((−1, 1)× S) = U .

1. Modification of H: The complement of U has two connected compo-
nents, we denote the bounded component by B and the unbounded one
by A. Let γ = diam(U) and choose r, b so that

γ <r < 2γ

3

2
πr2 <b < 2πr2.
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Pick a smooth function f : (−1, 1) −→ R vanishing on (−1,−δ] and
f ≡ b on [δ, 1) which is positive derivative on (−δ, δ). In order to define
H we choose g : (0,∞) −→ R

g(s) = b for s ≤ r

g(s) =
3

2
πs2 for s large

g(s) ≥ 3

2
πs2 for s > r

so that 0 < g′(s) ≤ 3πs for s > r. We now choose H ∈ C∞(R2n,R) so
that

H(x) =


0 for x ∈ B

f(ε) for x = ψ(ε, p) with p ∈ S,−δ ≤ ε ≤ δ
b for x ∈ A with |x| ≤ r

g(|x|) for |x| > r.

Notice that

−b+
3

2
π|x|2 ≤ H(x) ≤ b+

3

2
π|x|2.

2. Characterization of periodic orbits as critical points of a func-
tional: Critical points x ∈ C∞(S1,R2n) of the functional

Φ(x) =

∫ 1

0

(
〈−Jẋ, x〉/2−H(x(t))

)
dt

are solutions of Hamilton’s equation ẋ(t) = J∇H(x(t)).
3. Characterization of periodic orbits of the original H we are

interested in: If x is 1-periodic solution of ẋ(t) = J∇H(x(t)) with
Φ(x) > 0, then x(t) ∈ Sε for some |ε| < δ.
The proof of this is an exercise.

4. Analytical setting: Remains unchanged, critical points of the func-
tional Φ associated to H are smooth solutions of Hamiltons equation.
The (PS) condition holds for Φ.

5. Description of the negative gradient flow: As before.
6. Choice of Γ: As before, Φ|Γ| > β > 0 for Γ = Γα.
7. Choice of Στ : As before, exercise. One obtains the estimate Φ ≤ 0 on
∂Σ and

(47) Φ(x) ≤ b on Σ

8. Existence of periodic orbit: As before, we find a periodic orbit with
Φ(x) ≥ β > 0.

9. Estimate for A(x):By construction Φ(x) ≥ β. Morover, by the choice
of H we have 0 ≤ H(x(t)). Therefore,

A(x) = Φ(x) +

∫ 1

0

H(x(t))dt

≥ β + 0 > 0.
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By (47) and the fact that H ≤ b on U one obtains

A(x) = Φ(x) +

∫ 1

0

H(x(t))dt

≤ b+ b ≤ 16πγ2 = d(ψ).

26. Lecture on January 28 – Closed characteristics, Hofer metric on

H̃am and Ham

• Remark: The previous theorem can be paraphrased as follows. Given a family
of hypersurfaces foliating a tubular neighborhood of S. Then the hypersurfaces
containing closed characteristics (i.e. closed leaves of TS⊥ωε ⊂ TSε) is dense.
Of course, we would like to know when a given hypersurface contains a closed
characteristic.
• Reminder: Let X be a Liouville vector field on (R2n, ω = dy ∧ dx), i.e.
LXω = ω. Then the flow φt of X expands ω, so φ∗tω = etω. If S is a fixed closed
hypersurface and X a Liouville vector field which is transverse to the closed
hypersurface S. Then ψ(t, p) = ϕt(p) parametrizes a family of hypersurfaces
as above.

Because X is a Liouville vector field, the characteristic line field TS⊥ω is
mapped to the characteristic line field on ϕt(S) by ϕ. Thus, a closed charac-
teristic on ϕt(S) corresponds to a closed characteristic on the original surface
S.

An example of this situation is when S is convex or star shaped with respect
to a point (wlog the origin). in R2n. For this note that

X =
1

2

n∑
i=1

(
xi

∂

∂xi
+ yi

∂

∂yi

)
is a Liouville vector field on R2n.
• Corollary: A starshaped closed hypersurface in R2n contains a closed charac-

teristic.
• Remark: The previous theorem admits a simpler proof, the one outlined was

useful to recast the difficult part of the proof of the fact that cHZ is a symplectic
capacity.
• Alternative, partial argument: Assume that no hypersurface in the family
Sε,−δ < ε < δ contains a closed characteristic and choose R so that BR(0)
contains the image of ψ. Using a function H ∈ H(BR(0), ω) which is constant
outside of ∪−δ<ε<δSε and so that all surfaces Sε are contained in level sets of
H. Since there are no closed characteristics, there are no non-constant periodic
orbits of J∇H of period 1. This would imply cHZ(BR(0), ω) =∞ which is not
true, hence the assumption was wrong.
• Corollary: Let S ⊂ (M,ω) be a closed hypersurface and N(S) a tubular

neighborhood of S which is parametrized by ψ : I×S −→ N(S). If cHZ(U, ω) <
∞, then there is a dense subset J ⊂ I so that Sε has a closed characteristic.
• Example (Zehnder): Let M = T 3 × [0, 1] with T 3 = R3/Z3. We will con-

struct a symplectic structure on M from a modification of ω0 on R4. Pick an
antisymmetric matrix A ∈ Gl(4,R). Then

ω(X, Y ) = 〈AX, Y 〉
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is a symplectic form on R4 (with constant coefficients when expressed in terms
of the standard framing of Λ2T ∗R4). The Hamiltonian vector field of a function
H is

XH = −A−1∇H.
We pick

A =


0 1 −α2 0
−1 0 α1 0
α2 −α1 0 1
0 0 −1 0

 A−1 =


0 −1 0 −α1

1 0 0 −α2

0 0 0 −1
α1 α2 1 0


(with det(A) = 1). The symplectic form is then

ω∗ = dx2 ∧ dx1 + dx4 ∧ dx3 + α1dx3 ∧ dx2 + α2dx1 ∧ dx3

The Hamiltonian vector field of the function H(x1, x2, x3, x4) = x4 is

X = (α1, α2, 1, 0)T .

If α1, α2, 1 are linearly independent over Q, then the flow lines of X are dense
in the level set containing them (Kronecker’s theorem). In view of the above
corollary, we conclude that

cHZ(M,ω∗) =∞.
In particular, there is no symplectic embedding (T 3 × [0, 1], ω∗) into (R4, ωst).
(One can find a smooth embedding M −→ R4.) To see this one could also
observe, that the symplectic structure ω∗ on M is not exact (since the closed
2-torus corresponding to the x1, x2-plane has non-vanishing symplectic area).
• The above observations justify why closed characteristics on hypersurfaces in

symplectic manifolds are important. Unless a hypersurface has
– a neighborhood with finite Hofer-Zehnder capacity, and
– some type of stability property

it is difficult to infer that S ⊂ (M,ω) contains a closed characteristic. Our
methods so far allow only to establish existence of closed characteristics exist
on Sε for ε ∈ J a dense subset of I and an embedding ψ : I × S −→M . With
a little more work one can establish that J ⊂ I has full measure.

• Convention: In the following, (M,ω) is either closed with ω ∈ H2 rational,
or (R2n, ω0). More generally, a symplectic manifold is tame when there is
an almost complex structure such that the injectivity radius is bounded from
below, the resulting manifold is complete and the curvature is bounded.
• References: [Po, HZ] for the Hofer norm/metric
• Reminder: The group of Hamiltonian diffeomorpisms Ham(M,ω) with com-

pact support in the interior of M is indeed a group.
• Proposition: Let H,K be time dependent smooth functions with compact

support in the interior and ϕt, ψt be the corresponding Hamiltonian diffeo-
morphisms and ϑ a symplectomorphism of M . Then several group theoretic
constructions from ϕt, ψt are also Hamiltonian:

ϕ−1
t is Hamiltonian for H(t, x) := −H(t, ϕt(x))

ϕt ◦ ψt is Hamiltonian for (H#K)(t, x) = H(t, x) +K(t, ϕ−1
t (x))

ϑ ◦ ϕt ◦ ϑ−1 is Hamiltonian for H(t, ϑ−1(x))

ϕ−1
t ◦ ψt is Hamiltonian for H#K.
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• Consequence: Let ϕt, ψt be Hamiltonian flows generated by time independent
normalized functions H,K. If ϕt ◦ ψt = ψt ◦ ϕt, then {H,K} ≡ 0.
• Proof: ϕt ◦ ψt resp. ψt ◦ ϕt is generated by

H(x) +K(ϕ−1
t (x)) resp. K(x) +H(ψ−1

t (x))

Since the flows are the same, these functions (both are normalized) agree.
Differentiating the resulting equality with respect to t, one gets

−{K,H} = dK(XH) = dH(XK) = −{H,K}.
Hence, {K,H} ≡ 0.
• Proposition: Let U ⊂ (M,ω) be open. Then there exist ϕ, ψ ∈ Hamc(M,ω)

which do not commute.
• Proof: Pick tangent vectors X, Y ∈ TxM,x ∈ U so that ω(X, Y ) 6= 0 and

choose germs of functions H,K whose symplectic gradients at x are X, Y . Then
extend to normalized Hamiltonians. The resulting flows do not commute.
• Remark: The third operation shows that Ham(M,ω) is normal in Symp0(M,ω).

Moreover, we know already that both groups are sufficiently connected to have
universal coverings. We will be focusing on the standard contact structure on
R2n. In this case Ham(R2n, ω) is simply connected.
• Sketch of Proof: Let p ∈ M . Then there is a map Ham(R2n, ω) −→ R2n

given by evaluation on p. This map is a fibration. We denote the subgroup
of Ham(M,ω) which fix p by Ham(M,ω, p). For p, q we choose Hamiltonian
diffeomorphisms ψ(q) which move q to p along the straight line from q to p so
that ψ(p) = id and so that ψ(q) depends continuously on q. Then the map

Ham(M,ω) −→ Ham(M,ω, p)

ϕ −→ ψ(ϕ(p)) ◦ ϕ
is a retraction. It also shows that Ham(M,ω, p) is homotopy equivalent to
Ham(M,ω). The long exact sequence for homotopy groups of fibrations implies
that Ham(R2n, ω) is simply connected. The same proof works for contractible
(M,ω).
• Remark: In the following we will consider the Hofer metric on Ham(R2n, ω).

For general (M,ω) one considers H̃am(M,ω) to obtain analogous statements.
• Definition: The oscillation is

‖ · ‖ : C∞c (R2n) −→ R+
0

H 7−→ sup
x
{H(x)} − inf

x
{H(x)}.

This defines a Diff(R2n)-invariant norm on compactly supported smooth func-
tions. If ϕt, t ∈ [0, 1] is a Hamiltonian isotopy generated by smooth family of
functions H(t, ·), then we define the length of ϕt as

L(ϕt) := ‖H‖ :=

∫ 1

0

‖H(t, ·)‖dt.

Finally, we define the Hofer norm

E = ‖ · ‖ : H̃am(M,ω) −→ R+
0

ψ 7−→ inf

{
‖ψt‖

∣∣∣∣ ψt is generated by a smooth family of Hamiltonian
functions and ψ1 = ψ

}
.

The following series of facts is a consequence of the previous proposition.
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• Facts: The energy function satisfies

1. positivity: ‖ϕ‖ ≥ 0 for all ϕ ∈ H̃am(M,ω) and E(id) = 0.

2. symmetry: ‖ϕ‖ = ‖ϕ−1‖ for all ϕ ∈ H̃am(M,ω) (with group theoretic
inverse, not path reversal)

3. invariance: ‖ϑ ◦ ϕ ◦ ϑ−1‖ = ‖ϕ‖.
4. triangle inequality: ‖ϕ ◦ ψ‖ ≤ ‖ϕ‖ + ‖ψ‖ (composition, not concatina-

tion).
For the last one:

l(ϕH#K) =

∫ 1

0

(
sup
x

(H#K)t − inf
x

(H#K)t

)
dt

≤
∫ 1

0

(
sup
x

(Ht)− inf
x

(Ht)

)
dt+

∫ 1

0

(
sup
x

(Kt)− inf
x

(Kt)

)
dt

• Theorem: If ‖ϕ‖ = 0, then ϕ = id.
• Remark: On Ham(M,ω) one has the uniform topology (after the choice of a

metric) It turns out that ‖ · ‖ is continuous with respect to this topology.

27. Lecture on January 31 – Displacement energy, Non-degeneracy
of the Hofer norm for (R2n, ω0)

• Lemma: ‖[ϕ, ψ]‖ ≤ 2 min{‖ϕ‖, ‖ψ‖}.
• Proof: One uses the facts from above:

‖[ϕ, ψ]‖ = ‖ϕ ◦ ψ ◦ ϕ−1 ◦ ψ−1‖
≤ ‖ϕ ◦ ψ ◦ ϕ−1‖+ ‖ψ−1‖
≤ 2‖ψ‖.

A similar computation implies ‖[ϕ, ψ]‖ ≤ ‖ϕ‖.
• The following Lemma is useful when one tries to estimate the energy from

above. For this it is useful to recall that diffeomorphism with disjoint support
commute.
• Proposition: Let U ⊂ M be open and bounded. If ϑ ∈ Ham(M,ω) satisfies
ϑ(U) ∩ U = ∅, then

(48) ‖[ϕ, ψ]‖ ≤ 4‖ϑ‖
for all ϕ, ψ ∈ Hamcomp(U, ω).
• Proof: Define γ = [ϕ, ϑ−1]. On U this map equals ϕ. Hence [ϕ, ψ] = [γ, ψ] on
U . Outside of U , the first commutator is obviously the identity. The second
commutator is also the identity

[γ, ψ](x) = ϕ ◦ ϑ−1 ◦ ϕ−1 ◦ ϑ ◦ ψ ◦ ϑ−1 ◦ ϕ ◦ ϑ︸ ︷︷ ︸
supp⊂ϑ−1(U)

◦ϕ−1 ◦ ψ−1(x)

outside of U . Hence, [ϕ, ψ] = [γ, ψ] everywhere. This implies

‖[ϕ, ϑ]‖ = ‖[γ, ψ]‖
≤ 2‖γ‖ ≤ 4‖ϑ‖.

• Remark: This suggests that the following quantity is interesting.
• Definition: Let A ⊂ (M,ω) be a bounded set. The displacement energy of A

is
e(A) = inf{‖ϕ‖ |ϕ ∈ Ham(M,ω) with ϕ(A) ∩ A = ∅}.
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• Examples: If M is closed and vol(A) > vol(M), then e(A) = ∞. If A ⊂
B2n−1 ⊂ R2n−1 × {0} ⊂ R2n, then e(A) = 0. Below we will show that closed
Lagrangian submanifolds L of R2n have 0 < e(L) <∞.
• Remark: The computations in the previous Lemmas do not rely on the specific

nature of E. They depend only on properties like invariance etc. It is legitimate
to ask for other norms. For example, one can consider

Ep(ϕt) =

∫ 1

0

(|Ht(x)|pωn)1/p dt

for ∞ > p ≥ 1 where Ht is normalized. It turns out that Ep is degenerate in
the sense that Ep(ϕ) = 0 does not imply ϕ = id.

In order to see this, consider a Darboux chart containing a small ball B
which can be displaced from itself by the partially defined Hamiltonian flow ϕt
of the function x1. Consider the spheres St = ϕt(∂B). Multiplying x1 with a
time dependent cut-off function one make the p-norm of the resulting function
arbitrarily small so that the new function equals x1 on a neighborhood of St
(this is not true for the L∞-norm). Thus, for all ε > 0 there is a Hamiltonian
flow ϑp which when restricted to S produces the same family of spheres St as
the original function and Ep(ϑp). In particular, B is displaced from itself and
Ep(ϑp) ≤ C · ε.

By (48), this implies that Ep([ϕ, ψ]) = 0 for some non-commuting pair ϕ, ψ
with support in B.
• Theorem: The map

d : Ham(M,ω)× Ham(M,ω) −→ R+
0

(ϕ, ψ) 7−→ ‖ϕ−1 ◦ ψ‖

defines a bi-invariant norm (i.e. d(ϑ ◦ ϕ, ϑ ◦ ψ) = d(ϕ, ψ) = d(ϕ ◦ ϑ, ψ ◦ ϑ)).
• We will outline a proof of the fact that the Hofer norm is non-degenerate on

Ham(R2n, ω). It is based on a theorem by Sikorav which is itself based on
pseudo-holomorphic curves introduced by Gromov.
• Theorem (Sikorav): Let L ⊂ R2n ×B2(r) be a closed Lagrangian. Then

(49) γ(L) ≤ πr2.

• The following theorem estimates the displacement energy of a Lagrangian
L ⊂ R2n from below in terms of γ(L). Since every non-trivial Hamiltonian
diffeomorphism displaces a ball from itself and since this ball contains a split
Lagrangian torus with γ(L) > 0 this implies that the Hofer norm on Ham(M,ω)
is non-degenerate.
• Theorem: Let L ⊂ R2n be a Lagrangian submanifold. Then

(50) γ(L) ≤ 2e(L).

• Proof: Let ϕt be a family of Hamiltonian isotopies generated by Ht so that
ϕ1(L)∩L = ∅. From this data and every ε > 0 we will construct an embedding
L′′ −→ R2n ×B2(r) so that

1. γ(L) = γ(L′′), and
2. πr2 ≤ 2l(ϕt) + 10ε.

Then (49) implies (50). The construction of the embedding of L′′ is done in
several steps. We pick ε > 0.
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– Step 0: Reparametrize ϕt to obtain a path ϕ′t so that ϕt = id for 0 ≤ t ≤
ε and ϕt = ϕ1 for 1− ε ≤ t ≤ 1. For this note that if b : [0, 1] −→ [0, 1] is
smooth, then ϕb(t) is generated by db

dt
(t)Hb(t). This does not change the

energy. We denote the new parametrized path/Hamiltonian functions by
ϕt, Ht.

– Step 1: Consider that following loop of Hamiltonian diffeomorphisms

gt =

{
ϕt for t ∈ [0, 1]

ϕ2−t for t ∈ [1, 2].

This is generated by the loop of Hamiltonian functions

Gt =

{
Ht for t ∈ [0, 1]

H2−t for t ∈ [1, 2].

We identify S1 = R/2Z and apply the Lagrangian suspension construc-
tion we obtain

L× S1 −→ R2n × T ∗S1

(x, t) 7−→
(
gt(x),−Gt(gt(x))dt ∈ T ∗t S1

)
.

This is a Lagrangian submanifold L′ with γ(L′) = γ(L) (one uses product
symplectic structure of the standard symplectic structures on R2n and
T ∗S1). To check this verify

∫ 2

0
Gt(gt(x))dt = 0 for all x since [S1] and

H1(L) generate H1(L′ = L × S1). The Lagrangian submanifold L′ =
L×S1 is contained in R2n×C with C = {αdt ∈ T ∗t S1 | a+(t) < α < a−(t)}
and

a+(t) = −min
x
Gt(x) + ε

a−(t) = −max
x

Gt(x)− ε.

The area of C ⊂ T ∗S1 is

Area(C) =

∫ 2

0

(a+(t)− a−(t))dt = 2l(ϕt) + 4ε.

– Step 2: To obtain L′′ we compose the Lagrangian suspension with

idR2n × ϑ : R2n × T ∗S1 −→ R2n × R2

where ϑ : T ∗S1 −→ R2 is a symplectic immersion which is exact (i.e.
the ϑ∗λR2 differs from λT ∗S1 by a closed form). For this it is sufficient to
ensure that the restriction of ϑ to the zero section is an exact Lagrangian
immersion and ϑ is area preserving. We choose ϑ so that the zero section
maps to a figure eight where the self intersection point is the image of
0, 1 ∈ S1 = [0, 2]/0 ∼ 2. Furthermore, we may assume that ϑ is an
embedding outside of t ∈ [0, ε] ∪ [2− ε, 2] ∪ [1− ε, 1 + ε] and that every
point has at most two preimages.
We can choose the immersion so that the image of C is contained in a
ball of area Area(C) + 2ε.
While id×ϑ is an immersion, its restriction to L′ = L×S1 is an embedding
since ϕ1(L) ∩ L = ∅.

– Step 3: Apply Sikorav’s theorem to conclude: γ(L) ≤ Area(C) + 2ε ≤
2l(ϕt) + 6ε. This implies (50).
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28. Lecture on February 4 – Sikorav’s theorem

• Remark: We still have to show (49). This result is an improvement of a
remark in the seminal paper [Gr] and relies on solutions of the Cauchy-Riemann
boundary value problem with D2 −→ Cn ' R2n. We will not go through the
analytic setup nor prove one of the main ”technical” results underlying this
theory (called compactness for pseudoholomorphic curves). It is interesting
enough to state these things.
• Preliminaries for Sikorav:

1. The boundary value problem : This makes sense for smooth maps

f : (Σ, j) −→ (M,J)

where (Σ, j) is a Riemann surface (i.e. a real two-dimensional manifold
with an atlas (ψi : Ui −→ ψi(Ui) ⊂ C) so that all transition functions
are holomorphic). Furthermore, (M,J) is a manifold with an almost
complex structure J . One imposes boundary conditions when Σ has
boundary, usually f(∂Σ) ⊂ L where L ⊂M is a Lagrangian submanifold.
Also, a topological requirement is usually made, namely f∗([L]) = α ∈
H2(M,L;Z) for a given class α.
The symplectic form ω is not required for the definition of the Cauchy-
Riemann operator, but ω is needed for compactness results. Of course
one requires that J is a adapted to ω (in other words ω tames J). Then

∂f =
1

2
(df + J ◦ df ◦ j) =

1

2

(
∂

∂x
+ J

∂

∂y

)
in terms of holomorphic coordinates x, y on Σ is the Cauchy-Riemann
operator. If ∂f = 0, then df is complex linear, i.e. df ◦ j = J ◦ df . For
us, the following case is relevant:

– (Σ, j) = (D2 ⊂ C, j) (by the uniformization theorem, every holo-
morphic structure on D2 is equivalent to this),

– (M,J) = (Cn, i) which is tamed by the standard symplectic struc-
ture ω0,

– ∂f = g(z, f(z)) with g : D2 × Cn −→ C smooth,
– L is the given Lagrangian in Sikorav’s theorem, and
– α = 0.

Generically, solutions of this boundary value problem appear in finite
dimensional families and the dimension can be computed from the given
data.

2. Wirtinger inequalities: The following is the result of a clever appli-
cation of the Cauchy-Schwarz inequality written for convenience using a
global coordinate system x, y on D2 = Σ

(51)

∣∣∣∣∫
D2

f ∗ω

∣∣∣∣ ≤ Area(f) ≤ 2

∫
D2

|∂f |2 dx dy +

∫
D2

f ∗ω.

Note that
∫
D2 f

∗ω depends only on α ∈ H2(M,L;Z) and that f has

minimal area when ∂f = 0. In particular, f is constant for ∂f = 0
and α = 0. The Wirtinger inequality implies that holomorphic curves
have non-negative symplectic area. If the corresponding homology class
is non-trivial, then the symplectic area is positive.

3. Cusp-solutions: A cusp solution is given by following data:
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– A decomposition α = α′ +
∑

i βi with βi, α
′ ∈ H2(M,L;Z) and

βi 6= 0,
– a solution of the boundary value problem f ′ : (D2, ∂D2) −→ (M,L)

with f∗([D
2]) = α′ and ∂f(z) = g(z, f(z)), (note that in a more

general setting solutions with Σ = S2 may appear, they are irrel-
evant for us since π2(Cn) = 0 and non-trivial holomorphic spheres
cannot be null-homologouos by the Wirtinger inequalities.)

– and solutions (holomorphic discs) hi : (D2, ∂D2) −→ (M,L) with
hi([D

2]) = βi and ∂hj = 0.
Gromov’s compactness theorem states that for a generic set of functions
gs a sequence of solutions fs of our boundary value problem with gs either
(sub-)converges to a solution fs0 when s→ s0 or to a cusp solution such
that

Area(fs)→ Area(fs0) +
∑
i

Area(hi).

In particular, if our problem has a solution for g0 = 0 but does not have
a solution for g1, then generically, non-trivial holomorphic discs must
appear when one interpolates between 0 and g1.

• Lemma: Let gs = (s, 0, . . . , 0). For L ⊂ Cn × B2(r), our boundary value
problem has no solution for r < |s|.
• Proof: Let fs be a solution for a given s and φ its last component. Then

πs =

∫
D2

∂φ dx dy

=
1

2

∫
D2

d(φdx− iφdy)

=
1

2

∫
∂D2

φ(dx− idy)

From |φ| ≤ r one obtains |σ| < r after integration and taking absolute values.
• Remark: Solutions of ∂fs = gs with gs constant are harmonic maps (i.e. have

a special geometry).
• Proof of Sikorav’s theorem: Our boundary value problem has a solution for
s = 0, namely all constant solutions. If |s| > r, then there is no solution. We
pretend that gs is generic in the sense that sequences of solutions of our bound-
ary value problem converge to a cusp solution ((α′, β1, . . . , βk), (f

′
s0
, h1, . . . , hk)), k ≥

1, before they cease to exist when s→ s0 from below. By the first part of the
Wirtinger inequality

Area(f ′s0) ≥ |ω(f ′s0)| =
∣∣∣∣∫
α′
ω

∣∣∣∣
and since α′ +

∑
i βi = 0

∣∣∣∣∫
α′
ω

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
∑
i

∫
βi

ω︸ ︷︷ ︸
>0

∣∣∣∣∣∣∣∣∣ ≥ γ(L).
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because there is at least one summand. Thus

Area(f ′s0) +
∑
i

Area(hi) ≥ 2γ(L)

Let fn be the sequence of solutions of the gsn converging to the cusp solution
for s0. By the second part of the Wirtinger inequality

Area(fn) ≤ 2

∫
D2

sn dx dy +

∫
α=0

ω ≤ 2πs2
0 ≤ 2πr2.

By the convergence of area, we get

2γ(L) ≤ 2πr2,

this is the desired inequality.
• We did not give a complete proof. The analytic set up , the compactness

theorem as well as the fact that solutions of the boundary value problem come
in families are missing. A reference which tries to give a clean proof of Gromov’s
non-squeezing theorem using holomorphic curves is [ABKLR]. A lot more detail
can be found in the the following, much thicker references: [AD, AL, McDS2].
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