%!PS-Adobe-2.0 %%Creator: dvips 5.58 Copyright 1986, 1994 Radical Eye Software %%Title: ln44.dvi %%CreationDate: Mon Jun 26 16:21:37 2000 %%Pages: 5 %%PageOrder: Ascend %%BoundingBox: 0 0 596 842 %%EndComments %DVIPSCommandLine: DVIPS16 -a ln44 %DVIPSParameters: dpi=300, compressed, comments removed %DVIPSSource: TeX output 2000.06.26:1537 %%BeginProcSet: texc.pro /TeXDict 250 dict def TeXDict begin /N{def}def /B{bind def}N /S{exch}N /X{S N}B /TR{translate}N /isls false N /vsize 11 72 mul N /hsize 8.5 72 mul N /landplus90{false}def /@rigin{isls{[0 landplus90{1 -1}{-1 1} ifelse 0 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[matrix currentmatrix{dup dup round sub abs 0.00001 lt{round}if} forall round exch round exch]setmatrix}N /@landscape{/isls true N}B /@manualfeed{statusdict /manualfeed true put}B /@copies{/#copies X}B /FMat[1 0 0 -1 0 0]N /FBB[0 0 0 0]N /nn 0 N /IE 0 N /ctr 0 N /df-tail{ /nn 8 dict N nn begin /FontType 3 N /FontMatrix fntrx N /FontBBox FBB N string /base X array /BitMaps X /BuildChar{CharBuilder}N /Encoding IE N end dup{/foo setfont}2 array copy cvx N load 0 nn put /ctr 0 N[}B /df{ /sf 1 N /fntrx FMat N df-tail}B /dfs{div /sf X /fntrx[sf 0 0 sf neg 0 0] N df-tail}B /E{pop nn dup definefont setfont}B /ch-width{ch-data dup length 5 sub get}B /ch-height{ch-data dup length 4 sub get}B /ch-xoff{ 128 ch-data dup length 3 sub get sub}B /ch-yoff{ch-data dup length 2 sub get 127 sub}B /ch-dx{ch-data dup length 1 sub get}B /ch-image{ch-data dup type /stringtype ne{ctr get /ctr ctr 1 add N}if}B /id 0 N /rw 0 N /rc 0 N /gp 0 N /cp 0 N /G 0 N /sf 0 N /CharBuilder{save 3 1 roll S dup /base get 2 index get S /BitMaps get S get /ch-data X pop /ctr 0 N ch-dx 0 ch-xoff ch-yoff ch-height sub ch-xoff ch-width add ch-yoff setcachedevice ch-width ch-height true[1 0 0 -1 -.1 ch-xoff sub ch-yoff .1 sub]/id ch-image N /rw ch-width 7 add 8 idiv string N /rc 0 N /gp 0 N /cp 0 N{rc 0 ne{rc 1 sub /rc X rw}{G}ifelse}imagemask restore}B /G{{id gp get /gp gp 1 add N dup 18 mod S 18 idiv pl S get exec}loop}B /adv{cp add /cp X}B /chg{rw cp id gp 4 index getinterval putinterval dup gp add /gp X adv}B /nd{/cp 0 N rw exit}B /lsh{rw cp 2 copy get dup 0 eq{pop 1}{ dup 255 eq{pop 254}{dup dup add 255 and S 1 and or}ifelse}ifelse put 1 adv}B /rsh{rw cp 2 copy get dup 0 eq{pop 128}{dup 255 eq{pop 127}{dup 2 idiv S 128 and or}ifelse}ifelse put 1 adv}B /clr{rw cp 2 index string putinterval adv}B /set{rw cp fillstr 0 4 index getinterval putinterval adv}B /fillstr 18 string 0 1 17{2 copy 255 put pop}for N /pl[{adv 1 chg} {adv 1 chg nd}{1 add chg}{1 add chg nd}{adv lsh}{adv lsh nd}{adv rsh}{ adv rsh nd}{1 add adv}{/rc X nd}{1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]dup{bind pop}forall N /D{/cc X dup type /stringtype ne{] }if nn /base get cc ctr put nn /BitMaps get S ctr S sf 1 ne{dup dup length 1 sub dup 2 index S get sf div put}if put /ctr ctr 1 add N}B /I{ cc 1 add D}B /bop{userdict /bop-hook known{bop-hook}if /SI save N @rigin 0 0 moveto /V matrix currentmatrix dup 1 get dup mul exch 0 get dup mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N /eop{SI restore showpage userdict /eop-hook known{eop-hook}if}N /@start{userdict /start-hook known{start-hook}if pop /VResolution X /Resolution X 1000 div /DVImag X /IE 256 array N 0 1 255{IE S 1 string dup 0 3 index put cvn put}for 65781.76 div /vsize X 65781.76 div /hsize X}N /p{show}N /RMat[1 0 0 -1 0 0]N /BDot 260 string N /rulex 0 N /ruley 0 N /v{/ruley X /rulex X V}B /V {}B /RV statusdict begin /product where{pop product dup length 7 ge{0 7 getinterval dup(Display)eq exch 0 4 getinterval(NeXT)eq or}{pop false} ifelse}{false}ifelse end{{gsave TR -.1 .1 TR 1 1 scale rulex ruley false RMat{BDot}imagemask grestore}}{{gsave TR -.1 .1 TR rulex ruley scale 1 1 false RMat{BDot}imagemask grestore}}ifelse B /QV{gsave newpath transform round exch round exch itransform moveto rulex 0 rlineto 0 ruley neg rlineto rulex neg 0 rlineto fill grestore}B /a{moveto}B /delta 0 N /tail {dup /delta X 0 rmoveto}B /M{S p delta add tail}B /b{S p tail}B /c{-4 M} B /d{-3 M}B /e{-2 M}B /f{-1 M}B /g{0 M}B /h{1 M}B /i{2 M}B /j{3 M}B /k{ 4 M}B /w{0 rmoveto}B /l{p -4 w}B /m{p -3 w}B /n{p -2 w}B /o{p -1 w}B /q{ p 1 w}B /r{p 2 w}B /s{p 3 w}B /t{p 4 w}B /x{0 S rmoveto}B /y{3 2 roll p a}B /bos{/SS save N}B /eos{SS restore}B end %%EndProcSet TeXDict begin 39158280 55380996 1000 300 300 (K:\/ln44.dvi) @start /Fa 1 50 df<1218127812981218AC12FF08107D8F0F>49 D E /Fb 1 81 df80 D E /Fd 4 112 df<1203EA07E0EA0800120C120412067EEA078012191231EA61C01260 EAC180A3EA41001262121C0B127E910E>14 D97 D<123C120CA25AA31370EA3190EA3230EA340012 38127FEA61801390A2EAC1A0EAC0C00C117E9010>107 D111 D E /Fe 5 115 df<127012F8A3127005057A8410>46 D80 D102 D111 D114 D E /Ff 17 118 df11 D14 D23 D<001013204813305AA2388020201360A21460EB4040EBC0C03881C18038E76700EA7E7E EA3C3C140E7F8D16>33 DI<3807FFF83800E00E140315801401D801C013C0A214 00A238038001A43907000380A215005C000E130E140C5C1470381C01C0B5C7FC1A177F96 1D>68 D<3907FE1FF83900E00380A43901C00700A43803800EA2EBFFFEEB800E48485AA4 000E5BA4485B38FF83FE1D177F961D>72 D74 D97 D<127C1218A45AA4EA6780EA68C0EA70 40EA606012C0A4EA80C0A2EA8180EAC1001246123C0B177E960F>I101 D<130E13131337133613301360A4EA03FCEA00C0A5EA0180A5EA0300A41202126612E65A 1278101D7E9611>I<1318133813101300A6EA01C0EA0220EA0430A2EA08601200A313C0 A4EA0180A4EA630012E312C612780D1D80960E>106 D110 DII117 D E /Fg 9 106 df<120112021204120C1218A21230A212701260A312E0AA1260 A312701230A21218A2120C12041202120108227D980E>40 D<12801240122012301218A2 120CA2120E1206A31207AA1206A3120E120CA21218A2123012201240128008227E980E> I48 D<1206120E12FE120EB1EAFFE00B157D9412>III61 D<133E130EA8EA07CEEA1C3EEA300E1270126012 E0A412601270EA301EEA182E3807CF8011177F9614>100 D<12301278A212301200A512 F81238AC12FE07177F960A>105 D E /Fh 4 72 df0 D<001F1304EA3F80EA7FC03860F00CEAC078EB3C1838800FF8EB07F0EB03E016097E8C1B >24 D<1206120FA2120E121EA2121C123C1238A212301270A2126012E012C0124008117F 910A>48 D71 D E /Fi 8 107 df<1302131E137EEA01FE120F12FFA2120F1201 EA007E131E13020F0C7E852A>27 D<7E12F012FCB4FC13E013FEA213E0130012FC12F012 800F0C67852A>45 D<1206A4120FA3EA1F80A2EA3FC0A2EA7FE0A3EAFFF00C0F86A72A> 54 D63 D<7E7E12607E7E7E7E7E6C7E6C7E13607F7F7F7F7F6D7E6D7E146080808080806E7E6E7E 156081818181816F7E6F7E16608282828282EE0180EE00C0176017202B2C80AA2A>I<7E 12E01278121EEA0780EA01E0EA0078131EEB0780EB01E0EB0078141EEC0780EC01E0EC00 78151EED0780ED01E0ED0078161EEE0780EE01E0EE00602B1780952A>72 D<13801201EA03C01207120FEA1FE0123F127FEAFFF0123FEA07F81200133C130E130613 011010668F2A>82 D<120C120E121FA2EA3F8013C0EA7FE013F0EAFFF813FCEA00FE1301 100C678B2A>106 D E /Fj 35 122 df<133FEBE180390380E0203907006040000E1370 481330003CEB3880A248EB3900A2143A5A143C1438A212701478003013B83938031840D8 1C1C13803907E007001B157E941F>11 D14 D<00071306007F130E120F000E131CA2 14181438481330147014E014C038380180EB030013065B485A5B13C0EA738000ECC7FC12 F017157E9418>23 D<000414704814F015F84814781538481418A2D840031310A21306A2 1520EAC004010C134015C090381E018038E07607397FE7FF005C383F83FC381F01F01D15 80941E>33 D<133F3801FFC0380381E0380400404813005AA31360EA0B98EA0FF80010C7 FC5A5AA35A6C1380124038600100EA300EEA1FFCEA07E013177F9517>I<0008131F48EB 3F80EC7FC048EBE0E0394001806090380300201302485AA25B156090C71240011013C015 8000C0EB0300386020060038131C003F13F8380FFFF06C13C0C648C7FC13C0A31201A25B A21203A390C8FC1B207E9420>39 D<1503A26F7EA26F7EA216601670821618160E82B812 C0A22A0E7D9831>42 D<127012F8A3127005057C840E>58 D<127012F812FCA212741204 A41208A21210A212201240060F7C840E>I<14801301A2EB0300A31306A35BA35BA35BA3 5BA35BA3485AA448C7FCA31206A35AA35AA35AA35AA35AA311317DA418>61 D<8114018114031407A2140BA2141314331423EC43E0A21481EB0101A21302A213041308 A201107FEB1FFFEB20005BA25BA248C7FC120281481478120C001E14F83AFF800FFF8021 237EA225>65 D<90B512F090380F001E81ED0780011E1303A216C0A24914801507A2ED0F 0049131E5D5DEC03E090B55A9038F000F0157881485A151C151EA248485BA35D485A5D4A 5AEC0380000F010FC7FCB512F822227DA125>I<90B512F090380F003C150E81011EEB03 80A2ED01C0A25B16E0A35BA449EB03C0A44848EB0780A216005D4848130E5D153C153848 485B5D4A5A0207C7FC000F131CB512F023227DA128>68 D<027F1340903903C0C0809038 0E00214913130170130F49EB0700485A485A48C7FC481402120E121E5A5D4891C7FCA35A A4EC3FFF48EB00F0A34A5A7EA212704A5A7E001813076C13096CEB1180380380E0D8007F C8FC22247DA226>71 D<9039FFF83FFE90390F0003C0A3011EEB0780A449EB0F00A44913 1EA490B512FC9038F0003CA348485BA448485BA44848485AA4000F130339FFF83FFE2722 7DA128>II<9039FFF801FF010FC71278166016C0011EEB010015025D5D4913205D5D02 02C7FC495A5C141C147CEBF0BEEBF11E13F2EBF80FEA01F001E07F1407A248486C7EA36E 7EEA0780811400A2000F497E39FFF80FFF28227DA129>75 D77 D<90B512C090380F0078151C81 011E130F811680A249EB0F00A3151E495B5D15E0EC0380D9FFFCC7FCEBF0076E7E814848 6C7EA44848485AA44848485A1680A29138038100120F39FFF801C6C8127821237DA125> 82 D<903803F81090380E0420903818026090382001E0EB400001C013C05B1201A20003 1480A21500A27FEA01F013FE3800FFE06D7EEB1FF8EB01FCEB003C141C80A30020130CA3 140800601318141000705B5C00C85BD8C603C7FCEA81FC1C247DA21E>I97 DI<133FEBE080380380C0EA0701EA0E03121C003CC7FCA25A A35AA400701340A23830018038380200EA1C1CEA07E012157E9415>I<141E14FC141CA3 1438A41470A414E01378EA01C4EA0302380601C0120E121C123C383803801278A338F007 00A31408EB0E101270131E38302620EA18C6380F03C017237EA219>I<137EEA03813807 0080120E5A5A38780100EA7006EAFFF800F0C7FCA25AA41480A238700300EA3004EA1838 EA0FC011157D9417>I<141EEC638014C71301ECC30014801303A449C7FCA4EBFFF8010E C7FCA65BA55BA55BA4136013E0A25BA21271EAF18090C8FC1262123C192D7EA218>II<13F0EA07E01200A3485AA4485AA448C7FCEB0F80EB30C0EB4060380E8070EA0F00 120EA24813E0A4383801C0A2EB0380148200701384EB07041408130300E01310386001E0 17237EA21C>I<13E0A21201EA00C01300A9121E1223EA4380A21283EA8700A21207120E A35AA3EA38201340127013801230EA3100121E0B227EA111>I<147014F0A214601400A9 130FEB3180EB41C01381A2EA0101A238000380A4EB0700A4130EA45BA45BA3EA7070EAF0 605BEA6380003EC7FC142C81A114>I<393C07E01F3A46183061803A47201880C03A8740 1D00E0EB801E141C1300000E90383801C0A4489038700380A2ED070016044801E0130815 0EA2ED0610267001C01320D83000EB03C026157E942B>109 D<3803C0F03804631CEB74 0EEA0878EB7007A2140FEA00E0A43801C01EA3143C38038038A2EBC07014E038072180EB 1E0090C7FCA2120EA45AA3B47E181F819418>112 D<001E131800231338EA4380147012 83A2EA8700000713E0120EA3381C01C0A314C2EB0384A21307380C0988EA0E113803E0F0 17157E941C>117 D<3801E0F03806310C38081A1C0010133CEA201C14181400C65AA45B A314083860E01012F0142038E1704038423080383C1F0016157E941C>120 D<001E131800231338EA438014701283EA8700A2000713E0120EA3381C01C0A4EB0380A2 1307EA0C0B380E1700EA03E7EA0007A2130E1260EAF01C1318485AEA8060EA41C0003FC7 FC151F7E9418>I E /Fl 20 107 df0 D<127012F8A312700505 7C8E0E>I<6C13026C13060060130C6C13186C13306C13606C13C03803018038018300EA 00C6136C1338A2136C13C6EA018338030180380600C048136048133048131848130C4813 064813021718789727>I<13C0A538E0C1C0EAF0C33838C700EA0EDCEA03F0EA00C0EA03 F0EA0EDCEA38C738F0C3C0EAE0C13800C000A512157D9619>I8 D10 D14 D<90380FFFFC137FD801F0C7FCEA03800006C8FC5A5A5AA2 5AA25AA81260A27EA27E7E7E6C7EEA01E039007FFFFC131F90C8FCA8007FB512FCA21E28 7C9F27>18 D24 D<4B7EA46F7EA2166082A2161C82 82B812E0A2C9EA0700160E5E1630A25E5EA24B5AA42B1A7D9832>33 D50 DI<12C0A812E0A212C0A803127D9400>55 D<147F903803FFC0010F13E0EB1C07EB600101C013C0EA0180390300038000061400000E 5B48130C14084890C7FCA212781270A200F0EB01801403140715005CA25C6C131E143E00 7C137E007E13DC383F839C381FFE3C380FFC38EA03E0C75AA25C5C38180180D83E03C7FC EAFFFCEA3FF8EA0FE01B297EA21E>71 D76 D102 D<12F8120FEA03806C7E6C7EB113707F131EEB03C0EB1E00 13385B5BB1485A485A000FC7FC12F812317DA419>I<1320136013C0A3EA0180A3EA0300 A21206A35AA35AA25AA35AA35AA21260A37EA37EA27EA37EA37EA2EA0180A3EA00C0A313 6013200B327CA413>I<12C0A21260A37EA37EA27EA37EA37EA2EA0180A3EA00C0A31360 A213C0A3EA0180A3EA0300A21206A35AA35AA25AA35AA35AA20B327DA413>I<12C0B3B3 AD02317AA40E>I E /Fm 35 122 df12 D<91390FE01FE091393838601891396079C01C9139C07B803C0101EB3300030713 38028014001303150EA3EB0700151E151C017FB612E0903907001C00130EEE01C01538A3 49EC0380A21570A2EE07005BA203E01308EE0E10A25B1720913801C006EE03C093C7FC01 E05B1403A201C090C8FCEA70C738F18F06EB0F0C38620618383C03E02E2D82A22B>14 D<120E121EA41202A21204A21208A21210122012401280070F7D840F>44 DI<127012F8A212F012E005057A840F>I50 DI<14181438A21470A314E0A314C01301148013031400A21306A25BA25B1310EB3180EB 61C0EB438013831201EA03033802070012041208EA3FC7EA403E38800FF038000E00A25B A45BA31330152B7EA019>I54 D<9039FFF87FFC90390F0007 80A3011EEB0F00A449131EA4495BA490B512F89038F00078A348485BA44848485AA44848 485AA4000F130739FFF07FF826227DA124>72 D76 D<001FB512F8391E03C03800181418123038200780A200401410A2EB0F001280 A200001400131EA45BA45BA45BA4485AA41203B5FC1D2277A123>84 D97 DI<137EEA01C138030180EA0703EA0E07121C003CC7FC1238 1278A35AA45B12701302EA300CEA1830EA0FC011157B9416>I<143CEB03F8EB0038A314 70A414E0A4EB01C013F9EA0185EA0705380E0380A2121C123C383807001278A3EAF00EA3 1410EB1C201270133C38305C40138C380F078016237BA219>I<13F8EA0384EA0E02121C 123C1238EA7804EAF018EAFFE0EAF000A25AA41302A2EA6004EA7018EA3060EA0F800F15 7A9416>I<143E144714CFEB018F1486EB0380A3EB0700A5130EEBFFF0EB0E00A35BA55B A55BA55BA45B1201A2EA718012F100F3C7FC1262123C182D82A20F>II<13F0EA0FE01200A3 485AA4485AA448C7FC131FEB2180EBC0C0380F00E0A2120EA2381C01C0A438380380A3EB 070400701308130E1410130600E01320386003C016237DA219>I<13C0EA01E013C0A2C7 FCA8121E12231243A25AA3120EA25AA35AA21340EA7080A3EA71001232121C0B217BA00F >I<13F0EA07E01200A3485AA4485AA448C7FCEB01E0EB0210EB0470380E08F01310EB20 60EB4000EA1D80001EC7FCEA1FC0EA1C70487EA27F142038703840A3EB188012E038600F 0014237DA216>107 DI<391C0F80F8392610C10C39476066063987807807 A2EB0070A2000EEBE00EA44848485AA3ED38202638038013401570168015303A70070031 00D83003131E23157B9428>I<38380F80384C30C0384E4060388E8070EA8F00128EA248 13E0A4383801C0A3EB03840070138814081307EB031012E0386001E016157B941B>I<13 7EEA01C338038180380701C0120E001C13E0123C12381278A338F003C0A2148013070070 1300130E130CEA3018EA1870EA07C013157B9419>I<3801C1F0380262183804741C3808 780CEB700EA2141EEA00E0A43801C03CA3147838038070A2EBC0E0EBC1C038072380EB1E 0090C7FCA2120EA45AA3EAFFC0171F7F9419>III<13FCEA018338020080EA0401EA0C03140090C7FC120F13F0EA07 FC6C7EEA003E130F7F1270EAF006A2EAE004EA4008EA2030EA1FC011157D9414>I<13C0 1201A4EA0380A4EA0700EAFFF8EA0700A2120EA45AA45AA31310EA7020A213401380EA31 00121E0D1F7C9E10>I<001E1360002313E0EA4380EB81C01283EA8701A238070380120E A3381C0700A31408EB0E101218121CEB1E20EA0C263807C3C015157B941A>I<381C0180 382603C0EA47071303EA8701EA8E00A2000E13805AA338380100A31302A25B5B1218EA0C 30EA07C012157B9416>I<001EEB60E00023EBE0F0384380E1EB81C000831470D8870113 30A23907038020120EA3391C070040A31580A2EC0100130F380C0B02380613843803E0F8 1C157B9420>I<001E133000231370EA438014E01283EA8700A2380701C0120EA3381C03 80A4EB0700A35BEA0C3EEA03CEEA000EA25B1260EAF0381330485AEA80C0EA4380003EC7 FC141F7B9418>121 D E /Fn 37 122 df12 D<903907F80FF090397FFE7FFC3A01F80FF80ED803E0EBE01F484848485AD80F801380A2 020F131E160C93C7FCA4B8FCA23A0F800F801FB23B7FF07FF0FFE0A22B237FA22F>14 D<1238127C12FEA3127C123807077C8610>46 D<13181378EA01F812FFA21201B3A7387F FFE0A213207C9F1C>49 DI<13FE3807FFC0380F07E0381E 03F0123FEB81F8A3EA1F0314F0120014E0EB07C0EB1F803801FE007F380007C0EB01F014 F8EB00FCA2003C13FE127EB4FCA314FCEA7E01007813F8381E07F0380FFFC03801FE0017 207E9F1C>I<14E013011303A21307130F131FA21337137713E7EA01C71387EA03071207 120E120C12181238127012E0B6FCA2380007E0A790B5FCA218207E9F1C>I<0030132038 3E01E0383FFFC0148014005B13F8EA33C00030C7FCA4EA31FCEA37FF383E0FC0383807E0 EA3003000013F0A214F8A21238127C12FEA200FC13F0A2387007E0003013C0383C1F8038 0FFF00EA03F815207D9F1C>II<12601278 387FFFFEA214FC14F8A214F038E0006014C038C00180EB0300A2EA00065B131C13181338 1378A25BA31201A31203A76C5A17227DA11C>I<1470A214F8A3497EA2497EA3EB067FA2 010C7F143FA2496C7EA201307F140F01707FEB6007A201C07F90B5FC4880EB8001A2D803 007F14004880000680A23AFFE007FFF8A225227EA12A>65 D67 DI71 D76 D80 D<3801FE023807FF86381F01FE38 3C007E007C131E0078130EA200F81306A27E1400B4FC13E06CB4FC14C06C13F06C13F86C 13FC000313FEEA003F1303EB007F143FA200C0131FA36C131EA26C133C12FCB413F838C7 FFE00080138018227DA11F>83 D86 D97 DIII<13FE3807FF80380F87C0381E01 E0003E13F0EA7C0014F812FCA2B5FCA200FCC7FCA3127CA2127E003E13186C1330380FC0 703803FFC0C6130015167E951A>II<3801FE0F3907FFBF80380F87C738 1F03E7391E01E000003E7FA5001E5BEA1F03380F87C0EBFF80D809FEC7FC0018C8FCA212 1C381FFFE06C13F86C13FE001F7F383C003F48EB0F80481307A40078EB0F006C131E001F 137C6CB45A000113C019217F951C>I<121C123E127FA3123E121CC7FCA7B4FCA2121FB2 EAFFE0A20B247EA310>105 D108 D<3AFF07F007F090391FFC1FFC3A1F303E303E01401340496C487EA201001300AE3BFFE0 FFE0FFE0A22B167E9530>I<38FF07E0EB1FF8381F307CEB403CEB803EA21300AE39FFE1 FFC0A21A167E951F>I<13FE3807FFC0380F83E0381E00F0003E13F848137CA300FC137E A7007C137CA26C13F8381F01F0380F83E03807FFC03800FE0017167E951C>I<38FF0FE0 EB3FF8381FE07CEB803E497E1580A2EC0FC0A8EC1F80A29038803F00EBC03EEBE0FCEB3F F8EB0FC090C8FCA8EAFFE0A21A207E951F>I114 DI<487EA41203A21207A2120F123FB5FCA2EA0F80ABEB81 80A5EB8300EA07C3EA03FEEA00F811207F9F16>I<38FF01FEA2381F003EAF147E14FE38 0F81BE3907FF3FC0EA01FC1A167E951F>I<39FFE01FE0A2391F800700000F1306EBC00E 0007130C13E000035BA26C6C5AA26C6C5AA2EB7CC0A2137F6D5AA26DC7FCA2130EA21B16 7F951E>I<39FFE01FE0A2391F800700000F1306EBC00E0007130C13E000035BA26C6C5A A26C6C5AA2EB7CC0A2137F6D5AA26DC7FCA2130EA2130CA25B1278EAFC3813305BEA69C0 EA7F80001FC8FC1B207F951E>121 D E /Fo 27 90 df<126012F0A2126004047D830B> 46 D48 D<12035AB4FC1207B3A2EA7FF80D187D9713>I< EA0F80EA1060EA2030EA4038EA803CEAC01C12E01240EA003C1338A21370136013C0EA01 8013001202EA040412081210EA3008EA3FF8127F12FF0E187E9713>II<1318A21338137813F813B8EA013812 02A212041208121812101220124012C0B5FCEA0038A6EA03FF10187F9713>I57 D<130CA3131EA2132F1327 A2EB4380A3EB81C0A200017F1300A248B47E38020070A2487FA3487FA2003C131EB4EBFF C01A1A7F991D>65 DIIIIII<39FFE1FFC0390E001C00AB380FFFFC380E001CAC39FFE1 FFC01A1A7F991D>II76 DI<00FEEB7FC0000FEB0E001404EA0B80EA09C0A2EA08E01370A213 38131CA2130E1307EB0384A2EB01C4EB00E4A21474143CA2141C140C121C38FF80041A1A 7F991D>I<137F3801C1C038070070000E7F487F003C131E0038130E0078130F00707F00 F01480A80078EB0F00A20038130E003C131E001C131C6C5B6C5B3801C1C0D8007FC7FC19 1A7E991E>II82 DI<007FB5FC38 701C0700401301A200C0148000801300A300001400B13803FFE0191A7F991C>I<39FFE0 7FC0390E000E001404B200065B12076C5B6C6C5A3800E0C0013FC7FC1A1A7F991D>I<39 FF801FC0391C00070014066C1304A36C5BA26C6C5AA36C6C5AA26C6C5AA3EB7080A21379 0139C7FCA2131EA3130CA21A1A7F991D>I<39FF801FE0391E00070014066C13046C130C EB800800035BEA01C06D5A00001360EB7040EB78801338011DC7FC131F130EAAEBFFC01B 1A7F991D>89 D E /Fp 15 122 df<49B4FC011F13C090387F81E0EBFC013901F807F012 03EA07F0A4EC01C091C8FCA3EC3FF8B6FCA33807F003B3A33A7FFF3FFF80A3212A7FA925 >12 D73 D<007FB71280A39039807F80 7FD87C00140F00781507A20070150300F016C0A2481501A5C791C7FCB3A490B612C0A32A 287EA72F>84 D<3803FF80000F13F0381F01FC383F80FE147F801580EA1F00C7FCA4EB3F FF3801FC3FEA0FE0EA1F80EA3F00127E5AA4145F007E13DF393F839FFC381FFE0F3803FC 031E1B7E9A21>97 D101 D104 D<1207EA0F80EA1FC0EA3FE0A3EA1FC0EA0F80EA0700C7FCA7EAFFE0A3120FB3A3EAFFFE A30F2B7EAA12>I108 D<26FFC07FEB1FC0903AC1FFC07FF0903AC307E0C1F8D80FC49038F101FC9039C803F200 01D801FE7F01D05BA201E05BB03CFFFE3FFF8FFFE0A3331B7D9A38>I<38FFC07E9038C1 FF809038C30FC0D80FC413E0EBC80701D813F013D0A213E0B039FFFE3FFFA3201B7D9A25 >II<38FFC1F0EBC7FCEBC63E380FCC7F13D813D0A2EBF03EEBE000B0B5FC A3181B7F9A1B>114 D<3803FE30380FFFF0EA3E03EA7800127000F01370A27E00FE1300 EAFFE06CB4FC14C06C13E06C13F0000713F8C6FCEB07FC130000E0137C143C7E14387E6C 137038FF01E038E7FFC000C11300161B7E9A1B>I<13E0A41201A31203A21207120F381F FFE0B5FCA2380FE000AD1470A73807F0E0000313C03801FF8038007F0014267FA51A>I< 39FFFC03FFA3390FF000F0000714E07F0003EB01C0A2EBFC0300011480EBFE0700001400 13FFEB7F0EA2149EEB3F9C14FC6D5AA26D5AA36D5AA26D5AA25CA21307003890C7FCEA7C 0FEAFE0E131E131C5BEA74F0EA3FE0EA0F8020277F9A23>121 D E /Fq 61 123 df<1460A214F0A2497E1478EB027C143CEB043E141EEB081F8001107F14 0701207F140301407F140101807F140048C77E15780002147C153C48143E151E48141F81 48158015074815C01503007FB612E0A2B712F024237EA229>1 D10 D<90381FC1F090387037189038C03E3C3801807C000313783907003800A9B612C0390700 3800B2143C397FE1FFC01E2380A21C>II<90380FC07F9039 7031C0809039E00B00402601801E13E00003EB3E013807003C91381C00C01600A7B712E0 3907001C011500B23A7FF1FFCFFE272380A229>14 D<132013401380EA01005A12061204 120CA25AA25AA312701260A312E0AE1260A312701230A37EA27EA2120412067E7EEA0080 134013200B327CA413>40 D<7E12407E7E12187E12041206A27EA2EA0180A313C01200A3 13E0AE13C0A312011380A3EA0300A21206A21204120C5A12105A5A5A0B327DA413>I<49 7EB0B612FEA23900018000B01F227D9C26>43 D<127012F812FCA212741204A41208A212 10A212201240060F7C840E>II<127012F8A3127005057C840E> I48 D<13801203120F12F31203B3 A9EA07C0EAFFFE0F217CA018>I51 D<1303A25BA25B1317A21327136713471387120113071202120612041208A212101220A2 124012C0B512F838000700A7EB0F80EB7FF015217FA018>I57 D<127012F8A312701200AB127012F8A3127005157C940E>I61 D<497EA3497EA3EB05E0A2EB09F01308A2EB1078A3497EA3497EA2EBC0 1F497EA248B51280EB0007A20002EB03C0A348EB01E0A348EB00F0121C003EEB01F839FF 800FFF20237EA225>65 DI<903807E0109038381830EBE0063901C0 017039038000F048C7FC000E1470121E001C1430123CA2007C14101278A200F81400A812 781510127C123CA2001C1420121E000E14407E6C6C13803901C001003800E002EB381CEB 07E01C247DA223>IIII<39FFFC3FFF390FC003F039078001E0AE90B5 FCEB8001AF390FC003F039FFFC3FFF20227EA125>72 DI75 DI<39FF8007FF3907C000F81570D8 05E01320EA04F0A21378137C133C7F131F7FEB0780A2EB03C0EB01E0A2EB00F014F81478 143C143E141E140FA2EC07A0EC03E0A21401A21400000E1460121FD8FFE0132020227EA1 25>78 D II82 D<3803F020380C0C60EA1802383001E0EA7000 0060136012E0A21420A36C1300A21278127FEA3FF0EA1FFE6C7E0003138038003FC0EB07 E01301EB00F0A214707EA46C1360A26C13C07E38C8018038C60700EA81FC14247DA21B> I<007FB512F839780780780060141800401408A300C0140C00801404A400001400B3A349 7E3801FFFE1E227EA123>I<3BFFF03FFC03FE3B1F8007E000F86C486C48137017206E7E D807801540A24A7E2603C0021480A39039E004780100011600A2EC083CD800F01402A2EC 101E01785CA2EC200F013C5CA20260138890391E400790A216D090391F8003F0010F5CA2 EC00016D5CA20106130001025C2F237FA132>87 D97 D<120E12FE121E120EAB131FEB61C0EB8060380F0030000E1338143C141C14 1EA7141C143C1438000F1370380C8060EB41C038083F0017237FA21B>II<14E0130F13011300ABEA01F8EA0704EA0C02EA1C01EA380012 78127012F0A7127012781238EA1801EA0C0238070CF03801F0FE17237EA21B>II<133E13E33801C780EA0387130748C7 FCA9EAFFF80007C7FCB27FEA7FF0112380A20F>I<14703803F198380E1E18EA1C0E3838 0700A200781380A400381300A2EA1C0EEA1E1CEA33F00020C7FCA212301238EA3FFE381F FFC06C13E0383000F0481330481318A400601330A2003813E0380E03803803FE0015217F 9518>I<120E12FE121E120EABEB1F80EB60C0EB80E0380F0070A2120EAF38FFE7FF1823 7FA21B>I<121C123EA3121CC7FCA8120E127E121E120EB1EAFFC00A227FA10E>I<13E0EA 01F0A3EA00E01300A81370EA07F012001370B3A51260EAF0E013C0EA6180EA3F000C2C83 A10F>I<120E12FE121E120EABEB03FCEB01F014C01480EB02005B5B5B133813F8EA0F1C EA0E1E130E7F1480EB03C0130114E0EB00F014F838FFE3FE17237FA21A>I<120E12FE12 1E120EB3ADEAFFE00B237FA20E>I<390E1FC07F3AFE60E183803A1E807201C03A0F003C 00E0A2000E1338AF3AFFE3FF8FFE27157F942A>I<380E1F8038FE60C0381E80E0380F00 70A2120EAF38FFE7FF18157F941B>III<3801F82038070460EA 0E02EA1C01003813E0EA7800A25AA71278A2EA3801121CEA0C02EA070CEA01F0C7FCA9EB 0FFE171F7E941A>III<1202A41206A3120E12 1E123EEAFFFCEA0E00AB1304A6EA07081203EA01F00E1F7F9E13>I<000E137038FE07F0 EA1E00000E1370AD14F0A238060170380382783800FC7F18157F941B>I<38FF80FE381E 00781430000E1320A26C1340A2EB80C000031380A23801C100A2EA00E2A31374A21338A3 131017157F941A>I<39FF8FF87F393E01E03C001CEBC01814E0000E1410EB0260147000 071420EB04301438D803841340EB8818141CD801C81380EBD00C140E3900F00F00497EA2 EB6006EB400220157F9423>I<38FF83FE381F00F0000E13C06C1380EB8100EA0383EA01 C2EA00E41378A21338133C134E138FEA0187EB0380380201C0000413E0EA0C00383E01F0 38FF03FE17157F941A>I<38FF80FE381E00781430000E1320A26C1340A2EB80C0000313 80A23801C100A2EA00E2A31374A21338A31310A25BA35B12F05B12F10043C7FC123C171F 7F941A>I<383FFFC038380380EA300700201300EA600EEA401C133C1338C65A5B12015B 38038040EA07005A000E13C04813805AEA7801EA7007B5FC12157F9416>I E end %%EndProlog %%BeginSetup %%Feature: *Resolution 300dpi TeXDict begin letter %%EndSetup %%Page: 139 1 139 0 bop 753 395 a Fq(CHAPTER)24 b(4)532 545 y Fp(The)e (In\014nitesimal)j(Theory)871 2683 y Fo(139)p eop %%Page: 140 2 140 1 bop 0 118 a Fo(140)534 b(4.)17 b(THE)f(INFINITESIMAL)g(THEOR)m(Y) 168 213 y Fn(4.)27 b(Deriv)m(ations)17 b(and)j(Lie)d(Algebras)i(of)f (A\016ne)h(Algebraic)f(Groups)75 300 y(Lemm)o(a)e(and)j(De\014nition)f (7.4.1.)23 b Fm(L)n(et)17 b Fl(G)g Fq(:)52 b Fm(-)q Fn(cAlg)13 b Fl(\000)-29 b(!)14 b Fn(Set)j Fm(b)n(e)h(a)f(gr)n(oup)g(value)n(d)i (func-)0 358 y(tor.)j(The)c(kernel)h Fl(L)p Fm(ie)9 b Fq(\()p Fl(G)s Fq(\)\()p Fj(R)p Fq(\))17 b Fm(of)g(the)h(se)n(quenc)n (e)291 465 y Fq(0)167 b Fl(L)p Fm(ie)9 b Fq(\()p Fl(G)s Fq(\)\()p Fj(R)p Fq(\))p 330 453 139 2 v 427 452 a Fi(-)852 465 y Fl(G)s Fq(\()p Fj(R)p Fq(\()p Fj(\016)r Fq(\)\))p 723 453 116 2 v 797 452 a Fi(-)p 1036 443 175 2 v 1168 442 a(-)1088 424 y Fh(G)r Fg(\()p Ff(p)p Fg(\))p 1036 463 V 1036 462 a Fi(\033)1089 496 y Fh(G)r Fg(\()p Ff(j)r Fg(\))1224 465 y Fl(G)s Fq(\()p Fj(R)p Fq(\))153 b(0)p 1346 453 125 2 v 1429 452 a Fi(-)0 568 y Fm(is)17 b(c)n(al)r(le)n(d)i (the)f Fq(Lie)e(algebra)i Fm(of)f Fl(G)j Fm(and)e(is)f(a)g(gr)n(oup)g (value)n(d)h(functor)g(in)g Fj(R)p Fm(.)75 658 y Fe(Pr)o(oof.)h Fq(F)l(or)g(ev)o(ery)f(algebra)h(homomorphism)d Fj(f)24 b Fq(:)18 b Fj(R)g Fl(\000)-30 b(!)18 b Fj(S)k Fq(the)d(follo)o(wing)f (diagram)h(of)0 716 y(groups)e(comm)o(utes)291 820 y(0)167 b Fl(L)p Fm(ie)9 b Fq(\()p Fl(G)s Fq(\)\()p Fj(R)p Fq(\))p 330 808 139 2 v 427 807 a Fi(-)852 820 y Fl(G)s Fq(\()p Fj(R)p Fq(\()p Fj(\016)r Fq(\)\))p 723 808 116 2 v 797 807 a Fi(-)p 1036 799 175 2 v 1168 798 a(-)1088 780 y Fh(G)r Fg(\()p Ff(p)p Fg(\))p 1036 818 V 1036 817 a Fi(\033)1089 852 y Fh(G)r Fg(\()p Ff(j)r Fg(\))1224 820 y Fl(G)s Fq(\()p Fj(R)p Fq(\))153 b(0)p 1346 808 125 2 v 1429 807 a Fi(-)p 595 968 2 127 v 595 968 a(?)p 936 968 V 300 w(?)956 913 y Fh(G)r Fg(\()p Ff(f)t Fg(\()p Ff(\016)q Fg(\)\))p 1277 968 V 1278 968 a Fi(?)1297 913 y Fh(G)r Fg(\()p Ff(f)t Fg(\))291 1015 y Fq(0)170 b Fl(L)p Fm(ie)9 b Fq(\()p Fl(G)s Fq(\)\()p Fj(S)s Fq(\))p 330 1003 141 2 v 429 1002 a Fi(-)854 1015 y Fl(G)s Fq(\()p Fj(S)s Fq(\()p Fj(\016)r Fq(\)\))p 721 1003 119 2 v 798 1002 a Fi(-)p 1034 994 178 2 v 1170 993 a(-)1088 975 y Fh(G)r Fg(\()p Ff(p)p Fg(\))p 1034 1013 V 1034 1012 a Fi(\033)1089 1047 y Fh(G)r Fg(\()p Ff(j)r Fg(\))1226 1015 y Fl(G)s Fq(\()p Fj(S)s Fq(\))155 b(0)p 1344 1003 127 2 v 1429 1002 a Fi(-)p 1765 1117 2 33 v 1767 1086 30 2 v 1767 1117 V 1796 1117 2 33 v 75 1207 a Fn(Prop)r(osition)17 b(4.4.2.)24 b Fm(L)n(et)17 b Fl(G)g Fq(:)53 b Fm(-)p Fn(cAlg)14 b Fl(\000)-29 b(!)14 b Fn(Set)j Fm(b)n(e)h(a)f(gr)n(oup)g(value)n(d)i (functor)f(with)g(mul-)0 1265 y(tiplic)n(ation)g Fl(\003)p Fm(.)k(Then)c(ther)n(e)g(ar)n(e)f(functorial)h(op)n(er)n(ations)389 1344 y Fl(G)s Fq(\()p Fj(R)p Fq(\))11 b Fl(\002)g(L)p Fm(ie)e Fq(\()p Fl(G)s Fq(\)\()p Fj(R)p Fq(\))14 b Fl(3)g Fq(\()p Fj(g)r(;)8 b(x)p Fq(\))13 b Fl(7!)h Fj(g)f Fl(\001)e Fj(x)j Fl(2)g(L)p Fm(ie)9 b Fq(\()p Fl(G)s Fq(\)\()p Fj(R)p Fq(\))442 1445 y Fj(R)j Fl(\002)e(L)p Fm(ie)f Fq(\()p Fl(G)s Fq(\)\()p Fj(R)p Fq(\))14 b Fl(3)g Fq(\()p Fj(a;)8 b(x)p Fq(\))13 b Fl(7!)h Fj(ax)f Fl(2)h(L)p Fm(ie)9 b Fq(\()p Fl(G)s Fq(\)\()p Fj(R)p Fq(\))0 1526 y Fm(such)18 b(that)636 1576 y Fj(g)c Fl(\001)d Fq(\()p Fj(x)f Fq(+)h Fj(y)r Fq(\))j(=)f Fj(g)h Fl(\001)d Fj(x)f Fq(+)h Fj(g)j Fl(\001)c Fj(y)r(;)664 1634 y(h)h Fl(\001)g Fq(\()p Fj(g)i Fl(\001)e Fj(x)p Fq(\))j(=)f(\()p Fj(h)f Fl(\003)f Fj(g)r Fq(\))g Fl(\001)g Fj(x;)690 1692 y(a)p Fq(\()p Fj(x)f Fq(+)h Fj(y)r Fq(\))i(=)h Fj(ax)d Fq(+)g Fj(ay)r(;)748 1750 y Fq(\()p Fj(ab)p Fq(\))p Fj(x)i Fq(=)h Fj(a)p Fq(\()p Fj(bx)p Fq(\))p Fj(;)708 1808 y(g)f Fl(\001)e Fq(\()p Fj(ax)p Fq(\))i(=)h Fj(a)p Fq(\()p Fj(g)f Fl(\001)e Fj(x)p Fq(\))p Fj(:)75 1899 y Fe(Pr)o(oof.)19 b Fq(First)h(observ)o(e)g(that)h (the)g(comp)q(osition)f(+)g(on)h Fl(L)p Fm(ie)9 b Fq(\()p Fl(G)s Fq(\)\()p Fj(R)p Fq(\))21 b(is)f(induced)g(b)o(y)g(the)0 1957 y(m)o(ultiplic)o(ation)14 b Fl(\003)i Fq(of)h Fl(G)s Fq(\()p Fj(R)p Fq(\()p Fj(\016)r Fq(\)\))e(so)i(it)f(is)g(not)h (necessarily)e(comm)o(utativ)n(e.)75 2015 y(W)l(e)d(de\014ne)g Fj(g)5 b Fl(\001)t Fj(x)14 b Fq(:=)f Fl(G)s Fq(\()p Fj(j)s Fq(\)\()p Fj(g)r Fq(\))t Fl(\003)t Fj(x)t Fl(\003)t(G)s Fq(\()p Fj(j)s Fq(\)\()p Fj(g)r Fq(\))853 1997 y Fh(\000)p Fg(1)897 2015 y Fq(.)20 b(Then)13 b Fl(G)s Fq(\()p Fj(p)p Fq(\)\()p Fj(g)5 b Fl(\001)t Fj(x)p Fq(\))14 b(=)f Fl(G)s Fq(\()p Fj(p)p Fq(\))p Fl(G)s Fq(\()p Fj(j)s Fq(\)\()p Fj(g)r Fq(\))t Fl(\003)t(G)s Fq(\()p Fj(p)p Fq(\)\()p Fj(x)p Fq(\))t Fl(\003)0 2073 y(G)s Fq(\()p Fj(p)p Fq(\))p Fl(G)s Fq(\()p Fj(j)s Fq(\)\()p Fj(g)r Fq(\))252 2055 y Fh(\000)p Fg(1)313 2073 y Fq(=)g Fj(g)h Fl(\003)d Fq(1)g Fl(\003)g Fj(g)533 2055 y Fh(\000)p Fg(1)594 2073 y Fq(=)j(1)j(hence)e Fj(g)e Fl(\001)e Fj(x)j Fl(2)g(L)p Fm(ie)9 b Fq(\()p Fl(G)s Fq(\)\()p Fj(R)p Fq(\).)75 2131 y(No)o(w)17 b(let)f Fj(a)f Fl(2)g Fj(R)p Fq(.)24 b(T)l(o)17 b(de\014ne)g Fj(a)e Fq(:)g Fl(L)p Fm(ie)9 b Fq(\()p Fl(G)s Fq(\)\()p Fj(R)p Fq(\))15 b Fl(\000)-31 b(!)15 b(L)p Fm(ie)9 b Fq(\()p Fl(G)s Fq(\)\()p Fj(R)p Fq(\))17 b(w)o(e)g(use)g Fj(u)1449 2138 y Ff(a)1485 2131 y Fq(:)d Fj(R)p Fq(\()p Fj(\016)r Fq(\))h Fl(\000)-30 b(!)15 b Fj(R)p Fq(\()p Fj(\016)r Fq(\))0 2189 y(de\014ned)c(b)o(y)g Fj(u)254 2196 y Ff(a)275 2189 y Fq(\()p Fj(\016)r Fq(\))i(:=)h Fj(a\016)e Fq(and)g(th)o(us)g Fj(u)697 2196 y Ff(a)718 2189 y Fq(\()p Fj(b)r Fq(+)r Fj(c\016)r Fq(\))g(:=)h Fj(b)r Fq(+)r Fj(ac\016)r Fq(.)18 b(Ob)o(viously)10 b Fj(u)1359 2196 y Ff(a)1391 2189 y Fq(is)i(a)g(homomorphism)0 2248 y(of)g Fj(R)p Fq(-algebras.)21 b(F)l(urthermore)10 b(w)o(e)i(ha)o(v)o(e)f Fj(pu)818 2255 y Ff(a)853 2248 y Fq(=)j Fj(p)e Fq(and)g Fj(u)1059 2255 y Ff(a)1080 2248 y Fj(j)17 b Fq(=)d Fj(j)s Fq(.)19 b(Th)o(us)12 b(w)o(e)g(get)g(a)g (comm)o(utativ)n(e)0 2306 y(diagram)291 2389 y(0)167 b Fl(L)p Fm(ie)9 b Fq(\()p Fl(G)s Fq(\)\()p Fj(R)p Fq(\))p 330 2378 139 2 v 427 2377 a Fi(-)852 2389 y Fl(G)s Fq(\()p Fj(R)p Fq(\()p Fj(\016)r Fq(\)\))p 723 2378 116 2 v 797 2377 a Fi(-)p 1036 2368 175 2 v 1168 2367 a(-)1088 2349 y Fh(G)r Fg(\()p Ff(p)p Fg(\))p 1036 2387 V 1036 2386 a Fi(\033)1089 2421 y Fh(G)r Fg(\()p Ff(j)r Fg(\))1224 2389 y Fl(G)s Fq(\()p Fj(R)p Fq(\))153 b(0)p 1346 2378 125 2 v 1429 2377 a Fi(-)p 595 2538 2 127 v 595 2538 a(?)615 2481 y Ff(a)p 936 2538 V 937 2538 a Fi(?)956 2483 y Fh(G)r Fg(\()p Ff(u)1013 2487 y Fd(a)1032 2483 y Fg(\))p 1277 2538 V 1278 2538 a Fi(?)1297 2486 y Fg(id)291 2584 y Fq(0)167 b Fl(L)p Fm(ie)9 b Fq(\()p Fl(G)s Fq(\)\()p Fj(R)p Fq(\))p 330 2573 139 2 v 427 2572 a Fi(-)852 2584 y Fl(G)s Fq(\()p Fj(R)p Fq(\()p Fj(\016)r Fq(\)\))p 723 2573 116 2 v 797 2572 a Fi(-)p 1036 2563 175 2 v 1168 2562 a(-)1088 2544 y Fh(G)r Fg(\()p Ff(p)p Fg(\))p 1036 2582 V 1036 2581 a Fi(\033)1089 2616 y Fh(G)r Fg(\()p Ff(j)r Fg(\))1224 2584 y Fl(G)s Fq(\()p Fj(R)p Fq(\))153 b(0)p 1346 2573 125 2 v 1429 2572 a Fi(-)p eop %%Page: 141 3 141 2 bop 207 118 a Fo(4.)17 b(DERIV)l(A)m(TIONS)f(AND)g(LIE)h (ALGEBRAS)g(OF)g(AFFINE)f(ALGEBRAIC)h(GR)o(OUPS)136 b(141)0 213 y Fq(that)20 b(de\014nes)g(a)g(group)h(homomorphism)16 b Fj(a)k Fq(:)f Fl(L)p Fm(ie)9 b Fq(\()p Fl(G)s Fq(\)\()p Fj(R)p Fq(\))20 b Fl(\000)-30 b(!)19 b(L)p Fm(ie)9 b Fq(\()p Fl(G)s Fq(\)\()p Fj(R)p Fq(\))20 b(on)g(the)g(k)o(ernel)e(of)0 271 y(the)e(exact)g(sequences.)k(In)c(particular)g(w)o(e)g(ha)o(v)o(e)f (then)h Fj(a)p Fq(\()p Fj(x)11 b Fq(+)g Fj(y)r Fq(\))i(=)h Fj(ax)c Fq(+)h Fj(ay)r Fq(.)75 329 y(F)l(urthermore)j(w)o(e)i(ha)o(v)o (e)f Fj(u)569 336 y Ff(ab)619 329 y Fq(=)f Fj(u)699 336 y Ff(a)719 329 y Fj(u)747 336 y Ff(b)781 329 y Fq(hence)h(\()p Fj(ab)p Fq(\))p Fj(x)e Fq(=)h Fj(a)p Fq(\()p Fj(bx)p Fq(\).)75 387 y(The)h(next)g(form)o(ula)e(follo)o(ws)i(from)f Fj(g)d Fl(\001)e Fq(\()p Fj(x)g Fq(+)f Fj(y)r Fq(\))14 b(=)g Fl(G)s Fq(\()p Fj(j)s Fq(\)\()p Fj(g)r Fq(\))8 b Fl(\003)h Fj(x)f Fl(\003)h Fj(y)i Fl(\003)d(G)s Fq(\()p Fj(j)s Fq(\)\()p Fj(g)r Fq(\))1497 369 y Fh(\000)p Fg(1)1558 387 y Fq(=)14 b Fl(G)s Fq(\()p Fj(j)s Fq(\)\()p Fj(g)r Fq(\))8 b Fl(\003)0 445 y Fj(x)j Fl(\003)g(G)s Fq(\()p Fj(j)s Fq(\)\()p Fj(g)r Fq(\))232 427 y Fh(\000)p Fg(1)290 445 y Fl(\003)g(G)s Fq(\()p Fj(j)s Fq(\)\()p Fj(g)r Fq(\))f Fl(\003)h Fj(y)i Fl(\003)e(G)s Fq(\()p Fj(j)s Fq(\)\()p Fj(g)r Fq(\))759 427 y Fh(\000)p Fg(1)819 445 y Fq(=)j Fj(g)f Fl(\001)e Fj(x)g Fq(+)g Fj(g)i Fl(\001)e Fj(y)r Fq(.)75 503 y(W)l(e)f(also)i(see)e(\()p Fj(h)p Fl(\003)p Fj(g)r Fq(\))p Fl(\001)p Fj(x)k Fq(=)g Fl(G)s Fq(\()p Fj(j)s Fq(\)\()p Fj(h)p Fl(\003)p Fj(g)r Fq(\))p Fl(\003)p Fj(x)p Fl(\003G)s Fq(\()p Fj(j)s Fq(\)\()p Fj(h)p Fl(\003)p Fj(g)r Fq(\))1041 485 y Fh(\000)p Fg(1)1101 503 y Fq(=)f Fl(G)s Fq(\()p Fj(j)s Fq(\)\()p Fj(h)p Fq(\))p Fl(\003G)s Fq(\()p Fj(j)s Fq(\)\()p Fj(g)r Fq(\))p Fl(\003)p Fj(x)p Fl(\003G)s Fq(\()p Fj(j)s Fq(\)\()p Fj(g)r Fq(\))1729 485 y Fh(\000)p Fg(1)1775 503 y Fl(\003)0 561 y(G)s Fq(\()p Fj(j)s Fq(\)\()p Fj(h)p Fq(\))160 543 y Fh(\000)p Fg(1)225 561 y Fq(=)18 b Fj(h)13 b Fl(\001)f Fq(\()p Fj(g)j Fl(\001)e Fj(x)p Fq(\))p Fj(:)18 b Fq(Finally)f(w)o(e)h(ha)o(v)o(e)g Fj(g)d Fl(\001)e Fq(\()p Fj(ax)p Fq(\))k(=)h Fl(G)s Fq(\()p Fj(j)s Fq(\)\()p Fj(g)r Fq(\))12 b Fl(\003)h(G)s Fq(\()p Fj(u)1385 568 y Ff(a)1405 561 y Fq(\)\()p Fj(x)p Fq(\))g Fl(\003)f(G)s Fq(\()p Fj(j)s Fq(\)\()p Fj(g)1678 543 y Fh(\000)p Fg(1)1725 561 y Fq(\))18 b(=)0 619 y Fl(G)s Fq(\()p Fj(u)80 626 y Ff(a)100 619 y Fq(\)\()p Fl(G)s Fq(\()p Fj(j)s Fq(\)\()p Fj(g)r Fq(\))11 b Fl(\003)g Fj(x)f Fl(\003)h(G)s Fq(\()p Fj(j)s Fq(\)\()p Fj(g)554 601 y Fh(\000)p Fg(1)601 619 y Fq(\)\))j(=)g Fj(a)p Fq(\()p Fj(g)f Fl(\001)d Fj(x)p Fq(\).)p 1765 619 2 33 v 1767 588 30 2 v 1767 619 V 1796 619 2 33 v 75 718 a Fn(Prop)r(osition)17 b(4.4.3.)24 b Fm(L)n(et)d Fl(G)j Fq(=)60 b Fm(-)p Fn(cAlg)p Fq(\()p Fj(H)q(;)8 b Fm(-)q Fq(\))21 b Fm(b)n(e)h(an)g(a\016ne)g (algebr)n(aic)g(gr)n(oup.)34 b(Then)0 776 y Fl(L)p Fm(ie)9 b Fq(\()p Fl(G)s Fq(\)\()39 b(\))247 762 y Fl(\030)247 778 y Fq(=)306 776 y Fn(Lie)n Fq(\()p Fj(H)443 758 y Ff(o)463 776 y Fq(\))20 b Fm(as)h(additive)g(gr)n(oups.)32 b(The)20 b(isomorphism)g(is)g(c)n(omp)n(atible)h(with)g(the)0 834 y(op)n(er)n(ations)c(given)i(in)e(4.4.2)g(and)h(4.3.6.)75 932 y Fe(Pr)o(oof.)h Fq(W)l(e)d(consider)g(the)g(follo)o(wing)g (diagram)120 1039 y(0)167 b Fl(L)p Fm(ie)9 b Fq(\()p Fl(G)s Fq(\)\()39 b(\))p 159 1027 138 2 v 255 1026 a Fi(-)719 1039 y Fq(-)p Fn(cAlg)p Fq(\()p Fj(H)q(;)47 b Fq(\()p Fj(\016)r Fq(\)\))p 553 1027 113 2 v 624 1026 a Fi(-)p 1061 1017 123 2 v 1142 1016 a(-)1113 1001 y Ff(p)p 1061 1037 V 1061 1036 a Fi(\033)1237 1039 y Fq(-)p Fn(cAlg)p Fq(\()p Fj(H)q(;)g Fq(\))152 b(0)p 1518 1027 V 1599 1026 a Fi(-)p 424 1187 2 127 v 425 1102 a(6)444 1131 y Ff(e)p 863 1187 V 863 1187 a Fi(?)883 1131 y Ff(!)p 1350 1187 V 1351 1187 a Fi(?)1370 1125 y Fh(\030)1370 1135 y Fg(=)120 1234 y Fq(0)193 b Fn(Lie)n Fq(\()p Fj(H)474 1216 y Ff(o)494 1234 y Fq(\))p 159 1222 164 2 v 281 1221 a Fi(-)677 1232 y Fj(G)741 1240 y Fg(\()p Ff(\016)q Fg(\))788 1232 y Fq(\()p Fj(H)851 1214 y Ff(o)881 1232 y Fl(\012)50 b Fq(\()p Fj(\016)r Fq(\)\))p 527 1222 136 2 v 621 1221 a Fi(-)570 1212 y Ff(e)586 1200 y Fd(\016)q Fq(-)p 1064 1222 203 2 v 1225 1221 a Fi(-)1156 1205 y Ff(p)1281 1234 y Fj(G)p Fq(\()p Fj(H)1382 1216 y Ff(o)1402 1234 y Fq(\))137 b(0)p 1435 1222 109 2 v 1502 1221 a Fi(-)0 1329 y Fq(W)l(e)15 b(kno)o(w)h(b)o(y)f(de\014nition)h(that)g(the)f(top)i(sequence)d(is)i (exact.)k(The)c(b)q(ottom)f(sequence)g(is)h(exact)0 1387 y(b)o(y)g(Corollary)g(4.3.9.)75 1445 y(Let)f Fj(f)k Fl(2)53 b Fq(-)p Fn(cAlg)p Fq(\()p Fj(H)q(;)47 b Fq(\).)21 b(Since)15 b(Ker)o(\()p Fj(f)5 b Fq(\))16 b(is)f(an)h(ideal)e(of)i(co)q(dimension) e(1)i(w)o(e)e(get)i Fj(f)j Fl(2)14 b Fj(H)1767 1427 y Ff(o)1786 1445 y Fq(.)0 1504 y(The)i(map)g Fj(f)21 b Fq(is)16 b(an)h(algebra)g(homomorphism)c(i\013)k Fl(h)p Fj(f)s(;)8 b(ab)p Fl(i)13 b Fq(=)h Fl(h)p Fj(f)j Fl(\012)11 b Fj(f)s(;)d(a)i Fl(\012)h Fj(b)p Fl(i)16 b Fq(and)h Fl(h)p Fj(f)s(;)8 b Fq(1)p Fl(i)14 b Fq(=)g(1)j(i\013)0 1562 y(\001)41 1569 y Ff(H)73 1560 y Fd(o)92 1562 y Fq(\()p Fj(f)5 b Fq(\))14 b(=)g Fj(f)h Fl(\012)10 b Fj(f)22 b Fq(and)16 b Fj(")476 1569 y Ff(H)508 1560 y Fd(o)527 1562 y Fq(\()p Fj(f)5 b Fq(\))14 b(=)g(1)i(i\013)g Fj(f)j Fl(2)14 b Fj(G)p Fq(\()p Fj(H)949 1544 y Ff(o)969 1562 y Fq(\).)21 b(Hence)15 b(w)o(e)g(get)h(the)g(righ)o(t)f(hand)i(v)o (ertical)0 1620 y(isomorphism)53 b(-)p Fn(cAlg)p Fq(\()p Fj(H)q(;)47 b Fq(\))605 1606 y Fl(\030)605 1622 y Fq(=)657 1620 y Fj(G)p Fq(\()p Fj(H)758 1602 y Ff(o)778 1620 y Fq(\).)75 1678 y(Consider)15 b(an)g(elemen)o(t)c Fj(f)20 b Fl(2)53 b Fq(-)p Fn(cAlg)p Fq(\()p Fj(H)q(;)47 b Fq(\()p Fj(\016)r Fq(\)\))13 b Fl(\022)g Fq(Hom)o(\()p Fj(H)q(;)47 b Fq(\()p Fj(\016)r Fq(\)\).)20 b(It)15 b(can)f(b)q(e)h(written)f(as)0 1736 y Fj(f)19 b Fq(=)14 b Fj(f)119 1743 y Fg(0)143 1736 y Fq(+)t Fj(f)209 1743 y Fg(1)229 1736 y Fj(\016)g Fq(with)f Fj(f)397 1743 y Fg(0)416 1736 y Fj(;)8 b(f)462 1743 y Fg(1)496 1736 y Fl(2)14 b Fq(Hom)n(\()p Fj(H)q(;)47 b Fq(\).)21 b(The)12 b(linear)g(map)g Fj(f)19 b Fq(is)12 b(an)i(algebra)f(homomorphism)0 1794 y(i\013)k Fj(f)83 1801 y Fg(0)118 1794 y Fq(:)e Fj(H)k Fl(\000)-30 b(!)71 b Fq(is)16 b(an)i(algebra)f(homomorphism)e(and)i Fj(f)1090 1801 y Fg(1)1127 1794 y Fq(satis\014es)g Fj(f)1331 1801 y Fg(1)1351 1794 y Fq(\(1\))f(=)f(0)i(and)h Fj(f)1643 1801 y Fg(1)1663 1794 y Fq(\()p Fj(ab)p Fq(\))c(=)0 1852 y Fj(f)24 1859 y Fg(0)44 1852 y Fq(\()p Fj(a)p Fq(\))p Fj(f)132 1859 y Fg(1)151 1852 y Fq(\()p Fj(b)p Fq(\))h(+)g Fj(f)302 1859 y Fg(1)322 1852 y Fq(\()p Fj(a)p Fq(\))p Fj(f)410 1859 y Fg(0)429 1852 y Fq(\()p Fj(b)p Fq(\).)39 b(In)22 b(fact)g(w)o(e)f(ha)o(v)o(e)h Fj(f)5 b Fq(\(1\))24 b(=)g Fj(f)1107 1859 y Fg(0)1127 1852 y Fq(\(1\))16 b(+)f Fj(f)1282 1859 y Fg(1)1301 1852 y Fq(\(1\))p Fj(\016)26 b Fq(=)e(1)f(i\013)f Fj(f)1608 1859 y Fg(0)1627 1852 y Fq(\(1\))j(=)f(1)0 1910 y(and)c Fj(f)122 1917 y Fg(1)142 1910 y Fq(\(1\))g(=)f(0)h(\(b)o(y)f(comparing)g(co)q(e\016cien)o(ts\).) 30 b(F)l(urthermore)18 b(w)o(e)h(ha)o(v)o(e)f Fj(f)5 b Fq(\()p Fj(ab)p Fq(\))20 b(=)f Fj(f)5 b Fq(\()p Fj(a)p Fq(\))p Fj(f)g Fq(\()p Fj(b)p Fq(\))0 1969 y(i\013)20 b Fj(f)86 1976 y Fg(0)106 1969 y Fq(\()p Fj(ab)p Fq(\))13 b(+)h Fj(f)280 1976 y Fg(1)300 1969 y Fq(\()p Fj(ab)p Fq(\))p Fj(\016)21 b Fq(=)g(\()p Fj(f)530 1976 y Fg(0)550 1969 y Fq(\()p Fj(a)p Fq(\))13 b(+)h Fj(f)703 1976 y Fg(1)722 1969 y Fq(\()p Fj(a)p Fq(\))p Fj(\016)r Fq(\)\()p Fj(f)872 1976 y Fg(0)891 1969 y Fq(\()p Fj(b)p Fq(\))g(+)f Fj(f)1039 1976 y Fg(1)1059 1969 y Fq(\()p Fj(b)p Fq(\))p Fj(\016)r Fq(\))20 b(=)h Fj(f)1264 1976 y Fg(0)1283 1969 y Fq(\()p Fj(a)p Fq(\))p Fj(f)1371 1976 y Fg(0)1391 1969 y Fq(\()p Fj(b)p Fq(\))13 b(+)h Fj(f)1539 1976 y Fg(0)1559 1969 y Fq(\()p Fj(a)p Fq(\))p Fj(f)1647 1976 y Fg(1)1666 1969 y Fq(\()p Fj(b)p Fq(\))p Fj(\016)h Fq(+)0 2027 y Fj(f)24 2034 y Fg(1)44 2027 y Fq(\()p Fj(a)p Fq(\))p Fj(f)132 2034 y Fg(0)151 2027 y Fq(\()p Fj(b)p Fq(\))p Fj(\016)i Fq(i\013)g Fj(f)332 2034 y Fg(0)351 2027 y Fq(\()p Fj(ab)p Fq(\))d(=)f Fj(f)525 2034 y Fg(0)545 2027 y Fq(\()p Fj(a)p Fq(\))p Fj(f)633 2034 y Fg(0)652 2027 y Fq(\()p Fj(b)p Fq(\))j(and)h Fj(f)846 2034 y Fg(1)866 2027 y Fq(\()p Fj(ab)p Fq(\))c(=)h Fj(f)1040 2034 y Fg(0)1060 2027 y Fq(\()p Fj(a)p Fq(\))p Fj(f)1148 2034 y Fg(1)1167 2027 y Fq(\()p Fj(b)p Fq(\))d(+)g Fj(f)1310 2034 y Fg(1)1329 2027 y Fq(\()p Fj(a)p Fq(\))p Fj(f)1417 2034 y Fg(0)1437 2027 y Fq(\()p Fj(b)p Fq(\).)75 2085 y(Since)21 b Fj(f)232 2092 y Fg(0)275 2085 y Fq(is)h(an)h(algebra)h(homomorphism)19 b(w)o(e)j(ha)o(v)o(e)g(as)i(ab)q(o)o(v)o(e)e Fj(f)1364 2092 y Fg(0)1409 2085 y Fl(2)j Fj(H)1511 2067 y Ff(o)1530 2085 y Fq(.)40 b(F)l(or)23 b Fj(f)1702 2092 y Fg(1)1744 2085 y Fq(w)o(e)0 2143 y(ha)o(v)o(e)18 b(\()p Fj(b)h(*)f(f)265 2150 y Fg(1)285 2143 y Fq(\)\()p Fj(a)p Fq(\))g(=)g Fj(f)466 2150 y Fg(1)486 2143 y Fq(\()p Fj(ab)p Fq(\))g(=)g Fj(f)669 2150 y Fg(0)689 2143 y Fq(\()p Fj(a)p Fq(\))p Fj(f)777 2150 y Fg(1)797 2143 y Fq(\()p Fj(b)p Fq(\))12 b(+)h Fj(f)943 2150 y Fg(1)963 2143 y Fq(\()p Fj(a)p Fq(\))p Fj(f)1051 2150 y Fg(0)1070 2143 y Fq(\()p Fj(b)p Fq(\))18 b(=)h(\()p Fj(f)1247 2150 y Fg(1)1267 2143 y Fq(\()p Fj(b)p Fq(\))p Fj(f)1350 2150 y Fg(0)1382 2143 y Fq(+)13 b Fj(f)1457 2150 y Fg(0)1477 2143 y Fq(\()p Fj(b)p Fq(\))p Fj(f)1560 2150 y Fg(1)1579 2143 y Fq(\)\()p Fj(a)p Fq(\))19 b(hence)0 2201 y(\()p Fj(b)14 b(*)f(f)140 2208 y Fg(1)160 2201 y Fq(\))h(=)f Fj(f)268 2208 y Fg(1)288 2201 y Fq(\()p Fj(b)p Fq(\))p Fj(f)371 2208 y Fg(0)395 2201 y Fq(+)5 b Fj(f)462 2208 y Fg(0)482 2201 y Fq(\()p Fj(b)p Fq(\))p Fj(f)565 2208 y Fg(1)598 2201 y Fl(2)53 b Fj(f)708 2208 y Fg(0)732 2201 y Fq(+)44 b Fj(f)838 2208 y Fg(1)857 2201 y Fq(,)13 b(a)h(t)o(w)o(o)f(dimensional)e(subspace.)21 b(Th)o(us)13 b Fj(f)1642 2208 y Fg(1)1676 2201 y Fl(2)h Fj(H)1767 2183 y Ff(o)1786 2201 y Fq(.)75 2259 y(In)g(the)g(follo)o (wing)g(computations)g(w)o(e)f(will)h(iden)o(tify)e(\()p Fj(H)1120 2241 y Ff(o)1146 2259 y Fl(\012)46 b Fq(\()p Fj(\016)r Fq(\)\))7 b Fl(\012)1384 2267 y Fg(\()p Ff(\016)q Fg(\))1437 2259 y Fq(\()p Fj(H)1500 2241 y Ff(o)1526 2259 y Fl(\012)46 b Fq(\()p Fj(\016)r Fq(\)\))13 b(with)0 2317 y Fj(H)44 2299 y Ff(o)74 2317 y Fl(\012)e Fj(H)168 2299 y Ff(o)199 2317 y Fl(\012)g(j)p Fj(K)t Fq(\()p Fj(\016)r Fq(\).)75 2375 y(Let)21 b Fj(f)28 b Fq(=)22 b Fj(f)303 2382 y Fg(0)338 2375 y Fq(+)14 b Fj(f)414 2382 y Fg(1)434 2375 y Fj(\016)24 b Fq(=)e Fj(f)564 2382 y Fg(0)598 2375 y Fl(\012)15 b Fq(1)f(+)h Fj(f)767 2382 y Fg(1)801 2375 y Fl(\012)f Fj(\016)24 b Fl(2)f Fj(H)1000 2357 y Ff(o)1034 2375 y Fl(\010)14 b Fj(H)1131 2357 y Ff(o)1151 2375 y Fj(\016)23 b Fq(=)g Fj(H)1301 2357 y Ff(o)1335 2375 y Fl(\012)53 b Fq(\()p Fj(\016)r Fq(\).)35 b(Then)22 b Fj(f)27 b Fq(is)21 b(a)0 2433 y(homomorphism)15 b(of)i(algebras)h (i\013)g Fj(f)5 b Fq(\()p Fj(ab)p Fq(\))15 b(=)h Fj(f)5 b Fq(\()p Fj(a)p Fq(\))p Fj(f)g Fq(\()p Fj(b)p Fq(\))17 b(and)h Fj(f)5 b Fq(\(1\))17 b(=)e(1)j(i\013)g Fj(f)1417 2440 y Fg(0)1436 2433 y Fq(\()p Fj(ab)p Fq(\))e(=)f Fj(f)1614 2440 y Fg(0)1634 2433 y Fq(\()p Fj(a)p Fq(\))p Fj(f)1722 2440 y Fg(0)1741 2433 y Fq(\()p Fj(b)p Fq(\))0 2492 y(and)f Fj(f)116 2499 y Fg(1)136 2492 y Fq(\()p Fj(ab)p Fq(\))f(=)h Fj(f)310 2499 y Fg(0)329 2492 y Fq(\()p Fj(a)p Fq(\))p Fj(f)417 2499 y Fg(1)437 2492 y Fq(\()p Fj(b)p Fq(\))5 b(+)g Fj(f)568 2499 y Fg(1)587 2492 y Fq(\()p Fj(a)p Fq(\))p Fj(f)675 2499 y Fg(0)695 2492 y Fq(\()p Fj(b)p Fq(\))13 b(and)g Fj(f)882 2499 y Fg(0)902 2492 y Fq(\(1\))h(=)g(1)g (and)g Fj(f)1184 2499 y Fg(1)1204 2492 y Fq(\(1\))g(=)g(0)f(i\013)h (\001)1466 2499 y Ff(H)1498 2490 y Fd(o)1516 2492 y Fq(\()p Fj(f)1559 2499 y Fg(0)1579 2492 y Fq(\))g(=)g Fj(f)1688 2499 y Fg(0)1712 2492 y Fl(\012)5 b Fj(f)1780 2499 y Fg(0)0 2550 y Fq(and)13 b(\001)132 2557 y Ff(H)164 2548 y Fd(o)183 2550 y Fq(\()p Fj(f)226 2557 y Fg(1)245 2550 y Fq(\))h(=)g Fj(f)354 2557 y Fg(0)377 2550 y Fl(\012)s Fj(f)443 2557 y Fg(1)467 2550 y Fq(+)s Fj(f)532 2557 y Fg(1)555 2550 y Fl(\012)s Fj(f)621 2557 y Fg(0)654 2550 y Fq(and)f Fj(")768 2557 y Ff(H)800 2548 y Fd(o)819 2550 y Fq(\()p Fj(f)862 2557 y Fg(0)882 2550 y Fq(\))g(=)h(1)f(and)g Fj(")1117 2557 y Ff(H)1149 2548 y Fd(o)1168 2550 y Fq(\()p Fj(f)1211 2557 y Fg(1)1231 2550 y Fq(\))h(=)f(0)g(i\013)g(\(\001)1467 2557 y Ff(H)1499 2548 y Fd(o)1521 2550 y Fl(\012)s Fq(id)1630 2557 y Fg(\()p Ff(\016)q Fg(\))1676 2550 y Fq(\)\()p Fj(f)1738 2557 y Fg(0)1761 2550 y Fl(\012)0 2608 y Fq(1)t(+)t Fj(f)94 2615 y Fg(1)119 2608 y Fl(\012)t Fj(\016)r Fq(\))h(=)g Fj(f)295 2615 y Fg(0)319 2608 y Fl(\012)t Fj(f)386 2615 y Fg(0)410 2608 y Fl(\012)t Fq(1)t(+)t Fj(f)547 2615 y Fg(0)573 2608 y Fl(\012)t Fj(f)640 2615 y Fg(1)664 2608 y Fl(\012)t Fj(\016)6 b Fq(+)t Fj(f)801 2615 y Fg(1)826 2608 y Fl(\012)t Fj(f)893 2615 y Fg(0)917 2608 y Fl(\012)t Fj(\016)16 b Fq(=)d(\()p Fj(f)1092 2615 y Fg(0)1117 2608 y Fl(\012)t Fq(1)t(+)t Fj(f)1254 2615 y Fg(1)1279 2608 y Fl(\012)t Fj(\016)r Fq(\))t Fl(\012)1434 2616 y Fg(\()p Ff(\016)q Fg(\))1485 2608 y Fq(\()p Fj(f)1528 2615 y Fg(0)1552 2608 y Fl(\012)t Fq(1)t(+)t Fj(f)1689 2615 y Fg(1)1714 2608 y Fl(\012)t Fj(\016)r Fq(\))p eop %%Page: 142 4 142 3 bop 0 118 a Fo(142)534 b(4.)17 b(THE)f(INFINITESIMAL)g(THEOR)m(Y) 0 213 y Fq(and)21 b(\()p Fj(")141 220 y Ff(H)173 211 y Fd(o)206 213 y Fl(\012)14 b Fq(id)326 220 y Fg(\()p Ff(\016)q Fg(\))372 213 y Fq(\)\()p Fj(f)434 220 y Fg(0)468 213 y Fl(\012)g Fq(1)g(+)g Fj(f)635 220 y Fg(1)669 213 y Fl(\012)g Fj(\016)r Fq(\))21 b(=)h(1)14 b Fl(\012)g Fq(1)21 b(i\013)g(\(\001)1105 220 y Ff(H)1137 211 y Fd(o)1170 213 y Fl(\012)14 b Fq(id)1289 220 y Fg(\()p Ff(\016)q Fg(\))1335 213 y Fq(\)\()p Fj(f)5 b Fq(\))22 b(=)g Fj(f)d Fl(\012)1611 220 y Fg(\()p Ff(\016)q Fg(\))1671 213 y Fj(f)26 b Fq(and)0 271 y(\()p Fj(")42 278 y Ff(H)74 269 y Fd(o)104 271 y Fl(\012)11 b Fq(id)220 278 y Fg(\()p Ff(\016)q Fg(\))266 271 y Fq(\)\()p Fj(f)5 b Fq(\))15 b(=)e(1)k(i\013)f Fj(f)j Fl(2)14 b Fj(G)671 278 y Fg(\()p Ff(\016)q Fg(\))718 271 y Fq(\()p Fj(H)781 253 y Ff(o)812 271 y Fl(\012)49 b Fq(\()p Fj(\016)r Fq(\)\).)75 329 y(Hence)16 b(w)o(e)h(ha)o(v)o(e)g(a)h(bijectiv)o(e)d(map)i Fj(!)h Fq(:)54 b(-)p Fn(cAlg)p Fq(\()p Fj(H)q(;)47 b Fq(\()p Fj(\016)r Fq(\)\))16 b Fl(3)g Fj(f)21 b Fq(=)16 b Fj(f)1388 336 y Fg(0)1420 329 y Fq(+)c Fj(f)1494 336 y Fg(1)1514 329 y Fj(\016)17 b Fl(7!)f Fj(f)1643 336 y Fg(0)1675 329 y Fl(\012)c Fq(1)g(+)0 387 y Fj(f)24 394 y Fg(1)58 387 y Fl(\012)h Fj(\016)22 b Fl(2)f Fj(G)272 395 y Fg(\()p Ff(\016)q Fg(\))319 387 y Fq(\()p Fj(H)382 369 y Ff(o)415 387 y Fl(\012)52 b Fq(\()p Fj(\016)r Fq(\)\).)33 b(Since)19 b(the)h(group)h(m)o(ultiplication)c(in)59 b(-)p Fn(cAlg)p Fq(\()p Fj(H)q(;)47 b Fq(\()p Fj(\016)r Fq(\)\))20 b Fl(\022)0 445 y Fq(Hom)o(\()p Fj(H)q(;)47 b Fq(\()p Fj(\016)r Fq(\)\))11 b(is)g(the)g(con)o(v)o(olution)g Fl(\003)g Fq(and)h(the)f(group)i(m)o(ultipli)o(cation)c(in)i Fj(G)1458 453 y Fg(\()p Ff(\016)q Fg(\))1505 445 y Fq(\()p Fj(H)1568 427 y Ff(o)1588 445 y Fl(\012)40 b Fq(\()p Fj(\016)r Fq(\)\))13 b Fl(\022)0 503 y Fj(H)44 485 y Ff(o)79 503 y Fl(\012)54 b Fq(\()p Fj(\016)r Fq(\))22 b(is)h(the)f(ordinary)h(algebra)g(m)o(ultiplication,)e(where)i(the)f(m) o(ultiplic)o(ation)f(of)i Fj(H)1781 485 y Ff(o)0 561 y Fq(again)c(is)g(the)f(con)o(v)o(olution,)g(it)g(is)h(clear)f(that)h Fj(!)h Fq(is)f(a)g(group)g(homomorphism.)26 b(F)l(urthermore)0 619 y(the)16 b(righ)o(t)f(hand)h(square)g(of)g(the)g(ab)q(o)o(v)o(e)g (diagram)f(comm)o(ute)o(s.)k(Th)o(us)d(w)o(e)f(get)h(an)g(isomorphism)0 678 y Fj(e)i Fq(:)f Fn(Lie)o Fq(\()p Fj(H)210 659 y Ff(o)229 678 y Fq(\))i Fl(\000)-31 b(!)18 b(L)p Fm(ie)9 b Fq(\()p Fl(G)s Fq(\)\()39 b(\))18 b(on)h(the)g(k)o(ernels.)27 b(This)19 b(map)f(is)g(de\014ned)h(b)o(y)f Fj(e)p Fq(\()p Fj(d)p Fq(\))g(=)g(1)13 b(+)g Fj(d\016)20 b Fl(2)39 736 y Fq(-)p Fn(cAlg)p Fq(\()p Fj(H)q(;)47 b Fq(\()p Fj(\016)r Fq(\)\).)75 794 y(T)l(o)18 b(sho)o(w)f(that)h(this)f(isomorphism)e(is)i (compatible)f(with)h(the)g(actions)g(of)74 b(resp.)24 b Fj(G)p Fq(\()p Fj(H)1761 776 y Ff(o)1781 794 y Fq(\))0 852 y(let)16 b Fj(\013)f Fl(2)53 b Fq(,)16 b Fj(a)e Fl(2)h Fj(H)t Fq(,)i(and)g Fj(d)e Fl(2)f Fn(Lie)o Fq(\()p Fj(H)716 834 y Ff(o)735 852 y Fq(\).)23 b(W)l(e)16 b(ha)o(v)o(e)g Fj(e)p Fq(\()p Fj(\013d)p Fq(\)\()p Fj(a)p Fq(\))e(=)g Fj(")p Fq(\()p Fj(a)p Fq(\))d(+)g Fj(\013d)p Fq(\()p Fj(a)p Fq(\))p Fj(\016)17 b Fq(=)d Fj(u)1621 859 y Ff(\013)1645 852 y Fq(\()p Fj(")p Fq(\()p Fj(a)p Fq(\))d(+)0 910 y Fj(d)p Fq(\()p Fj(a)p Fq(\))p Fj(\016)r Fq(\))i(=)h(\()p Fj(u)244 917 y Ff(\013)279 910 y Fl(\016)d Fq(\(1)h(+)f Fj(d\016)r Fq(\)\)\()p Fj(a)p Fq(\))i(=)h(\()p Fj(u)682 917 y Ff(\013)717 910 y Fl(\016)d Fj(e)p Fq(\()p Fj(d)p Fq(\)\)\()p Fj(a)p Fq(\))j(=)f(\()p Fj(\013e)p Fq(\()p Fj(d)p Fq(\)\)\()p Fj(a)p Fq(\))j(hence)g Fj(e)p Fq(\()p Fj(\013d)p Fq(\))e(=)g Fj(\013e)p Fq(\()p Fj(d)p Fq(\).)75 968 y(F)l(urthermore)h(let)g Fj(g)i Fl(2)e Fj(G)p Fq(\()p Fj(H)617 950 y Ff(o)637 968 y Fq(\))f(=)54 b(-)p Fn(cAlg)o Fq(\()p Fj(H)q(;)47 b Fq(\),)17 b Fj(a)d Fl(2)h Fj(H)t Fq(,)h(and)i Fj(d)c Fl(2)h Fn(Lie)o Fq(\()p Fj(H)1542 950 y Ff(o)1561 968 y Fq(\).)23 b(Then)16 b(w)o(e)0 1026 y(ha)o(v)o(e)33 b Fj(e)p Fq(\()p Fj(g)24 b Fl(\001)f Fj(d)p Fq(\)\()p Fj(a)p Fq(\))43 b(=)g Fj(e)p Fq(\()p Fj(g)r(dg)605 1008 y Fh(\000)p Fg(1)652 1026 y Fq(\)\()p Fj(a)p Fq(\))g(=)g(\(1)23 b(+)g Fj(g)r(dg)1061 1008 y Fh(\000)p Fg(1)1109 1026 y Fj(\016)r Fq(\)\()p Fj(a)p Fq(\))42 b(=)h Fj(")p Fq(\()p Fj(a)p Fq(\))22 b(+)h Fj(g)r(dg)1584 1008 y Fh(\000)p Fg(1)1632 1026 y Fq(\()p Fj(a)p Fq(\))p Fj(\016)44 b Fq(=)0 1047 y Fb(P)61 1084 y Fj(g)r Fq(\()p Fj(a)131 1092 y Fg(\(1\))178 1084 y Fq(\))p Fj(")p Fq(\()p Fj(a)265 1092 y Fg(\(2\))311 1084 y Fq(\))p Fj(g)r(S)s Fq(\()p Fj(a)433 1092 y Fg(\(3\))480 1084 y Fq(\))15 b(+)567 1047 y Fb(P)628 1084 y Fj(g)r Fq(\()p Fj(a)698 1092 y Fg(\(1\))745 1084 y Fq(\))p Fj(d)p Fq(\()p Fj(a)834 1092 y Fg(\(2\))881 1084 y Fq(\))p Fj(g)r(S)s Fq(\()p Fj(a)1003 1092 y Fg(\(3\))1049 1084 y Fq(\))p Fj(\016)25 b Fq(=)1177 1047 y Fb(P)1237 1084 y Fj(g)r Fq(\()p Fj(a)1307 1092 y Fg(\(1\))1354 1084 y Fq(\))p Fj(e)p Fq(\()p Fj(d)p Fq(\)\()p Fj(a)1504 1092 y Fg(\(2\))1551 1084 y Fq(\))p Fj(g)r(S)s Fq(\()p Fj(a)1673 1092 y Fg(\(3\))1720 1084 y Fq(\))e(=)0 1144 y(\()p Fj(j)14 b Fl(\016)d Fj(g)i Fl(\003)e Fj(e)p Fq(\()p Fj(d)p Fq(\))g Fl(\003)g Fj(j)j Fl(\016)d Fj(g)389 1126 y Fh(\000)p Fg(1)436 1144 y Fq(\)\()p Fj(a)p Fq(\))j(=)g(\()p Fj(g)f Fl(\001)e Fj(e)p Fq(\()p Fj(d)p Fq(\)\)\()p Fj(a)p Fq(\))k(hence)h Fj(e)p Fq(\()p Fj(g)d Fl(\001)d Fj(d)p Fq(\))15 b(=)e Fj(g)h Fl(\001)d Fj(e)p Fq(\()p Fj(d)p Fq(\).)p 1765 1144 2 33 v 1767 1113 30 2 v 1767 1144 V 1796 1144 2 33 v 75 1226 a Fn(Prop)r(osition)17 b(4.4.4.)24 b Fm(L)n(et)29 b Fj(H)34 b Fm(b)n(e)c(a)g(Hopf)g(algebr)n (a)g(and)g(let)h Fj(I)40 b Fq(:=)d(Ker)o(\()p Fj(")p Fq(\))p Fm(.)59 b(Then)0 1297 y Fq(Der)78 1304 y Ff(")96 1297 y Fq(\()p Fj(H)q(;)8 b Fm(-)q Fq(\))23 b(:)f Fn(V)-5 b(ec)24 b Fl(\000)-30 b(!)23 b Fn(V)-5 b(ec)23 b Fm(is)f(r)n(epr)n (esentable)h(by)g Fj(I)t(=I)1077 1279 y Fg(2)1118 1297 y Fm(and)g Fj(d)g Fq(:)f Fj(H)1379 1269 y Fg(1)p Fh(\000)p Ff(")1369 1297 y Fl(\000)-8 b(!)23 b Fj(I)1551 1269 y Ff(\027)1521 1297 y Fl(\000)-9 b(!)23 b Fj(I)t(=I)1700 1279 y Fg(2)1719 1297 y Fm(,)h(in)0 1355 y(p)n(articular)191 1434 y Fq(Der)269 1441 y Ff(")287 1434 y Fq(\()p Fj(H)q(;)8 b Fm(-)q Fq(\))420 1420 y Fl(\030)420 1436 y Fq(=)473 1434 y(Hom)n(\()p Fj(I)t(=I)669 1413 y Fg(2)688 1434 y Fj(;)g Fm(-)p Fq(\))117 b Fm(and)h Fn(Lie)n Fq(\()p Fj(H)1195 1413 y Ff(o)1215 1434 y Fq(\))1248 1420 y Fl(\030)1248 1436 y Fq(=)1300 1434 y(Hom)o(\()p Fj(I)t(=I)1497 1413 y Fg(2)1516 1434 y Fj(;)47 b Fq(\))p Fj(:)75 1516 y Fe(Pr)o(oof.)19 b Fq(Because)14 b(of)h Fj(")p Fq(\(id)7 b Fl(\000)p Fj(u")p Fq(\)\()p Fj(a)p Fq(\))13 b(=)h Fj(")p Fq(\()p Fj(a)p Fq(\))7 b Fl(\000)g Fj("u")p Fq(\()p Fj(a)p Fq(\))12 b(=)i(0)h(w)o(e)f(ha)o(v)o(e)g(Im)n(\(id)8 b Fl(\000)p Fj(")p Fq(\))13 b Fl(\022)h Fj(I)t Fq(.)20 b(Let)0 1574 y Fj(i)13 b Fl(2)i Fj(I)t Fq(.)k(Then)13 b(w)o(e)f(ha)o(v)o(e)g Fj(i)h Fq(=)h Fj(i)t Fl(\000)t Fj(")p Fq(\()p Fj(i)p Fq(\))e(=)i(\(id)7 b Fl(\000)p Fj(")p Fq(\)\()p Fj(i)p Fq(\))12 b(hence)g(Im)n(\(id)c Fl(\000)p Fj(")p Fq(\))14 b(=)f(Ker\()p Fj(")p Fq(\).)20 b(W)l(e)12 b(ha)o(v)o(e)g Fj(I)1734 1556 y Fg(2)1767 1574 y Fl(3)0 1632 y Fq(\(id)c Fl(\000)p Fj(")p Fq(\)\()p Fj(a)p Fq(\)\(id)f Fl(\000)p Fj(")p Fq(\)\()p Fj(b)p Fq(\))13 b(=)h Fj(ab)d Fl(\000)g Fj(")p Fq(\()p Fj(a)p Fq(\))p Fj(b)f Fl(\000)h Fj(a")p Fq(\()p Fj(b)p Fq(\))f(+)i Fj(")p Fq(\()p Fj(a)p Fq(\))p Fj(")p Fq(\()p Fj(b)p Fq(\))h(=)h(\(id)8 b Fl(\000)p Fj(")p Fq(\)\()p Fj(ab)p Fq(\))i Fl(\000)h Fj(")p Fq(\()p Fj(a)p Fq(\)\(id)c Fl(\000)p Fj(")p Fq(\)\()p Fj(b)p Fq(\))j Fl(\000)0 1690 y Fq(\(id)e Fl(\000)p Fj(")p Fq(\)\()p Fj(b)p Fq(\).)49 b(Hence)25 b(w)o(e)g(ha)o(v)o(e)h(in)f Fj(I)t(=I)772 1672 y Fg(2)817 1690 y Fq(the)h(equation)g(\(id)8 b Fl(\000)p Fj(")p Fq(\)\()p Fj(ab)p Fq(\))29 b(=)h Fj(")p Fq(\()p Fj(a)p Fq(\)\(id)7 b Fl(\000)p Fj(")p Fq(\)\()p Fj(b)p Fq(\))17 b(+)0 1748 y(\(id)8 b Fl(\000)p Fj(")p Fq(\)\()p Fj(a)p Fq(\))p Fj(")p Fq(\()p Fj(b)p Fq(\))15 b(so)i(that)f Fj(\027)s Fq(\(id)8 b Fl(\000)p Fj(")p Fq(\))14 b(:)f Fj(H)18 b Fl(\000)-30 b(!)14 b Fj(I)j Fl(\000)-30 b(!)13 b Fj(I)t(=I)1010 1730 y Fg(2)1046 1748 y Fq(is)j(an)g Fj(")p Fq(-deriv)m(ation.)75 1807 y(No)o(w)h(let)f Fj(D)i Fq(:)d Fj(H)k Fl(\000)-30 b(!)15 b Fj(M)23 b Fq(b)q(e)17 b(an)h Fj(")p Fq(-deriv)m(ation.)24 b(Then)18 b Fj(D)q Fq(\(1\))e(=)g Fj(D)q Fq(\(1)8 b(1\))17 b(=)e(1)p Fj(D)q Fq(\(1\))f(+)d Fj(D)q Fq(\(1\)1)0 1865 y(hence)20 b Fj(D)q Fq(\(1\))j(=)e(0.)35 b(It)20 b(follo)o(ws)h Fj(D)q Fq(\()p Fj(a)p Fq(\))h(=)f Fj(D)q Fq(\(id)9 b Fl(\000)p Fj(")p Fq(\)\()p Fj(a)p Fq(\).)33 b(F)l(rom)20 b Fj(")p Fq(\()p Fj(I)t Fq(\))g(=)i(0)f(w)o(e)f(get)h Fj(D)q Fq(\()p Fj(I)1701 1847 y Fg(2)1721 1865 y Fq(\))g Fl(\022)0 1923 y Fj(")p Fq(\()p Fj(I)t Fq(\))p Fj(D)q Fq(\()p Fj(I)t Fq(\))10 b(+)h Fj(D)q Fq(\()p Fj(I)t Fq(\))p Fj(")p Fq(\()p Fj(I)t Fq(\))j(=)f(0)k(hence)f(there)f(is)h(a)h(unique)e (factorization)670 2013 y Fj(H)165 b(I)p 729 1997 132 2 v 819 1996 a Fi(-)755 1983 y Fg(id)5 b Fh(\000)p Ff(")1035 2009 y Fj(I)t(=I)1111 1991 y Fg(2)p 915 1997 106 2 v 979 1996 a Fi(-)958 1986 y Ff(\027)826 2105 y(D)761 2051 y Fi(H)802 2071 y(H)844 2092 y(H)885 2113 y(H)927 2134 y(H)968 2154 y(H)973 2157 y(H)-42 b(j)925 2105 y Ff(D)921 2071 y Fi(@)963 2113 y(@)1004 2154 y(@)1007 2157 y(@)g(R)1051 2208 y Fj(M)r(:)p 1081 2157 2 127 v 1082 2157 a Fi(?)1102 2102 y Ff(f)p 1765 2269 2 33 v 1767 2238 30 2 v 1767 2269 V 1796 2269 2 33 v 75 2351 a Fn(Corollary)18 b(4.4.5.)23 b Fm(L)n(et)13 b Fj(H)18 b Fm(b)n(e)13 b(a)h(Hopf)f(algebr)n(a)h(that)g (is)f(\014nitely)i(gener)n(ate)n(d)f(a)f(s)h(an)f(algebr)n(a.)0 2409 y(Then)18 b Fn(Lie)o Fq(\()p Fj(H)265 2391 y Ff(o)284 2409 y Fq(\))g Fm(is)f(\014nite)i(dimensional.)75 2492 y Fe(Pr)o(oof.)g Fq(Let)i Fj(H)j Fq(=)60 b Fl(h)p Fj(a)566 2499 y Fg(1)586 2492 y Fj(;)8 b(:)g(:)g(:)15 b(;)8 b(a)729 2499 y Ff(n)752 2492 y Fl(i)p Fq(.)34 b(Since)19 b Fj(H)25 b Fq(=)73 b Fl(\010)14 b Fj(I)23 b Fq(w)o(e)d(can)h(c)o(ho)q(ose)f Fj(a)1578 2499 y Fg(1)1618 2492 y Fq(=)h(1)f(and)0 2550 y Fj(a)26 2557 y Fg(2)45 2550 y Fj(;)8 b(:)g(:)g(:)16 b(;)8 b(a)189 2557 y Ff(n)228 2550 y Fl(2)17 b Fj(I)t Fq(.)25 b(Th)o(us)18 b(an)o(y)g(elemen)o(t)d(in)i Fj(i)f Fl(2)h Fj(I)k Fq(can)d(b)q(e)g(written)f(as)1321 2512 y Fb(P)1382 2550 y Fj(\013)1413 2557 y Ff(J)1437 2550 y Fj(a)1463 2557 y Ff(j)1477 2562 y Fa(1)1505 2550 y Fj(:)8 b(:)g(:)f(a)1596 2557 y Ff(j)1610 2563 y Fd(k)1649 2550 y Fq(so)19 b(that)0 2608 y Fj(I)t(=I)76 2590 y Fg(2)109 2608 y Fq(=)p 200 2580 46 2 v 53 w Fj(a)226 2615 y Fg(2)256 2608 y Fq(+)11 b Fj(:)d(:)g(:)i Fq(+)p 422 2580 50 2 v 11 w Fj(a)448 2615 y Ff(n)471 2608 y Fq(.)21 b(This)c(giv)o(es)e(the) h(result.)p 1765 2608 2 33 v 1767 2577 30 2 v 1767 2608 V 1796 2608 2 33 v eop %%Page: 143 5 143 4 bop 207 118 a Fo(4.)17 b(DERIV)l(A)m(TIONS)f(AND)g(LIE)h (ALGEBRAS)g(OF)g(AFFINE)f(ALGEBRAIC)h(GR)o(OUPS)136 b(143)75 213 y Fn(Prop)r(osition)17 b(4.4.6.)24 b Fm(L)n(et)e Fj(H)28 b Fm(b)n(e)23 b(a)g(c)n(ommutative)h(Hopf)f(algebr)n(a)g(and) 1489 220 y Ff(H)1522 213 y Fj(M)29 b Fm(b)n(e)23 b(an)g Fj(H)t Fm(-)0 271 y(mo)n(dule.)29 b(Then)20 b(we)g(have)g Fq(\012)544 278 y Ff(H)595 257 y Fl(\030)596 273 y Fq(=)652 271 y Fj(H)d Fl(\012)12 b Fj(I)t(=I)836 253 y Fg(2)874 271 y Fm(and)20 b Fj(d)e Fq(:)f Fj(H)22 b Fl(\000)-29 b(!)17 b Fj(H)g Fl(\012)12 b Fj(I)t(=I)1368 253 y Fg(2)1407 271 y Fm(is)19 b(given)i(by)f Fj(d)p Fq(\()p Fj(a)p Fq(\))d(=)0 297 y Fb(P)61 335 y Fj(a)87 342 y Fg(\(1\))145 335 y Fl(\012)p 195 291 260 2 v 11 w Fq(\(id)7 b Fl(\000)p Fj(")p Fq(\)\()p Fj(a)388 342 y Fg(\(2\))435 335 y Fq(\))p Fm(.)75 422 y Fe(Pr)o(oof.)19 b Fq(Consider)k(the)g(algebra)h Fj(B)k Fq(:=)c Fj(H)c Fl(\010)c Fj(M)28 b Fq(with)23 b(\()p Fj(a;)8 b(m)p Fq(\)\()p Fj(a)1369 404 y Fh(0)1379 422 y Fj(;)g(m)1444 404 y Fh(0)1455 422 y Fq(\))26 b(=)f(\()p Fj(aa)1634 404 y Fh(0)1645 422 y Fj(;)8 b(am)1736 404 y Fh(0)1762 422 y Fq(+)0 480 y Fj(a)26 462 y Fh(0)37 480 y Fj(m)p Fq(\).)31 b(Let)19 b Fl(G)j Fq(=)59 b(-)p Fn(cAlg)o Fq(\()p Fj(H)q(;)8 b Fq(-)q(\).)31 b(Then)20 b(w)o(e)f(ha)o(v)o(e)f Fl(G)s Fq(\()p Fj(B)s Fq(\))h Fl(\022)g Fq(Hom)n(\()p Fj(H)q(;)8 b(B)s Fq(\))1443 466 y Fl(\030)1443 482 y Fq(=)1501 480 y(Hom)n(\()p Fj(H)q(;)g(H)t Fq(\))14 b Fl(\010)0 538 y Fq(Hom)o(\()p Fj(H)q(;)8 b(M)d Fq(\).)21 b(An)14 b(elemen)o(t)d(\()p Fj(';)d(D)q Fq(\))15 b Fl(2)f Fq(Hom)n(\()p Fj(H)q(;)8 b(B)s Fq(\))14 b(is)h(in)f Fl(G)s Fq(\()p Fj(B)s Fq(\))f(i\013)h(\()p Fj(';)8 b(D)q Fq(\)\(1\))15 b(=)f(\()p Fj(')p Fq(\(1\))p Fj(;)8 b(D)q Fq(\(1\)\))0 596 y(=)33 b(\(1)p Fj(;)8 b Fq(0\),)30 b(hence)c Fj(')p Fq(\(1\))33 b(=)g(1)28 b(and)g Fj(D)q Fq(\(1\))33 b(=)g(0,)d(and)e(\()p Fj(')p Fq(\()p Fj(ab)p Fq(\))p Fj(;)8 b(D)q Fq(\()p Fj(ab)p Fq(\)\))32 b(=)h(\()p Fj(';)8 b(D)q Fq(\)\()p Fj(ab)p Fq(\))32 b(=)0 654 y(\()p Fj(';)8 b(D)q Fq(\)\()p Fj(a)p Fq(\)\()p Fj(';)g(D)q Fq(\)\()p Fj(b)p Fq(\))30 b(=)f(\()p Fj(')p Fq(\()p Fj(a)p Fq(\))p Fj(;)8 b(D)q Fq(\()p Fj(a)p Fq(\)\)\()p Fj(')p Fq(\()p Fj(b)p Fq(\))p Fj(;)g(D)q Fq(\()p Fj(b)p Fq(\)\))29 b(=)h(\()p Fj(')p Fq(\()p Fj(a)p Fq(\))p Fj(')p Fq(\()p Fj(b)p Fq(\))p Fj(;)8 b(')p Fq(\()p Fj(a)p Fq(\))p Fj(D)q Fq(\()p Fj(b)p Fq(\))16 b(+)h Fj(D)q Fq(\()p Fj(a)p Fq(\))p Fj(')p Fq(\()p Fj(b)p Fq(\),)0 712 y(hence)f Fj(')p Fq(\()p Fj(ab)p Fq(\))f(=)g Fj(')p Fq(\()p Fj(a)p Fq(\))p Fj(')p Fq(\()p Fj(b)p Fq(\))h(and)h Fj(D)q Fq(\()p Fj(ab)p Fq(\))f(=)f Fj(')p Fq(\()p Fj(a)p Fq(\))p Fj(D)q Fq(\()p Fj(b)p Fq(\))c(+)h Fj(D)q Fq(\()p Fj(a)p Fq(\))p Fj(')p Fq(\()p Fj(b)p Fq(\).)23 b(So)18 b(\()p Fj(';)8 b(D)q Fq(\))17 b(is)g(in)g Fl(G)s Fq(\()p Fj(B)s Fq(\))f(i\013)0 771 y Fj(')i Fl(2)g(G)s Fq(\()p Fj(H)t Fq(\))g(and)h Fj(D)h Fq(is)f(a)g Fj(')p Fq(-deriv)m(ation.)27 b(The)19 b Fl(\003)p Fq(-m)o(ultiplic)o(ation)d (in)j(Hom)n(\()p Fj(H)q(;)8 b(B)s Fq(\))19 b(is)f(giv)o(en)g(b)o(y)0 829 y(\()p Fj(';)8 b(D)q Fq(\))14 b Fl(\003)f Fq(\()p Fj(')236 811 y Fh(0)247 829 y Fj(;)8 b(D)310 811 y Fh(0)322 829 y Fq(\))19 b(=)g(\()p Fj(')13 b Fl(\003)g Fj(')551 811 y Fh(0)562 829 y Fj(;)8 b(')13 b Fl(\003)g Fj(D)708 811 y Fh(0)734 829 y Fq(+)g Fj(D)h Fl(\003)f Fj(')909 811 y Fh(0)921 829 y Fq(\))19 b(b)o(y)g(applying)g(this)g(to)g(an)h (elemen)o(t)c Fj(a)i Fl(2)h Fj(H)t Fq(.)0 887 y(Since)j(\()p Fj(';)8 b Fq(0\))25 b Fl(2)h(G)s Fq(\()p Fj(B)s Fq(\))c(and)h(\()p Fj(u";)8 b(D)q Fq(\))26 b Fl(2)f(G)s Fq(\()p Fj(B)s Fq(\))d(for)i(ev)o (ery)d Fj(")p Fq(-deriv)m(ation)i Fj(D)q Fq(,)i(there)d(is)h(a)g(bi-)0 945 y(jection)f(Der)243 952 y Ff(")261 945 y Fq(\()p Fj(H)q(;)8 b(M)d Fq(\))439 931 y Fl(\030)440 947 y Fq(=)502 945 y Fl(f)p Fq(\()p Fj(u";)j(D)659 952 y Ff(")677 945 y Fq(\))25 b Fl(2)f(G)808 952 y Ff(")826 945 y Fq(\()p Fj(B)s Fq(\))p Fl(g)953 931 y(\030)954 947 y Fq(=)1016 945 y Fl(f)p Fq(\(1)1084 952 y Ff(H)1118 945 y Fj(;)8 b(D)1180 952 y Fg(1)1200 945 y Fq(\))25 b Fl(2)f(G)1331 952 y Fg(1)1351 945 y Fq(\()p Fj(B)s Fq(\))p Fl(g)1477 931 y(\030)1478 947 y Fq(=)1540 945 y(Der)k(\()p Fj(H)q(;)8 b(M)d Fq(\))0 1003 y(b)o(y)20 b(\()p Fj(u";)8 b(D)204 1010 y Ff(")222 1003 y Fq(\))22 b Fl(7!)f Fq(\(1)p Fj(;)8 b Fq(0\))15 b Fl(\003)f Fq(\()p Fj(u";)8 b(D)628 1010 y Ff(")646 1003 y Fq(\))21 b(=)h(\(1)p Fj(;)8 b Fq(1)15 b Fl(\003)f Fj(D)929 1010 y Ff(")947 1003 y Fq(\))22 b Fl(2)f(G)1072 1010 y Fg(1)1092 1003 y Fq(\()p Fj(B)s Fq(\))f(with)h(in)o(v)o(erse)e(map)g(\(1)p Fj(;)8 b(D)1689 1010 y Fg(1)1710 1003 y Fq(\))21 b Fl(7!)0 1061 y Fq(\()p Fj(S;)8 b Fq(0\))k Fl(\003)f Fq(\(1)p Fj(;)d(D)267 1068 y Fg(1)288 1061 y Fq(\))14 b(=)h(\()p Fj(u";)8 b(S)14 b Fl(\003)d Fj(D)586 1068 y Fg(1)607 1061 y Fq(\))j Fl(2)h(G)718 1068 y Ff(")736 1061 y Fq(\()p Fj(B)s Fq(\).)23 b(Hence)16 b(w)o(e)g(ha)o(v)o(e)g(isomorphisms)f(Der)28 b(\()p Fj(H)q(;)8 b(M)d Fq(\))1761 1047 y Fl(\030)1762 1063 y Fq(=)0 1119 y(Der)78 1126 y Ff(")96 1119 y Fq(\()p Fj(H)q(;)j(M)d Fq(\))264 1105 y Fl(\030)264 1121 y Fq(=)316 1119 y(Hom)o(\()p Fj(I)t(=I)513 1101 y Fg(2)532 1119 y Fj(;)j(M)d Fq(\))639 1105 y Fl(\030)639 1121 y Fq(=)692 1119 y(Hom)793 1126 y Ff(H)827 1119 y Fq(\()p Fj(H)15 b Fl(\012)c Fj(I)t(=I)1027 1101 y Fg(2)1046 1119 y Fj(;)d(M)d Fq(\).)75 1180 y(The)18 b(univ)o(ersal)f Fj(")p Fq(-deriv)m(ation)h(for)h(v)o(ector)e(spaces)i (is)p 1083 1140 111 2 v 18 w(id)8 b Fl(\000)p Fj(")17 b Fq(:)g Fj(A)g Fl(\000)-31 b(!)17 b Fj(I)t(=I)1447 1162 y Fg(2)1466 1180 y Fq(.)28 b(The)18 b(univ)o(ersal)0 1244 y Fj(")p Fq(-deriv)m(ation)j(for)h Fj(H)t Fq(-mo)q(dules)f(is)h Fj(D)705 1251 y Ff(")723 1244 y Fq(\()p Fj(a)p Fq(\))h(=)g(1)15 b Fl(\012)p 963 1201 212 2 v 14 w Fq(\(id)8 b Fl(\000)p Fj(")p Fq(\)\()p Fj(a)p Fq(\))22 b Fl(2)h Fj(A)14 b Fl(\012)g Fj(I)t(=I)1434 1226 y Fg(2)1453 1244 y Fq(.)38 b(The)21 b(univ)o(ersal)0 1308 y(1-deriv)m(ation)i(for)g Fj(H)t Fq(-mo)q(dules)g(is)f(1)16 b Fl(\003)f Fj(D)791 1315 y Ff(")833 1308 y Fq(with)23 b(\(1)16 b Fl(\003)f Fj(D)1090 1315 y Ff(")1109 1308 y Fq(\)\()p Fj(a)p Fq(\))24 b(=)1279 1271 y Fb(P)1340 1308 y Fj(a)1366 1316 y Fg(\(1\))1428 1308 y Fl(\012)p 1483 1265 260 2 v 16 w Fq(\(id)8 b Fl(\000)p Fj(")p Fq(\)\()p Fj(a)1677 1316 y Fg(\(2\))1723 1308 y Fq(\))25 b Fl(2)0 1368 y Fj(A)11 b Fl(\012)f Fj(I)t(=I)173 1350 y Fg(2)192 1368 y Fq(.)p 1765 1368 2 33 v 1767 1337 30 2 v 1767 1368 V 1796 1368 2 33 v eop %%Trailer end userdict /end-hook known{end-hook}if %%EOF