%!PS-Adobe-2.0 %%Creator: dvips(k) 5.95b Copyright 2005 Radical Eye Software %%Title: D:/Backup/wwwpublic/Cats.dvi %%CreationDate: Mon Jun 14 13:01:42 2004 %%Pages: 90 %%PageOrder: Ascend %%BoundingBox: 0 0 595 842 %%DocumentFonts: CMR17 CMR12 CMCSC10 CMR9 CMBX12 CMTI12 CMSY10 CMMI12 %%+ CMR8 CMSY8 CMMI8 LINE10 LCIRCLE10 MSBM10 CMSY6 CMMI6 CMR6 CMBX8 %%+ CMEX10 MSAM10 EUFM10 MSBM7 CMR10 CMSL10 CMBX10 %%DocumentPaperSizes: a4 %%EndComments %DVIPSWebPage: (www.radicaleye.com) %DVIPSCommandLine: "C:\Programme\MiKTeX 2.5\miktex\bin\dvips.exe" %+ D:/Backup/wwwpublic/Cats.dvi %DVIPSParameters: dpi=600 %DVIPSSource: TeX output 2004.06.14:1301 %%BeginProcSet: tex.pro 0 0 %! /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[ matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{ statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0] N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin /FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array /BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2 array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get }B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub} B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr 1 add N}if}B/CharBuilder{save 3 1 roll S A/base get 2 index get S /BitMaps get S get/Cd X pop/ctr 0 N Cdx 0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx sub Cy .1 sub]{Ci}imagemask restore}B/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn /BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put }if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{ bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{ SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{ userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X 1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4 index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N /p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{ /Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT) (LaserWriter 16/600)]{A length product length le{A length product exch 0 exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot} imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M} B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{ p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end %%EndProcSet %%BeginProcSet: texps.pro 0 0 %! TeXDict begin/rf{findfont dup length 1 add dict begin{1 index/FID ne 2 index/UniqueID ne and{def}{pop pop}ifelse}forall[1 index 0 6 -1 roll exec 0 exch 5 -1 roll VResolution Resolution div mul neg 0 0]/Metrics exch def dict begin Encoding{exch dup type/integertype ne{pop pop 1 sub dup 0 le{pop}{[}ifelse}{FontMatrix 0 get div Metrics 0 get div def} ifelse}forall Metrics/Metrics currentdict end def[2 index currentdict end definefont 3 -1 roll makefont/setfont cvx]cvx def}def/ObliqueSlant{ dup sin S cos div neg}B/SlantFont{4 index mul add}def/ExtendFont{3 -1 roll mul exch}def/ReEncodeFont{CharStrings rcheck{/Encoding false def dup[exch{dup CharStrings exch known not{pop/.notdef/Encoding true def} if}forall Encoding{]exch pop}{cleartomark}ifelse}if/Encoding exch def} def end %%EndProcSet %%BeginProcSet: special.pro 0 0 %! TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N /vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N /rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N /@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{ /hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B /@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{ /urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known {userdict/md get type/dicttype eq{userdict begin md length 10 add md maxlength ge{/md md dup length 20 add dict copy def}if end md begin /letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{ itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack} if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1 -1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{ noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop 90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr 1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr 2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4 -1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{ Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale }if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState save N userdict maxlength dict begin/magscale true def normalscale currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts /psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{ psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2 roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict begin/SpecialSave save N gsave normalscale currentpoint TR @SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{ CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR }{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N /@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end} repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N /@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X /yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0 1 startangle endangle arc savematrix setmatrix}N end %%EndProcSet %%BeginProcSet: color.pro 0 0 %! TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll }repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def /TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{ setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{ /currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC /Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC /Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0 setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0 setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61 0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC /Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0 setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87 0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{ 0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{ 0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC /Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0 setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0 setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90 0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC /Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0 setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0 0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{ 0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{ 0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC /BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0 setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC /CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0 0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1 0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11 0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0 setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0 0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC /Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0 setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0 0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0 1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC /PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0 setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{ 0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor} DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70 setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0 setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1 setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end %%EndProcSet %%BeginFont: CMBX10 %!PS-AdobeFont-1.1: CMBX10 1.00B %%CreationDate: 1992 Feb 19 19:54:06 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.00B) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMBX10) readonly def /FamilyName (Computer Modern) readonly def /Weight (Bold) readonly def /ItalicAngle 0 def /isFixedPitch false def end readonly def /FontName /CMBX10 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 48 /zero put dup 49 /one put dup 50 /two put dup 52 /four put dup 54 /six put dup 55 /seven put dup 56 /eight put dup 57 /nine put readonly def /FontBBox{-301 -250 1164 946}readonly def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8 2BDBF16FBC7512FAA308A093FE5F00F963068B8B731A88D7740B0DDAED1B3F82 7DB9DFB4372D3935C286E39EE7AC9FB6A9B5CE4D2FAE1BC0E55AE02BFC464378 77B9F65C23E3BAB41EFAE344DDC9AB1B3CCBC0618290D83DC756F9D5BEFECB18 2DB0E39997F264D408BD076F65A50E7E94C9C88D849AB2E92005CFA316ACCD91 FF524AAD7262B10351C50EBAD08FB4CD55D2E369F6E836C82C591606E1E5C73F DE3FA3CAD272C67C6CBF43B66FE4B8677DAFEEA19288428D07FEB1F4001BAA68 7AAD6DDBE432714E799CFA49D8A1A128F32E8B280524BC8041F1E64ECE4053C4 9F0AEC699A75B827002E9F95826DB3F643338F858011008E338A899020962176 CF66A62E3AEF046D91C88C87DEB03CE6CCDF4FB651990F0E86D17409F121773D 6877DF0085DFB269A3C07AA6660419BD0F0EF3C53DA2318BA1860AB34E28BAC6 E82DDB1C43E5203AC9DF9277098F2E42C0F7BD03C6D90B629DE97730245B8E8E 8903B9225098079C55A37E4E59AE2A9E36B6349FA2C09BB1F5F4433E4EEFC75E 3F9830EB085E7E6FBE2666AC5A398C2DF228062ACF9FCA5656390A15837C4A99 EC3740D873CFEF2E248B44CA134693A782594DD0692B4DBF1F16C4CDECA692C4 0E44FDBEF704101118BC53575BF22731E7F7717934AD715AC33B5D3679B784C9 4046E6CD3C0AD80ED1F65626B14E33CFDA6EB2825DC444FA620BCCD7C06EB174 E115E36687F76D03F815C6FEE8107FED8F1F84CC9A8FB045D483659F0C0BD0C1 2B55EC21B9D9309EF71A1B3D139B6E5E78AF189DB47E08981419E658103B1797 6DEAA787DAEC0603614B04732EC8E1606A061E66067D4526871B2C50C4C716F5 7FEE1B03ED1FB7B2F4C8822B10ACD50C6DA9C56013E3A5174441B9750EF99C78 613AF62054AD75ED2CC22B05B89ABA446304EEAAC280A94CF9C819B26AE1658A 5516E42BFC4A9EFC0F71935DED580A4A2E016B5FEADE1A79C0AFAD4A873434BA 54FA3AC53A51C4843802081696785BF15D76F545786E8EF494D17A4390675085 90BA42C25D0D6F49D45D527FF3CC2582AA9FAFAB0ED3CE81D63F54FC400D55C6 4BA51075607335EA30C933E3EEDAD46AAD79527767E8C9E650DB86749EE832B7 C325B0E0DC02BBBC83B279B916DDF6CFDC99B72B30C3EE3081B7368A6B67B4F0 98AC87AE2390E2D18B5E0E4DD995D29613E10848498C341054EBD5FD116DE2BB D1C0E482842B23D0646742767B44B8E020EFACEF0477C0110334E445C0943974 585989A601AACFAFF1FC504D5B341D7433EDF612DEF24030897166451C6F65C6 7C4E40FBDCD417D0DEE1FB9EA1DA4C8738FC3DD1ABF155B434711CF2CB000A6A 081906DB6378161449B2BDD13902C312F743DCEF13C423718D75DB7A2109220A CF96D619442A94FD9C4E32DA68484691E686B507FF6933630416C6C47401A668 5E163340F6FB1B703C6EAFE592ABEFE7F734D3134DE8B5AA6C08A2DE5F011546 DC4FD96C315B6A4D97332F4165E6487AD93AABEBCF8AEBEA228D089DCDBF8F6E C1F059EA23BEC0568E2548B795CA0178FB47594549CE860D9CDAF5D896CC6A9C 64F66B136BA3A29BADE5CA31AA1E014FD3084121577B3931770DC614D33102C2 88E84D54C8E88193354890945E9DE346A3D784727DBD7BC9A396BBB1BB4A5785 4C0D033A883BFB0100D504125792740237152B5F0A2E83CD6BE066888A8AD10D 722DACD37A12E8225188588C67E2A4828E66CCEB01FD5F822FC96FCDA4EE3224 BAF7A46DC6134F2EA956F6A30F1D1D7D2FCD80FA37DC236AE6DAA6DD732B2B4A D2BF52F1214DC47D2731E089E84539BBF32341D17B1034CFBB0FD04355CDDAE3 7F19F1847FCB496060EFBECA8CEA1FEB2D6818584958CBCA3F79265D976115C7 9F233CD068797E56FFC7F49F7B655377F7053389954D1F2C6AEC378DF4AAFAE2 0904155BBE97EBFB693B706AC2B77249FF6189EA4D473D0A684577B85AA794A3 8346BB850FA649568CBDF1F6C5D3DC97EA9B41EADC1EBFB4542BA2A9475E2971 F355AD99C5EB0EBE95636045340B33714B0929A9614D04ADDBCDB6676A4F8D4C E6F4BDCFF2042B6B7D3C9BAFE41B28E6B7C8E08AFC6F8A632F34E9FA84D643CC 33661358A71B7C3F591D9502114728B3E7D8FFF5FD71BD5B7F755C3CC0ABC7B7 06C7C19DF9534D2C9CC30D557157CF1CB920A06BA7B6BBE3B6FCB6051AD21D65 7B2E0F3B96508995DEA266A346C9F3178086F9AF2E629AFEC0E8E37CD69DB692 3F8C0BB933A287FE0067837E54B492434F421A294ECB61F91D1F3E5CE369EEBD 35D38A18C62D399BCB683E2999884C8E6838BA528D15A7724057E08B26178BC6 917267E4C220C163E3A7B12B3BEC00F6C044CBC2B5BB8A12F66E8CAA4B911BAF EA9A7AEA2751122943A6C3A9166EE24670AE0724A14D8ABB83B870485F9D8A95 8EAAB53B618F441ECFC5D561F0692C6F861A0A328B9CC89F163961C21AAD02EA 569F6EFADA0F776D9DE62B73ED88CF54B22F48329E0755F4776D3896C2E0411B A00693CFFCF8D3ADA9E9F0BB849DFC0D827A00D49B8301DCB20F8E8591C0D8EB 3AF4A6127D102B04E6B4AA5B368C5D758CE8D121E316904085DB8E896C259507 8D6B81F0CD50F4D54CDD611BC17C29635C33D47B83D4F81B7943DA895151FF92 A5A105BD6792D2FAAD2D916E396E8D53E3DF3D835649D2CA96DAB79BEDB7E3D6 30207AA8B1A0B6A37ADC0FBDFD138090752F302BC864A815AF31E6C25B4354BE 146D264932C6882BF800811FD9F582AFFF798B01B3A0877A550F0B080C8BE958 FF5DB8306C7EF7232D1FCD80DBF0E2F9B0B39B3CD5958BD4BE977A41E615ABEF AECDAAA38A8CB01BA9624F7AD44F3D9C8C7367318C6C429C30B605EA560E0F6E AA4BC7BF74199CE50DCC1112C3EFFA5668B09FA1E2BBD9D93694A87379FFEFCE 218D8BF44B85B678C980BB819E4368837BFFB6D7BB4215B90BAA5C903439CE54 77C07824D15DA60274FE2123BA0130EABAC48680C2C94469CD35110BE6868917 899E28E20EBAAFC0B23E6B7D3A91E338274D80EE0413F8899B1FA5764AA2B234 90F9BD42CFAB51548D8814F1C19C7B37DA47DF4E64566D3D32F9EEEDFC9618B6 D63166D3025163FE7DABE361A9567BDC90A31055D250649DD3D8330D96A96975 D5795101B38C74A719D78C0C38E300890191D6D72703509BDFE650D7D4173E99 762B5E5B3EF037DC7764C08A2E9E1070F7A0B3071E89F9487E8EFDC18B5A2450 9091604C724C0E7095164E00E2498D406C773CE4D85D64C3E919ABF21AB2A55F A46266E603D6060C3A954B225F6AD96740C7 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMSL10 %!PS-AdobeFont-1.1: CMSL10 1.0 %%CreationDate: 1991 Aug 20 16:40:20 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.0) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMSL10) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle -9.46 def /isFixedPitch false def end readonly def /FontName /CMSL10 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 12 /fi put dup 44 /comma put dup 46 /period put dup 58 /colon put dup 63 /question put dup 65 /A put dup 66 /B put dup 67 /C put dup 70 /F put dup 73 /I put dup 75 /K put dup 76 /L put dup 78 /N put dup 79 /O put dup 80 /P put dup 83 /S put dup 84 /T put dup 97 /a put dup 98 /b put dup 99 /c put dup 100 /d put dup 101 /e put dup 102 /f put dup 103 /g put dup 104 /h put dup 105 /i put dup 106 /j put dup 107 /k put dup 108 /l put dup 109 /m put dup 110 /n put dup 111 /o put dup 112 /p put dup 113 /q put dup 114 /r put dup 115 /s put dup 116 /t put dup 117 /u put dup 118 /v put dup 119 /w put dup 120 /x put dup 121 /y put dup 127 /dieresis put readonly def /FontBBox{-62 -250 1123 750}readonly def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA0529731C99A784CCBE85B4993B2EEBDE 3B12D472B7CF54651EF21185116A69AB1096ED4BAD2F646635E019B6417CC77B 532F85D811C70D1429A19A5307EF63EB5C5E02C89FC6C20F6D9D89E7D91FE470 B72BEFDA23F5DF76BE05AF4CE93137A219ED8A04A9D7D6FDF37E6B7FCDE0D90B 986423E5960A5D9FBB4C956556E8DF90CBFAEC476FA36FD9A5C8175C9AF513FE D919C2DDD26BDC0D99398B9F4D03D5993DFC0930297866E1CD0A319B6B1FD958 9429B9D40924DC059325D9D4CC0344F3F997A99E6CC0676735EBCD685AAC9142 08DAFEC78BB41AFC2F1C219910BDF41D6279284EF600B69776CA15BC8A34347C 30783C52AFA60FBE3E353E2AE354CF87B558776A22C776C7A0B5AB5CE1F941EF C2D9CAC37294BF407A671F10E4743BF842143F4F7DFEE643BA3BBD8BB9E3F24A BCCF7F0ADF8BA500620C81033EAE8C4EF2C1DEF13AC575F1B3BBB66F093D3B78 5412B82B67FFA087AF57182B2230F9F2137180CA58A7D9B2C822FF04BE6CD01D 43B2CA7058C7B953F6D9B5D6E91ECBAA5CDE1159B0E59C83DBAD96D6C8C8BAB1 374EF652D10C0F3EE7104472C98DD3572AAF2D45A70BF7061447E21EE3C3BF23 DF39C2D1B35B42CD5297BEBE6BC94F7C9DC6E61EC67E4F677256FED9064BD3E4 B51A71B1D27CA4E5AA9E1D8080E6DAB5310711EEF87C40859FA935B19524AE83 63B163FA8397BDFF443227FEDF7DB27DC35D89FB1C5E435DA0619A5C88AFC73B 89A2DF5E767C5B536BC7167A840A0C32BD57A14DE69A7D0D819AC36FF32F908A 5070F32983BB007437E3500799DF5E0AD3710A4C0000F0098D5BE99F2EB9C1C2 C444FD9552D0DCA098A94B3BF176F511CEE13DB7EFFAED7C47B5ADCF8D4700F5 7B6DF50EE617C00966B9A2828882804DB7477F4A8CF5345B7F3568B4F72BCE73 2E2AA5BC4B4C70E21F3AD9AFC3B8605A00D67EF9ED1F4D13DDAA920D45B43CE0 0941BF17CF05D2B777C11D4D844AB20C0693D1DDF00B27D9E1AA2D98A4A06CC6 D342AD8F644F4787B66CA7D861E7CE13FCDA85C1B0C9F94009768EA89838EBA2 7818F40D432EC11FE4236682FC67661B742CEE3DB1FFCDED525D8CB2BDE1A203 ACAF0C440CAD1CB5057E75AEB31D8F29F510CD78CEFD83DCF82A8C02140461F6 694D3FB2DC608311DC996409050B6D5366F56F73C0C64A76F9B6A112A6ADA4F5 9358F5111922256C38A7B65D3D2C5D94657A9EB5F06D8F558B6AFDB8A4D44241 F393362156579B27A4E0B123704360802439925A221666B50C0E240D5E9C1295 3A29C91138D9C7965CC12BD3FD5312BBEB124DA51663A18836E2522260AB9E74 AC4C78B81312AA3AC91C87A81BA9041E8CC26BC162403209F842D4FDDAE6F023 88A89AD39F600584F5EC526C37F57E07C62D7677E2B272E76CEBD3152C0B461D 87F64341C0314F06E1A813BBCAAD7CBA54C633B7DB6D2548CBA6ADF8120FFB3C 3B5ED6EDC9B534A00B34AC094C98AE0C9EBB003775F3D55ED710F5A0C2754C67 B59F0C10F56D1220C9CBECCA2911B92A8E435504C0A4E2B358DE5B3C80784931 1E9897212ACECB51E2D9A1D5A37B9BEA48C43A0F22FAE6EE3A8C8898A0B868C9 A376F13050E5F9F5A089F36DAB6D0807CEB4F7B5A60AB892DEC92ED5A1304D02 194AEAD6DBE563F032EB59D8987A77905FDE68E2E74E8B33FE78618BB590B643 FA772D47BF50E23AAAA99C24B7919DB4FC72E994442A6E51E7A56425AB5D2C0F 5137A2CA794AB27DE359DBFE5FDFE394523A9128178D51C9C301D76128766B45 FF0757CBFD003B787D7D08B8F1C6F9D1AAD08BCCF43EBEFAD1B99094B8CEE5B7 01E28CFF2B2C8C046152A2E579EF4E2E4BB3F02E6D5AE7A27E5B7D7FDDE95084 E697BCE119DC92BF95F2C57D4F33011A4FA4009DB73FA6C2C8DDF1B7AA58CA6C 44918ADBFC23F03E889D0A178489328A387E92DB48610D189ECE728E7A8020DF BD12D1C6FEF46C78EFDDA6CD4B133C4C37A66B0A9834B5A20CA2F7273617A4D6 A3533C07F836BE9B4FFE0BB3C2FF6107E20E86081757105F721286E6FB8CEDC4 89FB390F704020D4E0C0A8A934CDF2A2CF49B008C859C42B7A671250D8141F3C FB344091A2BEEB4C306B2813840907A0A1F59709202B799D6AC7A4578239F21D 931FA8856F51548AFE591780E50AC464E3CAAD7EA57C4B70151FFBF23EA3DB15 CCA6DAF11F7D92CE040D3117F2D77610789A2624B7DD5BCC209B53BAE3790281 69445ED720D8795C28DF33B4ABCC976C89F1F1733260AA5FC92701304BDE0035 9FC8F6B74DB7AB24C3429845C456F4EE385A8E8B6E8142442B18B537A08ACDA3 6563753851CB50EDDE5DAFD2FEAEAE46DCC24E56A78A0E5A7645AAA6CAA5372D DF1005F5426B4772608C37D5F9F9FAD545BEA8C88EFAF5A32C1213ABF7F16E67 932D7843C8D394919842264B77C6A4E65FF0C03FDB96A749E4056877E47708CF 669E79E0DA3BC85402C5B97182B70E8F2715ED5BCC9F8FD33DD67A47DAF9D6E3 25224FC6B9D8246D78F4B1D16D8041163BAE6184C95636AF7C41D970EC6D840B F227610C5C49454A1628B410D8E6271C778C9DA9EE4479B5A3B7B5C0AE36E475 DB527982F9CF610C6AB5F3E1D2B050440562A49AB072D82DE218087B9382CA96 30E2A5DF617907773C387E3C374543BCB6AEEFF99F2BB0318887293E60A2D0A4 4DDAC232C2F7FA84462EC64BD0DEAF112A87C2C056495252AADCBEC0846B7E8A 7285840FBEF34F151D1A14E889E8A846FC901D79174A2BDED14AA0E3F98B7DBE 7F1CF0CD105006B7892DC5CE65BA449485DF72C352F76C128DED9E43D53111A2 3101B345392526C34B59A416C6742E0783B857FE7E0C2C6AC05448D455B62DBE F0AEBB5D2734BF21B35C4CCA743F8B0CFEDF451370DC5E147B7722BFFF7C0EC8 E872DA4F7531BA80A6266F57F6FE1CA17B3C2477D585911A9283649225ACA62C 85184749AE91D9B0DFA0A256990344CAD80927222DBE90C392F9311510564234 D61EC66A8CE8C7BC1BF0CB2523E00EA3387618519766949C48B92A9EAB849AEB F2F1CE0E364C638308AD5DF7F81CF1E82A2A4F69C588810373DF92C40BF12D46 BFAA3A6690A4169415A77353C34505F0D50D20255470EFB6C7085E091F78CFA2 75761202A2C1116924E81378355DE1E7B0EB907D8D8310F5001CF2BB24BDD92F 63DBF4E60CBEDB08671C76BE2C1E2D882B59531D8DA1016A765DAC10D8B69B59 C3748667CE68AABA30B5DE05C94DBDD53ACEA090FE96AFDB348DF3EBE22B4017 EAE220F61210E43931FC66DA7C3C0706F9FBB72373E029BCC295A587A07AA73F C29B168D110E6641FEE7E8403B6C42736A73E11880E294646D38CFF13D94FFA8 354CBB279F7357C3AEC8EAD5DA2CD2604843AEDA84A31DCFA734CD701F8E4EBE 7A58B7871A7E879683177088617CAB5E7221E3C67740D9DC00ACB24D58A51D6B A5185F68D1DEE74C718704A834D3079D4172F701A615C7899FC6B46106C72C19 E7B701A3FE9910C87E0C5F2F255597E4663B3F9BC148DA184A564CC26C49E8A1 01C03FBB7854989AD1DBD021A64118CC03F049A1B66431EFBDA142095845374F 5D45CF1AAA842F0DAB05D41944563EE45BBB0AC7C0A0AFB93A45439920D51E95 455E2604984DF12819C6FCE3280701033FCDAF7DB7733A1510EA8B6180B61B7F A90176DB6CC8B2F97204FB460726FA9E33EE68D6422359DE98F8480C7C0C7C13 3C977C61719A37927B86B7AB140D3B3D5C3E7AB3E562B0B179EB0270FBBCDC2B CC5E91188A920967A08D7EDEB22ED8217DC7C65316FA46C2F26FB654307C8D8E 13E90163CEE4CB56276EF39341AFE59D1B0961925142BFE039075084DD9DD71A C602CFE01D0EDF4BA657BE8167442F6F99649B2CA3601415605A9E8D2B80D1F6 FB251B618B57B7B484D2A3DF970CF6722D3ECC1DE771A630526FF6D8E3455773 838F7BBE0169C2E80703F80F8D7EFFEFBB15D37440C81C7B1147811F4DED271F 73C7701ACE53D833FC46B6CE4789CCD0E284CDAAD648A93D7A1228D1706F46D5 002A211576100F55CB69EBA00E8031EAEB4B09633D5B1F7031F5BF90162F4881 6589C942E5AFE2239794E41B66C4A2558226A4ED58E534CC81C9122F8A4B1F51 8F5C471BFF987B39309B97A93F3B54AABFE45C2E567227DE9F962CE5485FDF3D 40D004755472D61ABEEFD82E4EFE0B77EB6DC726DC085E37C539FFCB3677B8B8 FAFF1EBC0B1FEB696545767E8966270616CB41686B91C05EDE64FC55EC26264E E331E408FC65540C20FBBD069E25757FF572D4A0C7CBBC261C09E8F38241B089 7078267AFA23AFFD8B8B16CA22027835D37A05385234C885AB8667DDEB73E872 4C9109F2142D3F59B11BF01E4543FDB44C6243B5511B37BAD31CA485EB464E55 259A1C3DE36C7469E72A916774468F1796FA37E25CB894AC97FDB83D444FD6E6 C4CEFAEAFAEC232D3EFD33B5C0DF91261FEC273CD39F0F76C06D484C4FE60C2F BC41E5F80DECA11C41A2A7412E56EBC6B26D7AFD1B7C970E60A36F479B459C5D C3924AD963E9C70D9797E24DD61B695FCFEE96E0FDCDF98F47E1C477BD291306 191A526CCB758DE9137B643036C75F1DC0173A0CEF4D4386E5F75FCC311D7925 04C28014D9F097BF34024FAA3918CE5D7AD7428369F23EA225CC35BF4280C4BD 1984A58F244CC1ABCBB9AD6AEF67BD50071F3A82C22D030CDCEF9C3B98B9AA74 582B5B9E586FE2C722911199A594670E30554D94A1ED4FAF26A4018ABE0D9AAE AC9DE720E7BB95B863133545A385FBB513671DB91ADD4DAF0F5169EDC2F1D16D 6A123A2BDB1F54C8335D810D23F6E633EB3B0222B274C6D4E70BF3AF7E5621C7 2182C847764C90160280D34F2C303C9C66A8A1890DAEDC5431D1051573288FDB 076709C47D7D5C604CC82EC211CCCF823FC5E3EF48D4AE05E9A2A46388A6685A B8A01589D4D6693FAB8C51416B19D36367184B68F61D03072D05678E2E637D2E CB73FCAB83A396CB61F317C8117116DBDA504A7CBDC4CA27A6F74E5D5195DAD4 AE1EDA4082801B071C7831A35B24F1FE25EF9E01757E891D159F56E493E7D875 7A06B225751A49363AD23CA9EBD8733859786EA2F9512DBAD7725F1F104E8019 183C017C34C13020A82B54A991211D4B13DE8CF319CBDEB6BBC862537D4FE1F1 D8FF65DCEF8FE0E8844635D5F33D08A7B20FCB5705D291424E5AF148539A557C 410814BCA9162596D9545F1A7F6EB951587F65FF90B48BEC590C01B8E6367702 D25F3B42CFC6C39A5248FB0F74FDD2DC027E7203F94AE019EE2CD064168795C0 0EC1DA60B043AA9DC85BD78C41F48F12D6184385981AD511C9DF16F3869D43B2 144992311CA216AC3707427C32217D1EB2ABD52D4BF1DAD4DBE9D28FCB23968C CDC7B6BD15328C8AAAA8F53ED7066D4BE592CC0DECEB1005EA8B58CA4A5DD27A 004D945AF211E06ADD099D855DACF25191FA8EEFE48B6ED8FED36E69735EEC43 843FA2282ACEC7B39A1178EEB049ACDB26FAA42CDC9D676693BEE3FF5BA870FA 6ED7D6ED3D1E18980A9DD6059A9E926B153A3F8F2CA1D098C9FC00530E42245F 94A889D1CD37DC369E29AF1EBF0841FED5917A2231A2C1C4D1F9112D3565C045 EE84EB32459AF8EDEA9C954DE80663DDC58950F1E61536774AE3AD6F5C30F6B6 7C4C267461B3E7F6EEEC56B247BBA75C28F8F17A1EEEA4B8CC2415690C94BEC1 F083276F8F305174E89F521B45F5578AE403510E4887EB258A36A9B7016775FE 2D6FA05936D31780FE90C2A45777914196DFE904046755472D56A2F02C61BA03 34231A227CAEC01AE8DC7B026CA5F46A69D16F4E0C66C8A296034DD8A1EEABA5 3557526380892C4EC52A9EAE48C4FA6F6B030AB8B5A3928215E75B088CD0E16E 8784EE7DC239E8F98E8EF834AB4D47D81ED4404B840D7610E44C27365BD2F545 435FF25C27F7E1879E29DCD7F0CB065427E03593049597E892ABF01057B36436 C7027A68F940E7EC3C8985F888BD526F29B6EFC3EB542FD71770E50F290DF576 4FDC418866BC89DD3149FCBED4FBAE7A9B9B5FFAAFC4C4DF36B41A8A420967EC D311147F0425EB5DAC7B6511C06549B74734082CEA069A6EC26763FB02C7E574 62944936FE49E56CCDF188494DE9EC77344675F89588C937D64158F4A251FD7A BA79E3F455D0E7E7C2E3E1811F6D24D0382CA5D8AC9D8C673D4AA5262792928D 4363CD0E0A46B6FB1E6905720D604484FF7D8189139524A925A6968226194DFD 15E5858F8080DBC2E6D7032BE11E36A6EAAE6808C83B463800883DFA88B2E37C 373940882FCD196EE2384AEB46B0C1B195E6B21D5EB596778F75D4E7DCA73A92 464FCAD3996EDCC24367896C8522FD6C90C3ADD55A3CA95E974C4E7C77932667 9EB9F7DCF9164BDBCADBCC44817E0BE3AA12C837B2512CF3959E3125010BD0B7 17B34A0297CFDE7C53E33750CF18D758BA61275A4DB1027CB0B6A4799DA7DDFA EBB35D398C593D8FDAD5FE94738363457370895F80B6798830AC4B462C2D6BDB E4BAC642A3DF32290D1CAA52F5BEC0D83582B773B765C8C7E0C25B8FB3E099C2 D90F77F7B1E4D6E29CFE162DC697D6DE4951B94F2EC2DDFDB007D4A019259F8B E4125041C354211A851A0E89EBDD645928C6F667828F625197090864F89B6FEB 2275FA7AD3A0957ADA5EDEE82239AD20DCC7219C321C84A373F330207173104E 628A0225BB7E0E0D0C313E7523B7A334F7DD2B2AE5DEE8EE00B4429649F63CC4 3CADA3C4392CE22FCCE7618320348352B15B3B6275C9BE926442F85D58D0CD56 E856BA43C9C59320998AE3ED437E8CFDC503F68A3E2CC4CAFC4075EC79A52042 D540FD1990F94CBA87BD2F2FCA133C9C21A75C927DDAD033726C99B9F6EC455D 4EC2E80907B5D570FC749778BB1940EC04B68AF3EF5E4558B3739577193FED1A 4383316890980231FEC823A85FC53D6CA6F1A74D2A4BA92428005C1E8284BD21 14A91FC5036A572C57FF8F3BB696C408CDC29F388109B3825526324CFF512D4C 33567E9B3E7E53B4B9D217853867BA57BC41702415E29C9A9EAA9609DB842CE6 4DF8662481375E798DEFA8A7594F2B6D86B0982633DAA67B28831853856E458E C6D8A878829E52A612BE51A9548D1DC167F88F2DEB6942DB13D31E008ACBFB3D 8FE74A081C937DF966B0C8B066C945A6894F44F7D07A381AD2A0E4D523E6F328 36C5BACB1CA1852414BC1668E1C9F360D8450E2A374143B60CEE9CFAAE21C960 9E12C5FC127D9A1EF3B3E6FFAC9A580290C0518E9C8A41BA5287B1E9128D4467 5A23AE9C0EE4383BD6880905C71BCBF98C55C33B51021029F40C79F2C7D190E3 F7A1F778A88C44400D2A4CDA364F0FBB42BEB6847004EC347214258772A3E0C9 B7E82E217E8D0AD005E4523FC5CBAAC5C955806B2AACCDB511AA1C9B23943BF7 3E8FB585011304C49E3690B27D0805F32D6A6C4D783A86F0FE4C91A26D6E1DAD 486FD183D671176B306501687C89F4E968D2DAB7AA5CB074236D21A0A4DBFA35 3EBD8B6BFA3A805EE48FDAF67AFCC8F875DB32299C7846529C4C2A7764050A61 1714291BBF8E98CE4EEBCFF4C44EFE0C304001BAD99258FA92849B5B841B0545 CE4FF28C9D5F0E3DDEEE292136A763890318846CEB1A21BE94F695377B15B9D4 6D582A108E5F37D659134CFBBFE4EC693EFCA846B95CB3BBE85E5B8CDE263F2D 909EB8EAD839EE07480827306F4C797BFB06FC84F729E88E43E9C6148329BC07 283E5AF4539F02D02FD98464F420D5BD6C79939BEA52DA143B2C70987DB444A5 279AD72588FE695CD3B3F75058C779A0494B8774225D4CB98C5367D4C7A46B75 3C52B43AFD72F9954395DDE2616068A36D169B370D27ADA49BD1F7228D75FF61 B4CF73726617B48100D7923B281ACE48C6D9931537CE9383E87339EA46C77012 8D9981D378AD22AF9E1DFA372899B934F9779CE21A23A424BDAB88229E7ABBA9 E0FB8B51F3163723D8CAD3B7A2C8F3919BC2B97CF89DFFFF37187DF1F962DA98 74BBF4AE147C06CC7631E7343DF7273A268E35F07E3A338F9B24C3F6030F537D F66514AAEAC77B506F51BB8877A862D1AF7FEF1CAD630967D92765B7679F50AA E5FCE7AC2B45046EEF2A8D5E63597828A73E25AF3230F5589759DC4B52262FE8 829DC708E008A45E4D76ACCC78D0748B38C657646BFD626AEDFCA5C05CC40580 E05D19CCB415EEB13A210547E421AEC857AAE869200179177B280AC826A62FA0 673C6D7DBEFCFF84EAFE5DF1FA7994657740DCB5C69CEF014AF3616ABACF5645 4FE7AFC41F71F46C1DD3AD12A176014CC6C34B9339C6ED189CBBBB2EF15DC9FD 7AAAE052015E86FEC925BEA60471DDCAC950AB309AD6C53CCCC362AF3FF38B66 C2B61EA64D1AA536A7559320E55A53EC4749AECCAA2810BD8BE36299BF0C2B92 524BC47B4E4AC2AB0ACE82AB36DF3D37F51319DC0B858AE274D08C6AA7D4CC1F 9DDE10A889D3D268EF56AEAE77751B15314EF627B1CC3E95D44A712B3ED7D16E EBBAB1D1992E6E540CDAAB0C599E008597B3F04B833917D2AECDCA27E921A6F8 7209B40E2457AB6CD3B5397C299A73272E05F67E142D7163410B8DB23488A570 F984D7EA858F1581678305088D7269306F23779AA5D27F2D2CA8CD1C927F93F3 D916E0055C9F71D2D7D82C81AA55CCCD1406D7D6BA69264AA5EFCCF47CDFDFED C7B238CA0F822461522AE265142B62EA247F437AE367ECBC794152E11929F23E 022C8570BC9BB9A409E7D0E5B4BB6AFE1E0E46CA1BAAD11BCD0152BAD10D7C88 FA69518BDEFB46805F96F942BE11A30B280B27290C8F9BEEE16DDC23BCF0457E 28F78953D54E56819EA8778167799AE747972817B06BDCF994E158BE866D2B9C 7B86E0343850848A403FD644454ED55AE834C1D28DFC5EF37BC37BDB9FA316CA 37AB5E809ABBD53E53C5C567A997283DDBB07C7F11A23F69BD8C8025EC072486 757AE6F0844856A5BBC30109332CC41D87B0477553F9D9E3B058AE002358907B 83DB394F20ED2CA84715DD47907F4726FAF5FB395654D7C3AA13184FB67BBD71 D2A0544EFA464AA8371A0A403A5A34754317499B0F72ADFCE5CC558A967A98CB B6999553EA24E5654EA9224BE04797D5BCBBBCAE04D86131D4F524FA0EDCB1A8 02ACDD3ACC6DA04C00B209795D7C4E1AE211B23BEEB7EF538244E43554689FC4 DD0164CAAC5066E981BA605E4879A17494C4D403C0F3E697963BDE36DDE849E9 90F9B2D4DE1F261F1ED1DBFE19D524BFAF6742E48C4C3F754132E8B83A1896CC D9671F2B2BDC2D8BCDF54977FE3D3292FD34B322319403A1D47294321E7F3E6E 15B987990730F26B5D62C5C0A93DEFE7D123131227D6BBE3EA02DF92792FECA4 1DAF321F111CBA2A7727D45D466DDFADFC56A38551B83FD963FBB6320E86AEF1 5AA8F52D426939039A6756E3B583191181D49160E6BC6785F3B2B639498953E1 DF4A03ABE015A928BB7ED0DA210A4332E501396C53371D1DF65853EB20F1C76D 8BC92A7889C4EB19D6C69E43E4390AB1DFBFFD5B1B6CE2A5290CF1D32D376CE6 4849C21780DEE1E224C35B24DAE494E2F0C462A88132419452D409C8FC688232 22B1E2F1713CA5DD87DCB2F194938738AB0A83637630C4E5CBC6E05FD05974AA 3CF57817C3D14B4C2ACDDF1337B058DA9F862697EA0D51AE37C1A69D95CC87F7 F76AF3803378FF23E4F65E3E921B7F56384367811F2D0D7085871BCDD81F0A73 08116F59460048CB94E9D965663DB0FFA91E11541D551C58A378D1A0562AF3ED 1342DDEDD2C22E76B6A0F3C2A28CEA2A6678B7C782C5F5B32A46CC4056D4C4A3 5CE2911172D63213AAC941D25AA7D3CC773352394A328774001B11125D9B9344 903913C1C5B7788C426BA9BA273B7089B7ECED64279536054330D8BB59A9B825 D38A8C8F7A02744A307E1E46E6953B60E76883279CD9EFB1CA76A9C74A92F402 E4D976F4F9394FD5817B7A90F8124F6680A007A1CAECE0A1702AAE213D3115A6 BA6979CF9C52F2F8DBCB3F736804B3DB738A9115B85DED0F983E84600822085E 8708E2980FF87BED45075081F252143D0616272C0CF2D41FEAA35044C0B4F03F 08D7EBDEB8430F03F6E686AF7484A571A4D2B54FA68CF8EAE8660C6D64E882FD A73E6B447EA5256481D64AA4580A26B0D7D5C8FBB35F70FEF60481EEBEC147EE 124EBCFC8F4B31D4E01949C50446DC998CBF0E7583DC6C1FB8C63D53F2F0D603 27D918A43889B26FA5AAE1CF6796ED1D1F8587192051A8F0EF1B19F731776884 4930FD8412CE76F7241681B69A44D26AF92FA2D9A9A0A323AAD9EEC5D96DBF25 A9A73242879E71D1E3D281F1A2700C34B0FA7F5ECEA93F121F708DAC6281C455 6145756FABBEB495CA19208A1BDED35EA976B2BF9E47A3C381B20F2E591D0287 A88156F4FDCA551886701BBB96611416E8942FADAAEEBD6C5F277E54BF5B4999 89CA4A466807CF1C675B70AB5C7B7DB43E1138EA6A4AA88A5EFF6EA162090F73 6A5934BF5623B02DF6B5BF23BBB1F105216B810C589F780DAC5810813F167551 2E5554B381C09C9C7BCEB6AD230BA8AB662D77932C78B2F623E30E9AB4DAB828 43A56ED4E6F0FAC532A7F72842D04A8813A843C55A6D6045C2F9A7FCEFCDF807 0FC4CFAB0A620BD3F9B1DEDEB7936275004541BB689BA641F3EE1D33FD2FC6B6 06B81EB655F97CAEC5A3EBBDBCFECCC13C206A3B68FE308590B10D8F5E595412 EB375902A7E332577B5845059E9EF67E0CD5E0A133D6412338B93DEC579521D9 444391880EE84554E83EB7EE66E74DA29D673466C4C81B2A03E9AAE6FCE57086 8197B451F352740B1C76A1FFC887295288DE6BA3EA6EBAB13C4D5C2EA9001342 2DD59866257E8A6A5794C5B047C01397F22905492AA99DD556F14B572C7FA316 A69604734A1C8AB83E329DED857E776B986695F8F3570A6E98828FF0C002FBB9 9C583425189355E32F6B81E42EEF5F63CC1BC016E36358799AB3A81034354370 168EB462F324FBCAD4847CDA598C290D33F2D1360EC2806D9DE2519CA5AC9EFF 28CBC97242F99DBE795100B68F236F5DB8829CB662CD58CD49011FB49FBF5D9F 4D97C7D0E9552F0B5CD108EB3A99A7BC24987859754990EC88BFDE12BBC16782 CAD8B68921FF64F2ABB40B97CF91670E62F8A9252AF70797B4CE55DEF87F397F F2583DBBC26CDC2AEDD5B7B40C4295D304A812898489F9420D34F3D011F3003A 551AC665F7252EF4A99357A3CAF504B579729CBAD556466A43FD7B442637DB47 03BF0322421E0CBB662A85A1B80AC488BD997875FE63EF99DDA8A75A3D1F9085 1DF3A74DDE74429765256E110404A5EA631FB1BCE2D08B7CAAEC2EFF7AC93BEC 90C678B7CCE58340134101B66456AD43506B385879712F9A7376F8A6233EB3CA A3426328DDC3CEFAEAB54FC98932A145D22F83D5FAB7AD489DD3C6E893517E22 FA46C7E1F158EE0A8FE5BF6328806986998CA188AD0927EBCB752448D52A4954 BE0CE22C540738D7FF72DCE9FC82036B1986BAC55B70E926FD5A4163AD52DDE6 9A9B2A049414F82E64A43081934AF0B8D16BAAEA25BED1B59C960576CA24218F A5EF3685B5B735E44446A1EC30B196C42B27A7FB99644C0E7ADAB0494C12001F 4E3037E6714C4C7B6D0388E23A583F440E075B7938035CF8C9240C8A27EE15AB DE2C0D76374D5F45B3AEAF3D72F1B1DE8532F18C84F427B844ADCB1ECAE89AB2 494DD97807975B1A973C981FB1F98F2064A16C771D9D4D2715AB186107B49474 465CAAF4373583C47E1E3B7544EE9E740D81C14E4FAA37EBABD6868F73F10094 5EC742619708113937A5872A424EC1F150BF17537C6C634499DA5BB9A754771D 5404F45313E216F7C76B4800C4350C88E2815CE257B4880668DB81B1A19D2277 BCBF31E13EE15521CE2F6AA4D3356B942D0D97116118D209E46CE4C0A4CB28E1 472FCDFEBBB1C0D69022282B576043C94B73283A1CD5D51BB814971E126F607D 4379A99F5D400F9DA92C652E95F2C086059D45C1A9D61D337243FC8F68A6E7D9 998DDEF398B5B6FE039F282AE9CC78E56A698CAF0936408225317BF356A01953 7689803956281A0D716EE27E372E9A8E262E6E850FB2D37A45C79D860E198702 FED015D3CAE03F7B2C6DE147A415D4A673420A070128FCE73377364776188192 0DEE46AD24F2A1E31843434810D2423769E80C57C16B51AD9B94AB4A0EA4D87E B50A5C6AD8E49E3808487410D52362B94CE387D08B22727187F1A396C94EE719 E56D5714DAC42693A17285 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMR10 %!PS-AdobeFont-1.1: CMR10 1.00B %%CreationDate: 1992 Feb 19 19:54:52 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.00B) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMR10) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle 0 def /isFixedPitch false def end readonly def /FontName /CMR10 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 19 /acute put dup 44 /comma put dup 45 /hyphen put dup 46 /period put dup 48 /zero put dup 49 /one put dup 50 /two put dup 51 /three put dup 52 /four put dup 54 /six put dup 55 /seven put dup 56 /eight put dup 57 /nine put dup 58 /colon put dup 65 /A put dup 66 /B put dup 67 /C put dup 68 /D put dup 69 /E put dup 70 /F put dup 71 /G put dup 72 /H put dup 73 /I put dup 74 /J put dup 76 /L put dup 77 /M put dup 78 /N put dup 80 /P put dup 82 /R put dup 83 /S put dup 84 /T put dup 85 /U put dup 86 /V put dup 87 /W put dup 91 /bracketleft put dup 93 /bracketright put dup 97 /a put dup 98 /b put dup 99 /c put dup 100 /d put dup 101 /e put dup 102 /f put dup 103 /g put dup 104 /h put dup 105 /i put dup 107 /k put dup 108 /l put dup 109 /m put dup 110 /n put dup 111 /o put dup 112 /p put dup 113 /q put dup 114 /r put dup 115 /s put dup 116 /t put dup 117 /u put dup 118 /v put dup 121 /y put dup 122 /z put readonly def /FontBBox{-251 -250 1009 969}readonly def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8 2BDBF16FBC7512FAA308A093FE5CF7158F1163BC1F3352E22A1452E73FECA8A4 87100FB1FFC4C8AF409B2067537220E605DA0852CA49839E1386AF9D7A1A455F D1F017CE45884D76EF2CB9BC5821FD25365DDEA6E45F332B5F68A44AD8A530F0 92A36FAC8D27F9087AFEEA2096F839A2BC4B937F24E080EF7C0F9374A18D565C 295A05210DB96A23175AC59A9BD0147A310EF49C551A417E0A22703F94FF7B75 409A5D417DA6730A69E310FA6A4229FC7E4F620B0FC4C63C50E99E179EB51E4C 4BC45217722F1E8E40F1E1428E792EAFE05C5A50D38C52114DFCD24D54027CBF 2512DD116F0463DE4052A7AD53B641A27E81E481947884CE35661B49153FA19E 0A2A860C7B61558671303DE6AE06A80E4E450E17067676E6BBB42A9A24ACBC3E B0CA7B7A3BFEA84FED39CCFB6D545BB2BCC49E5E16976407AB9D94556CD4F008 24EF579B6800B6DC3AAF840B3FC6822872368E3B4274DD06CA36AF8F6346C11B 43C772CC242F3B212C4BD7018D71A1A74C9A94ED0093A5FB6557F4E0751047AF D72098ECA301B8AE68110F983796E581F106144951DF5B750432A230FDA3B575 5A38B5E7972AABC12306A01A99FCF8189D71B8DBF49550BAEA9CF1B97CBFC7CC 96498ECC938B1A1710B670657DE923A659DB8757147B140A48067328E7E3F9C3 7D1888B284904301450CE0BC15EEEA00E48CCD6388F3FC3BEFD8D9C400015B65 0F2F536D035626B1FF0A69D732C7A1836D635C30C06BED4327737029E5BA5830 B9E88A4024C3326AD2F34F47B54739B48825AD6699F7D117EA4C4AEC4440BF6D AA0099DEFD326235965C63647921828BF269ECC87A2B1C8CAD6C78B6E561B007 97BE2BC7CA32B4534075F6491BE959D1F635463E71679E527F4F456F774B2AF8 FEF3D8C63B283796A9AD847424B4E6508546C36223A3B17EB82A56592F27FC27 F1D49D5FF4BBC0E16231807AF7E195AA7D0D01C7566243448B222D57B811EAE6 DE9370F84E207DC9BEC731AD6040FD9B804FA14CA264B73136F9AF34390319F6 A543D5D4D7FDDDF2F76651E557683614521110DEC1CCAC426117DDA7D6CF1B8B 7879B21FDC78BAB3C944BCDCD6A65B67F3692F0A8D5E36FB783A63D4FBC9842E 2CBC2720A7206F42A99AEC79FBBA92A27965AF40A71E05E4BA8D7FC58C828226 7A8B47241F73590CE626EDA930A1D18D758636250D9D6A09E133378CD725F586 F40320EF186DDF87AF8C2F5470EADFF39C60384EB4DD859794CDD6E4AA8E8A7A 18E246579B5FD876A7C0AFB4D935B09F36A7441292FF926171B0E25FC7EA594E 01E0E7CEE1D3F4653DF435FA0EA881D33196ABE2331A480D3CBD2ABD46DA989D 77E7F46800CFD8E673E9706E2EC4109E8FCBFC24599C4A8C11A86C3A52754750 BFDBDCB62F33EA6F74E1EA98EFADBABBE2D7EB6B950A9A1EF9C687C3DF7D7F37 7200777915059C4C51A7312BAD6086E201EDF4E0FD8F69A8FDD4030A9F7FBB61 505DF1AEAE7FD7AF2F2D88EDF90670519FC2E69ED8A26D776825CB278DBE285E 67328F96BE577CC30B6CE0F7C95A21C42722EFEC1ED1AC9ACCA535F075002CDF E2F1F0EEB3CE61801ED1472985157D55650E78439A7A3848A6E94CF6EC9031D8 38A86FA99CEB278A8F041FD3466BD7C2886D98E3499C15F3C1C75BF64257AF87 ADD3CBB1BADE7ACEE2D1639B0EB59090A716EFB3B4512D2655783D016CB9B8CF 250A597961B66368329962DE35FC12D3BDC0B633EFD4A903320A04950C19F7DE 6F49C5825EE2174E2DB99DAE9D0236816D039B2B1197EC33839378A09A4EAA81 4E1A6EFC42992837B7E656A992CBE1451040716CBBC4749F6ACB90C2B1B4EB9C B442630B5130416B9902822B62177F7A0396EA4132CE222BF11B172733FDF84E 0F33A2EDCE45788DC95FB93455C90F77A3654A84EDAA85B9D120FF580CDF8A10 9F06CDF2E159EB2C553CFB252F8B3AA7159EF01BFD0C5AD351961769D5FC0370 4F26B29605160B563165660D7B6078C7F450DAB3F60B6188558BA61980714DD0 B453A47D0889C00ABFEBBA522797BC51AFB828DBE0C8DFA45ADE77FA6AD74D59 82CB77E9A0E37AF5E9937EDFE0952134DD6E653C6B5CBB76C8EC0481206D2DB0 8F16F3D34A2FD54083842BBE00906A93415C6553AB46244851A09084E49C5355 F2BE4E0462D0BC9CDCC657CD532BC6027860711B45BAD931651A4B1EFE4B978A A590E1B7B9092BF941A72AF9EA63FEF53C89D9A7A1AFFB7E5D7787892D8DE1BB D7947B768E48294FF561DFEFA4E0F700C53563B7E3074D2B7E0B688064E00BBD 0E8FADFC6DA474B23CB8650C71D767B6171730A230CB143347694E144EE25ADB C8563FFE5FB7E87D3871F094CDAF1D7AA84ED63E39B3B2AFA2BAAE20500B7A49 EB84D1B6A9EA7A8B3E7B8E9E36A434FAC6E77F6A093DDE3ACB0F7F154C61EE60 7CD7CBF00200135C73039E7C7EA6C44C0588B7B34A424F74F6633E1D3E9CD129 527F499DC80D4DD574DEB2FAC61EDAD79277B6021BBDC28F323C2D4A90D787E9 DEB75985A30E2CA52C47B124BCED5082E767E118552C2012702F3A316FEC28B8 B8F57088220B9492BC64B1780C9EDD89AD4484A085DF352F9E15B17BE658E1E5 AE5E9F833237495CA7E554C19C7D752A88590E52A099842CE443680483EC5A26 C39E80517E785E410B8E792A7F54971C21740A1F3070E7134273892FCBD76335 8E9433ED9DD9F286D5B04CEBBF93D7C74FB1F9C963BFDE4E99BCA361CA38E0BF 076955D5C4EA91B7490E7684EE27C7B1D6230DFC5608F71C2241AC16D9B9F4AC 9A99A128E31FE75457FBBF13B95365BB829997DE10F1A097A54BDAB552F856D4 FE3174AB8D8BC323DAC150F4E437ACEEDA21F65337BA6C980D98A0BBE430E211 57120F58879C291CE2AFAFEE22C8550EEA4317D8BF42C7191DF3DF219E8DC677 86ABE1E560161799DDD36D26F2C8024B2C6B0B19C66EBF69556A15110A53BBB0 86E792DB1482C20AA4F4B2DFDC4C4A154F19D4F3CADF269344880FADAF534E1D 7F58902D6F5F8A887ADBCF9F1ECAC5CDC42F0B66872238C3CE0F137832F5CCE0 5E82BB6EA0848D162522639DA8CB4D773040E477AEB2F29901EA3CB6D7AECBE4 0507B6541BFAB52E461437EE6B7FD32989D9C32B9A32318ECABF946B7CF8A2B7 1BD5BE0CBCFE383A1FF8EF57D25077A1A5A0F9961FC020C5E31A9E5FDC55532D 9B557BEFF71D447913413D29E16AD6036441A26837D1C0D43BBBAE8108C652FD ABC702ED348EA26F19F8DDB04668FB5E9F38E591CBA3D349EA6B10B0EE4E5FA8 43B1C5C809D3E98D7B00FF908073AD97E86EBA3B40FD06093672CCDDBE1B54FF DBE133FFD7BD771569E35C4FD26A2148E0C365947B1A8AB5D9A7B701D7EC4138 7A61CF67720E00ECDE2214768D0AF847B05D89F4C6AD6453A2C758AA834309D0 278913E12A354B3AF0C8160DC2B6D34063774A81F6616FBDAF241DB4BF273F31 AC7E7C426B074F713D1A839EF5F3C7FBE139D6BB3F3DDCECEA4516961DCD1E19 52AA69594BB6BD02CB6D9FAC36C679B925439CAD35F2B5B51D14499E4FECC435 A6096CC07FA90E3C00A477197B4A53C9BD0B533E169539ABE13EBB9E95FA934B 565C10193C7664F6D8C8C1EB60700B40DA4B4D078C0B6B12FB49137C0B1B8EEB 0E687243191F53D46934BCCDA2F2DA6D5DBA3F57F696DFC8CA6845BF4CB29E39 E5101E0B74D4A86F7AEFDA2DF9427F6A71166A44910410862080865E6B75A3CB C00884B6173D11647CF884EB8D92C0F245B258F17AAE6928F47BEC65DC3495B6 15E1CBFD7E9AC85954F761E1B2C90D55B097082AE2E3E6593B2A953DBEF6BC42 E00CC8F58B8569B0072EC3C22F5BC1EA2FE954E543C0E5CE92B9820813F83D23 5B6F7D55F00E5047A2B0F0010C092F67AC20E49F7D7A6F08695371750382CD80 D97F79030CDF8AF17DEF271E8FDABCE0CC778A5C66436FB004DF15EE74F8B568 968A4CE41BFA824D1424ADC23735CEC288D6051B6BEEBE755EAAFBE752E22611 4D234BF724934E31AB5BD8C0F01E5881117F45077E364DD35C7559367A5B62F8 DC1A9CF5332C657E3DE43664B4F29452A1B4F6474B7D476D3B28016B7D29A68D 2670977A7387662554116F0DDD9AD9F79BF89715DF72D89CDBE49CE2BAAD588E D424216AC3A5AEF4689D4663D5B2670815F2873FA2FB4C83D34F54D7C3C6E862 1CE495A264522DADF3ABE1E62EC082308FFF56BC98AB8D488425E803E42900B7 4AD5C032BF8E2844C938E998C0A2862710F5253CB76565834C06B629D37633CA FEA16577EE093CB2360CF7CCC347EB5D8AD80BB0E9BADBFC9C14747629826572 25793EF182AC71760282C5CF198DE745810BF8DC90CB5C5E0FCB4218A787BE57 7E1D44FBBD17CEF7478B263D1D3538DB7624B7C72244B8EEABCA8C6A89B276B7 42AFBA78CD3774318AE55E403677AE50826225A83FCCF34E177132E5864D396B 675F1A408684F38ACC6BF4D9D32B30088BB983F6811CB761E16742E8F7798ED2 2617A34CC8CE92A0372F5122EBC23DCCAA2E10CC33F091B6F3EE126E18244170 EBE43ED76D6A126F903ECE5D1CCE7346927FF08CD2B52F12015DC7FCEF3AA9B0 506621A2343F3D39AD3BF804055BF3FB81632C60F5CB91F788D4ED11835A3A90 B277C1C246E04342B2E9DED6823C9F74181EA2123B5FE60FBDB2F039B2B43E97 8EAF2B4430D766C1E26864DE32ED13EEB7B4D6C0306C430086976C3326B01780 3B9D136577300DFCA2116A4AA203FB9DB330651688B18830E80CD327C704E20F FF51628055B42E325E4E107224B5952BBADE1A5CE9A8729BBE8C19A497983FA4 3AE2ABDCFC537FF8A8BE6AD9341A8181F17387D530D21247AD00ACD8442E032F 1674C57B23A039BF841DFB52D7C1FE58926BF316D3B79C185C7B3DCF2BBCADC9 88639A8E3C340533FA0B0816CC433DC5B53211C547AAB117BC3A9CC7535ED330 967C8B413DD1B15839788751689446A725956238619156B5102E3A5CAF797C5E B91F6251228FE4AB2E820938A63EA9B04D58358129A6191F9E49098CAA0C27F5 F83B4EB5B9CADD7DD449D485CCFBAD56BE044C30A573A6D6A522DBD6C36D6760 DA42D1307A099A8ADFEF4A5245E98D65A94592FE55CC3EA04AA74CD114683567 17C09141054EE6C50A47F416B02B61A689313C65368C8104CE5445D49382067E 4BA1A448327F122464ED810FCE5AF91958818CE9E899877E7FB6236277F1C270 17A2FB0C555E375EDD850A57CA6F72FE0C02ADA778FF3DF6FEEED89F0FB2250F 7F8DF4210A5CE2408138944280CE914399F107141E9214B4A6D5A614FE204ADC E01FCB3FAB6775AA066F0170BDF313F14BEDF0D77C426D211F40C83416C08487 951B3FAFF82E06F62CCDA048A8F2F95A13912343E5D7A47D29902185F8121D76 FF7C24AD5925218DCC35041B08363340D100297ED9C7692952A08EB48B845920 1EF484C07624B0A16F60833DF3CFF12766FBDAF0C61CFB206585C6179043263E 422EE18825270CDEFAB25A4E52A5E2FED15B9A32C3434650E0B2D0B74C1BE66B 41C7CF83134D16C3AC4975E1718D7217FF9FEEC95D5F64E730093E2331F307EE 5A203983EB20F4F996E7A397A65C08885CC521FA082E2B72E814617AE30442FB DE0E03960A998BB21D219552C3298D7F0A037FA12EB6957D806C7074B7F780BF BE8E0948118B53667982889657F315634C98B06E6178E89EBDE2BA85674A078D 3010992E8C117F24D3D8EFE48C8E3EA537FAAFFCB73FC43A5D038D21DA1AD732 A2690C9D45AC226BC1A2367B905E7E575EF066721B5ED743D033E74C5F10CD98 4E8DBD61394E90536F4030291E26E4768969F659DE351A686D3234D0BA6EC0BB 5D0DC6CC60BB3E509AE6386C93FB6E70E6FBDAD534608D677DEEF6E46644C274 84E6A82C8AD02A3C0D809FA37EED26EC0ADFC1E7E32FFEFBA9F3ACD424106C2A 7E65B4F2300FBBA7A045D14D9C25F8B1FEF3CBA341A4063C06381F422FB06E6F F60BDEBF899CC3F88BF3BE58A66663615AC164EEDB78457E749C016951B23107 A41D739151ACB5E7AA9D394B57B9C4ABCD3C62C9DF6D2A1C61F4CC137476B471 660666A65E1F8568667721F91C731FC448383BFA9E83A6764DA9BF158635E0B8 EE5D2C91A8523551E64EF24A7E827B8744615011B5C770089079E743D2542565 63EE35D3DFEADC69F302C94202B7657D7F45B9A5729589E5C7F978838AAB3DC8 EA2E847B8DE0DD01B95E879688D1CC6EA1EE574C824BBF1FFC45459BE288575F 4767400A162534F9CF82803CEAAE771123B832C955E1CBF3975BA87900FF0DAC F48E4A325E83DCAD5710E87B674D80CED7CAAD00761CD5D4D1E6F076829A0177 6C8EB119BB95ECC2908F37F81B52F367B35F546DBD0B125CCF80F08D29A55C0C 347FF08FDC14312A40D952C5F22D59D3022E864C5D3BDBF98E84ED17AA99B2F7 F9868D2C92FBE8B6846D3AA2C70AD8C5C9F3B802FF653443E8E3A98ECC6BA841 47D9CFB6291E7C9D13959D119DD044F1D6BBC67ED3D3D8958DEAFCE60F492B94 42F3AEB683069DB87AF213A2C78E3241BFD757A98FFE63D884875029CBC8DBC9 21933CE69056638EC9D5D4AA1E378AEDA6BB6D097BF5A4751198336E57AC09CE 8510B17D19E5B14419A39BE67CE61E30D5DB0E0B31E55B5CADD001DCF9517506 53A4B19FB64FC818EFBEA92A7D5F87D27B3F0D25AE8C71240E5A86300BD608E5 15274D3512510C8602C6F441198694A4942CBDDA74DFE38CBB8BA5AF29729B6F 4F2EF72CA3AE78D05AD695282A697358A1457BCCD38453B040C190C09FCFF8F2 C276064C683B1B310BCD76C2AF30997E820F7AA707C94EDAC59F1BF20291F4A9 6429F589FD141B30119CE89A181A15261C1B6CDDA1843CFF9C9018AFB18B4BE3 76BCBD3A1A65A2F7A2E937F2A36C3CC6B74F2C571A13497C8ACE979E2EB44549 FF80F909A7BB6901B1870A5FAC26A966EC4AB883BB899436261FBD293BBCF3BA BF7A26834CDE19DCACA579AC34657837FD9E9A322249DCC33CCC9CC5D594E43D 2529C48EBAAB298F2B40A4E3756451A79F242B77C68F3EF91066A0187A554FDF 3DFD6238668C7C60D5F92CC2DB6465BBEF162B4AA10F7A172D51F8CE6F3D63D9 DED846D567F03683088613E113BB08A1CB6588C6147410847F4518220A81C4CC 98FA4796E77D74087197037C355EEB8B094E449E64CA8603A3E6FD004E176EC9 C0463BB13CE25B4CB491452404C507D73F45339E234B78621D200890B1BEDFC3 28832D023F114B0B47AF23C6DD95C129EBD69C610EA7E3AE03088D4F3E723EE8 4D00AFF562B09DDCB0C0FBD4226283DBC5353BC3FC6098B5CA7C4962DD715A06 6F6723E54986108DFE0DA6ADEC718E2F0793379D31ACBAEF2AA0F4ACAB237905 6A694478F80F4FD191F1BBE6ED8C6C46BEBDC3DC79C48F81ABD5EC48CF4B2A9C E88A0456AC4F19D517298B3528E9AEA7AFFE242F7F81E96D52CC58C32976F254 839C5D82E92AD0555845B78110CCC5DC644B9E710662C1437B23D740308D753D AE83FACB33EB7403C42659C100D1C86E6F55852D8CD7AA775E14DBB245C7EB13 84ECA64C971059D112B3848FD37349B69361D10C3FE03DE0490F7D6D92017D62 81B8052A540E3D7309834CD26346DD43D41AE933EC9BFE99C4F9A1548004FA13 752C80A02BE1D03B98AAB1D24015AC2D2D56FF1CCD85FED6807D4B9CEC0C6FBC B733207E8B0850A57FCEF8E35FD49230CB461BDF6EF22152E2CEA85A6BB11BCE 04F845B9FB8FFFF20E97A665F0D373C52361B49E776A03A9275D03992793754F 7BC817919FFF8813417E932FE5DA14DC47E8217B4433D444C53B8DD82E7E81AB 3855F4A3798810537CE0D044531BBE2C7D04B6808C090DCE8D2DCBBCEF6C20F0 48179633E4ADD844FEC653F165AAB5501BDD09FBB4C88FA05DDCD73E7B88B7BF A91A4B15C438A1965805FBA8D7D39B4DBC3C93520C5ED9168AA012AD986BC200 13C84D2137C58119B465B995A01D7EC52C1C2B0288951F359186339FC36FD359 3DF8CF8DE25FADDADFB6D7D47B9184B430CB12EE28282701541427ABC79CD44B E0B388EF6625B2E7A1C3F3304CB32D75E9C5C00D7E9FE97551C5F475B8B999F9 69CB694FDD258C2F7031D0B009FD88565F6A91F7299FBD4E2B6002DDC39F76A5 4755F47947D1AA57C26ACE06B615D1A55A76484C3F8DFEFDAB701A548B4A7E11 7960B9D522F9A34B01FA6EF9F16FAFA3C152D094B9D6A8E91CD054F574C0F14A F0F8EE43471248D9CC18F3FF8A1143FD73E02B7229EB318F432C068603582093 951E72BBD26637D34F52B1C3E0597329354DF1D646DE1574D2CDF927BB258868 450809B35561BFE9E09CB2EC009069A2C08FD83A0FBF909F5F68E654CBC6C0E7 2B88FA0B711199E64EF56C4B603AAF41170FA8910E28E25C5BC86C55084EBD29 9AAA0D34F6353057B0ED0D6E43BBC740B8EA003551B22AB7F3E3BCF60BCFAF46 D66A1D3B784DBCE9B7A73C581A411F025246AFA227F16D4EB3CFA71C5AAB32DF 470B2A07EA93267B8BA6EF6711DC25780F911E7F5370680A923613815718DB60 0A2ED9D860B2093B9BBFD0ABB7037EDB11DDD56122DEACA14802D0CB5575D6B5 A0F647487AC3180F49E90E96B94A70861D3ACA3B371A0ED16FEA7B7E92A6AD8A 8CECAE3FB6F32FDE4B74020D19048A0E69F29D355F4D8899D1A9196210D4DF30 D8F6DF3494353492BC97A194BFD3B5BDFCF89D682A4B643EF2B0E7F1BFE3594F 7EE03F4A0210D97CB962D8D87D71921C24122AF3CCDB2141CC50774181E70FF3 336426A22810F3F00A9884637026B60EC60A2FAD4DB81D13B66A7B5643B37DD3 AA54E34073F2FB07C38BC7FF0439C12E3E2306D27502B9D3A6B16E8D147BDD1B 22C3EFDC78E3FAB6B256CACEEDB23E157EFD88788F09DB34124F6C172F528CDF 0792CE5F6F7FDFEFF4BE28817E1966748F803BA05A2DB30925A743357EACE7FB 0BC350DA0C3C628BF5DC2FE5CF2A241817F15213FD0C97C6BAC0767BF575A4A9 06A8BB75EFDC44113F77B813D99AF052BB8E6661BB0921DF9A714397A62BF58F 2F6B29F75006D87D8DA710EA4D1C6C1466D0B994D0C926CCDFCB10E84C92E752 61767F4628047D9EBD6D0337FE5D13D85078BD6A3BFA9FDF1E086DE7813AF10F ED764EA2C41C9D60E0AFCD77B30B83F0CD9BF320F06F9ECF232B03951531CAA1 E94C410163CBFDB841931DEA97A866104C8CF220B7526BBC3E0AFB0AF7FCCDF1 637EFCFCA401974E031E161AEF8756776BA669CA14DC407183115DD116999407 1858052EB7F004E6781C40844204A8E96B416A80B7A642DA4AF4D35B13873CD0 DD4A5852436A655BB871662F955934D350308864044EC2964AD6F4DA3EA122AE 7D1B6C3BD6DD1D64A16ADF0FBD07102B62B70C8608DBA5D106D47DF04631DFEC 52B7AC0382B63D33A306AD03E6494117667005D46FB0A284BB262CFE949D3C36 2FA67DE06CB1FCA35EB0F73BDE141BD0E6887181F707F3F6C655B84BE2ECD90B 90187E4B947EE8683A5EBAEED87C6E79AA144F0B0D2763993496CEE99ADA2955 85312E5B69845DCA4AA3945964715F2807E051890815610F97906CFCCFE2AB64 29EC6B29B208D587348D226C805BCB06EB7DD6DE502688C46EC34BD0E1E7DB68 8F2FEE3D4FFF7DA1C9EA6169F59362F1D771342E19629E4F5E031DDE78B7BC30 6608A07F23633DE2949EEAF97019FEB3059584804B1F3B544175A803D25192B3 66C83A05E97E2E97E06AA3C1722033125A77C6D4E8BF374998B74752F90CECF6 6EC246D1401956D9C61B16AF6409C9D3D90DE99ADAC8F23EA8CA6477A3670BA3 71B6630EF2B14A24F2434934E82B93262535FCEDD865A1ED8FAE3742215F2DA8 4F557A4CC829F27CB3097D7893EA6849A1DA609D7502349CA4A70657367F454C 73BB327F4A6BCB1707EA272D5502CE5396AC84083C6FD7B010249E71E08EF105 1866A7AFE3C12B4E71921699576662CE637B683CE27441181FC2FF232D0194E7 9E7B890AFB3C0A4528BEEF64B2F07160205C7750D67D71936E2ABDDE55F90665 9BCC5C30AF41D4BAA708D87633B47B919C38196C5578F10989FFEA8A48D83833 91F02FCEE92E1F14C573E7D243A1E784131846165CAE27E5872DE2957F463CE9 D658E8E55856CF218F0E68B9BAD5B2AEE61EDB14BC67F129533DCC3E0E8BABFA 2326FFBE4E6428A152931DB15D7A52B99E8002922FC72C728E64BE687E52B152 78CFF6C9A21A3A2A5FFC4B724CB5FD4FBCD82575CC227B41BCABD4B0E094CC15 86EDD81C6B089721EE0FB355805CDE94BDFFF50045929716B13A3C6526678BE3 BCD2911564B9B91B3949C0880C9C4C85A963BC03393658BC2FD41532DE4BBB58 B2F7A4E06A18B9A29DB4F1714AADB87A8BE111CCBE1EC08E9F3C81064ABA99DA 21116E92A2E0A317E325FB440FD5AD89EBDFE2E1DC6C880892A570C02BFF5AA1 F58DB610FEAA3AFE3E38DAFE5E6BACDBADE97F4DC7DAF1EC88F809CC3FDA0361 BFD38D3EF34D8C0C1A97A635256855634554F9C58BCCD06CFAC5311F2C8E6E60 397E68E7CA3CCD673F571C66EC8B0E4A3AD0052DFF546E5D5AB380A20A66A7F0 C62359A15C7FE2FE8A785C63162D6E841029A14683FDB7B9B47452BF42726396 167A0143B46B781449943C995688842E6FA7C6CDF58220477AFBA34EB3FB5E8E EE77CA5B3D34745176B942A822F015BDB41A9506633583C6B0B65447DD4AB2DF 39DDE55C223740B494EA544AF0514C37F6DD527A772C7E26B465DA1EADF09B43 70E5773F56C83E43DBCE08B6C6992D331D1E37181F946FB212E658F00B7BFEF8 D754BFAE18A1F3BEC2E2D3BF99CB78C92302B3F1FF1A742C1CC9D4713AB79388 48C4EE918BCC1363AC8A77BBD61B283EB9DFB5974BEC0DD290381C581F36CE69 37973E170BD36AF717CF6C8DE7563A83A3B264307CB9064E3B720BA574D5F881 DB84979D1C3FC328981CDC8B818F5A067B14327EAE4B0999D4EA00AED5A37C10 B54C14FAD01E93EEF7F685FF9998366D39DE9AB4B60A505511353F35A71EFA98 EED3958326B3ED1E5DF8C5A44AEB1119299DF42A640E7C60948B5ADC55D1CB1C C46C9A91042D5849218E3A92855453198D75B3CFFE6DF1CB9494D1E6CBC9B101 34D4031703991B14F786A69AF98C14D61B14E82D02BAC6B07DC16A6ADAFB0BB7 0F056FFF233FB91567CF3A5ED0C086B28F1559F5A03FF1478FBD925353B97C02 77FE989DAC61B8355849869093BFA005A35F4DBFF63F46EFE1C310AECA58B406 0096E8599172702106AFE754102ED73AE69743F5DEBEABD0441451F9CF49EC4F 14B02517DCC67C888E765EF7E85C0E242FD1ECF7477F3765BD118A49C9E21291 70243FBFE742EACDA396EB022A141ED9D19C332843877EC1F2213F7DFF7E3FDC 78A77A0A8975D534230FF771F7D129B40F424CA7F314E4C60B2176BCE18F104F C8065D24DBF494A09A7A408A3A6BF8D158F536866F0D0A2B7CD85CD036BDA3C4 3D40A84BEA6862F1F215C0409A6B2AEB9F1C4916AC219A385B5B9BBC7415577C E516F2DD159C84D9B9640A8C797FD389840654271DE3B27AD1B2A922558553FB 013A059583F03D688F39D520BC21A716D8655932AD7BA80551E35D64BE49DB16 DA5670751C13A36E125B1DA49CAB4FB900ADED3A6417B336B3A1031DB311E22A E824E8285FED6B0B402D504BDA0C65C396E4442F05A130F52BC108D70D56E6C4 BDF4D3A0B46553D37E222C1A86EB5B808B9DA18A1036AB83FBE00199554A31E9 8A6B62C57B793292E2DE2F26DF43221D6FD4A19006EAD3257B6CC2A114D3E04A 4CC9B7940D46B395F8DF41F10789796A5DFCFF7937A2E6F13A173DAA3BD08862 9D4C72F142BF6DC0263E91B58FE0B27EED1DA75CC12AADDC03EFC2E1F3061677 AB3A0017B846620ECE074906A93A0AADCC981B4A21C9276BE6F7A14E238BFFD3 1D9485D00272C4A574F97457B16FFEFA936D0541C7114EAE841B435EAAF0DCB7 42146E75E02D14111CA65CD2199844FC92323D158DE5E3BBEF161C11715F16D1 78D3E350D6252C5E24956D31A95FB57E5D1A14161669FCD4063935A898D04C4D F033A51E9AF5C1447AE97854A04C25145D0CA93B943F35E92ECE79FD0B925416 D66A1B943BD630728B733AA23F4C6553BBAAEE39B67F29235C21CD58E9AA37B6 A43130A8FA7E44F20844B92F71119682DFB201633B8F52D63F01D1C6E9550068 291809E2E8FC5D6111DEEB480F94F62847919F8F6B180AF217A7192C31A9CEA6 D2D6F266D8B28DE3A2990006B19DB70603A309FF883AB31A062D1A188B9227E4 894303C30F131911D68983B9E64DC9C4579F1E26D40BC60360D0E7B0B247A592 FDBE87A4D18528A4B66886C3D97476B580C09C722908F2970490543710F05E72 0332877E1F628011D63304BCE453C648EA9CA572D42BE6B5DCB09AE24497B41D B25FD5DD6E2BDF480FE443F0F5014980384C5BA42804BCD1528D7DA9381E20FC 0332CB9E3C4EE29EA97BC3D91086CE363CBA721BFA9CAF5382E2D3895F7E12A0 47F61AB0D5F233CFEC3513EB115187D2A26C16607CBD6ACAF6CCE84CF5D4E73E 6092F4F7EA63F955ED2D89FB150F140B598663ACF94B8635EF04D5561AFAB86D 2255DF3B2A976F18C1CA4912EBFCBCD33BA284C7974A260DB5E21577D1835E45 77740316F4306714FF310DE5DDDE570B294F9780262DFFC1657EC8E475A22F12 E0D8FD9F5EACC6B22FA7310000DA5F383CF57C0094B203FEC95DB534E5F18EC9 EBCCF5EC742ACE8A3E7E02DDD2748A321E9E96C7EF3F4FF60BB6FB45DE106EA3 FE49829B4BF46B62272CE1C5B61E8B81631FA0BADFF1AE0C49D32A389571EC92 FE12CC63FA8C37D859BEFE18DF78C8F2C0C38E6A69CA2EA902681507DBE99B38 28B45C8C48C674D62F8E46E33DAAAC96E69B653C89145E6B292FD9BF2239B50E 13B2859202EC3B5F4BFE4DFB1AA9DA2F017E1F12D8B8B01BAEBCB8699653DE58 99FD982D8B551F214292E54F96F6CF6C0EA48DA62E191F1A3AF1DAA6C465378A 3C10734AC9B02D0E31249C6B54285296B55EA922CAC96D780A3AE69FCAFEDFD5 540C599535C6AD8F95996DAAD8EB788BAA4D89F61B8D7646D30A3B6157F2CFDC E6B30AECDC430A7ACC94831C04CB8E90F63AB3F86B245C528E4FA65FFFA51850 814F1ACC0BB6C74CAE9FC4B91A944D45E71BEC953AE2DA38B7BAA1E51324BACC 704B1C783CD6EE3FC4A092BF2B12E89EFF31E951997021C9D30F315257E21284 EA73A697018A3984A4CF207D0E0711A7A41ED9575A996035B86E5408682822AF A882B49F246C1A11B7E302EC164DAB3955B66301BADE1BB82B147D4FC069E489 809B90484C2D4F7AD571B5C215981579F6FBE43C51310542B064C15F219B5F83 D9B62528CFC556F4DF99FECBF1907BE214AB6F087E315F0817B8D5ADC5B8BA38 951BE34EEBF4DB582C17280C5E8E0DF9BE8BA8E2F63A4BDA9333708943AD1F64 8DF8C96FDF39E99B2240380172C3F721FD06FDE776805E58AFB8E8BED26F2F1A F08791981BC7F04BCE803B42EFC42BDAF54599E111923F25079CF7D95B9AB5FA 3B967F6E61A6B1D796DAF5853822A28FD1BF83D2255CE86EF4D2905E5349B6E6 433107181400296DA9A45DBE3926565117668E191F3BA9BF17DCBDFAC26B80AD 1E2467FE2AA8839FFE30951B689E06787A47363BC5DC3AB6DBB6179320D1FBE0 BD676ADC0D9625C430604BFD26D745540C8F6ABA16BDA6AA9B7BAB93FA8FAEB5 B6F5FBD1AAC168F763C50F45A426166E102D616BF567862EB7D430CD73641A23 8AF980CDD01F847C424AE9DE2B02D11A0C323AFACEC5CB4E4BC1B95141DAB793 0E103DA979259F2BD131E08019F7DEC60BD95D3408C53CD1E0A63ACD4D4BFC40 ACA31859B8543A9DD01548E4DD868AFC6FAF434CDE0AFAADF54DAED70C5F464A 0A0144C1ABB468C3826320CD3180EAA91A8EE1EC24677E3856DBCC00CC1C8BCB 18CBF14677A448F01404711DFB9A12794A6426D20A773295D23F678E8357041D 0B75F2A5E81827894678181CA32A263ADC89DB555CD8E0BEE6905DB525A3C9CD 41C0C9D7DC20221985D994DCE7F13911E5B6AB252EFDEA534AEBCCAF4893D0A6 561FD2D13650305D52B9A16545D251BE66CCBFEFBC07940D359B8EC051E34450 5499AD8B1BE1C2D75951DB00BFE2E04556476C48ADDABDF836EB8DDAF1C494AD FE84A56C6AFE0D40D92EF3343377D76FB3BAB7F8744D7A102DD783AAC35D1BA8 8E3EC33CD542A6EF455EBC0CD14F5785551864DAD98C10B7C07B3B64BA90A794 48FB933B4F0BEF1F3C7F473DD8F21D8410C4EE8622068AAFD7070049C137D91A 7BBC1165544404125E45F0E267B21A9BEC5FE66271D8CC159052D53ADAE89E7E 91A5DD699DDFC0025FFFEA46C1E5C2EDF3358947D059BB702D4F32E05B54072B 1F9F6E1D4D0E92FA0511663BA915F6700906E3344AC224A1C68D0CED0FC4632F 310CD75DF41AD2588D68103ED0F672345DFC0AFB693269ABE3F5D74BB4B8220A 5DE30865009A073EB5731121CAD596532A831E6F30124398593EBF2A95902B8A 0556ABEB11BFE558B83C95CE83BA5C6187BF4B2A37D131C0B0DB2D3E3495A1C5 C4237A8B3BF63CDADB83AF4854AD0766C0AF011901C6689B99F24F89CCF7D8C3 7BCD9AAE32CAA9787428235192A4C4A1781756E021682410C906A965671D85A6 02719FE9556A0C5D5889E09014FD26F959E0330FB642A15A17047103B331ABA2 E596AF5E89B63481336A337EF25795C8865B5448AEADE406B4C7EBEA83D5D6A5 4252E3D57BF452F27297B42552E8C9CACCB4A916FF025C5A9FB7423BD51C0070 472E7106E7A16D8DEBD90FA4B9FDADA1E189F2DFF46B32D9B62A66CEB89E07C6 81D5834B48C3163FF07893AC43F722AFF1418EF62458E20408FED8EDE4567D41 F745FC7675D17AFBBC395C6D7916010B0A13ED10BBF86979A240DBB74C57E4C5 6A49E4E2BDC101E00047D1CF8F1821C4164982A0C6100A4B17F20C9D4DE29959 DACC26A6878FD7FD158D71891A0F68DDFC0D943922F6D0C060C7F67EF62B96CF 3351173FA56E660668D6FB33B67AF114C4171FBF9E2082D420C3473D846F2B19 C379F32B22F6360D6A4A16E765E5880230EA392964F47C25F4716F1F54A6CCCD 00928435AA155782C0F0CD281F3BFABC36EEE7A45FBE3BAB51B6FCCAD58274B4 83B3B90DD8F106D8CD7D9DF09AB9CBAE55D3716911B7171380FD4B22F73BC4AC C45AE44A7EB9D59A7D3F5C0C9DFCBA75BA080978 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: MSBM7 %!PS-AdobeFont-1.1: MSBM7 2.1 %%CreationDate: 1992 Oct 17 08:30:50 % Math Symbol fonts were designed by the American Mathematical Society. % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (2.1) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (MSBM7) readonly def /FamilyName (Euler) readonly def /Weight (Medium) readonly def /ItalicAngle 0 def /isFixedPitch false def end readonly def /FontName /MSBM7 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 75 /K put dup 84 /T put readonly def /FontBBox{0 -504 2615 1004}readonly def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8 2BDBF16FBC7512FAA308A093FE5CF5B8CABB9FFC6A66A4000A13D5F68BFF326D 1D432B0D064B56C598F4338C319309181D78E1629A31ECA5DD8536379B03C383 D10F04E2CB7C8461B10646CD63AFEB7608468CA0FCFC4D3458FB43D22879B515 27DD9CCF44C2BFCD95A4DE911E4915FBC02335E9999FD9B546134081D6DA3792 EC4A76DEBA77635BE52E09986268A919CB48B5EFB1A1301EE0683CB5709BC8CE D819D799020CBA673BA39C911075501395B1FD20EAD392C9D5A8C9FD1198C737 D1A614CF0C0432F29DDEB4BF9DB026908DBE89EE522B7D55DE9BF64AFBE6248E 2E10466655EB9083E7D23E3F0EE26154F191BEBC9987930CD4B4CABE1275BDF9 8755EF3D531FDF91D54954FC53F15A38D1E8F8D1E36447484FA2C09D34813615 838B6330FEAE536D08376E4A0FDDF58CDF5647C9F1FF3A7D1ACAD376DB3CADB6 9459F7A5D4F1864863B79E9F93A1EDE8B99C3138D26227C01F6FE0AAC800F2E5 94DD81CF7B1355B642CE45CB532FC5B535D66EDFFEA076C009E87406D9772D71 848C3C53B7496A5D6B58679EF11E114C5F457C6A0D3CDE50278E4A89D5393B1C F877CF4E2142A4D045C4AA9138105D748903BACC28FD43DFEDB341E1FCDBE2EA D412498FBB5374D6836CFBEB13D4C2B7B9625C25B037FDA9DCC42F5679C4B3C1 6340E341F73A9215092C0ACC505A859FA935BE5172F4F6D4A30E73914DBD5297 7FE0CEB5CD0B92176B8174870F9FAFD22BD2ADDE02B5705B5FAFDEE372F17857 40C1B4024C9F04375B9CF997E9D0C0F7D82465D678BB9810016E6BCC9C4374EA 6B2CC834894FDCA891643D9417369458A630FD498794823FFA55705315F0687E 7592A5DFC8B8D6FE2F3C654209678C58F7086A8EB0ECEC0A284D646021FA499B B1B5B9834E82FA5819DD78EA7EE8BCAC0020481D65B889C8DE8C926ED78503A9 3C450D1BB1663F723F705AED422BF70D283FA4BA80C7CAEE2807091F6FE99EB5 F68844B350DF26B0BE892443235A0BDC5478087AC3967E4EEDFADD8C43301E6E BC92E9A2BE3ED32C26BFB9009820EDD65C33CF1639737902388239ABBB9E8525 03C05F845A2AC24EF96CE9F404CE667AE4AB7306534B6B9AB202D9AD676A18C3 7409DF158CF48D4568C879ECBCFB12B105C47B36C27B4066657E978EB36609C7 6E52F4BD767F70B0439A300922847F2897D71B185998222C970469BEACFBFCCB 70676E3F2503BC80F187B7B3EEC57257B359974DC23D2D54166D8CCB27858476 2411429DBB283275ACCE1B90B3DA2E3F38334CDFE6405A405A5BE017AFF7583A 1BCBD1D4214803D2116A9E4D7B30060B09DD82CC712BA89E0A76B182BD4FDFA9 2BEFD58222031926D358763DCAF360A4832A6CEBDB0D188D7B6A61B47277723B 008E0B36BD312D91B32DCF8720290D22C8192F5F26504DC1FA70141614188FDF B8BF250E15D3DCF770ABEB567F7D817ACEE15A990A5F3BF7C0AAD1601695C33B AB7B0E6E9729E9FF9FB24E3F4E6B3B35A98FFE91AA89717B5D9AEFB7769B82EA 23020D451CB46AD9DD113BB6C82200BF58EAD6FF481EF43F0BE89C2350FF0628 F68576F040F1E55DD4EEE0D3BBA9D36CCF46F37BF2E965C5F6E93E8A16385CA4 6A231989E393D270C4AE5A9629AE1FC26848369BE999D4E451489634397C7ECD 508B50EF87B7B4C398C99A883685F7C7859B24F5124991CAE8EB50425E916F69 FFF70918C034922414CC5D49CE6CA6865D6A267209F88153C5354E38762C65F2 AD8BBD913D301D1B697777304A97C6B484AC00CC6F08BF0AC19AB02B67932309 9979F9CBAFAA3E87790E6B944D9920E2CE23D0EDC5E3C989A421C0B57663E01D 13C3410A583DCF 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: EUFM10 %!PS-AdobeFont-1.1: EUFM10 2.1 %%CreationDate: 1992 Nov 20 17:36:20 % Euler fonts were designed by Hermann Zapf. % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (2.1) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (EUFM10) readonly def /FamilyName (Euler) readonly def /Weight (Medium) readonly def /ItalicAngle 0 def /isFixedPitch false def end readonly def /FontName /EUFM10 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 76 /L put dup 112 /p put readonly def /FontBBox{-26 -224 1055 741}readonly def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8 2BDBF16FBC7512FAA308A093FE5CF7158F1163B3DA4F9700DE5807F164169FBB 1458C43CD471029C362871D2FB69E0E5E617BC06F3B8621E3528E4B47E731AE1 0B406A3260424830B3C86A135457A566A1A716189B86883C171DA05829CE2E37 C020AAAD5205DB1A9C1A6A56FFD9008D511B4453C4B33F6B0E977B7C760F8816 4A6F13E41191AA13358515D902E653B81AEF60FE07C4AB673435504C2C376BB2 6BAB038083E5073851178BEB6AA92FE582EFCFA3A22C6795DCAAFAFCA0F3E79D 270BB779E2071AFDF30D3F32082777AEDF90940B6DAA1F34BAC0E9AA08811281 8D4261185EC039EB930024E010615A972BBD0B8EAA09B3931D630F1215D88859 5803A82F87BF0D6B8C64E23358C903C8E022AF457F97845B948D174E063E40F3 FA1F8C2CF0C7C49EC374E22B0A865A90FDC5CE762D643812D9597AC4CA872A23 9CA95A4001607D1E336A8D3C10BBC8BA47B1DD8DAC76B3F7B4E34DA11B11F27E 5CC1B7D0249F7924540CC5E194DD545B39C060A69CFC2145AFED8242A9FEA65F ED03FC2DA7CDD3ADC394D32F22802C8EC818847BA08DE0654277ED11E5C356A7 1E590527E7A231A6AE8B779B88648B69BE95F879361588325BB6F7E01D44C6A1 8422BACAA4C2B6B4802A4452C7A95F232A5B3B9DE2E78780A95F58FF97C276B4 691C2E88AAD4FF004B752120BB3453C12CC6BEDD34165F33D1DACCE965BF81A8 8518AD8EAAD03CCF67CA8BA8A2B78749D66ED2726BACAE757CB7C3BAE0532181 AC95975182CF3EF7B32636EA7C3ABCFD2BCFD2325DE4E377278A34A790804F1B 27FBDEF77921130ED82D188D97D419AC2486AAB33B073D9EDA1ABF2B2339F56C 02B150C69E56B6C84E1C8590BB610F46CFBA0A500F5819E525B9A458DFF22411 5727EE92926048828F8CFEA91D749199AE9350025F65BFAC41DE567C0B66C1A9 12BCA2097B498EA9FAA1E15AD42E56234662B65EC87F11E6DF5F33EB22E5B1C4 EDD5B3FF7C74A961933C8A12417A0FFB1DE04625E4D2F4040CDED1CE56641582 8FD215659C9B1B08D59E5F221A27FE58B84B13419E7FF7F2C0043F9CA52CBD93 7C73AD526E0078A9103CF6FB383BB8406DC02D0B756202F052DA9D4D8DC0C79A 889EF82CA743556EC36370FF075AC6848841D3409B367F4C310886859E5978A8 69DBA5A3749970724F9449D5663FC4E587F2CDB11444AE7108697106C8F590EE 338027E6E3A0B9F72FB2D04E63B61F691F98F307FEFD0DDF4D12D43A91289B66 847EC30437661308DFAB9B49FD90617F2391BD6F85674FD8BDDCC7E8181A7D88 4EE1F904715DADA2CA9EE602DF188FF6071F51242D329AF8938E16B761DEC31A AEE2AFDD9C17D4BC3E81FDCE7A2CD6D71C04F0A2CE57E37332E5E2511CB0F12A 24F5016A821FD4143FA681532D55F288F6B1B076F99B8E76CFD0DA6604BDF01D 3DA73AC6F8F7505EBE9D3BBCDEE5CB86084753F266411AFABFD4E6DE3E410E05 CF217549A97E6B74C19EF5526FB4A7C2E383CAC199684BDB1FD69A827CDF29BB 212EC54F6CE709915E0B7EF31B984CEA0E8DF1D6FB3DCB8AC4609A39E5D612AE A6C752DD600C15209BEC7E21322CBD765668E8585DE10F44B430B3A97BD819E9 D88B457C276A342A598ED55B220F2BC274855E845935212CCCA16D4207D4D2D2 B0BD04A2F4D78AFDBA64F04DAEEC149560B5D0CB525C1319DBB7AB0191F33607 6C3B97FBD8922A2349223D306729763CAEC9CC635BA5C3A6B57C7586D8E40E9E 6BD8E91E3CC7095845DC06F7F32A330F751A9C96B58C0EFF2C964457C01FA0AB 8F65A25F046BADB82F0349C715052899ECB75D71F92E7D82E728C2F828F21276 4156B72F972D95BC4FF638814EA849FC505863F1A74FA9F83BEB359F3DC5F4 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMEX10 %!PS-AdobeFont-1.1: CMEX10 1.00 %%CreationDate: 1992 Jul 23 21:22:48 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.00) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMEX10) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle 0 def /isFixedPitch false def end readonly def /FontName /CMEX10 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 0 /parenleftbig put dup 1 /parenrightbig put dup 77 /circleplusdisplay put dup 81 /producttext put dup 89 /productdisplay put dup 96 /coproducttext put dup 98 /hatwide put dup 101 /tildewide put readonly def /FontBBox{-24 -2960 1454 772}readonly def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8 2BDBF16FBC7512FAA308A093FE5CF5B8CAC6A7BEB5D02276E511FFAF2AE11910 DE076F24311D94D07CACC323F360887F1EA11BDDA7927FF3325986FDB0ABDFC8 8E4B40E7988921D551EC0867EBCA44C05657F0DC913E7B3004A5F3E1337B6987 FEBC45F989C8DC6DC0AD577E903F05D0D54208A0AE7F28C734F130C133B48422 BED48639A2B74E4C08F2E710E24A99F347E0F4394CE64EACB549576E89044E52 EABE595BC964156D9D8C2BAB0F49664E951D7C1A3D1789C47F03C7051A63D5E8 DF04FAAC47351E82CAE0794AA9692C6452688A74A7A6A7AD09B8A9783C235EC1 EA2156261B8FB331827145DE315B6EC1B3D8B67B3323F761EAF4C223BB214C4C 6B062D1B281F5041D068319F4911058376D8EFBA59884BA3318C5BC95684F281 E0591BC0D1B2A4592A137FF301610019B8AC46AE6E48BC091E888E4487688350 E9AD5074EE4848271CE4ACC38D8CBC8F3DB32813DDD5B341AF9A6601281ABA38 4A978B98483A63FCC458D0E3BCE6FD830E7E09B0DB987A6B63B74638FC9F21A5 8C68479E1A85225670D79CDDE5AC0B77F5A994CA700B5F0FF1F97FC63EFDE023 8135F04A9D20C31998B12AE06676C362141AAAA395CDEF0A49E0141D335965F2 FB4198499799CECCC8AA5D255264784CD30A3E8295888EFBC2060ADDD7BAC45A EEEECDFF7A47A88E69D84C9E572616C1AC69A34B5F0D0DE8EE4EDF9F4ADE0387 680924D8D5B73EF04EAD7F45977CA8AD73D4DD45DE1966A3B8251C0386164C35 5880DD2609C80E96D1AB861C9259748E98F6711D4E241A269ED51FF328344664 3AF9F18DCE671611DB2F5D3EA77EE734D2BED623F973E6840B8DAD1E2C3C2666 DD4DD1C1C32F82156385E55FA0C948E3754B7B4883DDABFB805256B7D497F4D3 D92DC71B523F4A2D22180D73E86D6BB8DB3C33432286A938268EA076D9E2A7F8 2412E271BC69131FC742B7C2B35E09AB3B5D359338ECE566282118EA9C28766F 339A76E30BD82957955DA404676EA7D36CD9BE3A6A1CA974CF6C012B72F78C41 94C1BCD2A8A8C1D0A987BE4E3F804B460895F211581401F86493717580680982 ECACC75DAFF2297948036307832251971418EB531D7D4439C9394157CC2A949C 4AAEC5BC25B74FB9998FF04FCADBC98A5F76027DCA8DEEAE9F1A11E94B627907 0CE927B22F5C5321C0C43E47F70139AC1129343AD096E357AFA4887775D0AEE8 7A09AD7E1A7372BBDD0D7E2946E156E337726E5FE31CB2BE68BC66B198AF3CA5 90CA9E09D1D323D3784503D91D162CAE7561C8F8F5E7297E669FAE2347C7F990 F0CD2D70C81B752FE4406B6CF2771BDCB256776440E389590D599FCB2F4C0054 5E2D7CAED9056C3E2E8872F86098115CFC7D28D5AA45DC3451748FC166C422AB B4BE5954C94FFA7FAC5D7B284A5A5D2E39D6F8A61C8B81EC62A487F5F1279494 FDF7D6F81623CBE5281BF11EE4F78D83EDAB6B2EEA61ABC055AAFC4CAC7BE04D 5DFC6CC986F00409A6E678FDDA04AC89E2CA556444C2F3BB775E8FCB5AEFC664 01A3B3470C2510A2D0DAD9B1B7872FE19F33BB927AC63BDE49AB33C458944C25 23420D44B9FA9D219272D42994ACF2F6EFA67F50404B6AD31134BAC7923E8D18 FE136F1C0C52DC64AAC86AAD4EFD2C08102BF05ECB1FC85319DE34226D5645A5 463BEB8F78E5ECF308EE0454BAFF6234B01EDCAFFB7E3709A84E1DB230F92049 8C39946B6889A83C71C4F101729E6180B1CA07E91E1925A91FE56D9BC585A70A 8E1146F1BFB56A39FDD823C1BB9E213A1665BB2024C1CBDF41CB04BC6268D073 7C6467C43E6D4F880258E4008D84210DB23C0AA116F35E2662351E642169D538 4CF0042B5FA8A4A7FBF01D5F82E1CF8CB0BE992DBFC467D8D8A5387FFF425A60 2AD0E56DDC19D151F0EC36407DD667ED52B04EA3E01BFD6748E1D04511D17FA1 D45B6D1E7DA78B7F7BC663E73D1C24FA537865CB00FA717BE92588AE3239C307 7A245AFE6A6622A450562F03D217654D896B09BDE7CA08C375F097D58E237CEC 2BE4E4B6FC9FFE561108F8B43FD002FE5DBEAEFD4B5A8289741D8A19A4831B96 99C782126F58701D69A872D02B7676B57870426CD6B1E2A3197AAD98E052997A 1362A58F4DEB3C8EE7E569529AFEE793959B55C8CEAA65D5E049208E972D87ED F3A737083B2B7EC8D5F8E4A5B64ECA2152F19AB9F4F17E992BDFA9908D5D6D14 3E2DDE41D0E03FE7EA17EE8A9101A163ED4833065AE379ED0B548F0FB157C615 4DCB4F126E003C01FD104A20A53107E179016A4EBD32F13BD2DAA7B2383CC124 405BFDEA838168F0E9D182B310C8D39F7CAD61C86BB42405471D4C7F714B999C E32A929830F79A82896732D43ED1ACBD8DD1267B25691A9A6BBA59B55AFB8654 4D9996C506582D3F9D2426545CEB74E3F8783EDC61BCED28CD0F58FA75419B4F CB66B4933157FD7D7A73BACFF63EA90D2C2EEFB2ACE20D6EA0F91DF52C2CC73B 0B1D7ACAA0413EAA9584F81FEDACA921588060CF925FF12AD383ADE080C042D9 C2A800FB888EE85DF63718C89784342F06AE26D4D96AA1DF28B14EB95E7DEDE4 7779DB00351A8B5994210A5B92493B5A5F14163075F2FB0C 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: MSAM10 %!PS-AdobeFont-1.1: MSAM10 2.1 %%CreationDate: 1993 Sep 17 09:05:00 % Math Symbol fonts were designed by the American Mathematical Society. % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (2.1) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (MSAM10) readonly def /FamilyName (Euler) readonly def /Weight (Medium) readonly def /ItalicAngle 0 def /isFixedPitch false def end readonly def /FontName /MSAM10 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 3 /square put readonly def /FontBBox{8 -463 1331 1003}readonly def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8 2BDBF16FBC7512FAA308A093FE5CF7158F1163BC1C87678CE98C24B934A76220 4DD9B2FF3A49786028E35DDE10AD2C926BD30AD47015FFE9469DE1F793D1C53A C8812CBCD402444EAEA7A50EC5FD93D6A04C2783B50EA48059E3E7407537CB8D 4C206846EF0764C05289733920E2399E58AD8F137C229F3CE3E34D2D1EAB2D53 20D44EFAC8EFA4D14A2EFE389D952527F98D0E49BD5BD2C8D58FF9CB9C78D974 75C2AB5467D73D2B5E277A3FDC35909938A9DF0EB91BD9159D3437BE22EE4544 3429AC8E2BFBE34AE54D3BA3AD04BDF3F4F43A2B43992DF88678681B3AB32CFD A23E2C98D1AF00AB206AC95B78BBE6316F7A0AB6BD3236C28C76288B3C25D1EB E9ABB3576C5EC15A71D26177F5883E9B48293D59015615E2EEAF2E9BA04151ED 5497B9A1C41CBA44BAFF13EA218F5EAC11952EE336AD1DBE6CE92F002EAA3B3D 3BE4C3792F3405763C4BD93EFC3B4FC34193439561841BA989DD8D9F9AEE7A7B 24AEB4654B35023C9720B8F31AA9452E29753FB7915CB29977E725611E37C0B7 784BCC26FACF8A7A0EB1E54290D27FFE52B2D87FAD080AD15EE1984C37E0EB30 122C3012D3A16B09C28903D138352AB5462674B6CFB63F1371768D094DDF288C 36FB9B58443F872D61F2CD8CED42FE0EFF3D7E9952A172BB1AFECB60BF79F2B6 04265FDE4F78BC9FD619AA733CD0412F1D9A7C13B271BF827DCBDC8ABAE24FF0 74D3C220621D7FF0EFE62D835A221D0A7C139E2E6681FC2BBA58FA3B80D416EC 3854C63BA040A4262B458340DAA18AA6AEA3BBAC61615CB85982B18664D3D3AF 340C65B969071CF2D0CABEB80E04623D0526F862ECA8280EEE236C535F70561A 854181132E677674AD5E14C6636F57541D3C821F0776D2CB9B8526D4B826791A 0B179B387D47B08982D36BD61C90BA2CDFE045E8BBAE1C5D4DBA9760AC2D9587 67FB0C22BBD0A905E37D82FD03BBFA69003B5FC6EFCA8CCA8516F461AA33D6F3 6F0B583AECD7A2374014C81033772FE29A7CC38DB81E8462044EF083ECA78849 AC11327BA7EB2FE5389E333AB1FEEDCDC90C78C4713BA7769975CD6290D03B5C 6635F5650B5C1898C7108E6A2A09814C43297E4051B12B263C433646D8555F45 C0B380F639A5A2B5E307C67E6B4208970FB2F32CB0D495CBC1A6D78B36524C44 4FDEA1286022EEC44210FC4ABCE3B8E8BD7DC9A57E5CF409205B78672AD1052E 23813AC24D 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMBX8 %!PS-AdobeFont-1.1: CMBX8 1.0 %%CreationDate: 1991 Aug 20 16:36:07 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.0) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMBX8) readonly def /FamilyName (Computer Modern) readonly def /Weight (Bold) readonly def /ItalicAngle 0 def /isFixedPitch false def end readonly def /FontName /CMBX8 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 70 /F put dup 71 /G put dup 77 /M put dup 79 /O put dup 82 /R put dup 83 /S put dup 99 /c put dup 101 /e put dup 102 /f put dup 105 /i put dup 108 /l put dup 110 /n put dup 111 /o put dup 114 /r put dup 116 /t put readonly def /FontBBox{-59 -250 1235 750}readonly def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8 2BDBF16FBC7512FAA308A093FE5F05C11F9A72F5DA508C30BC4BF52C8B1EC5FB 7F9DDDD0964A6D59193A389D490DAA6F6ACD02CF71C06802F3AE5A001F2B3A6D EEB60E9DD26DBCE1D29C825A9BEFE3A6572E70DC7B60344C3E0C9C77ABE1804C 7ED61C544F0B4A3D6C7662DE8575C07BED3F6DBA7D64A9C8613AA152B74A140E AAD9B66E0FAEED6AF9D1820F361C1269A5E90519A3E6D40782E06778C0AFAA30 E8CEAB87054C4D156C1B14B4E8471D78648FDAC70A3B8ED474FA356393A77420 4211F60E397D2FEFC6A8D91A80C84EB9E38E663249FB91D5C8A5CBA68BA04272 5D5D42497E1CF5CA1E62EC2B139F5CD4D6318EBBA7AE28614D2D88709C2A3762 611524B8A1FFC7B0FCBAF77AD8159C354F4887DB1A27781DE0A4BA7DF2CE2025 D9278CED48584E8E6BDF30BFD24284BA1DF828B637BF84A02908BBCED67372C9 EF44711BC2B1DA343C8D9D27A9745525C774F5D639B7AEC197CEEDD06FD27923 35ED0D402AEEB51134665A47847429D91CF419CA9B09DC905F610F8DFC54E606 ADCDA19D5CC68A7BC7108EC9236C64205B23CE68B9BC38EF3E5BF9E0E6ADF404 7365C8D0436609438C82EEB2F356F79186DDF6C1C797D3C278108B1767D15178 C4C3E8ADC2482BAB9536AE8419E5CF3EE1B6E53BDCE2A83E2E485F496A562C10 B3F5A131BB19D1E5414C86C5F995521076340536E10613E427782B91F1098562 3E22288F48ADE6EFA58CAEBE7C070A920C3A85F4327940DBD99179C26E3ABF17 64E9CC6A45F17F19F3EC1C53B17485B813CB01915D55CA2034552666D5E44A96 A0FAE064F599AEF095CA1816F7066EF0AFB220FE1DF11FAFD503505C5E6793A2 6475E95FB467E2F3B5E7C6663A70B15698A1D158E23D3ABE3B6942B24832AC3C 13F258038DDF209525C4124806A369ADB0423C2FD0F823AE3056F380B7128089 689AE8C46C3D4D74FD99C37EB4C4D2D7C0D63F6F117AA05622030C155D48655E B6889FD6D7B00A478D2149FA669D6B647F0278A0976958B054D1126488D809DD 506616C8CB5E67FB16731A11E4AA22334A12E2CAEC9D4E4654428F72AC38B885 904C5EF49A2196E8291CE969B08636C960747E561087C7CA8AE1E380E6FAA03C 36468B517096A9940913EFA37ED4F4E56BC56DDBECD06103303250396C1608AB D51B5371A5F43F4A6F872E484091F5B44CCD2F7CD60B50A991D53B1438ED6D13 999254DAEF84DBAEC3E223EA935148E5B28BA876DEC4FED19B32D67A2E7A9926 82CF1C337501C09CC98CAB935B32B5A639182A51EB67CA5CD4F004DD0BB364AF FF506003E3B6CDE37F860479154193CB99E8FF6881EBA92742684FFA1B1F4E15 B34742CEA979FAB351C408ACED5F00FFAFE0A1A1717A314CCC46580E5595E8E5 B46E9292EC8D4F0DFA5373A0996031580188343BE6860A07CA66B09DE5CB6E5F C5F13B0CA5E4EF808540CB465A48C32FD7309667C8607BDD86DF4636FDC5037E A1B6DDAE03E321E2DC455FC3296B94001504B3FDCA03747B58B7FAAD65E07345 9F69D4709E2D04768A700C0E16C18F0E223ED243E4B506AB36F2CFD8D0A75C8C 360D40D92A7E22A750F2A7A17C569B7D5C7BC69C70ACD407570C6951A0610C75 C83DFE9951AD741F0F0DBB808BAB803068E0B7F4F4F17445C3A542C961A3F775 433DC03F141C1B58420103A184D87A1105F99C15EEBF426D32D660411F2E9B53 D6F58CA8757ECA506E1A46E8FECD5E34FA052BC38FA5643FD07DE00735FB6F76 3FDF4FD2CBA86D28C6BEA62F5BD29D8F5FEB3E3804D5014A73D458C295F42622 9EB3D8D183B0635A3A3970977CD61BB4A6B13FA8F479189B2292A963CD211FD3 D0AF501CAA682BDDAC16364001F540C2F34BC867AE160EA838CC9DE20142ADDF 5BE622EE424BC9A3A9F2435F4161F1E20DFD1757E19A9F91916A054EA85D1BB0 59AD9B330D7D6386D447D4A4531606CB8C07FFEF0D8F4D445C0268064C705A8B 611F4B2683E621DEF1E3D7FC383C3EA9D5ECBBE519D8159AE4B000B75C55AA07 C1D700D3AD6CA6F20C7AFE6A265F70070F02F0AC5E31A7FD48C0D58C1CC5612E 5F1DCAFDCC2047C3068280D50A66459466294302EF2E2B7606F519E3AADF704B 3DC5B5E32510E819B7B52D322282EF108B05346D3B52A28C8D6C519C8F5401F8 63D4C83D67A98CEF5ACD48FCE69312756F3B8482ED5FC8FC3D4F20D5EBCB9E2D 4647C9FEA0536F7792E5C885E7A5EB47DE0BF9A40573A5AA519EDDF9F78792DE 6B1C060C544A5C6D3607FD2A6EFCEFC15E512DD6378582484B3D473BB466866E 36E7E11B1E30BEB270949226CAADEB5124CB94E4D1F187002164988D1A43E38D 24243749F759F8FDFF9527A15DEE193AC016BA136FA059B175267481968FEC07 F32B6AF69AE3F4C36302473A608170D283E48A3003921C055C5A1BD4B61BFAB8 DD5CFEE2E96D051F4BEF37623A1BC44455DB621989A7AD6AF471BA42972FB481 E53E10F584A2756BF7CB5A047659DEA9F78E646A51A74BADFCACFF4FB1B141D5 A4E0B4C8317D05E7D452A408A9402BC1498125A32C867A75CC3CC5018291D653 8898C2ED6BB3DE591218766C606A78CDFF1D7B512C1941107CDF06F3A381BAF5 22607F560C333E9BC23B9113FFFFB8A77391B0971D4E20B4B907273C44E96211 72AD95D50DAF265BA15FD08187EB9A12B30FB4B91DB73657E948A93B1CE1B982 8F04390489CA67B3F513A6B4AF6B3894B0F7DA782C4D03B228F2CC36B0E96B6E C0ED7EEDF1A20E36DB0D9A997F1D99845D69B396C82E99512D58F16E11CB8992 A552467F6C3B4F29D1DB55C696690D245FE622CE6F718D02ECE71B2F2CF77F4C A5701E77BC7696104D5B84A673143E75F13F829C35727EB81E67890BDA11B15F 42AF38BAE69B3A68F8058826E9DCBFE7918B7C7E6F7452933688FB7A0E86C600 7DB4DECCD993084A62FBDC0C504D316BB093C6CEC6076E7A8B9B2046784FAA32 9BE03EC07E04DBADF54C204BC5045AF67DDF2958F5F85AE364953E7BCA1E63F1 86C20E9FE72500DAEC9E01D9411C06C0EE3C608088DFE462C9949651266510E6 D23297177D4960390CBEFB27E6ADB74A038ADD12A585BB36A42D7F399ECC4EDB 7071F27BB28228C7C45A8DCEA2875C344EE16844A4C1D8CCFB85A2EA8D6ED3C7 211D63CB621AA6F5C6D9C637E46FF3F21926B94E9AFE0E17652AF2FDDD74631D B03D0DF7187CA446F0D37D7434D8F3CE07E42095CED488190814801C8E3BDB0F 80B7F21309617F9B6E1E3AEC2543F7503B5B7803B80806B52FB41759B9478346 4221831F2EB9E9DC4FE7C771835F36D7087F02ED8448D9E5E27FC2DD42CD0F31 FB0E9ECD8FB5E54E304D7718ECF4E0ACEF2F2B383EA65706AD0838286FF4C6D7 8EC060BFA6E96ABE7BEEB3BD45DB3D85346080DE98F7B56F54806EBE2A96F6E4 855395F9190805D5099B0C5A47EB493EDCE0C76C96FF92366A9755E0253EB2B6 6B35B6858A9E2AA0103069A08FAB17D56387CEB1C3195EEE6BE79A14B2E34886 B5178DF2534143BFC8891781DA4A83DAEAEDCE0A593AB28F60E22B7ADD3335BB 5AB8258A2042338CD7B5A2B6B59DF2DC6937A4435E6A9BC05C35D3AE173338E2 63F598366C7C49D3B7A536800A04E234E4F3630F5C42B27CD23FBB7849B9ED2B 76510138B68E1BBBB606AC5C94474A8BBD4D63A76D06D5BBB3DC82C22D0CE19E 9F61E7AAD1C901410D363BAFF2709604C893E0BD1BB5B4E6132DDFB2AC32BC6A 172183F63704F4B9E6E5C7F7AE2603C06E75AD582C94E8328FF861C607912AD2 ABA5399C91EB89271BFCC803B43CAB9620CCD02744DF976BC88538DE6E740753 CC0B47818BFCF5B0415A8BC144B82332256F029E7AFEF36A45A32E23CCE770C8 9B8FBB0E8D4EBA13D038D3D95D86CCA07338A1FB7B852EEF4C87000403D04167 0D39B3985914D8415AC82AEB192029CCF8B5750377EF31DC143C3E789E89BCDD E560B95ECAB10B1C581651A412EB03C72C654516999B16473DA49ADEE307E42B 276D4F8DD5532138883A177CD90DB062BCD67CB7105D116588BB455CFBB18651 FEC5A29658A2300F42888EBFFCBFB68B6E1711764DD60EEA044E081A9F31D9E4 5E800330781C0ED781CD9B167F28975FDD522D0312714EE43D1ABC8D25F7A267 4D25CA8354E5B65BFD4ED9D03660A6711A97560A97500269CD72E6883BBC834C 4DD755C29DA1F643AD5A8654A1B13EADC3975834508981F3C210CC2D0B86A2B9 144D6EF1109ED1B6681DF81DA27F273D517B4F35C0A350BBE586781C6324F67E C7E743B0B3DA2E006E7B08345B774D6DD0314AFA36B68EBF7F2642408B 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMR6 %!PS-AdobeFont-1.1: CMR6 1.0 %%CreationDate: 1991 Aug 20 16:39:02 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.0) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMR6) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle 0 def /isFixedPitch false def end readonly def /FontName /CMR6 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 40 /parenleft put dup 41 /parenright put dup 48 /zero put dup 49 /one put dup 50 /two put readonly def /FontBBox{-20 -250 1193 750}readonly def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8 2BDBF16FBC7512FAA308A093FE5CF4E9D2405B169CD5365D6ECED5D768D66D6C 68618B8C482B341F8CA38E9BB9BAFCFAAD9C2F3FD033B62690986ED43D9C9361 3645B82392D5CAE11A7CB49D7E2E82DCD485CBA17D1AFFF95F4224CF7ECEE45C BFB7C8C77C22A01C345078D28D3ECBF804CDC2FE5025FA0D05CCC5EFC0C4F87E CBED13DDDF8F34E404F471C6DD2E43331D73E89BBC71E7BF889F6293793FEF5A C9DD3792F032E37A364C70914843F7AA314413D022AE3238730B420A7E9D0CF5 D0E24F501451F9CDECE10AF7E14FF15C4F12F3FCA47DD9CD3C7AEA8D1551017D 23131C09ED104C052054520268A4FA3C6338BA6CF14C3DE3BAF2EA35296EE3D8 D6496277E11DFF6076FE64C8A8C3419FA774473D63223FFA41CBAE609C3D976B 93DFB4079ADC7C4EF07303F93808DDA9F651F61BCCF79555059A44CBAF84A711 6D98083CEF58230D54AD486C74C4A257FC703ACF918219D0A597A5F680B606E4 EF94ADF8BF91A5096A806DB64EC96636A98397D22A74932EB7346A9C4B5EE953 CB3C80AA634BFC28AA938C704BDA8DC4D13551CCFE2B2784BE8BF54502EBA9AF D49B79237B9C56310550BC30E9108BB06EAC755D6AA4E688EFE2A0AAB17F20FE 00CD0BFF1B9CB6BDA0FA3A29A3117388B6686657A150CE6421FD5D420F4F7FB5 B0DAA1BA19D638676E9CF159AC7325EF17B9F74E082BEF75E10A31C7011C0FFA 99B797CE549B5C45238DD0FADD6B99D233AC69282DF0D91EA2DBD08CE0083904 A6D968D5AE3BD159D01BDFF42D16111BC0A517C66B43972080D9DD4F3B9AE7FB 11B035CE715C1218B2D779761D8D7E9DEBE277531BD58F313EBD27E33BEF9DC5 50C7821A8BBC3B9FDF899D7EAA0B94493B97AFEAC503EB5ED7A7AB62FBEFBEFA AD08ADD6648E354B05E584C970A0FF706C374B39D613EAE323EFBC9CBD5AE3A2 F1B092858BE3855513F1AE772216775BC6D4F1FD8456EC869E53E9CC01C49320 C3E7F888C63BD741D14BD0CEABCE4183CB874CE3149B0CEDC466C63D2171FFAD B4ED0057790950D0FD3CE631A9D309A3C90D9EA33521047F6CA5344E75BBA288 0BD4ED2A888227476AD5B9293D5495B7B9A637E1BE67218AE9143221F6DF78D4 58AAEC2E3C0588FC5E340F5178C9CECF45B1ECD1445151EB3AEE4ECC709CA6D6 5B8089540E80C3FA642DBD23832297BB4427E6103A53CF894DEDFAACD1B4711E F407161DDAE4E7FFECADD871EBE68DA4D3B5B4FB5123FE984ECC0DE847C03EF6 FE2467292C8EF5C4BC29095F390EB37C87F36F44F40CBECFF652B4D839377CE2 54587144B566C82E2AD875C6FEBDB560A77214A758D14E8A3445DD0D60CA8F85 8CCC5D37397A624B74FB688D01C1057A17C83059467D7008168DA8F0D0C5E7AB 8908D2DD284A9DBE2B78DAC36CE41348FC308473AC34D7086AD5B76B0E68481E 413CB487A003DB7C656192CCD3B959071F2CC8F405A57F05A3E8F8AB6764A2B8 038E6B248337E874179C6A94C9316474850DAE2FB7CD37AFB33460CD957ABE6C 5DE665374FB0C7D4DC1A4468F2A9EAA988A834F7E3C30C60A5AA3F9FF1523E1B E1270F27AFFFEFC6718A8DA4356399F0EC3FB591366922F6ABA52F6A82746FDF 10B708D87F009DD71501AF243FE70233A85CE1A3A6C35632CCC1F0186FF8F948 F960EA9473B53C20095ED9E79F5FA656411DDEF9C631A6FFA8495B13F69EBC92 EFE8F88A5B89E7A74DE09D08C33C6A64F224A4B327D82337486F47B5E0F8D3D3 8DF21984EB3A7D82A2265E807162A12504FECD90289C16D90C88DF6556BEB518 2CBA18400165A429636A9AAB5AC612D0178858030843D3681FF2D0D80CDC7880 A49EDE6DA504E8F9C217E39EACCCD2B905A60B6EF90B3A286DE47DE0CE3EF9C6 2676555F548E21FFAF6F3F62F57519C05FDCA37E46A05CD0A8FB4A986346E749 2336F55B6ED9230C1E86972CA36F86FD948E201CB7D23BD292E31C1C3C6FF0C4 B02CB8E704D01A48E41B398289DF 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMMI6 %!PS-AdobeFont-1.1: CMMI6 1.100 %%CreationDate: 1996 Jul 23 07:53:52 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.100) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMMI6) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle -14.04 def /isFixedPitch false def end readonly def /FontName /CMMI6 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 65 /A put dup 66 /B put dup 67 /C put dup 77 /M put dup 86 /V put dup 88 /X put dup 97 /a put dup 107 /k put dup 111 /o put dup 112 /p put readonly def /FontBBox{11 -250 1241 750}readonly def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA0529731C99A784CCBE85B4993B2EEBDE 3B12D472B7CF54651EF21185116A69AB1096ED4BAD2F646635E019B6417CC77B 532F85D811C70D1429A19A5307EF63EB5C5E02C89FC6C20F6D9D89E7D91FE470 B72BEFDA23F5DF76BE05AF4CE93137A219ED8A04A9D7D6FDF37E6B7FCDE0D90B 986423E5960A5D9FBB4C956556E8DF90CBFAEC476FA36FD9A5C8175C9AF513FE D919C2DDD26BDC0D99398B9F4D03D6A8F05B47AF95EF28A9C561DBDC98C47CF5 5250011D19E9366EB6FD153D3A100CAA6212E3D5D93990737F8D326D347B7EDC 4391C9DF440285B8FC159D0E98D4258FC57892DDF0342CA1080743A076089583 6AD6FB2DC4C13F077F17789476E48402796E685107AF60A63FB0DE0266D55CF1 8D0AD65B9342CB686E564758C96164FFA711B11C1CE8C726F3C7BB1044BBD283 9AA4675747DF61E130A55E297CA5F0182A3F12F9085AF2F503481071724077A9 387E27879A9649AD5F186F33500FAC8F7FA26634BDCE1221EC0ED0E359E5EA5E 6166526FEB90C30D30099FBDC1BC2F9B62EFEEC48345160804AA98F8D0AA54B7 A480E715426651865C8E444EDB798C7E11040AF6E5A7ED1888653C6DBF5E6169 70BCD9C063B63B561EF165BF3AF11F8E519F37C6FDA2827685739DE2C48B5ADE EE84F067D704D4511DBFA49E166D543CFD9ECD7417055D8A827F51E087CD2927 BAFC7E6CFBD70B0FE969F890A11149D3D44D422C3370495DA9951AEE7253A49F 3A9444C8CD9158D84117299F7F2332FEB0F94E6ED8BC7AA789A3219BC2F227D3 3B5BC75FB53B55D72AF4A6A7BB613FA235B11BB37D059FD87127CEF73D5B3FBF 9F91ABAD78BD9240BD9525EBA78095EA0BDB25D1A19E876F292882EAD5619D46 D20317A345D931F4FF4EAE6216C27044CBA525E3B917CEA25A04C120466C4B93 FC720E6BA832A06CCA0A3916CEF0968D49085AEBD243C41A448289A6F05CE3F5 79148DC112A3CC7E8FF810B8C1A09E05F496C0F1EBA334E42E05C376C98F5F69 C06C71BFC0A2F3AC9951CFBB143C66FB84F9C4ED27DF70869352D61BD5E11508 0797B87C726ABE0FD05DB617F7B7BA6C376A8B4E29F8C740003208097F51ADDF 1E3CD0FD9DEFC3B38AA5A3B666C50DF6B772BB84F15EBB1408A9526F753298C7 0BF3D4D00FE04A091886BB4A7E505D7BC06CC87851EEEDED307CD89106717F49 6C214660E36C1EBE3F4A6212D28629B24FC92F6D448551F6506F57208FC0B452 470A01478F40F49EB27C429073CDFC207B17131C1D462B135A5F3CE56070CADC 099765AC1541F6FC021669455F94449254A2F5F88655B2E0F88CE29ADF86E9F8 E434E8464502AFDAAED0C229884178CAA68FDA41ABB826CD2DCDEC8D21D15989 C976C92ECF98D956FE6AF84CE401F6A5D875FAFC807E004408616242F5EE2B73 B7540FFD2438993CE2AEE7FBA4E8A29892885B2412B8625F3340EEBD4D52FEFE 9747DFAA5910ACFFF7FB32B0D2268C9E57DC1A5C9C59ED5AEF950090DABBA2FB 4F9D2157C99A2215A67E1A49FEFE746A93932556FFAAE4CD6AEDC44A31BCBE32 B358B3797EB469BE30DE6D6265C9940D3B7C7DE9011CF53C5357BE7812A3B309 A72CD05F062A75CA7C36588C8E6CCE48E2C56C2E43CB0707C26E9D11394FEEA5 0B665F812EBEFB335AA116FFC82FB02F3951CA753218FCBE2DD045567039081A 7B81650975B208CDE7F14D24CEE776D548D9A8B9CC72A5F849A26DB1D739562D F40FAB686424DBC375617C9A2BEDFDAC0427A99C2B2C25BD901C7113A050D5E4 7D377637F7D3DABFD986B31E516E35C494F80792C2C84661D21FD0928EBBDDB6 955EA958C1B3FB11981C58F1FDDBF2B8688A196AC1DD340CA65DAE7976213F6C 5B454D8F56C9E052C911AFCF3AEDE6AD152FBB86877E84ABD9CFAAD96134FE2C DC027DB68732C004C58A00DF14DD49DD5E7883790C7452D8A62EED82921BD298 0F5AF711AB75CE87EE18D44D8D615E1A1B9A073A120F1C303F75FAFE5E84D6FB 4B0DBC818E6C07DA5BB6D8B545D443F9DD1BA703712893A417DE6BBD0A4E503B 0272802592533345B99361721F5DC71039CA2C0E6396B2570C81396A3E21246F F2256F42D847DEA19181545B10D21DE51AFB0250EBDAF9B8B87256F0DF6E5B80 1D6D236D5A1A4E960338DB59E9BDB97D302CE1A8517279CFA9EDEA1E5B454D4D 9174CCB6911387AB08A83541BD575ABA82F43401E0862C139E51F96D0B1A7C3B 72ACBBEEF313816414649F77389BB3B495568EAE71E75FDCECDD30E827CBC9D5 B27F775ACD32E7CD859761742AC174F091795A733D67F8ECE15322B2D49B579C 65891F16772C80F1519D1D24D164ECAF70290C80621F52D90B615010AA52A1F2 5B67A502EBD9670E18466DB8F583E4A540B7D17456866BAF084A912DBE8CB64B C604B08600A3F93BA7C6D39111F2ECBE9D56425CC084EC109213CC730786A20A F18FE8C23D2A3E09EEB7B07D90CC29DB1D8DED0E241E1B9D146F2791697AEF66 DFE011B2A909C1065726483ADDB7B37C2C336ECEC35C6554A83777AA8820A452 7148C1562C2F010E84781486E32143F66E09876C3240D77C445DD87EA0D8755A 597E8C8A655D50E22B76BD905B55641FB5407C288FCB411AEC6000100B1D50AA C8DBBEB163252B8E05D25F9EDCD2CE3BD667FA10CDC9A316408999B647006BFC 8D55DA4CD23C9C258BC12702CCCAF41BAAD6ECEF410284449BF245A31207D1C4 5C45F54A968D0502DBDCE27F91424D9F64F5DE5E30414B691D9F808B01EBCE56 77E3E549921019E7BCFFF1A132B009A7E68DC7D427DF46E275F569E7ADA3EC4D BC0ABD6F386767340A9A8370F49A6800E96E9C521E4B904108E13FAB92093364 8AE2D92CBF170E60A61B91E406CAD8DA6E3A673464DAB1920E96E70F9FCCE0B9 5C0AECA310A59DC60B4D94344F838F38F71C88389BD71793AAC1BF26F94F1D8D A53EC471E3136420E5CD453418452FEA254412BF7D221AFECD4025C38776F286 7A8EACEFB485E1663D26AF9B2438C2B9C428FBD426D2AF8AA7A3717A0DE02254 95D1DFCB781467E415D63CE59AB13EEBFCBF93396BD0615CB246B29E50C486FB F96419EAE850BBCE026A8B9EF4A6380869876D967F28AB8EE416D6906DE1A73B 69ACFE0BCC5205EE619DE0C057BE48C36804D74A820998288877B79FE22E1213 555F9A2F4A003497C84B9CEC65D9C544F27356EEF114153165908BDF0982904A 728FF2A8FA143B8487747C733CCD43C19379AF348D212B7D0FAE6075D8935B0D A737C15476E5403A9F676F0FF586440022E18162BE9F64833C483B0EC5FB2B71 8A86B8674AEFDC00144D73F3360EB38668F6065BC7D4D858BFDA3DA780416E4F 2241F57DFD2B265DB7EEA20C28A44D64FC1D887079DE8A08690D9BAD28C59E31 819D2FE453B219A10563F95F850121312B486E6BDDB311D5799769CAA0A307FF 4A0E863BF60FB20D9069DE34313393873B8BA01E944F95921CA27849DB59BD21 20DDFC1A058F0D720E61735B3ABE2F9DEE4B4C83DD6B460CF90EA41DE638113C 3A4293C97E940984104E142827A071A26348E54941AF4D835C35DD7B6647D605 E1BF29EF7436712C50E78D044E093F27E1C3E3FD34268619CC7BBB3D2F0AB45A 2BC5E2473D1F35F925F043FA077CAE953D933AC4DD9956EE4D90B0D9E1F3FBE2 AD428163DD25CE846BD43C8C0DAB4024D8C03251ED3079E4908F31677D2E28A9 3D9B499D9B29A7870E37F2BE204C202F5A7774F29C1A58EFFD85FD03B42ADF24 B0DAE2996DCA7422EE1B34E584BE42D4F861AD714ECAAACF5A6B47A3C0C67882 238778BEF08A7A7CED458678C16D99A330C699033AA9143BA6878AB678F74C48 854EC49494573D740249E03C77B1858557B292204829CC5B417D3993118857D6 809CC5AEEE55087053A2ED7A0AC338EDD5EF74DB949A87253E117DC48542CEFB 9EE95FB77C70634DA1039A845985E14EA5BECF09E533EE8802C74C85F4434F97 54E478DF964B02AE0DD579D8300912EB49097B5AB93ECDCD10E4BB6046EC7CE3 965D4C23347C0E6E82AF8C9B6103006AE88B16B7C0453709FCFE6A1715722EA6 BF89BE4556A7C931AED20028F37CAF7AA7B066FA330BE32D437434F617E3DCBE 54A771425AE792B276B18875264E6CF36199832D94FE92AD746FB53C5C223332 B9BA0C5ADF91BB64E0174B102DB1793B6B301C313CACA4407CF4D542B00C5D95 342DAA32522F2718F9AB09A0C1B9BF9981E6B8088F64AAEFC799CCBBA597BAC7 FF1165FA8037FA9909FE50F9FC93B6E5D00D96560037584AE04C11094476ED53 D10F187607AE6417B21EE7E6A251CDFF206B7D21FF743A3FAC6FD40DF0A0AF0D 5E7C8DBC55508E229FE18F646B2FBFADBECCFEC97F2E948C2D5FF7C2EA33249D F2B5A94A0115E6910CDA7F8A2ED755D3FB93CC80CA2474E42404518AAB160C5A 81815454BFF65B267B6866FAAAC3E65FB14759561F5A6D41AE541A87AFFD8324 E37D445B31F9CAB56FC416EED59B1AC1CF65AD10F5FD6709F7 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMSY6 %!PS-AdobeFont-1.1: CMSY6 1.0 %%CreationDate: 1991 Aug 15 07:21:34 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.0) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMSY6) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle -14.035 def /isFixedPitch false def end readonly def /FontName /CMSY6 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 0 /minus put dup 48 /prime put dup 67 /C put dup 70 /F put dup 71 /G put readonly def /FontBBox{-4 -948 1329 786}readonly def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052F09F9C8ADE9D907C058B87E9B6964 7D53359E51216774A4EAA1E2B58EC3176BD1184A633B951372B4198D4E8C5EF4 A213ACB58AA0A658908035BF2ED8531779838A960DFE2B27EA49C37156989C85 E21B3ABF72E39A89232CD9F4237FC80C9E64E8425AA3BEF7DED60B122A52922A 221A37D9A807DD01161779DDE7D5FC1B2109839E5B52DFB7605D7BA557CC35D6 49F6EB651B83771034BA0C39DB8D426A24543EF4529E2D939125B5157482688E 9045C2242F4AFA4C489D975C029177CD6497EACD181FF151A45F521A4C4043C2 1F3E76EF5B3291A941583E27DFC68B9211105827590393ABFB8AA4D1623D1761 6AC0DF1D3154B0277BE821712BE7B33385E7A4105E8F3370F981B8FE9E3CF3E0 007B8C9F2D934F24D591C330487DDF179CECEC5258C47E4B32538F948AB00673 F9D549C971B0822056B339600FC1E3A5E51844CC8A75B857F15E7276260ED115 C5FD550F53CE5583743B50B0F9B7C4F836DEF30FA8174C963E076E79FDC8BCFD B4200A34BB7F70036CDA62BC4315CA986216DDA60103A7878028EF310DD1168F 7500EC86258E8878D5251D65E97F4A7294A67A9FFFF6CBD79ECD609CB2809D85 4A6E1DC9230EC93C75FE1DDFA69D160924AE15F8406C3550D93043931DBAEFFB DFFE697E7F9F71BB1D3D931B75E0DA7B83F716489E66D4679BE082694BC4DD05 3972F4436438AECD62C72166815649EBB64ED9864D1E9BD25D62C3712719D565 D517C0DE7350B90B2ED74F0B14225A9DEE92FB19BFD654E2CAAD4DBD2DBB0C0B 7EBFA4BF7FBF4A5950EE36147727124F1B45538D8852AFCB3B8E71468A359116 735BB6BFFD2DE152D2AADC6C72D187FFD1A57D77F5467F88AEAFF95768505103 2A2584E498ABD8F84B3C1F20E1D4C39AB96D9DEA4E7AA3680437832DEA68CBBB 70668A38FDACABB248C2C807CBD278E880DB3AE76A673AC34BC3F59484EA11DD B570E9C78BA3DC2F33A38D42293537B3C1D1FDFF2B531B09E91FA77C2C981EA7 0786BF494F66802400EC90CED85AD0261C097A1D49C7D358F109F51B68056FF1 AEA3498C895412B493F26A6F1271A52221AD77E778FCCA08975DDB6A23F89204 3BAB379BF3FFF1C299916D21B3FB60E905E16B3B16258975F1AA8C6A52EDDCBF 1D7C44D3C0249324D9547D39FB4B2CB9690DE8087E5368C96C6B324CF285F2BF F4166E8E740EB3FE762825F8CF5B6E1B5E6D886F4A2762B84A5C8946F7F7E28B CC07204B817B8CB1F32E5816761762BB6C90B85AA271082B1C8F53C4B8411DAD AF18BA672277873790DDFC8309F9639D8467003742A039CFC64EE0ADA0BDEF09 4D4B720513DBE8CC7C81443EEBB219794004CEEF7B734A7855181CFB1FE70ED7 AC02EE8CDF68D61FA07FD22F4C19D84943E17F9294342AE548C38C321AC7B30E B64AF6EB2AA2FF48DBE2D69B1556F49ED4F5FA441FF6D13F5438B113B21C51BD 7AF9256A3A0C0BDA9981EFA785B17E02E0761BF210C8020943122490FC97F6BA EF2F34387FA10701D26AE570EB605C03BC8D345B5CD15949F652F4B9EB783FB2 80B20B82194F0502841F97937402EDBC870037E08EFC01ADD1C25EBB48C6994D D11E3BEE99880A165D36BB560F5667D98671FF1B86A719BDC4C9D0001B8739F4 33252E8218CC31D487DAE8647643E7F8AC889471B3239D38E78D4F216744C748 B4A0EA86CCA1430D97864F6BC94B1E07E16026B95FE9 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: MSBM10 %!PS-AdobeFont-1.1: MSBM10 2.1 %%CreationDate: 1993 Sep 17 11:10:37 % Math Symbol fonts were designed by the American Mathematical Society. % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (2.1) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (MSBM10) readonly def /FamilyName (Euler) readonly def /Weight (Medium) readonly def /ItalicAngle 0 def /isFixedPitch false def end readonly def /FontName /MSBM10 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 75 /K put dup 78 /N put dup 81 /Q put dup 82 /R put dup 84 /T put dup 90 /Z put readonly def /FontBBox{-55 -420 2343 920}readonly def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8 2BDBF16FBC7512FAA308A093FE5CF5B8CABB9FFC6A66A4000A13D5F68BFF326D 1D432B0D064B56C598F4338C319309181D78E1629A31ECA5DD8536379B03C383 D10F04E2C2822D3E73F25B81C424627D3D9A158EAB554233A25D3C6849ABA86F 1F25C1667CB57D2E79B7803083CB7CC0616467F68450D9A3FEAB534EB9721003 DBFEEFD050F3AC3492F5C74162A9A531ECEC0F47610B4940E946D21CAA771D30 A6C27ECBA11708CC46C62396BF9D1990D579D0C394899D24FE7A4382EA18E7E1 160E7283AF5BE17254790628E79FCC206F28B5566075B3A5697D5209062544FF D85FD89D6F43D6588B242AB2666B5D2861CD38A8CE676503EDFAE84D12A71E77 8405E468FE391F4F3F50D2C57ED55512036B0DB8E76A7EF413ED08673E56DE2C 16A3B65CD478433C0D2F9FEC4E662D54DAA43CFA6957D2A9AF8979BE06F70B68 ED4C8C493D6DAC4971A3F1D010A7726D084EC1074FECD7D12D72AE16C26194AF 21AF5774D9B860EEE8608D34F150092F09C19959BAA670022B9A9F263CD391E3 74DD1D1B4CD4D75273CAA4E37F68C631723E08FA35AD34C0AFB4621AE6689861 854D16CE1C375FD159A337E221A6FF1CFFB5693A0623E7EBB58C2969F590D081 AD92DD9E5322E26D6A15023664AC73A355998BCC48ADD0E7A4BC79790519606F A1FEF6075033BCD1A542ED2F7EE4943A13D927138CB26A52F33F52249DD24930 BBA9773D5DEB5B8115804C2E65EDBCCB17469C47F2591BB232690DAC5F1780A5 6FE9861DC450426725D35E3E8006C022026C0A383B0A6E8AA30A52055E7E139B DF6ABC491AF90C7A3884582B7407C0DDF37CC49F3CBA0126D07A3639A615400A 01FC5412668335BC7FB0C5C62F533276BC13716EA27CCD3924408650605BEEDE 2A68B5B6105D8766B9DD6A877DE6AEA9C3179677B7C0726022D0F929E7E63574 4692A959C7B4919DEC77FA5012A3CB81439F809D15DA7739FAB5D8E03BD8F283 FB6832C9864D18C4CD499B20534D33C822226FC199D26116A73ABA2B5CAB0B63 42F1B4A3003688088F1F6DA3C61363B4C0C44269FD21F981DA0BDC5D180FFD2C 8BAB61F4330FE5806A35F1235364554FAA1CA61EC79EB01793D586FB1B62F4E9 3FA5AF30CBEBBD7648C1178D811986C67683097D159E55FD319D709DBFD8DBAB 9757882CE2316ADF89F415A397FCB0E8632126EEC31ED4A3DB56F76E7CB68BA2 1D462905F7ACC5020337A0B614C0038419171B586D1BC251B74660F0D143A90C 83BF0850AD573504AC7C69C0BCBFF84771F611822F117E07F6AA812736054282 005C132BCCEA3F4348BFC62F5E174D6243511A5E4B5D0831795ADAB79A163365 76118F4C1C3A03424757E5FA01D6A13B64527CE38EF16AB0F68E0B71C953AF95 058211B59CBA3CE0B178B7B137B46C08F5301BC80F29D05B7850B08280B8D780 9D194FF1DB53B61F02E7370B6EC134C9B6872D1CC023AE861EB887483F76A9EB E8F3E720B5341B5742665E51DFC9DB9841E9A95242DDD73401BF7263E41E7EC3 4FC59E9E02A7223BB454392E51C98FFC9F82E5FEC6DC6F676AF2920DDD7A6D67 4EE87A37F51ACFF2369A5C0DCB64FE8E88CCAF8E273C6E394BE2DE6C68994C42 6A6E619AB677BAF69540FC7365070B9630C2FB77F28FD5383CE5A1F761CD7AC8 BAA018462BEBE1131A8529A27A8AEDDCD21B106B8785EF81C55C1E08185F33C9 858D030CAA57A131DF3B2C7F0CDBF7F1891FE6654F0124FDFCD00E42D9F59CDD 900BA1836A1780FF73886E01811D48C82329EF5BFD254D21E48E48A145599D98 7BAF75E10BD01F1AB82CAD16BC8D521B32F3A20F8B20075248C2DD72B46E53E5 98BF51862AC5E5F3C5DA971F460CFE0D51F6A6503BB1F2C3D9DC09E73674FB49 2C965BD6DF53ECD16C55932589CBE106EE1BC3DA0B9EE44FDA3512CD5A6932CB 8E632DFA3467692BB1C9FE52BB2FB427904ECEE273062C2936DD7CE4A9B0F625 F831DC77CF4F6E1FD3FE6FDA85D2EDF00DFD44A052CF33B2182B2B6C53A5E719 371B70F9C600253251D4CB6EFEEB40049D446BD25A4750E759EE910411970F34 3301567609AADC8E161CCC14587D4D0E6B6EB8EA9A4D40AF475531503E242B84 C9ED20DF81BA90DC258AFC51104189C52346026927314012300D39A10C5BC601 EB482C449E60639F81699C41F967E308E0BE297828E112AC7473C49DFF3B12DC 96709D6AAFBBD068ED5FE8E2293E818024C3316CF53B87956FCA3B9EF2308063 5429F25D84A264F5D43A043696904E8CEE38FB0FE7FE519CFA057EAF34347D3A 32F8FC3A2A720E694E9A48ADCF7AA57BE8525E88DAABC2412ADA5D5C0669DC1D 079181A5BE66FE1750CC706512031A30D69CE8B8FE320158627B9F5208F5C869 C0F65F065B6C9FCA9B878BCB42AACA31C8F480E7576F4E8FB77D2676473F3ACC C354FE49573E99537934356EA20245DF62B707EEB3AB3354F85E50E6107B0B7D 5CBDB2632B8F107329CCCE9CCD3F3BE3A151FDC673E85B4360594F592A4FD406 A868854F3ADA48E21415EA41738DE52FC89B89367591FCD2415C34BBCE4BDA40 575DA3454076644FDC9F579BE40F7DCCDC9DC2F668F243B598CF3964A512C01D ADBF3396644057E6CFADA5BA32D54D142B49BC85F251872EDB91CB771018F1FB B9513396988DDFF1BC1CB95C85E2AB9349339347968A99559488996F4A496D97 40D65C70B02358BC5E4783E00D90B68BBA8A4ACF7520CD23B9C6B61A51E7D701 D9A4C9AAA44EB8ADB94F6066EFE5D9895C1B5BA8A7625E4C2D042538BF6033F4 6156D5A33D4598549D55B5251ACDFA3D3C52D9AF49B7729DE84CF6F714928F9D 83CC37AD8443EB88D7653BD1BDE7208F26B5D57D7C9676D055428378A8D1BB10 66F8FDDA4CFE3863EBEB7D9C3FB2E81D199AF1117A5CFDE9FCC717471223417E 3DAC7EB8B72D295091F7FA22A27EAB6132F774FFA88019E4EEAB5AC47BCEC6D8 0E5138E416EDF54A11E88CEE4517D8462C54803D6D9D6F72DB0F7D62C610C2EB 43C5182EFB66A91B662076C6B27E5E7EB4886D97D6340013735EC0EBD3EBE65E C095F4BBB597F326592C0721B6E8BB6E6CB37E4050AB10FD0747EE2F42FAF241 ED55ACE32B76A0B69313DD8368A6815FCB25E4F7D7AA4C30DC019687DBC27C58 AA17C13F6368C02C9FA772170DFE31A81E18440D730C24633EB61B9DD8449E6C DF17121C4C5532A818055AACF42F90840D3D019E3E08EF752A092D70CFF2771F B07B243663AC3C8E7BE2B8A5B5C693107D4B6E005C351AC35D07CF444C46219A 8071A393DCFB53C9A007A6950F2C713583F26EEF84D5E6488DE3010F7A6E8DEB C8D582039B434009E9C077A8439ACB50314986130CE15CD2CC71025E035F5092 E86BA64C9F112680AB9E7436B44C33A531029721F6703AFD0570219EC8B4025E 8936A67D57982888A6E24320DEAA48F2FB3E42265D48969EA2B7DBCDD932C277 F1C6E9A9DEC54CA7B96EA6CF7E9B9C2A869E868AF281F16DC8337CF110C7B7A2 17AA8FC532C252BCF2B24B514CE4B2D92967627C6711BD818AB9EEF43F718B17 78B9039DB33B094CF16559728BBA2736D2F9D9CC4D40B2E8E1F7190DA52462ED 8ACD66D447A05C 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: LCIRCLE10 %!PS-AdobeFont-1.1: LCIRCLE10 1.001 %%CreationDate: 1992 Oct 23 20:21:59 %%RevisionDate: 2001 Jun 05 20:21:59 % Copyright (C) 1997, 2001 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.001) readonly def /Notice (Copyright (C) 1997, 2001 American Mathematical Society. All Rights Reserved) readonly def /FullName (LCIRCLE10) readonly def /FamilyName (LaTeX) readonly def /Weight (Medium) readonly def /ItalicAngle 0 def /isFixedPitch false def end readonly def /FontName /LCIRCLE10 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 12 /a12 put dup 13 /a13 put dup 14 /a14 put dup 15 /a15 put readonly def /FontBBox{-2000 -2000 2040 2040}readonly def currentdict end currentfile eexec D9D66F637A9E5292A4933615152D29EEC26E1BED2E48CAB7AC058698EA30B07E F8BDB66981B14445E1107420FDAF32EDBD5C26E35B334E3AF24373B2A13984D9 1D56801ACCF98612DE2C19685E0F4D52369AD642D169AB57DAB10665C6C01538 497544391FABD08A483766E9B5C7ABA9A537C053A8ADC16DEBD8B5C9E1EDEB21 E4E89B0945C0737B96F0194585BE0D9B958F1030EA84710C31971BA7E93777C2 0658995DC8702442780303E948079822B9EE0C531A5CC49578EB9E683CB77495 DF613FBDC4536BD7A90F044B7EEE6EACA2042539F62789EA39AA16433AC4BD0F 98AAA04894F5487C279D2766B50B23E16D7F1023E387FA4165DF522DB290D390 B669550A43638C3C9CC38C7667A22D27F9DB1542620110A8671B2713C8DB93D3 4C500474AC190831F9C7441DC4A7C27EE88DAEF10D7AEE6FDB22E7625E802B4C FCEE0DC79988734BDA39B9896B1833D4BEC4F91DB321F343F57B3FC5ECA13AEA AB108165934BDE65D2EB5A62BD395AB84402D4A2703E3DC3BEC860D5A4EB785A 1D8D0D1AE7D31BFCD3ABE3E9779B6BC28D93CFCFD8461032D969F1C9A53A6DCA 321062C6750132DD47444F208275E5000794E261F842CA01FD5DCA6F8C92C7EA E2D8D66ADB1194BD8AC59E9191895A2FCA88F32DA2B27717F18C258EE2402C69 5655EE4D15708452687828A90653E9FC2707F1E9ACA413DAD6E5EE607F6DCB97 09B7195203A395C97CCC7390F38D69AEC6323A0AAE0A05958B7987701BBD6497 F95D8653699C39F179820FB8C2DBD7A4E7EDF03E83F7536946A3F532650AC5CD 48C10BA3AB8F67915EAC0053592CA317E0A8EFD1322398DB7D9B32ECE97791A0 0B49839C58E426531833D30F153863E92A79516C2878AEE6916F0FA78F94714E D709C10DB24955FC0DE6769D34E4E1DB2ADED1775C5A5A6313C93B6A0195311B 4A334B4D9B914EA59194239AAD1358BC269B8CBD35A7685ACB29282D46440A38 083B9CB2258BB81E2489B5FBF551AEA1330D4DF70E9E650964A369CA2F77DEBD 0CDBCECDD2DFE4EE609FBBCA49DDD2E80830BDFC1C575CED40B4EB39EF89C2B4 5E62003F15602A14F9F9870B697434663663B579724C9D5AB590B734A91CAB1B 230640CCA4C282C1FB2D5EF661949FA129DFD23B09F5BA1115F4D3C8C18A7E33 DC569F1BEF4849AA3350A571913C1FBBE8B2E118BA74C986BE5DF3578CDFBD02 FA1C360FA92CA2FBA4F24B04B13887F69D7C42F6E22122E6F957F3CFD2358F55 C63FFB2F2FA685ED762EAE00CD09EB0EEA93871DFD4FC37564179CFE95329A62 EDFB768BC7AE4626C877BE9E241F3D3A555FDCD64E50A46376B3583D5EFD7BBD 8A5275D4AA702631ACDF585BCADBF4901B0FC8402896A72F58480CD7DF4EE8C6 7EC198FF76B7FF6CFD97D3B64D6871371750742D44049F4D9F596F486C400FC6 FB3F5CB34BE03DEF52DCB50DC43F261E687FCD2D6981CF9F32876C20C8A20A3C 656F5B9A59E28F7FDF82EE66B08BA50322A666DFB2E90E848D9BB194F782C033 318758AE81BA4FC16E641F16D68C803B836EFB7FD567156514F3FDA982CA01B3 A331264C5A60354F7DBCA0798EBFED9BA35CD37DFCBE3AAA84549E9928A81DE8 44FEDD671708FC28ED6C546049878DF55E8B403CF6424CE7AD7475739232D8E5 0D3318118935E97E53151F1BEC6E 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: LINE10 %!PS-AdobeFont-1.1: LINE10 1.001 %%CreationDate: 1992 Oct 23 20:22:05 %%RevisionDate: 2001 Jun 05 20:22:05 % Copyright (C) 1997, 2001 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.001) readonly def /Notice (Copyright (C) 1997, 2001 American Mathematical Society. All Rights Reserved) readonly def /FullName (LINE10) readonly def /FamilyName (LaTeX) readonly def /Weight (Medium) readonly def /ItalicAngle 0 def /isFixedPitch false def end readonly def /FontName /LINE10 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 0 /a0 put dup 1 /a1 put dup 8 /a8 put dup 9 /a9 put dup 11 /a11 put dup 16 /a16 put dup 18 /a18 put dup 25 /a25 put dup 27 /a27 put dup 41 /a41 put dup 42 /a42 put dup 45 /a45 put dup 49 /a49 put dup 54 /a54 put dup 63 /a63 put dup 64 /a64 put dup 65 /a65 put dup 72 /a72 put dup 73 /a73 put dup 80 /a80 put dup 81 /a81 put dup 82 /a82 put dup 85 /a85 put dup 88 /a88 put dup 89 /a89 put dup 105 /a105 put dup 106 /a106 put dup 113 /a113 put dup 115 /a115 put dup 122 /a122 put readonly def /FontBBox{-150 -150 1020 1020}readonly def currentdict end currentfile eexec D9D66F637A9E5292A4933615152D29EEC26E1BED2E48CAB7AC058698EA30B07E F8BDB66981B14445E1107420FDAF32EDBD5C26E35B334E3AF24373B2A13984D9 1D56801ACCF98612DE2C19685E0F4D52369AD642D169AB57DAB10665C6C01538 497544391FABD08A483766E9B5C7ABA9A537C053A8ADC16DEBD8B5C9E1EDEB21 E4E89B0945C0737B96F0194585BE0D9B958F1030EA84710C31971BA7E93777C2 0658995DC8702442780303E948079822B9EE0C531A5CC49578EB9E683CB77495 DF613FBDC4536BD7A90F044B7EEE6EACA2042539F62789EA39AA16433AC4BD0F 98AAA04894F5487C279D2766B50B23E16D7F1023E387FA4165DF522DB290D390 B669550A43638C3C9CC38C7667A22D27F9DB1542620110A8671B2713C8DB93D3 4C500474AC190831F9C7441DC4A7C27EE88DAEF10D7AEE6FDB22E7625E802B4C FCEE0DC79988734BDA39B9896B1833D4BEC4F91DB321F343F57B3FC5ECA13AEA AB108165934BDE65D2EB5A62BD395ABA20F0389A1B71270649CE1A93B29040EB B3166F9EBC3791671B6EDCEB171F3CCDAA90BBD5EE5042AAC2AD6D838F79E008 43845E5FCF0B3D71E21543F491832420B45492BFE5D3E278268908D3CA704A48 AF6C6954A03244409C49A178680D62BC6277BE6A8CF4DFFA69775BB8FCFE579F 0DFD00493CC18A38F7AA197A43E96F5986EB21F77B0C955332C87B18A5F72982 E3D0B0554AE03D86FF10237036E2CBE514A9BFC5A4F5B2C9E5667EE2B64AB536 766C45D847C52B75FCF57652200536319F09D0FCEA025A5F5CA61CD63812083D CE11E82271251C41D0550CF754C13A32F847CC7ED53C14742D3C5AF8E412E542 DAC233E8C9FA03A4ED4BB95A9B831AF45E02D31003517156A429F54B6E1B1727 520DE349B22A26C73A2D3CCE0733F2E594DD8E091E2464A31B86C81CF3616399 F042260B75E2F3010CC15E843A7F7388C01BA40AC4E4F1D50059A55BB5111089 F167B796709EE54D544E1AF445A3E791EDC71A6D6F2F298A20014956D52138CE FB138CE99299A8B41905FF9C1C7617A05C9DA8DB4B4AE45B64882E5597877DBA 1A11D82FC229CE0ADCDEE3A2A85F951462399FFAB3B120AD6E5478DCBAFCDED9 91E21CCABC90CC90B2C3F9AEFC2ECF922B4B0F6E79E53E9912EE3C1EF694E41E D77F89D66A84FF32C8A2CF5C64F23DA254A5E8F07C69B3FA6EFFC59238C60896 542864A6A558B092312BD724E0158BEBC4BA172F9F7800A7EEF349FDFDD6AC43 FA2C3B9279925B62A335D288999FDEA0911915A7CF4144792FF3BE07674606A1 85FA04CDA38760F5A4D78C8996CDC8C51817645F1B4B41A297BC4AF9205002F8 3FD96B2003738022B4653F09AF1388085E7B884CA3EED5DC45489A4BC7815BFC D70C1A6A58328704B5A411DF7A880EC936FBE3204D2230AED93A9C0AAE4A6A86 969F077F36B899B5A182A6367378212250045D5E91AF5D4DEA7EA2E0F57B39B5 B8C93222DC78B08B8761B045B708A3A5E2CC37A0E80ABF31F061EA500645FF66 64BC415A215477C6230812FC3F475AE1B9AB5EF6B225FD4864AA7B89BCDC22A3 821B6BED1BBFD3A1F7E1E67CA92245B95613C6FE67FA9CC7B904D6246778B9AF 6A3C3A2E92B8D14C8F9283DA350CC4EA8B20FAE8CF0F37E6FF094F82DA523991 7CEF79AE64946FFBC3ADE85E19DE33C332B92FF4BDA530EE8BD552135370692E 84CC05FED811AB9A737812A6149D5CA330370F6E34F847DED57472E7296824F7 0DAFEA25B8129576DE918A90409F639DF4C5CC173A94567EF9198C8E1A111B89 6B9780F2DA2BF4B6DF4488BDBAF76DBFB519724BE8CF457ABF7A5CC168F2E6AF 9E95DD61057ACB25E06013748E3301FDEB1897DB8A890FB706A87147E6D42046 2D155A99FB4178F774E9EF75D818666EEF2AB409BF6897FAA192F444DB8C6384 5D85274A74FE98283D4D5CF5ACCFAD20722DA04A9F5ACA2179739DC2DCD2C48F BE9AB142F53633B4ABDAFDE4541573D1A1BF4D00F987CD04D1718328E8BE366D F1E815DFE54067ACDEEEC2C3BD658EBBF4BE8B29099FEB934B6087D2FF16FAF5 649165D6F47DE36BD03D72F40F7B397A4556BCE45198BB02670C9B40A9A638FD 1ECB25F39D6E84FC2FA6FCE6A934CFA88A31DFCBF196612BE36095F148339CC7 F438EA013FA41C5F37244AAB9FA503CC2903B26145C743128ACDA56E4CA53F77 7F72AE30079A8581210EAE664606AB45BD50CDC30B268DACA09577A8E7C0058D B09B15B9EF4BF28DB8CD7E110A81B243CCA9A6AFFF7A349912160D67AD75D00F C10A910C6B964BD6E59CFDE395B5E24B4DDDEBA6F04184714CBF723BFF61BF15 B165449D2B3E70E24BBCE08598119689B641AB4504B318C714C92BD9510A1D4E 2552EE171C626ADB7692E985B35C7E159738CBF342DD6FBDEB0ED38A961910DB 6D361A6CF2F1A686C9005CE8CA1555767ABDA0C3AEFEC3CFA14DE18EC1067F07 74CD8569EF01362847FF4F1B24A3AB71CDFCD2336B048F13F6CDDBCF69DD7F2F 9BB0E36680C8C86C472742BC156BD1D44408696E4C3FE1537BEAAE213F2EEAC4 5BBBF7444C367893ED558C0DE641B46A3B13C3C80738FD9B5B40251E8F57023F 99EFD7484DE2190FFB3AE337C5E70E23664FD999432AB57D00EBECE0373A816F 8466A09E9B3339DE48DBD6E70FE6776FAE0EA0A5E90D31A9443373432CE853A1 EE7A57099558B81D09F85478BD7D7991A74B4A202D32AFCF11D2964A6371A465 BD1755E0BF2DA579F8C0EE459F33BC11C87EC29173721BCB933DC1CC44F973BF 5974E513A82A60893869505CF5A0972EC48D991136D5FAC7BE73271F6F883BED 3208F6C5134F5BD3DB7C1D74D955A2D749994AA3E812BCD47EB5CF4954AD901D 66E00C8234CD78B620A5327CCF5C5F498EF67FD088202446028207DC33943C13 A141AFE595AC7D3E02292E0CB65917132CB3EB6EEB71378EF6EDAB70D9CCD7E5 26A9D05ED608A10621462A8BDE0CE8379EAA032F87E0D43B4C49CC4573123AEE B8EAE26AFD848333BF8347AC1E1B49B8274179E1BA48DB59658B292CE2C56E47 A6F63FDBFDD1A6896D0B87FAA306540BCE1D424E3C3C7B2D3739352FDBC80727 54EE1995CE08135A3AC3A99749EDDC7C165D2DB1BDF2FC11671F9B8CB2A4EC85 340EF9BA826E5DCE5F6AFD582CC09D5FB4A8624CCE9B148382114EDC91423F2C 65018525EF5A3E381CB43A4CC609C647A99F501B3D93DF89E3552005AAD14553 797108D1C368D9DA8324B835682DEEA5D5813671286EB635FCCCC15280851C25 EF544EA7E71EF27F138D94572F3D6A9C13339BF46CA47692CC07840CAF5D2E8D 9E7D31FE803EBB8686635E5CE3F63F8752A91EC2E731249B92B1D36F20D6EF04 9EED84087E827483AFB08643B4575BD8FF273EFF25E28218D734EC1339100508 03E7B29086D09093DDE2B647EECA7ED2978E6BAE0C134FDECC778818C68D5A7E E66BEF2DFF959413A27637281394F282099C4AC35ED9485A5F29F5EABBDC3205 41C9BB82052CAAE1FDDEE5F6B7BC50350885A53794378382E76E56DAF3315925 C18EBEE2AD30C89A3004660779F5CED09C91E35101BB13214261AC1EAC4334BB 31F9DF374FF694F00A01F9B995A56638563A9BC35FB881860E7ED287A3D6D241 0B9986D8D34143E78A8B8CCB9548B495F4065EE9F6969C6BA7B6CF7FF1FB1FED FA54C002B38235526B5983D64318E74D3307ECC0A2B587239DD72D01ABC5E327 6D3C5D67B23EFA6ED2CABA95E89D856DE288E786415EBA6EF4E0CAE644ED7C1A 9E2DFAC3A3A1D2031D08A930E02848ADF3CC7337F21393303D2DA3B2FA5DD73B CD4F3CBD822E98A599ED44C21824925D9D825534F27266EFF77217AC70A88503 0C3F1360982B1F74A65BA8FA4CE81A3179C6C03CD9EA754951D973E315E0062F E71D05B477C70EB9C7475194270F9FAF474340A2B9B0F42E1305A8CA316D3FDB CCB19BF73CD6D350F13E15FE95D53ABC18BC52221FA74E58084992A1B21374DA ECBC342D08C1C7F30028745EEF8B6A425EB4A9B6422E37A928B4ED4EC8235A0A 7687E9BD01C41D109CA66D2D973057069361FEC72788230345ACA7458D6AB673 60BD351D9C905592 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMMI8 %!PS-AdobeFont-1.1: CMMI8 1.100 %%CreationDate: 1996 Jul 23 07:53:54 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.100) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMMI8) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle -14.04 def /isFixedPitch false def end readonly def /FontName /CMMI8 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 11 /alpha put dup 19 /iota put dup 22 /mu put dup 24 /xi put dup 25 /pi put dup 30 /phi put dup 32 /psi put dup 34 /epsilon put dup 59 /comma put dup 61 /slash put dup 65 /A put dup 66 /B put dup 67 /C put dup 68 /D put dup 69 /E put dup 70 /F put dup 71 /G put dup 73 /I put dup 75 /K put dup 76 /L put dup 77 /M put dup 78 /N put dup 80 /P put dup 82 /R put dup 83 /S put dup 84 /T put dup 86 /V put dup 88 /X put dup 89 /Y put dup 90 /Z put dup 97 /a put dup 101 /e put dup 102 /f put dup 103 /g put dup 104 /h put dup 105 /i put dup 106 /j put dup 107 /k put dup 109 /m put dup 110 /n put dup 111 /o put dup 112 /p put dup 114 /r put dup 115 /s put dup 116 /t put dup 117 /u put dup 119 /w put dup 120 /x put dup 121 /y put readonly def /FontBBox{-24 -250 1110 750}readonly def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA0529731C99A784CCBE85B4993B2EEBDE 3B12D472B7CF54651EF21185116A69AB1096ED4BAD2F646635E019B6417CC77B 532F85D811C70D1429A19A5307EF63EB5C5E02C89FC6C20F6D9D89E7D91FE470 B72BEFDA23F5DF76BE05AF4CE93137A219ED8A04A9D7D6FDF37E6B7FCDE0D90B 986423E5960A5D9FBB4C956556E8DF90CBFAEC476FA36FD9A5C8175C9AF513FE D919C2DDD26BDC0D99398B9F4D03D6A8F05B47AF95EF28A9C561DBDC98C47CF5 5250011D19E9366EB6FD153D3A100CAA6212E3D5D93990737F8D326D347B7EDC 4391C9DF440285B8FC159D0E98D4258FC57892DDF753642CD526A96ACEDA4120 788F22B1D09F149794E66DD1AC2C2B3BC6FEC59D626F427CD5AE9C54C7F78F62 C36F49B3C2E5E62AFB56DCEE87445A12A942C14AE618D1FE1B11A9CF9FAA1F32 617B598CE5058715EF3051E228F72F651040AD99A741F247C68007E68C84E9D1 D0BF99AA5D777D88A7D3CED2EA67F4AE61E8BC0495E7DA382E82DDB2B009DD63 532C74E3BE5EC555A014BCBB6AB31B8286D7712E0E926F8696830672B8214E9B 5D0740C16ADF0AFD47C4938F373575C6CA91E46D88DE24E682DEC44B57EA8AF8 4E57D45646073250D82C4B50CBBB0B369932618301F3D4186277103B53B3C9E6 DB42D6B30115F67B9D078220D5752644930643BDF9FACF684EBE13E39B65055E B1BD054C324962025EC79E1D155936FE32D9F2224353F2A46C3558EF216F6BB2 A304BAF752BEEC36C4440B556AEFECF454BA7CBBA7537BCB10EBC21047333A89 8936419D857CD9F59EBA20B0A3D9BA4A0D3395336B4CDA4BA6451B6E4D1370FA D9BDABB7F271BC1C6C48D9DF1E5A6FAE788F5609DE3C48D47A67097C547D9817 AD389FD24494D365D62017182ABEBCC79E7127AC417197B6109301EFEFD60FA3 94298CD8A0CFA8861BE3814E05368B4CDD4ED901F4CCAA145D0C7A5A6080618A 96D5B23FFA9F70DCA3BC0C0C9B9469A96F50117D57FAFACDC9F059CFD81B50B9 A1654593E5FFA2E906F3C0B6861BC85CEBAB83464F26C049EC0D70F25DC9E399 FCBA99C4E026953949028A6B7E92E0A9F922D3DBDBBD07DA1B1C76BD1D05ADA2 A309199A8C278B6CE76AA34ECA5FAC0370469626C0114ADE1B875C14839D7B00 BBB91354C6745531F54D6E8D8EFC65E22D757B6256CDCC4736DBC9271277D114 BD103014AABC410B712C687F6616DCE924FC20C69582BE8362377C956EE595DC 8438621577CCF6839CDF30828A9FA3C185C5DC1D9E5F8D214A1118F7CB0FEB8D D63A595BC182305AB5CE91ED2FB0E93FA7425F139EB5F54C2DFD7B35168CA624 C949B37B7B48060AE0833DC11193F1D3E5B143E1B100EAB3CF864B44F365AE5C 40D491DFD844E9E26381848BCB2944878191B13DD706A4426951DEA73F30E4AD F0E02130F1530472CC7F8126AE9E858F4185E832BAE622714A8EF99EFCABB8F6 4F90A7612D590DA0FBBF8F0CBAB93E851B4557BE5AAB67F33B47BB15030EE55A A3A0178916B0010B8619EB5F90E07559E2C87C0FB4AC88130DB5DA76E7D314A9 071F4EE467D11896DD52AFA59726C64B7729741EC424AF21671CC90936CF2ED5 BDF7C947E1E3D18C590245201C545AA1C74899FD33D9F72C2515E1587F0A51B5 5BDB99F10F5ED86B5D52BE6F85AF8BDF3E924C8A5238E439A2F6638BDD678DA6 2CD1632857D506FC6789D43DD1D8AECC617C026B9FA0437F4E738FE7CF63CF66 1735CA7CCBE2DCE5FDC0C1D6AC3CDD2DE5A2565F682A339A40DAD830CB01D9A2 F7CC261286D31C25B4BE8567279BCD1F0011FBCCAC2DE4FFD3C402F9644101FF 1D603F1BAE2289F7EAA22FD27AA29B2CBE962C93E4238E0028BAB46121DEE847 58C1CE5A7DDAF0172DBC9CE7C3AF0670149C0CD6DF143E980803C9CB4BFC1896 161C6A34B1BD3A33B13881F555DCF7E52D455EA567C21AF637FE2A7D066982FC C13A08B14659C5D5F75DA8F35B8FB996EB8486482C94AC0C65C7B9AE8F5B0B60 429D497AFD9974F5B2BF84B319C0EB99EA5F622DA2C229331F1A7FD4CE794038 33C6B64A5E51A0E14ADEBDDBA54720E129EEC07A0D43102335614A7BEB5C5B2D 5AC1D872D358CFE472CE47671347AE658FB512B2560754C43E6A41F74589F042 F04ED83BA4C35518B803FB7D26D8021AE0579F993260CA365D3996F62DDA7856 67AEEF6345F7A0251C121C794087A6D447803B32B47B39A11FE5C7496649E960 F97F36C40A6967A8E82ABFC2A6E2E04F00A0BFA0269A0A0E6DB64C521ED1AB85 4FD15698518A4B82B121B157B59AF357785F82E471BF5B1DA0BA5465271CB523 AD3E58EED62597D23D538885CE4D284B91AD6E5FB640E2AAD50E3A7272DB8D99 171C8B16A043E2D0085129D627DA3FC892E29BD6A244F732E3ECB84E392A4766 198373D70DC1E3DBA35E138A8CF937AE89EBE6BAF0527B15CBD92F42362F7D00 92D8D5415101E7DA59911D83A1A4F9BE8E3B2CEDA5FC6382EF234EB605366D2D 262D259C186CDA1AE8A1752BA32D1E5D91235D53E0AAD8E50ED037139D61ABDA 524EEAAFA2080B5BE25CF0BF2C6539B42D01276F985ED2BD1BAAB1A74BE082A6 6778A4352D1547280928E4BFFF629DD4BA1D028DA02B2F1FBACE122D8441C615 2E0D26BDF3249D219F25B177BE55F127C7627F950DE6ACD001CBE0313F0627CF 5F4C57764A7637010336BD121A56BB116820A9BC5C851419E4017F7074BB4DD1 901E4EBEDDD841B8CB0D63395BCF0976B378F66EDB086734ECEF8AB792530CD1 65A167B04E7BFEFD5E28585938F7863C38B6952A776AC4142B176E225FC622DE C9FAE96515001BE07CF34477C0D80FA123F366ACA3C20480994F34C653CA1283 FFDC2FD2733F393FC78A5EE484300332595D7FF4E705B9348CE7F0D68F25F98F B7A03BB69AD4F08F8A79B05BCC5C2CA4158324251D5D08E7F2D94842CE3213B4 5951C1B5806471D2498E3DCA471D58AFB4F87E0710987360DDFECD6A1DC05279 7859A83294C5D6CA20AE1BC96EB91BD70F1860A53336F2C01529A5996EFE0A20 24CA3EDF16A93C75EBB449368D1641764DF3A0874549E933C186A9156ECEB554 097DC41E353A8BEE8A9A2BA86E8A31CDE1B244BBA8683202E7B1CD197E354505 BFD188465C7EE918F7881C1E307DED1D6D1B805EB1C9D05F14AD7AF8130D241B 8758473A32663E3B615DE314A64B872320F38334571C296652519F369D90CB74 E7E3ADE96C7656D3BD81E563A2B3B724A93D49231D4907331F5A141EBF0A0ABB F240009B43E8CC316031CB4B2DEC7C732E6396FB0B03F2BF1CEB1A82216D9CE2 17215D2F04F7A3B897788C711CE5A8A99E2715E8C48729B9A5D6EBECFAC8F25D F58F13079F04FD377A5EC22C22ACB994BB00157DF5245E98663BD753C3298099 651053AFF5E0D60A9E1FF6DA9725FFA34D95030B8BC661BBF7BAA73EC0E01960 A218F85D258088648A9ED50870FF9B0824ACE292695942A1FF9C59F57E3B648D 960B0392D5A8545BEADD003EA65C7E6D4736C3CEAFB59427D50863FC21F4D009 711FEAB38F90E08E18C59B69F2503800E70E2D9DE4E89C8FCC25954EF3C31C13 8AD711FB98587808F921C2AA8F24BA9958C60DAF08A7F69621BA2303A097DE4A E0125DF82AC7C386A9E2ACAF73923F12C5AB312BE54371FD2FB181C10B66EAC1 94D0663B9318C8B55EFCB9F2FB055C1A686005EA03F4AB3FFB0E42B29963C8BE DCD787811F9FB7F0861AEE4FDDB213475D2BC77CC49FBCD4AF15A3BC407C391A 0814D9E9DECBA938FE8D0408CF747ABA3B66387B28B619130E1AF72B8104E77E 5C63A68D215FC86910D131A4CDCD73A23F7D0DB7E47BEE478BC89AD03BBE84F2 0EE7481D07EB587A57009D2660F36EAAA69C43A644F377671B465B8AE2DDCF72 658AB1DD470CABBCD85E75FA025D7F7D745DBAA2CAC84F7AE1A3CC54245B83D8 B4A9B255827B2FAAF8D8803226861B0E30EEFAB227B1D62DA6E8DDC43E6EBF3A 70DAF4CF49DA1A04A595C506EB5AC25C101ACE6F0A805C3A6E53AB5A9AC0A5D8 E02802D8F6334E75EEBF15CAE3CF15A9F308A44EA92F87686B3A086A98C8DEE8 1752B850E63EFBD911D89F860A46D5073E8A490AC9A2F1A54CA36F3B0948A4D2 A1865EB667B8AA85BD001763056E3BA25B3B17837380942E170433E346F340E1 CE0AA889A32A3789F70904C735F40BF90CF0E3D01B6E63F2EAB33FEB7E7BB57D 2AC88C755163BF560F4FC98C700099134D62C5DD43F93E789EF9720C614D441F 9D883173242937BBAE745E6053114A389079B6BC1E061449CD085614DEEAE0E6 E6D191170E2C65C60F49A15D657C9CD693E77B6C2CDCA176A7CDEC55AAB83141 3A44F2C68AEC12695FE458E541D599CF39412F4C1A2327915C784BE1ACF62A26 04220250C0EA3C05D0D36AF52BEFCC82E8C63451D0B38D36297AE44984B964A5 F55FD18621B5D40577328BE329E516CA7152F92F39DFD3526393E8F4570A865E 7221A5626F9697956CCDA935E05C72163A22843CF1494A94460BEE0F759FD297 EF289D668EC0603A73B9602457A2329D7B1AD9B03CFDB3C429F0463AB0F39F8F DEFC0D8E28D8D8382E6A848C3C48F4539237C9301F7550B409D0B89908F1E3A8 1778ADFD932062ABD5769ABD0EF55877155EBACD8C27CB5756249AA4C36AA116 6AC895C31CF1DBA9D45D15B7F6D4E8AF3A202414A016CFF7004B0B896070A489 D935280685B2A5ECA93A59CBE3F6653FAFA4502124411BC3F21CAB315FAAD1C9 A4DAF73C0618E5DBB6F806243014B112606F8819315907BF55FA3CD0C9D77539 256D43D7B05942E4D39EE7E05D84D0F272A65B157AAE57DEB441A6EF6325D3BA 32B7BD87E4E9536BCE07FD55650851F15239BBB92E737CB5F74E5D2F069BC91F 1BAE27223DADB13A656D65189CEBC7B274E2B1B9171B93FF58F93A1F4D260229 F022DB98194F0A308D934084D7A0A52114398C04A9CB6529BAC9EDA60D1B6F53 4573DACB99A665FE383EE99B9BF5D4F83AB031C39CF24922677DA0951037F164 269873C07CD648EBD2F8AC759EC9202A80FA5009A84B6F8183E63FEAB2852AC9 13B605E77CED2D58E5CD483DE759BF1C7A05478DD8B7F1BA79B104ACB26750AC C3B523D4FA71D2ACBF48CA063C029BDE946AF65CEBD3FFDA5A32CF51A501FAC3 F23089A7BF9914C25569DA7E18C1EFAEA37C5FCB3AAEB28E004EA0E949883F05 7C7305A0830211CDEE390764919197AE32368D7FA62FDC79131C70EA00418B27 7F2068AE7C9B1A65E16FC5D3F508CD6AE64B58BF15DC7F26E997ADE4053BA248 E74CF90CAE858EF096DEC25B6EB21350CEBC91F47A250F6606C44E820F2A4B2A 2DF0850133C1ABE700E817265F6B0C3046176767E7777A433426F057F1AAAC27 C6B44F53FAF62D1BF93B2156B5A509A435E677B410DAAABAFAFF7430EB4010B2 EEFAB1291B85DBD196C372C1B9D3023A5B1B7F78043F74778A19ADF53F61F520 D3B715579DFF55A1E49322370D5DB7505DACADEBC90C1C730A92B2CCCAEEBA62 052BA719F0C2B18E853363E4E45667669671920680470976CCA07B081DFC5054 D652E803E1E540920B3CEF12B9C4B4B7677A64BD0F432CBE82B267158E5025AB 7C623209BEE83603E766EC2469AE7C120ACA2654361ED684E5CDE46145C8EA9D 41CFEC357EEE27322F3121B5AB86C6B249E0163E219523619F4D368628CD3A3E 090A6516B3643F5C148719FB8D5E3CF228E96773475390CA690FA85AC8AFEF51 EECA7F30DD503D4AB3327262474D374CFE145EB8B8ADF7DF0182FB73BD41E440 2D993871255AC0EEF2B10DE94FAF76366C1C3DB129A90EC7C7B1765F34C5C34E AC8A95F862B8FAF3F76951D38E3F287C15219AFFA8EA587A428011ECE36E2ECD 4561BBDDDE329F89EA2F72E500A02B82D595356BAFADA4CADB8A9DD525A8B253 2298C45E5A18888A5950925CB2BC5E87EA76BCB4B72FC6749D3B7AD18852ADBA 8781B7892F1971B2DA66ADD16785766679BFB5DE33DE1A6D742129C3644DF174 E18F03A21A64949FDB27590454AA83E459EEED5D5D40BD2E8A4F3AA28652CF9F B3673C1281F21B52425D577922D7303AC494BB695B01B7CA3E6098CC71264C50 98366535E6E6DB7826AD5E6BC584C7575C3B08353B11BF6742CC23DA25994893 DB8055ACD4441BC686D8F44094D01EACFEEBC8CA22FEE2F4E35FF5BE42465CE0 A425EBD626847FDB8EF939C8B6B983DD73DCCA3090A833133B424005D23C22E6 626DA7C294E0ED07AAB30F7950755E3B240CAB51C88D53A6ED839F12AE303A5F A9EEF4E9E7FAD6D75A564B0DBB860EFC5C35A7164CBB51977DF2F35148AEC66A 4BF739467AB00B7026F3ADA3FC142953142F79059876085597CAAD4A965EB772 A28F30654D6C7FDED08FFFBD07B5EE7C80DE91DB49C5F5C273FE99D2AB4E22E4 CC63189AC589E54A88B221078A80299B56FBB86A634793FA43834920D236F6A3 CCCBE6BEAE3E867D50EC62CE1C47AC418AA0FB94A6445D231E0CD6D3586EABC6 949E276C7B0D1D94931BE3548EB6EF6978A74030FC14C4ABE6B442A08FCE13DE 40F41ADC5B1122D6DFA4C58E1669F23A3C59DE120504F2E010E513516DA4AFDD 0924BA8F1C3F27A017168548C63DD49D3A609274D856BADC8EA650BB1110FF94 254AEBE89FD3F4CB7F615D47A25C3B3F34418470D1716B9F2E7CFBA631AC77E0 97435EF1F19F0401BFE2ED7FFB9BC040E72E093B720E33FC75DE8C91D1A92630 D04441D2F114382BF027960C7AA13DC559EC3F52BD1F154C42D3C19381EF9787 3AC6F028AE05F3BC735C32C610C162A6D59ECE600F59A80DAE8AACE5626973F0 D609E24D9CFE4D02372C093A2D75081342AC069685A284274B53031A7284ED1A C3D72FD07E0E8F54FC797659469050A6019EAE838B73FE5AEB5FE5A81C996665 74A636BC1AA02DC621957F3713450EF46381B7C5C15C5E25695D5C1BF53074DF 16D0D4060E35DB3CE3A22F66C67A9975244BCF58E674CE254938EF5AAC0112A1 31DB7E698310DE1D498780981456B8BFA1ACAFFE508DB63544FA34086A383C01 20CA28FA2E097AF51760A8FFF16CE6289410001BE4C72AEFD997C932D316A179 31EBCACF73E064895F92FB0E1243EB4AA073F3155B21D51CF1BBF16D34524106 918E2596886DC449DC4BCB180B355DFC396BE597CFFF22C505FEC28E6E8DB970 56DAB698ADEED3D20DF0C44C4AD866EC6E4EB372DD6D092497D3EFC33169CF9F CC157E297F3F5F95B658769CDC1E612972F796C37FF5A53AD72165DBA8E8AB3A 404E9F25DE44D349A7A7BA640B8FB4B15A1F209B58B773976E7B164A471A30F4 A3B99B6D88F5E6D71975B1F15B953C1403C6D38FDBCEF67503114642675ACE76 4656882DE1FAACE059B8EA8C38D3C67A31F7DDCCDDFED880D2DD038B316A22D5 C69339B1F3DF1655097BB728104BE3719C9A4C5DD426AAE64FA7ACC60E3B10B9 10075897582651D90FBDD82D20D25D98AD94A0052A77D06641AB4821DC8D7788 36D038F403915CDC74D937142C4F1D18F5639E6D25E5A6A394D1E357FBA25AB8 46AC18C5CD9ABE3827037A294C2466DA8AFE1901B2B2413823D40005888901F9 B8EB1CB37FBCA478DFD096A00CF4351A7151C85D9CA77947FF20902D8D77B991 5EF237CC2064118F41AD10D2E755B3A103E927B1E54E4591AE451D461585696E 05D1BD3C6396C888C6E3447ED716A939A0C9B1648BDA7A906EDD531643ACB3E3 10F3A4374DE32F01CBADA85CD66258AAE84064C92D8180394E589E8F7CD98C7C EABC50B51C7F2CBCA6AFC8ABD35BCADD665B80B3780EC92249C9F99452ED22E1 13160C76A6D33FDF547A66A86D9F657DBFD8FD96EBF1A6D73CC5EC25D360BE31 878426D9E8DE675E04C5368447B79BA270BB941AF1168C4105F17396CD48A2F7 DA0477A1D0F884A545BC9E25DC740D33266F3F5F3D6B86E29C43E4173E3EEC5D B207ABAD7948C88FDF2D41D5BAFF7046A08B080CE9679D3AA996318C9772337D 048F5331CEB54105D91C596E6A281DF1BF6036AF8C3FB2D911BCEC6A48CC9703 0A4A20E2C13AED8E0CF30C7FF2D6D19B1D9149839F8F8E7F8200D12A68B680DB 1C3B4231EE22CD5471637150544F3BFC8B5B2FDBA312B4745A195F36E0886316 E8830ACF56F4E0260890C9F6EF1F436F7B695D24B01453D72662E2E19BE4F5C0 77291D12883E7F31ADF9E32913A910E6663168DC0F82F673247C4DA2BAADFF5B 34EEA3CCDD51288759BC5093159EC94D3652404F8EC2AC63336A3A59D9049702 3E71C413A6ED59528A746282DB84096C85EA9590FB5A2F7ECA1227F5115B20C1 D78B0B2F65D6DC1F75963B5127E7A5D93EF4D07A237F182850D23B8D686D1CB9 EE5C8C8B7F743D12A6D1978CBCEB9E53335FBCFF3EC45B99B771E2F2547BFDEF FAB5090D63D71A1BEA8C8668C8C7CD041B62EA1ABA91AD2C17FAFA8F9AED0424 728569A49EA088659AE69F18888379062DF2814B79B0E214E3DFDD826C279755 85F2C5E753418FA80135EEE58E5F8910DAE0F1FD3D40EB7D0F91E4BDC481746A F5BC43BD4814A5EA70A3E183B666E3468539BE7B94E76FECEB1426F294F7AD68 F3E75740675BD3BDEDB9D40D35D85C9B7B184B3676E99D89BF14A461B038FC31 025DA384C7A66D0BA5BB43624BB23C57414E54FD09F9B955B1EBCE13859D806A E46854F5C13C7E34D5EA9AA0B5914B46251371573D03535658EDC919D20C0256 4EF1FEEB279A95EF8FE83AB16D4FC0DD558634518D77B8462E939DCEBC7DDB17 FD662379AA8690A04A1174AF7A4C0BB377AEA63F67EBB9E36778DD9A8A3D38B7 6741FE0ACDF1604EE55CC2A29B8361F4E8D99604ACA1F968B5FB43113287A4B7 949CBA9D2C1D4D71F67923767522B97BFF20D7355219F6D65292160A4BC25519 F1B00B334055C42EFE453C4148C19E27FF5CEE6D4371A18E66629BF1ACD4969D 68815A1465A0CBD6B6CCEB1A44AEF239212B8262648697141D113625C417E488 74E0852C38A44FFE99F2229ED52DC3014B512EADCD99A3134D6EED579B683D28 26945308D7F8040088559A08C572F6DC0EF0DC82AF01760B25EEC2676FC084C8 5FA96125DA74AEE9201FED8B8F12FCC96BA94B3E2C2DC582371842A6B490CCD2 869FF15ADD454D99263928F8D26A89C56705BE683D8437FD593D572A7D3FCEA6 B0CCC8ABCE17409C7D43E5835188FF306B30C1244638D3F94B4B0F7A582CACF1 1BEDA05DB24AB63D83360B1409A66EA67CBAFD1212BB14427008C01FE2513420 86FCE5D2C33DCF735196CC8001CD04738F980F5E0BEB6D04F9E59518F163DE81 396578FD0531F0A176DB599B613791941C28E914F4D48878EE352BB853D286D7 D7944CCFEFA7A22AA3B1C9C7C4788729FB8652FEF4CF97E0E1C0CD2EDDEE6F2A 31198932314A01B526BAC4EE78055835641399E8D02DF88EAADFCC8A84697C7D 62A7700F274B10FC30265A6E8435E0B63E916159866B18325D16FE11548FB791 5BB7E6E4C73F5A35A7D388FAB1EF0E23F05D496DD500D4F01B2F1CD6B8D5F3E8 E537EF43BA0E04DC302FE79A2E4FB36F020AFF43E5F273609C6D3BE1551FE7B1 9BE7D87C6B33265646B797778FAB0A76FF0A1735F191C2BFC6004AFCAF4B589C 77B52007749A021D8FB2805157616E83EB6413A9A29BF6572184FB9CA1405B41 08BB6A304D18BD9C96580787D9A76CD23B8001C19FF1C473A489466FC044E705 F96064009474B93E4D982E30EFCA75458D7585FA8B8346A0F2835A3F2CAAB4B5 A1B21DFB1F605D54745256811782C3B62C1A023E1767389DF931B426BB26D0E6 19581CCCDE56829BF9954671C6A287619FCCD5D0CC81F48C93C4690DA8705A14 5E723C1DD9197EA8A3408F107DF869019DA893F493162844FD6C191D1CAED01B 14CDDEF9B6992DBF070B03EF47B1E24A0624B11CCCFCB36CC24D9B39E231DE7A 03799D01B4A2E1209CA80A75D039B4616D1531E495ADAF4EC869FBA0E18A0726 EDC06113ECAA49949A261767B0E32CB41E071F3740F2BCF5834F09E6971D4369 730A1DAEDE8F0FA5AD90C67998959A2336B8D7F76F70DC076DD4EB42DEC499D0 B6260C59D3A73838988B9E8CB3930220EFC043A1D29DB1A973EC9F8014F8A7F5 7D07D29A69ED40A37866A4EC2D3EAD48E7B5435B91A75C842C9422AFF34F7F97 DA8543C00FEB929D12AE7AA5E21F865314374CAF3F427C18562D2AC2875D7BF9 9F748CCF474AE50E304EC1172ED7AD047625D9AB524F84A2010C39F3F0C09463 1BFBBBD3512AB6E0261D2857CA740A9C01E683B5AAECC0F4DB067588AEB9154E 3957335CF3A287873BA143E993AF50484E87B374A7332BE95F42EE5CFC6A3D1C C984C913ABD05F4C9631F17877C14EEE569933464DC69856EDCDF5770E6CB300 69A94A06B15DF5CE4DF99FAFBD0F097F0B30BD084F2E6D8F3E0135CAB73F39FA FC8E6E0398939FDC702DC28F4291A491C675320AC2473E47A85ABD38C57BEB23 5D692AFA05A9ADE9BF908B02C0822C3D2C3E8777B53FA6FA00FADE3E22870826 FBC6A5AC0DDB5402910A5399836ADDEA20F4DAFC7677DBA45AB687B04E958A7C 1D04B4ED48D3C5CE7DEC94F968A0DF1B4C394B79F85B28AD85F0902107AD188E 4BB39CD9D6E7D8137FE266591413C1F8C188DC4E288DF0F95D1315B810F39923 7A27997BD34FCDC2B196ED340812B893E3209196EAE886AA9D4C2CEEF06F34D9 205C9BC6701BA55CBDCCCD0E3B45C29971C89E75CD03727779698FFBEF9F1AD8 90FCE226853C1C171664CCEF0B35C3A08C575888718EB91FF0C5E27C69EF1975 9DE0CCBA76470FB8E1E05CC8D1174239B53E2E625E2F88DC972E0A1A0C9AF05A 5BC70E870330DF2E36C7A85BDEC9E3052AF77ECF38A127C89A54959F2F6CBED6 DDAF1D8A5D1A563A213D838FE91ED5043800472F81500F0735D77A2CB0E9EEB3 C057864B40885B3E9D2818CDE87215A9168441D64FC8D63BA72DB7AB308DB487 E75D9CD969261B7D51174C1B63972A4C62F08A0D17F9D27FB2A782387A9973D2 2109B73151B78A8A5294C1A72D0EB3213CD67A39BA8D161570296A99B8D945AB 55BBA16DF77D1DC1DD8FA175D98CD3A48C63A24BBB9899CED82966B28C66629F 11180A7B88B318485A7A0FEA158A3A6ECBED8102FBF7D490AEC291BD37C06A26 19D9BA5C689E49319EBBB5F65A970629A950DCD5FD20774FEAE1ED88A2FB7016 066FADFAA80F181E0C7E03DF8D676F2C6231F15396D0F7FFF7F2AF953F1622D3 52FBAC469A4B2F33250BDB2AAF03EFFCEDD3FBFEA1284813B2F7D313DD6B6E57 A7BDADF5961D04F4E59FCEA71F8C5C47FFFA7A9B0D6778B905EFA22D5E21FD77 9B42200233876F254BA6C104AE2C213F978774D7A0C5B4EE20723DA60EF370BB 11CC152DB6006C52681BC6534B19DB48AB1009BF055C35C684AEE8FF65BC7809 585A5E216190FF521722FEA61351F99FEDC6805C56F5B70DDC76C9DFB658206F 89485179F0C39D7EB4B7D73A14FEE5E739B4F9F10D15E28B2F856C8E83D6C94B 18F95979EE98AABAA98C6CC74270937F64BD814C31D260A72B6AADF9B64B004C 3A65B3EFAE64772AA2024357E3FE092CCB6CBF687DC228CE4B24544362CC71CA 939B358820099F7D54B23B5060363FEBAF96286DB30B4C54E33D79CD910C4AF8 FB18CBCF463721D1BE5E77AE93CE150AE6DE670C2A836361113430BEC9036D74 623AE068C6D75EA1019E2A0467FF6486E07A26632453F5EC7DB0D652FD443481 1EC4E4036B8F8B979BBAF63195AFED821CB6B43240A8677E65FDF136ED4202C9 2C2B21C4000C62B118152C0415DDF46457A7CF83CC5E935751875F67A385DA96 827D8F84AACD379CF591B3BBA52522200892E9CDF25EE785F5DF0C3586AD63BF 6A639090DADCF9C3F61ABCFDB7894DD500565ACDAE363376211CE44F75F6E50D 3E079E84536CD76D86A4B6101D4E913920131DBA8F811464835BFFA7F6174CA5 C3322A7F47BB00A9B98383FFF2A50B8429486D5DAE5F645A5DB7BA24BAF6C943 5AED0FB5F8FB8157400C84D94BFEB4D94079842D414DFA8DEB60BC0D42E44303 D98F772326F230004AF53B91FF82C8F734C0E15E7B1A3EFEAB4BC37B467DFAFF FCA411DFE29108417C4B7A5CBED55039973C9B786EE60A5CF83930708EC0AE47 2D30D58DA8D24AEF62FFF9E130795931D9ADEB544E531853171367F097DBC1C5 66FA4F8765AC7B84E57F170FDEF7B119AFCEBDB13F4CB1B6D3B6A359C51DAA12 DB57D81E9F2A16B19DDD7C5445128A4B8E8E9C0313CC777BC4C033FF731AD195 3FF94217DAC65A10B1290B43F16C09A234C191756AB965C3FBF74574FBFEB5E7 58C98494388D3DE1ACB7F2A3C29D0440DD65C23A700588730A2D2D687FAE3043 557B57AFEB061BE8699EA16D17BDD8C748880E0A587285CBAC8186A92843C2E7 2B6FB4FF3DA2D65115B4A92EF0FFDD26B5DAECE5D3CC3AA5A882F5F15A7DEB37 6BE1D2EE76F1DF6E2F88260880609936130B2482B916FCA4E43F0C0FCC6D0B47 C3DC4B70468FEE2C57F0F356EEE55A48D393C03DAF8E5AAD07DD2700F67143FC 7EB9BB72C0F64E7282BF978FC6B3F667B18B9F6A467BE8A5AC39A6FE905A6C00 0E4E57A39B2F416218C6F16755CAA2D3EBD4A79BEA17D0D0300DB03BE1649BC5 4B01D09805719930D0F066CCCACF37FBE5645866C27E33739CF218591AD35AB1 72D08DF135E7AF54E7293078F19FBA5D77D7231637B1A453D6802FF656AC69E4 CE3FAD44B6A85565A97876FBB231754DCB16301F42EAB9EC34E3F7D58D1851B0 E4866357BCB1BA68088B45363EA521237E1396BC6CF6DD101F84E068704C2A3D 5AFDFF1421AAA441706DDD86395B1FFF094C8A6F2AF538E9E318B93EB27CA49E 359DFB6706DB35B040CFBB37B5CF912DD9D4BB282E6B031A5BD98319FDD0E263 40689C63ACEB031B15830ADC56AC903D463D114EF91DCD64C112F22E12289E09 01CEF6FCF2957192FF824FE543A2465336B3C4D8A92B1B6621E3F8AC21631D67 F6EE71F5E833488670768E3C1A458E3159EF755A0F49255A6067B9DCFBEAC935 22DF0D685D3072DE7F6C0111F5206BFE82D3119FD8927B1C42D621AD113AD4E3 7706916E4D3340E801B4F7176B0ABDBBB9EA9542D7ADE63488B933BEE4470110 1371DD77B4264416D0BA170B77A5DEF9CF1A97A3E1DB6E9692B39E9B9104D0B6 90D62EDF7CA491C2642F07D602C25B914F9190C2C0F426ECBD502807291F79D0 1D84B4DFFADC0ACA5B54385F4246025C426C964DC2492DB7E0672F780AAC0631 21B509E090C4389B2356683C0AD8EAE7780F064FF96FCBF3924D57D789CD8BAD 7CDA6A64BF6E997CC316DF4EDAE81DE3C28E8C896C6CE917F336155D39E1BBA4 3EF71389871C9E7C1F59DC6567F2D14D4A9B1C35C909211A9FD6855BB619396D 66F2AB156D6AA849116CB68EE2726DAD275CDE386DA01FC48780C5F4593060A7 0258CA29BADDC7C7686893CFFBB29804E049DD11437708CD3451D8668BA5DC7A CA03DB818BE61CEC6F266506659AD7F6110969A2675D588CEBB8BB2EEAC1232B F50DE2C82101E42255A564A6E559ADCE1E22F37A510D5711E55CDD7901BB3110 4C30E73D43F87D54450807FA27B67345007F4E872C7E9E9B91C418D0B9564B2E 87ABBCF9A468B1E6586B6A44B4D8ECDFC5FAD0A9A67C629634773692068293E7 811AC058F409DA0F066F197461BDF6DB55867E8A3648A6DA92FC61E08C656CD4 6A506E4AB30DB5545AC89AB18174A0CDB981B66E45E6855D584C59BA331771C5 8FA26FEB24EDA8E5399C0A51E1A7D87768EB80B8C158764476260861CBE888F0 791C51BF67E34D35623F1B52ED309F49BB62E1AB03B6B50A7B25CB35BE5D1D77 05E56E8B3BAED71D4149C03831024C780C1B99649E4EA9C45A256029AA08A753 048619F2CDB87725F97C8C05C99969BCBECD60C6B15B8D846C923888BD0A06C9 5BD1AFE2712F22FA567E4026AEAA730A78262F8B4C9FABD9FCA7F9356966EA04 0C61D40D20AF788670B5D3D5B6BDD27DAD9D200E8C66B96071273B404D243DCC 7D3829F87C6CF9B46CFB10992C30BD3AE5537A7680652E4EFB80E58BFC4FFE42 869AC6A8730E9F4AE18B3BD95E75231E1DD3F296DF680C9997EC3C8F1E123EBA BE452B05A9E0F07B38CB88EB09D20B16A6F94A6CA15CC74CAAAA57F5189736F6 1F4469E6D9823B139FE091B7D8E736B13AC97B72DE28E055AA6F74EF4682B7AA AA611EB80CF40CD0ACFE08EC95A5804AA53FEAD90A1F9D34A7A84AC3C7EDA151 58846C1FD74D4190E6659BCEE32F5886194E3C05CE455AC06C9C0AC6381326F2 3B4171663CB1163CD0FA9B89033730DA4FE007638A1493657700CE05B0CFE3AF 79E9DD2A609C7E420F838F0E47A99607F2993B78990FCF81FFD7F0171578611A A138EFCEE1D3F5E57FF21FC21CFDB4E83B319F7131C69A5F2DDCFF4F38242E28 733BCB5A9406269E48FCD3B33BC51C914C4F8F7168AD3BC5FF94F727F0948B2E 5143536E8E7980421B059611E7FCB94CC6745E915A6DF7EE597655D3D7355057 B48965C006B63D1760E039E194C917E175B5003AD7E01EAB25E09C24734DFEAE 6CE8C9C3402149558D4CF17CCEC66B8E022F112C4F22CC23707134690C77BF33 B2150759A7E86F29BFAB940575BF714B817BB40E6EE8E64C2873342BABCC13C4 9E7E0DFB9F3A60DCE9CF40E00B6DF348ED77FD0FCA95753DC0563EDB5CAF12D6 96C95E49EA8D4B08B8D092E14A9F383526C619CCA1843BF0EE44CB5BB6BE828C 940D5E011C3208D4B51CA06FD257EA7B9FCB6E30BBB8E121E21526AFE0D4B57D 5EDB5019CCE5927F5CBD691A075984DB02ACD950DA104122CAB575548E1DA79E 9CD6148705117AFF9919313C06579360283E4140DEAFDFA2CDD63C43DCA90E1D B32E96E81AA12042E95196AF2AEF19892D7C96C6CE24A27D15550A0927DD57DD BF8A3B97F06F533C8076659C3F8A1149CD176FD929E11C132978D5B1C402C946 C18EF46AB99D7F1EB08A3E3D3470888175979ECAC894F8F78F67C3D0F86ED7A0 7847AC5FEC5147E8FF774E28E691777883AD8E32C1CB189FAE45ED1E3BC3C026 542EF396F92AC0780C85D8CDA8C41F48D3791ED5F6F6075E8595A3D06F6C4E0E 6AEE906BFA94F37A16976CC85BAD78985ADBF9350052D45F804022AAB4532AD9 99937F6E42007DD3D3DA169C8765099850A64D677B9D4B3802318C652ADFB05A 5D7A99AA3B49CBDA049FD3E4456F37E67D7FD9503DC3AC46DBE0C47EA6EFFA4B 83C22D2710B3B75491E2F1DAD26B41878B319CF4AC6B6B79A068D4735DD311AE 84BE3386735B738EC9C357A1D589F8B64EC33E71DB33FD51A4944145A2867592 FE280178E38475D0BEDD1B07CF4ADCEDFA89EF58A9E63899A94D16DE11F72F2E 304F6D5E268538747528529A180808CCBC65501C3EDB3B8F00422C8E88E3CE4E 55D6E7D011FDFA6DE656EE9F461176BE72E720E3C6C7237BD9DCD2862D624FED 3CF3A66D929C94322EFECD8197937543C856D138077F6C1F2D0E3D3407177EDF B6270A0EB5AAE52213B728AD1196746749007C9C2A2649DF8C100CDBBF4DECD5 97F6E3CFE1E345A520AE13BBFA15705850C8013C459F37F5D2ACF6ADE0A2DD97 8B2640D0F51423D356452ADB9DABF121D93395BB40778D38B1DB477FEE8B23B4 7DEB3395E2916D01E021281B5985BA76310F6BBBFFA1D2D0B4B71B320527589B D507136AC4619D3B1C3EF5F18393C90805C98A1D0BA31DC1897420EEEAF8217C C90D288AC0F85B6769163341064A5ECB85E29591813E6AB2363E8AAFB2A69035 2637959F4E587266D2CFC75D69D3F47547699ED7774C70E2E290C0B5CE668151 371CCAAE3745EC582113549D1077B4D8B5E682741EF86E26B29A7A4C548C9E8E 71F432BDC67037F5D1E2FB345224A074E907B3817CBDDD4A0385ED301E3D9D12 53C391644F57129E9AC13F83B31CB75C752FF11A5F5BA807E1D403289F052149 CDA891524D4877A6B741BF9E0FDDACEDBC607995B046310DB4547F002C06841B A2507B4C5A0611BC11A97974466DFF9F95038CEAB9835A6A20C0D5162E071FB8 F3F9E5CD3E8E8781FAE7C8BBFF1C6BAC404EF7E621287B593B2490D83BB397E0 B4A759687B541C2789E6934E27B27A0499136AD4CDA546BA4BBCF3F39E6DF88A 8A884A4AB8481B6D77AEE254733343CB3511A7DA43BC2F0ABF97E43516622E09 C34A491A139C363A0AB401DD2057081CA41812C72C3F9391DFD4B4CE3DBB86FD 9E6E3CCC5CC71350B8714720138CFA91AF0BBC4ED6A9C56FDED4727EA646E2CD F5EB631D7AA69FEF8CEDE1395D99C5E82A27832FC7E1FAC25634BE30C6A33635 670B84148074B3C5519E9A878D81CBD455A68FD371A537E165C8193C34CD2398 6C4B8116 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMSY8 %!PS-AdobeFont-1.1: CMSY8 1.0 %%CreationDate: 1991 Aug 15 07:22:10 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.0) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMSY8) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle -14.035 def /isFixedPitch false def end readonly def /FontName /CMSY8 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 0 /minus put dup 1 /periodcentered put dup 2 /multiply put dup 3 /asteriskmath put dup 10 /circlemultiply put dup 48 /prime put dup 50 /element put dup 67 /C put dup 68 /D put dup 70 /F put dup 71 /G put dup 72 /H put dup 77 /M put dup 80 /P put dup 104 /angbracketleft put dup 105 /angbracketright put dup 113 /coproduct put dup 114 /nabla put readonly def /FontBBox{-30 -955 1185 779}readonly def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052F09F9C8ADE9D907C058B87E9B6964 7D53359E51216774A4EAA1E2B58EC3176BD1184A633B951372B4198D4E8C5EF4 A213ACB58AA0A658908035BF2ED8531779838A960DFE2B27EA49C37156989C85 E21B3ABF72E39A89232CD9F4237FC80C9E64E8425AA3BEF7DED60B122A52922A 221A37D9A807DD01161779DDE7D5FC1B2109839E5B52DFBB2A7C1B5D8E7E8AA0 5B10EA43D6A8ED61AF5B23D49920D8F79DAB6A59062134D84AC0100187A6CD1F 80F5DDD9D222ACB1C23326A7656A635C4A241CCD32CBFDF8363206B8AA36E107 1477F5496111E055C7491002AFF272E46ECC46422F0380D093284870022523FB DA1716CC4F2E2CCAD5F173FCBE6EDDB874AD255CD5E5C0F86214393FCB5F5C20 9C3C2BB5886E36FC3CCC21483C3AC193485A46E9D22BD7201894E4D45ADD9BF1 CC5CF6A5010B5654AC0BE0DA903DB563B13840BA3015F72E51E3BC80156388BA F83C7D393392BCBC227771CDCB976E933025324EFFCBAC44F103496930A22031 585D97048F64AD72C4B7497CD7573BAC963FAD53D021E9F47D0E4EC1525648B4 CBAF236E224CED32462F4D805777841FB347AB8B95D7FE61152FCFC71643EA17 CCF83390FD77CB993A33C3F56B7FE789605DD16DA03B8BE4395C6FFBBBA1E84D 6474B0709D7FE9B374E0FEFFD3DD3AD40E5E02CC6B172FE47C5F4054F8041B8D 32D27BF236C776B0D515294E5C3CA61DFD49C182983F91CC5410DBC8F486B554 A767D79470F272F58CE178BA45211DFA8C993DBB03EF854CACA6BCCC03C4E87E 6FAC468A6994D21DD618908FD534E5B52D6898E2DC0F3217D8FCF806EB4D078E 19555FA4099CC18B27F009BB2E984B3FC9F6D8FB777C73BE7C16A8D9D349081A 9A3A8175344E441D27F4AB491213BF00D61A31CC9B64BFF64944B223D892B527 D375CC682C14AD7177A04CDF4D6757274C4116F29D9C390C204F45E328545670 53E54F7135B2BF046D97A506788F2BEB7BF632C33A536CC683618CCF6CCE83D6 9579718FC067525AE51D2189BFEB3B03843FCD25DA8D298638BC8C70EADBADF0 3DB7EDFE0E54FFE25176E856E6FE3CEBBB2068F02715D0C6E2896F9B86CAF943 8D3713FDB006AFE78E0991B779BE2C2B0337DC766EB335DB3049522E942926FF AE63020200FC3D81A719C8590D054529CC1E6E6F94C586FB2243703AC7F7EBDF CD1F018DF51EDD8838780C3DDCF78F74CE674DC2879FD2AAF3459DE0C4F74EF8 4B613C00248317FA7351EE469354031A4822681C027A3E87CEC69CEE0E03B7E2 C14CEF6313696D9938CEE6B9CABCFABF883C54E77C984EDE642E7B53740589E7 BB86BA1FBF3EC709DD3D176B335370D55315E72216E3158EC5387ED90A74ED91 894CC3354D93DF7C638F440DB4B5543AEB06DE6DA4587F547102DADD0957732E 88B188710E1EF76719B0916FBE35FD96FB85E854645D9CC01D7D4658875DFC05 FE3461D99A9B6D37D94E08CDA7AAEC63C7CC687F61C353B2C0EF67E71B537F07 6D0E06E2BADADEC84D56E729FC79A082936914DD89356555DA1A665F68BFA710 E6429E449BC727E54D8D36FB4F3D607D387C2A85E22436609F3087C658A8C89C 81392A3FBC938BCC5C0206729CA6F7032034E80184BBE731CE7DA254B360599F B0B2AC9D3625B583C31230639F0403418FA5F7BAF4BAD2948601B8B378F24DC7 E5DC10BFD1C1B698E740C0A657B07E6BD295BEC10C3538B7CC181B8490BB94D9 B629B747430507F3AF7C55E20DFB903F07B3DE9E85529A0408AFC43F18DE073C 47C1379AA7CB2BB0D6A200C7FFE952D6790C1747556B5DD32F26432441D78A0B 9B33712C67FE4B6F75BC0648DB1C950C07069410A1B118842A0052DE192FD51A 7098453A78CD252329D1193425D39697FBCB0B1F6332E860D1B639E84F77F92B 4A003A0768DA40EAC5A2C36B0AE926DC12DCFB621E0B3C08DCD4FE8092A00F7A 6810EE375AF60EFDDB3BCDCCF1BA4C7216D86791E3EED7646ED5A7B8D6AC9672 F023F61E17DB88D0B78043351EDDE8FB8B39334C3D961878178FC2C08FF172B1 768E14ECBFBB654A331C2E288F27B285AB3E1098692C80F77FD8983B5020F824 10B8FA83197E9D96BEA00585D3FFF929E07FDC29C7043A23F45676F78D9F0BA9 4C7A2EE07C7EBBA579E4E30A760E55C11614B2A794F353B1D4C0B1B6F28500F3 CD82EC8C39930221801CECCD2B20AFF337EB33BC46BA4BEC610541C767820E6F 970C55D2BC2C56B2E45B0D800B20A93DC14C16137CD1D73ADED31BC483BBA2E5 F763436B198B8DBFFF3C2F101C44955CC666B83C3AC98E7DF5B78D3C6282DEA6 6B026A0CD097CE84235D634D70AD762EBE90C64D945C6A4947815A77E622EC2A EFB4B391E9C0C977AC4C664C6A173062CE12670541E2D8036A58D6B8B324AE07 056CF82453C97D88C8DDE886095C3C1B1160B83AB96B83CEB51D07845D12C7A6 D97FCA24184D85B3AC042AB63648782D85693937B0EE0D995244AF76ED6E9D12 1BDDDA1CEEEA62AE0DA40C929D00F9AE6F6DC62EAAFB5D0EE3D6821A134DFAC7 BC8D0566FAC67077BFB7EE3DCEE08F9718916864A1C088FFE13B7A876CE9F2B1 29844FE15F1597120076255B6EE309681244AA4649A2161E8C2863497F8572AF 67A76E2270ECF5EF8BA6AB8A55E7F44800DE524CD253CD61F3A7E43F649505E7 D1971381249200037F04027EF388EBDDDA11BBD601BA0EF40A76902414054A27 711F19293473C8C54CEB87917DA0A30DED94586413112FE27A16A809FF5248B0 04974CCE0D2350A178B0CA7CF3ACE05BEDBF80622C97DDEBAC6F178772B7AFF4 7DD9362224F506271701FC762675178A39037C7A2C582B71AA3EA133222E838D A63D8FF1C8234AD33E43432CD66F0F68C149DFA4E11277A2C161FA50E03510D4 097A3C9F3415D5D8A876BF5A7F7F3A87D5241551DCDBB621CC817C273C81DFAE 80089178F5D234F1F0541751150F2DD1F4B6E087E47C580345465D787DF8B755 C9691AED9439C1E6382055501E307489DAB36FBD3F5C276F23F49BCF37F60E71 6298504E4D78E2E83C509835502DEFA7A271696B94447B69CEE8A6CBA0491CD6 F80C617FB7FEDEB69094B7F524ED433D9A80AF171EB369E2814F5FC7AF9A2AE2 4AFB10DED5CFF83645914359F6D85708C2EF002E5E7AF10B2CB174539A791252 AC382D9BA6FF6CA6956CC9F6B7679AB232E604F3F055B1B5B435D39A856BA154 8FA1CDFABF5A1AA944A05E9ED38C4BC8C6019355F00E3889D8FF313AB8A9BBF0 9871B6DAD45A8F656AAC287F31DE4E79D9EE4198D988AE00DE363938320E7263 1A4461DFCED9E7AADFFA79975DEC2D9B1E470D27219C098FDF323872A2075B63 66931C3591D0F4A08666EBA8AE150094706F8E7E5FA71F0CBD3FBDF68E644CF1 501F4643CDB7C0895092C41D6EEBD13EE5374839037B73F63B48FE5A6CB3978C F2206F69B7969F0FEE8AC748D01946178F305E80B3878993069B6E412B92AACE 0343DAEC490B6E4B8711AACC03691FDF42E2A37D072CB79D6EE59F14DBCCD02C B1166CEB5ECB5D98A78F5C52F6BEA880F73AA7ED399D275A8C700D583C324527 0CFB7660F6ECABD6BDF3CF7F5A42409EABC299C3D7016ED2D5FF65C90BEC0385 626B33C77F85C0DFD9F82418BC1156439E333AAC03EF1081ABCE269F4AC20177 C7182B3BEF310AEE505C6823B351DD079B7EED2947A6A33BFEF4D77B3A76666D 70192287BAD55F28AAB37CD4636A79111D761F22020DFAEB20F4A0B70CF52D89 8BFC3AF28DC3ECC1094DF60BD1A01869197B5E170726ECBCA71012033FEBB23B 3654B7C9D77688963107A709494844E586FE2A40F1A958745C6E3D161571B468 4FBAD0184AC9AC852C411C92CB0C1D63DE3C0DC7C0DA1E7BD42A5290F015B24D A9DEB49BB2FF77952601159B27FAD7383AA76668C55FF89EF0BF047946CC1DE3 A43F8EAFBD882EA4E8D66D461DD21EBB337A0CFEF34078AFEC5DEEA596855BED 833A1BF8BFC42F8BE0ABE153D8E0FCFC3FFD78AAB6544F93A94B86AE069365FA C1802FDE6CC5A90E72B9EBDFE61892AD3E8E5540C755E5FDD1D5967C2311546E AE21A748C0822BB3DBDE8B85010F05C9C6095ACC3269B47EE8196BDED62C3996 939D821A86C0EDB8DB14A54ADFC9048C608A33E5744BAC3C38354A8E609BFD8C 4A3713D16DDD6F17CBC14A859446795AE5E7AFB75C437A4AEEEFADFB3C724407 FDF0B076C7E73AB70FC6050215FB5AC508FE794B01E538C20670E9D91C251350 2D50C1F901A806CBE01A1110C374A9C43543914C9C9F10EACEAA2F15590975ED E129FCEC2C45876447963649D40B9554FABB79D7E7B78FE67ACE809868BE6C4E 24A13EA11859FB56BB71B9AA58CA892A3456D3ACDAF86A135EFF758C5AB5D772 C6FAEE1472C352FA635C7333D6C71F57246C4CFC8FB8DA28C718CE5BBA6BA4D2 E1424215AA367CF690E37561E704BB8BE7DB845E188B4668F585FA59A22AE215 48AECCBFDF640B9BF636B4201ED939912CDB28D2D969D41333AB117515FA3EBC 3E08C431060E224D27D69D7077AE108143A04A2B3946483EE97C70BA4FCC5F60 CC37CD4DDEF3E47D29D21ECEE4DD47FE2DE9100EE17A9FAA8D5A7B871EB2448D 1F054926C80B14AE37F64FFB111A8EC43AF73D3BD66C50DD34890B4B83E26BD1 3E4871C95A8FFF0EC1E57D6E188EBE4F814F9A379EBFDF9550CE8A086BB53D49 DDEC71733561EC44A38529C900A018DBFC10A3B213770834C565CFEF9E2B19CF DCADF273FB5E327A67C9C2E71E3D34F53F01C98B925213BF5CF3105FF629CB8A 2D564545638B9203283F6D70E4CD 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMR8 %!PS-AdobeFont-1.1: CMR8 1.0 %%CreationDate: 1991 Aug 20 16:39:40 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.0) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMR8) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle 0 def /isFixedPitch false def end readonly def /FontName /CMR8 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 1 /Delta put dup 8 /Phi put dup 33 /exclam put dup 40 /parenleft put dup 41 /parenright put dup 43 /plus put dup 48 /zero put dup 49 /one put dup 50 /two put dup 51 /three put dup 65 /A put dup 69 /E put dup 77 /M put dup 78 /N put dup 91 /bracketleft put dup 93 /bracketright put dup 97 /a put dup 98 /b put dup 99 /c put dup 103 /g put dup 105 /i put dup 108 /l put dup 109 /m put dup 111 /o put dup 113 /q put dup 114 /r put dup 116 /t put readonly def /FontBBox{-36 -250 1070 750}readonly def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8 2BDBF16FBC7512FAA308A093FE5CF4E9D2405B169CD5365D6ECED5D768D66D6C 68618B8C482B341F8CA38E9BB9BAFCFAAD9C2F3FD033B62690986ED43D9C9361 3645B82392D5CAE11A7CB49D7E2E82DCD485CBA1772CE422BB1D7283AD675B65 48A7EA0069A883EC1DAA3E1F9ECE7586D6CF0A128CD557C7E5D7AA3EA97EBAD3 9619D1BFCF4A6D64768741EDEA0A5B0EFBBF347CDCBE2E03D756967A16B613DB 0FC45FA2A3312E0C46A5FD0466AB097C58FFEEC40601B8395E52775D0AFCD7DB 8AB317333110531E5C44A4CB4B5ACD571A1A60960B15E450948A5EEA14DD330F EA209265DB8E1A1FC80DCD3860323FD26C113B041A88C88A21655878680A4466 FA10403D24BB97152A49B842C180E4D258C9D48F21D057782D90623116830BA3 9902B3C5F2F2DD01433B0D7099C07DBDE268D0FFED5169BCD03D48B2F058AD62 D8678C626DC7A3F352152C99BA963EF95F8AD11DB8B0D351210A17E4C2C55AD8 9EB64172935D3C20A398F3EEEEC31551966A7438EF3FEE422C6D4E05337620D5 ACC7B52BED984BFAAD36EF9D20748B05D07BE4414A63975125D272FAD83F76E6 10FFF8363014BE526D580873C5A42B70FA911EC7B86905F13AFE55EB0273F582 83158793B8CC296B8DE1DCCF1250FD57CB0E035C7EDA3B0092ED940D37A05493 2EC54E09B984FCA4AB7D2EA182BCF1263AA244B07EC0EA901C077A059F709F30 4384CB5FA748F2054FAD9A7A43D4EA427918BD414F766531136B60C3477C6632 BEFE3897B58C19276A301926C2AEF2756B367319772C9B201C49B4D935A8267B 041D6F1783B6AEA4DAC4F5B3507D7032AA640AAB12E343A4E9BDCF419C04A721 3888B25AF4E293AACED9A6BDC78E61DA1C424C6503CC1885F762B9266568D66E 7923DA38268704DC89C786276E639E9C728FBC21F020533FB7EC64D976218E8B 1640DBE93610ED2467245B52C0EF430CC426DA1ABBE81F1E6F304EFBC36FD0CE 873A8EC6C0045E9E92D127D4B2146C8910F9325A501500D42CCECC61A56185D5 527D2DBC52EA0DAF8777096D90BE4A9270A6019C0728C67DAE10D6B17F5078A7 51131115C82A764CCF5FBE1D4B72DD301E83652A33DD811D3BA4E0A277D11165 2B59ED3941FA6266FB3A413A15288A74793C5674A43864DFACB82414369FD12D 4A6F010B961BA21E2103465E74A410120164F19E3F00FBCFDF1D2E93A6F72745 AF99C5F2967DA042ED554E24000ADA2FF5FB53F33D335A1BA0424F70A23C3B1F 4ACCDF95D10FD71F37EF7F3F7A0AB13D1269123496EFBA540CA595E6D09005D0 9A7A7971EA37585FF552AFC4B29A0CE08370ACF681D2C8FAA486B39CCF41F914 B24C9A1F25D6A422F2A93AC931A576C6B01194072AE2A3E642C543F88D9FB8D7 C26F3C6E2826B9FDB6D1260F680E79AEB848A86774723ABF0C0A953FB5DA319D 86CA6F0701C8B5A247F40E2E629680BEB925FB3DDED70D8F6F5F2550435CE772 8F863F4B73274A04F7BA96087115991E466F2371D28B023C6E0B786539250742 A3CEA90F845F7845C89E661DE1D707CEC23A42D087DDE4E4D37648C49F485E64 0A6A65548DFFA6FDEE624C1FD6605E3FF79ED7074131E8FB0E4F4B2F7EFA555E E31E6C9C04DDB0AFD70FB5B9F4C3D27EC73068F324A0479C03E25DB86FB38DCB DCBE08081EFA8FA81F3E884801E28BC7B4B607AA75640CBF07FBCCD3C03B4C35 A4F7BD490C331CAAF322BE3A811CA9C13097AAD48E367F64DCD3785C6AC00CBF 1B60D4142E04FC1086D0C0816277F4AB22A58D21C23D315B089902B7D5523A1D DBD2C1868EA2BF3C42D2E92128206F4DB41B74666C310059507D68C39021697E C379C8FD6AB0CBC331BFD6A611F5D298B7883CDD00DE7B4A87A609D9400F88F1 1955829796012837EA0932C07BF4110942779F29D2BA446E971AD3BCE3EB7FB8 4A4698C6E0D6E69081C9D6ADB925B9E887E205F12339AFA1BC9BD2A9C3A5E8A3 D69896E24DF7B7E40204F9548549FA43851D06C56E87BFBD882654F5360FDA80 D7D41E8FBDED37821615FAC847715FF7BC36BBFDE0E123AD60CF4755E9251E40 80BA0B5CBBA97DB89811DD7783AAE0EA36F880A3835D548D5CF9E94F7F7A1B45 2C4EC05313048B4758E86B748CAAB9C333224A52F41427F1D69E2C252271319B 1F7A950473A63731A4426D6A66C5FEAE5819F121E17F2042F6D6DA9575AAC5D4 9E362EE5E1EC7AB4F873A877E40B6DC80A501F1F58978415641F1BE2343D43F6 A3A77CE6602E485C5F4AA532763797EA639733BB83212B7A91522B9B9F337439 FEFF57730659BA013053D51A333155905FCE44FFA8D0BC5629D18DE583E8967F 967A59A6D8B452F6C9DB12F33C6117432E5F01926D91FD94E07E8327AE988434 22B3133D65498D9453B7B4DCA47DE9710113B0A9F7B2E1D91A2B1F7E43E87483 BD50A9CC063D0F9B8F5FC230016968D82AAC3EB356D316303A6DD21991EC0165 69BE4313B2B262BD83DAFBE6569ACF337AF904BB34D0ADF7327B1512AECDC654 82B4B75A3A74961EC267113137C52ED1C870AB5A60F9CB7D181062A9FB257E5C 593E18BF3544AB20CB0A852AA6F20F7239F6A09D5B82BC33865DA25A9371E71E B390E6CDF9F5630685C4EF31FACB3F5C5298D083EB577645A743B5B41BD2863E B837A69319B44384DA963BE6AA3264DFAD9C3B89632109A63CDFE0C5B6BF049E 47ABB8022FB4C93BAE20ACEEAA5C2FCCF1B3EF045CD3D513C27AD505557728B3 4D87D833FDB583DC241D7B22A4B065C49694D4ABB28EE7C238DF33A09B1449D7 426236C739563193A981DAED79CDBF8E0541BA3A185ECF0FE6CB3FEA95EB2107 3D9C194BD7CAD5A6448FAE0E95B755F0A6975975BC747F6FD7FB9B328CCB0BD0 24DB1B5ED1003B6E311B6229F72A619B962F92D06B752CCCF5D616F9CF364A81 764C1A47FBC6BE7268B42C6BBC5EB9A2321BDE5BA17FA7D9FCFCEE378D2E6E64 3581316F8D0B6CB704953E14306D96EDE733227B0DB949A6E24065DA33B3229C 95CDD7DAEF1A1E1633EE8E2415FFB880B25D84852A023FF715BFC766F26EE057 1DA34E919BA2365D881BF9A73BFC5403C705FF690AF30B4B488482BF94DB0BB7 891859CC47E513FADB15252B343BB7C37D738C3A52ADA834C622CB109BE62A19 F67592FA144A7E31F7C631E63C0F17F56756EE869021C1E7B49ACC3E87D6521A 5687614C49F98B734E0B1952C268C98F207164351EF5B6C495306CC4B1A116AA 2A8C5A528BF1141E83F8BD874BBA4AF6FB3EB645365347CA0B367D2F48DEE473 30E53F3C17DA5344CB69A09C1BA223CE0EB7E96BF63478C2CE8FEFE94A4203DF 2B232287D17C5DF4BB10552EE6B2970F25F6DBE2ED6EF2420C961D539A8A36E7 D9F81E893858FFCCBDF5D4F8968C87B018521030D56239C9EAAF8FECD0551A24 A2145A0AB76BC1879A5674929279BEA091C03B44534E70E1DB267A8975AF242D 5F2DCAB88D59FED0530BDEC88D22171FF6182B21DBAA54EE5554D4A84F133382 9A1C58132051A5AD4CA0F34E6F07B29230FC7D9F15F64AEDED91F665AC539D42 32D50B4C1F2609B0F00C2AA60A4AC8821EE3C699AED3A9F0B7D570334BADE573 9336DAD66ACAC863E6FF3D19062D3D7E6BDDD87B6C6C8CD1F85C1F7907C9512B CF2B903ABB081B02242DDD00C5013D46D5968950C56C2F41B764DDEE8BE84FB4 C1D24548AAAD78B0A5A255341ADEE8E4D9E5B020AC1F14808AFA59F67E270628 756CD28BE82B003D4430F1B645F96D5BBD2247377526789AED32C48DA3BAACE5 E0FA40F86AA44C025FF39D820685C098D57009ED1A1C973AB2D5AD75A86FF4FE 24E06BB647A72EDC73DA599996E8A4555FF7007BDFC61EBC9712974B4D717D58 AB59F9D4A599833902BAA1E9E53F45DB562F1DBCB5578D1E4D0471B5F4195BF8 9D9D09CD947B8754D9595026517774CEFF51DF332120B0B9E2846C3FF9C4AA10 18DE0FD970A0DEA6D5622494BD14A70F427FE64910D18A58F63C7DBE1A73034B A34A6B218D91364D1000A082067C79436C2EF9564C9A1806C34F9EBAE8412A07 C75A4742E32FD024C079AD2DD1BED27A93949BE7E94CF8FA5C1E107EE3A8D2A9 D14CBB2ADD01432B0929F70F116AD666B4359FDA092D73B7818912D1C2A61B29 B059DD5F5246FAC67CEA671B2EA821D2C330B4A4D0F9C6A9A8D82C3E2637FE38 F15644883A08ADFB42594FC3DCB93F9082BA69920754904023394621D87BC484 9F49FDE0073BA52CFB6D64E590CBD82B818AA387726262A280B462C626AD7DB6 B3610F65F3AA5457D8E5D484C79D72FF6DC48DEA2FB36A3078625136B1FB918A D44F402EF7459DAC76097FA38F60823F5BC706E6B4EB75DA8262DD9D63D0EFE9 51B61532D7A86F2FF4314F7552766E529F811E880BD14E2D098A68EE23EBBD3D 1E9CC5448E75A0058B6E36E0B67F2558A53C63FED157A5FC2FEA12EB157CA0B2 AF299A21BADA85CA96F75988FA60B146F9A18E76DCBBFA1D7083AA49FE033CFC FF76A523BAF281718C415EEBECD414F6B3CA83D462FA42FDE368CF50000BA526 E01870503169B9886A92ED572897953FA2A3A43E1A461AF79CC43A84553DBEBE C1B934AE24A5FEB7DE89F0DDBEED4CDE6E5ED532251E42FBD8F3A101C2B8FA22 A60925CE973EBE20F5E7792099BBCCD6732CD2CD32DBA5182205D16191524B79 A25D6A6EA57156318A4188C017950C567269351A1D3B9FADF6A51AF7B1BAB4D3 00CF8CD5FFF591FB2BA65DADE9F21BD172AA490E5539AA2BAACC385ED56C8418 D752E065BBEA63A0FAFC86DD28B089F8A8B4BD3C0DCE8118540DD17514F7E9DB D38863C1E126116F33ADFBFD8E33FE9B60CBCDF8844358A908D8892D4B9772A7 100FBB2AA025D91666C5598B7D30D3E217AFC82A66921E5B60F6C1A3AE0FAD8B DB44EE7F46F5809FD26EA963C10C191EA0BC134B7885A44F835682FB992E71DF 5D28E4229861E6AD17D446C609BA55A8D730A2827AC73F080065B8ACF591A301 0DF8FDB8D337AAB73E1C955BC05DECB77AF05BCE4A789CEC8BAC7A98A1EC613A 69DE91594EC0B26032AA14446221B7C12CF390A09EB4112C5436878B7892953D 14DE570898083248CD5CAD4A0DADD91708A05613374B687C0DE462DBFED4741F 83DB06ED362FC43D3431F48224A6B9F8BE50097DEBD9F239091EBFE0EADFCD42 536BA36D51D74E804E2758FD61ABE85743EB91779CBE4197F1AC6CA2D6329D22 626F333E00AA308B61B55A20F209C414557FC2C19FE561E199D55ADF0F8F0CC4 E167D8F0942927883665C37ED1C5688E6A2D1D6E783D22F65D88E1643AE449D0 290AA8447F15B027624695811A41AF226A7ADA4F4526AD691028047958F22361 DB7CC5C442B3CEBE942659BF635CBA68F47C4C4BD9708A4882023C535CCEFE3E 1D71D94BABA1DF6C4C7C94220BD14E34863A8FFEE5F325FA1D5AFBB49FD27737 72F1F0CA877271CA87726513B076F30C9B69C02BF48840F1953BC0CB0B5F9B9D 69B2713086F14CC52916DC52FACD123F4D23A9C3E3D840093C184DE3376C4B5E 6400D34ABB19EAC391899300C040888C42F2B90707AC8BF12C8358C93AAE02F0 B4EEFD69F89D2B280647E0B6736C149FB3214E166AA3B6F7A2DD360AD92F6672 63219ED3031E362F5AE45DF5F50BB67B3938D89964E31FD1886062D6B8A5354F C46F31B66B42C4B0A4D6805C154EAE0B50890E1D528AF50B3E3FB40F2194A6B7 86EA6F49512ADF50520063D56A38D99C847A77515C8143093D08520D555F4D84 89D8B1ED106290BBE23D2BC237789B5E48C7279C75680A069009934F13186199 2D5220A1AB07851AC2F3EEB811F126690D3C413096751590973951B3CFF4CDE6 1D521711100545C9B1DF47F7CE311170D37C1700BD8AEF23C1DDC6B730C35F31 B29652E737DCE9CAE3C8EAAFBE98FD6F0F5CAA124FBDA2DCE0F95ADD209070E9 9E7813836AE4A1E15EDD4997D12645C690A3197E9465D786690DCFB8C3DE8F63 8D996E8FF9775FEA5819ECE45D3E54B3A5870357AF01E579C097C8E14C59AD4C B48D7A870AF853BD7D5556A890C39146B377BE1A61E08741AF82E1EEDB3BE10D 182098108314E00E2AD6FB48908FD2A20B064021A65A00593AEA51985E86945B 0B9F78167BC50CD05B5AA48F60427E33397FAD060E6AD305E8D8FC0116957123 7B2BBB1DE123E675274D22587D5FFC1F21566FD1C400B08208D4908703F82F52 D13DDA34704069E1831E606A978DCAF1AAAB3BDA5CB0D873985FBDBEDCF6612C C46E3AB11FE69803A38CDA819B2A9055DAA5B8080E5E69C41A66EE06B5DBA0F6 73ED5F51D893E35C4A1CB90312CA93A5166F4DAFF643D6A85A7250C6064AEDC2 083017C54AEA76BE51CE969F0106BF3090AF9619F7214E084B12B9B2AE72B834 CA88A9FEDF4E16FF3706572298305843C8B0D74AA8E9ABC9CC19D57E8C125E01 89899D5E44734288D2A3B787665A8B49C81270E9467D3A4A3A1892FB8F7F7399 00198BF52C956361F00C59D60C2BBCB9AADE97F867643D7471E54DA60894532D 27986B1D8D58BBB284F3814FA7F82090A86AF376C8E179EF6C261207A54DD525 B2F6651E3C969C9B1D97779C807B7BA07736CA9D783E9DCEBF5F801BDDEAC234 3F620153F514F3D6 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMMI12 %!PS-AdobeFont-1.1: CMMI12 1.100 %%CreationDate: 1996 Jul 27 08:57:55 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.100) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMMI12) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle -14.04 def /isFixedPitch false def end readonly def /FontName /CMMI12 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 11 /alpha put dup 12 /beta put dup 14 /delta put dup 17 /eta put dup 19 /iota put dup 21 /lambda put dup 22 /mu put dup 23 /nu put dup 24 /xi put dup 25 /pi put dup 28 /tau put dup 30 /phi put dup 32 /psi put dup 33 /omega put dup 34 /epsilon put dup 39 /phi1 put dup 58 /period put dup 59 /comma put dup 60 /less put dup 61 /slash put dup 62 /greater put dup 65 /A put dup 66 /B put dup 67 /C put dup 68 /D put dup 69 /E put dup 70 /F put dup 71 /G put dup 72 /H put dup 73 /I put dup 74 /J put dup 75 /K put dup 76 /L put dup 77 /M put dup 78 /N put dup 79 /O put dup 80 /P put dup 81 /Q put dup 82 /R put dup 83 /S put dup 84 /T put dup 85 /U put dup 86 /V put dup 87 /W put dup 88 /X put dup 89 /Y put dup 90 /Z put dup 97 /a put dup 98 /b put dup 99 /c put dup 100 /d put dup 101 /e put dup 102 /f put dup 103 /g put dup 104 /h put dup 105 /i put dup 106 /j put dup 107 /k put dup 108 /l put dup 109 /m put dup 110 /n put dup 111 /o put dup 112 /p put dup 113 /q put dup 114 /r put dup 115 /s put dup 116 /t put dup 117 /u put dup 118 /v put dup 119 /w put dup 120 /x put dup 121 /y put dup 122 /z put readonly def /FontBBox{-30 -250 1026 750}readonly def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA0529731C99A784CCBE85B4993B2EEBDE 3B12D472B7CF54651EF21185116A69AB1096ED4BAD2F646635E019B6417CC77B 532F85D811C70D1429A19A5307EF63EB5C5E02C89FC6C20F6D9D89E7D91FE470 B72BEFDA23F5DF76BE05AF4CE93137A219ED8A04A9D7D6FDF37E6B7FCDE0D90B 986423E5960A5D9FBB4C956556E8DF90CBFAEC476FA36FD9A5C8175C9AF513FE D919C2DDD26BDC0D99398B9F4D03D6A8F05B47AF95EF28A9C561DBDC98C47CF5 5250011D19E9366EB6FD153D3A100CAA6212E3D5D93990737F8D326D347B7EDC 4391C9DF440285B8FC159D0E98D4258FC57892DCC57F7903449E07914FBE9E67 3C15C2153C061EB541F66C11E7EE77D5D77C0B11E1AC55101DA976CCACAB6993 EED1406FBB7FF30EAC9E90B90B2AF4EC7C273CA32F11A5C1426FF641B4A2FB2F 4E68635C93DB835737567FAF8471CBC05078DCD4E40E25A2F4E5AF46C234CF59 2A1CE8F39E1BA1B2A594355637E474167EAD4D97D51AF0A899B44387E1FD933A 323AFDA6BA740534A510B4705C0A15647AFBF3E53A82BF320DD96753639BE49C 2F79A1988863EF977B800C9DB5B42039C23EB86953713F730E03EA22FF7BB2C1 D97D33FD77B1BDCC2A60B12CF7805CFC90C5B914C0F30A673DF9587F93E47CEA 5932DD1930560C4F0D97547BCD805D6D854455B13A4D7382A22F562D7C55041F 0FD294BDAA1834820F894265A667E5C97D95FF152531EF97258F56374502865D A1E7C0C5FB7C6FB7D3C43FEB3431095A59FBF6F61CEC6D6DEE09F4EB0FD70D77 2A8B0A4984C6120293F6B947944BE23259F6EB64303D627353163B6505FC8A60 00681F7A3968B6CBB49E0420A691258F5E7B07B417157803FCBE9B9FB1F80FD8 CA0A265B570BA294792DD2FC75CE2C83DCC225B902551DBD11E687EAC6E85D2B 02C28359A40AE66A6A6A8862CB17815B41E280313F0EFAA9981755611F7F683D 35603984D60BB0C772054355A97A5E03C689E23B04DA79080CE4579CC90EF38B 1A64CDD92B907AE83192C3C46C5FC40BB412F6656DC6349E6D29B5936DCE94CB 98E3B465FFF7574095F57BB3750F1A525FDE28FB8FCA4F0DBD8BF16A3F1FD9A9 CD52473E23A90E6632D39EBD39223004B2382EA7B1CE8E90BE77C69CB5B9F659 009CF2105EBACE0CF9BA0295F1937CDBF7F718B6B85C984490D1E560E9989B89 D7905696D5F64BFA604C5A93CA60A8C5C4A5AACDB6EF5562BF55E551CC048835 68743F501BB40ADB8DEC07D5975369A068EA7D38726509F04A997BE221EB4585 0FB2028F907EBEBE3FA13188BCC5DC000765FEC6495BBD687DB29985A7BA9571 C0C192E1B320DB0FBFDC766A74E0389542AA9E523D14AB14A75CA1E7F4416C7A 290448F8CDF9B79573D1DF472DA46570BEC9D3D4995B7C21918DF490D03568D6 51F1038D4EF4BA0AF946ED3DA6E81163E68BDD4B8FE6BD9D613D96D86A1BB481 B92ECA008DCE33EE4B71C66BF71BA6A38E10F51F646E6A282516B7800BA8ECBE 1B3FA2444334FB5421F839B7FE61A3E58CC805DEE660D1B10C5CE008180940DF 9F4235FAB68DBC3D2AB64585DDD5EDCB6C88A4648A1A40235689929306EA0787 9C7F438CDF8944DD5A06583A75079194054F8C05E8B7BBD5663B9318EE5716F1 7C3C79AE44358CDAD854CEC7E495BB21B5068313E89BA11B99554C4A20D57644 5C3B8BF6F9B59F76657CE92F1B532A6BD2BB0E3AB62A0CEB31752B86F48C39A3 AE0FF18A2569D865F27CE7A1F76BF4903AADE0D584173D3136A89D2D44816E90 7416895D7646FAD750F69F97C48AD35AA569D88E5270B0D8BB44106C06589A54 DA8BD4FFA265FCA478813E0065A996E384C1B4D6EE0FA094F39D71F043EB73E6 A0511F1D75EC6ED3E57FC50277C0CFA4329648E351F0B79A19FAAA44467CB218 0AB1DE634561C90BEC039EA8A3AB2A63F92F856FB211EA624F1A1FC115F3F1CF DB05187B32ED575511FDBE6AFCEC705DEFEB26B35439F00AC3612B0CF1E8E971 DA89C68BBCA5CFA57A0430AEF9BF9DFCBAD209A26E753826C58EBF9AEB8AE289 65FDF1AEF1A13AFEC191A4909D9DD13D9BE1B1770CED913EB6E69DEF08879AF7 C80E3DCCBC39013BEFF0754518AAA24F92A93605EF46EC8D2F7E6CFFA0AB32EE 64B84E5F9556985A88E15F040B12CBF14A6BF68A7A9E3FDC43D1FB83A36E9C1C FA78380095A8FDF1194AC7A963AA62AC759F5E58C31B5765D81C15B17DE1A6F7 852D751E46C1B863F6B6A889390F84577032AA645BBE3255FA208D6D5610143D 41305242817B56BF09268EB0619DCA06D4859CAA9B60F17E43E06BDCEC11207B 87C2E3809650BE795231DF3A453A7C6F4A04DA3F943C05BB21382011A8182B49 FE35E139E801696A20406C789E4C6302B650B6FD89F454A25764FA621ADE03CE 3C5E63693969B2FB57D2D98F55CD00FF145EBE18AD94D89404EF5F00DC954633 F5E1211DBBECF0433D08AB4D1DA1DB9527C63764D4DA1156D7FF8FF15900D204 072C34A7390D92383F4C4DFD8388E27058C4411A145DD8C9F046EBD58231695E DEFB132E5EDA062C047905B8CA9D5151F5FBF9963D9B991C651D41530ADB0612 029CAB11FCDAA2E015D250237707D0DA2D1A962A639F791CDB554605CE049131 986194F99A6493CB96ACD779AE6DBC4A19CD5B34613680790232E879C2F0E7D9 0758B0CB685745BEFCDFFCF6D1A3B6F63DBC12FAB67DBB02336F7588898B3D11 D5CC62B2AF3A46F8D3998081A5C1A60459CA2C962152604B3DE2F192765BB7D7 3858232480F2E58FB9A9F9D35B44655AAF664058EE26C4FE8016075BEACD20E0 12194E9667995BE7594E82462BBB8A7681AA749999BAD127F2A3F98E396938D5 C600B19F09C6751EEC9C51F805C795EDC0CB8D155EBA8ED6AE4D2D37A214FF46 B0D3F7A25A9429181BE7E1D0F82BF112215BDF53F9B38DEA23F36936E927FE04 4C3A65B3E3A2C0A2A1B8BF1CD027BD49A22D84D4ACD0EAEFE922896D6F5B059E C1BCDAF3FF326DF886F05347AC8C294731631AF5620DC826081CE7F7DB65A432 A6A6B976711404FBF4DB36D10CE9AF34ECF87A3AEE9D6D47DD3F951D2FF4A9BF FD9937D2F97C5EC755309A53779899AA7F36928F712F5D3E579E4FB6F0F6BADF AF48B2E09D136CF64D94BEA3694313F717ECB0157FB473B337333987EF58DD41 B401FCADE1AEB8F4C47E279EB8F0662B93F671D0F9EF39E5AEDFE3B93848DFD2 68B70DB43E5673D9C29BC8999EAE9E8A0EA1AF5479E545F1CFE02774A1B20BF8 03B1F544816E1F6E3F1AE16177D27ED40BD0F97815A2440E3EFE5CBC6E222151 C969A49F2C4B8FD01314C3EED222A0F752506FC98DE12AF9A1E0AF6A02FCE679 DF3F0D2BF5A448A52B39C1C2615B59FA04654907A173AFAAA609E9EE5ECD8383 B88AC9557E2872044CDF03D361EFECAD09A03F5A52FECC5171F6053A33C60BEF C62EA2446967B925B5499C3B7CF2E92745BCB6CE8A9BB3942CA43F05D700BBAF 6870481B75142F5E825679D756BDEA36477CDA3AE06FE440D374E818708165C5 FA49041AD3E6FE49D5AD8D5E12B0AF06D3A60F9FEAAB0658001BA2DCE4749A26 D15338B30C296C49DF2B45962197F23FC6F112726B4ADF8145967C9E2AD283BE 81F23526069DAFCD6E8C3B4B0048D4439C6529B8090903CCCE90B58D455CF49D DED2B7A86A96705C98ECF4F0CE3FFADDE581E82DBA1E19FACDE84CB4EDC88B03 7C42E27E7065DF040FBBA2B98C854D5D3B42BA9EE01495E1604FA6ABD975A5F0 63B0A1F969AA5BDD29E603926E2EC9DA2F33EE238E9DC188287FF48F1E7AE0FB 0B2AA7D2FD36E172498D3672ED61F4D24531593F397997E1A30A3E62E92091D3 5C40F145D64DA0807EDEF1DD6331A317B1DF35E8B67E0930E54E8952773AEE54 D7E6F8B58D5D82879BEFEF846B32FAE6D3B8379BA5408C5E837DCBC8E4811BD8 F77639B80A646A7EF9396EBC389DE8BBE45AB80634EBA5828F07A69B7038AB09 6964BB42AF9C49DFDD795A1C8F0E4066569CF39BC17585F9CD28B2CE504F19C6 7833E54CBEB0A8C978C75B24BA138E5C9B9167E9899661CE6EDF8F74E7DE76D0 45759FE0FB1221359FC9A7DC6EC3EBC1069EB10592D2A3FC904295322493A457 CF74EB258F9835DC94447E7CF1437D0B8D6575947A933E843CCEE17BA0D78C12 F171F7B5880EBD0EE96DEB002B7F30CA039E52BD7BF3657DB9A6DA3C754006B0 E96D6757FCD61CDA2F8ED7F920E3D50F62162503132BF9CDABA29239A044A151 DB9BC7FD683F76D2C73DFC7CFC68C3A3CE3B2ABF65DF1F1DCE731C933594AF85 6DED639E5CEE6434186212723A4C1C45662C6B8ECF6DE944E9F624D61F1E2B49 BB166180DAA1ACC8E246D0A5CED3DAEC1B06B6DE601AB54B4FEDE625C4E2D24D 0E11D6A88979F9AF882701E2166FD99CF7D67DFA81F9A6E92A8D5C982B84026A 4179276B82C8575EA46B55960FA51D4C9A1A2A79F10D9916CEAAB9D49D5520E4 7B85D56DC7CDB4F53164CEBB4861278CC5A0BC53F28D9EA99BD7B990ADF749C4 233BA251A5F5B5DFE9F80EB544A4565EB6AE321A1E72FBF46C091A31B7CF3A52 F916A25824B234FE15909B6CD9EF11E2B918012259CEE64BC6E0FFF489FBDDE2 7E710C656C4DD09CEF5B6A2EF03515EDD5FF093122ADACDACD504464C377EB68 4CFFC48C8F34F4AAEFA807C665367D35AE66CB6B85BDDF80AEC6922D7972F544 CD57874DB58556171D8E0DE6C88932177F428D81A7EE31F78B3E329DE6AA99CD 02F8373E00948DAA87E7C1CA0B35B6FE3349D5C5782E18E1B700EDB61EC894CC AF09D3BBF64BF78AF5C65B14ABF6C9EEFCA4FCCC6C4526D5C5B463DF550D91BA 6213546DAAEB81EE8F5A66B3ACBCA0EADD76B50581B3FCBD96945E806878D53B 3EE7D635AC5C3FD8F049BFDA7BAA51887EBDCC7F8626AC292927C9392EE6B5BE 9C42AD3BF83769462DB6732BCDE9B01EDB7197C0375CB85E49D37987C6C7E0D3 391139EDE6D807DAA202BEA72150B5675603356927A403D300AC8C60318A42CA 4B7AF07048A4C8311417D7C3366A5CB2239516B0E8147411A19429CC55D255A1 B6E07036332433AB6A1A2E083BE0E0FC2CB0BE5121B1C2D6B48B564949107300 D060D9577A75C7359C9CC01D3DE5DCEE6F3606356B1C15B8C786FAECA527B0D4 9E2610984333C77438156FCEFEE02A633AB575A049979129AED0B11A19C8BA06 C622F2498C6B12F5F001C4F9ED4F17AAEF419617B22DC0CA44B4268C9A7F1555 CDF71DA8089D2CF4F13B06D305522E6A7BF68DB2764C28617819D31721DF5CF6 CF512775D69E6B27B4019015506A957ACECACFF7FE732D101B00979B4784C20F E4C9A33CC79B919BC7A5EEC38B1414F82F74E79C5C27B99BEB7D58BDC02F2680 C007480CAEF9F1045080F81B1E1E11DD54CE22606E72F4A940C29C0ED6513BB4 6D67C9DB2CE8593512042A3DB53F5C6B7D942BB0C932F4DB5D3C02F135D95427 B6A749642E3F66955BE188A8A9685492B9B2D4E4781A23F3E8FA64EBEB8EE75D CD0BDF5ECF81B6929CC8EAAE15FB46AAE855B022219A64A4C0FE2D06AF8FF6FE 95A1AF8CCC1A5DCCF5A0E56C28B00F54FD3366651EAA9CBB55CBE337F2E39B53 7801F2A1763E7D787E8B26CCE0EA33B5BE6378B192314BAEFAEBC4DE19C1774A F87298256FCFA2629F9B06B1F14BBA73D938090F35CED218D396ED91577DB8ED E4C40610363D52B1867C03281D5BE2608EDCFB890C58C60B49778D984CD574A8 07605C35384D3892E829D0A17A8653FD96CF341AC632EB388DF6CCEEE3AC0930 ECC407A8D8BFD332B4C9D73B8EAE639758E7C1A9DB3E9B1C4FDA0F6B63749024 73D667CC287CE79624BAEC14CCF9E801C7C159E1323EC333056FA89CEF2DCCDF F06AEC360171340FB7E2C7A73481642ACCBAD5A8DDF58E8C7E23442E558F8BDE A8FCC7C6B714AED8A9223DB7D21A44FF36D1CDD5207B9E8F05B7E4FC9ABF3F02 44ADA51D3599D1B30CF21746AFCA0ECF1EDA06D7B36C7E46B077AAC642B48401 CBEE2E35B924210959ECFE2B1E8B176D391A14BF2FAE641FBA43D09715690775 6E9AF05D2C4621216E1188089C73944405B57A48EE7DA3081FDEA0F4B2B0304E 955404DB8BEB1858B483127EF66FFDC8F093AF1C3C38C85B18F1B63536716FD2 FCB552ADA2C9948D67B0BE08E0BD88CCE3144473DDEAD621597DA3AEADFAC881 73533B085C65D5BADDF13DDC4F414B5A66D524C68B26029DFC9376FF0868B39A B0B4F14DA62AE1C12E8DD7494560DCE9905036C45129EB190440D21640EE1AC9 6EE9574D321AF870DA8859566319B0FA96CF602ACF1FBF3A46BF029DAB3D283C CDBF247E5DFD74B7C69FD8F1FE0D476D6B5490D9DEFF6569752E346459FF1259 87903D91218827B06DE3C745E7FB72515F0C8C7F91F812BF4D9EE49279369A08 6915DD1EDE7B76CEC8922514D52957304ECA169915E0B19F79E06D1CD29682A6 2254ED4C834E628AF487E0A6A7E2150949D1E7346A62A601533F1B8240262307 C99F0BBD372D8EA73686533D5211FC591F735799387702A0D38C8F34E869142D 6AAC1EA24F04DE1A43437C5687B459E4A860473CEA7EA6007B41F02688C0246D 152CE8FB164AD3B77D3B840CAE37C8747E0BDB4E5081159183888433A7E7818D 67133C7A27D58445F229DD1032F5575A6DDD5C5FDFF45342320D7EB413F43720 4875E2E2CAA36DDBAC5A22E15BF030B8CE0519CD254A1DCFAD89F08B8210B72A E679522B851501AA9C652772FE95C20219596F3B45306AC106729637F9FEF2E4 BD219B7524F6A55EC4E9793C348F5F903DC91F8C539E596689B02C649158BB7E 33CA1A0A44C1CFD7A444741A9ADCE73DE8CF05B7F8C8E135AD3BDEAAE8234D10 316689994F987F1B536923CBEACE5AA3FF6363B0B1D3F2F08CCA9FBE285723C8 E0891100937CDFB48A6091BF4BED7321AB9BFC093CFE3FC7B36FB33CAFB16CB8 76F83EEA5A8030A8B22A0AF9CE0D8F777333A2CCBBD43EC898F26FD5538AC5AC ED539F167DA26D363AEE23AD4F6BBACD0818733336B2CAED16E87E6258C36D2B 8D74353D3DB3E67DD12448206912A074D68A6920160EF897CDFE7856328DAF0C EA3BC62C5FD6AAB996780F0439CCE3648F76B88E6B7B0FD76DB35DE5D4CFFBA6 28FE7624279BAB66DB4CC41F98E81555DCF7E38B96958F271856D0D4F0B3B61B 95D4E832ADFAA2C54BC4AE395A6B16DBF0FDFBEE3E56663332F2B6D5767FA5A5 B7AF87261181F95E0A6453E842D75EC30E0129D8852419DBBE04180121C65ED6 546DED09EB0D7311B8658237BFCDBAB6D03238FABE61EF356D6C8F330B42E862 4A8432974AE235F49FE41823DC5B6AFE66FA067737B39012737D9B906EB8C375 EF759699318484D9BE57CB626C7A3112E824E9634CCA34BF86194928B0BDF0FD 98B526637C482E48852B0BB2B38E0F29AE136CC7BFF0AD9FB1077FC5F5360E0A 555C3A2D5CAAE2891C7C0DF642C43866CD035AE63831D8E87D44CD7515C9E5BE 1FD8E5334DE33AA9FF808B4EDF5B4D803CE3BBC3AACB5F524C88D14D50A75F1D FF9016E7451F06AEABFC94EAB91DE37A3CDDA1FFA7E5D8102918F586E9C86536 6AE05E80EC28BFE205001D4C9BD4AA88D17C0315161569BD922E0990849C4BBD 09BB1D7DC82AD69607850A587470C674CBF2D12BDFD537639B529A6E17B512B1 3EFA4B187B45748D0D196C15473032D7E79DB6451836426CC9722A336E0E1001 C225203D37F5F609E09B3D319106EE7563730F89880B9B1D9D4C4A587AA9244A 2A10AA883716C24FAECAF8A3164ACA386FEFA1AC29D0A0B7DD7DF0014CBEFA18 CE65AB75301FB71695795794A9B8DF2322F540121E02D5C10ABD84C2688389B1 CEF205B3792E6602B6C459637D89862ABC5F011ACB0F61FF4594FC6FA6C543F4 C62FFA053717804DF955125CD7AB3AD3732BFCA3072694D6046B6250AB0DA83E FE78DBA402F9A130895186A7A06BD5220B40297A4351F7C96768A15146D601DF 4E6E8A7CBA86CD6CF0AC663B158A61E15536DD4450E4962693DD29B2465B7884 8407F600258A80FF135B2F37D7BC830AC22269E50AE22B289FA393E92880007B 33461154EDB691639A6677F957A9D70D11837CA111E1E0DC0EC2F0230BCD8358 9FA04C48D4C70267927DB95628DE4625427D36B2ECD84066198A3AE820BF77C5 A00D52AF763A34F27983043E42014E2CAE89C7E7EF75660D5EDCBF31FF376C09 E4934A2B3D09F06C1B5CA92288C9CA828BE79827CA0B2157C1D2AF376A7A69C0 C0EC0A45485FB66D8C17C0224DDDB4213313DE8F7277D6C7C1FB08EED3500BEE D05F44F3339502BE7160E2E3925316BAE1EBE896A60E4571E2A8A7AC91318F8F 9FA9C73F13AF4B8BD25165D18EC569F93EBEA14FFE5B54D7723105FBF71900B6 C8B575C1B0FBF691CA593484F0A311D573A691D044A181C76FA7529FB7CDAB54 FC79FC3CAF019CE6B3FDF2A545061807D6A8C9F77E39F0ACCD3D50104F90D49A 727C7AAE8818FCE624AC3DF402CA947B453166EECF12915AD62EB8325C849360 C3DFE410FC530BB838989857EBF0B6496FCC597F796F2C4FFD88E9A8B48FB4F7 B3F48FDDA6464804E907B814B9CEC97E183A388F070811F07927BA631A9401D5 1277E9153653C0FFE6E74B3EE18AFA3FF61FB5960DE95F571841FE4FBE2F70D0 0DF547F5A82C5D690BCB9D60FD4FE8369494D959C8EDAE08265B30D6414713B3 A4C90A18A146412A39D6C217B0B308828451492604DBE9ACB68DE7C1A98C0352 C5184A4FC8D466DC64A89849E3DBB781F6740001877642BEEE752414148C4382 E4398B0253C04C1E3A0438EBEB9181466A6C7A103AD237B718EFA9F28BD6FCCE 0780EE41A15F989A5CE7C13BDF28584AEF185D522DFD5C5FABA809D46CC47054 2BEEE28622147E987EFFE7F24C370C5D1C43AFAF71B0EC08C7BA6D7DAAF4DA10 0900E5498E4AB6ED0E6463E1F994946AA999F0C910DCD2CFA872E90FDBB3A4F3 5AC5CAF22BB347255D9114847F8C05F316BB167A819D4FE5B2916533EAF26D26 5B2E4ADEA335492A0E05533DB6C780352ED015DA7D4B325FAA698540A7B6E3A9 A102E107EFAFDB04255E541EBFEED37F225D39D3FBE9CD548CA6377227221113 0C841AADFAEEB2048149436D4AA8C15BF0649FC59580A6F195E5A1FFDFC26283 4BA088751D367C258636BF0365097E09422A277922EE79C0BD6218D06037A793 E4E41F88509D9A6B41ACD2343DB659CBC4B6B548869232E1A6949360515F0E21 1C9625EC38BC06D1D6021CCB7AED88E5E180C420AE437E873EFA1496F20C57F9 45CF0DBFE7A8B9FDB8AC3ED1AE6C3393DC3EB41A055F291A7BD0D9CFA77B06A9 2A048F4B1DD3658BFBAAB3A1E992EB9C5463C44777179F02E943160E824DB0BF 584B3F7DF189A941B6D0FBD6B2DBF08591E9F78ADDBE35154024192567C774E5 241A740D3C68C155C95DD27C93F4BD6AB97795BCF7205702503ED1F2C6AEFA73 7118AB618363D1E8B74C70D1B2B01A7898D59D3FAC1284439D6E0E044D531F74 EF8F6C3ECA89DA5E0C905171849E57E2273C8AF3EB8B7B1AF74F308FD2AAA9DD D8184AD0F0ECC46B36CD81295FE9293D431D3C1EB07A84681DD6E722DE332B7D 5DAD2F379424089C28D6B0943212B64A11F67E8F157A3930E6FA616B72667D2F 6CF58BBC4972D0482A4C11710019A17958C42F1074F12CA2695C40F78EAB4409 3C7E16B0B227C48CC9B657F9BBD9D2D059BA6F1D579B5986D50FDB58F27C3144 BEE206C659F1588451702A88BE1365A3CBA66FCAF0E180BD3FE85F46672CE31D B3CB1F20E0E9BF99AC10F6949C86FCB4467B760A2B2965B170BDF2FCB1861693 7BD821DBB77078F5EEAD94256755A534485FFAB89837CCFC2A94FB2B09E24FA7 D3C1E78201AEDFC1F23532EAAA487F0B2337D96BCA13BB2ED9A89C29DA80A261 6BA0D24A5D212CC01BA027FBD42A4AA6957E8380DC3C66950D124F8AF832F77F C91308C8DBDB7309FC9070DEF2668894AAAB36399D3227914C47AFE44EA2937F EF117B33F5419A622C96E23E065DD2855D80A432413F0FCC3AEE3222D68E30EF 648D86C6642C53921597AF57639E948A275B87686CD5AEB9EDBAFD6FAD178165 0ACDD3F9F096D3E240221B60958A105715974DF903513D9C82FD00DF2609DE16 074C0495C337FD4129F372F1A19932A4B1D8311014C357FBE0E4BCFE9746A77B 5CC2750207CD59CCB5459C6F4193F3A5370CB374FCB5047946694D3C1230A932 A1738ACA14F50D19999C1B8D6379DBD9E82EFC2830077B042860FAB66F4F39A5 722BEEF09F3325DF6A2CD5F25E952E342F9232FF0A85580BB323094214E086E1 BF461FEC9C8A08D042A495F47DB6B333A4D2001469FB05F0B8E6BD875CDB9577 5D14C643D3AB5DAA856AEFBC9E057F1090A2800FEBF6FE6FF9744C4417DC5D6B CBB15E6DBC360D9C32B55DCA503149E534822F1AD3E09BBFFA27B0C6165D3369 C4575F2E6951375E2C0490F9A8C49EC418FB27BFA59A38360E742FC4C04642FF B7F11B48DC51ECF398738E40EEA651C056D3B9C3F8F0CE795A76126B7673CAA3 CCA4DA8C495CA48917AEC0BF27E497942EC8CBBADD419678F81ACD826A1298C7 81390F042F3EACFF0C86724362E242F7CB192024C995B3C8CA0E2C9201FC3133 D22FFB63BCE2ECD32E68C58A1A6ABEEB41C0EABB22D469EA5CD084A91C37E9D0 B80FDBFE98FC7DFBAA65F966105B9AAA32BBEED5892DE88C53731980F26B6990 F5C89D53104A8E04114312ECDE975FCAEBC7A32B7DB31B0EDB980A78DF5ED263 566E23270A280AAF91BDD0858464D97C26EF56A2785530C159FE65F377762581 8376EF7C481BE4722C2C56FF1370FFBCFD8F7F5D21D3AE3EAE0C291E79FA04A5 9C4BD4BDBFBE8F223ECB479129AA1A70CFDF2CE85C015A5E1AD9B0E46DA3D776 3305D07750E84EBE0369AF3547083FD3615F9DA4BE1153D01F0B0CBBE62C0681 A437D7FBD8E8A795ABABBE62479972764BCAF63958A14688F1EA1DF3926CFB71 8C9B2113B25EAE47B586B9A441CFD6E7A1840D381DB163ABDF96CFD1846B8305 524A9E20F483D2DEFA46FE12D00F315278E064ADD6FFE99F901372A66DA04538 FA6289909B21AD28D3BEE1F4856A2EA2AB9792851F6FA13FA1719F77CB0876B1 69A80F52FA0635857E73340CA0BDB350931E045590146AFBD12FDD70301D8AAE 3321373CA8DFA30A11E8C327BBB14DF64B28750328A4534BD2D57DABD04B63CE 115B3711F469B91B904FA8A4B52A0640C7E689624C38CDFC972175A81BC9D118 450DD7F25CBF4F99A5FF98E70FC7BCBEFCEE117A1BA604B601D0BDB66707BAA6 D05328514B88EB107FFC6B7BF11DEB3BE6349F419DC71A4E7989227D30C14D79 CD54B64AC028F2E5F18DE0BC51DDD5AA851948CB017D2EE6B7596D6C241C88EC D634F3D2651679ECA21D0FE1112894E09FB1E627BD9EAEB2ACABD7EC08C41748 5225CCC986CDE9B968B153050EA9E6D500129908F62696B069570A0FCDB1E347 FF5D769F95DBAA9CBCD46194603EC28FD34448715A5754FC3F1A1C77AF779EFD E3D20E9E42F2A36F02D1FB2A63D955F01EC68D46262877DB94BAE8FA02646375 4E12A0056AF1E75904CB555CCC2AF20025913C8DC8D23BCE913633FA25FF0155 9B16C7B9BEDE3A52FF23F033878475C5D998659C84494A6461536EA423FF96C9 677A9BBE199199DB8DC9453C47BDA78ECF0A66B163A1BE46D37AFFCFE0AF1ED6 D16A1E6AFAF9EE7CDBA2D317B0E8D7CE043A12162D21F13831A5C7E42E052707 1CF3FB5A92DA4234EBD54D5A6C827077B035FFAC3824822569F29A7C5DE31EB1 52052519BC34657D1E78C3294DB865B9D8AB8C4D71F09B735C7FDB462387E5D0 841EAB8858188E8CA98D47F3FC1AB2FE78944D80ECE054DBEEEA02C6BE745B78 1572ADA61E0038D822DEC346F54D9F57D8DEC74431BB0587A514A27A6641F599 283FFA1EBDF3FA3A737536CE5653BD5C3313B80FFC071E09F12F47D71BC11E15 B666D6D67A44E36F59E4FB2461510936ADDB8F5AEC9BB05B9D2EF8B651F0787C 04598077FAE20F3F6173410D81A2A9D84127E0704FEB7DC1D94BA2227970A25B 97D448E417D4A92FD4BD98092B73F96E59388C05B7D608B470AA2B4433B0E3CB CF91B6059094C905ECE925DBAFEA1D7D212F6A2331125798CB1A7D732872A80E F02C2404C33BC036478A2504013D5C4B8159FA767702EC71F8FA4E3310863EDA E20008691E57EA5A9CCC16E21D2D344043C9C1496118BD8004583D155DA2062B B9736890ADFF33971DF7DA29F6DB984EFD031879C9C3ADA0F8F20D32D0621DAF 28F5DF2763BDA7EB9974901433EBD9C6F9A184574351C29D38D019837FF89D65 834AB0D2651E8BEAA44FF292A3DF5C3635536F63ED1408FDCF6E3ABC09C6B216 E6516C750BD9E269847722D114BB8D855169A75A80F476493254E402DF339DFA 1ACBC9767A4B9DE9EFE1CAC770C920DED748BEA6C3804D414928E7F1817808F4 99234292C15E09548EA5A1F22914F338B6E397A5E3A9DD9EDF2C69A1D15A9405 5E5054BAA5B8CA9DDB4D0AAF09AAE2D50C60358C3DFFD0438626912B57C8FE0D 58C0570E18A2FDB9767CE5A2BE6790919159F9A5C4176BE2BC08A6A6B3644EAE D266DB28D115C6DF9CAAC54F20303682D216621ED4EA3A94E5D62EA3B430A1D2 375F1E129E77C9ACBFE394122DE25BB23304A29A94F6C17559EB3D5D2E91A8C2 09A558B19457367BBA02639DD504EA79F3B1EDEF3A8F0F6B4DB7775DD5C65EC4 3DE2CA5930CDF962AA8275ACAFCF9A57BD92AD1069048BB76C545DFF42218867 F8A3C6688136D3DB0C7AFAD3CF5F1D39CA47BF00A4BCB1073DEFD24DA73E171A 7DC9ABFE97B1F1E257D57A995CD72DC8AD8BB53E1634C4B69A8D1AE7B54CBDEB CDCF8214ABE366AF82A902F06ECB97C7B3DCD40820A5CF591706FD174D2A0C40 1B61FA629A2776F8A2D133C31380FEDE00D40C425A76C766179B1ABBC8E576F3 239F359B0E8E136E5F7198D1C57C3E2940FF906F98FAC8BF69047946C49EDDA3 F285E4CE99159A6AAC208B6C986EE342BB8D700F37DC6E0B4EA463A1172FF44F B54F5689457C031095BD2899457BCD36AD6FAB0ECC72EEC3ECBAB126EB8BEF75 217C30539E7F042C97BE6F7C96EE56542FB88A95EA2972A7E44189021B7B75F1 22E80FC4A4379FF6D277E7223B0B9520C7A71F04A6CB005EBEBB4C834588A460 7C15199D7AC4D85DDA09FC173B69C7DA8412A5C475624B00DDACD1DB04DBC6E8 179974E49C91CAACB68BD9E0A0E71B22A92D55D811B08363AA935A1C17E99FCF 1F0AEDC078D56685BB2A4DB68483DFA726757962EB0CF82882F1CE267757A60F 7831EF30061884D0BF7813B3C4E0D933466F5F6EE516E92373F1BB18B813FA10 48968A3629706EEBD66513447E148F496563FA5505523A987BF9688123845309 0C90F5CAD62210FBFF524D59652AF9851CAA10EDA5355D72C1B26210884B1320 143F2C5376310790BF0C5257CB7734492AFE3BB23074C8530A0C0AD812CDAC4B D8C21BDDD6917F711BB5D087D4D0AF9CC76B9BA03E9ED37A03440D304E54353B 7C50DC2ED850D494F9C44C7614BE2A7581E0DE75CE1C1280F819B30A53FE3E88 5A8541E8B85174E3BA1055D0058151283C25339F968D28F369E1A679D8976E2C 35393220A4FF18CF0B773E55941BE54E80B0430A4A2772D2A49212856FDD6890 8045954B2F92AEEF2D443D8CBEB6691B08E3350171A6D3F5A1A45B517D82527B 313845B5068487E58A8EE6EFB92085BA4C5D0B9922E0B3FEF8A5EFE0B3CDEF7C 333B3D768727E4725FFF584686A3DA1D239084969AF23996C17DC992A4E2C73B FEB6CCC9AC05069A9652FA5922D017192ACD2013B14AA17227C04D4094A83A66 52EA17343B747C676D1691FF026A688B9E30B268C6C66C4B8B36EA72BF7A3B84 720D1BE1442471DC9EC0E72953B0EBC5A70D1BCB93C7B80604F090787CA4C9CD D0C4F0C0AF5DC1EA601CB6B624F012D7EFAE0F8199E13923835B019DB095D6EE 8E168B2A69B1C73D9329485DE945CC6E16FDBF8C6093DE0E5F7F40AC001F0829 72EBAF8F6EFF3980435B532E1FA8A563C73D8D145B78E1B5AFB5E0FD8313DA4C E4265C830F320E631257EE7A5F40F0359F337504876687490950048177AC695C 5D5A986620F1245380EE3076F2D3DCC46019B7945185A0F2D47B1D2DB976CE53 861DED5DFBC95F6A65E42AF0ED8F1B8DC4D633AA991C9449288F3D4FBFE74B3C 43B1002C155921325036DA3A57B664BFADA152CCF184CC8BC1A76C63B8587C94 25149517D61BB0F5A15611E5E7B17B59E109D8F69EDF0520EE36E88029209D49 6757156BC84AE10D51B6BC23A10F4117514D38DDEB0B0C27357DAF4B3513D568 77F97BF2E756420BA2F52F4F33458B0111FC5DA4B1C975ECFD2C4621A80FD079 87E5BEF1967034D3D8D4FD7AFAA3DB76E1ED00F7D4517C829E89BE2687D3E942 21928D9EB84FEC650A81AAF993B2A6DC7DBBF85B6228B9679568DEE18BF4ACED EB251463C81B49E47B8193BED6D4218A323966049AE19A1A85C66296730E3CB8 3BA012932B02770C9193A89A75E76ED04AAE4CA28ACEE7E8C849F82EC992ECE7 5A2A1A0A6AE62F3F4A86959B94E478DD5FDFB6660B03BCBED9D2E29F80FAC5D4 3DB2EBA06CD70A66F9163299B05AB08A14DE10329D15ED7B71B40216D9E3B153 7D90B68DDCE56EEE5E3463668193792B8CE42690F29A6465E8AE5E08638F5D3C 9DCCC339C78F14A054935D02EA4EC3E65B61ACFEF9666303C2D7BC4363577535 851F7B6EA3C5E15C49A92141A016DA004231C72EBBEA3B769CE776426ED8D2AF A8EE653ADAC4724F989FD0DAE6C7A5F84402A07A298D50710E6211F922183F78 6128691728B2A37516E5CBA23CEDB8D210F735821B657CADFA8FE00D5161400D 06FAF98E8CAB944C85E53AA1C8A00A3301436A89CA37C03C501A3CD331E721F1 A26AB12A05FF5E7176000B3FC3DF51BEBBF517A3B3EE2E50BCE05F50B9A7DA09 F8CB7664BF57E6E41D92637B923262E7C4A8BCF1CEDAA5719B3ED831AAB7AC01 060D54CE7F3B388286CFB3265ADF229318DEEE0FA6D6A117701DCD15F51E5C62 398C7F887E2CC2E0A03BBD7CCC90A1393A988C857B5AF532896C2492B9A37287 0548BC4A990A8A73E302914D01FEAAB15513DD221514CBC6F430D2EB8E70901F 1D2CDE2AEDF45E83BB89B7454834BE26BFCE843F6DB567FF8E23A6793AFDEEAF 85DB53255D40368E35E77A68DE5FD33A57CAB56A040432A4095B7461C263C2FB 42123E76206F1316E51EC785877CA1AE9B0EA3DDE93C65FCBB951727E90AC465 3CEEAAF82CAC654165C751CD80D885541B539A584A6396C187FBB708300A8789 1E6AD948C5111BF1A9D6A9D120C2D0F8C5BEAD50872247C1BBDAE9F35328D633 3F31ED0D50348330497D6BE0F6B26CB5311B3088A66978A553C9E95EF9AD5682 01C665059F256F3CDB0E00370322FEB002098ECEDACB45C4905621A1A4CA8578 D012ED72298D25D78A0F2F0B966818971834787EE2EABE32081123F1F51896D7 BA73303D483517129AD5A42299B5BAC6D75F5682009BF3553BE63A4CAF6A321F 505EFAF80EA420202D8B7D6BB03264B20009CFA0E66A38B7D494B8B9969917E7 7064BE260533A975C7D024C8BC19366D9E4B0331625B20C04AD4336C97035C8A 9F06E8AD1B55822DC52D6E3F9D03DE51C4B3A079039FE1302FEBF5CFEDD20A54 DCC672D04ACFBE106C5BD862A7F358ED5B1D76C8FDB4BBCAEC8710461A4280FB 024328DB674BD24A56273F796358A0BE6E7A403B508F5CDB0C94B9943AF53D8E BFBF0D8D9D41F4D696D73ACB83147EBD2CB1F4A722A1A77F8CA7B3A71B52B880 4060C802CCC506CBB3BFC4288AA5CEB666A257FD6C0D580A1AD07F8A8760A5D9 AC9B397352EF69911A663AD5A26C2CEE9E293E79E52E2AB06809293C6D532D34 2657DC397273DC1A0CF7C363414856BB8F20732D935E84D2232C5E9C9FBCAC1E B45C69849F110AAC63E1FB03E3771D2C7DEC880D866CE4DBD6CF0B5DAADBB6B5 6230C1A2803A9F3A85EC40A866B1B4BDCA30EBF6789DD5C6F6D8F3C3F48C254C 6C1C0A45C9A2E7476FE671ECCB700D8A3E733CE8F783A27113676201F665F8E9 932E97A353EB3B2672023D6BFE0788E9024598FF90F097391359C55CA01E5F45 190380746EADEF1423248A3E516500C2AE551AAE96D4B04FC0F2D2D90C8BF702 5250717B90A326B6676081196EEEA32C2E95677C37C6F923533ACB72BE55D11D F0EC5096D02CC91D08DA4EE52C71BCB1F4C003B575EFECDB14071B5A7945381D 342559B120180487DD51BE295F7878239AE45CC6017ED4D86DACCF17F9CDB2A4 691A8F6576060F7693936E40A9F4E76A9EC697F3896D2BEBC374F12F55E19089 427C61E1EAEB7F5F88F4A374CF4B8FC0B6634F2A8E4363F8BB90E5A4636E79BC 5864075B0EC007768A5CF35A6CD6091737AA1710A65173A22916F09DF00C0728 78ADD4E7D13FA332D2C11C999AE8BF9E0E7C857F9391CC9B4D5D30829961B673 B7D229BF442F41B31A4662A4A65A6364081FFC684D40598F4CD6564BB43B2DEB 73A229A0B0FD22D1C0C417AB8ACAE8A0E0951E08EA3A3D7665F7E2BAEEEF6B87 7AC74BEE875EBDCE9422D63C4A4536CAE32824323851FE846B6E977D629DAA7F 2810C2194FA8DC2055349F456879E978F1734EC3FF91B47733107B726822E971 D59DC7D9977D37A65F31153F5FDFB06679991E29FF310DA955A9869ED7DF016C 7937680792DED03D59569F3CAE43EAE9F45D3DE16B35FA98F16653B76B6F8185 83535473CB1CC9A991F71DAD311CE9E5FF821860811FB5CE27FCFFA6779ABF3C 004FF76BB5A669BCC56B7305952820870887DBF5869214FEBB589FFC778D21F5 8747C46E00D2F75FB879F33F21757D575B32430E7BA33C7C909E0D6BDA50106E 922155380E985F03C57B919FA3CD6590B0DE2B0DE90288949C928F218ED2E5E9 A7C0C132F8EDCFFF169AAC9B545EE729AA4272C50288FAC1A30AB08605F03B27 DE32F9534E7729F086340F6A83FAC1B4A70FB593352736C4CCA58AF4B9877FDC A0337B8A859F0E0767641415660074EFF04196124EAA983E2D2EEFC1ACF7A5D2 9B6A88E9EFCF9CA3559FF1E928DCDBEBD5915F312D136AC1D3D2E5388AB6126D D915111E45703D739097F6201600DFC1749641C69FC218F706AC7069A055EFE1 E55082B1CD69D6D8B5DC504A420100644EA6D1F7C1E42F19561FA74DD5F17FCD 6D6029C9EC50B5E4E0D52F57970B564F633001B72108A2643E3620DB40175960 32D8CDB02AC4084A67E6C1B2F29533B0CC20179A8261182E174F58CE07672114 087C84BE6B48CFAA8E8E5B0E8C7C56CA3020485BA478B9CCB08F01DC1813B94C E68474C93BE90BDA328BFEF6C8245A94922B48A8BB98C5C1592D492843190118 9DE00C79422ADBAF07091AD592589C9006817D354FB41B880152DAD4696908B6 EDA21999304D508DE27D6D775111BACF1D94BD511BD698903CA69DFFB27F5543 E6F99DF3E6E1448747EEF893D6312E0469AD9DF3867B447B87ECE872298DF58D 523394E2DADE342E56485741D71480C1A80EB035C06452A8C054F17070742CB4 7896B53959818E94B433D33AB6D97765F3B070D995CA53D06C31B9A62C8D591B 52144338BB9B5D52DB2C548BF122F1CDEF7E5DF4C697EA1CAC77F72559314B2E C26C2B6514AAD938DCBB460570735CCBC54004E8FE8257F8B5EBD8792A74B906 C530581534665DD4F3BCA448A22830C6453D74C1FC45C869C64D625E193A3213 FF90CA5D05A1A298A3B79A49813E314562F1D77134247B33E6117763E7C79E8B 67E7F283E571F5AC728DE2BAC3EB5607F7FF7A95F6C7E9B7671EA2E3F20DF22D E2438E04D4B11B97ED787CADA9CA2371318A3FD60F787B7B394BDE67E0AA4765 E472669C467A3724788085062A4B9E11973345C385CB4B1D70CFB3B180120394 34B0928A543B8CADD9911EB8E23BCF6A38A7E3F4B12D0FBFB7478E05C17FDB92 C2045A166081B6B399F8D3451BFC8D9EF11FB4EEAAAE6F0E2DE99FBEB8FBC94B B38E2AAC569406379F65177D825DB08744719F60EC526C1FA9974CD9CBC1B7AE 97614ABA152D09D1A05499B45904813C76B90B14067D47DB1A740DC31B1AA6CD C999945E0A017DB6D47D5F13FBFA70E5D0CFA423CD96A674DB2EC0C00C52CBA3 3F20A730819FFDA5FD54E9B689BECAFC89A37E17F66285ABB4A4C4302E466762 373AEFDDA390BE886A15B3D66125CC02E1BB0D504B998BE69A3BE16E86B101E8 81E08E9A3C28744D403DC4E3BFB45257D613389E14B818FEFE8D2F32CA75DCA1 A14FC6D6002EC04A0BB885B8F951BCE444AE220D7EFDAA9B557F0DAE72043D54 76B0B5CAD3983FF382919B135E43C65701C80F22F6A4A6837A5C2323C1BCF0C9 B1AA33A7F723C3FEBF42DF9E4B5067777069B10CDCDAD88AB8EC0F9AD07FDE8B F45315189DE4BE3035CA40F36AF9BFAF6A3258B97B1C42B1B4BA29C6E5BA9992 2863969283F26DC08B3EE6937E3E1D3BE16B1C769AD9C463742A7B2384C74320 F2B0438C58FC41C56E235E1983366C6BE221C9A31A469F7FEB0885A923F171BA 314C8925E9ECD7FD401E7EB9639E6CB97A5A876CA7519B07DB25F82E2C9D5A0A 667D00523CE2A89519DC8DF68AC845E42C7460DFB28610274937D82A7BC927C6 CB4E17B8585C63B0310C0C20E1C267ABC7F354C276D6252F49E550656F5ECD52 BFB53A5B4FE63F4D15C4204648412C67C81342EA66DB7973B05B80F6F792471D DC94BF0287BA479B4F81C4061642624EBED1E0D154554581186BF7968DDCEB22 A7828D028F1CFD2EFBE1A56802D2DCCE8B451776FD07B672FAA89913E0771EA0 7CD91A386D59E680F90CE8A81A63B0680CB730151EC0B9378A774D4433355243 7A2D28F34FE9FEFD8CCC5885D593860767C3EFB998D0EDE080599A5E15F6B8CB 7CE20E50F744C01A1A7D33D501EA5F53F648CA3714C5F3E18C131234EB97C2D0 036412E3033DDD1E88CA3F1E43BE968D625FC34ACA8864D4AD8EA5ECFC66DD72 C45FDB26EE4D52957853E812F00E87DAA4876AF071BC1C5F06C565274D29965D B2B38BBF428EDD40F9A61C71AE89E5624191F0CC6B19577D7B3CDE2B287C43CF DDA84C84C449605D42D710CA936E6379E536163C8567861582ABC147EB90EA6F A8D0212D3C6990BB478E2BF3722D58F9795B879879BDE7DD659CF9341662222F 394117C265BF8651E90C48051F6452F5FBF297183968DFC695687E3FA414ADFD 6CFDB253D38C3EAF158CC01CF103BB449F3908609E6070D4488710E9828D5485 A9E7A8A45541F8E6150BDA08E588AF13971F91AD725DCBBD6FDDA229B1B35A94 B504697A9E7D95DAF2148F59F9BEB78FEA2A1EF6DF2002834630666D4A4A6B4E 9ADF57F0502C860CAB1DF0B66479A38945CA242EF19ECFB8DFFAD414E7975EAB 9CEBA8A09390AF19CD59B9F93ACCF4509E74EF76D67CB554D4FD7250E4F3AB48 4F3A57373B9A56FF7D396773A0CCBBBE53B2B68F3ACA2394A5A939A0260CFA03 A4BFB696CFBA5B79C70D8FF5BDC6743F281038C9A3991F1D99E54663753E29B1 9D1711645AB6FCD61C88963612E0727C587E59E62D3803CD6B4F21677385B574 8ABCE4D393491514A9211A088F90F659D40935C04D3D666CF2E60807FE4B5D14 D10063B2187B9D05503A0B0970DC3F41D806F7E4FB061C657A6FDB3E9BD64F9E 880615F4D5E337754199BC9C907FC1027A511A043B51F745E46A4341720FCBB5 B8650B7229A75A6B72BF2F7ADD704BED7701B92C3169C8EDFCC34C86FA0DDB37 3CC4805DC1D0E59A416B61A7E228AB7EC95DB65EDCA266E499E59AA22AB5F8C4 C82FECCF9D2AF86E10ADB4B2D2ACAFF4B4B22077BB2C3A321CF1C100D6E6690A 525CEB3E61D5C2563B6B47F6B29DBC18B85F84E86AC3E0D7D71A9736B118567A 4ADCCD778B834314A89C979069AA83A67FB1C2063494BDCED6ADA0063296C6E8 D351EBEA69F6CADF2E012A392231E168DEB240160B0B309C03F24B765760E96C 22FE68AA1AD149FB9B28B333B5B555E6D9349BDA34ED1BA74A69B14CDB7AB530 2C0E3F977095F7CBB7FFB32587B70CE68BCBCF4CB70D51537B15716436309ECF C9F93A46828B99D5596C8B31106CD74440261EB23F8E546943830D931D0083DC DA38F05E1644FFC13CBC0722453B36F6E068D824F01048D2661C771C7A72FC74 A1D0698F9196C9F61CAE6C9670DF717512AE0F411FD3E5D72902590CA828893E AC863644225A3AEDE1D44FEA6A90AEE1E20A6294F6204CD55EE5F842FF5654F2 3BC328BC7C656552928B8A11805D40249E3584479B57E2FDD01E9ADF3BE831C8 4364B2B2A7672F568CCA46B4FAF864822765220A7E2B7B75911BE22B2FC61BCA 7799A15CB5746FFD40A65B4E208FB41052B7160CD3B5794DB3AA4839C6F5B2DE 1AC93044223AB5DB3EA21AB9ED086B881335EC6703AF823182D818C4456E629F 6D95E066F89CFD71FE367F8656CC44F11C7816994598C66FE9D783F7EC13B656 FDCFFF3F8EF03B5179B282B575702BC7B8C95B371E83DD7B1F47759E7EF74C8D F9B8CF3F2575BB27654620FF1550511CBD9AE16E87B3B4B2679671F9A1D00575 DAE773B699DDE4BBBDCD34EE421EB88A808264DDB983E5838B83E063785B083F AC0194A6B5C64AF283FD1BEB4A77B9513700E6B3A31D949FF1B29AD6D74E5AAD 2541A6B18368B88D52C690035BED6FDFDADE5AFAF290E7E734236564C1B93334 F65B9620237B0EF3B24CB0AA9E2E89816068F00878826606BF5C04E05134E099 FFF0F3885690A67A8E1E828F7FDC4AD01AA23CE2079878C1FFDA4ADDE84CFE42 A22219A7DDA7AE365DF884A21B9E57094B6CDCBE7FEFD0EF196642F3058E75C8 7E2B699B9028A53CD6A5B6E5DF06528BC2B4C078BD93E6DC78443149B0A052E5 49E6C3DC9BBE1F38D1ADE6E44DD022B016320D8005F6A573CA9E53EDE641E7DF 31E35C199EAAB70E422D186AE0D4D6268FAE576019BDF7DABAD330E927763E42 104A275D172940B4AC4AE9B7E36AFB8AED40E489A1169C3768C782C60590CB7F 1BEB5C508DE99613D7AE31279A44F4B09D523C7665838C93E1F97594948A3867 5852140704540A36D8144597EE6CE7F5E595C19E5AF349432FA860D19423DF72 6BEC748492137FEFE134F3DB06B6A5540152273E3768F5F91E86DA7AA217A52F E92ECF69ECAB6EE78C9076D084A9FC6343226EF547055677DB6A0DB3903388F9 B22B919661D4756B4AE6B808D989D64F9FE006134BF7D0EC2DCF8533653414C3 C4F326FDC3DB38850CBAB5CC8E96E617CFF3C088ED6D66F52E95FF27DE3BBBBE 447E3D0C6B59B5FE3666C5D9EFF43F724F0A8CD138B3FDBB869F2DF726292817 12671784C1DCD4AA906D20D503B1E5ABBD8F520E9B98ABB3959DBF8CA0D80388 47721455A00909F1EDEB0EE9D75E811C6154EA5BEFC9A8A2C03D0BBDF83591E4 54802928D837D3C62697B33402F2FD865132EAAE7F3C490B5389403C1EE651A7 6458EAF2AB53EF54E10F895B962042DA84594FBE7356DD0C0F3DE58FDD0A071C EB85D97EA8E6656C2D0C48CF1189A71D8C4D5025E74905EB626B95E2D245A61A A20B41EA4EB03C2D3AFFE430ECBDDB007C2A9B5BD33DB59948785D2655C8E3E3 ACEEB209390587439FC19F0C111F51C60FDC59FF837BE38D52E66720EE0AF3DE EBFAE3E12422AD4A05BC06F50048629FADCCC4FE41F96614A1397000591C0D95 1FEC8B6064D6DB828165D9C73FF1A07949F3F77FD6AD00767DF8F3FD02258A2E 655A6A0D36CDB6DE9164D6F08BFA34CCB8929A32AB380A67D8C41CF86A4D503B 13D2DDF24067FC17B82185D420BB5A1A7F5AF4CE16C6642E062F0D27DB1764DD 285C28A2670AE3538B63CB4D7337A7BFE9669C4D3B58797A94D85F0D78237D3D E070585E5F91D658DD5945908E94546DEC457982411645734AD62A6D58AF2180 FA32DF79E3FF877ACBD9DAA61A0C8803C1E85B38D5E3421B44C2B77F66169FCF E5297C67FAA3315140FD3254C07C766FAFEB00A420FF74B3C3023E8AA21BAFAD E6D2F75E89F9672620DBC022B717AD70594EFE00AE52A2F2EC24D26840DBD109 9D4CF029F5B9E1713CB24E8FF9840FC38C5D9A61C11108F2DC2804E9AD887E87 17596B6DF2EF00B91CEBD4A69C40BB708C124EC2FBDB32B932B93B690A49D38E 293261FE7A53AB37BCC6F250F9B8BDE6E76BB5A81CD3DFC410EC77C99F14F8E7 A340D91AE2F6896666CE7367ACF1784CB9A9F87427B95FF825EEF7D13F5D710E 0444DE4C1991949245CFB420F08E4C8CB95DFA8553D5651F2D334C80A0888E93 13D75FD17AD46DB8517B51225D014B08F5157F0215990643C2AFAE5B914B1D97 2CA54C27B116C01BE6B0E7CC3898910908FDB03697782197FCD92EF969DE4449 6A3A7E2F977F5B228EC1BBE57A019F619471110520FC6A54078B26E243209C85 AFA07E8DBC5885307183A28B4E919FA76DECBF8A70E833E5DDCD512C5F1E1964 16A6958A6F8C45927EDD23246FE449FC73B4BC59E02EF0E9BEC78711B4B5F09C CE4F8D7641DFA13E968D5BD7898C8DD7DED58DB5078B132C491C115EE192DC1E CBF7E9B3C5B87C001EBF8315A7490365F47D6C1078FFE4AE215440ACB0BC0A4C 99BD6A294A288C807708FA1FF21DF697811631D7C27C9B69D725E30FD7D62382 938D06CA564EA57340F2076261C09E32660355727D4D17EA746C8A56C377A579 E861CDC6F50FEC4087F0945A131EF204525DBD24FE6F4CF0288001815F7BA4D3 6D4ED5CA9BE05013C79F178FDDA5D0134DA1131653650081CCAF938E66BA5A11 900D7E3831E312BE0BFF126D973EC606F8388FDBCFC1F1474DFF13AB339F1E8F 56CB9B1B7470339112E40DE906ABE3B873A5DEED88AA733EF91E36E7A71D7129 64121A219622702004D9F0997F0E6807574CDA8E0172901BE7CB5F43BBB70E4D FF57CA79D016B23D7DC49E3B00E5B2CC5AE3C12D0DAB8DBC087CDF431C754619 FB6944C2EF11B067AB1DB5BECFC7DEAEE586028DA749A6021AFACA046CD828BD E5B84C9A9B8E949AE8A95E3E27C7E842D8ED6BDC55123A9272B69048815F7C6A EF9EA8CCAE5A2FD871EE4E009344BAE17D5AF20F3086D81236F306C00E57B5D4 89E449AC1A571B17DB021A25FBCE2E1C572F8BD7EC4B1A963D84FF7A48955961 FD1C7FC0F9AD5BD3F51CF4EF0B487F978E39EED35CDBBBA2072E53647F9303F1 675F06696EE706EC665760EA503167A574C81BE3390770518E18AA98C53DE9A7 01058D7BA66CE6FA0870A423F846731C4D1F5CF828ACC4EE49EDBB2E747BAC3D 31905D5A2ABF846779DA68F8A4B333AF6F9AF7DF4350A90081F08B1CB7C1085B 84AE29B09741C30B5F84AEE236568D1E9863F594C0CEF3E13AE6CB2DCF6CB759 D76FB014964BF4CE0343DDC7758025DCEACA09B9BD61AEFB560BEFDC33C9EDD6 CD5EE9701F412A37D423FB3CA871D82C77D6BA2DA121FEC8476EA100CCE834C4 9D99105261567D4B181511D891D0FE4D94384060AE2B7F485572C3A3D202076B 715CF6DF8F6CFB3129614A405676558DB82D4AE2B9CF2ACB848B40C844726212 3C90FFCDD76B4AF207E4D23DB6130CB1FA7FC4BF0D0A9CE50C260AF4C535FB7F 67603B18088E9B942DB3047C1E63E1E99293E0913AABF635E76653B920136751 8ACFE7DC42578914A0AE5EAD5A26D84BD5B9C7AE99F4C4E4C5CA54C3BFB7E61B 3D4CF8909CE1DCBF776CB9B729F85545E483ADB7BBCD8EC2EF4053D0134FD658 62CE40983FF35B91C0005FD3DD89EA6B4A422DA0FB5834639DAF9B85E2ED762C 0DFC6436AA6A63 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMSY10 %!PS-AdobeFont-1.1: CMSY10 1.0 %%CreationDate: 1991 Aug 15 07:20:57 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.0) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMSY10) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle -14.035 def /isFixedPitch false def end readonly def /FontName /CMSY10 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 0 /minus put dup 1 /periodcentered put dup 2 /multiply put dup 3 /asteriskmath put dup 10 /circlemultiply put dup 14 /openbullet put dup 15 /bullet put dup 18 /reflexsubset put dup 20 /lessequal put dup 21 /greaterequal put dup 24 /similar put dup 26 /propersubset put dup 32 /arrowleft put dup 33 /arrowright put dup 40 /arrowdblleft put dup 41 /arrowdblright put dup 43 /arrowdbldown put dup 50 /element put dup 51 /owner put dup 54 /negationslash put dup 55 /mapsto put dup 56 /universal put dup 57 /existential put dup 58 /logicalnot put dup 59 /emptyset put dup 65 /A put dup 66 /B put dup 67 /C put dup 68 /D put dup 69 /E put dup 70 /F put dup 71 /G put dup 72 /H put dup 73 /I put dup 74 /J put dup 75 /K put dup 77 /M put dup 78 /N put dup 80 /P put dup 85 /U put dup 91 /union put dup 92 /intersection put dup 94 /logicaland put dup 102 /braceleft put dup 103 /braceright put dup 104 /angbracketleft put dup 105 /angbracketright put dup 106 /bar put dup 110 /backslash put dup 113 /coproduct put dup 114 /nabla put readonly def /FontBBox{-29 -960 1116 775}readonly def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052F09F9C8ADE9D907C058B87E9B6964 7D53359E51216774A4EAA1E2B58EC3176BD1184A633B951372B4198D4E8C5EF4 A213ACB58AA0A658908035BF2ED8531779838A960DFE2B27EA49C37156989C85 E21B3ABF72E39A89232CD9F4237FC80C9E64E8425AA3BEF7DED60B122A52922A 221A37D9A807DD01161779DDE7D31FF2B87F97C73D63EECDDA4C49501773468A 27D1663E0B62F461F6E40A5D6676D1D12B51E641C1D4E8E2771864FC104F8CBF 5B78EC1D88228725F1C453A678F58A7E1B7BD7CA700717D288EB8DA1F57C4F09 0ABF1D42C5DDD0C384C7E22F8F8047BE1D4C1CC8E33368FB1AC82B4E96146730 DE3302B2E6B819CB6AE455B1AF3187FFE8071AA57EF8A6616B9CB7941D44EC7A 71A7BB3DF755178D7D2E4BB69859EFA4BBC30BD6BB1531133FD4D9438FF99F09 4ECC068A324D75B5F696B8688EEB2F17E5ED34CCD6D047A4E3806D000C199D7C 515DB70A8D4F6146FE068DC1E5DE8BC57030BE257979F01FD418B2F8F9773FF5 566BCFF9F02227D648B48CFE7B757C516EC9F4424283B174E3B1C3A07504338F DF63BC546F2A5C6E867C59139B927196F9E7FDE54733BD0426F42FE54D7688CC 735D69BE2B9DE6505107733F183EFCC22DCD8E80F5BD03684D2241CB837A3F37 637A203C484474E278C92E6DCF6AA83799BFFE52DDCFA609C46D7B33532E4DBA F06B77D5644317F20AB88B9C4C00E6C90151C214122C1F0060D7A6FB723B7D98 86279F33E22A3DD29A03C27C5049140C61B75DB430202B44E39A29CDFEC3BC9D D5AE4784CBC68E487569349DF61266E334D56B9D834FD543E5309D5B221DDDD8 1721F8ECB5E5974D5FB7FA152198DAF568E060B6978832933D0FE57D9AE6C79E 22F3FB9BE33C126FB2A9C23EADC902BA3A7CB0B94F2F015A0DF1960A92A05C79 A55A24D97A3259CE0A71E889724D68FCBE9A8658DD38803E07A9DB1B5CA8F18F 29A15AF6CE677AA3055C85E0AB7DCCF3ABEF7490DB72B83C40BA59015E19AB4C 5EF3C6E12E3079FEB4AA19955D7F354C1C35DCAB1BE682C0347C30DA254E7B3F 5E634216D2F8435DC865CAED6FAA5C71E2A71552F15AD2FA65BC8DCC674EE53F 2BA2C67C03240473E79620A446076FF2C8D2DBBD6A8B2823FD0F223D6A349113 D8558DDF9ACB7EFA2E5DFECBC73CDE53854A3724C8EEF3D84CA03AA71AAE57CB 1474B9B31B687D7C4EC8D01F3F14FA6C4A181E05411388E6B9A7FCE7B911C9E6 BEDDD83373ADE919A7046EDD30EEF373594CD67D9799582ADFAF9C3EB00567DA DBC9A14B92DF696FC4D05D23726AFECAE639BF8852D43546D144ABE6177103CC D4BB3BD75A770F09D3F548E941BC78D69B21033F5D6BFCA41C2F9871DD0F743A DF5250C6C362C4E6D1D2A3BFC07D673E108BF3233FC55FF1DB75EC97F3179766 6E763D3B64FD8014E12D3C4E2281B474A2B41FD6FE06058BBD49C896ABE06430 1E23B1CCD50625685BEAFFC30B2FEBDA6E0A84717339416FFA340A2257342B95 C7F52EB7091342732B6AE0840B37830E3B2485BE3422848BCA1551A401F79FC2 15256C4CDE728E7175ABA2786AC8BB3B0B6A38BD9CA6D48F2C7D6EA5207927D6 C36721E2E7F3DAA80F7D0995A3A1C9153FF21F9FF91AE28DB123BC84BD3DAD12 D2F7F5B9FB04DB98733730F922282D0CCAB8F16398375FF9323250FBA9D208F7 5150B0036834F43E99652951FD43E6B08314E8F01B975FA0B02A1658B7960962 2CA0595E71E11E5BA18B8308305C5D10A53C78CD99D45613C9BA906C4A1B05D8 4A4F160CCE67E7BEAD6F8DF39E66DA6FB3444FE936A28D71415EA795F162BEAC FEB1670B3A5BA1A39A18F529F60AC122CE58C58132719187579C9FD52FB9EAE1 67F76C548D7F8801CE98CF63F4FF5AF747B961413E46BC123E97D4C3B1E6E70C E84D11A677493A6B4A10F0730AE3DB4936F50912881428152C2FB47BC9F611F7 17D85A60782F33A5B9ECE625512FC6DFA94F488792E47429EFD9250B66B5E1E3 8C2E901384EF6BAE01DE1E88B8E576017EC16BAAB0C6D97A52892D07A283DF1C 69352B7194674F57EE06C02FECA88FF177D723593255AD263C6DED6E169C26F9 2D10CBA0E6F47CE16A8921D3BDAF799F85FBB5BF0FE868FBAE2E2A191E6BEE80 E5F36DF957FE040E8E5AE96589C3B6138A8F4AACFBF2812B72620AEF206A2964 BA977EB5C84C052CF1B0CA8C3A187CF51AB2FB53255AC3CE7F99118F259C48E1 0971CEC65F1D86313C97217F12DA9B6319F015BFBC49884A2CE5BE41677189A2 7D3001B24B717F8DF412ED9AB8DE44EF064DABA5E0ABFA28BE9EC52EDF6ECA42 798E1917529C784F2ACDB65FFFD6FC0A55DBD3C4AA7CD30EED279C01FBF10611 DFED359924EF81EA6F64FD341EC4CA1C8C3CB31EC703630528D706C38B1F1358 0C2C05E4FACABA9A8F207F7D0953D590D214465AAC6EF0654ABE2817BE76C59E 03EBAA8877BBE0CAFE5CF1CB109B22978978E88AD5BF7F1523C82933DDF8CAA6 0CAFA73CD0C525AB9BA61A5806E0F210A9E8BD5E856CE25520903766A98D89BF A48FCDA0ED1C7D4996EF046606BFD92E9E01059461C4B7ECF893812ED32F1B78 4F78ACC7530638DD6D7F33FA673CD602A3527310A87B7DD9953DBAB2B3E42689 95A5FA472412F7A38AD560D348B8F284C3BE8E0D7A0CF32C9888F9B4A86A6B58 D70BA422F50AC5CC167A42453C9F321E3CA38AE66F67A4AB38FFF7774EE74BB6 717F01C874DE33A711486CC041D08D330BEA48AB328B1B4F94700ECE5F4BBC18 C898130BA99F40FC65DB023E1600268E6A6EC01D7E928630B93EA010ACE735D1 E8E008152F05D2BFC2AD1A8F6B7F035E035663BE42CED4C04A4C493CDA98AE3C B5C0FE993A3FD1A07C5C46E2603134DC390A110722F7C08776B7BDDC96BBD32F FA53FDDBC078232EFA901B0E2D49C18C333DE756954574142152FD6239FA97C5 48D501CD440ABC60ABB17EC3958EE033538C025C4E8467166A2A6837196FDBA6 D3B7740E4A9D1BA86F45B150170AF31967D20F3A7A9C1A5B06E8EF4B81DEE24F 17C242B01DB89E3049FCD05FFFA127F0BD4256B046B40F4758C54891CDEA0E89 27E3068DCADA659CE6BE9ABED64FEB225D8A56D0ECE44AFE21B9F24D20FE1560 C23E1E1828F34421C7E22B91270392FAE50D183EAC78E4B11F03116622897AB3 EE18D472EB6C1174400A44F7971BE6630328E4F27D5CC58C90ABC0E59F63BBFE 39275DF8D58D4BB3FE536BC21C688309A80A67297B47DC5640037F5BEC8201B0 18C26EEE63C9AC91D59B11FF9BE692D3A0A3600789282A64BEE067A252B17BAB FC0E2A7ED14475EA315319A9243DE95CAF4985CD3E5C4BF817CA0F043EDCFA38 B6B05A5676E33634E11AD675BCE0B92F943A119541F28854E7AAACEDFE603726 560B7F31F7B9134CF2EEF88068BF0B61041004C9DEAA1E989A38C3AD83AE5E21 DA5740AA885DEE1D43088455B6B017413A2A9B8D1B5852D27FA8C9C84EAA921B A5829D290FBAA2AA1DCC2EACA28643A943E92527508B07A07D5F311AD2F1810D 3AE6B4649C76D58DC1A5708058B49B59A737CEDA40995A74370D5CE21E2C3828 38C17C587AE1C5025F72427EEDC7BC2C964FBDBA26F62725822AC34E40EAF1B8 A505AEA28BD45AE2C389D37B1281830381562B86E415CD67F631CA54D38C933A 2AFC2FDABCE6EEED9FB2913802EE2D83DBCF6F9E4C13CAC48225522B9AA9F1C5 24A746B873C41A9720AAC9CA75D0E8A9138ECEE8CF6F545AB07CE0DC69CEB5D5 23AD4B3393A124CF6B7DA40E22B5B9A9F8FD6660DBE8E3312D6AA9BA22E054F4 24748D8F9D2A3825A0628171295FD6CEE602ECE21C1EB597F0AE52642029AFCA D190B31CBE83F3D0C42D101DD5785732F1EF628E4F04FBA0ABF8D4318C06279D 58424531EC92AF23C399FC59E3CED95BEC946ED8C18C049BE0DF512AF27FCF78 E434D1074E7C88D31FF94CB0C3494562ED46B116D49DF51338DEF76793DC0008 3C88A7FC9BFD6242061E2D991E6E7DE7544B877A00BC10536EEED4E968659D5E 8B57540F4F80D003A615B3EA4BEF6CB64049A180D902CAF2976EF8114A34B3E1 7AE2D0C03FD4E8D7975FE8A9D1A130C3CC71BE99D8122498C4D8D3FB2A88E229 FD32C82E49535FA4ECD8215678A5EBE80B15A7801562CA4A65F2524DDDD7BC58 9EF6EECEA8D5C02CB1B11354EAB77311D863BB48AB0F01D6E4E0938B8F09263B 1F7039AE80D48E95CC7977F56D5FC4A138E96FAF41027FA6F8863DC0AEB0418A 828976AB95D2AF3BA8CE7824C7D05096E9A2D3AA86F7524361B8C0C7C9D4AD3E 5DF68C87625BCFE3A6B18E12753B879E6B9BC45E95F5B2E1AB753632CA04693E B0728BE7D80E33C233DDACC5C523491DE563AA3C6C4E98951A4AFEFCBB5D86FB 207342FD25D1208AFB67EABA0427041AE8D1CCFCD56D25AC4069139FCA498C28 CAAC65ECF93B74EE100FEB6DBBCEFA76B32F2B342012CC6D403C1237ACBFED0F FBBFD5D9FB05CA82461191B8B8A1A709F737AA9DCEA659EAF8B0A465D05ED23F 38B647C9479B71BCFC92D39F88615F2408D7F2A63872B11546797EE4DCE1C722 324913F882B00552B26066BDB5C6B9874560B5356BC733A25EFE3C5C83489AD9 9F3CA47979DB4D51672EEE14A12D9B6C29B84C5BD94FDA544E381752CB3AB94F 1BFAA1B30DB7A010C5060B23979E165FC6A6C121FC78C4446F511BAF3F9D9AAC 6CFDB4A5A80902E38756AE9994977A7F1C1436815FB74B094617BB048C865477 1F8D4BDFA8523A66FC2C05A3A20992E322BABFCE80F5DF65EFED573FF3329DBD 96096E79123F1E7B4953D2CCC721B9E7DC1F4B19F313118E67C574B2DA27B106 190158008A73B37686B0B8833C9E8F3B334FE34532BFB1A3E6B5631892957EC2 F740C62FB740CDBDE8251A4A8E2BEA3CAD1E46377598FC14721A875A62661E9E 1BC3BA2E003AF3D7540223E8C857DF49C57B740A7050CCE52520978452612872 73EE33844AC09974C79FFCD4E16FF6654B2646EC77B23C9898D78A69DD341A20 1E352D11B1A877A49791532A3AB75D0E2A0DD2A62B825B063F681CBC40AC182D C5AED5C1EED35360740BF13CF2A20D5C0B251EB37BD9FFBCBADC3B1481AD3003 A31A155F792863685CA8AF77D1D897984F3D989E0F45AB7873B1243CA8D25533 547365D01476E9D13E5617097058A4022E91BCB215BDA0BAE6687006C396AF79 1C01FD98078B81D3F6214026468077F9E40DE92426D8E51D1032E83BFAC6FB96 8ED4747B17AD736133BB28C8207E00081875B8D39A0B3DA15A61E480D7F1CF4B B35D8CE880F1ACD7960EB5A93D3F914A47E9F9DC866BD467E91677EB6830BAB4 EC83E28C74D0F179BFE0BC9D691DBA3D725B3FEB3FC680BC6109167354B0A197 36C138A1D252F3B1FD046755462C33968BA730444CECFB51175E7062A4290EE9 7990B18CE2ECF46795F0D3D5CB072202CAD40CDA0CDBD472237A107FA62CE35D 675838F7C691E76F723B93F14E2827C8587B412F69605BF8AE47E4A0F82A0F6A 4B922A500258E4FD4DED121830852816F3B0CDD38CE99EA56958293377AEE729 1B52F273716602118E3B6B3C82EBD900FB38E14FD9D8DC493D3B76CDF4064C7F DF9648EA8BC130E131AAF4B46711BE24452176661B8A652104CF37E6A277C6A5 E95FC0E578C44A74CE43B563CB130EE19631A00771A73C6CFE682B6522413B5E ED4EF567466885B5B4C88EEC7CEFD9FE46CABDAB038556C052504696418E66A0 F7EB66C6CE57792C5DC2E9868F6C6D6DBE0E7ADB62EA82A2220F38CF9F189352 8A1D78B397529894B07A0612188836BD33F1C93AAB9C9FC474079ED58FA79AC9 8A4B527E1B1354D2450E4DC8365A9BC391DCF3CCE8614AF7932B1C1D622709E7 88E9E30D8371AB244BDD5C37470170BD27A69F477CD70B518900890C4949A6EF B04CE733FAFB0A90D28AE83309766CD77ADDF3967B572AA8D924FC4AF85CAF2E 9E70ADC797EA4DA379BB4B02C3F636B45DA9FE343B03C44AAA0999650011EC15 CD5EB608824FEC39EE94055C500082A61F018EA6DA2057D273F1650C314069F6 597F95AA0D59A170B0DC07AB024CDF4E89B8A4BCAFBAF98722FB3BAF3440AB9C 68895134239C760FB12BB5163D13571D90F67566906ED83396E7C015E48D8333 64E3BE4E9854B206C750B78EA353ABEC225C119DDA5762F8DACE40367521F4BF C00DA263DCC65FB4FC343B25DAF011CDA915F37BB170A1324B263869E779F71C 587F27C10A69AF358EE40EA5C4DAA07DF710C5546C683A3F9340AD0DB400336F 834D20419B1296A5B4AB49D86D6E239695DDF746CE51AB7FBC33158CCE19F86D 30E8EC97F8432C36542BB53B9DFB112B9F2800BB5A4402DE973D6FA92065AF33 CFE4F7D397EC4F2D9FD4DB8C632E37AAFB8125393D4D1B24F78B874274B4A643 C4092A335A16012AFBB402D1033BF3D4FB66F3B0074EC2CEE1CFB9529AAC5B33 0E3BC95E594C81137C4DD72DC76C3386978CA936205C56F5859794839BF1D585 9D7FD0B3202F30987FD9BEC2263064F7BD45E1BEA4B086F0FF71458FC389A102 3787FE44A9DFC95FBD1351E21247D2E8CC091FC54C98B1713F0297B5DBB063BC 19C003077A5A1C9B8B6F8F031A76B45711DDF2279D94AFF08F0CAB65E02995E4 82B2CC0C7F82FF399E7946DC821ED3C6C5A7B5A8F9A23FDE329BD6C47A8FAF08 EEA74148A3FAF8E841A0BCED672CCFF1A5A478A4E85A1C87458BEA4C62BA68DA 6DF3ED171C1632B246AEC0FB474D42FA3022A727A6D1180808125212F414C669 88727FA354F4BCD4760B1EE79538D855A3E82D1C5E9966A95115F73C02E40D9E EC6FA842555D93F1410098E24E58EC6CFC88BE3565B1C0603C0FFD83E279DAB6 82A62B42CBC6D738989764685A436C8A80AAC9DE61022FDA15DA5A045893141E 099773A6D229A278CA0B6998012B948E76C564765B62F4E31293CE9D1B63F3B4 3998EB1FEFB4E553090E9D89C91B3B3573F561B566547D9B8D967F10D2C1F167 7A5FDCE89E3425E044662901AE2D9075D189B00ED68476CD58FE89487D52E317 A481EDDCC0A8E00732C8151F74320E34565842EC0E6DA775D4F7AA3890170DD9 40EB559D2DA86812EE05CA3BC1D9FB4F2406EC54FECE67A0E10DFAEC50548DCE 4F0BA02426B63EE3712C8C265D5CF5CED0682F5705EA760D55BED1987E9FB50C 3AAF8A2512524C11505771DB537E40AD69AA7ABBCA49E4BF9AA7F62173BF632C 7DC790AF9B9E61F5B6E8191AC86EA19729D84FE861A22C8B81DC650C641C3F56 5852DF846E68796F1AFF171671F8F91F8265A28B1D25FF0A246DEEEE31A9BD90 0BAEB2CF7E7B9977622358C5E8AF96FD626C30A1177FA71F0CF1B18873054071 9CA3FDEA572050DFD7EDAD6B2D79EED963FD47F4361A564458C33D814D08FA27 2BFC201041D5EC08DBEC0FC48798913CB93EBD830EBC890A7A0F67F0F2C87FA1 135BE63123809CB52B8CB1EF11774AB3913C54787D78784FB9487AA9B134CBB1 D27D2CDFCAD9F38B2CB4936329445274111344CF60452D2B1822AB5A0D10547E 326B42B2AF0561399E42595D0F0AEA1D88F94C37020871D07305E76C12EEC28A BD37F5CDDD53137CE8650BAEBBBF4389190EA64A8EEE07EA22194570EFABD2AA 9BC1281F9A272B890F1BC177F9E964D5C325FBD2F18645796C1AC07346F1C25D EAE8FCF9608F94007019B7138DA1C9E0D25E4A94F1DA1C8AF2505B00B8501F3D D6481D23F1504B84772DAD5EB4AB10D4F53536D519E822AF24A6B5D95EED0110 F1A20DF587327E3793A78445BCD2ADDD2B1F48298463F3EA448F177C95B9AFCA 9E60D0A6FE1E8EC6AFCEC5D6C65B6D73FA0DED8737F9B8D6FDEEDE00538D0A16 3EBC556DD1E0A9376809F0DDA10EFE445C733DD6708C4EA57A474A4F9BC9093B 0AA15EA4BBC256BA8547529F35D1AB547E90D9E328A8A8AA9C69200AF066DBC9 8C583108A855EE42E279B82A5B9982BAC751A56033BC368A84B9380536319C22 29DA820CD94B073258F4E3176CE4C35535E8E2BDBECBCD4C7C3B2C618D861ACD C7DE40F1232C238007543169FF743CBA4729890172897B29DCF13F4F7883DBD9 33D3F8FB6F4D0C2632AE30580338819AFE6DB696E51BA405449883B510045587 4BEB697A7E8B0EF599ADAAA940F11B980860D731F08A3A4201929AF33FA8EF88 80BEFE70AFAEF705B01C8A34B7A88163F8D6606114ACC9ED7E5BA4228BF18A89 C19483A68995916A9CAFE63097FD119B3D32AA1ACAD8AE62A4529C236B840A96 0730EB60E5332737FA9D077B91CEEBB052264BE21ECBDC219DAD5F810F3E7BB8 F145D41C84E8EEE63DC1ED981BE39C86A2266F4D682822C6FFE100263B873744 57F2CA13257BDC7A4EC308A70EB39CCAB029427FEF94ABC404057090A70C962C C1163DA372C1296EF17C65B25DABEA2CAAD93180FDBACD22966EEA719C7A5615 302645B08BD50D2278CC6CE04B4A26EA469A8FFC6E9A671CEAC71D5978C6CE03 72021E7931FB496A265468D9A8EC1D37F4F30E9D9D1944DC5A7EB8A5E79E6F96 1941F0F950E849DE3229CEC59427455A9DEB96CF8B889F34D632BC94BC8549B1 FAC18E6EBD3DA113AEC17E567F41EDA1CA5A7E1262EA080DC1F8BE8F95D5B487 A0D0927682D2FA55F85DA64A48724E046EE49D3EE06C0909601CFBD50CA08DE5 39CA0837A2E48DFF1F3BECA6782821ABB378BA951E6205FF990006B5123F1C5F 7A8D2750A8F71F4E7555271EE16020D27E19BA86D4A42E33B9E140C0D5680F9E 0B3C0E85C2A1E9A48A0A18AE0E8624E8A96A7386AA977FC12AE3A629EF7E0693 62CD7E2A111C4E97616E2BEF11CF9816ECCB1B2FFB1A36AB2989ABFFAB499AC8 D6CF2194BDAC47ECBDF9689A0A5A37D2AFEC13AABE6DE7FAFB2A072A6E89D17A B1203F35C4503F38D424828DD62030A3542F6084B95AAD15066F019D5A78F013 C89B8E5BCE6528902AA188A32EF76D7923BD1D94D44BDBA58CE6F2226995F749 F91E8D8333DA88C974E72F1FFB2B0C2C821D3EEBD7E3F1E118C8032C2517B165 E10ACF02ECEE19496D8F996059AD817D2B43C7C6B061C749DFECBAF8124D5FB9 820DDD732D0A7F58BACA891E900589F8FBD6A0C5F75A3671A580A51B279FC525 756BACD60C66A441FCF59FC058ACB87F48823077C1A1C328D3293084D904F6F9 480E053E4FBCA1AF1ADB6131B9BA8271E73B7733D95A4435EE81F67F1AFD3931 92ED357A58F79507645B6ED0574F452603585C14626C12B2115C9A70E111CCEB 3CF9EEFC46B2D409B16BED3CCC13B5587DB321EA6C45930765ABC00C45D81442 15DF1E860D326871110770BFBB0D530662D538277DE562D3DE8778E7B354DB66 14E580129769F029CA05BB220B9009CB69306BE5F45FC8E6B1C9CD56B88C6C1E CA22E11F9B37DB201F041DA3F3F960E5E1AB5DE172C0F208231C3225F4399A52 20C85964BA38904416268B8552DB87B220FDD17A5F7ECE63EBEFC5CC847D65FE B400E11898874000141C738191340A70A2A811DAFC132036D5302D4209C32078 0262DB8A717EB912710C041DBBFCF753131DFDE96600E1B8D754E0FF8537DF9C 2743E6D5496EF7DE10B37A7C46731A5CCCF4E68970BB1A638A15AA48F92D1CD7 15C69644582BFABD6E41D768A30533717BAF43C83B2BB52FAFF4FB983B643ABD 6878126EC3BFDE80C59A1B298F06C4802B447A4ACEDB29378C40FE572C8C8132 DF6E03402AED353DEDE674F56FC04A08C446DA2B8BA9EC0DB11732980C415824 FEE23E6E483B8196B98D2A0030766E96C3917C25524B08A89F6390822955F9CD 3F2D80B61F456C89DB00A745C19B584AA0A3D84CA01255163F2CDA2158B3A8E0 139E67DE26CF4ED790A29DC783717BB88AF121A5D9C2F52CE9F3467C97621872 DDB55B075C4E3E2CF064847F0B30100FA3E84172591CEE474F679C838E9BD4C9 C6B2ACA2F916A4BFA5A4DCB35B0986F5BD8C6443219693190A009B0FF251D2E0 6FF10600D6F993F103EA224F5B166B3AF6B835964DF9B51B533A33A085E15521 B2615D2CD3CAD2B9F7CC1491DA3ABC27F86AB9489311E6DED75A12550DCB5B29 E4A29F4FC8BF98040F3E4BF80F8CCB83A64E11707425449B59EE0F367521A6D1 6DC55D8E2C811FB5759D0B5DABABD9D44E1A92A47C483CD989DA43A19CB3A343 BC1C04EDC212B5C085B53B13572D5D4BA8E53578B9ED76E3C91C81385E2DE2DD 0AC56304641698B1DB025D612E8FE3005452B990E5C792E0A956D7753AEE5F82 02B7A667738F8B89C6609F591900BD99D8755AF31276E25FB77A6AF267685194 13D84FA5B444F26CDB3D88B438722482D111EBB4233094724074E8EFAA224231 BE805C7CE80B185E300C9F052264328A1E3B83C2E30EF4FB5E5ACA2E00C09ED2 5FDC5427D48693F8BDCEA925BB79A31422D918615317F961B8423E386F1BC120 3A982A256718F7FB46AB7711EEBEE538AFCFF78D03FDE6177ED6AC41A5486D8A 3A720CA8C19962B59433037AA2B0207704339A313CA2B9890F0A682381CF8D2A 7D63C1AFA700F560E3982DE7FD4781DAB5B71F65B0229F6C2EBFFCEABF1E6E3F C82EA6B476ADF0944251D4D76D44DF028B79E41593FF9F067A57F72D7C8D6232 0327B7BE3898F90F6D3004FDFFCFCF0ECC785812FA7C59DD4781EE66DF0DB837 84B47FD316133A7CF7A2542BE470F1BD944274C461F3D4C67A7AFC3159D7E9DA 5850359E1811778B371E4C8A96A152CEDC27A9DBB1467BD573FC6EDC71C8BA44 2A1ACEB4B1EDFBE5C64DA79950FDE27A18BAACB93FB20B038A2FB6CBC7F245A8 C5C60D2B5602FBD4B0035E19435DB99D0A9F4A4DA8E5164DB4203DB0C43C27FB E3B5C7F1BAE882301812F792EB83BF406AB8E613E91E43786666B759CE671FB4 170CEA9C44C46424882A260D8357FF296C9E713DB4196D0F9CA80CB8B098A75E DACF74F022FB9B6389AC9D9795218D088654DBE92A5280FE0C38D82CD234DA3E FCFFB95D976F46227BAA4DE5522428D0DDB0FA32E9EB877FB42A158899377F12 CCBAD10A40608B26FBB4835DB0FB83D9065CF3B4EFFD46B90A1E4A4E78803359 FBDC8F871FD39362A2D3BAD99ED716461F65F88ACFB051799F1387336D87EB9B 7C4B690378BE034C5BD6F51DE42624C3ED11DE357698242E7F234C2774720BFD 44B2517EF118B1B63295F2D74A4E73C9F1148F5E5E48C548607118CA27EF7EFB 250C679487D512FD1BBDD0B2476994352ACF816B870F6340E20C5F2A1CF23AB6 28AEEFB6228BA6A1F9F9933E1448BD0BC0E3292F3D6127EA3F824497E90C2CFB C0EA7A1882E001D830F2E69C8946D28B6C94FF946BE010E0086BB327618A5A3A 9037E0C68F47B9FB9BD9FAB35E32CB0B8F564CE7880415173D28ACCFD8C83964 68488FB514F8CDD8AA979E7A7B9AB35089EA7B502A8DB0D03298EE1E102CA6D1 0D9D2A295A69D9CC17562613723AC08A0F5572DE566EF749B59800EE511EAF51 126F57B2DD430866BF82BD5E8F83EDFBAE855839B8D506DEAB6B80F791D84A9D 8009CBC68C599E3B63A9B309449F57BF2789A8E30E688EC10E321E11983754D1 FA9E4AFD8B63D1E3B1A91888639EB6B75B39E6F524136B84D9FA5256B5E74124 F75F8E2D01EFE667F5169A95CC6383555A3994685C838223BD838F0C035F7B99 A6677E4C0C7231FCB329955DB0C976F216B4962EA6AACE8116A12ED391901E19 DF81E03DA85D2FB94DE7DC7DE69D532EAAF71B58A8F6A482F0579C070F5D89BD 15917CB986FDDA47DBF4FAD4C4EF0368AEBAF81719D87EF87E8C19229AC794E7 66A23AFBB78FDBB0DD4745596766B4C242DCB30C3CFF9C6914943A700B0032EA 2D03009FD7010615422425733ED9B37463CEC7AB8D36FC36CDF33B8324E45AB3 FA81AD247860DDE22C900FE3EF871B5BD10F151E0DA93828E1DFE519B4A52604 1DAE83222B213E8A2DEE634EC1260749917331545D76775545D07065FA6B9E0D 9BB15988B6 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMTI12 %!PS-AdobeFont-1.1: CMTI12 1.0 %%CreationDate: 1991 Aug 18 21:06:53 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.0) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMTI12) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle -14.04 def /isFixedPitch false def end readonly def /FontName /CMTI12 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 12 /fi put dup 13 /fl put dup 33 /exclam put dup 40 /parenleft put dup 41 /parenright put dup 42 /asterisk put dup 44 /comma put dup 45 /hyphen put dup 46 /period put dup 48 /zero put dup 49 /one put dup 50 /two put dup 52 /four put dup 55 /seven put dup 58 /colon put dup 59 /semicolon put dup 65 /A put dup 67 /C put dup 68 /D put dup 69 /E put dup 70 /F put dup 71 /G put dup 72 /H put dup 73 /I put dup 75 /K put dup 76 /L put dup 77 /M put dup 78 /N put dup 79 /O put dup 80 /P put dup 83 /S put dup 84 /T put dup 85 /U put dup 87 /W put dup 89 /Y put dup 97 /a put dup 98 /b put dup 99 /c put dup 100 /d put dup 101 /e put dup 102 /f put dup 103 /g put dup 104 /h put dup 105 /i put dup 106 /j put dup 107 /k put dup 108 /l put dup 109 /m put dup 110 /n put dup 111 /o put dup 112 /p put dup 113 /q put dup 114 /r put dup 115 /s put dup 116 /t put dup 117 /u put dup 118 /v put dup 119 /w put dup 120 /x put dup 121 /y put dup 122 /z put readonly def /FontBBox{-36 -251 1103 750}readonly def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA0529731C99A784CCBE85B4993B2EEBDE 3B12D472B7CF54651EF21185116A69AB1096ED4BAD2F646635E019B6417CC77B 532F85D811C70D1429A19A5307EF63EB5C5E02C89FC6C20F6D9D89E7D91FE470 B72BEFDA23F5DF76BE05AF4CE93137A219ED8A04A9D7D6FDF37E6B7FCDE0D90B 986423E5960A5D9FBB4C956556E8DF90CBFAEC476FA36FD9A5C8175C9AF513FE D919C2DDD26BDC0D99398B9F4D03D6A8F05B47AF95EF28A9C561DBDC98C47CF5 525003F3DBE5BF07B2E83E66B7F97DDD7CE0EEB75A78BD9227BF359D002B6ADB 8AC57A33FED4EF021A7085B1E2B933DE602F0FF71467ECD501744AE338AF29A0 26F7D368AC6F25CCB882DB7B7343566192BD687E1349225982823027D3B66703 3B0DB7A7E680A682B98023D39C7FAE81A5D5B867A0A66C8AA0DBC83B1596A84F 0436AC6A7900B767BDCCE0060A4811003C79FDCC71D73F7F2D0A6675E93AD21A 56B4CD8EF75EED3DE8C0A18BEBF7B9D1BE72504872D56EDB272F1E97FC726CB6 68C85C713059DA19F6C2E0F3E12710A59B6FC4699AE883DE8C8615B7292AC25C D5714B6CFB14EF0EF11EB13009BEBA4F345A5D3D6D9926ABC2BAD7DB1328651E 437BFB3C46DA7B62219660FC368CF3D3704DAD3AB461C28F711665BF484BF61C 052093D231CA65618EA463D63E406ECE858D180A6C0589B2FEDC321371C28E77 DE974D655DF5FF7D41ED01FE717D928A885F6FA6CFE4D2C0807F8E7F937916E0 96EDD1A3BA67802B1F4A49100E75613BA0356D9DCBBAD4DAB3C59E70A47058F5 2163D1730F0EE4D1F87C3A4AE723A23CFD7986FC4FBD399347E9F5946354E013 D860FC446AFF0B0744F5DA27CC777C96ADB388D1E835DDCBE123FB517679B9B7 EF696E091A9D51510BE264701A41C04FA8125A48F306ACA7A83E35D5BA0C296A BC594ECA2CB27E92FED95B595C21E5BF0DA724D40761CB377BDE5FB98C9D152D 6C0DC98C4083E9656321BFC445CD6FCC142DEF16E27DD6FAD0B3185223B1A7D6 779F39C70793184F2C3B721FD0AE6D8E063BD47804785DAEA74AF8C75483B713 650616573EBA830043AE39F41E5791612F2DA17EDC7C364989EF08ACC36137C2 745997798828AC5AE59896AFCDBB09F7A5A74237F45FB44E50E8AC2CB1ED6285 169C75DD5195354B0416CE3F9BBC91FDF5E40A377339EBFF3F7564FD93D34F60 574A9E8DEFF221822BFA33AA97D5C424664D33E906305B58C35F1CE6793A8A3E 33E6C75E9A646838CAB02F74D55C235DCC776288F0C1B0CD2D6271A6858AD1B0 77EDA3F44CE3E6E028E574DF13799A4A20FB6210620E0E1D9047FC185B93B680 FF965F42B4F55ED6104B9A3FADA67418F13E0C59A42EC3A4D4E35AB82698C7E8 734775C9B7BB5D396EAAC7AA5C0252E26797CA52483638C2AA7C93502BAD5BCF 05B362E66FF66E565770F7764994D7FB20505FC04CBF68000D797A55DDBFCF1E 1C8621A05A70A8758638FEA04D3787F0AE03F81BFF825139FF5D34E4D03F6FB8 E3B21386B003D3E8F4F7F35D708392AC08AE1BB1921BA66BDBCF431184487B88 BC0DDBBA34A794514059D4E73B86A51CDF4B124123CE15F35A3576AA4E918358 8EC82A8870A9AF0BF12BD2AFE861B0FF67F26AF3560498A394705B0BB2EB619E E8D0B11FE1C18C1606BB93B57A10C0542090845553DCE616FBA50F150619B40E D5008841E1843B3B752BC75946C99B799436DCF546F20FDCC4A92D9755259A9D 7E543291332523AC94CD5327992D28C37BFF3FC7E9B6B764BCF8A83B4A15E2DF 798069197077D93B630C91BE0C62E2278E6469E4F570B1E05A0146FCB4B7BEE4 2734BD018DB8F3E5533D2073932CB2BFC2DB523841E5EC27306B7114ADD042B2 29C71DC3983CCF54D8CFE793F13BEE98F47A268286292F664074732BC847AD4B EDD56631E77FDE6E930836238A03986902D7682BCEE17157699284D0009840D6 C18E0716396409F39591BB9B6121DE59C041956D2C132F6D7EF7F6C6424AAB2C 43705BB044562147B55F649BA123C1C214759FE42C98B1DFA698C4C28D0FB11C 9E3AB539E47B83FC5683D14E204C729F619B4B0D983E791F1FE9B8C18A50A355 08E1449047131D486A7DA3653B684570788A096DEA3702E8E53F9FE647FBB96F 4F1BAB6188DDD8DE6605DCC1B0BEDE38A945B9F8E65B12F55A396F43DBC8E733 13DD2C462EAED0791155EA9E8186145ED0FBD9F59D0C40E29B6407EED7D94A87 4AAD2BF3508C04762C2F98A842432B6E62076F34A099CBB9697E8F0940532B76 F96454943D553F9EC2E2B4D3CBEAF9CD2563E7120D8CD2F656B7F29E808DB17D 3F967972D8D7B5C1A35CB275AB4CEB88D49BC16BC3382822B5BA931622D71DA5 D754A09479D6F4F04D9B66D74FE673C4EE3310F1BC42CCFC05FFD5844B30A0FC 167EFE38B5E918138C3E814FE3859BAC78A8C62B710B70B636DD9238C19C2DFA FF72C664BA542538F7BAC5EF026FBA9996EBD9F9B497DD1AF2D10D8BD82D1B95 A0347D5EED10E4961886A245C98E71CA5745D63ED2F50632E8D0A22E79154386 BA9A3B6248FE33F9547F008EE51BACB8C55D409DA22A8ACA4F5B4436317E32B2 F482831BFE4CD63FB7712486D91E72930715BB55F22E330DADF806D922A7E7EB FEFC2FBD57D3AA304F0B6A3698D2B3EC1FF70578A6F88FC480522BE5478962B4 B7E0B4D60281F0AA9D4A740DEE0081CB347CC30D4F8532E5F364376E64EBB029 5835E16F8BA55A754EBB5A4C4F077575A0138C02B3FA12CA4B3A9221383A0924 23F2A5511A6517DD4B966F0FC98EA73924FAB744C7E028347DEE6CA10D9E0783 D866D2B7D18EB8EA5A039721B2CC99CA85E821247B27B69A47281BC2334C562D C1531CAFF03F4E33FE73A8F9BB35C047C740F32F5BCC22D60D5784BC5F2008AC 8C9166FC7E107EF1C33E6C6F698923817A9AA0BB748764D74A7D8154D1DD7122 822FB5B4EBBF8CA80FDB13C383586EA6A34977BE81D00E333FD391BA5E7D1096 BD10390052926D8390C19D8955E966D699164DF9A11168A3097FB03C2244A9A3 6ADBCA23FC37B2E0EE112712FF7B5848969D36C29C81515EAC6286F8DCFE5A25 A65C7E5E91EA7BE142D914C9BA48960C7A559133E97C78A2172C0AE1CD9FEA3C 3E909EA7C722FCAD0894C692303677D3F658059220F98F6D45FD3FC877FAEF5C F4F88E297D7D2A1E131709AD2EC2C493B7DAFF8593F738D1264379840C9F8F16 376BD777BB8C83EA9AC6D9C0C5CA1B8601408671E89AC38BC924DC05379DEA4B 1C37D200331A010343AF7A0879E99919E7B1B87ADC071C95900CB2EE1A516C4A 35ECAC4C176E8D13DF23079297C3C66E2E1EE686E32F0B5F98B12E42B024B052 A334F90657A25877F8F337D6CB4CD718A4D5AF397DE378AEFF46571266AC5FFA ABCEB9BF0BC9FE335BA6A658CED239D48B32E47E1A799FE80031EB60E408068F 76D06CC1F33906AF67F0A690CC647C487792CC4F9339C9FAB42845C0C97B09E6 C736C63E078EC0B7A933A6933EF01095F6032F49DF68A7C3EF0579D821AEB42B B907765F5CD1337E52859154BB633A53D85CF40D2C230E18773A3C72A36C3D52 0A30E1CAC04A90C0F2C3353074C0DE340DE2BF9B548D4A7CF6F37948C823FEFF BFF9B35D5DCF35D77EF3C85F627858B82F1759DAD1F05B50D34F1A450F1ADA47 607BF81839E47FCB7C5690454AD4A7BAD0A7905E500FF4E80C507D63DB5A9222 78AE204AD233287BC6906812EA3D220ACB6C0A9021BA802D4B14FD718EF0D760 4E198464E666D06560908003D8720C3F41ADB785A51F23E84A10D572CBA0F6C5 4DCBF3EEEB09FC521572FBB59211E84121D6C7BAA95505C26202659A201FAD4F 55BD2B1569809D032427D4FC875A91AB979B130922F3202882888DD1170D4F88 5B67E3F6EFDD83292727ECE9E8630F1845031962ABC2859E2546BF90796F3E32 51C7FF17AFA21B56650DFC39D68EC98507A873B06269827DCF7997924C7E2AAB EA67C333E2C89A60A1D1C82122330CCE8B754551EE9BC9377A8C41A4DB03ACD8 AB11AC3FC709A68C2524C2ACEC71D368B9C594B7DC963D6A6EFB96675CF44BAE 058E596DC54E8244D47690EB102A80D8FC2685B02B9C8459DFE070EB807C4608 5D8C213816DB750FD7391F6F9F2CBC36B4DCC818997EE8CABFE053FF486A398C 1ACE8EDC4D8834135C00EB993AD004908D77BD6797F0CBD6E8D681434A216C29 AA8230A39DD0A2931C67C0032B9323629E9D83DE602EA28B70A75C7D9603F911 8B9625961F2DFCB88A1C2F8DD55A2DB09BAFEF61824CECA3961C3C22EA897934 122F5B4529C576A3BC3590B3B14022A60683B45B3911D3C7171ED10F9439FC9E 0EB023D7FE2B3A0508694272212D80E2FBC96650A7CF60D0D7BC8BD1C92F7B7A B30FBEB7FDFD6FC5C8D8B6A69DAFFA6467A5D5070A9F050663CD6379091FFE46 3DC57D8F1E19914322813EB98CF9DA924C3EC1924A4710EF520EBDD1A8ABF5AF 3D457925F977EB131364CBFA734067839902DB94EC9DB45BD407B07B38B713D0 6E87029C2C906E420F1696D00D42729B814EDF5A2E6A5DF15C445807B953DA43 3AE635728E9DA408A00AAC60C6B8990BA6552989793DB7FB4EF9B35A72BF2949 377D414437646A432032BA1A29561069F7D4818C555C4AE2E6CD094251CD00F2 F0A6ED7652560FE909F41251B0AE91EBB1D502BE9CF013EA168F599E1A3A01C9 5857861B181F129A6494BD62BC5F1939E7F87FCE1939AC27E87573EBF17755B4 7D83D0626299989B47BFD223967AC82C78C5C636A6026E840F58152C05198296 2A9664B37E874FE57CBB44F11F217CE8C68F508BDB2BC4EFC0DC01DD0B327FDF 27529F12710D5A9479B25E0763B663D6B432A78971D864BA5A9857669ECA63FB 1E3D6F66EE02B202C538302FE8B799BE92FC27F9510A8C48C67C97032B8EB4D4 E764C282D55CCA597D5FD6E4EB10AB9B9F819ACC163D817ED379B6B9C2985EED 6D3509D1594033CCAEDBD63409063C43332DF0D8A0452DD18C1A42B6651168E1 815F4F7683E6C9C2ABB590FB715F24199C428B29354DFB9C5EE000A023E16F70 2B30FFF27AA30F7CAE2911FA8439F06BA00027D00E08979F740AAAF76AB37759 91A42771B7F9E3A545F028A0049590EC78ABF1E854D52940C3E1BC3D2AA6C709 A58C6EA8AD5AA32A2383F5E5A780DD1DD91DF655078D5822318F9ECB4DA4CC6B 227DDB9B3096AB2A4AFECB3A3123C0BE80DA80B217E4B66183B005694EDB2BE2 011163BF225357A23A40AE60E4285BC37B5945878BFA7F6D9700C8ACE8809D57 616370E542C6715F8EAA2E6FA419174F878DAF15E4A25F161C134FA265140241 DDB455AE157C98169D4A5262B447007A4AEC2713EB82A1F37A3A31ACAF413FBA 0372685339BD903B0CF60A206C97B355459739D421761ABAD29D26B28A346A87 A3F2313D348283F81B2467DEF7E58A219A89528AAAA506335B666DEF93A5BAC0 C37839A16C6CD96EF1964074B401E7B64C061C0C569CC74C0590104878711289 9DE1408E0BC6C140CFFB195806D1AE9A809FBFA4C27A9B5AB8A2C37B45E24D63 D956AF94DA06C0D1014F239A09E5C3BD9400C16EF7ACAE1EFBB5BA4A7B11B447 E9327D658214D30D2C84217DBAD3A9565B77D06D4798E72421C813D7BA46D480 B9F3B728FBD4251589A9143FD187355A0CDF1DDA49A567DA50D482CF7FD2DB22 598C86957A2C1F1E88959B23A18AAE4A70DB4C0D388134F8C5A41F4101559D29 4907D3DF98FC9001F963B0B859D528DD6191DF8B073AC0294AE8B3AA644461F7 21805DB94E35FB3C63069BC923D6C18CAA63F7A900E29CFFF6E3E6DF6E58773E 74037D8F0715F7D9A4403FC4531ED2687B6C7AF5DF4E1DA1E98B66363CC57CD8 4B2295742E866D2C1C6F74448F05EE9DA200303AAF361A86F248613A6AE235AC 5274B10CFCA30A6FF5C65D910D098DDE0308D70C0E0354126B9079506B6E7EC0 C4B03110B590D20DBDF41E3FCB1305636ED766C5E4BC8C1288AD01CBE14A5039 567BE915E87A655B8CBBFCDFE02652EF22401CD978C876F3C7227AF42AAC399D 8384F53707EB9A4515BA3FFB41CA424B276AA8DA342094834C4306E1991C5A4F F13570B8BE36BC510E1E25BE91F2BD74F187185A4A183666E15A074989B61987 7C4698E7BBD35AC6BF244EBB5C058699BDE2E03BB1B162C0BEB55C99C2FE4022 31E45547F410E00FB9AFD9CD07A724087507F767A9D5810923F25114687FEE60 F3A45195FC3357D3E478C15D4BF1C8E329B1D26DE8A8C7C6B35B3876081B777D E326420156024D1178CFB4C6425281AF5CB3E0B7E29B6AF390E29006D0027686 C3263D2E885687346C9DC9F2395AEFF1F67F30BA593922260EC0D95BE11A0E87 DB5BE6F28A015EB8B7AC9699C5C95902F41E1BA4FB61788141F2474045E7B658 1385DB0A40AB9D56295D6AC9F035DBEAFABA09B76D59112ED5CC7F1D07ED0D65 B326BD0570C2E0A1733785EC6CC05BB1719AB9690AB3017E7AFE11627A686BA5 5B99710D426234655A37015700D6D657025D55D04FA226059D11B99879E1DA8F F43DDFC6FD4900CBE0E9E3E6B5A01AA22E46CFBA788F61DB836A9DF01485920B 2AAFE42C2342D07C3B4700861B4EBDE938F6E068430B48B80C202F6DEDD62059 4B29ABCBF6E268A5FB851552CCD433523887035C5DBA9FBCC2B3BD457B28FDAA 1ADEFD6D4F42D82588BBDCFE89B86BB2A6154507C69D98A6D03682CE29B56981 31ED33A4AD75A7CCD2D9F0DFB399316B707D93207A7234A38471197768E79479 E8A3F321D8C169810A0B12EF6B392E75D864CF7E97E7CEDB6E3D78876324A10E 8AC58A073C6212CE7C5FCDA4B8D3A7E9B6BAE25647A352DD5289F98C4ACC7D05 6D26F595A24B26CF66D35E9D90041CB46AB6E6768A135F4DF716CC1F4BCB57AF BA3D1E732E42D3CF069DFA22B81D6344CC27814A363B0BF5488A55780C0C91BE 1D7076CA556D2F0F41F9BF150606277EF12E1B8AFAECDB76DD8F43EF06B68DF8 1E94B17CA141758545C0395D02DC8D4B6B59F97383D4C95B4DF82E4AD32BCA8B 971B2253B200B6297CDDAA2FAA00BF8DD9FF9416FE46A2178083C125B4BBD665 AF4C2CFF1BDD29F71F1DA05665259A308E2B59BB9C5595483A38090E528C0601 2A3EB0984A57F9FF588ACF7A1D6CA87449FC835E71CF3BE4F73C26E6992E3531 9910A00BD5F1F19A02660BE6675E988BB96CCC18871AB553EC88EC7CE21A6765 78E1C40588EAB380DEE6A9D502B2B0C8AFDDB141E8C4E182DF5FE24FE222521B F27474392179DC7ECDDB72C50DF36B1B4867440457F52CC791AE1EC1C5574DCC 1A53FAE9AEFB16718E3CB7EB82B79ACA35190A807422E3EF98A5F1F24B5F2F5F 9EE88141D51A00AAB831A2A777220D02E2AFD966B57F3F0F22833DE09017A73F 0F97D61AF2E2098D44F97279519ACA614612C0D7E3DB9A16FFD0F812A3B0B47B E942DD817FB0C0F668F35D462696C3E11EFAA8B8B9D5C761C321210263F56819 B72883F0C32B9251059F90BF54CD8D358529A28F07955F61F6E5571E59B5627D ADB9A64E05B36FE5E420AA2764DC15130555DA0D72B2DD1F466C70A9296C01C4 847819162B545F44F1B5A12CBFE57A5599FE63E90AF21BE0C67F7C001EEBCA54 03C2CC8A22F0429169D13C2ABC1BC33D89D8E48EB0E80504BB2DF13E976381FF A8433306C81C522A3B5E9CDB75B4422D5ED15D13EFE9BFCBAA0C9A11A3B28BB9 AEDB19EB9BCDDF59F8586537B45261284EF2A504B669996EB8421B325328F59E 1B865B2359B1C7F285F9BD236CAA598E381768EE377CA283B5E626CA1DE7C97A 2638567C85C5CC21A347335F897381F53772D473172B3D143399CFF59E3960C1 0E24CF5C83F465BE7E73CC7DFBFD71CEA8700BEFF214AEE77201EEC48CE291F0 36BAF4FD51108F55C55B422A7692C46D1744912432AFA92A0F65554C45CC4F82 3981EFD52520CDB24C30560C4B23D0111DFEB69E21A3F0567E02471217E0E17C E2FDA0FDD4FFB82C27E2CD2D24E39F520A59410B74D972256D9A23AC42B4E442 51679BDEEA28D3A7312D641473FFCB6EBD176D274FA0892FCE49ACB9F5E40312 819CADAE4BCE1C443B19FF4E9C3BF1B9E12F204C1E0FC1A7CE7C23F8DA592F66 8C61349C2BB6255AA05C469AFCD1114B0435A0D00128BE7702199FFB90ED0C07 EE002A8EF97C8AA7B06F935122FB6725F04296CC4884AD78F46564C98BD9DED0 AEF498BFABCE23720A276A0C58137B0B6464AFE1C438664239B25D5E0242C6FB C456171F45C82933EE2C03EADBCCC5DA2321943DE24F140BE90C147A07F120FF 3D8EA3196FC02E94B45B4D6513B48DB7ABB56C79BE73EF9F437AB5D7E31ED411 F09C97B5D433CF2DE3323366ECAAE1DCB66A9D191B0E798DAE5564A47C89EB6F 5A6A8D6BFFF2C760FE121AE0535CEE52AD83AB58F04924F9CF664F10FDE94DE1 59397CAF744246550C3B0CEB395BD9BC342F5C36991DBA3CE34A5232A47212C7 4DEC4450BF5BC7D2486AAEB545F55AF417C5449CB5523F130C51DE58D2EA574C E5D37B48CCBC2004F703734E73DB56A3D097EE765098C4BDD3B3DAF3A1339E4B ACC82788CE0BEA6D99195DD55C4C932859D5308462DA4F18B3DB6A52C15CAE7B 42D868C7189B5566E0660E65C488ABD8263AC959F97269F7D32866269B67E05C 920FD2DA4B22A84E8F0D4FC8B1083774C33AD3B56EA15CD6F50C6B61BEDBBFEB B6AFBD7C970977DA5253948F04EC74E68800148D9EB83C91171573D63CDC271C 4A7D60358BE8281CCB21F137545F23BFCA335AA72158F93871DD12F47E7C4CCA 8048325915AE030604E0F180FCD4B57F6390604B5C5B5134AC098171A13AB779 5A5D7B46E665A5FA826E315C64B951BFB53E9B6C1E86379FF094A8B785BBA8BB E997152F67623C583ECEC364D462D8503E2013C788B0E4273B73A5AFB113DD71 A8A143CC68B6D5E522F1F06383CCAE820975D66EFB9AE8F15EBEC67F10E79050 14FA9E62ED8BB12F89B303258DAA26990C8883E590093805FA33483B7628F00E 57B389B62DE43FA18A4DD118713FBEEFAEBDB4D6983E2EB0CF60A843A7473B41 D7EE6D814D7E51759FED6BAF3EADBE4D8E305ACEAEFCB8DB1D6537E355A06C75 E22C974ADC50CC57CA39C0501490D6649E34D38541B69EB173DEE70A065064DE 5407C5B479D42C1AF6AA36328B4C4BA6580F668B7A631271A9135B61B7365E96 559B53A07FEA195D95616CA9EBCF3CAFE8A8ECB1EE1BA3D672C3A41593F4FC05 5AB94845EFEC955411390F9AAD3F1E031AAC89C12DF68634FCA4107B48D95E46 9A226EB7AA169D22A4F25E658977033D6E40C3384112D3D7298D86E3E395A07D E73A6D43F8A21D2FCA45A71190CE8CFB0244AC4E0E422F77C6A8D6273241794B 14CD1FE5D57831D5D40255FF8C08957F2D65271539454691AC5B0A558E739664 CBBE21CD5C317395F2EFCA164A530C6674992A339F95E49C10F5D08E20E52B87 B2FD202F7D6C7649F27ACF9F58EFD533396628DFD23760186E8335072C6AD54A 8618AD5BBAA9F4D4DABA77FFA1E5674358262936293C47520F26715B454DCDEE 278F59E4FC428E46B0E4D97FA2597163B85F82467E4DAFA3670370E9ED99D7EF 2B9E8662B5B7F9CC4121DBACD2CA9BEFB56CCC5923CE358D13D3CD620FC45CCC 8F3A2B8695E24A1F0F0DE5A22A2BAC186EF1C228334A19905F4258CE2B7A95D8 B934364D2BE3C7903A2DFC6E36B465C973927AB0F3D946E748BA005A0751BB85 4D6B0A950CF2933FCEFB68B2B80DB4376E1939FFC5031BDAAD759D4A3E368B9E 3892A5006C767549E763B6017554F97BBC6FF618086C52643E9746A6233CC3C6 8D90A57EDC5748B581C20D761EC6BC001859BFD8F5928E57F4E3DD24ECB442CF AB41E7B6F3C2E2E9C8BFF61AE0677C8741BB09CB18EFDF5E6537ACACBF615DD5 44209A526EBAF3294937EEF189CD88722DBBCA20569E617A7964DD3AAAEA928C A8BA56A4788131E39E1889E348704E9A9E7AA4F1FC1B705E19E6610A9EF984EE 0F3684D325051BB7FA6A41F254EA188F36D75875B302399CEFBD355C935C7796 573D56E5BE54C61A115E5613F2755E31597D3895AEF3A39BCFBFFA090FF37E1F B660420C87836AEE1E96BEED187B48E7ABDA6657266804496499300A12B32151 C0362E24AAAE4921647812C3E03B0591ED194370F7EF8887CEAB06AB16270F9F 092B7966EB52A53ECEEA7A73D80E75F29135852DD3D57F777898AE659DD846AB 97FB076B565C6930229BFA5F1882C9F23AFB30F16E2DE247ECD7D5EE7352BD11 E5F2758CB8E6A42EB8917DFE1AA890B2E3501B76D9662CDCF52B711D01F8D948 9FBD17DFF00AB213C7A8879D5A220A07E72F656EDE141E644FDCCFF840228238 72E4836B09022079C93CB26BA154FDE3FAAA085404A3626C65095FF5F9CB74CC C117D560AB218657DDA4904F925ACDAB006ED31E555F4D2682023CD7D3BBE4C6 9216B5F00A8A69EA16FD17FB2D84455EFE9A8FA3B4C71FD99272C2478923A765 F96185B5AE867CD7677F46070E757A21961ED9AB66ECAF9C35FD1E3D178779AF 8CEAE5073B9266A90ACDAAAA83305A0C0AE0059B828FC5D8B28C30C22F9A52AE F3E9CAD2562FF34468E06C1B610AAD2244C2980164B9F41F57CB2D68F65D5A3F 9DBB89517A48621C90A53A5DD2FF03520322B31E296D6677EE3723008EDC0D1B 7A7FC47623856EB6400D407C1186982FD0115B70C3847A52F3D75085DC3DADDF 17C12700763614E07CF613E33FE172109A086BB3F31639D3B81AC3924CDD56BD 0ADE8EF88B1C5D702D647CFFBF5CE61F77B1AC40C90B828A45ED390698B1D454 5D5B4CE7808BC7F0F5B3579FEDD66C2C1405A1EC529A7A5BFF4B60A78AC1598C 086F829561A608B400A6B75C891ED591CF6920CA377D61DB06C9682E54DBF167 78F0931598B0D1F0BAB35E9C9C799032A1510D964A2F0BEA1E40B0190C17C0FC 08A238E51CF1F0F1DDF77A93FDB23587160DF0DFB81C271F4958027D52502C92 8C8C6CB02A3F04C83197DA694738C9CFC697639D9A7BA6691EDA3365968B373C 295B4A5C9B5C50E07CF0A0FB885BA76E2B954339E02ED48E1D74B35A77B39B33 888EFC4BE34C8EF1DE1F633A9AF8B9699B7645FD706DAEBEC429A53815321F00 4DDF34321EA192B4DA49224CCA83BB80BFC6542C0980C8E4A83A11052C6EA249 E6681E361F66D4A7642C245104F94274E49AB68843CC9C8496F5B44AC2368BB7 7B4DFAC4D28BD2FD9DA692B5892A9389E06D038A1CFFF328E91F1D208276CAE8 935EF3241C01C495F2018A49A65D5C0DB38F162CD2A0C1937432EAF482B88E34 4DD3E7622DDAFF22D94C9928D199EC5879D724C4D7B138D44E5E034CDF35B984 317E8FCE844D67D0541824DFBC45452E2819B53287CCC70E1F4DD190AE9C1633 1942E37BA2AFCB139FFB68B7DDD4C581BA9DEC1904016A5998B3CE2469E2873B F67BEF4962C4B01A0151E325006132E66B036C914C9A39CBED266C7296679509 41B8A58D64FA04DC0BC0552380E42F40E22D6A9EF98FE21CAB7FA3E15AABCAC3 AA0F4A6BEF062E29AAE7E1F21BA04093839BC59B9FC90C908D7A5829006731E7 CB4BF2A70344F6606460E4CBC0E48B3014E9D81194BABA85FA5C840A3CE38CCE 50E19F540792A819E0C33FC788E9F7DC209AE939B62CEAF6F9C7EEBCE5EFA9ED 062D0C677BAB2B38F5B23321A688B0B725B9A939F98BC97390598C53EFEEFB00 A45EC009694225A5F20CC73FD09417247AFD2C1C88F84F2A63006DA9095D7CE9 3B2CCD810AEE50EEBEF341CA3B5120717798492F06CDBFC2C3C592CB0269D1C1 8913C1B3724019BC6BB0C2C1874B3479D04E240B2B0493E2C6081698995E7200 45CC69AFAF4CBDF96B9E8BA4042F51E0D5D25D517C58389232FDBA866AECC1B8 D42E3BF755CAF70F5034F2C1EFE2D9C7DCB26AD6302071BEF1D3E6327E53A840 4058DCFD98B771BC60171A1876826C5625FC2ED8FF8FCF90742BFE26C3ECCF41 C16ECB48D0F93967E0AD4A81A17590DD2DC00C615F9C1D18A77D2567F68E017D E943E2C642F17442FB989B32E05375B31E69C96E09F858E458EE2BDCEDA2C49C 16C63058D1AF55485694480995291BCBCA4F226A36252C5CDD236AB66900264D E9C04F8DC161F9B993C220EE763BFE28A8E35D710DC9F8AB8BA9C6691B0001CA 16A39C2502AAB16DC59EC56F1FA38BD5A25C83BE574EB3ED2ECAF6B90F7DBE73 5D187B3158B2C0E380C0858AEE37783A9CE6A9E29F8D48FB2E7FB68B7C7DB217 C476E24A2A663E5FDC93F0AED6C2DA38B0A846B1527E4C8F643D055B0161ECF1 6BEFBC0C9E46DDD11E87B2EF9F163642E2DD8CCF284C2EB98B7E59CFC8B432F2 1EA2D3E36DC1E4AE56148311ECD7C8B0D1015800046E9FE66EA3F0B6CC642F57 C7E3E8B51578DC22E5A9C55095AAC30D59CBA0FF750DD88F7071566DB2C8B29C 7D03D8ECFA9BAB660A36ADF7255940EF90E7A5DBD55E5247BB6D7384A98B640E E360253B0938836CC6D860F9A7CD99EDF3F68D3DFA64C53979672F08B344E49C 418687400AA2FEC2585B1443748185015695CCF58FDC341090E59C1916FAF5A9 EFB3C59339082789C2B413C7FD96E4FA8FAD46D8368E26B29A83F27F822C2ECA 7B375602FF449B8290E6EC1D26E77DB08D21D8E6D338E558A8B14CFE405C6748 BC0DF689D164C592937BA0186AB00E2B71C00F861893A3B3B81E8274A63A9404 7F2649EACA202644B7C877365180D463F6E340C7D0060064AF7FE5F5B36CA2CE C4830836B1AB33A89D1A56EBD7EE830A6603ABA7B2F43E6A6320266DA7493D3E 97F32337E7B305B95031DE24ABCE1B679F78B8692C861B08E6669641C383E1D8 05E2B3C6A3A91EAB8487D6E45A9C32662EEF50996C93E9B85DB96D2AD6D18774 9DE3C0257A42FB48BF20F143FFF98687FBCB3487FBC5408248AABFD48D120FCA 243331D59884B9445CE2020989A2438A9C33D47F5D749BCAE4788605366B7168 69F7EF08D28F9A225CBE918076ED755F2CC004C1C5EA9E0C8FE4E3CF40C78758 97D1EEEA17DA0BD20A163AFEB3A1126794DBEA68CBACBA93EF9C9D95CA2743ED 856A4D7AE4DCC7CE247B94BBC849A3F200388804DF3B9FCBBC4F4D9A96BECA39 56FECA51A822AC14E9C50DFBBB77FAB896F693999EF2638F232CF6FF0BC305BE F0F7D230CB1EEC4370F36A6D20B3C83AE01761AFA164B5AFE7B9B9D3D02D72DA 12BA0A07F6AEDA2B428CD878F454F951B2EFC10024981D84AA03CA09B4AE7172 AC4EDD7BF448BEDC6386B040FA0F87E583BEA91B7FD3B38934513297C44E188D 931CD620B2F1352E5E5B0E3644A6681609714752823BCF21035102331376D005 B48C00EB3EE88632641A20E39352B44282FEFE480211F1C88D413C0489C8FA7C A1BDC8F78C4C79F05DBCE794E89A25854D5B97446144E22DEFB14F4E41879A5C D7A0FED7E0FBB6F9CF1B3DFCBB46CA7A8A754E08AF2F7CDFBEF06F6333002A6E 1AABEA65ECED1326600CCB38AB208E20034F377A91AEB45215922B875F9E9B44 618F4A1032CBF9D31E97FB8ABFA242BB6F8D2251633AEC5CDB1C9C4FD56673F9 98FEDB8CF4CAA27B10A1F326777806A6525A7F81D70202DEC7C7E6EE72E7E3DB 4A3593D51475135E2651D90FBDD2582E9367D4CCB4DE4E0ACAD7823131A19F78 7FD1B67DC105B06431F9533C38CB736974F0069718404899FB143EEE9AA6942B D9381F0454309604C9B6597C3A122E8EB13BF190CEA25022B09835DF3149DFC8 3008B68AEB1250C1887A5497BFBA81731F18969D2604230B5DB8E2E059E31564 EF5D326885555CB8F86B48A4FF8E4EC012787C128E6B7BF05206BEA921382B37 2CA1D1A1C046C98DB7552A0D43BF28592AAE97ADC43EF6FDCADFBEB48E6684A7 7EEDDA800B5A3A8106D382C329357E7893796E624CBB1C6FC8CD2DAB40442226 086542E9F2E9165DA12047A8836C31F03BD041C423D1F4F321A612479050E471 949A75187E199DCDD86D409912E483DBCC0A26729CBA2BD75824E3802B5B79BF 15356F2F45BD71920B33057AA50E8198E8C984B2A4EB3A30384807610E7EFAFE 197F1AD92460317348F517C4B4358C6B2F4A5E166329D40110AFA38C11680FCC E4E72A0202B6FD9E7DBB313B1AA4D3DD73F7AC7529A8693D275A8F1FA2C4CC36 CDAC43670B9468EE41E2F52E6A5C640CFEB5F4723A9CF2E442D5CD0B58353474 B93313EB92A53E0ED7C113413D3C58F84EE17C951F55583302A0DF3D949A9E5E E38FD4F47BA09C7B30E4AFE422F6DAB55B87724254A0A4CC8B82B3B8A426FC02 812EFE940AFEE110E1DCFDFC8CC8459F490EC50290A023A2E636E1DB1478A8B7 2B97267818E410201A6FFD7CFE15B694B557E73DC09550B73EBB90B3A156333B DC83F416ADED52538BAF2803A7F0E92E708E0BE6F54F669BFAF689D61F189BBF BD60A41DFBF1EFAA9BD68680B1F906FBB3BFAE39AD571300E0E13BB96801C500 A48F2E0B89631D37DBE9C6E09A66567673358A7FF081275B8186208797BCD805 DACD5338234148C4E3C04A1DF7D4DD1B6CB7E1FF7635FCF149A78C5310C5C40A 2012614E88D8447CE9A28258696A60AA7905B325C5435075EBD7C525875A7732 DCB0BA1F89CC99CCAEF6F5E65876BCE687491F39D84C075477FEEA5893617EAD CED48ED918B00A26125F3C9C57B21D96CFA3488B7EB910D32BC753BD60623B2D 62020F5DC623E6AB6C64658CBDD70BD0A621BD437268B592FC192E8B3CB17484 3C7AD7A7612BCD08120B53D6261D4572144D2EB3281DFAD38E022EECAAF9F384 E42CB529C0585A7AAB78443056B87DBDEC10B2371B85F83898533D4E7C6BB814 270D7E9562545AE3CB85C60D1B65E3130181D0FB371376460AAAFCD731DB11FE 2EF692F89BDB5F2A0922669E963A28864204669D6AD0C7C7DECCE31DE742E5D3 64A0BD7A0DDF37B8F1BD1AC251059CA0C3E649C9CCCAE3B9094FDE04EF7DBE54 30070B8B3E592E0C0BAD190E8DED345279F5D083C3196EC47154B6C087A2DBCC 6F3473C846E60B091F8D3F6D83795DE9C6FC91A0DA54B29894EBE42528968A7B D2AD457642AE83416C0A537EAC624FDB778E35868913F49FF3BFA352925AEF76 8A5E01B802A38D511FBEE4305A69622BBBEE06A8646FC523E83C45D17D35BFD4 C0475572D5D7317858D0A9C059B7883A08CA275F6BEDDF86087CBCBDACFE09D2 A9A68018DBF040A56C49EF5C6575823D39E1D24EFE9019765190E5CE76713304 011FF19C70E095698BF0ABA099467B7AD5A5237D684618E6C374026EB8171A83 D1A16391A8736AFB3F3B1CA68FCA308A16B6B479713DE9D00A2CDB8E76BF60AA C9F486D354E87C100763DDE76D1D654A2485900E9D27E3234FCD1A11CEB59C13 619FA3239707E8D48DFB777A4530D49DEC2FADFE1FDB8BD0AF05FE7339A55312 5909E0310D6BF7BC15F7E09B64360CF2BAE21E3507E8F19E56593B7401415E85 3E4DB412B1D624161B3F64C7ED532D0AEBF1D5178D57BDAE153507E7C41AB924 E6E53DBC99F00FEDAE9F91277125AB051721D28F325003EFBFCD2BB5142BF8A8 A3444AA4D4A56D85CFA66CA613D4CF090A28FDC244DE0E475274AF42367DD135 D718A98602EE95F7CBF8076D65A865865AA6022AA0BE1D7AEB74484F799EEDCF E47D04AA068B355321EB93E31483964B30D8DB10C93026D498DFD96234C321F4 F6175899CA555D2875F5950CE971950DDF16B022891D8304EB820DD731EE4805 1CEB230CF33AB2EBFC859A9481A3F41643153F9003B94EF81D87FF08676D653F ADE5877F4071369542EB3A8418CAACA87196255CF991C67AF381846DD6D895A8 ECC1DB476CCED788F3EB11AC6B983A7569D834120B3DE9D628F3DBACFDBE5F54 DA3A187E783E8729B05C112EF9302844DC8CAFBE7578F5590BF3F6CA10C8575E 497B9E364426F1C0F9CB858F4AD704F5E714CCD076922481E803F0A0BBB0AEC8 578B11D77496313F1AEECD29BF3F6BF66466EFB218F80B9D66F6038BD220498D DD4EBD0827BDDAEBFDADF8A1A131F08F301DD293DCF133F667ADDB64A5464DA2 E3E3B72F87799D780636CC634554E6A7131E3FFB9E175BEF4579C3D8491BE4D1 F14231FFA5778C7F917EEAF53D5F43847EE44E302AAE13109BEEFF5C69C7CE56 A49E77DD67F9FCE7D263D6F85F3FCAC9B3B8D88389944662EB3F1EDB7266E9DB 1D1C8A2FF0F218DC39624B037CC935AFFC2CEC85EF2A6DB8FD7AF2DBCBA702A7 A9C0E6B754CB3319A60D49A3B301C5AF5759C68E5CBAA425D6C6E3F4DD65AF01 46E6A6AAD44C454AA94C9629620EA4DF5B7E688936E751C39109AAAD716BD9CF 9DAEA2668C83D6AD66155194A5BC9EBDE5D8C000C6AD59A8E54B8CE1F66425FD 3BCB57EA5AB360032A03667FBB88EA4CA7AD76C3371C04ACC023A70421C3468B 496A6BD5836E16515C304818D462B8FAF08E263AA149F016626E52A7B2F4DFEC 2BFF2D584893D4E728F8810822CA21F05DE6E4E9BC1F19AF48BFAD3D59B95979 3CA19DF9283CAC859449D27D9A2BE7014E872E6D244109EAB54B08C975E01251 A88018768EC62597FA5B7A28821C8D03243C9DC39ABCAC5EB07701A31B1BC0D0 1CE23F37D6708BA178FCE5893E3AF121144C4558F18E659816C35FBC4139B246 9E8FE50C139C4AEBD5FB607B20213BF0EF7E737674218B4674313AA33FF7B4F8 20C7DDEBEA9A5A7F8F060021C5BE6AC7365382F5779C1D424FD01ABB1B604FF2 8F00649DE171D2042ECCB5F90DC852E4983DDEE3234CE887ADA53EA1E1977E36 04A5FC8938EEBCBF012CEA2E70F78DD2C6F33374D396BF5C84A9E0D6108A763B 4D56447A32D65DA11116ADA31656F293B51627F283C329EE0E9ED6E57AEFAD2E FFEBE1FBE5A97C91D50EC44E63886EA78FDE1A941B5D3C6C1BCE794CE2A8DD36 040A314894F99B79BCCC0A6218292E03D94C0E3A39031F1CEBEB3B5D81878518 DFC36346F8F774DE7A8F201E98436336465F37E1EF06B4EEF12C4AB9E8784901 53EA833B028F4EFA4E9806CF04B95A8CAA2573129262E60DCE22A16B1C9E6888 1215DD30063A16C530E72DD28829E6323337850C4CE314B22A60AAC5A7DBC6CC 117BFF7452AF93F65D2A1109233A8C676C7E3A005BCE4DB019B6D05801D3D8B0 DAFE2C64B33611BC090C9ADC13504532FDE9B347384ACC61AC90514B9FAD1FFD 94891F8C70FB90336D2E39053FA0073F498C9CCA2918ABC895222C3D57C73C79 844CFFE606683E8F85865D86DB3E4B9B98DABB64C6FA8A7D4CB2ED6BC306C14B F8589B6706D0138AAC50C7E71484A6D64E2DD1283C5772D57754ADA4001009B0 6DD9D34775B850AD2D3F3A9131CA99E34C35AD914F192FF0F91F9C0B60BAC0D3 3C07CDCD93F9ECBBAA8DA07C3DBA9A32F882D6E2F7BC1834B273D6D2E8F7E1F7 B473FC0CD57D6E3F98FACCCE2C70F50DB522D794D2289BB6233E5A9C539DF70C 14BAC7C2F030D917E412350D987A667C03C742B2C4A49940ED06E8538C9FB791 00CD95864398E02F50CD5EB6A77FE33B368297C3EF85E1FFAEDBFCE657EA8B4F 9F12FE33016B943893AAA8B78A585EE6ED0DDA33D13BC9011321B87EF7ED9B19 0624F3FB1729DF856381683539076FA22EA3CE07883E24E4511F9EEFBA9CD16D AE7E45784403B7C6934B4B335D36E4035C2CD48F20E7845782D8FAF176EEFA9A 7FC23A9E630B551D3277A8BCA47001450C31D8F64D41CABD2774CB44548C7B08 ADCFCE89B7 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMBX12 %!PS-AdobeFont-1.1: CMBX12 1.0 %%CreationDate: 1991 Aug 20 16:34:54 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.0) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMBX12) readonly def /FamilyName (Computer Modern) readonly def /Weight (Bold) readonly def /ItalicAngle 0 def /isFixedPitch false def end readonly def /FontName /CMBX12 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 1 /Delta put dup 12 /fi put dup 40 /parenleft put dup 41 /parenright put dup 45 /hyphen put dup 46 /period put dup 48 /zero put dup 49 /one put dup 50 /two put dup 51 /three put dup 58 /colon put dup 63 /question put dup 65 /A put dup 66 /B put dup 67 /C put dup 68 /D put dup 69 /E put dup 70 /F put dup 71 /G put dup 72 /H put dup 73 /I put dup 75 /K put dup 76 /L put dup 77 /M put dup 78 /N put dup 79 /O put dup 80 /P put dup 81 /Q put dup 82 /R put dup 83 /S put dup 84 /T put dup 85 /U put dup 86 /V put dup 87 /W put dup 89 /Y put dup 97 /a put dup 98 /b put dup 99 /c put dup 100 /d put dup 101 /e put dup 102 /f put dup 103 /g put dup 104 /h put dup 105 /i put dup 106 /j put dup 107 /k put dup 108 /l put dup 109 /m put dup 110 /n put dup 111 /o put dup 112 /p put dup 113 /q put dup 114 /r put dup 115 /s put dup 116 /t put dup 117 /u put dup 118 /v put dup 119 /w put dup 120 /x put dup 121 /y put dup 122 /z put dup 123 /endash put readonly def /FontBBox{-53 -251 1139 750}readonly def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8 2BDBF16FBC7512FAA308A093FE5F0364CD5660F74BEE96790DE35AFA90CCF712 B1805DA88AE375A04D99598EADFC625BDC1F9C315B6CF28C9BD427F32C745C99 AEBE70DAAED49EA45AF94F081934AA47894A370D698ABABDA4215500B190AF26 7FCFB7DDA2BC68605A4EF61ECCA3D61C684B47FFB5887A3BEDE0B4D30E8EBABF 20980C23312618EB0EAF289B2924FF4A334B85D98FD68545FDADB47F991E7390 B10EE86A46A5AF8866C010225024D5E5862D49DEB5D8ECCB95D94283C50A363D 68A49071445610F03CE3600945118A6BC0B3AA4593104E727261C68C4A47F809 D77E4CF27B3681F6B6F3AC498E45361BF9E01FAF5527F5E3CC790D3084674B3E 26296F3E03321B5C555D2458578A89E72D3166A3C5D740B3ABB127CF420C316D F957873DA04CF0DB25A73574A4DE2E4F2D5D4E8E0B430654CF7F341A1BDB3E26 77C194764EAD58C585F49EF10843FE020F9FDFD9008D660DE50B9BD7A2A87299 BC319E66D781101BB956E30643A19B93C8967E1AE4719F300BFE5866F0D6DA5E C55E171A24D3B707EFA325D47F473764E99BC8B1108D815CF2ACADFA6C4663E8 30855D673CE98AB78F5F829F7FA226AB57F07B3E7D4E7CE30ED3B7EB0D3035C5 148DA8D9FA34483414FDA8E3DC9E6C479E3EEE9A11A0547FC9085FA4631AD19C E936E0598E3197207FA7BB6E55CFD5EF72AEC12D9A9675241C7A71316B2E148D E2A1732B3627109EA446CB320EBBE2E78281CDF0890E2E72B6711335857F1E23 337C75E729701E93D5BEC0630CDC7F4E957233EC09F917E5CA703C7E93841598 0E73843FC6619DE017C8473A6D1B2BE5142DEBA285B98FA1CC5E64D2ADB981E6 472971848451A245DDF6AA3B8225E9AC8E4630B0FF32D679EC27ACAD85C6394E A6F71023B660EE883D8B676837E9EBA4E42BA8F365433A900F1DC3A9F0E88A26 30F2AD56EA22D77BA06F2F0A466830FEF19E341168040640498328F3F8A53368 D3C4F1043305CFCC5A40E458D6F117034A47155BBE430DE4858247E3C786AF80 7EE485769180F4EC80A4DC04C1CB8D1F52443217BBF2EFD8D0AAE2819938B2C9 E301149853340B7AFC005D920C96EA2DC8FAF17D5A1583FE094ED57FE79A5414 598D3C2BD21F99264EC1452FC40346FDD508E1844FDDA201C173FE5BEFB8BB40 4D9AB3498922C781C60A64281E49E7CE074780B397FE26E2F853FB2BA3FC3A0E BE7BAB5C9BBFF99103692913C3DA5B041573E89B1F737522DC0721860703E21F 85EEEF4CCA839F7719B63F77EA6856A7E1287A5425B4CF4B5768527B8FD7B884 94325F006E1EB57A72EEC1AFEE91A0D6E9514419A83010B408F11D6ADBBFD316 6AEDE4605654498DD4299004276CD238378007D8A0635FCC3829539FB79946ED 76DF04272A0083CACC4BF67C58333405B274F62D4261F60458276724FA0808CB 49290B3273B79CEAE37C800B5711AABFA63B3A7D41FF3E82874102FA75DF5FBD 53356FF4039EE717F6FA3F4E41484D46EE67BB0892560A9790DF4F4F1CF028B7 0DC1940FC59D9A2B40C138FCAB36BFD781254AD497CC1A35DFDCF5EE2857F939 43237D86A2872BA39B2E5EB888E5EDCB5E48DEB15852A67F579A0BDDF5B0A805 499F9C582FF24182D0D1E2A04BDF387BF98692F78DBC3511131B98DA32A39845 AAFFFF41F43CC37CDB1B11E7898BCC64DFDD1626D9608CC4BE97608FF70F0056 79E68496C4A3E123D4228E3150E10E0DA09BBE407CFF801A19C485476DD17074 A1E42449863C57C6589269807A6BA0A35E77337E9EF1F93D278B0CAB36F1D236 72D4C6DECD3A3B56A71DF18BB84A081680EBDC3D33C8C27723BCF50C1138F0EF 13BCF24C3A3633C0C3625E2B9F149306A2901DECEC676CF29B7C0463502BA8C3 822CA6AEBCAA0379508D3BCD8C644E43B176A4F5ABD62CA15C005E624595E8D4 792F1322AE942029C5678B64CBCCFE14EA56D469442AE17DCE0C14B6F3CF4095 578DC415B3D5DF274098877824D1EDD6D707B5EF9801E28DD29A9A5A60FE68AF AF9D832EC6776C987CFC4DFCDDDA146CBAA7281292C4C3EA228A406515EA97C1 A6BD0ACEC016F20B2863CCF857DEAD834105BFF7FB16FC26C75A6908AE73F202 7DFCD28ED5BF839B7E6110981CC96AEDA0718A2D6DB48E38581550D0A00BD8E1 600E3A698C86E179151E071B7DC81E1E99EC71668CD77B746CD9A322630AE657 2BC1232601179DAD1725F029C36FBE4C9CB1557C92A6AE20F29212B1E065DE63 AAC9E2E325D733D1E5F24E2BBF72C3D3BBE4D99D0E9FFFE0F284B78022C90800 B54EA9F7FE4015DF8E2C8C376EA4AC976EC842E8723C2169149BE4387BEED2C8 2D30D52B535173A806642D523C8E2F202A23AF53700201DBE1CB0374D5E8263F 807BE908A0D688BA4958961AC5472454A43F18D22BC0AD8B03BF6D3FEC529F9D EE68E2A5DCABAE506BFCA5CEB9C7411DC091F2F7724B476C953DB7FF33EBDD44 BD7FD05868E55CEF304C0936008E9282C32C2CD7DA2330AA9A3D325C631979B9 6651880AB3D48F8015B9593B0D6E8EEAAA5DE70D0DD38515CD8CDBBAA793CFDB AE488EA8D1C0F51E6F305D5B3D861895EB0B95A0225D4280865568CCAC83A15E 808855B19885FC3A562FDF5DA623D98E4908D960107265264E6488CB63C6E417 AE83755985E547F023B65F3601EB0B52625DE25007886A19140E2A417DAC8EF8 47A502E47DC65D06B0D1708663972FE94428246CA69BAC04E4ACEBEB000259A8 791681EABB2BA75831ED09018EA13E05FB867EF1770BD227147378607B9C4D8F 6EE5B866BC82AF9361EDA06B9A27D30EE5521C0E7791BD5AB02299B13F32013E F6640A699588311D96D25A5554F62707904BD36077243E5D17FE08F46CBFB368 7C2F8B1F7D776E8F56E48A17B7D86D2202A139D59BBC26780A8CB37DC8A17BA6 F62F3F51D1CF18D8513811498410534DED8406C996AE4DA3619F4BA7CC70F671 95161672A6C8E601DFC73C74043A64BC3EDD3D626047D9BD637280F5458B60B3 9229F87FB8B9FF9E2C207F0C927F3B58DFE8D89188308CE129DDF3800BEFA4CC E46253C7C6936E61F652E789E3D5B11B03AC8ED0264B4612353A99C054E41B20 AB598B1C0DC21B348E4B09E2CEB0B24D8CFDF7E03D171A92D591B78352FE5C44 B4CBDF5B3ABC81CCF0F5EC727D0F4F35247CA5A8CBB1998EF0370E7AF11A7BAF 308722DEB1FAA9ADF72B49FF739A47330AB2B36021825EA266F7130298B99114 A992E4B7AE34CA064742CDCE8154C75ED537FD1C7909B057114071316B6CFD68 2F340FFD9838F24D991F7D27CD1235C5443562F5F90E3C31AAAAE979FC153D4B 66B655BF03E02D2187160943A5F0B9F7FD7CFF4AE45215C34EA5F0E50D94269B 012CAD2A323C8AD1942CFE05F205AF802C9B11275F9C4C681362D012A38E5D68 E0DA382FC45334033163DFD08CF534B43D5CF6AA0221F81A0504618FE142D2A8 EB4B016BE2B7513B691BF2B5EA3CD718A4625D671DC7F1C24E38FE3B25A62687 70FFF838214D82A75CC325B740FC966CBDD92AF7A9F19390DC0F4657E574F2A7 5CD2A42368FA3FA94829EF58BA5E446EFAF410AEF69B983CE50DEFF0A46A8DEF DF5F2934C6E3791FF955F30F6BC96A6121C34FC2BCA61A1E9E494AB254AD2A2B EAC6225A9A38963489B8CDDD107E71C09AE073E037933485AC70FDB6A6F53288 2C069937103A569948F6420E15AEDF95A84DB76ED5484E709BE5644E78D8D69C 196B22025A34E9BA8DE346A95D72A2F64700CDF86E322D25DFDB1F93DCC0CF10 EFE1CFECD13BCE1F29875E1797D1FB19FD8471F160EB87A4F3CDB1DCE537C3BC 635B3A07E6341500D22FDD5420AB8AAAC5D93962E30C281497317A0E9C5899B3 B6F9C277717B577C6B788288134397E9BCF55C98CB1F39E49FF70911FFF7A7E6 35943A14211B8348DDA2C412477786BEED916652D467BBCE1EB7AA37BD478C96 816083A900FF43E2305024E4FFFC0F2E068EAD0403085B4B15B0E7F1E688A4B5 E768CA5CB923398D1D3DF9F5E3CB2A56CECD0AD0301E64621AB512EE6FB5D549 989AE55E12513E7D2E5D09E39245B2F2BB76714BC509778ECE99AD841AE57B8B 8CCC8FB344D60ACCC76240371EAB46BA7686AA88A16AB794E14125DF20C700CE CE1F5898E9EFD1904E054C2596A6FF3A43736917008E38B4F001151A42C1D683 3019DE772FDDA3A4E73A295D6A6411B1E70F92FEE1F42C8C6C90D774991B1ED7 386A8479886CC6D9BB84E811CD9656BC667135455339F01EDDC3D61F82D6B5D3 866FE941C1967AB53F5C76BBE22FED758DD705CD7AD16BDDF68C23FCDB1EF0F9 89CDDC969FF117B44B2BAB751337E053A89C1547A47EDFD76D0B1AC73C9BA283 CBAC6D66A22416072FEC7A07BE22084B1EE0EA0BFB85AD636AB2C334E52083D0 2BAE9D76CC76A1FE6763FA57653084DAB907A47AB95DB3D744A30980EB50E2DA B084F44F283366E6B13D87FFC7F863508AE7E84CF4B0FE09995E1C603687AE42 77D537B70DD0E17EB6A0397D13CCE8A53D33331B6EAD02A91CF5B5134B05A3AC 3B8CF15B32BD2380445A67B63EA0518191FCA73796FA3C3ED4114C718B3F59CB D2F3F14B8E992436A41CC1A72BC973062C2936C414D4344524AA45A479A45AD7 A542002C155864DE5AB8AB2A86F396CEEFD3F1D745B1DC0DB6CB7FE7756A3933 52FC1B857BB2F3378592949118E5588DF42112E6E0BA8A6500FFAE839DDDBA05 567F74A82E60B670D04BE93C286973F1325D8CE9CDF43C0B1355D02A60FBD370 88DF5A623CAB841B033988D846832F2D1301D9480051FCFE82CFDFACBD706EA1 219D66F1D615FA72066E1BD4FDE0E7F4CA443A23DA0601D7131CE855D662DCBA D23E5FBC97A9F02662D292B59BA7CBBA1CA84E2BE15BFEDD767FBDEA486C631C 4E08EC27FCEBF72A181D8B8AC8D1F4C13C307DE4440E8B1A0A33210A39145C01 064C17F73FA57ED4554CB660AB950D446AE07110EF8582987FAF0224CC90D4A5 7FDD47897624EC8226E0E0F6A7FA9B68D7ED2E2D5E6B39B611E980EDE98D6A1B 01A348062EF401B51BC73C39EDB15B03D0E9C3F6EEBBD5DAA2F26E818C88C93A A0623BEE1B274907FC52AE9126E94972E42421400D487807450E5917BE282360 25C675CBDC171F85304866F9E291EE4BD2755BC2FBC2903D3ACF3408A7E4DA72 076C4E70B01B3DA12314EE5E7DDB3341BA1B06A10D2E2410323E76E58F920B9B FC23D6777CD7DF6479E5A611E76F406594FC3629EC4804F63180C3DE59379676 F16F00FCD724EE641994C2AC8CD92A2EC1184D252C1A29142F9C1DD37CBBB06B 47096B70410E10107FD031DE05713FB85EE5664EE9907478D30CD91E496CD8CC D264732583A1CFEAD5ACD41E1C73ADCB827F0B7B0C2EABBBBFEB398C70092CB1 70E9CF7792813820DC6EB2B09EAF62666AF36C929D59ACB52D97EB69841F3B45 B08F9DE79F6FC6B7776DF450DB6E972B0E4DF56A1FF2B0A5D5B24410C2F88AB9 AF98BD261A1386D556DD1064924728C16F433C061A44EA8F6C6F1C4A0363EF9E DDD23D77E380341DDF819ABD8B17004FA02DA1330313B7DB5D2B53E81F35743D 7C59B67D6DE7B97CEE01F34EE997826A417F099CF43B4D536EB8FA4009456CFF EE5F7B799CD79C1FF91F5157DDCAACD8C8206FDF02AE3F7E39277B7527B45200 695222672CAA5849A0114A0A3558A7B02C7A9D6A6EAC22927AB8B945F1B098FB C7F8357FBF840D6A27CD3CAD777AEF8DF83ED6C63BE9FD9D11069AA7FC7BC0F9 BF613515A8199D2247B5E1CEE8D6CE8806A7508DEE5B7DFFAF81E501E5F49438 0CDC7F5BC363E72A451901B7CEE82CE0349D31A25B6ACDDAF4362603CF2036D2 529245145C53C0C00C1E3FBBAAD129B86F2226A866C4E06A07B0F9B67113F1C8 72FA9C65F739B93D6FDABB3B536CF2CE7626B2902D0428639929C036C7D97A28 9557309B8C3126E9405EDE76E7DEE268C895E444AF0BCA50B51390402C3BC21F B95522A56EED2BB939CB237DA4947495FF672D6ECEF8693690CCC2A0E150B140 BC2109CA0240FFA35F104E47CF2F08C8795B4C0BCCA0F61AFCA329ECC369FE5B A8F53CDDF31A52423835C67E4B0A6A2B5C72CE2A51F5ABE39A509F606D92EDB1 4E58B21F0A46EDCA7924B66E4DF9B870A2A45C250C8481944B30A7F16899A447 5B7895522053E85A28E76E048ECE7D5FF720AB738DFF39F106F5F4A56CA3B6A5 D37F183ABC516843D88DCA97EE1B594C223996C296E545DA891EDA32572E8049 75F1E0A95FAFDC517413BEC47693AE9D8EC1EB9E3BE16363B73797D9F883BB21 A761A36939EFCC87FE85EECEB11241724C3ADA65B6675521C386A0A7030F9914 0F05FDD2EC75727E94B544144662F5CF1B3689AD8B8501E34C57B6769DBC1544 E78596EE02312ECC7DB0F27CDA49C99989305699F17FCC8FE04EA3303E7A6D19 5F40690167567302840FB425F84EBD70E662A2F7DC16B96F7A6B6C2E63DD8ADE 924A44F923F91F9F4D5850010103A273B1E385FC33A72D4FBE4B7F3142AA0F30 0630E4916DB60552D580CBD37277D1C8023594CA9FC1ADF80F4434506DF7D301 9DE68FC331AB298364467BB06C2E52F97F02D8BBF48EBC7EAB75A5509E711A15 0B4AACB4138751C88788C12821924CE6C144D244AA02691AFFAE66A646292B1A 5E0685015E2A39A937035552D7EF0F5CCA963C5950E73672D64FDAF5107365BB 810BB323CC63892996106A11C6236EF01945171904868B08D3461131135DDDDB 8B8B33C33C492AA2A7B8C39B35FB27C736996D776DEDDB527AD0F85F7845C6A6 6DE055573427E18FAFB4D14DBBE4F651B373D53126D676FF21EF7BF6DEB51C93 899BCF888764EEE5F6C540D66F728E304BA2EDAB97189C538FB56A885ADA0C8C 3ACACF976A4D912C68070865EA02A4FFEE19F572F2632D31CEBD06FB32F3E022 CE4A154A871BD5DD148746BCF3EEA1A5320AC93AA36D3A8045F2850F185331D0 D90E5447A28491F1ADC57B680EF4C30F918AA36DB858CF69D98640ABD90E847C 85CA0FF4A5EA95D166FF653DC1FF18D561A3150A79A985310A4CD86A2D6BE6A1 2945B96982E3E6F7540937BFDB19FF7C8B77674CD0AC7E0AD834D47370F6BA50 421AD7BD8481BD583FD26882EF6FFD06CC1CE7F3F2E013C6AADA5E414788EBBC 351912107E2D6E36428A5F8CE157F1789B148881FA04D7CC2E8FA86A2525C450 2A4B21B6EC2AA3F3D9081EA74AE003FE5757FC372E9CC4086F90B1DCB5DA3041 979990E92E03436BCABE6F717B1804447F50A6323C15B9940BE39A6BB25DF36D 1E7CE7708D755B8C298EE719C14E1132DFE5AB416FADE254879250774529BC5B FBF2E5CC5C217EB114B35988A08C6A6D332C9432D793604F1426A985F22AA797 868DD93DE6B103D1085A5604A1B0CCA3B8658C35B728BBAA9F20170FB08DCDF8 393371903AC643BFFA9E221169560E8799E6A9C9EE3D442E33281DC0969ECE65 843557F9403532BB9500A106E62D1125C13349D1F9195C8CE1AA53460CDA4FFC AF277C0346DF7098D8DD3719013CF41A6AB3D704EC3BD87A2CFBFDE87BBBDFAC B6F3B38012E0E3C76C78E10D06B2AF7F92B26A3C600F5DA8A82D1450FA490BDC EB19C187935A4CE7F0097A26E2F183BE45CCE3F558029AFF6F7069AAEB9272DF 0D38106023B01B4FAD4EAC7C0266A5C8A1E3D7566320FAA26781844DC2C038B7 FE28135B19EB0C0AD195F473292F4CBC2212D39327AE5F7EB2AFDCC9322F8CC9 AD147BC8FE5B70777B433875475B6476F07EA0B940F756E3A3B7CACC598DA236 F6AC60F6E1A7F8CFC7B12D782364EF1A08B8137AD33B99939CF09CA35C1FBA79 FDBACF62FC4A0A243679BAFFB84E421AC4F306CE028CB7D514D1986AE47D9995 E424FA231A7317C737E66CAA7E838A00A74D23625FF115B6BFB180D8F85D49D7 ADDC47F285BA2DF72F18AC8096E3391218F86D810F1EBA0E94FE0C3918E96E2D 02376A8905A54091962A3DCA7E2F9D4656142B9EE21B9150F423DCC7694BD936 3C5D81B21D18F7794DF51461B52B2711D9EEBD082CA5D8DB94B3197394F3A03F 12F166FE0775CD3DC40E3E8958E275D6CC2218FB71A75D484BDC44043EB941F2 C2413406BCBB4DD87246A5BDD1252ABB84A4D87BB890FECEC8C6E7D79EB64977 2AD23A917170EBDAF2D21EB4AF203389CB60808F0B5DC44667985A271E4E1262 EE365623092DD4F0C4D5B9F8FBE1EEDD8461BC5ACEE3A76AC1918A5246B8EC5E 1E452C2303AF40294F9488B8691AEC2A3DF9CD9AFD3C6A447E71BC32C3F563D2 C81A9A6A2D8E55D3C26BADD4C52EE906B82A233C7A12B58F8A3428B1C82918F6 AB28ADCD5B176F3C43757B288FDDA49F7687EBDA2E28E3B844C07C82B67C750C 6E21254EF205C59151BB9E84B9F6198AE0CB297099008E4266CE7CEC5C89567A 7A4ACD15F6F7FA0704281BBF5699C8C4F03714284919F0C29C7A9750EA42D095 EF4A6E887B2FD4FA8CF4F0BAA430477C8485F574E8D822E712AB41045FA8EA0A 4067FF2BD948B3FF86829E005B69882D337B4C7832CF0BD7D5C921315FBA5D78 1F1CCFE7ADD528F6E4036761A8ED6F72B292F796C1AEF6B01C13E05379EDA8EC 7D2CBBC4442CCEBCDE716BB48A62C95EDDCEF49692C8B8877FFB19258AE1698C DF367AE475B0C99EBC89EDD7F8C5F31E3355780CC40F86D752CD1901535A9883 AF2DE0D9DCB4206E7DD80AC41B1D9218F44DA81804F7561B1CA11F74477EC242 A187DB812704E05EEC4F3E7A27731AB2808B33D0230057E9F096B8F6BFBE070C E253175CEED8637EDB8C92BA1F0AE486A68FE594E6C48846377E9442C258832A 028E380E5515E73520688B25262F2B47E1F1A0097C3A53B8FE38B5B69CBC480E 82E6380085749967D01F7296D2485C632F1CA5B3F3184E8EF17516DC86141A95 2261B26026817DCADCBA93F44B882375112684E0EC2CBB77FF6D4A60D606E23C D00C29EB7623CF03BCB6AC2CE69AC572B42247A1021DD96CEF8B80ADE7256C6F BC019B6383E3A5C00669D20CFE46C14B64ED0EE4D0EA46179A02269412AEA10D 3F1B7E06B11C7AEC645870B91E15DDBBDD4C51EA499B1990BA42E3505DB21367 A85AC6A29AF4CED9F61AE523E3E31E85316E22BC121EDE6411D4DCC9F17C3445 ED843544E6F0A60A2BB23495666416B1955664BC596F9A6D7D6FB75F619BE68A C5EB88D13D7CAB72AA54B69A98EBCDE83413167913D1FF49BD29466BEA8455F2 AF1ABC1160A2DD83895A75A55E791193819F18A90084B9756C888AE21267BF9C 9A9D36314A5DE9DC239099770C2F043501B7412D5B925DFC326120B1A217608B 21FC0746EDA41FFE4F09D24538F4FDBA9C2E0A63A9EDE2AE9BFBCAA2D9E4E727 57F4B1F521C7DD6A60A836B592CD2D763917809B1BE7C73F669EC878CEC16040 988753D229F5C526240907A4947E17F14C450417F3401AFB8A98B90FD1A258AB 0FDD45ABF31C853FFF98D81984E288525720711630A8C6D51A85A15EA851275D 118A1D4CE2015A41FD786099D3557D616477065E6E69D323C871AD50FFF725F6 8EABAE4874281F22964E0BD7489134C4CAB0AFFE84F0CC206E835469726638E3 389E3A222C6D4EE428130648676555393252C0D62F8749693F85FC758322B33E B6866E65C0A8ADC9B968738782D64ED569DFFB8124CC687AA07408C17750C9E6 898DADC8CC6FCC47DF61180B5398A8FB325DFEE4D35997727708EB1B37E1C84C AAEBFF74672929E2FF472808633AD4C2B2C44E0A5492B405E17682AE2728D4B7 954C73262364ABE885C2FCBE09C8BD1374F1D584B2B0173F95822FE2E604AE2C C4024C81B5A482D42F77828DDE4142C72CDEDCBB754F6BB991F996D026F978F6 B572FED996ECFD6D6E5937345856F087B1368C46B7F5B3DE196DCBA675CE943E 0832EF4920A6DCE7B16FFA8F46B8E903FF915F4AB09AE1ADFD60A7F6F0184489 6C17865E70C6CBC608901B2559EA25B187C462145CF4C0D70E22D64CB92F40DE EA3B1F70D5DAEE2039A813197B2B5ADE0E05DC2C2FA354A299AEAF6750B93D50 D634E64457A071DD5E960C1EE62936647BF5CED09C983C7AB15C11BD3E198EE7 28C8060E714243248CF30BD1EB585AC0A0E1FBC16B75D2B293734B2E0677B32E 5E04CCD4F211306BF5408F105C02D0C679B056D1B0CA2A352A82913677DB75FA 58535162A37039EA0030A2C445FF74048369DE46EE22E7471E4370B75C8B99B7 CF550CD42C5571573D4CD3825FE7C122A29B2EA9F92E3E8B188D815A4828321C E5C93D0067D6A7FD4C5EB21F7DE16EB317B9ECB3E5405928558F6157DBC452A4 0DC2C07E85AB6AFB3C202750DADF1365756B2478B9665198ADF06A9E374A2D67 A1C50273E4D1D6A886F258B73A48223DE5777FEA9E176D688B0BE50A6F487A62 44C9E179DDEDCCB718875EE24D5C5510749DDAC6F0AAD33F5959EBB1CB1965D7 4817087D615B17C88DB3CE148831D186F708C5CD882E89BB082A5824CEAD1C40 9AE37E6A4D4F2E214C554B41B1FF845C9B6A294FBF30F6533DA4C1E1D1CE28AC 1E76C47816A96CE402B4B7788264B5074A22E904F25FCF515AA0E739D682F308 1146C27EFF75FEC38328F7F92CB0C7F25998CCC5EABBAFEA9515F15A7B7BF5E8 0C15C3DF014C2B3205BFE50B9F4ECEC9918FD7A88457663B61B1151B4F664534 BC139D9FC37A1A4F8A244351523972C40BC8FF8C1DF10CF87393F094170BE49C 237A04AA4BFCA26D9FFAA9B7BC7D43DAB5271344951F5E1C15DB381F74462714 ACD9C21AB4997E0289C628103ADAA645F38C9C3138270F9267EF75C3B58C1DF1 7FC96E5788C646F79A59D30C38B8C30AA22F769CF2D30679EF84E88F5AC2CBD7 3129FCC6FDB006D07009B4B9A6A836DC10A283773D74C63E1A77D7D7FCA9CC74 7190DE44406A4E72D0D52B8AC9915494EF545F6DB0C5A61269E10156E5E2763C FF578D92E99D99C961CFC2DAAAFD66249B600742FA99978B4FB3FEFFBBEB9125 7B8A1F1FB1312CEBDD78EC77E43B3C6A43A5448FE12E8C1DAB1C2A9996DA6366 ADB214729AD034FC2F95D1CB99B4BED3D0DC326A6D1E87AD77E0F4125911C657 CB3385D1A517B515D32AFB209CBC1F053AA801894B17D8918ACA139D66E705A7 11C2F10FF38C0A49865BE4FCDBE507981F5906D01B10736900B3B5105F9BEB8B CEE31515E0D775D26C32CBC23F61B5420E0565CE21ADE2F49D7A613D5C151176 D79B2B8F2111C62C17F7526F509E0F3C7D159D122DB89CE11ECB6DF00DD458B6 D565BC73487671D62C5A4A90C2F13CBD9D5D6BF9054AC3BC527B9721804124D6 487591619A813F3D92B7CDD872A0A183FCE39F90BB6A6221DE6B2BCA7D3AC89B 3CAF46BB1F56A8D9436B4882361333F919FACDE564E6E724F9F287EEF1764F2C A59B81B0E48ABDDB6C9D56D8B913B28DCF333A8CAA40D871567735951C55D4D1 324AE3C6505CCC87F723F67EF1F18CA6D8798C5CBCAD31ED45FA3C75E15CDD5D C74320F05165E50CC2FE0B15A54A612E4EF6E071080FFF013F21FDA0E670F5BB 5BB333F74F539B323637C511507F224C6451FCE146A3077E1BA454E7E8B40069 D9192F3B851D153CFE66DA6EA2D1384786B8C5070A9C40EEE308A5DB91DF319D 1CA742D360D7AC3BAB0C0090818EB575B5CDD8D8795EA3792EE805F378D5C335 1872EA5A325EC7C4B80DA3B4A8EB95DBE66788169244D9901AF5C9E4ECAAECE4 74C3856366C55D1002BB3AFDED7B2FB183A5457FFA5645E8917EAD6D24562C70 AC42A3F8FC444EE78F5E21E2A1A76D1852551DA77EDF760B9EF59CA4DEC4C167 B5E48F0C4D28144709D974850BBCEC41A6F00E73D4C01DEAB0DB6D003D510E58 60C995658C332ED47FA5B47E119419FC1044150BC4D1C123C86D9900D4C266E6 5B55A5064B4CA0C1EFD6215AAA97865471555227F77268B0E802BED6D4E91A60 928FF5FA7B7FE6194A0D24932D80B8CEAF550BD3E51E0833DE21725AA70D9AEF CAD3EE8FE91E5EF47156E5B9CEE2427B1ED06C7B5B6C4993D4F3D6088458B8CB DE091A25635C93CE7E1A3E891AD26BDC11A4D094827F116911A2BF9902BFCB42 F88FD749862F98BF99041B87E6556C180D4DCFBC7D1D29A75C20E88B344E7611 C03F48224B7EF9ECAFE5D10DA8DE84A80F23F36A34552E0452713D60C4B69ED9 F113D749184BD49730A54DF95F4DEC238849561B5378C6264E08D64CEF0ABA19 61B13E8368343F60D5EEEFBE7604A1D4E57748BBB4883236618F9ACCAA26C3CF CD38CD24CDAD42ECF0EDCB2F7986F40C3F5BF329238613B8F65492E0A7CD14FC 960841AC8CB1DA1AF94ECD05EB93A4B1BDF93472FA8244453276F937CC3F31A6 B3F0A2AD134C7FA79784B85B434669F3EA6FDFC8144AA111041902EFBF515A98 ADA476FCF016D56B80E3B5A3619A2A1321E342D8AD05A4D31EDDB5FB4EE1E6B9 1EC040142BFE04D9422E0D499D7773EAA70BD35F8DFFCFAD379187D0FD15EDB9 5FB411AC79A367B3514E4CFAD54EBAA8C977B8C4C2D2D86D0E50CF4FFD91BF15 A58C06100A717D9F5D450AAC1D5AB7BB752A67A9E4927BAA56B8CA5D00487CF5 3FFC03F42227E845054E73216D16AFE2D529028A23BB64B93E9B722B73776E37 D43F8CBC51DDD5AABE0FFA33DA5E2179CD24A291BF3BBA4D98C55016BE57C24C F648B8BC449E8758AE47A912B6145F7D55E980DEED33D75C8972326ECAA40B93 E8A678A6C9960AEEA8970A10A7831661592673E90A4295A1648AE6ADAA9F75A9 90ABBB1B52E5A0EDA0F5554BC74BE264C2D1080D41C96CF39C16B0A8C17EB750 7608FED1B2A641E4EA405D3FA81AFD79A7625A10EE2F254EE19A0EE8AF897BE5 DBC72C50722225997DF931853C8BFCA64EF1E4BB2847CC49A3E32E064B57A279 A78226DB7C1526C50C3414A92CC02B00BE4AD57407B68769078693F5189F4AD0 3082E3FD1B8B0DB49CA69DC71D2D49859C2D3847677934832934AA2265178BFD 3B9BAF6395D53B303AA6F895648A6422349602D1A95F1A1474A9B94566CC6128 F5FD773CFE21E8322BE54409722A09E8D0A4D04126D60DF40B8C2BA96CB541D6 B306706051D4DD78CF43AB3090F482A9D852B7BC9323A9946019E3922F1C872A 9FF096255F5111A57ED1EA3725CE5B1AE16850708AD9C4291D52D602669D73BF 2BE561A4613B38A8C04BFAF062D23CCFF9CCADA9C15D0A57B51C503D99FB059A 8523C0400E474A7762C9A4432AB306D0DE728080656A6196D84E6808E0516A05 938B47DC9B87CB5DC886541166B1E17AE935DBF0B476CDB037C80A4B7A738DB4 D2B756BBB977A78A44EE780F2A16287E76955180AFE99D1253F4FA9B4E5812CC A6BDBAF7FB6FCF93C38E65FE0E144C4C98B51C7F38719765FBF312AEAA69A9C2 EC80F9E1375DDAF8317155E27E7D30B1EE705F21DF04DDCB465B0D427EB58794 1233E8BB6AB42CC9B7AE8EE56EC8D819964F0CE153A549E8817B6D2D722A7D4B 733508EF6D7198C8B95EA0CFBB3E8500CFEB7EB0CAE43806E06B738A357A5956 E996703BDCA0C9DB6027EDDA356EE039F12B60307F923437FE0CA72B1F8DE9A9 B91AB356AB28F49FCE52D2BCE77BC5033FD9A21ECA00A318E3B6C91089D7B8CF 6FA44F8AEB3445EDC55B6E386B00AA38A067C5CE4FBD8A1AEE4C8ED46E7FDEEA 21886E7FC00EDBBEAB92720414C78DB77318C987B3D8C76FFE85286E6AFE3DE6 9B6A5A6088A5424416E0CC036B9876DCFB1EDD79ED11AF26E8B6D381906CF6EE DC1A4C746C4174AE108BBA284C99E762DA85972A1E37B0226A0D3B3552BE268D 83D511F0525EBD80F45DC10AE36AE63D1C9FCB2513136006F86A8E800B849D16 E19C4C1C0271A587A3FCA2D48F82EE5434918C5A0F2E0C52E541278292BCC92E CFE4C216E25A21E12863A6A65549C0A49521D92A8914E33304F7A07EE28D3903 64DE55848D4B94854939631FB9EC85C8D96E9F0F831E38AA011A4C73927C14AE 1314B8F4332B5DECF96BFB9307374D28850B786AC20F77F3 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMR9 %!PS-AdobeFont-1.1: CMR9 1.0 %%CreationDate: 1991 Aug 20 16:39:59 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.0) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMR9) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle 0 def /isFixedPitch false def end readonly def /FontName /CMR9 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 48 /zero put dup 49 /one put dup 50 /two put dup 51 /three put dup 52 /four put dup 53 /five put dup 54 /six put dup 55 /seven put dup 56 /eight put dup 57 /nine put dup 65 /A put dup 67 /C put dup 69 /E put dup 70 /F put dup 71 /G put dup 73 /I put dup 76 /L put dup 77 /M put dup 78 /N put dup 80 /P put dup 82 /R put dup 83 /S put dup 84 /T put dup 85 /U put dup 89 /Y put dup 97 /a put dup 98 /b put dup 99 /c put dup 100 /d put dup 101 /e put dup 102 /f put dup 103 /g put dup 104 /h put dup 105 /i put dup 106 /j put dup 108 /l put dup 109 /m put dup 110 /n put dup 111 /o put dup 112 /p put dup 113 /q put dup 114 /r put dup 115 /s put dup 116 /t put dup 117 /u put dup 118 /v put dup 120 /x put dup 121 /y put dup 122 /z put readonly def /FontBBox{-39 -250 1036 750}readonly def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8 2BDBF16FBC7512FAA308A093FE5CF7158F1163BC1F3352E22A1452E73FECA8A4 87100FB1FFC4C8AF409B2067537220E605DA0852CA49839E1386AF9D7A1A455F D1F017CE45884D76EF2CB9BC5821FD25365DDEA6E45F332B5F68A44AD8A530F0 92A36FADB679CF58BAFDD3E51DFDD314B91A605515D729EE20C42505FD4E0835 3C9D365B14C003BC6DD352F0228A8C161F172D2551CD1C67CD0B1B21DED53203 046FAFF9B1129167921DD82C5964F9DDDFE0D2686875BD075FC81831A941F20E C5CD90040A092E559F6D1D3B0E9BB71733595AE0EA6093F986377A96060BF12A A1B525CD9FA741FE051DD54A32BECD55A868DD63119A4370F8322CCBEC889BC2 A723CB4015FC4AA90AE873EA14DE13382CA9CF0D8DFB65F0ABEDFD9A64BB3F4D 731E2E1C9A1789228FF44116230A70C339C9819676022AB31B5C9C589AE9094B 09882051AD4637C1710D93E8DD117B4E7B478493B91EA6306FDB3FA6D738AAB1 49FBB21A00AC2A999C21445DE3177F21D8B6AAB33869C882613EA6B5EC56476B 5634181ECBF03BFEDB57F079EACE3B334F6F384BDF9D70AEBD592C8ECF21378B 54A8B5DBF7CB9282E16AA517E14843909339B5E7C55B038BF3BB493F3B884A1C C25F9E8FB912CBE23199AD9D2C3E573727701BA301526C66C3617B9514D6F11F 11930B1D97C17816C85B1BFD9B973A191B33CC3B391815AC46268691C741B2D4 48A840F1128D9B2F9CF07D0709FE796B23A836417BF7B5B12D67F74453C82F5F 25F7B30701D6F6D4F4DC623C0C27D6A6FBECC7312A3CD10932FC7C10851C3C52 24B75DEA8A648B7F34F5711DB0E843C914E25663C510185BC37BDB7593C1C259 21D8DDAD33982C336BF272BAB2F48E68217403FE9F54877B243614A87E64784D 2796EE4179FBF96123D1BEE3EF89D682B427BA4F12A1318A57F18BE5DD903815 261410810249D07D66AB520B2EC1EA22EAF5F93A48A54FB6D7AAC08F87D51457 433C1C6019095ED12B048F14AAD653B3564CA40CE8D76399140B47F9A47C8613 F8A127E965191723452CD07430AD277A4D0DC122FEA911441ACEABC5B8C18EC2 39B74D1DF778A76EAE18305A5EEB8262F4224F89FC10061819B1ABC974458CD9 24E59B467245BEEFD4075FC771D104B7EB64C7726041B085781AD9DAEC58EFC6 48D6674E90EC0BA8E64B37295F5006DD1108053D471A969A326906A142CE0AA6 A8BB66268B2398079F7CEBF7E6287623A3AC1F43D1C4A81E72855D453A53B8FB A70A06396A3DA3595926A0F2A372723703844F3E050B3009D8B769EF67119893 3BF6600B9B3764D491252234604F544696C46DC6278A941D59DEB7EB16CB87FB 0C9F8E830A938FF6BA3351B5A1C553C16149F20C785A1D679E68B2F970A3B6CB 688E04893D3AB9FD8F12F5AE84B3152EA6A179A6AAA88A512910EA90F8741331 84B30D0EDA91C6372C4DDE72D4E9887C4170AB3218EF6680724B3769E54179F1 ED87A4B28433F94AA02693C8D87172E08BC345EB256E3128CFE8F52478EDFB9C 9EE5CF7F5A1736844BBB3521D2A042990F9BAA67152C2DBA3DA87E3F9E92E89D 285A220DCA020E82C00F7A10ABB35393D2935B4015D490AD3D588C7E433814A0 974EDCE57267A060DBA5737B24FB8EDC411E65A9FFE44F7E46B02041FCFC60D3 4C0A16B0A977489A0EDDA2A4EA30C2F4A240321EAF601DD928FF2741C087933B 3900559EF4E8DFF53E83FC14EB400DB33BADBE0FB08A75D7176F233D33D47164 F6DC3936B36194779F2289C8AD0922CEDB5630E2C7F911621693AA62A91A51A4 52AD5F0D9AE2FE0934531CA1DEE4BAF948A3CD7830CC76A936901E39FF73A5AD E2ECBFD138DE9D581BC455CE7580AF5A91C1FB18C1A975A3096515FE3E42BEF0 22DA4A56F0B340BC62B44C72EB8F35352CAA625301019A004AB8FB33D8C43303 7DF907B990A6220C0AA1C0637EA0647E3956BBEDBFD43B8CBC8BB472F566BE67 62C8D68DBB295FC9AE05E7C0962664E4555262F5231CF7F958B2FC6BACE29DB8 0153B5AAFAC75B9D9FFC4632CC4CD0AE1AC4ED838BCDAA59D7B64ABCA95B7ACF 32E997F1E5AC6332485A11745BB87D935589E4F097406C88F4FD6FD3333FE022 F29A129E57B83672DAF14E38F657EE8456DC5F9768BC7A6DED4297E20833DD36 2FBDE43D384E44EC94E4FD898AA06E9DC83DFB2757E4E128F47092C8AE574EC3 70732533A583341D4B16707E51D2CDC93808DC02F1936D5091FFB59003034679 2D28F3C190BBEAE5B59B27030C0EEF5906D9250235D38CD5D663D869AEC69756 90DEA757308D185F38CCAD1EDC240DC3101EF1EF15F2BB8A48F1F5CA1125D315 083E78780F1239231306C3E14616E40178A7F8BC6CD789ED11C7D1445BA49C10 701C4C4A7094037F876B7C1BC5B3F734BDC9FB79B67ADB01D71E48B30FB43B80 2A31B0187FCE1419A1F6FC2C1FF0BD6A4F076128311F79D25F88D14E1E40619E 331901E1F6E0A3272A502ACB150C6996887F26370BA1C7B4D615B6C3DDA6D725 24A0931AED978031ACCCF0B9CC5B6A45099119B32E4996C50ABCCE66DE79608B 2EBD58E8E4C7DF259A584527CD9D9560C59649752EC721D1232E9A7AA2A26BA7 167496B4AAEFAED0889EDA782DA7BB3E1ECFE7C847B666F0A43994729F2A38A7 B40C7BC825353B26585368063E5CC5801DDC2607A5ADFE41FE3139A6BD332A2F BB5A3F6450EE150FF5FCFA9A92525DA20D37FE0C9563AA8A5D08D3EBCC0B1CDE D139B49965090692B15025D9A9E2C1DE4E640DA17B496318DC0C8BECEC1C1224 74E07706F86A8E8040CEF24882FFE7E596F8E6BDF80877906AC8BCE86B5B98BE 55FE4BF985F857F602CB979ED9C8D0971F1B42593162024D940F3667629C7FF1 6B15FB315E3C012D72458F0328BF8A1E839A01DE1644A3F6B5C593D30E83D8CF B3E18292109A7D35206E8069A6B7C26A0A685679294F9DB14FC4CEEE461EEB76 26B8E68544A299FA4D074300A0041D441FF14C2ACF0D71B60BB4A1DAB86084A3 C496D7164C43982D1E27A7F639FB0B250F61D9534B21C0E42D0C54FC5D3376B6 C0FC40621B2C87A89E5F46C6127BF24C7CE613ABA87DED2660D85278C264E8A7 218B0ACCD0AFF7709D1F413D346C5E37E6A5DD494B625AE02C40A1BDF1BAECC4 CD7F38CE1943131441A927F302DDFDDB9434F56AB4B923C71161EF5CDE71D66D 9FA2C91DC1F609224C2A25D8BD5A2D0477CB9EF0A1884796F7B26EFFCE6991A6 B902C3E24C97812FEEE4BDF6988E582950A49D7958F7EC8723492B200E5641ED 339E8E3F0265D89144BB08A578AC34730D81620FB21D8F020B85B5A9CC6EBF94 53D1AF35D0E998AB2C069EDD24FA65486E68638BC676CF8F5398F150724D9F3A 4A894DBBFE9FB6D1BE374946DDF22DBA664920F3F8DD7231061B1620C5BA2205 AC264B8974CEA5EAE8142FABA5E0F8839625411FA1FA48BC2599B88E3CF0D4BB 1EE976197BE2074D2F0D1F1E981475883C92AE9CD690E444C779277689D65951 CD719AABE2605CB33666EFCD64DEF942ECE43C9BB36B4B87E5461C4F9C1D7A48 8D32E69C4758E17059CA7CB13BB59C171CBDA2DEFCC9AA902C3CADB81D52A86A 76E6A943EF9E0FDF7FDC2369C33D41A8690A20EFB3B4D697CF9E347516FF48A2 E7E7233956C732AE7AC0C00EA152EB75C24AC235DEE17E50A35CE8E74466001C AB80705054D7E1C08A6E2F9BE50383D6CFDE120D369F63214B27C212DFD77D37 FD96D53899B2EB2118D1069F0C0A27DC34E21C6C740FDCEC7A3EB9B074550A55 B6C169853F29BA1A9BA4AAC44BACB7AA4F37D640F0332E76A28D06E3820308C5 E3EF8F3E62D464C8D049B59620CAC059E4DE2CE75EAE3129BEE7DF4DF308158D 14095C82AB09B63DB163CAE659ACC604CD3DB618DD42251F4574CF8ADEB551AF 9DB4D1401F6FE841A34CFC4AAC69AB0C8527842D9140C918242DC5C2520D50D2 6A71636117D4C09ED73EA7876CD320C323EA17CF6418B694F67B1718F6D7B7EA ADE8519D1D94C4F6EC3375AAD5EDADADA797A4A0D0CDBCE043DE39FBEA716E3E 0F5156BB1F3806C7D4AA9D6D4A9A779BA252267131A13E8C11974ED98D0BFCB0 2685BF77B6DAB92215B19AE752D4FF9E1CE2A7FF3DFCC46266A18843FF29035C 25B57BC1BD44C5A7EC03A2F8202FF19479B852CCEA99FC254BA69979DB6D2C33 12977B33C2BA6F488AFCC8D9900795B0CA141B39C1676C20160FEAE03E94F35B 120BF80F08BF9E88C6CEA444AAA6F8BF1BBE729A2C3F981350F8BC01E20D42B0 B0F68CDB405F8B9C425C91E23A99E29A35C886370518A539816399EC23D9D223 B91090E8E763A35EA395BCDAF115F5D852222654A47198A75497B4AD213191E8 45B6EC54792D16291802977B76444D17D54C4F9BB65B3976E76C9E53A9304594 8C459AF18718201B8AAA2F2C9709487BA0058D0E3D31CA572D73946965842A76 39390AEBA6EB4506C30DA37F0DF076B26482E449400D7F2B45005DE81697B87B 5B7D1163039119D65E26B571CD019CA112BB8ABFE5E1DCC07D4FD61AF0763211 F8FFE04EC742B23A4E7E14A961A6A9146B95B0096CFDFB2CF433C9136789E60C 235B17041991FBC7270EE29D33AD23C16C70D0998EDC42846A82824F12896AB2 935C6210FA15EC85FBE307E97E56765E4D89CA58487F19836E8FEAE0F6C309F8 54F5527D99582889A129880DED5BDCFF6551393BB8D987A01F5C64A71DFF502A 6E3941BEE9604C4DBA80C64C329CEA9173CF5D34611BC2BBFEA4284C49792F9B 0044B03437639B7515F32B84C9D8CE0C5C8D63B786BCF79E4732F35065353A5B 971C9623349C5D752F61F3D2B7DF427C9521C4474B042CEB6DA029C332B689FD 4EF669472CC2106E076C0E60CBBD446420CB1BFF0CFA94A609005731024622B3 FF094FD51EC9E39B635CE6E8302A4405379C4D63368596D6B600D50900DAAC50 AACCE06522B0C690767008FBAED89653A10927ADD46DBA056CF5945838C9B780 DF805C940A8FD1B3AA8DA77425EB042DE82B29D2FAED86A97D017E38186F4BF4 69E3703B68FD63D54C5F07D0C047F2716C8B255CDB8FF25CF0E5A27F0A51B14D 7D81B2AAB35C3E89EDC0F443D538599AC7A73C3942765CE44CD1DCC0AAD24DBC D3BB4CCC8834D97DADDEAC3B7D6E1B79C02EED4A70B0D7D87EA38517652B36E6 E323DA89B46B7E25B0CC4EADB6047288C180C928CAC4D2176DA2F81995F61558 B0DE0BC0C78E7E4A5B245142B5D2A54A818113346BEE8199775C6313737434C5 93C1A1C6E8CB07907741499D5FEB210E0209B488298FE5191E89E666424F99C7 8BAC03129B24843ECBE6F63F4463EF50233AFB9A176EE5FAFAE75C2B494BCBC2 1CE272667E0DCDCC875D8BD39A9E91FA170CF83656191C2B97B7168DEF8ECACC 4C15F7007F4557922EBEC7E433529568EA874D587F618DE783827209C97DED07 ACC72A18B6534C9BFCE6892A7D7AC9C528CCF41E0CEF1CA963B0AE8DB3EDD920 7BAF8848A3A0CA34C8446A9DF57EDF064032D21212F2B32C2F33579B4D18032E E2334E239519EC2185D10E56FE25FDADADC8AE69D0BB31AAA0A2A40BE287EC96 772BED252A284474CBC60FB2CA029DCFB46008AB60FB4557876102FB838C2258 4664B0D24B37389DA0EEEE401FE8B51E8FD5D637F7A04597A4E700A179D0D074 1940861C3847BAE366AAAA8ABA720E7131D08F25BB8B6245FD539F2A78F78A60 FD5691F30F69A60EC368B3DCB8E4C7AA16C3499D17F7D2052173080E9434F7FC CCB99C982B1F68D192C95067B26056B819FD45AAB2A512E10DC699825D62CD17 FE4EF567159CF988D2CA51F240B00FB0BD35331BD6EAD999CA0D6FC02DF7F925 A30603507CEA851FEF7D88867C848662D883504DCDF021180BC7C2E58AA4BCEB 41277E6C186ACDB4526A53C6323FEF460C63F17B39DE4C32773CFF089DCE1870 0533293D84E6BE153F2B3097AED256F9044F755E99830838E4230F52482D1F09 103592156840F5190DAD50029A41917B29E48CF654149201E925E808B4A5ED84 EBBA2FF18BCC0526A7C8FA4D8D66687A260899C011E04186FD626E66B3019D17 AFFFB4B35002CE63BAB8146CFA254EC6E7C465178CC0318AB4A52756D631D13A A0883187590A9F7FE1EBE76A0F039EEFCC1DC9F6D4614D2938876FED62C46188 9105D8DA3FC9FB0E1D8D207BC21E577F61A791A91824BCB9482990002C613198 BE84ED00AB16D24AF2882C59321884795B4EF444E170F239E694048DF75D3F03 CE08B1CF225C992245401518D99AB29995B341A9039D458A24F2821722798FD5 6E5E1358E3BDCC85A8C4EECA18F182809C74835DC402E6AF6FD4BAB2A2A91CF1 D70468E7F4CCB5485279651D9CA2302E013787E9344C3D9CFC3C0AC608E279BD A38F8D0D5549313AFEA672C629ED984AD0B3CFFE959E8DCBFEFB0C0D50208FF8 740BE5AD378BA97E79F01072B71452026001D08172256605798F23CADDD6710E D42F5854E8D88CA9F4DDD9EEB5B03B8C768EA1EB5F6632E6AD0D965F31B4AEB6 B756A115DE779B47AE50D1E95693AB314B8CE70F4B39BD20077FB35E377D51F9 794CC0EF7805644ADED68BB149124BE70E0B1D57969DD0B338AD10B332CD421C 825BB72FD6CC4352288730CC019346833D639814566BF9CDB1DAE74B7B7579E1 10017D6E70921047781EFC23A65574AB0DBEDAA356C3374E2557BE3F6DA0D90B EFFEBD21961B968530A8324EA00B276B5E98F6B926BF6F9A576317DDEEF04D7D 68CF45429668C172E388937C04DB7396E171EA076C03EB92E54943CAC9FF45B2 A495B9A8C9E48A800138905FCDFBC81A3393495F5271C66F985610E8EABA367C 77139F06ACCF6A25A0A69BD2BBF42EC5F2A7A8EFA521C8D1C6E5246DE6B95BBE 5CA0B91C21CC2BF6907E3CABFF28F5240C985750454BB7A102E4116310D86B46 53811A5D4518380133AE161A2BD2543C880AFD10362F73D46B403146C13D26C0 DB30E27FBCEE7621487EEFE46A26F8FCC603724C4457AAC0A844695F5D4C9305 EE3F3991F14B2C0D9BC95B83BC2581626EDF924CCCAED1AB482DA4BD00243CD4 FC894597E2C89B06D07511EB8F13AC521CDE9A63F3595D6FB0131E049750B700 FA8020C402AA1931DAD3DAAF1F9FBA5E94A53D83DB94F635BF4741D7B300BB4B E3C3D1B28E9C95DC5783C506C57B703CFBA7467E3CFD8DFFE9375B5897C9D392 A508003EDD8675B4A3C8E3DC2D1ABD4F929C19836DBBC6032C78893C6658325D 9EF35E31AC44E7C56351D12C7EB1081F8E096FDD987777281825517E2AC8D1A1 3E568671D46CEC053F04CE5A0572D71DE4A4C2B6BF098DA2E885CB7C7A194F0F DE432A9DFC49626229296B404D97B101B2769C95902D55380BBDDCDD9798DF35 626A790F6D03C44FEDD2489D4DA056DC7540429DACA03DA6101B30EDB9E88CCF B938B48E969DBDE206FD6E6AFC015A5487D51F3B861B7B5CE0DD7AB23975AC37 FBC91BF0874FD024C25A4FC6B35D4AC27C6C5A244B2D5BBA9726D74624D7B7D7 2BABBEB6D54E6BACEB6143BBAE851EBCE8AE7508505525427FDED0BD06A9CF41 2FB55404A6B0E7F2BBCAFB6053FF7984C8A224F227247FFB7769A19865D3098A 2DB5ED37756F9E240C8FFFECBBCAC8011B44B3819FF14FE995559ACFDD389DA0 3AAEFAD65205960BEF184AB6C4F2167AF5BB92AE73CCFE92AE25ACB2DBAC44DF 855454027E73D5A4FF0267353BE7ABB38A69719C1200CCB49C09203FC720E2CA 44FF78726EE84BE27D54C66BE82336456A04920692C64A290FD8ED40EF835992 052C9A20812F5C739A13776502DE6FA8258CB6F53E56BBB48A9B558511B7E9FA 98BEEB1A213908BA2D3B78656060249D07A1019FAD6FB27CFF2B8BF6013D427D A3CCCB6672906C33A7FC1D03D13F33FA145E39601B35CDBE97CC953D71E94BF3 3AF4578D50C814951FFF9238704A098BA79862400D0D1D107BD2265082D2ECB4 A90B12BBA588A0B83F1CF58019D033BEC3C1E45125EFA1978DFD9F743831D5F3 5C7FA2EF21A8C64194BCF5855EFCD87BD98B47478907021C8B803A2BB35CEA89 1CFBBDAE1F68F379DE624C674EED7A482EB46D477941CE741FBE2BF7E674817A 417CB148170ABF8DD16CB03D27BAEEDF834D655D2363289121018AE6BAA1ECFD B355E255313930B3669E5849841AE46592BC162D0C6F6A68A6EB51C3EB36657A 87CCA592AEB4DE6C69EF2A79BCC4E4B3B59045DE9D35214A942F8A610C11A191 CD0B79558DCF3B4A66E832F11318C211077F525C675E8F9FA14CBCBF8C6E368F 24C4CB39333F327362A3801D08ED97A307304A230375251BE3070D2227022104 B78E08DD2148DAABD555026FED675D4ED605F4CDCD0039CD5ECCEE48974387D1 A6B76342A231A042EBC301B0ADA3560AAA1F8BA03F895F14D0917184E815F1F2 E5FAB44BB538F707FBAAE38412E65658CB81C37E7C01E578FCB274B311C1B03E 2A86F8AA548416C01B05C5FF2DD72A2F600029D4574B54E9C85B26AE2EC79C6D 853CED60F854E7C490CE4DC582114347740F7DE2603381C3DA364A0B709A3FFF 96EA1C65F0FDC737C7030728717172D477CFDA79AA91CBB651962FF5C4C8F5CB 455130240EDC1A6CADA8B0A2CE1E258D797D79B4BCD4AB7B6AE4F782BFF052B6 8488115B35C0B062506FD6C49F9AFFC2E14551CD532F607AFD3E23EC950F077F 6BFF9E148C66A9C0B169C9F135F3E0B19319C7796DE365EEFC6D592282AF5A6B 9359CBF7B7763D490EE10391A547A478A81779EDB30789C242D869B9BD83DEF6 BE406C03A165E96F04EE402786528C6FF2A04BFE9D08995818018D56CE0508B8 5482C124E51D95B220EBE9D40690EC00F3E4E50A74EB21252E0A50A122915353 F0A7DBC7C7B2D50A9E0662F0C3C3EC4F2972F22085C60EF80673F14B403CF95A 85E31D1666985576763DA67FDA5818C7EE4D5122CC0C9552590CC7AE84CE8B29 57CB85076CDAFB5A230CBA7B59853495365351B7B5EEDFC7648A575CB7FFF098 FB821498A7DC02B857E4A71182C4F47D40FAC9FB98AD6134AB88E68A24A712A0 09110F2D3BD95C407EC65BA2CA5C5E7B0DF12571AABE074E5ACB062425570811 898B6D90C8D5C4EBA1039B19F93494B006B7F8EF77227CFC3DF7820860408437 8CFB90A5ECB7C8F56C9DCF91A25F966FF624C7CFA9DA11F135CF315DF7533F50 0E12ECA9991FB8F247E61AB2482F39A5AF7BC29DF0BE3B2EA4D83FB2FD1947B8 E5761CB01D2D679A1F02C50AA01D8D9DD401392087070722FEFB50305D05BE4A 36266BC21E29901271E62C5B4EFD1B1DA6F086D6E83021C418724EF6E1D36D42 FA0CDF3D66D39C59BCCC3210E4ACACFA09E8D55E5654DCDD05A67082C969C932 F1A7ABCD026BF11FC7553CE6F0F993811E144AE2C5362B7795D51921C03D7408 138C4838CD468F5EE1D0A3239A8F5A2D5A93F038CF88AA0775FC8C9424052490 86FD455F277EA70FFBB769BEED88C49121FE6C9161C14DD73D596AE3FE2987CA BD4A1D04507005705D6E7D4659B64FE9B325A24DF7982B1B07B8C94C5B7E060F B7893207A0E45003A7881E17AC4146AA2ED0EFE2BB3F2F23CF827C094676F41D 2124C41FA855379FD3828F4975D5FBFAC06790E5C4998210D74C1E25B74591FC 7F36F1FAB9F4D01D24492D6738F7318AECD4F44C173D9A0194EEC4BC253EBBFB 1598CFE2B3E32A4224F5AF4FC2198B0957F950BB54E87F1D45F289F8A319772B 7CBD9EECE51042769006446644D6B1A346997229582420DA2620BC5652136B82 1B246BE74B153BDDCDBA505538DA520953B5B7948481BD962F5386F6832960DB 804FF8AFAB937BFF734BBF81951A0EDED2BB9DD70A7142271234B21049C4BF51 51A4EF7BBEAFA85DEF2C226A3730136A85A743204B34B50C46869326E7A9417C 64F2D0B2E9A18BA6F7D79CE18477066CE38EFE405E7170C3F5A2708D93D608E7 AF7ACCA00F148CA4DEE2D3EC864F38B2A582D837055E5B4A3E267F919DA8BCF7 2253A3B618E24C7854A09B7E690A7FBCAF356BBC08DBD20669A43940A3226A70 D3C7CBB37C9AD1EED6FF032245DBF362C2BF7B07CCEF24381D9800E3FF56CE7B 66E4AD1C20739FB1747E05CCDE7DFE2A900F6BC16092554B86F033A8626F2F50 09E6D60FDABC96C7908DD870C814FB2FD3A86C56DF3746F8A8D9C97E383A0C33 84B91658E97EE939868073E4401DFCAB8EE1F88ABF49DAA82D12BFBFCA438CFC E239F449E1527E26460C823ACBF373EA100DBBBC740955DA34A50B1732E2CDEE E8CF04C5470EE9115A119642F0684535810E9815BE24D61161D4DA5E73C82E20 081ABD870D0F57EDA82BC737F25B66354777E072B820A8DBC9E15A86A5270616 F3E522D6ED30C54EBD14AED8A45D059603119F7CC7551D540CD40FE8642523FC ECDBD5FD65FD86966A0A55BAEB33F27B24B113E64B1386046582A9E58BD0A5D9 3F3325AB35EF24A2188D7D805DE2A67DF5B375484F7BF473AF62DF979647E437 9ACB6B86C9E3E4E0F1C2BCAA2B900898C3D43F60D5E6F2F9EB4503D2D1F7C79C 4DD7D4035A7DB43853804DBC739104B6C352431F71605ADB2788B33A85C1F260 2AE3A9002C93EC95F72CB205F32214561291DDC4E6E94583A11413E558CFCE53 221DE1036A83EC250149D9D3007B51E0029B8EFFD864F962B2D208E43467AB4D 9904F6167C56611ACEA2A20E80A797207908DC2065DE3FE45E184A0BF6B94FB5 C6BBF006A6C46A12886F7C755598BF9210EFF397DC7AE32BDF18ED75F484A859 A4A5532C5C0EF10BA959FA02FFA58A88ACD19EC9A27AAC8C3B637F6D4C93588F 65B98DCE0112CB212166A092192636D7281EC90CE5C66C45BF0E055423EE62A7 DE92B43DF09B5DB157BC7B01EDF9F0DB6B94317903248A64926ADB3B00A40CB8 69A3F1048B3A028DAAD83B1CF695594871F1CC2B944F6CF3AC0C5B2FE59ABAA1 4C46967015267FECAA52AE0D4FAE61905B682AB7B59841B7E53F291A328BA5F0 F69C4957AE01D17B9E9F22D4A1ACFB68462094AEC42FD9AA67305A5885EE2048 300B251B961A92EC4788903605EF98FC4CDA67098BBB650C0C51D0D45CDD7A4B 503818CF19B9A62C4DE89FB649B69760399C7B0946106A567F63CA72CE3FCE69 C4D36E2335D38E7EC4E9C2511010565C1F761E55A2355BB9C6DE4BB3ADFB51F8 4B19DF5BB6131072ACC9FCBA51EAFF57A1835EAFBCEC4485896F9CEFBDE244AF 9C4ACC314EFA21E18F6C8E3F1F402D8D66D02A98B3C0495B765FABA0D4F07607 1E67B35C5F001541388F89A30C8A09A1D942EFC3A39CFE2878418DE192A6F421 2117BC62DDF399113883BFE11767A9D49A530422B111EBBA1E7E3CFB98F34417 E52320DFDFE70544122F365225365446514769C3277DEA34704D4E77BDB899B6 DCD2A652F8D9CF1AC4148C9E5A7EC9DB5E27C1F4F40A119E3EC7C7E8D2362541 18B16C0D464F05DF1EC9853F7C3AA5F487D6F17AF5CE57805C596CA80D6D16D8 D75FE9F12A24B3ED1332DD7D5AB19F9A9C1EB8B78D715ACA8E99D664CEC767BE 4819A6297C7C00CA80850D9AE8E834DC32D90B16F837C25E26F11C4AD40B3A18 622751A6D0C3136E22DB9604C02B42CDA177731967CD353E60AA8F1C786FC647 5E53D784A72D5E6ACE3B79222D93DB47C23C7737D01FB6B7EF252A56FD189440 B8FF1720891AB3D4DB3DC9716EC73D93876795238052AFC759E4AB88B5E01D1E C23FCCC5E02E9E0E575A0B516EF1671BF0DC3199ECA86A73F533A6CEC88EDCFF 361C13667455B9A3645CE9C3AD70C9CAC67D552AFCED0BFBFF5664668ED81959 C2E2AE10151F27888EC8B4EF3E012660FC6B6BCDD10D529297393792E18C3606 86C6566D2149C2FF663197B394B64F15F6EFEC87556B9663148EF9093145D2B1 89F146264A65ABD15FB65210F19DA7F582DB357CFCD952F9812E877EF2FBFA5D 575E8E32D66527F167879F6532D5BC7C89090944CA3657FEB9BB8A4CCD7994A9 1925F0A1BD41F77DB42466F36927297A7C1F75834935586AA5123B294D7D6C1E FB048CC5EB3C31F00A5AF5B6646322E1A5467352D81A778CE02BCBEC88D8715F 4EFDA29734496F3698053FF0B635CEDF272AF4FFBE4097E89B09B8EDA2CD9015 B0DC4532574C9A5B0949D5AA7BDCB7CE8BB174D68041A687AE4ECA990DEE493B 83731ECA3211D9903633AB37DC26E1AC328ADBF7845972990E67A1F2CCF4D197 190F9E698DA43FDF272A4EFCFE17E3B647DD3CAE05B71FF5F26953E0639CCFCF ABD99FC612F39B1FDB4CDCFB0FB9F68640AFAA5C438AD5E5AB95B83DAB 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMCSC10 %!PS-AdobeFont-1.1: CMCSC10 1.0 %%CreationDate: 1991 Aug 18 17:46:49 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.0) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMCSC10) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle 0 def /isFixedPitch false def end readonly def /FontName /CMCSC10 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 65 /A put dup 66 /B put dup 67 /C put dup 69 /E put dup 70 /F put dup 72 /H put dup 73 /I put dup 76 /L put dup 78 /N put dup 79 /O put dup 82 /R put dup 84 /T put dup 89 /Y put dup 97 /a put dup 98 /b put dup 99 /c put dup 100 /d put dup 101 /e put dup 102 /f put dup 104 /h put dup 105 /i put dup 106 /j put dup 108 /l put dup 109 /m put dup 110 /n put dup 111 /o put dup 112 /p put dup 114 /r put dup 115 /s put dup 116 /t put dup 117 /u put readonly def /FontBBox{14 -250 1077 750}readonly def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA0529731C99A784CCBE85B4993B2EEBDE 3B12D472B7CF54651EF21185116A69AB1096ED4BAD2F646635E019B6417CC77B 532F85D811C70D1429A19A5307EF63EB5C5E02C89FC6C20F6D9D89E7D91FE470 B72BEFDA23F5DF76BE05AF4CE93137A219ED8A04A9D7D6FDF37E6B7FCDE0D90B 986423E5960A5D9FBB4C956556E8DF90CBFAEC476FA36FD9A5C8175C9AF513FE D919C2DDD26BDC0D99398B9F4D03D5993DFC0930297866E1CD0A30EB76029337 900ECFB1390CA5C0C3A04528044F266BA17BE487C79B94FAC6D6484684C5BFEA 87BCCC77D40AD11552035E95E3007126418ED49B68468B38A14E88E68A267B98 076F1C9769A5AFBC285E5B158EAC9F926F1D6C0B8F1D57D9C31D25AE27123518 9D2CD92E5689E0213089BD268DA5E47525CB8EABAA4B78A15AEA34705889AB3A FFB8953B5B3482E52BFA0940630ADF8C0AC2177D907324299EE980E850F203CD B627962F43D5A678C44243CDE97853BDC6AB45FD5C09AD274DAF89929F583CC9 CCC24BDFC68B92111055ABA5F26D2DC67C70906F71C2957701D65AE746A60C30 40E6CB24B97FCDAD0487AE38A201FBF0E41BABD2181981A71940F1E707F91E5D C8CA50CB16D8702D188E56D014D92F76CE0B52ABDB9110E32438D2BBF3E6A40B 7B005F10BB437812CAC6ED2996F7606DC962C4FDE207FF322782C343DF44CEC5 FF06A55C630C20E9AE1B0D1C5673753C43BA0767D65D1B451CC6380D8BB3C4DC 81E8FD8AA79BE993218686F29D3CD925566DD587F541A0DA1B1CC3BCEA2E6C7D 5E1016F6917A871F1BBAD96AF9E867735017119A381FCF33EB2D3E1E7093FD90 CDB0CED4818CFD9E201A03430CEC713620BE0D3254158931FB657C6AD4B2482A 0E7D070D7497892E9E942DF58E88CAF0C8221BF36BF7C435BF2C683A4A2EF4CB E85820A8AD3486155A40143011BA9D76297F46DEF69ECA4596D6E4CAABF84091 22A96A4BC78A8DD072FEB759A68A44BE1164638B6D952147EE3C628F9A022060 1D1941E73310943FA782532ABCCC88593FD63E7E2CECF6665C04DB48D641ABD3 AE1BB468638681E96394B9E7BED1D13E534B897DB90EA6EC706BAAE06BE2FEFF 1DFA5258113E9B4CD2D36655973864574E0E8D6291E48A8C62203F679B7ED838 6F7CBD523C2943ECA994CACE6174A1B1BED1576913C171B499D059E3911D3959 EEB176C9836530F66EF82886599018DEAA2761C78FAD033DF1590137644096E7 1D4D4F9D8C7E4E86754D2D67F93F58BDF74D5CB66C374FE2A59C0732FDA6EBF8 9EEFC9AB1BE2E4DB4CE3DBF2FC0778F682F457D7CC43668FC7047812E2B42285 1D0BC7ED236A49D52C26D321E4AA295339624D9EBA7C7CCB9E246C30DC89CCAF 01724BFD2D029A388AAC8900AC79E3D823C787DAC48F289739A47AF37F28F8F9 D38C05A45A6FA6C3D118D579661F5BE23C664B4991CC0790B163C22EBA2D0A0D 89A9A9BAC671F48FC0DDA6F317E4E8BE11C34763BE99EE5AC371E4FC1D9EADC3 E05CDE089509C8A1F956265B98692F8E92F5068076A38254C75EB036F3661737 0167335D6B68017A5B1EB6BCEBA4904C5C57B2732381009BA448DA355718A1F9 9ABBF6D137A02A3A9CD0307A1E757DEA30B8388D2080E4D464901A423DD5101D F5EFC8852EF6D0B219E7F2BFCC583C50B8CA67D2496C4B2194232365D26283C0 F70B2AE4844BDEA849A90AAA3DADC198B4C5A33204AEECB06931FF1226DD12C6 071D0C38D9F3231BA904CD13968B34F9B1E55D9FBF38D276FAC9685D8D589AA0 8A76991E1D3CF85633896B7AA757AFE28B55C3B68CE6AD6069903BB3B12E156C 5CC2FE2879B7D9404C82170482D430C3B733AE0CC88BC1A0E60913D059C57890 C8348ED390E082F82C0BB2FFEE06003BB3651F154B15C7A5108E3D1280769800 3607B2E0D084413F8BAE5E191BED2D997C9A1990941EC9356A435E8114F5483E 26211E2F22107B8CBEAC396FDAD5434120BD0519A652F6224E5BA2E19AC706AF 76BD4884E0129A4D6D6E8B8F783E9BF6C1C0C3555D1E1CF78FDF7D70B8954AF1 34CAB45E2C1F03AFE6FF613064C4609C870CF9A215AC5D6B2D5C99E2D3CF1068 A14ACF8AF0209FF5F38410B553BCACD78FF02306858317F441F9A8807FF5F348 4F7816DFB5273DD293D8AF7774EAF0EB1D5DD9AE9579D66F217556052A7D1FB8 A68CC32A472B99BAFA8C37177CA28A4866D69C10686068C98B382D330BE1BDE4 8C19953149795DA86ACF92FD31F7FDA10706F80A0E1CA76A4B362E6AAFFF975C 282ADE4F5F3BFA09D38311097916F6C142D4A4F6666A6E449D835D49E7B04140 C54A828ADD064381E3F5D624E74EA8641C747D7154AFABA61C489D80E41B63A7 020704FFEE8C611DE156681F449B2979B98741E37A0597BD4D1902443A22EA84 A2568CC364620FB3F44B1CA0B521113F2024455F4F796B29A455DBC9F60CBC4D 734F18348479181D0D866D2948DFECCB1B01EFD904C07D2C326E6E40D19CCD57 19CA41C21141F4F2CCC65D9C9F856EC81BE272C24408B21E3D9729619F228797 7518CB6BBDA4F307ED3A220A494887FF45165E75F298AC672063B9A57D01C0F9 C3CFBC776CACE328348AF1C04A740E3FC893C01A80FF963824F5E0F06DC016EB 03DA3A39CF5E81D4E5F4CE2979EF66DAB1CA8283D00B3FFC984DC82580335CE0 D20B0E7382C7C5D550DA0713F00DE67F62B382421332AD0DBF98319E0F4E79F2 CD0EACB956DD4F6D38083FE67385EEE5248737B0C0E530AA41877857B680E341 5B16EDCCA6BBE68B863413195DA97224607EC2E7356AB42FEB4D723C4318F24C 95904CA5609F1140DDF0258DD53EA57A00B118729A13381678EB9A42FD868671 D1286F4B26A05A3A47EEB563ACD4421BEA9DF7945879EB5D857417A1BB01D63C 86DE321A02557004963922F9217E3F7A8A48602D80566555A91A64746EBC9234 1720DA0EC91D7DA6C546BA9DF7AF9094858443E38BA639E8F71C8EED5295B21E 644E173836CCBB39DA125D48AD3219CC9B82FA79A50C4E10DBE85F86BA940690 56FDB8302E62B02CD574BB7EE2D522106EE1A53B29F491BC32F679719A179A77 CE33576A048D94BDF830DB5FCB19E989C7F70BCD6594B8B119D710120CCF4F47 8DCF17B1DA42C0D7206416A78703B622CC71915A21C4705EDB1126F210E45D25 F07A2169972095DEF0B615617730A3574FFA41AFCE59FA41002122CD983C5BFA EC632B89E44DA1FF836EE348FAE4726AA7F1DD06331382D33932A61AB95C468A 4CDB9545CD693EDC5AE5AA6B98BD69B32634B19C0C7201FD96C45FA176F0C6A2 2424463F4759AC0D3445F0B36064935E522D286178F698FF63DF4DB1CAC36C24 AD7BF8C210868A9BA30BCA7746ED9C26B4369B78C24704C7F5DF3592D529A1FE F33D0BD662FD488BB20914F1D0E2FE497C16E2847D153E5705645784EBD2B648 6C3032C34A42C325595723C2EBDDDE80202E003D4F9C877A9A5E8A9D5207990C 01B72133A7D3DA4C529FF29460ACBAB3BD8D8375D93950C5E75D3E03F64D0812 5CC1CB712049480C07C413DCD7A6FFA809FB20B87D000BB1EC955C6FFF32EA0F 46938E60ADB5790306DB2A0D8A3B449C2949B6FA6C7B7D30776F46B0F8422D3E 5F24D427FAA40DB9B6A702197D05D33C3D872D90D5D94EFE4F43C8992915FD08 2E88BEAFB5B05254C822F91421B9531E31F83F2DC5F2943B7834C6B03EBD2973 A019E4470B6D8FA38D44B2BB4898C2612E142AD4B5CBC67F2ADE8578E03E5754 77D28CA4D152EF44BA94CB944D67EC675889BE6B5CBD0CA9BCEF55B61A215215 CC47675594878D7768F72C104162B22E67036BC6C88D0282E2E0D54280C556B2 A8ED956F58A327027D31656DB01A2DD592AACB1D4FC866B3A993BDFCA0DAE012 C78D57A8CCADB35FC848F6E4CEBFC01EDADE4E0EBF2DFB992093133AA9B9E98B D728BC65DB4840EB90C7256DBAE1A336C578059E98C9F3446F2AABA7079420C3 B5F100F75922A6FA9409F6DC9DD1A9F94918028A5526F927358F5773AD9CEC6E 9A571EF3CF316CF2EB132F20F40CCBD81E037AB3B159E50184033C13532ACB6E 80C1AC70B090D1C7FB0F135154CF66FB727FFBCABDAA91EDD0FCBFA1322FAEDC A1F0E6BA0B6FE6E40FBF7274EB1747894D424382432C43E9C5C30269CC9F4197 75DFB43D6F94035F3EAD91917A734453523382A893496535DFBE081916E79B97 955B2D3660C2F698FDD3C092005963B7101DB6D969B3D08E5CBF917217A14741 345B4DA7A06FEF0ED5F4A237BD25074A54E015DA2EBE88BEB6A125B6E1013CB6 1F4BDA75D2ABA0A2EAA3AE39AB897B9549B925EA2FFE159D0204B9DB1ACC7DE5 2E950681DB1C099CDB397561624BF7B8ABAAEFDF78076E0D46771B62ACE8DF18 02256259A33EB53C9ABCD9CA7947D64AE16C57C43FDFA9B9DDE4A906DC1836F9 6FECF2F15E43C046B125323DD456E5DEC8FE09FEDD18301B334DBBA5A2055CD3 7D58BE41A0FE9A29B304F2758B497FE921F53B9B0A590055DAB83A385454C7A0 D89F756F4411DE85FAB90836222458B4CCA7D5CBCACC1E5E34DA97A26B43E4C9 BBA787F1FEFB7EC56F8539C4DE05A5BC2BEFFBB54A4F9B18805ADC0938F09DF2 1B7103A12501DF442C3B292FFC8557598F5FEC4A8D970B6CAED515208BFCEDFB 6B12D9A8545F602109A2360670701A9693E0913AAF78A661CCA7B7C96CD611A2 F0B9B89F552650F430309CEDE38B9FF2117C04722CC370BF389E066C0C4F7352 F06C7AE851165986546117F69BB41610B07C028A3766AA03EEE03ADAC9B5CFE9 D8B50EBE0165DA3A403967B13311F7562DEC7B8F50785AE340BAA4816EF60563 6721E88BDAF45A49FDF53C84781A9A68A0604ABB5F58A28832DA6A8D86D5D632 48E8901FB2423900C1D65F61C55D00ACC6AAA17CEAE685F9BF2EF77BFFE99B1A 87185261EBB396A1065C688EF6D38B99854DF5F91010A093D345EA969D3EB678 E07386D5A6626615AE054164D0C44967B90AF64565374432AB8BAC008F5320E3 B08BA5A7AF0A5BFA64ED7A1ED83050EABDF0B8F4272000807122CB8C3311973A E507C73C149C4EF3EAC7B97459BC9D2DA4C0A3EE43A62454837DF6AB3479A0F6 6F3C87F996FE27B4D119FFDB87721C514874619E088D07823B5FBFEA334C8106 7E0CD0087DFB126E8BB966FE19396E92A5A9661613F0BC0BE575CC519631FC08 1D5020E026AA61466D86780B0E761C1ADFB0190556CC4B81C6B834D05CE3A09C A0F1C339180AB6593D685D1FBADEB040791A667B1967D048F692AC44674BDFD9 FAE4BAA0F6EA75D69ACBF31E79BE1E0586239D7FEB20A39D8E1FCDCA79627697 7472292282FCF6727AB45FAA44608117AC496B19A9B76CE0C5961599C28FB518 A054A121F33F4160889E156F95BC5791BE76F23BCBCEFB24568CAAA5E6192BBE 03B6B1FEEFA1AF576F8ADD9E1467037097430B1F6BFF9F38D9AD0CF8C3385CDA 74B308DE46180FB120E1C47DBDCF2FC74E820CD3C4ED0B782DB1DD1EF5848DA5 11CA8091AC3D088BB76CC7CAA0F33570E957744E2468908001C9E76D5101ECB7 5BD41DF58A59DF8E366AC534DE9DD1B0D8DE0D16FAD073A8B3AE061D205E4ECA B0BD150B038882391B496F11CEB3FDFA16E4030BC8B034BA6BE800F56085B1B4 667F9C61C6EFEC3675E89B43276C9EE0773F3B3DDD876E9521319D5088F5E597 12F5E3D9AC0055E414A034C273A1C5691AA8109A98B0F1AFA8A7A3EA67D3C59B 9F81EDB0DC563F99502567CA661FCA597BA6F45500640131C6C30AF0B44D563D 258919DC3ABFAAC2E5C717F5B0B24021DF3CC78459E9ACB744506999A52B6FE4 5AD757D835BAA3AB29755EC8CAFC4FAB24694BE234980DE7054796C8DE13A018 C2BEFEE2408CDD9525C6EC3816372D6A5EFFE31ED1B99CC1ECA80C0A48AF95CA C87597A38475F758F2E783F567CE2686996145BE6D550C85B18723A550BF7771 129B9BC2CB669F68734D88265CA6806BF94CF73884016E1E446CEEE7F7FAD03A E6B123B50AC53836A66C3AD6B749D5D55A180B13BB35B320BEBFDA0653F3CD37 BDC29162168D3DF74FA45C39ADB5C31414AC14EAA090EF344DBB49D5EA39C87B 61C5E8AC9600A1BF8138EC06883B8186952D4F814513190F51415E7A84B872A9 785243848DAEC660907A3B4EF378673CE3F2E3F8AF552F528D27B0967A0FA4B4 B356843BE0F15D03EB84D2277C07181B50F37851DBF89BBC91AE8170656928F7 F0479F428E1D60D14E0311085C6390223EC5EB233A013F144C89EA386621FE53 41AEF99C649D2C388FF0D2F8843BB468CD2359BEFC108BC8030541B629F2A6B3 880B1AA4DAAAC9572EB1DEACC92E91A30C797FC02BA17769B331A2423840016F 15FE39264696CA5F9970563260AD6E4B4F2AE2550949E799E8D1389A420E0001 FCC7CF686329AB7460FE7A38F5ED4ED9CE12A6389C573116A03925AE16D62941 5CB17A5C51B86B3B1E90662208FD8356172D8E552AA4A4CE4E8F7DE9E2A2773D F4D8F91797E9DE9ACD8A9913135F80749A1661AFDB8F7CBFA04886CCFB1DAF90 1D3992014335D8CBF00D53EEAFD26C3BBAB1544EFB34EBD16AEF916A132EF566 A77F46F795DD33294AC014BD7401071B71B25159903A0DBE31E6ED79DB57F1D5 F5C55D73F6A657C248B795695611A1CEB329D43F7A8EC2F51B0BE82D5B005DC5 A096A35FA2E1C2B8D65ED04C3316405500A98AC4D8071819D51B7ED66E8F21FB 00B66FC6F63AAE90CD23545DBC0764BF8B1F3F124CFA2CB7572D5FEABD9A836A 73DEE889F404CC41B6EEEA36FAD9D883FE26B998C04E6C32032F70CC13A3727F B16D401BC7D0B7EDCB9944B8194A31DECE4093E2FBE2A11556CE3E2B13A55BB4 984F3F3EC19FA9F9AF4E4442F9AE8E1CA654EE18C1E29D2ABC8E1A90083ACD23 EBB0C70CFC60FA975B64761E437B9086A870D030BFC7BE6FC33AC47A54FD3C3E 068C0D9B5C832CCD7E0AC4734E3B0CCBB0DF41AC68A886AF256311AE23EAD22C 7708EB1FE341B82725C1155833D60BCC8392B2F012F1D0DA7D6BD43C5EE86D20 59E3F7C84CAD674579FE9876A00CD0B4720F0098F6AFF8509EAA197F274939E7 F8EBE1AEB695BCC636ADD90F0FA467A51B4D547247ECCBE9D4CDB7FC955E7E79 237C29FED0A065844F8ADEB36E4174ED01E04F51016AEA400226154C8A1D3E2E 0684BE04F442D7A712E54B68A58697C0C117090193EA1D440A8B82D2E48B851B 27296E02C4946C6538ADD245C0C099E2EE55DE1C5B0CDDE29CB1FDA07010E2BE BAD119A34A3515DB935B4792DF5C15808E2E87B9EC4BA750B505DEC3C9A83931 09FC18E04C1B7A06E411DFA19CB8B68E53306B807693BFF2A491C2D208648047 C3DFE54AFACDA6AB426EACABF532329F296BEC66D43E42AD3F252CCA98E8E0C6 4F62F933A37F262C2C5394838008559012FC962FFE2F8A5354231C1EC69B776E 7BBB1F8C486358FDA05E90815C146A60701B001B56EE0BD6D8D81D46E2E4D674 21D7E7DBED79AEAC3A40A29246034F5F3B04A34F140C93CF7CFCEFAF36E44128 230D7AA271E1E9A293190C3A081A7863E1610C00F85AE409B229F1213C32EFC4 FCC13F9537030242755B1C6BBB11E3F8D02E1F5C82FC11B93D2C59AAB07A7018 F501A4E8489AD5A2C4BDE61349B0D18BF633D64C3A5F6B1D857671FF7FB6D1F8 B12989F5A5106DA933F08D3833E9FBC6495675C5A2E3FFA58AFC1D64667F7561 B2FCCEA22C3A419B79A38C0CEE3BF7DD1CE01B9EDB9EA4B4CC747328150C04B5 3DB0CF4F19FEBA7E707C138DD0248040F854EA0510077D0DED5797A833B7BAD3 7B90E5AAD5C64768F426DF73054CDBB4DC6F1B14ADBB0AAE6C26DDD378033F68 57F10A092211BFF4B7FF69CFA9549BD78DCC66AE96A459ADBADB2FED37CD1798 A69AAFC422DD4AD46CF80822725C24A8767B31BA179B005989B33D6F098E7E90 AF4D5715695C92C7B283C31626C0F79E4CCEFD91ED303B65517C749D859FBC9E 1E78CF9F0E66D7A124A1B8643D05FC83A6AA485A408DB47AA6A75DDDCD0FDAA3 29757799 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMR12 %!PS-AdobeFont-1.1: CMR12 1.0 %%CreationDate: 1991 Aug 20 16:38:05 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.0) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMR12) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle 0 def /isFixedPitch false def end readonly def /FontName /CMR12 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 1 /Delta put dup 8 /Phi put dup 11 /ff put dup 12 /fi put dup 13 /fl put dup 14 /ffi put dup 33 /exclam put dup 34 /quotedblright put dup 38 /ampersand put dup 39 /quoteright put dup 40 /parenleft put dup 41 /parenright put dup 42 /asterisk put dup 43 /plus put dup 44 /comma put dup 45 /hyphen put dup 46 /period put dup 48 /zero put dup 49 /one put dup 50 /two put dup 51 /three put dup 52 /four put dup 53 /five put dup 54 /six put dup 55 /seven put dup 56 /eight put dup 57 /nine put dup 58 /colon put dup 59 /semicolon put dup 61 /equal put dup 63 /question put dup 65 /A put dup 66 /B put dup 67 /C put dup 68 /D put dup 69 /E put dup 70 /F put dup 71 /G put dup 72 /H put dup 73 /I put dup 74 /J put dup 75 /K put dup 76 /L put dup 77 /M put dup 78 /N put dup 79 /O put dup 80 /P put dup 82 /R put dup 83 /S put dup 84 /T put dup 85 /U put dup 86 /V put dup 87 /W put dup 89 /Y put dup 91 /bracketleft put dup 92 /quotedblleft put dup 93 /bracketright put dup 96 /quoteleft put dup 97 /a put dup 98 /b put dup 99 /c put dup 100 /d put dup 101 /e put dup 102 /f put dup 103 /g put dup 104 /h put dup 105 /i put dup 106 /j put dup 107 /k put dup 108 /l put dup 109 /m put dup 110 /n put dup 111 /o put dup 112 /p put dup 113 /q put dup 114 /r put dup 115 /s put dup 116 /t put dup 117 /u put dup 118 /v put dup 119 /w put dup 120 /x put dup 121 /y put dup 122 /z put dup 123 /endash put readonly def /FontBBox{-34 -251 988 750}readonly def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8 2BDBF16FBC7512FAA308A093FE5CF4E9D2405B169CD5365D6ECED5D768D66D6C 68618B8C482B341F8CA38E9BB9BAFCFAAD9C2F3FD033B62690986ED43D9C9361 3645B82392D5CAE11A7CB49D7E2E82DCD485CBA04C77322EB2E6A79D73DC194E 59C120A2DABB9BF72E2CF256DD6EB54EECBA588101ABD933B57CE8A3A0D16B28 51D7494F73096DF53BDC66BBF896B587DF9643317D5F610CD9088F9849126F23 DDE030F7B277DD99055C8B119CAE9C99158AC4E150CDFC2C66ED92EBB4CC092A AA078CE16247A1335AD332DAA950D20395A7384C33FF72EAA31A5B89766E635F 45C4C068AD7EE867398F0381B07CB94D29FF097D59FF9961D195A948E3D87C31 821E9295A56D21875B41988F7A16A1587050C3C71B4E4355BB37F255D6B237CE 96F25467F70FA19E0F85785FF49068949CCC79F2F8AE57D5F79BB9C5CF5EED5D 9857B9967D9B96CDCF73D5D65FF75AFABB66734018BAE264597220C89FD17379 26764A9302D078B4EB0E29178C878FD61007EEA2DDB119AE88C57ECFEF4B71E4 140A34951DDC3568A84CC92371A789021A103A1A347050FDA6ECF7903F67D213 1D0C7C474A9053866E9C88E65E6932BA87A73686EAB0019389F84D159809C498 1E7A30ED942EB211B00DBFF5BCC720F4E276C3339B31B6EABBB078430E6A09BB 377D3061A20B1EB98796B8607EECBC699445EAA866C38E03ED7D4F3EDBCA1926 2AF6A41F67AFCFBF3630C943FA111E4CCD988A7363F7C2B75EAF5830B049460E 0D2B337988F150B9182E989E7750C51BA83DF37685483F86D1F47478883F3F6A 4B7F768DA5AA89E8F163029ADD4A9209DE8A4F285766C06EA859639B92CCCDCA F59B1C2BB8D588CA754D1257BFF76B53984DF4937093AAEF79009D32A29A4C16 FB610C7D6713482C48D7F9E8410C0F00AD6E67021056B6035534E79F05D14EF2 4E8D85E091EF6CED4A669F73F95D772233997CD11FDEABEA07577B3BB15A4FAD B1C0C8B4C3040F344C8474E84113B79428F6BBBF7AF9AACD668BA8072FD7A936 A42C6026DE0F319FA08D439D322FCCD6B9C391D09ABD80494DDF0892402EB7E1 888F971D27C7C7465419FB4A333725FFC6D68885B7BCF82255B63D07D021C1DC AF040C16FE7097CA85EE25AFF0D69E311F5313EF8DE05FA2ED1E78AEEE365978 2C27C3E062E5A8B932A73429D42CFC3C51067C585E47ABBFDCF3E27C94C39715 C08160C250FC25B667D7E083974323D56612473C3FF0E5C91968F7E251FD3948 68A6156B87ABD8DD6A515EB43459C57F08D1EB93EC93039BD710343F50DC136A B5A7926DD824C8AD3C32ADC8DA2FEF9955EEB77E01E8D822CF5CD357D691F5B9 EE6986D5492A40E704DB62FBFFBAD9E4E8E2B3F97056F34CF82570096E4798F6 DFD5781F171E213F11B9A49122AE76281AEE99FE0AA651C10F7E72092014687A C24987898BAF9F7A6E1A18613081063AD4D951EB07EC8D74308EE04B3EF4EC4F 9DEC39A73C6DB4B8F229D25EF5AAE3B0C922178259C75E3C5D0082CAFF834840 B02507466B6A4316198AF212D9F78885C173916045802E4662E89975B51D6586 4E36E461B9855D9C590D130ABC3DE802B08FC46561F84CE330FE6E6F62C5648F C793D324F4E19A95694D7C7840E0FB2AF609DDCC3EDD4887FCA3FA2876ADFB5C 8A61499FF5CA819C9DF15ADC0FEF2344A860959077E56F31AA1016E67874024C CAF0BE43FB640ED824D4DE6A0EC97871F8CB115201A9F8D65E95A4C73732C47C 063C5747E65D34D3468EEC8D892416356F2F45FB30200CF99052748C7BB60217 911C2E32479D27AA60763C2017417631714B3F02B61214C416094ECCE9B2842C 0BC52C0DCAAF23E21F59D53516DB73157EEE3C6C530A9DC0B9AA979554D88194 0EF368AEAD99F873986F3C52B59BB6324D544054FEF6DB725F4366FFA0C8F6EF 9B10525F4AF8F4E91F237BBBF01CC2971882A867DC2C8CDDFD2C762AB179AB50 80FC69EC9A23F574836C6A6366F4991E29DAFCDEC31E7393DA86A94D0F7A5CA7 821EE243FBE35CB6CDF07C745840999244686126EEAB70D142B0E9F02431217A 1ADFD06020D1B91502A0AC61F37C6C34E33279A0376B3A198A28678F42D7A9F6 7B096B0A0C2D7A33DCE6BA8FDDDBF2596150DEBF87CDE519845FB7B90E577052 C659930290EE95E3A316D0EDA03EB0B42CA79AF4168A4DA81C403D4AA3FD473E 6F82DF76BB1A171E625FD9FD16C8FF024A6DAFEBCF8C7E2283EEFDDB474FB75F 31A1F37679284949D998DF0198C72398A7B76F7A718B953EE84AD351E2BE35EF F90AC8EAE26A492AD64DD170515485C178A2D5A850F0C430CA23C8EC31F100BF 4808D7887304AFDD943CEA6A131FBA3DB25D670B915E44278B332DE11D44DB34 41DEAC4DBA2273001F949EF2F0F4F4E16AAABC7ADE7AE4DD7417D1F3B47F8FF5 E6B09C71DCDC5A2A0BB6DB9385694E918FC9D06B583B0EECF31862B6E7BAA30E 46A0B99580A189D2627F1A3C0322DC130101366159EFB9D04E4EC49D6E224933 96485FE4D937056872A35239DBAB78FE73FA273A77815BDB6A5CBCF54E2A52F8 F082A7A80414558CF75FDF049B3838DDAE19430A6CDB26CAAC8D2FBDEF5A1E62 6895F1BF510EA3023569333836C77543A251FE54B9A2E9FA4048D6D3C6EA7DA4 6AEBF1020DB0D6C742967279AFD9C4D4AAABF25A129F7706C25A9D23571F086D 81A8D1888A12DDABF0CD2E170CCB0F7C87A9BF25349CDF5FE7EAAF211490A0CF 4DACD70754DB9A2A3F70F773137E89A53F4754E2EB2450204F93E6353D1C3744 2DC5A90A8F93A45430382AF6939A8C5BA4FA878FCE42E611A230D57058CEDC3D 2E74306D797CC0D5014DDE16120B5235523AD54A1D95236A991E2F854D883DE9 4E17DFE07D0A6566E2702B65F57F9D23128D8E77BF5E39CAB0585122B6F5D056 D0842DBDC61A38A9F60DFCB5D763E506CD4060E280471E8049157660FB647104 0F09D1DA54B0CFD2ACFD1022EDFBE152BF92B5876777F41672E7748021FAFD58 A67E6C1B95CDB8A412273076D12875A5FAD508C7126B48DB70BFBDE2302933B9 E6AF351A2E1B46EAF43534173B6C87F27A5083895F50C97F1CA285753E6C0B70 AD26E450C9DEDF2C9097E5909C20896C347039890A3B9E5F3C58F77F4DA202B8 FA15E7C88EB4228B863BBEFC46F2E5AFF229C011ACD105FC9F332BA61DD58953 815EEA12D6EBE79E3D5551B682BA8002BDD98B4451D5B9BBF44D63B0074F0F93 9B59A62EED1B5F26ED1389486069A94EC3C3E8D6349D1880BBBAA17C3A71D5F1 764900F91DF082547DF381390B513DC29AF3CFD21B5ACD029E9618791B684280 911B14CE9C8683ED9366A0A9D6635654048958B8D12E8FCBD31009987A5193B1 AEDFB2D0D4CEE4432E4E8FF46F257AB11B436D55A1245B945A77C5996327D343 5746737C814D5852C762C1064532FBD25FA17EB5CFAD3295503C24849AFE7162 76667995A9A3B02DA635BFB821473618A2DCB6953458CAD71F484060DC5082B6 00A34B911436B860D33D06667893EABD21F1ADCAFE65DD054E9A00822692F87E 20540580F90DB18AA4A0EAF17662CB4A4C72AE1415EB2AF19D4B12BC594337AA 64690356F121672F281E18800C4D3B7723A1AFF2E878800B6CC6D127B13F01D4 714A96DB237000DC284C8DD3025892665BE96C6AA8BDA5C9C471602CB9D8DDC9 C8B6601B538966D09674BEF95194945CFBF9D2796AEB5A79C36837E5A2A9D929 747C05087063892959C71215FF3FBA58F692F8B41930D5BADA0668BA977F83EB 21E68852D789FB42371D13D33B6291491435DF2F0E10ED99AA43314CF195263E D5D0505CCE0CFB5D91472D24AE836EEEDA95A4270EBE51777102FB508AC6008F D1464A673A2D97F8E3296728CA17B13E6C415E6266A8D0A97F253618490E2743 3393DC0DA255C870C610664A55FB8F1E19DB5ABD6FF81D75C28DE3B90B829672 C8BA834D8C1E29DBBFF6AAD3685C32C30BDDD10F7D964C9B60E78BBAD38FABC2 2B18386BC3A5D20700CFF044EB28FB28C4DFF9DEB14721A4DD4DFFFCC84B1293 8A0BEE8B3E5F036946FD4BCF9F5077AF2568E96040CC159C234983AA2FF33B21 699DEF334E29033BCB52A13C521534DC5954486B1304678481EFBB460A50CCF9 DB4CBCDF3FCA2740385EED5E92D1DC273C669511B9DA5FBAAA35FED510315529 7C4399FED40520FDB1BC23A67B9265B17A4654970FD45DC69AE4DCE474E50C93 49A6CBC2F52CE3B0EA91149A097CDE39B2B1AAF2870AA487B3A50986CD56F839 576E8DA09BEF5FFAE2A14EB3E3724EA67892BE23FACE435F4888170FEEB93045 3FEBD5843CB4EB7421A44AC83FB8B43F8547CA83FE87620AC435B0EE74808503 DFB713D8B44F0510B0702354EEC1AEEDE95C35D9727E95F5A95EA417CC407A10 0488821875E145353627A1097A3AAB2A3168B2A0AA74FD1BABCA8A0F71F32F3F F4A48FAF221B646FFD777531F295C7FCF2FB17B96B5D5AF18093D2DF0CC09CA1 2965F26D9FD2800F43A50AC632A87A362A4BC4DD2BCECFEC02BB01D655C93E6B DEE039E205BFA3019D0C105F47B9C59085E0B3298F4B93745C63A6AE4FBD1D77 03F7CDCE9FA7793D5A16CC5A3695EA93D7E723DF2CE36A85907DB8277A8C243A 34EA31B49791C5B7BAE2F2909D4438F5AC761A93C260936D424F69A173F000F7 0A2044468040F666B525C11FCDD0BC75DD22829F8A20ABB410D1079827F788B0 7F13EB77898566C54578EFECFC5AFB1642C02723505DD8A9D545A3A07E38E4DB 94F6B3F8943B5A86A6C5D9CC870F84699822AE8BC5A5E385D606DE35B14C39C5 D14C585924EC77CBF144D8442012887CD867AA540DD9EF021AFF946A6188DDD9 0BDA14AC0E57132CF736BFE43BD5A32E667F2D043B384CCDCF669F9C671A9AC0 F6307B5D649F7989EA32E0CBBC5D1396364E4DEDE11A415FB9CEA73DE2BB1A20 AE1DB4C8B489D17BAF1CBCC1B45A0D6D8356E0745AAF893938177CD789FAC423 8920FB0DB633F1EE2C9CE383E738D2ED460E5B5480D5DD14E0C5CE4EDAFAC68A 331884795F57D4BA4141FFE0C9C461B7F0E682908FB5F836522866CBC0F205B7 BD41F64E5DD75C7CC34F93410E7A5D40B0596212FA3136324682FF5902D06F09 658FD93307D9BD0A28C574FC5D2FD4964A3E119F47ABF92FED4DEE7A57FC7B37 8B8CB83A7283A22B3CE732DD0C021F539DD8F48866F3B230109646A6220B253F AFAE0D1BEEB997400C8422BBFFF9DD8C4455BFA24AE79749AA7B3BB7EB209A19 689C1CFA5C68073AE7148DC052C9795BB422410E9F18E794317677F65C297877 A264E9051887A6EEE5D35933B460990BFD89FE5DDA9EB9427C983FE669065448 5776D90966F6289A6BEA49C11CB46CC1AC3146FC9CED7634147F5F85C554EA01 76E84320B2D447CB751DD5B137EF11F90D6F05647A70CC3F7A3354113DB815EC 8E73A1B630138C91166417727FF3B3A595FD03E6ECE9624C4069EBBF3959C842 D0646F54E8B434A3E517BB0DE67E393A00D245D17D9E11232ABE91A0AC6A15A4 47B5B9864DB99F275A734F044AE0CC69A5143954A713DE2CA09C5B551D836AB2 C86C6E570F208C276049ECB43A62DA7078DC74B9B36994B794B62DE1C3D43C05 2C66D73D8BCCCBD8915594B5032E56FAB290E463090DA13A81E2FEE7105EB97B 73F64489B8822E877EFBE3FB770F041EF8BCEF7EFBAA9FE7FC84800675C670AD 934CDAC83518511ED33D19CF4E81FE4CF4722DDD1443917B39E1A0C0EF3D2DC8 827F931CAF92D3362056F9964FAF3A3AC93A617E3395384340BF9AE8646A9A5D 63775A0ED4C5E9C6158363C9AB87D11DC2139EC917AB407D4AB5E47A3BB37605 C82B5AB828CA5006D336D6D80885684D1BF6FDD0753BB93F0230822010BD67D9 8E8AD509B0B3CFED0FEF5397D4A38A3353EC83E69E241F1921086098E651F1EA 078DA3F16D1A5877F3FC5192813DB4B6CCB1DD2FF587F2DE8D3C6929D1EF9CB4 BE34F89D10218E622217CBC81DE4EFEB124D09951979F84D7CD6DB36A63E28D6 08260812CDD53490FDA8AFF6D4FE607E9DA2F1CDB0DE5DAAE7F4CDDC7CF517D6 5C6EC115F7CEC1852CA341CD8F135D47C7F4C75831AB5FFB01F2B5B5CC295560 69048AE4ADB2E276A2A06DE03E17C6B4861D9E478D9AFB6B09356FC848D97AC4 7C68EE580D6DB21FE47F4A12186908832E6F8B3EA03711BF9350C3A31E37EF6E B6268B7AFB47E9B1BABF0798C184A1A8D3E8D8116D3B3E34A88FD4EAC249DE80 7A87E3C944C82220B51E6BECCB061482788070660AF84699B8A4525C7CA2F09E 9EB16236E0515ED18064BA0D91EA0BDB305B0B5DF42326D8D0CE4019CCEAA4CE F930461ECBA7FDE3FB7FEE9B88605F8A964FCECC6737A24A971301D8D0EB9935 AA8D56995B31185B878EC5577CAAEC1C3A775EC38F00EADC803FFA2F8EE78510 7E0360388C3BBF6413BD2998C79C4E9EEBA9C92F142AE4B35AC7571B66F6FFE9 632719E4D5DC9A895420E04A15374AE40ED7F9CBA03FF30E3F9CD1FD0505C018 7A21FDD2A977CD1C9D325299D006F8781EAF6E289A8EEA1532F660D055EAFDF2 154268646EBFBB1241FD7103CE20745C56A8AA83BC6A46981AD1FC4EED66A481 A2F6801E1F332FF58AFAFEB66B43F82910328E56E6919739DB569B0641879340 CDA62C0D11522A5B900C9B51E53D9C0484C58F13346DC8E83582C1D8C68B8DF5 A2F9A1E915D777EE63D800D16D578272E2D2B7211AFB4EA2DB2A522C35E681D2 66E60E9C1E9FCD03FD03221471D0E179CEB5EB6CCD2BAE008DE9FE10B4AD6579 0DC3C0F97F93D6D45434322B99B6150E131BE906DDDB97D2EF0FA77A88AFC721 FBE71BC62A232F3C1DF70C79880AB73F36EAA5D0CC4710E39B060E5EDC17CF34 927E1FC1DCD14F7D553D24722C84D3604421F3F34DA9EC610DEE0997605890D4 4A5CC22D4B6C55C75154BFFC66CFD27C244768B83F0FC95040EE6B63F78C1299 633FD6FEBFD731CADAB7E2DFAFC4366F5C63A367E1B9A1791B1CB12452FD37F6 59F9553CF36571E6E59AEE2D4364F03BC3476CD7A74481295E8A078A04F90722 706093198ED14A703669C11DC6DAF7139C9A2E1B4EDA18BD7050999DC6AC6A0D F7AFBD8D0936B58AAAEEC2CF272D11D8724DD708F0EF5FEC6678F770CE29433E 08DEF292C453573198CF14500C0C33D4E2D89844EE3882F25568A3915D79588F 56F95B2DA87429F6A977E54720989137A8788467E5297F8DBF3F5E8C72F3E554 41033E24D10994ED715FBCE81F75A24A3212B8D09CA0C77F770A5083A78F1312 2F0DF20099B8C33B518B7FEFE78807B4C1083DD74B5ADE7B76B21DD4F993E96F 018E77E40B32D3C83F79B0C3CF756366C93DE9CBB78FFDFE2EA86E27BB13A0AD 2B2A2ADEB8257688632161B0F2716FC667E47B4C0E4DE6DE3ACCBEB021A97BDD 239CEED825AAA84A846D19386EB2A2EE77562DF67DA6F970EB99D90ECBE9A9B5 5BF9028479B8123A8409B59A2D0593956B90C3D7A3A13C882F5D9FA1B54233A3 CB6028C5D2A95BC176F1262903517C39832251377A9D153088F07BE3565A58C3 C8F754A8BF04357E6F25E9E1D08B6039E82919C8C8731BDF5121FE1B0F379B60 EC7B1CECB54915ECC52E17CCAA37086FA8CB298A3C07FEE06E6413D0C7FB33C6 8993594ACF9BF603177D90387200DC03C287CB998263E35FF0C40BA86B60C4D4 52FF74DC1EAF6A8B78147C0BBC526D3C8C8D3DEE11181563E1859AC2A64FA5A8 E87B465069FDE42D39EEFBBEACA071FF9C70465014CFC04933FB986E655221B3 873835DD014E99672E56E8C2FCC03065F288D2BE40E711AC0533BFEE9E9D859D D30CBE5EE21BB5CE24CEF59DD76BEED13BE5DD0E90E0E77FFFCF47BB48D215C0 26FFF61C1080662CC300EF45AC4A3C5E0CBB90A931F1C634246A67B05A26B62D 7AFE579BA09447EAE5207C21819F79EA3955F82CC76EB8489D9714B7D804A0BD D15846F3B0663D899BAFDA198872BBD127DF55AA99CABE142ABB1A87466BFFA4 CFF02C47CE2F8F181FA2CAF91213863D8806AFAA0728031593570730FEA28302 251711FE881C1EC0D6805C154E835F1C712787A89E5F40411449F72814FECA1E 35AAEBF02843DFA6AA847F6E51A07788280B2623DB2CBFA0183A116AC0EEC68C 73A8845AFC1B112039F39F39A7006BBC8D90722C96AA89D085F9B4D077FB4CAC 43E6C54CA154E6443BBB00D7C593DFCD2F4CB5E107BFB606915C782BCEADD4CC 8C012B426D3FCC28A308D198F326904514B6C68DCEEA30FDC12ADC47F715A51F 65890A7B1D9C0D8B3977AD9E85CF7B68BEEAC3F0BFDFB208F63E77DB579F0CA3 8412EDB8182714B85DD857AFA5FFDCE3AA68BFF641A2405F279660B5FB81BD50 D6CA5414CCE7890FD4B962F16DC5AB98B0D6BE2F9080FEE706B4DA8790DBF296 FA7D7DBCCB386DA3C74E6E01BA1C53A4F0B74724ABB12109A48E85868DFF5DAA 98988A05BF4A7AC183DACCCF0AC63CCDF1AD6C2D398DD781DAE8108802C89936 CBA6BCB7B47266B4CE2E087ABEA726AE68657186C242853D2628D0E82C1A934F C8DE49B40B5D95E9E182DB859B0C147BF17DD911A03ED748579860F63C131CE9 8E26F3DEB65C6B8B3597A1C8F7BB1254B45F1EFE65FEB482DE09CBEFB7548FB4 851938174799012E5DB6D92B4448A609C7A452472229328F67059A527CDE51C7 1E535B600C8F2F31665047BD6BAABA9E78D9EE2479ECEB9658B885B74F47730E 92F68DB663C9AA7DFAC2B3C23436BAEBA5812C6E4A769A27106CC46F070C6463 34145E34CA2468BA4AAD6EABFAAE98B81E0E93E9BB60F127DB81DD24544DDDBB 2AB9EFED591A38062738B789163BF91B9F6DA9A6C5546E87D9FF2DA6032B4E5D 9806F2879E54BF2A2E0CDEDCE737CC301BF14BB307B05657E73201199E9E0A67 952DBBCEA23BA52D1E35CC6390DD482562054F7AAC06DEF6A6DD52B10E8C007A F48F0C7180AD75237719058D64D9240E19CCCA6BE519E6B5DBA31DFDC2676193 8D8B4820FFC71CFD025EA5CF12C6D20E717EB20F864137AD9961A2A81E201590 A7D2AC7E88348E3B0D167051255AB0B84311F6F29FDF2FEB71D4F2420006EA63 8F05D23CD0373EDEC801700687276111D4FE897E40501BAB3FF1B513317A969D 2BEFB7D86749A208766EE6BB63680B9A0CCFE414D93AA8774077F86F454811A0 8F0EC28A68823CA305A976E02F236CBE377F65EEA82F538D256953D29A4A6758 3E05EEC68681F27D1171D9561C4BE29047D2443E7F1AA099897EABFE839DE2C9 40D842639D71CAC1344DDAF21935F15C451EBBB9A61327D03F6F037CA5484033 3B8ED21F3CCFAE02AE5E7A25BFE8EBC21DE44D97D6EBC2C330674C8B7D9CFD5D 132C25B3C2C9E9F19711AE50169601CAFE23B3DACEC3FE1EA922F546EC64843C 2F50CB691C4451864918F75118AA7D16AE994ED8A4625AEB3677E2EEF54DD52E 074BD5328BFFEC0716EEBBB5A72E77580B4EE3CED466364A7131A34A53ED23FA C9E544A14DD5D25334FA6F1B755A3B0561D5CF65B698033DA6345ED3F4098B5D D7E99A0E4D4847571D04570E439623D28BF3BACEC7D5C02B97EBAC5A5CAAEF7C D9BFC41606DF22864D2DAEFAC67E03096D65F245C89A81C2993F8E09116B51F0 AB0261F0506BF7F57BD487FA19BFE1F5034B6F03078225BCA69D9012C17DC458 72985C37F8F421427D92BF9289CD490B4BB9FB3BD7CB1625F00DF4D865002FA7 9FEB65B0E1890BCF7EEC785312D6E2E388DCDA504DFD45351E064F19A33FEEFD FB0CF67C7BFBFEC094D24AFD4183215BF140803E98D50124BFBE719EE067D751 AA65770D79239ED9B6C5492EEA8374FAE1C57BCCF56576AF3158AB2620D705B7 DB8CFA0A6DFF8F5CBC96A04D581AA8DC19972E30BCC7CE5537B53A9EA8CE153A D721847C8A90BC4A14B8C98336246BC5B0CA70F496EC84FCEE728D62B875DE75 4F92DF22667FABFE27931D34D7606134EC2740EFA0A7C8BB1D84590258CE20A4 FB7E479E3643EF4CE5C86B9C6715C7EC06AB280913AC7B95B47835A6B68A3FAB DD84DFB72B48909938C11E5D81400BC7EC300FA57CA9B14A14BF5C8D7267EA44 925067372A10E43A15A7B2D4C9C9C4E57E915261B66AE9EDE411A59BBF5FC2B3 81E6950E8219AA39007E866D18FD56DBF1A4D8B04E263C5A8CD9167185EF0F54 55BC1A515E64ABF03BD158FAD29A5714715B7D4EC65AC9597A6DD0956F0B49A2 AD284910ECB74093307704C91B6C7CD1E8F5D9F9E48FED93550872516415AEB9 63A9C7ACA8C11B482B8CCA02D6EEE0380B73BAB60A83CF98D9075707CB6671D2 56D31483FE98A1BDE0FF913D8F0E8E85B4757BAB17155AABCD182FF988BE7892 390733D32CCC7EF7302304C97181CF4E8D7E0C8BD5CFE5BB8897803D400A5561 944EBC0CE260894A05D13119334C528CA264C64EC07A519784A19F30BF5A4BD6 1D10C358020C16B8BF8B861B72F9F8102D06E2ED13146A8BC2BED5F1D2132334 B286B99AE96E2111422E752117AB1C8E089AD1992398F65D1B06A3890B84950B 261AD44C3E86CCED69D6D00672DB52CA9EC4AAA341CAECA30FB9C7AAC104B75F 1F6CC53363B507C8598CA699886459A880DCC9848CE01DA4AF21DC6AFE368894 30E6FD9A04AA321DDEAFC9E1917AEBA03892AF6AE5303FD12914C15FFABEBF66 6F048CA647ADFAC22CEE1A5E3BE56578B5218EEC70A3F7BAA97C7B4E08CB19D8 D956DE0B46869326E1EDC12E43FB23AC326925914270A04159BF46B12C457059 0280CD657B0D6DD85C8C9A0F0762A781257B43906FD8DC15569AD90854C6E32B DB2ECD82BA398A684E25E0A491E380240EB20E95856DB345C70ED07AE31E645B FC40F3084BC5937E21861524A76EE469D3174AC8A09E84162727F91271D7C7DC ECB0F75E24E0D110ACDFA83F6C2F6341BAC54557BF0A0B96B4CA8CCE8547BB6D 3BC67E88B6CCA0845DE2CADAEBB205E243C93C72BDD37D60B443C322A1812707 DFD169162FF30078FC9034B60D9972CFE70DE0143BE26C1DD8460FE0F224B581 EBA17BE5013A40960E7FD3DBD3E13D1EE81AE7DEF460A2F75655621207918BC8 D0D05AD5A513A651946A26E31A7E04BC80BA52AAD285BAA7D5B6FCC5DFFE0203 060407B24D74517A1D86DBBD7D57094AF53E2F5D08C554CE3E2D887A8AD00A71 1EB163B61221F323A5BEDBA5199135E7E60942923AB8EEF607D0EEFC836D04D3 D637B54C12E96671FD067CCA2E1726341955C97240BD92DC8B143924924D97AF 97110D79A2808C054CDF355B0A9034B9A6CCC28F7D1C3BA0CBA08376ECDCBF1E 46F43705D52FA8F8470F28ECB2738A8F81D2FA6D21AB938CBA08A971A1291467 C4E552E087FC6FC161A61FFC837869A883B356E8BEE41E2FB0BC482021FB04AB 7792C77619A0DAFB74D41A4B41A219558413BF294F2B4B2048D375E332041FCB 314C8B27CE3120DDAE2B0AE88D19B7A67202B585BF158D57307649E928989559 3C36A9A3B7F52338CA690243C0157818945D7BDFD4149E2BB3B5BD2A125DFE34 7B467B17A4E576D633B3568DB08A80B848EFC0DB2EE4EEF9E0BC864409ADE785 6DFF7EE43634477797117FDB03976B94DC6F11BDB60DCC3FB838AC02BA4797CC 5B12EDB7B279A8396904C2F8B480CC08C4034D4FB9AF0413E0C41DABDC60B5FC 63F7741E5DE8F11F9E21200CEA0A24DC953E68FD7FFB5A5E95C4382D4ECBC240 CE6B2FA50AA3FC37561D042BC5EB6AF8C3C14A584ACA4DEFBC4E30401A3DEB32 138116AAE924C46EE863AFA37631B3B33AFA4699DD26F8A9536A1E9DCD2AAC14 C36070B4CF06AE06AB45A945A790033D47ADA5337C155EF08A12F9B5CC6274C0 CE0321BD04E0B216C78861CE86C137C9AD2A0BAB1B9E2D4C1E0B976B67F837A3 238A67493543ED1A0EF00B7E5B6625110DAC39F72BE7FA4DD8FCA543E80288E7 705E5ED27FA7E8B99853C83CD59E00616D42B51EA430C0E94C2C8352DF5EF902 C84A05BD7E93152E73D84110F033A1D5F296B769D864F8AB7B479B9E6ADBF642 4085EACB98016B21D082B72C7C390377DF5A1AF31F4E1F933E3CAC0CB160D4CE 4FE3D4F4A0836DAB80FB74C8196653D102C65F6FDF9232FE076F5E2F1EECE1AC E69D8FAA4C587D66E25666CD9BF916E494057AADDD76E0E28430E1EFD2299D2D 15D42A11F3F2BE7DFACEEA9BAFED207A793F5D8292EB284CAF99A669F761D4A3 1F15D1CF87318F8B32B30B88999EE48DD06F72B2C573087AA87A8FE2C51A6990 7251B91C5EA01B9DF3DB2402AD54238FA1C26FDF677EF9E8BC4347AA4620EB57 1BED732DBFEB2E3281542086D98354A914FE8EF5D9FE93BAE8F5602077C317A5 6FC7ACA2EBBB9F3AC25D6300626031C66432127CA57E791F5A12669B81A3BD86 55E0DCF26DCEC0033D6221F039175D8D921CA1EB28785A040AFF0878D91E4A85 0D6E553D83A85FCB2D3A399D92BE103482CF8FD74224E77ECB2D96066B9DE083 FA60F4429DCBABDB1EFE0F29B9D8F62716C712B92CA6DC1066B443E016BAEA89 448CB56BB501096E2EA619273F94D20F693DB3869D4D6EBB524D7F84633A27B6 A115FD1B3B86E5465A7C343D7041D5CE10A451C8189E24001EF2B0FA25CDFC59 749B54EB655CD7D192B31B3B105EF0BB482DFD7742529E7D7640C9461E88DF07 0EC10778FAB9BAF04DDFD0C8508CE5F114AA8D30FFD132D9BEFBF2C0C7DB4706 A978499DDE12F94799A08C85C5DB1AE0BA4FEFC47B347489A7E4C294CF63B7CB 87E36D8C34114F4376020F7EB5E3AB6FAD03DF97D2E63B0D9C44429AD2513022 71C48EFB9ED38C56B73526BDCAE5C856CB502FD3DADDE90E5DE9F425241C3C4D 968B81A0782D9A9689B61418BCB270F378C6E7C7848CCFDFBD6165EB3515E671 3FB0894A077D259A00BCDE080D3E418A0A1393B95AF1113DAF98F1D4426E9DC3 654F12056C7C7540B2173C63B7D149ADE54E6D463B3218152FD7606272613050 A83120D27CD362612DB6D35F260969472CD99F514BC7FAF5ACA4C472199A5F83 ECE08F2EE27F264630D1E0368FB537111715D45A0D63ACE9402EFA87FFABE859 2C08883F252E4D4714BB8719B936E4BBF259B345F55C63E7670EF50159AC86AD 70C3B2EFC0AF27D0C3E35ED8BE8D5D9F429A0D83262463DDB627DEBF1065372E 44AC00DE9B3B0601CB8B75CF27E0EC84294D3D4B1731226B033173C99935A6E4 BF5897D38FDCED14779ABE031FC25319F3B0A70FA9B0099F853E0DAD4FB705CC D3FF2172C28A5120299E79133F52B73F60C5593EF86E7BD1DC9E5D92DB6971F5 5F400D3175CF4C0FE79DD91EBE2837C88B056E283B7D64E361E0A2E059B8C665 5C5116FCD2D906F85A6DADE88EA7C06914E0E35B3E8D2FBCFDFDAFE21B5ECEAA 291BC84DD4E3635DC92AF93D27DED4ED27CCADEC8FD4F448DFFD8633FB270DCB 2872B87E506A4334B5B8B9A017BF0C559A7E2DA97CD39E252DD8598DE0F53C1D B0C4601C6318F388A5059AD202A6D6B2CA8E453F2815E81ED1573AFA5D3846C7 A16CA29892224ED85AA6CD78E9CA1791AD54980D5D26D8BA684AED8B177EAE97 68ABFC6FCE892C6BE47CE7ACA894FFC871060BCE324816BA315AD1EB93586726 DB114F537291D14993AEB2C6EC4A2048D621522889F8EFC8DA3E0584E27C8BC9 9073C1C41AA6D91D1590025AEE9C6550251F4C8B1D3FEAD4C0259F01CC8D5C6C 01B978CA53789E90C0C6E5D180F846B28306D4A9E7F45A4358F51ACC8944692A E0C553A6F06511E0E6CDF9C13EA88D63C0EC7F19628DE849411321FDB781D075 8BBCC2ACF917C8B575CB7C44DA6EB73545D0A7A6F7F933A49F9F5A87E8FAF419 EDCCAE49C819A45752A4F3C3D0B61BA3AAC72C3672A868B452B7B9EDFCDCD6DA 2FA413AE77D5347A049FC661C70B0A68DD7FAAD4152E10B5B0AFC7F27C80BA30 4534578AA556596F9EC43DEC4737476E8988476ED23A3C5C5B27C91A2E50EFEC F6AC7446BC9EBD45233A2EFBA16CD7060D5A4EDF891445DCF8D7504BBF7274C9 C53226357757587CF7A58904EB2D34AECF45071F0D49511BDCC29DB9B00A7BAB 777A65E4BD85912BE58FD9C29CB46F1F3D5D3652C241E337FDDCB6EB8B5EFF85 2F41AF20FC1C24A305C6094A2A1249E265497B48899C8C1E1625D8B6913240A2 0EC98BE3B2B9DCCE98D36DC80E8AC002F0BCAA6E0088CB0FACD86F30D8CD5689 80A9DBC7A23FADFB208309BA42115A46B7658DB3C390050345E2A2986B3CE28A 435E0C97AC8B60340A37E515011744018E1E1059949B36DF86B3BC016100A37D 58C4AC8A5CA7AEDDADD6795BE93C1DFD9DB9DC5CC51F600CE1E037FFCC8F6297 6361094E8C2AAFB178BF35D271F557C5B3CDB2F02A93EFD87D942643837B36CA 6B1CF860B673B5AB8371A0B9E52AED2EB28E71E0085F9F15A31659CFF0790458 FA5E267B0058BA9A91641359445482EC081F265CCB2C03035E7E5F4A51176A28 702F10F627589EBF3F8976327662F4AC11F29AAC63ACABEACEE73BAA0A3E62E4 3E774BFA708E2500BCE2FC2D7B7EAD4291E2948218EB654B0A6E43E5A780E990 A17EC6EBB98808AADAA58E22CA517884E9DD21DD236FB35CD42A50FB08F40E15 DB6D4FF91C9DB7B6C52A238F8BCD36672AC2AFFA846CE6A1AB101F1D86C99AD2 CD35E50DC5E00F0F962BEA5AE288A83754D72104E8FA2690FE4CDE29565575BA 24BF87D744985859A734152D231F0F1EC808B93350C80BCB93C6AFE222CD2CE0 7CE83656B855326CF2193DE4C85BB4F6AC9539F3BD8B92545888D24FB628545E 7C2181E8C276834CD0CFC19CA1851580FF232399EC293A8BE540E049B2461764 961A9375CC6AEE1BD5E7D56EE19F365090B59D466BEC59EA8FFBCDEE7E2566B8 751825694968298C0CCA2ABF4A635290705005BA5EB051A0B8BC43E8D7911C2B 4711A5CE2DB88C6C453722FC7D1E5BBEB91FC3143873875431A1127B0A40F9C7 01AD9F9EBEDC8F3979F5B66F4B813E19A4545CDE09F93734DEA4A5AC66A8F7F6 D861E610123FE740C26AF1EB21051230AAF91448412EFE359624E4F41BC22017 4802783DCE2351674C12B9D2B925BAB23101054EF49AFAA3D57405F6E7C9CFBD 2D2CFCB5A26FB66FC513A5A26202EA2EFB2BED0368639B5C45C4BD56540E6D78 1311BD6AE018655671F8749F0BEC0E078CDA8E33D15F4A7071271A152E2E6D3D 193E8ACA4F5B9001AA491C3BB59E191AA2FF72430C17C922B57C78D66285C36A 1D2F7383A480D27A7D5940FE75E553233819C83EA317749C3940EA8BD9CE59FF 681104AB3D8F79654DF48E1AF36F8DE05302A9E541BDBB7B82528C9D26FA5CA2 12844B77D0BE5E714B190116EF98D38481E81B4F6CF3BFC155FE57D1CB3F8F7F 1C49A88EAF9FDC9EACBC0630917C10A538E34E641E399CA3B07106F0905BE9B8 6375B861DD4CEAF05C6CE4F60F7CBF0F4B350D0F0B83015EA828FD5B17CA0123 8A7319A81BF1F55524C536F81D2A439E70024FF2B774402AC7A224D22BCCA741 331021346F0E4916A0FEB3680949C0DD318DAAE140FE9EC3DF0432549F7A720C 5782B84C1F9E48ABABEDD041ECB4D776CC4464A1AA3EE32835A15E1D5567D162 E11BF8F5E07FB600CAB1B70F79D9BBC1E1BFEE9F661155B796EE3E59A9C36B17 77145894EFF59E18FEDA37062DC9AE18AB75706D4C1A34DCD832B8A89E20C29B BEDDBEBCDF790A1CFD0C8D5868AB9F60C2546DB932414CD9F347B65F620D42D1 C2E7EA42363085E702E394157579C6081C98053D2BF4F01D52347C722F693EF9 82887C22C95A31B64C046933C3BE16FB7886806BAE82CB43622A4F8AC27A0B4B 7A439129967289B28D4C960C8EEBA8A602FB5A876FEF736A85F0C7CD4AD9CD8C DE7CC86738FC76301C1AAC71A0F64D58357888F5F0B2B458735DBD52DD67F80C AFE3AB7ED8C62BC934CD56AE18DC552BE94960C112111B6B832B8D46F3659B06 C7B1D64B74F89240CE7F47ED4E797AE141DB15B0ECA341585AA38521FA4191CF E74C2D548C0A9249346CC3FC49E694E0F31019BBED55CCE7D7D7C23CEE8CADDA F5D6253611FFC2E81E1F96224F47ADC76702BF93C5F9247D7C82EC79E676318C 5279FFFDE03C7706751B526FDCE4ED5C98098D81899904CD599205A7F5150FFA 6AECD54F4AD36C4C20283BA16D03A20A7E827463915216B908040BCD9AD0506C 149B038EB12A75DBF629BD44FE75A636A94A248EED30DF91C5B10073D3E39D55 F7167890AF7020FD206DE405CEE862B0DA41D8F2D352926AED2EFDDFC3AD3EAF 04776DE8471B7347C556B4A36F6828D3BF339E5CE08AF3CC7430D7BB3E6B9DE2 F1CE8A68FE217F9F72C084538B6DA85879D74510767AEC53FA27689DF211609B 9D4A3276967DB64BAC6067B88D744C92C36C1CD14E8E968D7FCA06A753EA0673 519DDC6571758651C45F8D03E370595D40823A14D3BB639CC14FD8E3E331477C 0433CBD3B55F99CA19B3EDD31E8F021492A91428D7D9223B62A49C362511DCDA 9052B590B0F29568731A0B6B25442A71A51DFF9976F3F401122CE95B95A6A3E3 034F77D8D6CFDE2401809B6AB27D9AA30C1C402AF4E65210CD53457D11943C11 9A16576E99E4B8253FFA765066CBDA98000958B08F6845BCFE6AE75DC394E033 D606D338091B6454318DE7036351A0C3D7E4B7042B9F8EB09732C9EAD9E5F797 411D357BF39A12CD4C01A2F37412473EEA2E44AFADC53013DE2538BAEBEA04DB 44A7889A38754BCD33907BE0E4686AC002354ABCC900DA73DFD62A52F4A6D087 28F4A5306D667C67098FE686407D92FFDC74B912DCCA3017DB4020B7B4215601 3121BCE458593742563A4A9782399F5B1045AAABBB2C8DC7381C78A5C6A46C25 FC35B6AF83E019FEF77236FDD60A70A8DAAF068799FCD097FDC28BC4F7EF2C2C F928C8448DEC62D2C84DF62FF0C666B64A5BC0941060BBB465F1A4EECC2399E1 FB62BA9F7D32D6B1A30797F2ABA24F1420A73896C240F7411B24E1F4DC3A56E5 573D30A5DC272CEEB6ABDE0DDB9D5BB55A540E674A71BD72A604C6268F2795D7 7B96B40047E6C98E46A5587D260C47C67B87F02E7F3425F874B1654C4AC0C72D 96CFE362D1E053B127B66D23A4F2E00BBA4AB299333C73E73246B7BC371A9D15 9EFC2693B49F5B4BC9AB3C5224DF55AEA326B57ECD7BE935054902B1D8C7C918 D8E868AEA0E92AAFB9E98EC447B9A8036A5B17CDADC7F7C01D03D4935D4138A0 7FCAB14B5143CD0E4EC736FBC17050DBFBAB8A6BCE62F2D4D4C067DAF7D2C7AD 9C3139C81F1E91B79C44FD176C96932AACB1E47C8F61362669A126945CAD8971 6298D1DFEB47847C2736C2711B2FC0A76CC160E7EBDEBD84B8026CBC117553D1 D192F77783CA18C2D34FA501E085A0CAAC6C4C80AF8B8A179EC67FB1DA286F31 C6F8B2AF5692A5502AA71E826C0630E5003ED4C49F700FC74B500705C2096453 9F0F8EF333BAAB26052A0AEDB925466F771564B4A53724F0E1FAC60ADD0C3E1C 57B34595DA24DF5B7BBD4DEF31D748483FE363E4F9756E2A7A53DE3B1B4B7E40 0416F653B956FE3B9A45B1A8CC0036C0352A6731669DEF8B9C9CD85463BA5AB2 F98BD944D6DF7F5201B1526D339E49C2DEC4C7267B37148148985DCC0E28B92C E5CC9C4E11E308F05A366F11B0E355DAA659F5606851BD40A474DCBEBC154FDF 4CA79F0903301491AEE07C994AAC099370BE331FC1367D1745681BF3A1F10EDB 3E18BB52471D19CD22E54616B52C2F28E9E692EC0C1B67A87B0D55AFDB648AD9 37B65E231C87B042251E90E4589B9BF27C8C822CDB7BCBB3AC65F3AE6941405E 119F26D8261CCB04CB96F12B50E4C7C8E5A398EA6C2F7A85CC3D01CF162B0BF9 B5D71F7646EC94B1807E939C5FCB402E626E4BDB0895C4965B1DC444FDBC5106 86D9D174686D0F4268683C5364B45BE7120F0C576EA7E6391C6DBE727E15D08D 3F3DDA46298E2C5622638E4C897325B031C5329B3853257BD3CC4AFC67242DDC 5B847418B985865444087E18EAEBBEFD4DEC189818153BBEE539F321C0FB2543 3C46E8770157E0CEBB5DEE82338FE5FC7DEBE2EED3F5131A1543603BCEFF3592 37F69D75AD2D105D8C79E51752ECC10496F476C1B11097836467826B264B0C20 94002B91431F79E169F73643BCEA6C706C5186C4F2FAD72CF4AC4D7FF39E231D C68B42B0EA92EC7FD901B3AF6B105213CB3E12E8FC44F651BF5FDDEB1264DFCF B052EA5AEA22F4D9331CB0A94B606C66F0EEF4487C305A7D729CE6D930CF9FC0 CC2AAC217AF7849B1126ED3A7B9BDAEDBAE8F010AA5C6E8B5140B80AE875C83E 8D0C19042FC9D51676C6576E4F2047F7B5EC139649D5C576DA7B007CC3533148 75C203E9482EDED1118B914026C730F3EADEFA1AFF5C4CE54C53AFED9BEB2ED2 DACCD741460C3F4899EE5A90F594080D64E8D71E2112475A9D012DB522AB6718 297A8E015111ED705DC06849E024C79B4520A19501A64382BCBF0414FC98C90A F917F007F51E26BD32950616E92F856B93138F9D11A474E4AB4A633D252920B8 96AC49EEDA5A1EDC641ACC1CE89AD6E790EA2A7426F22A7049D75D5D4F0B732C 0A5F49E8A398A16D0B667213390D49E86A1061BB42EB9981A6F937E117EB8C8A F9A870B2112535EC92AF1A4DD5654D1D699D10EA5BC4BA8F1AB17A47C472B1A6 943EC0B735A104ED258D0ACF99C92D227802A5BF39F5C8E0E06FA58AE63D5083 52353DD242E171D1A14D2B89205AC01F1424731B19510C5CA402E44183D7E831 0B7047988E50C8F8D30FD3C2DB17EA5FCD33FBB6832C5C90DE527B9B00B6ECD3 6C17578D556A657A1F47ACB08FB30ED3A13CCFC63109B3A02871778B7C387CE4 C186DBC0D5282AE22C783B7AAD1F6596C41B5EE32C1ED0D9217B8C6D33EA7E17 EE3040F800B3F42EFAC4487920C1402FA79D38A53D96B83CDC6361A1F0D25255 33CC6E01B71369D7F00FA0175A12BDE6EAE477A7B02A6CD57F50CBC30232D8E6 BE96774629266C27EDF92AC4B7C0FCDAB24D8538329249F62BFB00A9EF312049 7DE79D693E98D49D1D5D3C998AD964CD65524D492CFF5C6D750EC845CB1262C6 68AB9C7B69B36CBF3714F9F613564A6CEB4548F13ACBC58F6626DB55CCBAE07E 8190B67C48C6CAFCA720400532532941B75421515D689DE836CF50B226E15B14 7F566C7A21D1C8901D4DB0A942D05A2A13C77FA1E5DCA29C74798F78AD4F5709 E99D47A18B8FD3A79D808749D04EB035D0A87D5A324E92F61C36B9A35ED0FCE3 96423D0D98323B5CEE6EEFAFD99E6589149A8E92E9663609F7BE4AEDC48B054D 1484F89CD84A9932EDA61A4212CF21E2211C8770D94CB59720D527CC9485FD6C 0C4169533E1ED0C70BB34D3ECCCCEC845868E41D20218808FAC17A70ED17A603 FA14959405CF7BADDF1D319F39B469A999781F16CD5B689119D32E1397EB0592 68AEDD61EE9A7C9B91CA15C864CA19DBA83A4A48BDD4410E6A7A68A31BA7435D 75F5F3FAEC18859B92A6D237409600BE2E569B0EEADEA4E782224AA1A6AAACEB 359E762D46D9AFF708AAB06D3BA28DEDB5853070BFEC9D37BF0881055F581FD5 901BD2CF28ADDC0E19DD14E269997B4BF175AF23D92C163386CFBB2EEA24C6CA A960D129A5B0FB89BFA3278677C81AB87B50B77F2BC9A117B6D9A1E7A4E88D2C 15E29D5EF8B9946F8AF46A6FC752DD6332F44539E3C1D0CBA329C58DB3F88C5F 71A1853A6BA2945517430BCE4107470719E8E201787FF710E897AC7EA09C4273 A27806283FE39675C01CFEEF206FD2E43806017CA660A188230BCCFF484EE6C3 0D7DD072C60912A21EDF54B034587E8BF73EC6A11E53C8221373545FDDE2E24E B64B25C00C8F07331DA3205EE0F9C95E3461315BBB173B625BF88D34887BE04C 28EC0DC84A0F85673E7068DF8F68E25A80EC91C6FBA81EDC03EC28BCC7704EA9 F5E401CBE48E8BD52D4E2FA3A248B9F102EA537F43D0F86F2C58555359A3746F BDF73B8DE63AD992623CD63843D1AB52419C775C742F8176A17158F8E25E742C 96 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMR17 %!PS-AdobeFont-1.1: CMR17 1.0 %%CreationDate: 1991 Aug 20 16:38:24 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.0) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMR17) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle 0 def /isFixedPitch false def end readonly def /FontName /CMR17 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 67 /C put dup 84 /T put dup 97 /a put dup 101 /e put dup 103 /g put dup 104 /h put dup 111 /o put dup 114 /r put dup 116 /t put dup 121 /y put readonly def /FontBBox{-33 -250 945 749}readonly def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8 2BDBF16FBC7512FAA308A093FE5F075EA0A10A15B0ED05D5039DA41B32B16E95 A3CE9725A429B35BAD796912FC328E3A28F96FCADA20A598E247755E7E7FF801 BDB00E9B9B086BDBE6EDCF841A3EAFC6F5284FED3C634085BA4EE0FC6A026E96 96D55575481B007BF93CA452EE3F71D83FAAB3D9DEDD2A8F96C5840EAE5BE5DC 9322E81DFF5E250DEB386E12A49FC9FBF9B4C25C3283F3CEA74B8278A1B09DA7 E9AE4FBAAF23EDF5A3E07D39385D521547C3AAAB8EB70549756EBA8EF445AF4A 497CA924ACCC3DD5456F8E2C7E36946A5BF14E2E959895F7C94F49137256BE46 4A238684D52792234869EAE1A6D8ADF4E138B79472D2A90A6CA99E2394CC20CD 3841733046175B20CEBE372327BF13428EED6A3E2FDF84C2DBA4B0AD584EE9DF B51828D3B8F385846158C29C9AC3496CB9692DD10219697B2ED4D425C3957FD8 C4600D76E045C561216EF05D38177243C314877A69A1C22E3BEC611A2EE5A216 9B7C264CF6D1839DBBD78A40610F2C0D7C2FE09FFA9822FF55035AD52546970F 83EED2D30EABB1F303091EBC11A5379B12BB3F405E371519A53EA9D66174ED25 A2E55463EC71A97BE4C04B39E68112956117C8252DB6FB14AB64534B4BCD568B 246DB833982B38CDE7268BBF74B6B0C18091E1B1F87D32D66F4DD023D1F10D2A 7736A960F72AC01F733A11023832CD68FB6288A5977743F781214D8FA9C0C3F7 80001321D4397771F728FD9EE57CFE7D9192B887EC883EB1505068261DC40089 7B7D2820F06515CD74513521F6397FEAB3AD3572D9A8269430E407E357422461 1785FC2782047F4C0339D79B16862D939F3A37F78E4E2174E4FBF132539CB760 207999FF86F6A3EBE48EB0A1CA635450FDEEF79EB16D853F3BF4B41CD4A5757C 184ECF75F70F3D1A0FA7662D4B7B31E95BB38D3AC972A53A704C214EC359CAF1 7A0FE27C8A06E311C67EE6FC0B63502673FC49BC1913E0497A0FA45929B13D4E A73224E18128B20D1F39512012485B443EE130C5D22E3189676205C5D13D8266 66B1B25944E2D5FEB047B74454738B89DA5FA48644F7048648268A8A1F2FFEF3 19A2CD77BB47132C9644C2EA920C771CBC1240764405934715586EB7988E82BB 3D3E31CCFD5744DCB16450A799C9522C9035DBD72D95D711FCDBB3296063B3E2 58934FB2329240C1BAF00CD7D5EF3F56C750F9339729BC4FDB2EF009DE9C20E3 CFF85E7154590B8A8C06E99ABDBCCB47F86710584CD931F8FC72AF3484925CB3 2CE4FABA7563191724666005068C475C51EA844FDFD0585A7982F120A5B56062 E5D10052B71425D299A810FFBCD0B8EAFAA39D43FB4AFBD08F336B09CB656EB9 6400ABB3C8372BC8E3323DB0CDAA9BCF698493BCDFE9C066074A9A336B3FD2D8 36B6310443D7BFC79FA32D47F4F967F4E8A7B4B767C67ED14C3C4CC3AFEF2859 35EB99C213788C91AA72A1CE8C7363EB1E1C0659C3D3F529210698165015FBC3 EBC6498BCC2BEC3500174C198C5429DC9826916DE1EE9DC1DEC5789182043CC9 D15AC003BDAEAADABBE0168C0524293C06A688571264A5FB95160B3CBADA45DD 0E0F6A69ADE3A5BF1F7F9241B67C0979E9AA55A191FE649B8D4E43193681227D 783A2B37B2995DB91921ECB2B9173FDF02B346232CC8E4154918EE1DF568E92D FD408BD9E28B711D733366FD7D5C99CB363FF2B758601372D072C22D16D18AA7 695FB141B92FC30024B9CF090EBB25CDB00FAD3AFDF9B10232C08D0F005461A8 C2FA95660AA7098ECE59BD1413A775AF0C9D0C87F2E2F8D5CA4E1843E56BF263 DD573DE92657903F9101D5476B1A1109AF8510EFC84692FC43DE5F4F3424329C 3D682D10063F78035E76EA541A4E917E4B06C32E7BE50FB6E6CFEF6DB42DED69 9E129258ABB7F9A1D4BB6A3C65DCAA50CE0093EACB14ECEA9E23DBC3815CEBDE 59B120DC502017151AD67009D38D87256F641BBABAB1F404B14F5A89E5BBBBAF 7931F6A59ADC5E41AF0EFA2C2988DD62E8F0C5D5A0286DDBDDB22C7B62D66484 9C0E420520308A990D986E657E6CBFD6BFB69C397FB7D0EADA5B6D6311BC7E9E 1AF01C4AA51925BC450F025DAB542417409D6069DD769448B87B99D6773177A6 91E679E7D48D136BEAA4A79BCB91B2AF655932D33A18A546BF1FC214CFEF0790 2AE31F4BD18E1F6E0DD9BEFBD6FEB733AB4910DB22097A9DB650CF84F1890CD2 81A15A62F92906322804F9536A3106F8EB961D7DCC32400335E85A1DB67F3FD4 6CB81D4D7F88FEAC28D8B62ADFF3B5B7B3A8F4DCFCD45D27DEB2458864ABB3CF 0EF109B4D0B6E8670C480389C1D1803F84A14C9220EC44C5EC536EBC9C8F7B00 5E89AE9B37FE12EED5DACAC3DFFBE89872625E4ED957665EDF118B5A8289ACC7 DCDA4C6E232876D581280DA0B537DA991992A2A1CCB199798C58E90EB5981479 E3BBDE14D04656AE7F3B279F1EBF6349D727F24B69F39D06E317712F6313CC02 8B06957C0BEAD0BEB4CA616D5DA8EBAC6ECF40C92DB06B836EA273135D3C7B24 AB3A3666D0C2CC5224E00DC4CB4F88412571ED1E5300A4F3DDD5E7DF1C623DE1 A81ECA57EE4B7282C5F5F0933C1A8172DEE1A81389913B6078A7055A8035A9B5 54B6EA84EAD7103B7986075693F22B47DDEE5AED039B83048C1DBC4C5A3B6F83 2CAC55954FB6A5FF177E58E6AC994A76D071FD776603D09EE073C830E6251E83 CB7F2FCECF6401704BBB7531F271B11A688AFA64C5D8851FB9CCC05B158D623E 1414EB1A082FB6ED4A8CF65DC70B837D59E60559EAF7660E5099F8885B392C32 1D36557B76B9FF4D604BEC68BA1FCEA8EE232C37F38FE5B986FD0C3330D02073 55B686384F6C28B6B4426E7D66064A4F84A25D6810A0FCBE19622D302E349D9A 9196F39F16D49FC41188E1410A6C4F744BBFECDEE7BAC839B34DAA9E2CE0EA92 557B56FDFBA1B0C73B1995F58962AE6FE11735FDEC55D600E61985C2D9F223F6 050A2CBA3DBB896A93F550393CDAE32A72DC775797D52F60FC5E183D7EB7CE0B 9DEE90E341499838BF2AAEB952E1580563E6A6994F9537A9982B240624490FA9 239968327CD70878D659297D5F05A654C8A757E41F66DB2641EF9134E289B52C 4A4EBD3ED77269D77EFEA119403485CDE7EF543DB14B0C8FA82D3F186B7AD30E 8987B7711A499A4A9F04D5A64B9B8B39E5CC56511A3CD16BF5ABC4952023326B 44F5EA5E31BAE93581FEE0DCA552C9F8407331652496EBD119CD547C5BD0E1B9 879AAFC422DD5D69564836D1701CD314BA833953E002BDB22D7160B860E1D48B BD73164F1BE4BF3F23CED97F176FE31AE42D2FE54923737BC74F0DC53F1230B9 B2C52DE2EF879039F18D7385A0CB62266AD6C599C4776AEDC0B19F37AE804ACE 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont TeXDict begin 39139632 55387786 1000 600 600 (D:/Backup/wwwpublic/Cats.dvi) @start /Fa 198[48 48 48 48 1[48 1[48 48 48 48[{}8 83.022 /CMBX10 rf /Fb 128[42 5[44 44 60 44 46 32 33 33 44 46 42 46 69 23 44 25 23 46 42 25 37 46 37 46 42 12[60 46 2[57 65 62 1[52 65 1[30 2[54 2[60 59 62 1[39 4[23 11[23 1[23 31[46 12[{}43 83.022 /CMSL10 rf /Fc 133[37 44 2[44 46 32 33 33 44 46 42 46 69 23 44 1[23 46 42 25 37 46 37 46 42 3[23 1[23 3[85 62 62 60 46 61 1[57 1[62 76 52 1[43 30 62 65 54 57 63 60 59 62 6[23 42 42 42 42 1[42 42 42 42 42 1[23 28 23 24[42 19[{}59 83.022 /CMR10 rf /Fd 171[44 8[52 75[{}2 66.4176 /MSBM7 rf /Fe 143[50 35[66 76[{}2 99.6264 /EUFM10 rf /Ff 154[39 101[{}1 66.4176 /CMEX10 rf /Fg 252[77 3[{}1 99.6264 /MSAM10 rf /Fh 154[55 2[55 1[94 6[127 7[94 3[151 75[46 46{}8 99.6264 /CMEX10 rf /Fi 139[32 1[34 2[41 45 1[23 2[23 2[25 37 1[36 15[45 61 2[61 1[77 5[64 51 70[{}15 66.4176 /CMBX8 rf /Fj 205[30 30 30 6[24 24 40[{}5 49.8132 /CMR6 rf /Fk 143[32 31 3[33 9[34 8[50 1[36 8[58 9[44 46 46 65[{}10 49.8132 /CMMI6 rf /Fl 184[37 44 2[34 18[18 47[48{}5 49.8132 /CMSY6 rf /Fm 165[66 5[66 1[72 77 2[72 2[77 75[{}6 99.6264 /MSBM10 rf /Fn 240[133 133 133 133 12[{}4 83.022 /LCIRCLE10 rf /Fo 133[83 6[83 1[83 6[83 83 15[83 83 2[42 2[83 83 83 6[83 83 6[42 83 83 8[83 4[83 3[83 2[83 83 13[83 1[83 6[83 1[83 4[42 1[83 83 6[42 83{}30 83.022 /LINE10 rf /Fp 134[35 40 51 1[41 25 33 32 1[36 34 43 62 1[37 29 24 41 34 34 33 3[37 6[48 41 58 1[41 1[41 43 53 1[45 1[56 68 48 60 1[31 1[55 45 52 58 50 53 53 3[35 1[20 24[33 1[46 1[42 4[41 31 1[42 2[25 7[45 11[{}49 66.4176 /CMMI8 rf /Fq 141[59 53 7[27 27 23[49 2[84 4[60 42 50 1[55 37 16[47 1[19 37[55 6[35 55 20 55{}18 66.4176 /CMSY8 rf /Fr 139[27 1[28 37 1[35 1[59 20 2[20 1[35 3[31 39 35 3[20 1[20 12[53 65 7[48 3[53 13[35 35 35 35 4[55 1[27 27 6[20 24[51 6[59 1[{}27 66.4176 /CMR8 rf /Fs 133[45 48 55 70 47 56 35 46 44 43 49 47 58 85 29 51 40 33 56 47 48 45 51 42 41 51 6[67 57 81 92 57 66 57 60 74 77 63 75 78 94 66 83 54 43 81 77 63 72 81 70 74 73 2[76 49 76 27 27 18[64 4[46 61 63 1[58 1[42 2[55 43 48 59 57 1[34 1[48 2[43 1[55 62 11[{}73 99.6264 /CMMI12 rf /Ft 141[83 75 2[50 3[28 39 39 50 50 7[66 1[66 66 5[62 4[69 1[82 120 1[76 68 54 84 59 72 53 77 52 65 80 5[50 66 55 55 0 0 2[66 66 6[61 1[100 100 6[100 100 5[77 1[77 2[77 77 1[77 2[50 50 3[77 6[50 77 28 77{}51 99.6264 /CMSY10 rf /Fu 133[40 47 45 65 45 52 32 40 41 45 50 50 55 80 25 45 30 30 50 45 30 45 50 45 45 50 7[72 1[97 1[72 70 55 2[66 75 72 87 61 75 1[38 72 75 64 66 74 70 1[72 5[30 30 2[50 2[50 1[50 50 50 1[30 35 30 1[50 40 40 6[30 19[57 55 12[{}61 99.6264 /CMTI12 rf /Fv 132[56 50 59 59 81 59 62 44 44 46 59 62 56 62 93 31 59 34 31 62 56 34 51 62 50 62 54 7[85 1[116 85 86 78 62 84 84 77 84 88 106 67 88 1[42 88 88 70 74 86 81 80 85 1[53 4[31 6[56 56 56 56 1[31 37 3[44 44 27[62 10[93 1[{}62 99.6264 /CMBX12 rf /Fw 133[34 41 41 1[41 43 30 30 30 41 43 38 43 64 21 1[23 21 43 38 23 34 43 34 43 38 7[58 3[58 55 43 57 1[52 1[58 70 48 2[28 1[60 50 52 1[55 1[58 7[38 38 38 38 38 38 38 38 38 38 48[{}49 74.7198 /CMR9 rf /Fx 138[61 59 46 60 1[56 63 61 74 51 1[42 30 61 1[53 56 62 59 58 61 7[81 4[78 1[80 2[84 81 1[68 2[40 81 1[71 74 1[78 77 81 65[{}31 99.6264 /CMCSC10 rf /Fy 132[49 43 51 51 70 51 54 38 38 38 51 54 49 54 81 27 51 30 27 54 49 30 43 54 43 54 49 27 2[27 49 27 1[73 1[100 73 73 70 54 72 1[66 76 73 89 61 76 50 35 73 77 64 66 75 70 69 73 1[46 1[76 1[27 27 49 49 49 49 49 49 49 49 49 49 1[27 33 27 76 49 38 38 27 76 3[49 27 18[81 54 54 57 2[70 6[81 1[{}85 99.6264 /CMR12 rf /Fz 140[46 46 2[59 5[33 1[59 36 52 3[59 16[80 11[89 1[83 19[33 46[{}12 119.552 /CMR12 rf /FA 134[83 4[61 1[61 2[79 6[88 79 1[70 3[79 12[115 16[115 67[{}10 172.188 /CMR17 rf end %%EndProlog %%BeginSetup %%Feature: *Resolution 600dpi TeXDict begin %%PaperSize: A4 end %%EndSetup %%Page: 1 1 TeXDict begin 1 0 bop Black Black Black Black 1362 701 a FA(Category)52 b(Theory)1423 1040 y Fz(Prof.)37 b(Dr.)h(B.)h(P)m (areigis)1454 1285 y Fy(Summer)34 b(Semester)g(2004)1657 1530 y(June)f(14,)f(2004)1709 2570 y Fx(Contents)100 2744 y Fy(In)m(tro)s(duction)3218 b(3)100 2860 y(1.)97 b(F)-8 b(oundations)3056 b(6)100 2976 y(1.1.)97 b(Graphs)3192 b(6)100 3093 y(1.2.)97 b(Monoids)3142 b(8)100 3209 y(1.3.)97 b(Categories)3009 b(12)100 3325 y(1.4.)97 b(Constructions)34 b(on)f(categories)2276 b(18)100 3441 y(1.4.1.)97 b(Slice)33 b(categories)2733 b(18)100 3558 y(1.4.2.)97 b(Sub)s(categories)2795 b(20)100 3674 y(1.4.3.)97 b(The)33 b(pro)s(duct)g(of)f(categories)2283 b(20)100 3790 y(1.4.4.)97 b(The)33 b(dual)g(of)f(a)g(category)2408 b(21)100 3906 y(1.4.5.)97 b(The)33 b(free)g(category)g(generated)h(b)m (y)f(a)f(graph)1692 b(21)100 4023 y(1.5.)97 b(F)-8 b(unctors)3083 b(22)100 4139 y(1.6.)97 b(Sp)s(ecial)33 b(t)m(yp)s(es)h(of)e(functors) 2407 b(24)100 4255 y(1.6.1.)97 b(Underlying)34 b(functors)2529 b(24)100 4371 y(1.6.2.)97 b(F)-8 b(ree)32 b(functors)2821 b(25)100 4487 y(1.6.3.)97 b(P)m(o)m(w)m(erset)35 b(functors)2622 b(26)100 4604 y(1.6.4.)97 b(Hom)33 b(functors)g(or)f(Mor)h(functors) 2092 b(26)100 4720 y(1.7.)97 b(Natural)32 b(transformations)2423 b(27)100 4836 y(1.7.1.)97 b(Natural)32 b(transformations)h(b)s(et)m(w)m (een)i(functors)e(I)1525 b(27)100 4952 y(1.7.2.)97 b(Diagrams)2971 b(30)100 5069 y(1.7.3.)97 b(Comm)m(utativ)m(e)34 b(diagrams)2383 b(31)100 5185 y(1.7.4.)97 b(Graph)32 b(homomorphisms)i(b)m(y)g(comm)m (utativ)m(e)g(diagrams)1243 b(33)100 5301 y(1.7.5.)97 b(Asso)s(ciativit)m(y)34 b(b)m(y)g(comm)m(utativ)m(e)h(diagrams)1690 b(33)100 5417 y(1.7.6.)97 b(Natural)32 b(transformations)2347 b(35)p Black Black eop end %%Page: 2 2 TeXDict begin 2 1 bop Black 0 -99 a Fw(2)p Black 100 100 a Fy(1.7.7.)97 b(Natural)32 b(isomorphisms)2443 b(38)100 217 y(1.7.8.)97 b(Natural)32 b(transformations)h(b)s(et)m(w)m(een)i (functors)e(I)s(I)1487 b(39)100 333 y(1.7.9.)97 b(Natural)32 b(transformations)h(of)f(graphs)1921 b(42)100 449 y(1.7.10.)97 b(Com)m(bining)33 b(natural)g(transformations)g(and)f(functors)1255 b(43)100 565 y(2.)97 b(Represen)m(table)35 b(functors)e(and)g(the)g(Y) -8 b(oneda)33 b(Lemma)1504 b(45)100 681 y(2.1.)97 b(Represen)m(table)35 b(functors)2481 b(45)100 798 y(2.2.)97 b(T)-8 b(erminal)34 b(and)e(initial)h(ob)5 b(jects)2267 b(46)100 914 y(2.3.)97 b(The)33 b(extension)i(principle)2454 b(47)100 1030 y(2.4.)97 b(Isomorphisms)2871 b(48)100 1146 y(2.5.)97 b(Monomorphisms)34 b(and)f(epimorphisms)1944 b(50)100 1263 y(2.6.)97 b(Sub)s(ob)5 b(jects)2988 b(54)100 1379 y(2.7.)97 b(Pro)s(ducts)3070 b(55)100 1495 y(2.8.)97 b(Equalizers)3017 b(61)100 1611 y(2.9.)97 b(Univ)m(ersal)34 b(elemen)m(ts)2658 b(66)100 1728 y(2.10.)97 b(The)33 b(Y)-8 b(oneda)33 b(Lemma)2542 b(71)100 1844 y(2.11.)97 b(Algebraic)33 b(Structures)2530 b(74)100 1960 y(2.12.)97 b(Limits)3132 b(79)100 2076 y(3.)97 b(Adjoin)m(t)33 b(functors)g(and)g(monads)2282 b(84)100 2192 y(3.1.)97 b(Adjoin)m(t)33 b(functors)2754 b(84)100 2309 y(3.2.)97 b(Monads)33 b(or)f(T)-8 b(riples)2679 b(86)100 2425 y(3.3.)97 b(F)-8 b(actorizations)32 b(of)h(a)f(monad)2343 b(87)100 2541 y(3.4.)97 b(Algebraic)33 b(Categories)2573 b(89)100 2657 y(3.5.)97 b(More)33 b(facts)g(ab)s(out)f(adjoin)m(t)g (functors)2017 b(89)100 2774 y(References)3255 b(90)p Black Black eop end %%Page: 3 3 TeXDict begin 3 2 bop Black 1740 -99 a Fw(In)n(tro)r(duction)1701 b(3)p Black 1611 100 a Fx(Intr)n(oduction)p Black 0 275 a Fy(0.0.1.)28 b Fv(Remark)33 b Fy(\()p Fv(History)-9 b(.\).)p Black 37 w Fy({)28 b(1945)f(Categories)i(\014rst)f(app)s(ear)h (\\o\016cially")f(in)h(S.)f(Eilen)m(b)s(erg)h(and)g(S.)0 391 y(Mac)24 b(Lane's)h(pap)s(er)f(\\General)f(theory)i(of)e(natural)g (equiv)-5 b(alences",)29 b(\(T)-8 b(rans.)41 b(AMS)24 b(58,)h(1945,)g(231-294\).)0 507 y({)g(1950's)h(The)g(main)g (applications)h(w)m(ere)g(originally)f(in)g(the)g(\014elds)h(of)f (algebraic)g(top)s(ology)-8 b(,)26 b(particularly)0 623 y(homology)33 b(theory)-8 b(,)33 b(and)g(abstract)f(algebra.)0 740 y({)41 b(1960's)f(Grothendiec)m(k)j(et)e(al.)69 b(b)s(egan)41 b(using)h(category)f(theory)h(with)g(great)f(success)i(in)f(algebraic)0 856 y(geometry)-8 b(.)0 972 y({)41 b(1970's)f(La)m(wv)m(ere)j(and)e (others)h(b)s(egan)f(applying)g(categories)h(to)f(logic,)i(rev)m (ealing)f(some)g(deep)g(and)0 1088 y(surprising)34 b(connections.)0 1205 y({)42 b(1980's)h(Applications)h(b)s(egan)e(app)s(earing)h(in)g (computer)g(science,)48 b(linguistics,)f(cognitiv)m(e)d(science,)0 1321 y(philosoph)m(y)-8 b(,)34 b(.)16 b(.)g(.)0 1437 y({)48 b(1990's)h(Applications)h(to)e(theoretical)i(ph)m(ysics)h({)e (quan)m(tum)h(groups,)j(algebraic)c(quan)m(tum)h(\014eld)0 1553 y(theories,)34 b(higher)f(category)g(theory)-8 b(.)p Black 0 1930 a(0.0.2.)32 b Fv(Remark)38 b Fy(\()p Fv(Wh)m(y)f(do)h(w)m (e)f(study)h(categories?\).)p Black Black 190 w Fy(\(1\))p Black 41 w(Abundance:)i(Categories)23 b(ab)s(ound)315 2047 y(in)28 b(mathematics)h(and)f(in)g(related)g(\014elds)h(suc)m(h)g (as)f(computer)h(science.)44 b(Categories)29 b(are)f(formed)315 2163 y(e.g.)43 b(b)m(y)p Black 347 2279 a(\(a\))p Black 41 w(V)-8 b(ector)33 b(spaces,)p Black 342 2395 a(\(b\))p Black 41 w(Ab)s(elian)g(groups,)p Black 352 2512 a(\(c\))p Black 42 w(groups,)p Black 342 2628 a(\(d\))p Black 41 w(sets,)p Black 352 2744 a(\(e\))p Black 42 w(monoids,)p Black 359 2860 a(\(f)7 b(\))p Black 41 w(semigroups,)p Black 347 2976 a(\(g\))p Black 41 w(top)s(ological)32 b(spaces,)p Black 342 3093 a(\(h\))p Black 41 w(Banac)m(h)h(spaces,)p Black 369 3209 a(\(i\))p Black 41 w(manifolds,)p Black 366 3325 a(\(j\))p Black 41 w(ordered)g(sets,)p Black 344 3441 a(\(k\))p Black 42 w(graphs,)p Black 369 3558 a(\(l\))p Black 41 w(\(computer-\)languages,)p Black 315 3674 a(\(m\))p Black 41 w(automata.)p Black 148 3790 a(\(2\))p Black 42 w(Insigh)m(t)g(in)m(to)g(similar)g(constructions:)p Black 347 3906 a(\(a\))p Black 41 w(pro)s(ducts,)p Black 342 4023 a(\(b\))p Black 41 w(free)g(ob)5 b(jects,)p Black 352 4139 a(\(c\))p Black 42 w(direct)34 b(sums,)p Black 342 4255 a(\(d\))p Black 41 w(k)m(ernel)g(and)f(cok)m(ernels,)p Black 352 4371 a(\(e\))p Black 42 w(limits,)p Black 359 4487 a(\(f)7 b(\))p Black 41 w(asso)s(ciated)39 b(groups)f(and)g (algebras,)i(suc)m(h)g(as)e(homology)g(groups,)i(Grothendiec)m(k)f (rings,)513 4604 y(fundamen)m(tal)34 b(groups,)f(asso)s(ciativ)m(e)h (en)m(v)m(elop)s(es,)h(compacti\014cations,)f(completions.)p Black 148 4720 a(\(3\))p Black 42 w(Category)39 b(theory)h(pro)m(v)m (es)h(that)e(all)g(information)g(ab)s(out)g(a)f(mathematical)i(ob)5 b(ject)40 b(can)g(also)315 4836 y(b)s(e)33 b(dra)m(wn)h(from)f(the)g (kno)m(wledge)j(of)c(all)h(structure)i(preserving)g(maps)f(in)m(to)f (this)h(ob)5 b(ject.)46 b(The)315 4952 y(kno)m(wledge)34 b(of)f(the)g(maps)h(is)f(equiv)-5 b(alen)m(t)35 b(to)d(the)i(kno)m (wledge)g(of)f(the)g(in)m(terior)g(structure)i(of)d(an)315 5069 y(ob)5 b(ject.)44 b(\\F)-8 b(unctions)33 b(are)f(ev)m(erywhere!")p Black 148 5185 a(\(4\))p Black 42 w(Category)46 b(theory)g(is)h(a)e (language)h(that)g(allo)m(ws)h(to)e(express)j(similar)f(prop)s(erties)g (and)f(phe-)315 5301 y(nomena)f(that)g(o)s(ccur)g(in)g(di\013eren)m(t)h (mathematical)f(areas.)81 b(It)45 b(helps)h(to)e(recognize)i(certain) 315 5417 y(prop)s(erties)33 b(and)g(notions)g(to)f(ha)m(v)m(e)i(a)e (general)h(description)h(and)f(to)f(b)s(e)h(\\categorical".)43 b(E.g:)p Black Black eop end %%Page: 4 4 TeXDict begin 4 3 bop Black 0 -99 a Fw(4)1702 b(In)n(tro)r(duction)p Black Black 347 100 a Fy(\(a\))p Black 41 w(eac)m(h)35 b(\014nite)g(dimensional)h(v)m(ector)f(space)g(is)g(isomorphic)g(to)f (its)h(dual)f(and)g(hence)i(also)e(to)513 217 y(its)28 b(double)g(dual.)42 b(The)28 b(second)h(corresp)s(ondence)g(is)f (considered)h(\\natural")d(and)i(the)f(\014rst)513 333 y(is)34 b(not.)45 b(Category)33 b(theory)h(can)f(explain)h(what)g(the)f (notion)g(of)g(\\natural")f(really)i(means.)513 449 y(This)g(w)m(as)f (in)g(fact)g(the)g(starting)f(p)s(oin)m(t)h(of)f(category)h(theory)-8 b(.)p Black 342 565 a(\(b\))p Black 41 w(T)g(op)s(ological)29 b(spaces)i(can)f(b)s(e)f(de\014ned)i(in)f(man)m(y)g(di\013eren)m(t)h(w) m(a)m(ys,)h(e.g.)42 b(via)30 b(op)s(en)f(sets,)j(via)513 681 y(closed)d(sets,)h(via)e(neigh)m(b)s(orho)s(o)s(ds,)h(via)e(con)m (v)m(ergen)m(t)j(\014lters,)g(and)d(via)h(closure)h(op)s(erations.)513 798 y(Wh)m(y)49 b(do)e(these)h(de\014nitions)h(describ)s(e)g(\\essen)m (tially)g(the)f(same")g(ob)5 b(jects?)89 b(Category)513 914 y(theory)33 b(pro)m(vides)i(an)d(answ)m(er)i(via)f(the)g(notion)g (of)f Fu(c)-5 b(oncr)g(ete)34 b(isomorphism)p Fy(.)p Black 352 1030 a(\(c\))p Black 42 w(Initial)43 b(structures,)j(\014nal) d(structures,)j(and)c(factorization)g(structures)i(o)s(ccur)f(in)f(man) m(y)513 1146 y(di\013eren)m(t)j(situations.)78 b(Category)44 b(theory)g(allo)m(ws)h(one)f(to)f(form)m(ulate)h(and)g(in)m(v)m (estigate)513 1263 y(suc)m(h)34 b(concepts)g(with)g(an)e(appropriate)h (degree)g(of)f(generalit)m(y)-8 b(.)p Black 148 1379 a(\(5\))p Black 42 w(Category)37 b(theory)g(o\013ers)h(man)m(y)g(con)m (v)m(enien)m(t)h(sym)m(b)s(ols)g(that)e(allo)m(w)g(one)g(to)g(quic)m (kly)i(p)s(erform)315 1495 y(the)33 b(necessary)h(calculations:)p Black 347 1611 a(\(a\))p Black 41 w(comm)m(utativ)m(e)h(diagrams,)p Black 342 1728 a(\(b\))p Black 41 w(braid)e(diagrams,)p Black 352 1844 a(\(c\))p Black 42 w(computations)h(with)f(sym)m(b)s (olic)h(elemen)m(ts.)p Black 148 1960 a(\(6\))p Black 42 w(T)-8 b(ransp)s(ortation)33 b(of)h(problems)h(from)e(one)i(area)e (of)h(mathematics)h(\(via)f(suitable)h(functors\))f(to)315 2076 y(another)d(area,)h(where)h(solutions)f(are)g(sometimes)h(easier)f (and)g(then)g(a)f(transp)s(ort)h(bac)m(k)g(to)g(the)315 2192 y(original)i(area)g(\(sometimes)j(via)e(adjoin)m(t)f(functors\).) 50 b(F)-8 b(or)34 b(example,)j(algebraic)e(top)s(ology)f(can)315 2309 y(b)s(e)40 b(describ)s(ed)j(as)e(an)f(in)m(v)m(estigation)j(of)d (top)s(ological)g(problems)i(\(via)f(suitable)h(functors\))f(b)m(y)315 2425 y(algebraic)32 b(metho)s(ds,)i(suc)m(h)g(as)f(asso)s(ciated)g (homotop)m(y)g(groups.)p Black 148 2541 a(\(7\))p Black 42 w(Dualit)m(y:)51 b(The)37 b(concept)g(of)f(category)g(is)h(w)m (ell-balanced,)i(whic)m(h)e(allo)m(ws)h(an)e(economical)h(and)315 2657 y(useful)c Fu(duality)p Fy(.Th)m(us)i(is)e(category)g(theory)h (the)f(\\t)m(w)m(o)g(for)f(the)h(price)h(of)e(one")h(principle)h (holds:)315 2774 y(ev)m(ery)g(concept)g(is)f(t)m(w)m(o)g(concepts,)h (and)f(ev)m(ery)h(result)g(is)f(t)m(w)m(o)g(results.)p Black 148 2890 a(\(8\))p Black 42 w(Category)d(theory)g(pro)m(vides)h (the)f(means)h(to)e(distinguish)j(b)s(et)m(w)m(een)f(general)f (problems)h(\(\\cate-)315 3006 y(gorical")24 b(problems)j(that)e(ma)m (y)h(o)s(ccur)g(in)g(man)m(y)g(di\013eren)m(t)g(areas)g(in)g(similar)g (form\))f(and)g(sp)s(eci\014c)315 3122 y(problems)33 b(\(that)g(a)f(closely)i(link)m(ed)g(to)f(the)g(v)m(ery)h(sp)s(ecial)f (area)g(and)f(ob)5 b(ject)34 b(one)e(is)i(studying\).)p Black 0 3325 a(0.0.3.)e Fv(Remark)38 b Fy(\()p Fv(Quotes\).)p Black Black 190 w Fy(\(1\))p Black 41 w(\(Steenro)s(d\))29 b(\\Category)f(theory)h(is)f(generalized)i(abstract)e(non-)315 3441 y(sense.")p Black 148 3558 a(\(2\))p Black 42 w(\(Hoare\))46 b(\\Category)h(theory)g(is)h(quite)f(the)g(most)h(general)f(and)f (abstract)h(branc)m(h)h(of)e(pure)315 3674 y(mathematics.)d(The)30 b(corollary)e(of)g(a)h(high)f(degree)i(of)e(generalit)m(y)i(and)e (abstraction)h(is)g(that)g(the)315 3790 y(theory)h(giv)m(es)h(almost)f (no)f(assistance)j(in)d(solving)i(the)f(more)g(sp)s(eci\014c)h (problems)g(within)f(an)m(y)g(of)315 3906 y(the)35 b(sub)s(disciplines) j(to)d(whic)m(h)h(it)f(applies.)52 b(It)35 b(is)g(a)g(to)s(ol)f(for)g (the)i(generalist,)g(of)f(little)g(b)s(ene\014t)315 4023 y(for)d(the)h(practitioner.")p Black 148 4139 a(\(3\))p Black 42 w(\(Barr-W)-8 b(ells\))39 b("`Categories)h(originally)f(arose) g(in)h(mathematics)g(out)f(of)g(the)g(need)i(of)d(a)h(for-)315 4255 y(malism)32 b(to)g(describ)s(e)h(the)f(passage)h(from)e(one)h(t)m (yp)s(e)h(of)e(mathematical)h(structure)h(to)f(another.)315 4371 y(A)k(category)h(in)g(this)h(w)m(a)m(y)g(represen)m(ts)h(a)e(kind) g(of)f(mathematics,)k(and)d(ma)m(y)g(b)s(e)g(describ)s(ed)i(as)315 4487 y Fu(c)-5 b(ate)g(gory)34 b(as)h(mathematic)-5 b(al)34 b(worksp)-5 b(ac)g(e)p Fy(.)414 4604 y(A)26 b(category)g(is)h(also)f(a) f Fu(mathematic)-5 b(al)28 b(structur)-5 b(e)p Fy(.)42 b(As)26 b(suc)m(h,)j(it)d(is)g(a)g(common)g(generalization)315 4720 y(of)k(b)s(oth)h(ordered)h(sets)g(and)f(monoids)h(\(the)f(latter)g (are)g(a)g(simple)i(t)m(yp)s(e)f(of)e(algebraic)i(structure)315 4836 y(that)f(include)i(transition)e(systems)j(as)e(examples\),)i(and)d (questions)i(motiv)-5 b(ated)32 b(b)m(y)g(those)h(top-)315 4952 y(ics)39 b(often)g(ha)m(v)m(e)h(in)m(teresting)g(answ)m(ers)h(for) d(categories.)63 b(This)40 b(is)f(category)g(as)g(mathematical)315 5069 y(structure.)414 5185 y(Finally)-8 b(,)40 b(a)e(category)g(can)h (b)s(e)f(seen)h(as)g(a)e(structure)j(that)e(formalizes)h(a)e (mathematician's)315 5301 y(description)43 b(of)f(a)f(t)m(yp)s(e)i(of)f (structure.)73 b(This)43 b(is)g(the)f(role)g(of)g(category)g(as)g (theory)-8 b(.)73 b(F)-8 b(ormal)315 5417 y(descriptions)40 b(in)e(mathematical)h(logic)f(are)g(traditionally)h(giv)m(en)g(as)f (formal)g(languages)g(with)p Black Black eop end %%Page: 5 5 TeXDict begin 5 4 bop Black 1740 -99 a Fw(In)n(tro)r(duction)1701 b(5)p Black 315 100 a Fy(rules)35 b(for)g(forming)f(terms,)j(axioms)f (and)f(equations.)51 b(Algebraists)36 b(long)f(ago)f(in)m(v)m(en)m(ted) j(a)e(for-)315 217 y(malism)25 b(based)g(on)f(tuples,)j(the)d(metho)s (d)h(of)f(signatures)h(and)f(equations,)j(to)d(describ)s(e)i(algebraic) 315 333 y(structures.)44 b(Category)31 b(theory)h(pro)m(vides)g (another)f(approac)m(h:)43 b Fu(the)34 b(c)-5 b(ate)g(gory)33 b(is)g(a)g(the)-5 b(ory)34 b(and)315 449 y(functors)g(with)h(that)g(c) -5 b(ate)g(gory)35 b(as)g(domain)e(ar)-5 b(e)35 b(mo)-5 b(dels)34 b(of)g(the)h(the)-5 b(ory.)p Fy("')p Black 148 565 a(\(4\))p Black 42 w(\(Stanford)46 b(Encyclop)s(edia)j(of)d (Philosoph)m(y\))j(\\Categories,)i(functors,)g(natural)c(transforma-) 315 681 y(tions,)28 b(limits)f(and)f(colimits)i(app)s(eared)e(almost)h (out)f(of)g(no)m(where)h(in)g(1945)e(in)i(Eilen)m(b)s(erg)g(&)f(Mac)315 798 y(Lane's)32 b(pap)s(er)f(en)m(titled)i("General)f(Theory)g(of)f (Natural)h(Equiv)-5 b(alences".)45 b(W)-8 b(e)32 b(said)g("almost",)315 914 y(b)s(ecause)f(when)g(one)f(lo)s(oks)g(at)g(their)h(1942)e(pap)s (er)h("Group)f(Extensions)j(and)e(Homology",)h(one)315 1030 y(disco)m(v)m(ers)43 b(sp)s(eci\014c)f(functors)f(and)f(natural)h (transformations)f(at)h(w)m(ork,)i(limited)e(to)g(groups.)315 1146 y(In)32 b(fact,)h(it)f(w)m(as)h(basically)h(the)f(need)g(to)g (clarify)f(and)h(abstract)g(from)f(their)h(1942)e(results)j(that)315 1263 y(Eilen)m(b)s(erg)42 b(&)g(Mac)g(Lane)g(came)g(up)g(with)g(the)g (notions)g(of)f(category)h(theory)-8 b(.)72 b(The)42 b(cen)m(tral)315 1379 y(notion)34 b(for)f(them,)j(as)e(the)h(title)f (indicates,)j(w)m(as)e(the)f(notion)h(of)e(natural)h(transformation.)49 b(In)315 1495 y(order)40 b(to)h(giv)m(e)h(a)e(general)h(de\014nition)h (of)e(the)i(latter,)h(they)e(de\014ned)h(the)g(notion)e(of)h(functor,) 315 1611 y(b)s(orro)m(wing)h(the)g(terminology)h(from)f(Carnap,)j(and)d (in)g(order)h(to)e(giv)m(e)j(a)d(general)i(de\014nition)315 1728 y(of)35 b(functor,)j(they)f(de\014ned)h(the)f(notion)f(of)g (category)-8 b(,)38 b(b)s(orro)m(wing)e(this)h(time)g(from)f(Kan)m(t)h (and)315 1844 y(Aristotle.")p Black Black eop end %%Page: 6 6 TeXDict begin 6 5 bop Black 0 -99 a Fw(6)1702 b(In)n(tro)r(duction)p Black 1574 100 a Fy(1.)49 b Fx(F)m(ound)n(a)-7 b(tions)0 275 y Fy(1.1.)49 b Fv(Graphs.)p Black 0 456 a Fy(1.1.1.)32 b Fv(De\014nition.)p Black 43 w Fy(A)g Fu(\(dir)-5 b(e)g(cte)g(d\))34 b(gr)-5 b(aph)40 b Fy(\()p Fu(digr)-5 b(aph)p Fy(\))31 b(is)i(a)f(monad)1657 625 y Ft(G)i Fy(:=)27 b(\()p Fs(V)5 b(;)17 b(E)6 b(;)17 b(\031)t Fy(\))0 794 y(consisting)29 b(of)e(the)i(set)f Fs(V)49 b Fy(of)27 b Fu(vertic)-5 b(es)8 b Fy(,)29 b(the)f(set)h Fs(E)k Fy(of)28 b Fu(e)-5 b(dges)27 b Fy(or)g Fu(arr)-5 b(ows)27 b Fy(and)h(the)g(map)g(to)f(the) i(endp)s(oin)m(ts)0 910 y Fs(\031)37 b Fy(:)d Fs(E)39 b Ft(\000)-60 b(!)33 b Fs(V)46 b Ft(\002)25 b Fs(V)5 b(:)36 b Fy(F)-8 b(or)36 b(eac)m(h)g(edge)h Fs(f)44 b Ft(2)34 b Fs(E)42 b Fy(the)36 b(v)m(ertices)i Fs(A)e Fy(and)g Fs(B)41 b Fy(with)c Fs(\031)t Fy(\()p Fs(f)11 b Fy(\))32 b(=)i(\()p Fs(A;)17 b(B)5 b Fy(\))35 b(are)h(called)0 1026 y Fu(sour)-5 b(c)g(e)35 b(and)f(tar)-5 b(get)42 b Fy(or)33 b Fu(domain)g(and)h(c)-5 b(o)g(domain)32 b Fy(of)g Fs(f)11 b Fy(.)43 b(W)-8 b(e)33 b(write)g(the)g(edge)g Fs(f)43 b Fy(also)33 b(as)g Fs(f)38 b Fy(:)28 b Fs(A)g Ft(\000)-60 b(!)28 b Fs(B)5 b Fy(.)0 1143 y(Later)27 b(on)h(w)m(e)h(will)f(prefer)g(the)g(notation)f Ft(G)1586 1158 y Fr(0)1653 1143 y Fy(for)g(the)h(set)h Fs(V)49 b Fy(of)27 b(v)m(ertices)j(and)d Ft(G)2911 1158 y Fr(1)2979 1143 y Fy(for)g(the)h(set)g Fs(E)34 b Fy(of)27 b(edges.)0 1259 y(There)34 b(ma)m(y)g(b)s(e)f(one)h(or)e(more)i(arro)m(ws)g({)e (or)h(none)h(at)e(all)h({)g(with)h(giv)m(en)g(no)s(des)g(as)f(source)h (and)f(target.)0 1375 y(Moreo)m(v)m(er,)39 b(the)d(source)h(and)g (target)e(of)h(a)g(giv)m(en)h(arro)m(w)f(need)h(not)f(b)s(e)h (distinct.)55 b(An)37 b(arro)m(w)f(with)h(the)0 1491 y(same)c(source)h(and)f(target)f(no)s(de)h(will)g(b)s(e)g(called)g(an)g Fu(endo)-5 b(arr)g(ow)31 b Fy(or)h Fu(endomorphism)f Fy(of)h(that)g(no)s(de.)0 1608 y(The)i(set)f(of)f(arro)m(ws)h(with)g (source)h Fs(A)f Fy(and)f(target)g Fs(B)38 b Fy(will)33 b(b)s(e)g(denoted)h(b)m(y)f Ft(G)6 b Fy(\()p Fs(A;)17 b(B)5 b Fy(\))33 b(or)f(Mor)3477 1623 y Fq(G)3527 1608 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\).)0 1724 y(A)37 b(graph)f Ft(G)43 b Fy(is)37 b(called)h Fu(simple)p Fy(,)f(if)f Fs(\031)41 b Fy(is)c(injektiv)m(e.)58 b(\(In)37 b(the)g(literature)g (one)g(also)g(requires)i(that)d(there)0 1840 y(are)d(no)f(endoarro)m (ws.\))p Black 0 2021 a(1.1.2.)i Fv(De\014nition.)p Black 43 w Fy(Let)g Ft(G)j Fy(=)30 b(\()p Fs(V)5 b(;)17 b(E)6 b(;)17 b(\031)t Fy(\))33 b(and)i Ft(H)c Fy(=)f(\()p Fs(V)2125 1985 y Fq(0)2148 2021 y Fs(;)17 b(E)2270 1985 y Fq(0)2293 2021 y Fs(;)g(\031)2396 1985 y Fq(0)2419 2021 y Fy(\))34 b(b)s(e)g(directed)i(graphs.)48 b(A)34 b Fu(homomor-)0 2137 y(phism)39 b Ft(F)e Fy(:)28 b Ft(G)34 b(\000)-60 b(!)28 b(H)33 b Fy(consists)h(of)f(t)m(w)m(o)g(maps)1362 2306 y Ft(F)1434 2321 y Fp(V)1522 2306 y Fy(:)28 b Fs(V)49 b Ft(\000)-60 b(!)27 b Fs(V)1906 2265 y Fq(0)1929 2306 y Fs(;)17 b Ft(F)2045 2321 y Fp(E)2132 2306 y Fy(:)28 b Fs(E)33 b Ft(\000)-59 b(!)27 b Fs(E)2515 2265 y Fq(0)0 2475 y Fy(\(or)1272 2604 y Ft(F)1344 2619 y Fr(0)1411 2604 y Fy(:)h Ft(G)1525 2619 y Fr(0)1592 2604 y Ft(\000)-59 b(!)27 b(H)1821 2619 y Fr(0)1860 2604 y Fs(;)115 b Ft(F)2074 2619 y Fr(1)2140 2604 y Fy(:)28 b Ft(G)2254 2619 y Fr(1)2322 2604 y Ft(\000)-60 b(!)27 b(H)2550 2619 y Fr(1)2590 2604 y Fy(\))0 2752 y(with)763 2881 y Ft(8)p Fs(f)39 b Ft(2)28 b Fs(E)6 b Fy([)p Fs(\031)t Fy(\()p Fs(f)11 b Fy(\))27 b(=)h(\()p Fs(A;)17 b(B)5 b Fy(\))27 b(=)-17 b Ft(\))28 b Fs(\031)1974 2840 y Fq(0)1997 2881 y Ft(F)2069 2896 y Fp(E)2128 2881 y Fy(\()p Fs(f)11 b Fy(\))28 b(=)f(\()p Ft(F)2504 2896 y Fp(V)2565 2881 y Fy(\()p Fs(A)p Fy(\))p Fs(;)17 b Ft(F)2830 2896 y Fp(V)2890 2881 y Fy(\()p Fs(B)5 b Fy(\)\)])p Fs(:)0 3029 y Fy(Th)m(us)45 b(homomorphisms)g(send)g(v)m (ertices)h(to)d(v)m(ertices)j(and)d(arro)m(ws)h(to)f(arro)m(ws)i(in)e (suc)m(h)i(a)e(w)m(a)m(y)i(that)0 3146 y(incidence)35 b(and)d(the)h(direction)h(of)e(arro)m(ws)h(are)g(preserv)m(ed.)0 3262 y(In)g(particular)g(w)m(e)g(get)g(for)f(ev)m(ery)i(pair)f(\()p Fs(A;)17 b(B)5 b Fy(\))27 b Ft(2)h Fs(V)44 b Ft(\002)23 b Fs(V)54 b Fy(a)32 b(map)1188 3431 y Ft(F)1260 3446 y Fp(E)1347 3431 y Fy(:)c Ft(G)6 b Fy(\()p Fs(A;)17 b(B)5 b Fy(\))27 b Ft(\000)-59 b(!)27 b(H)q Fy(\()p Ft(F)2106 3446 y Fp(V)2167 3431 y Fy(\()p Fs(A)p Fy(\))p Fs(;)17 b Ft(F)2432 3446 y Fp(V)2492 3431 y Fy(\()p Fs(B)5 b Fy(\)\))p Fs(:)0 3600 y Fy(An)26 b Fu(isomorphism)31 b Ft(F)37 b Fy(:)28 b Ft(G)34 b(\000)-60 b(!)28 b(H)e Fy(is)h(a)e(homomorphism,)j(for)e(whic)m(h)h(there)f(is)g(a)g(second)h (homomorphism)p 0 3636 82 4 v 0 3716 a Ft(F)37 b Fy(:)28 b Ft(H)h(\000)-60 b(!)27 b(G)38 b Fy(suc)m(h)33 b(that)p 947 3636 V 31 w Ft(F)10 b(F)37 b Fy(=)28 b(id)1323 3731 y Fq(G)1404 3716 y Fy(and)k Ft(F)p 1675 3636 V 10 w(F)k Fy(=)28 b(id)1968 3731 y Fq(H)2033 3716 y Fy(.)43 b(Tw)m(o)32 b(graphs)g(are)f(called)i Fu(isomorphic)p Fy(,)d(if)h(there)0 3832 y(exists)j(an)f(isomorphism)h(b)s(et)m(w)m(een)h(them.)p Black 0 4014 a(1.1.3.)d Fv(Examples.)p Black Black 192 w Fy(\(1\))p Black 41 w(Let)g Fs(V)1348 4029 y Fq(G)1426 4014 y Fy(:=)c Ft(f)p Fy(1)p Fs(;)17 b Fy(2)p Ft(g)31 b Fy(and)i Fs(E)2092 4029 y Fq(G)2169 4014 y Fy(:=)28 b Ft(f)p Fs(a;)17 b(b;)g(c)p Ft(g)p Fy(,)884 4183 y(source)q(\()p Fs(a)p Fy(\))28 b(=)g(target)o(\()p Fs(a)p Fy(\))g(=)g(source)q(\()p Fs(b)p Fy(\))g(=)f(target\()p Fs(c)p Fy(\))g(=)h(1)p Fs(;)315 4352 y Fy(and)1403 4480 y(target\()p Fs(b)p Fy(\))g(=)f(source)q(\()p Fs(c)p Fy(\))h(=)f(2)p Fs(:)315 4629 y Fy(Then)33 b(w)m(e)h(can)f(represen)m(t)h Ft(G)39 b Fy(as)p 1760 4855 381 4 v 2058 4853 a Fo(-)1929 4835 y Fs(b)1682 4905 y Fy(1)438 b(2)p 1760 4894 V 1760 4892 a Fo(\033)1929 4954 y Fs(c)1638 4825 y Fn(\016\015)1638 4692 y(\017\014)p 1706 4821 1 4 v 1624 4819 a Fo(-)1784 4785 y Fy(a)p Black 148 5069 a(\(2\))p Black 42 w(The)35 b(graph)e(of)h(sets)h(and)f(functions)h(has)g(all)f(sets)h(as)f(no)s (des)h(and)f(all)g(functions)h(b)s(et)m(w)m(een)h(sets)315 5185 y(as)27 b(arro)m(ws.)42 b(The)28 b(source)f(of)g(a)f(function)i (is)f(its)g(domain,)i(and)e(its)g(target)f(is)i(its)f(co)s(domain.)42 b(This)315 5301 y(is)34 b(a)g(large)g(graph:)47 b(b)s(ecause)36 b(of)d(Russell's)k(parado)m(x,)e(its)f(no)s(des)h(and)g(its)f(arro)m (ws)h(do)f(not)g(form)315 5417 y(sets.)p Black Black eop end %%Page: 7 7 TeXDict begin 7 6 bop Black 1828 -99 a Fw(Graphs)1790 b(7)p Black Black 148 100 a Fy(\(3\))p Black 42 w(It)42 b(is)i(often)f(con)m(v)m(enien)m(t)i(to)e(picture)h(a)e(relation)h(on)g (a)f(set)i(as)f(a)f(graph.)75 b(F)-8 b(or)42 b(example,)47 b(let)315 217 y Fs(A)27 b Fy(=)h Ft(f)p Fy(1)p Fs(;)17 b Fy(2)p Fs(;)g Fy(3)p Fs(;)g Fy(4)p Ft(g)30 b Fy(and)j Fs(\013)28 b Fy(=)g Ft(f)p Fy(\(1)p Fs(;)17 b Fy(2\))p Fs(;)g Fy(\(2)p Fs(;)g Fy(2\))p Fs(;)g Fy(\(2)p Fs(;)g Fy(3\))p Fs(;)g Fy(\(1)p Fs(;)g Fy(4\))p Ft(g)p Fy(.)39 b(Then)33 b Fs(\013)g Fy(can)g(b)s(e)g(pictured)h(as)1536 482 y(1)341 b(2)p 1614 452 283 4 v 1814 450 a Fo(-)2316 482 y Fy(3)p 2004 452 V 2204 450 a Fo(-)1882 402 y Fn(\016\015)1882 269 y(\017)o(\014)p 1950 398 1 4 v 1868 396 a Fo(-)1536 872 y Fy(4)p 1558 772 4 254 v 1560 772 a Fo(?)3991 893 y Fy(22.04.04)p Black 148 976 a(\(4\))p Black 42 w(A)43 b(data)g(structure)h(can)g(sometimes)h(b)s(e)f(represen)m(ted)i(b)m(y)e (a)f(graph.)75 b(The)45 b(follo)m(wing)e(graph)315 1092 y(represen)m(ts)37 b(the)d(set)i Fm(N)e Fy(of)g(natural)h(n)m(um)m(b)s (ers)h(in)f(terms)g(of)f(zero)h(and)g(the)g(successor)h(function)315 1209 y(\(adding)c(1\):)1730 1358 y(1)338 b(n)p 1808 1328 281 4 v 2006 1326 a Fo(-)1924 1308 y Fy(0)2076 1278 y Fn(\016\015)2076 1145 y(\017)o(\014)p 2144 1274 1 4 v 2062 1272 a Fo(-)2222 1238 y Fy(succ)315 1464 y(The)34 b(name)g(`1')g(for)f(the)h(left)g(no)s(de)g(is)g(the)g(con)m(v)m(en)m (tional)i(notation)d(to)g(require)i(that)f(the)g(no)s(de)315 1580 y(denote)c(a)f(singleton)h(set,)h(that)e(is,)i(a)e(set)h(with)g (exactly)h(one)e(elemen)m(t.)45 b(One)29 b(can)h(giv)m(e)g(a)f(formal) 315 1696 y(mathematical)k(meaning)g(to)f(the)h(idea)g(that)g(this)g (graph)f(generates)i(the)f(natural)f(n)m(um)m(b)s(ers.)p Black 0 1872 a(1.1.4.)g Fv(Remark.)p Black 42 w(What)38 b(are)g(the)f(natural)h(n)m(um)m(b)s(ers?)p Black 148 2009 a Fy(\(1\))p Black 42 w(T)-8 b(raditional,)32 b(set-theoretic)i (answ)m(er)g(\(P)m(eano,)f(one)g(cen)m(tury)i(ago\):)414 2125 y(The)f(natural)e(n)m(um)m(b)s(ers)j(form)d(a)g(set)h Fm(N)g Fy(suc)m(h)h(that:)p Black 347 2241 a(\(a\))p Black 41 w Ft(9)f Fy(zero)28 b Ft(2)g Fm(N)p Fy(,)p Black 342 2357 a(\(b\))p Black 41 w Ft(8)p Fs(n)g Ft(2)h Fm(N)p Fs(;)17 b Ft(9)32 b Fy(succ)q(\()p Fs(n)p Fy(\))c Ft(2)g Fm(N)p Fy(,)p Black 352 2474 a(\(c\))p Black 42 w Ft(8)p Fs(n)g Ft(2)h Fm(N)e Fy(:)60 b(succ)r(\()p Fs(n)p Fy(\))28 b Ft(6)p Fy(=)60 b(zero)28 b Ft(2)g Fm(N)p Black 342 2590 a Fy(\(d\))p Black 41 w Ft(8)p Fs(m;)17 b(n)29 b Ft(2)f Fm(N)f Fy(:)61 b(succ)q(\()p Fs(m)p Fy(\))28 b(=)60 b(succ)q(\()p Fs(n)p Fy(\))28 b(=)-17 b Ft(\))28 b Fs(m)g Fy(=)f Fs(n)33 b Fy(\(injectivit)m(y\),)p Black 352 2706 a(\(e\))p Black 42 w Ft(8)p Fs(A)28 b Ft(\022)h Fm(N)e Fy(:)h(\()k(zero)c Ft(2)h Fs(A)22 b Ft(^)g Fy(\()p Ft(8)p Fs(a)29 b Ft(2)f Fs(A)f Fy(:)61 b(succ)q(\()p Fs(a)p Fy(\))28 b Ft(2)g Fs(A)p Fy(\)\))g(=)-17 b Ft(\))27 b Fs(A)h Fy(=)g Fm(N)p Fy(.)315 2822 y(These)34 b(axioms)f(determine)i Fm(N)d Fy(uniquely)j(up)e(to)f(isomorphism.)p Black 148 2939 a(\(2\))p Black 42 w(Categorical)g(answ)m(er)i(\(La)m(wv)m(ere,)h (60's\):)43 b(A)33 b(natural)f(n)m(um)m(b)s(er)i(ob)5 b(ject)1715 3109 y(0)28 b Ft(2)g Fm(N)2019 3052 y Fp(s)1985 3109 y Ft(!)g Fm(N)315 3267 y Fy(\(in)k Fv(Set)p Fy(\))h(consists)h(of) p Black 422 3383 a Ft(\017)p Black 41 w Fy(a)f(set)g Fm(N)p Black 422 3499 a Ft(\017)p Black 41 w Fy(with)g(a)g (distinguished)i(elemen)m(t)f(0)27 b Ft(2)h Fm(N)p Black 422 3616 a Ft(\017)p Black 41 w Fy(and)33 b(an)f(endofunction)i Fs(s)28 b Fy(:)f Fm(N)h Ft(\000)-60 b(!)28 b Fm(N)315 3732 y Fy(whic)m(h)34 b(is)f Fu(universal)f Fy(in)g(the)h(sense)i(that) d(for)g(ev)m(ery)j(structure)1700 3901 y Fs(e)28 b Ft(2)g Fs(X)2016 3840 y Fp(g)1984 3901 y Ft(!)f Fs(X)315 4059 y Fy(there)33 b(exists)h(a)e(unique)j(function)e Fs(f)38 b Fy(:)28 b Fm(N)f Ft(\000)-59 b(!)27 b Fs(X)40 b Fy(suc)m(h)34 b(that)p Black 422 4175 a Ft(\017)p Black 41 w Fs(f)11 b Fy(\(0\))27 b(=)h Fs(e)p Black 422 4291 a Ft(\017)p Black 41 w Fs(f)11 b Fy(\()p Fs(s)p Fy(\()p Fs(n)p Fy(\)\))28 b(=)f Fs(g)t Fy(\()p Fs(f)11 b Fy(\()p Fs(n)p Fy(\)\))32 b(for)g(all)g Fs(n)c Ft(2)g Fm(N)p Fy(.)0 4429 y(The)39 b(t)m(w)m(o)g(c)m(haracterizations)g(are)f(equiv)-5 b(alen)m(t.)62 b(This)39 b(is)g(a)f(consequence)j(of)c(the)i(theorem)g(on)e(simple)0 4545 y(recursion)32 b([P)m(areigis,)h(2000])d(Theorem)h(2.2.1)f(and)h (the)f(uniqueness)k(giv)m(en)d(b)m(y)g(the)g(univ)m(ersal)h(prop)s(ert) m(y)0 4661 y([P)m(areigis,)i(2000)o(])f(Theorem)g(2.2.3.)p Black 0 4836 a(1.1.5.)25 b Fv(Remark.)p Black 37 w Fy(Notation)f(of)h (the)h(form)f Fs(f)38 b Fy(:)28 b Fs(A)g Ft(\000)-60 b(!)28 b Fs(B)i Fy(is)c(o)m(v)m(erloaded)h(in)e(sev)m(eral)i(w)m(a)m (ys.)43 b(It)26 b(can)f(denote)0 4952 y(a)36 b(set-theoretic)i (function,)h(a)d(graph)h(homomorphism)h(or)e(an)h(arro)m(w)g(in)g(a)f (graph.)56 b(In)37 b(fact,)h(all)e(three)0 5069 y(are)g(instances)j(of) d(the)h(third)f(since)i(there)g(is)f(a)f(large)g(graph)g(whose)i(no)s (des)f(are)g(sets)g(and)g(arro)m(ws)g(are)0 5185 y(functions)25 b(and)f(another)h(whose)g(no)s(des)g(are)f(\(small\))h(graphs)f(and)g (arro)m(ws)h(are)f(graph)g(homomorphisms.)0 5301 y(Another)40 b(form)f(of)g(o)m(v)m(erloading)i(is)f(that)f(if)h Ft(F)49 b Fy(:)40 b Ft(G)45 b(\000)-59 b(!)39 b(H)i Fy(is)f(a)f(graph)g (homomorphism,)k Fs(\036)c Fy(actually)0 5417 y(stands)d(for)e(a)h (pair)g(of)g(functions)h(whic)m(h)g(w)m(e)g(call)f Ft(F)1962 5432 y Fp(V)2055 5417 y Fy(:)d Fs(V)2171 5432 y Fq(G)2252 5417 y Ft(\000)-59 b(!)31 b Fs(V)2458 5432 y Fq(H)2557 5417 y Fy(and)k Ft(F)2821 5432 y Fp(E)2912 5417 y Fy(:)d Fs(E)3043 5432 y Fq(G)3125 5417 y Ft(\000)-60 b(!)32 b Fs(E)3346 5432 y Fq(H)3410 5417 y Fy(.)51 b(In)35 b(fact,)h(it)p Black Black eop end %%Page: 8 8 TeXDict begin 8 7 bop Black 0 -99 a Fw(8)1706 b(F)-6 b(oundations)p Black 0 100 a Fy(is)39 b(customary)h(to)e(omit)h(the)g (subscripts)i(and)e(use)g Ft(F)48 b Fy(for)38 b(all)h(three)g(\(the)g (graph)g(homomorphism)h(as)0 217 y(w)m(ell)32 b(as)g(its)f(comp)s(onen) m(ts)i Ft(F)1057 232 y Fp(V)1148 217 y Fy(and)f Ft(F)1409 232 y Fp(E)1468 217 y Fy(\).)43 b(This)32 b(do)s(es)g(not)f(lead)g(to)g (am)m(biguit)m(y)h(in)g(practice;)g(in)g(reading)0 333 y(ab)s(out)j(graphs)h(y)m(ou)g(are)f(nearly)h(alw)m(a)m(ys)h(a)m(w)m (are)f(of)f(whether)i(the)f(author)f(is)h(talking)f(ab)s(out)g(no)s (des)h(or)0 449 y(arro)m(ws.)p Black 0 627 a(1.1.6.)c Fv(Example.)p Black Black 191 w Fy(\(1\))p Black 41 w(If)46 b Ft(G)53 b Fy(is)46 b(an)m(y)h(graph,)i(the)e Fu(identity)g (homomorphism)d Fy(id)3250 642 y Fq(G)3351 627 y Fy(:)50 b Ft(G)57 b(\000)-60 b(!)51 b Fs(G)45 b Fy(is)315 744 y(de\014ned)26 b(b)m(y)f(\(id)890 759 y Fq(G)940 744 y Fy(\))978 773 y Fp(V)1066 744 y Fy(=)j(id)1251 759 y Fp(V)1292 770 y Fl(G)1365 744 y Fy(\(the)d(iden)m(tit)m(y)i(function) e(on)g(the)g(set)g(of)g(no)s(des)g(of)f Ft(G)31 b Fy(\))25 b(and)g(\(id)3649 759 y Fq(G)3699 744 y Fy(\))3737 773 y Fp(E)3824 744 y Fy(=)315 860 y(id)396 875 y Fp(E)448 886 y Fl(G)496 860 y Fy(.)p Black 148 976 a(\(2\))p Black 42 w(If)32 b Ft(G)39 b Fy(is)33 b(the)g(graph)1536 1248 y(1)341 b(2)p 1614 1217 283 4 v 1814 1215 a Fo(-)2316 1248 y Fy(3)p 2004 1217 V 2204 1215 a Fo(-)1882 1167 y Fn(\016\015)1882 1034 y(\017)o(\014)p 1950 1163 1 4 v 1868 1161 a Fo(-)1536 1638 y Fy(4)p 1558 1537 4 254 v 1560 1537 a Fo(?)315 1741 y Fy(and)32 b Ft(H)i Fy(is)f(the)g(graph) 1722 1940 y Fs(S)325 b(F)p 1816 1908 262 4 v 1995 1906 a Fo(-)2076 1858 y Fn(\016\015)2076 1725 y(\017\014)p 2145 1854 1 4 v 2063 1852 a Fo(-)2076 2091 y Fn(\016\015)2076 1959 y(\017\014)p 2145 1961 V -279 w Fo(-)1716 2320 y Fs(Q)p 1753 2228 4 254 v 1755 2228 a Fo(?)315 2449 y Fy(then)27 b(there)g(is)g(a)g(homomorphism)h Ft(F)37 b Fy(:)28 b Ft(G)33 b(\000)-59 b(!)27 b(H)h Fy(for)e(whic)m(h)i Ft(F)2626 2464 y Fp(V)2687 2449 y Fy(\(1\))f(=)g Fs(S;)17 b Ft(F)3118 2464 y Fp(V)3179 2449 y Fy(\(2\))27 b(=)h Ft(F)3507 2464 y Fp(V)3567 2449 y Fy(\(3\))g(=)f Fs(F)315 2565 y Fy(and)34 b Ft(F)578 2580 y Fp(V)639 2565 y Fy(\(4\))c(=)h Fs(Q)p Fy(,)k(and)f Ft(F)1303 2580 y Fp(E)1397 2565 y Fy(tak)m(es)i(the)f(lo)s(op)e(on)i(2)f(and)g(the)h(arro)m(w)g(from)f(2) g(to)g(3)g(b)s(oth)g(to)h(the)315 2682 y(upp)s(er)30 b(lo)s(op)f(on)g Fs(F)14 b Fy(;)31 b(what)f Ft(F)1382 2697 y Fp(E)1470 2682 y Fy(do)s(es)g(to)g(the)g(other)g(t)m(w)m(o)g (arro)m(ws)g(is)g(forced)g(b)m(y)h(the)f(de\014nition)g(of)315 2798 y(homomorphism.)42 b(Because)26 b(there)g(are)f(t)m(w)m(o)h(lo)s (ops)f(on)f Fs(F)39 b Fy(there)26 b(are)f(actually)g(four)g(p)s (ossibilities)315 2914 y(for)32 b Ft(F)536 2929 y Fp(E)627 2914 y Fy(on)h(arro)m(ws)g(\(while)h(k)m(eeping)g Ft(F)1792 2929 y Fp(V)1885 2914 y Fy(\014xed\).)p Black 148 3030 a(\(3\))p Black 42 w(If)26 b Ft(H)i Fy(is)f(an)m(y)h(graph)f(with)g(a)f (no)s(de)h Fs(n)g Fy(and)g(a)g(lo)s(op)f Fs(u)h Fy(:)h Fs(n)g Ft(\000)-60 b(!)28 b Fs(n)p Fy(,)g(then)f(there)h(is)f(a)g (homomorphism)315 3147 y(from)33 b(an)m(y)i(graph)f Ft(G)40 b Fy(to)34 b Ft(H)h Fy(that)f(tak)m(es)h(ev)m(ery)h(no)s(de)e(of)g Ft(G)40 b Fy(to)33 b Fs(n)i Fy(and)f(ev)m(ery)i(arro)m(w)e(to)f Fs(u)p Fy(.)48 b(This)315 3263 y(construction)27 b(giv)m(es)h(t)m(w)m (o)f(other)g(homomorphisms)h(from)f Ft(G)32 b Fy(to)26 b Ft(H)i Fy(in)f(Example)h(1.5)e(\(2\))g(b)s(esides)315 3379 y(the)33 b(four)f(men)m(tioned)i(there.)44 b(\(There)34 b(are)f(still)g(others.\))0 3557 y(1.2.)49 b Fv(Monoids.)p Black 0 3736 a Fy(1.2.1.)32 b Fv(De\014nition.)p Black 43 w Fy(A)g Fu(monoid)g Fy(is)h(a)f(monad)h Ft(M)27 b Fy(=)g(\()p Fs(M)5 b(;)17 b(\026;)g(e)p Fy(\))33 b(consisting)g(of)p Black 148 3876 a(\(1\))p Black 42 w(a)f(set)h Fs(M)10 b Fy(,)p Black 148 3992 a(\(2\))p Black 42 w(a)32 b Fu(multiplic)-5 b(ation)32 b Fy(map)g Fs(\026)c Fy(:)g Fs(M)33 b Ft(\002)22 b Fs(M)39 b Ft(\000)-60 b(!)27 b Fs(M)10 b Fy(,)34 b(and)p Black 148 4108 a(\(3\))p Black 42 w(a)e Fu(unit)h Fy(or)f Fu(neutr)-5 b(al)33 b Fy(elemen)m(t)h Fs(e)28 b Ft(2)g Fs(M)0 4248 y Fy(satisfying)34 b(the)f(follo)m(wing)g(axioms)p Black 240 4388 a(-)p Black 42 w Ft(8)p Fs(a;)17 b(b;)g(c)28 b Ft(2)g Fs(M)38 b Fy(:)1130 4511 y Fs(a)22 b Ft(\016)g Fy(\()p Fs(b)h Ft(\016)f Fs(c)p Fy(\))27 b(=)h(\()p Fs(a)22 b Ft(\016)g Fs(b)p Fy(\))h Ft(\016)f Fs(c;)49 b Fy(\(asso)s(ciativit)m (y\))p Black 240 4655 a(-)p Black 42 w Ft(8)p Fs(a;)17 b(b)28 b Ft(2)g Fs(M)39 b Fy(:)827 4819 y Fs(e)22 b Ft(\016)g Fs(a)28 b Fy(=)f Fs(a)33 b Fy(and)g Fs(b)22 b Ft(\016)g Fs(e)28 b Fy(=)g Fs(b:)33 b Fy(\(left)g(and)f(righ)m(t)h(unit)g(elemen) m(t\))0 4983 y(Here)g(w)m(e)h(use)f(the)g(notation)g Fs(a)22 b Ft(\016)g Fs(b)28 b Fy(:=)g Fs(\026)p Fy(\()p Fs(a;)17 b(b)p Fy(\).)p Black 0 5161 a(1.2.2.)33 b Fv(De\014nition.)p Black 42 w Fy(Let)g Ft(M)c Fy(=)f(\()p Fs(M)5 b(;)17 b(\026;)g(e)p Fy(\))32 b(and)i Ft(M)1957 5125 y Fq(0)2008 5161 y Fy(=)28 b(\()p Fs(M)2254 5125 y Fq(0)2278 5161 y Fs(;)17 b(\026)2381 5125 y Fq(0)2404 5161 y Fs(;)g(e)2493 5125 y Fq(0)2516 5161 y Fy(\))33 b(b)s(e)g(monoids.)46 b(A)33 b Fu(homomorphism)0 5277 y(of)i(monoids)c Ft(F)37 b Fy(:)28 b Ft(M)f(\000)-60 b(!)28 b(M)1077 5241 y Fq(0)1132 5277 y Fy(is)33 b(a)g(map)f Ft(F)38 b Fy(:)27 b Fs(M)39 b Ft(\000)-60 b(!)27 b Fs(M)2073 5241 y Fq(0)2130 5277 y Fy(satisfying)34 b(the)f(follo)m(wing)g(axioms)p Black 240 5417 a(-)p Black 42 w Ft(8)p Fs(a;)17 b(b)28 b Ft(2)g Fs(M)39 b Fy(:)27 b Ft(F)10 b Fy(\()p Fs(a)22 b Ft(\016)g Fs(b)p Fy(\))28 b(=)g Ft(F)10 b Fy(\()p Fs(a)p Fy(\))21 b Ft(\016)h(F)10 b Fy(\()p Fs(b)p Fy(\))p Fs(;)p Black Black eop end %%Page: 9 9 TeXDict begin 9 8 bop Black 1808 -99 a Fw(Monoids)1771 b(9)p Black Black 240 100 a Fy(-)p Black 42 w Ft(F)10 b Fy(\()p Fs(e)p Fy(\))27 b(=)g Fs(e)693 64 y Fq(0)717 100 y Fs(:)0 237 y Fy(An)f Fu(isomorphism)e Ft(F)38 b Fy(:)27 b Ft(M)h(\000)-60 b(!)27 b(M)1294 201 y Fq(0)1343 237 y Fy(is)g(a)e(homomorphism)j(suc)m(h)f(that)f(there)h(exists)g (another)f(homomor-)0 353 y(phism)p 288 273 82 4 v 34 w Ft(F)38 b Fy(:)28 b Ft(M)573 317 y Fq(0)624 353 y Ft(\000)-59 b(!)27 b(M)33 b Fy(with)p 1144 273 V 33 w Ft(F)10 b(F)38 b Fy(=)28 b(id)1521 368 y Fq(M)1642 353 y Fy(and)33 b Ft(F)p 1914 273 V 10 w(F)k Fy(=)28 b(id)2209 368 y Fq(M)2293 349 y Fl(0)2319 353 y Fy(.)44 b(Tw)m(o)34 b(monoids)g(are)f(called)g Fu(isomorphic)0 469 y Fy(if)f(there)i(exists)g(an)f(isomorphism)h(from) e(one)h(monoid)g(to)f(the)h(other.)3991 547 y(23.04.04)p Black 0 702 a(1.2.3.)23 b Fv(De\014nition.)p Black 35 w Fy(Let)h Ft(M)f Fy(b)s(e)h(a)f(monoid.)41 b(An)23 b Ft(M)p Fu(-gr)-5 b(ade)g(d)26 b(monoid)c Fy(is)i(a)f(monad)g Ft(U)38 b Fy(=)28 b(\(\()p Fs(U)3445 717 y Fp(i)3473 702 y Fy(\))p Fs(;)17 b Fy(\()p Fs(\026)3652 717 y Fp(i;j)3732 702 y Fy(\))p Fs(;)g Fy(1\))0 818 y(consisting)34 b(of)p Black 148 955 a(\(1\))p Black 42 w(a)e(family)h(of)f(m)m(utually)i (disjoin)m(t)f(sets)h(\()p Fs(U)1859 970 y Fp(i)1887 955 y Ft(j)p Fs(i)28 b Ft(2)g Fs(M)10 b Fy(\),)p Black 148 1071 a(\(2\))p Black 42 w(a)32 b(family)h(of)f(\()p Fu(multiplic)-5 b(ation)p Fy(\))32 b(maps)h(\()p Fs(\026)1846 1086 y Fp(i;j)1953 1071 y Fy(:)28 b Fs(U)2074 1086 y Fp(i)2125 1071 y Ft(\002)22 b Fs(U)2290 1086 y Fp(j)2355 1071 y Ft(\000)-60 b(!)28 b Fs(U)2566 1086 y Fp(i)p Fq(\001)p Fp(j)2646 1071 y Ft(j)p Fs(i;)17 b(j)33 b Ft(2)28 b Fs(M)10 b Fy(\),)34 b(and)p Black 148 1188 a(\(3\))p Black 42 w(an)e(elemen)m(t)i(1)28 b Ft(2)g Fs(U)1047 1203 y Fp(e)0 1324 y Fy(satisfying)34 b(the)f(follo)m(wing)g(axioms)g(\(using)g(the)g (notation)f Fs(g)26 b Ft(\016)c Fs(f)38 b Fy(:=)28 b Fs(\026)2615 1339 y Fp(i;j)2695 1324 y Fy(\()p Fs(f)5 b(;)17 b(g)t Fy(\)\):)p Black 240 1461 a(-)p Black 42 w Ft(8)p Fs(i;)g(j;)g(k)31 b Ft(2)d Fs(M)43 b Ft(8)p Fs(f)c Ft(2)28 b Fs(U)1146 1476 y Fp(i)1175 1461 y Fs(;)17 b(g)30 b Ft(2)e Fs(U)1456 1476 y Fp(j)1493 1461 y Fs(;)17 b(h)28 b Ft(2)g Fs(U)1781 1476 y Fp(k)1851 1461 y Fy(:)1056 1618 y Fs(h)22 b Ft(\016)g Fy(\()p Fs(g)j Ft(\016)d Fs(f)11 b Fy(\))28 b(=)f(\()p Fs(h)22 b Ft(\016)g Fs(g)t Fy(\))g Ft(\016)g Fs(f)38 b Ft(2)28 b Fs(U)2233 1634 y Fr(\()p Fp(i)p Fq(\001)p Fp(j)t Fr(\))p Fq(\001)p Fp(k)2454 1618 y Fy(=)g Fs(U)2624 1634 y Fp(i)p Fq(\001)p Fr(\()p Fp(j)t Fq(\001)p Fp(k)r Fr(\))2817 1618 y Fs(;)p Black 240 1775 a Fy(-)p Black 42 w Ft(8)p Fs(i;)17 b(j)34 b Ft(2)28 b Fs(M)43 b Ft(8)p Fs(f)c Ft(2)28 b Fs(U)1054 1790 y Fp(i)1082 1775 y Fs(;)17 b(g)31 b Ft(2)d Fs(U)1364 1790 y Fp(j)1428 1775 y Fy(:)1442 1933 y(1)22 b Ft(\016)g Fs(f)39 b Fy(=)27 b Fs(f)43 b Fy(and)33 b Fs(g)25 b Ft(\016)d Fy(1)28 b(=)f Fs(g)t(:)p Black 0 2107 a Fy(1.2.4.)37 b Fv(De\014nition.)p Black 44 w Fy(Let)h Ft(M)e Fy(and)h Ft(M)1475 2071 y Fq(0)1535 2107 y Fy(b)s(e)h(monoids,)h Ft(U)47 b Fy(b)s(e)37 b(an)g Ft(M)p Fy(-graded)f(monoid,)j(and)e Ft(U)3599 2071 y Fq(0)3660 2107 y Fy(b)s(e)g(an)0 2223 y Ft(M)120 2187 y Fq(0)143 2223 y Fy(-graded)f(monoid.)54 b(A)37 b Fu(homomorphism)f(of)i(gr)-5 b(ade)g(d)37 b(monoids)e Ft(F)43 b Fy(:)34 b(\()p Ft(M)p Fs(;)17 b Ft(U)10 b Fy(\))33 b Ft(\000)-59 b(!)33 b Fy(\()p Ft(M)3337 2187 y Fq(0)3360 2223 y Fs(;)17 b Ft(U)3476 2187 y Fq(0)3499 2223 y Fy(\))36 b(consists)0 2340 y(of)p Black 148 2476 a(\(1\))p Black 42 w(a)c(homomorphism)i(of)e(monoids)h Ft(F)1653 2491 y Fp(M)1759 2476 y Fy(:)28 b Ft(M)f(\000)-59 b(!)27 b(M)2226 2440 y Fq(0)2282 2476 y Fy(and)p Black 148 2592 a(\(2\))p Black 42 w(maps)33 b Ft(F)642 2607 y Fp(i)697 2592 y Fy(:)28 b Fs(U)818 2607 y Fp(i)874 2592 y Ft(\000)-59 b(!)27 b Fs(U)1095 2556 y Fq(0)1085 2622 y(F)1135 2633 y Fk(M)1203 2622 y Fr(\()p Fp(i)p Fr(\))1318 2592 y Fy(for)32 b(all)h Fs(i)28 b Ft(2)g Fs(M)0 2737 y Fy(suc)m(h)34 b(that)e(the)h(follo)m(wing)g(conditions)h(are)e(satis\014ed)p Black 240 2873 a(-)p Black 42 w Ft(8)p Fs(i;)17 b(j)34 b Ft(2)28 b Fs(M)5 b(;)17 b(f)38 b Ft(2)28 b Fs(U)1004 2888 y Fp(i)1033 2873 y Fs(;)17 b(g)30 b Ft(2)e Fs(U)1314 2888 y Fp(j)1351 2873 y Fy(:)1388 3031 y Ft(F)1460 3046 y Fp(i)p Fq(\001)p Fp(j)1539 3031 y Fy(\()p Fs(g)e Ft(\016)c Fs(f)11 b Fy(\))27 b(=)h Ft(F)2022 3046 y Fp(j)2058 3031 y Fy(\()p Fs(g)t Fy(\))21 b Ft(\016)h(F)2350 3046 y Fp(i)2378 3031 y Fy(\()p Fs(f)11 b Fy(\))p Black 240 3188 a(-)p Black 42 w Ft(F)387 3203 y Fp(e)423 3188 y Fy(\(1\))27 b(=)h(1)f Ft(2)h Fs(U)925 3152 y Fq(0)915 3214 y Fp(e)948 3195 y Fl(0)975 3188 y Fs(:)0 3362 y Fy(It)33 b(follo)m(ws)h(from)f (the)g(de\014nition)i(that)d(a)h(monoid)h(is)f(not)g(allo)m(w)m(ed)i (to)e(b)s(e)g(empt)m(y:)46 b(it)33 b(m)m(ust)h(con)m(tain)g(an)0 3478 y(iden)m(tit)m(y)h(elemen)m(t.)46 b(It)33 b(also)g(follo)m(ws)g (that)g(w)m(e)h(can)f(extend)h(the)f(notation)g(of)f(p)s(o)m(w)m(ers)i (to)f(0)f(b)m(y)i(de\014ning)0 3595 y Fs(x)55 3559 y Fr(0)133 3595 y Fy(to)k(b)s(e)h(the)g(iden)m(tit)m(y)h(elemen)m(t)h(of) d(the)h(monoid.)61 b(The)40 b(la)m(ws)f Fs(s)2470 3559 y Fp(k)2513 3595 y Fs(s)2559 3559 y Fp(n)2644 3595 y Fy(=)e Fs(s)2803 3559 y Fp(k)r Fr(+)p Fp(n)2982 3595 y Fy(and)i(\()p Fs(s)3262 3559 y Fp(k)3304 3595 y Fy(\))3342 3539 y Fp(n)3427 3595 y Fy(=)e Fs(s)3586 3559 y Fp(k)r(n)3710 3595 y Fy(then)0 3711 y(hold)c(for)f(all)g(nonnegativ)m(e)i Fs(k)i Fy(and)d Fs(n)p Fy(.)p Black 0 3885 a(1.2.5.)27 b Fv(Examples.)p Black 39 w Fy(One)h(example)h(of)e(a)h(monoid)g(is)g (the)g(set)g(of)f(non-negativ)m(e)i(in)m(tegers)g(with)f(addition)0 4002 y(as)33 b(the)g(op)s(eration.)43 b(This)34 b(includes)g(0)e(as)h (a)g(neutral)g(elemen)m(t.)0 4118 y(The)38 b Fu(Kle)-5 b(ene)38 b(closur)-5 b(e)36 b Fs(A)930 4082 y Fq(\003)1007 4118 y Fy(of)g(a)h(set)h Fs(A)f Fy(is)g(the)g(set)h(of)e(strings)i (\(or)f(lists\))h(of)e(\014nite)i(length)f(of)g(elemen)m(ts)0 4234 y(of)d Fs(A)p Fy(.)51 b(W)-8 b(e)35 b(write)h(the)f(lists)h(in)f (paren)m(theses;)k(for)34 b(example)j(\()p Fs(a;)17 b(b;)g(d;)g(a)p Fy(\))34 b(is)h(an)g(elemen)m(t)i(of)d Ft(f)p Fs(a;)17 b(b;)g(c;)g(d)p Ft(g)3834 4198 y Fq(\003)3873 4234 y Fy(.)0 4350 y(Some)42 b(parts)g(of)f(the)g(computer)i(science)g (literature)f(call)g(these)h(strings)f(instead)g(of)f(lists)i(and)e (write)0 4467 y(them)33 b(this)g(w)m(a)m(y:)44 b(`)p Fs(abda)p Fy('.)g Fs(A)1066 4430 y Fq(\003)1138 4467 y Fy(includes)34 b(the)e(empt)m(y)i(list)f(\(\))f(and)g(for)g(eac)m(h)h (elemen)m(t)h Fs(a)27 b Ft(2)h Fs(A)33 b Fy(the)f(list)h(\()p Fs(a)p Fy(\))0 4583 y(of)f(length)h(one.)0 4699 y(The)42 b(op)s(eration)f(of)g(concatenation)g(mak)m(es)i(the)f(Kleene)g (closure)g(a)f(monoid)h Fs(F)14 b Fy(\()p Fs(A)p Fy(\),)43 b(called)f(the)f Fu(fr)-5 b(e)g(e)0 4815 y(monoid)35 b Fy(determined)k(b)m(y)f Fs(A)p Fy(.)56 b(The)37 b(empt)m(y)i(list)e (is)g(the)g(iden)m(tit)m(y)i(elemen)m(t.)58 b(W)-8 b(e)37 b(write)g(concatenation)0 4931 y(as)c(juxtap)s(osition;)g(th)m(us)1187 5048 y(\()p Fs(a;)17 b(b;)g(d;)g(a)p Fy(\)\()p Fs(c;)g(a;)g(b)p Fy(\))28 b(=)f(\()p Fs(a;)17 b(b;)g(d;)g(a;)g(c;)g(a;)g(b)p Fy(\))p Fs(:)0 5185 y Fy(Note)33 b(that)f(the)h(underlying)g(set)h(of)e (the)g(free)h(monoid)g(is)g Fs(A)2235 5149 y Fq(\003)2274 5185 y Fy(,)g(not)f Fs(A)p Fy(.)44 b(In)32 b(the)h(literature,)g Fs(A)g Fy(is)g(usually)0 5301 y(assumed)h(\014nite,)f(but)f(the)g (Kleene)h(closure)g(is)g(de\014ned)g(for)e(an)m(y)i(set)g Fs(A)p Fy(.)43 b(The)33 b(elemen)m(ts)h(of)e Fs(A)3498 5265 y Fq(\003)3569 5301 y Fy(are)g(lists)0 5417 y(of)g(\014nite)h (length)g(in)g(an)m(y)h(case.)44 b(When)33 b Fs(A)g Fy(is)g(nonempt)m (y)-8 b(,)34 b Fs(A)2236 5381 y Fq(\003)2308 5417 y Fy(is)g(an)e (in\014nite)i(set.)p Black Black eop end %%Page: 10 10 TeXDict begin 10 9 bop Black 0 -99 a Fw(10)1668 b(F)-6 b(oundations)p Black 0 100 a Fy(The)27 b(concept)g(of)f(freeness)i(is)e (a)g(general)g(concept)h(applied)g(to)f(man)m(y)h(kinds)g(of)f (structures.)43 b(It)26 b(is)h(treated)0 217 y(systematically)35 b(later)e(on.)p Black 0 389 a(1.2.6.)f Fv(De\014nition.)p Black 43 w Fy(A)g Fu(submonoid)f Fy(of)i(a)f(monoid)h Ft(M)f Fy(is)h(a)f(subset)i Fs(S)39 b Fy(of)32 b Fs(M)43 b Fy(with)33 b(the)g(prop)s(erties:)p Black 48 526 a(SM-1)p Black 42 w(The)g(iden)m(tit)m(y)h(elemen)m(t)h(of)d Ft(M)g Fy(is)h(in)g Fs(S)6 b Fy(.)p Black 48 642 a(SM-2)p Black 42 w(If)32 b Fs(m;)17 b(n)28 b Ft(2)g Fs(S)38 b Fy(then)c Fs(mn)28 b Ft(2)g Fs(S)6 b Fy(.)43 b(\(One)33 b(sa)m(ys)h(that)e Fs(S)39 b Fy(is)33 b Fu(close)-5 b(d)34 b(under)g(the)h(op)-5 b(er)g(ation)p Fy(.\))p Black 0 815 a(1.2.7.)29 b Fv(Example.)p Black 41 w Fy(The)i(natural)e(n)m(um)m(b)s(ers)j(with)f(addition)f (form)f(a)h(submonoid)h(of)e(the)h(in)m(tegers)h(with)0 931 y(addition.)42 b(F)-8 b(or)26 b(another)h(example,)j(consider)f (the)e(in)m(tegers)i(with)e(m)m(ultiplication)i(as)e(the)h(op)s (eration,)g(so)0 1047 y(that)e(1)f(is)h(the)h(iden)m(tit)m(y)g(elemen)m (t.)43 b(Again)26 b(the)g(natural)g(n)m(um)m(b)s(ers)i(form)d(a)h (submonoid,)i(and)e(so)g(do)s(es)h(the)0 1164 y(set)38 b(of)e(p)s(ositiv)m(e)i(natural)f(n)m(um)m(b)s(ers,)j(since)e(the)g (pro)s(duct)f(of)f(t)m(w)m(o)i(p)s(ositiv)m(e)g(n)m(um)m(b)s(ers)h(is)f (another)f(one.)0 1280 y(Finally)-8 b(,)35 b(the)f(singleton)h(set)g Ft(f)p Fy(0)p Ft(g)e Fy(is)i(a)f(subset)h(of)f(the)g(in)m(tegers)i (that)e(is)g(closed)i(under)e(m)m(ultiplication,)0 1396 y(and)39 b(it)g(is)g(a)g(monoid,)i(but)e(it)g(is)g(not)g(a)g(submonoid) h(of)e(the)h(in)m(tegers)i(on)d(m)m(ultiplication)j(b)s(ecause)f(it)0 1512 y(do)s(es)33 b(not)f(con)m(tain)i(the)f(iden)m(tit)m(y)h(elemen)m (t)g(1.)0 1685 y(In)k(this)f(section,)j(w)m(e)e(discuss)h(categories)f (whose)h(ob)5 b(jects)38 b(are)f(semigroups)i(or)e(monoids.)58 b(These)39 b(are)0 1801 y(t)m(ypical)24 b(of)e(categories)h(of)f (algebraic)h(structures;)28 b(w)m(e)c(ha)m(v)m(e)g(concen)m(trated)g (on)e(semigroups)i(and)f(monoids)0 1917 y(b)s(ecause)34 b(transition)f(systems)i(naturally)e(form)f(monoids.)p Black 0 2090 a(1.2.8.)44 b Fv(De\014nition.)p Black 48 w Fy(A)h Fu(semigr)-5 b(oup)43 b Fy(is)i(a)f(set)h Fs(S)50 b Fy(together)45 b(with)g(an)f(asso)s(ciativ)m(e)i(binary)f(op)s (eration)0 2206 y Fs(m)28 b Fy(:)g Fs(S)g Ft(\002)22 b Fs(S)34 b Ft(\000)-60 b(!)28 b Fs(S)6 b Fy(.)43 b(The)33 b(set)h Fs(S)k Fy(is)33 b(called)g(the)g Fu(underlying)i(set)d Fy(of)h(the)g(semigroup.)p Black 0 2379 a(1.2.9.)d Fv(Remark.)p Black 41 w Fy(Normally)h(for)g Fs(s)f Fy(and)h Fs(t)g Fy(in)g Fs(S)6 b Fy(,)31 b Fs(m)p Fy(\()p Fs(s;)17 b(t)p Fy(\))31 b(is)g(written)h(`)p Fs(st)p Fy(')f(and)g(called)g(`)p Fu(multiplic)-5 b(ation)p Fy(',)0 2495 y(but)31 b(note)f(that)g(it)g (do)s(es)h(not)f(ha)m(v)m(e)i(to)e(satisfy)h(the)g(comm)m(utativ)m(e)h (la)m(w;)g(that)e(is,)h(w)m(e)h(ma)m(y)f(ha)m(v)m(e)g Fs(st)d Ft(6)p Fy(=)g Fs(ts)p Fy(.)0 2612 y(A)33 b Fu(c)-5 b(ommutative)34 b(semigr)-5 b(oup)32 b Fy(is)h(a)f(semigroup)i(whose)f (m)m(ultiplication)h(is)f(comm)m(utativ)m(e.)0 2728 y(It)d(is)g (standard)g(practice)g(to)g(talk)f(ab)s(out)h(`)p Fu(the)i(semigr)-5 b(oup)28 b Fs(S)6 b Fy(',)31 b(naming)e(the)h(semigroup)h(b)m(y)g (naming)e(its)0 2844 y(underlying)36 b(set.)50 b(This)36 b(will)f(b)s(e)g(done)g(for)f(other)g(mathematical)i(structures)g(suc)m (h)g(as)f(p)s(osets)g(as)g(w)m(ell.)0 2960 y(Mathematicians)30 b(call)f(this)f(practice)i(`)p Fu(abuse)g(of)h(notation)p Fy('.)42 b(It)28 b(is)h(o)s(ccasionally)g(necessary)i(to)d(b)s(e)h (more)0 3077 y(precise.)0 3193 y(W)-8 b(e)36 b(set)f Fs(s)371 3157 y Fr(1)443 3193 y Fy(=)d Fs(s)j Fy(and,)g(for)g(an)m(y)h (p)s(ositiv)m(e)g(in)m(teger)g Fs(k)s Fy(,)g Fs(s)2041 3157 y Fp(k)2116 3193 y Fy(=)c Fs(ss)2316 3157 y Fp(k)r Fq(\000)p Fr(1)2448 3193 y Fy(.)51 b(Suc)m(h)37 b Fu(p)-5 b(owers)34 b Fy(of)h(an)g(elemen)m(t)h(ob)s(ey)0 3309 y(the)i(la)m(ws)h Fs(s)439 3273 y Fp(k)482 3309 y Fs(s)528 3273 y Fp(n)612 3309 y Fy(=)e Fs(s)771 3273 y Fp(k)r Fr(+)p Fp(n)949 3309 y Fy(and)h(\()p Fs(s)1228 3273 y Fp(k)1271 3309 y Fy(\))1309 3253 y Fp(n)1393 3309 y Fy(=)e Fs(s)1551 3273 y Fp(k)r(n)1675 3309 y Fy(\(for)h(p)s(ositiv)m(e)i Fs(k)j Fy(and)c Fs(n)p Fy(\).)60 b(On)38 b(the)g(other)g(hand,)i(the)e (la)m(w)0 3425 y(\()p Fs(st)p Fy(\))157 3389 y Fp(k)227 3425 y Fy(=)28 b Fs(s)377 3389 y Fp(k)420 3425 y Fs(t)455 3389 y Fp(k)530 3425 y Fy(requires)34 b(comm)m(utativit)m(y)-8 b(.)0 3541 y(W)g(e)37 b(sp)s(eci\014cally)h(allo)m(w)f(the)f Fu(empty)i(semigr)-5 b(oup)p Fy(,)37 b(whic)m(h)h(consists)f(of)f(the)h (empt)m(y)h(set)e(and)h(the)f(empt)m(y)0 3658 y(function)28 b(from)g(the)g(empt)m(y)h(set)f(to)g(itself.)42 b(\(Note)28 b(that)g(the)g(cartesian)g(pro)s(duct)g(of)g(the)g(empt)m(y)h(set)f (with)0 3774 y(itself)39 b(is)g(the)f(empt)m(y)i(set.\))61 b(This)39 b(is)g(not)f(done)g(in)h(most)f(of)g(the)g(non-category)h (theory)f(literature;)k(it)0 3890 y(will)33 b(b)s(ecome)h(eviden)m(t)g (later)f(wh)m(y)h(w)m(e)f(should)h(include)g(the)f(empt)m(y)h (semigroup.)0 4006 y(An)48 b Fu(identity)h(element)f Fs(e)g Fy(for)f(a)h(semigroup)h Fs(S)k Fy(is)c(an)f(elemen)m(t)h(of)f Fs(S)53 b Fy(that)48 b(satis\014es)i(the)e(equation)0 4123 y Fs(se)28 b Fy(=)f Fs(es)h Fy(=)g Fs(s)k Fy(for)g(all)h Fs(s)27 b Ft(2)h Fs(S)6 b Fy(.)44 b(There)34 b(can)e(b)s(e)h(at)f(most) h(one)g(iden)m(tit)m(y)i(elemen)m(t)f(in)f(a)f(semigroup.)p Black 0 4295 a(1.2.10.)45 b Fv(De\014nition)53 b Fy(\()p Fv(Homomorphisms)h(of)e(semigroups\).)p Black 49 w Fy(If)46 b Fs(S)51 b Fy(and)45 b Fs(T)59 b Fy(are)46 b(semigroups,)k(a)0 4412 y(function)33 b Fs(h)28 b Fy(:)g Fs(S)33 b Ft(\000)-59 b(!)27 b Fs(T)46 b Fy(is)33 b(a)f Fu(homomorphism)f Fy(if)h(for)g(all)h Fs(s;)17 b(s)2233 4375 y Fq(0)2283 4412 y Ft(2)28 b Fs(S;)17 b(h)p Fy(\()p Fs(ss)2667 4375 y Fq(0)2691 4412 y Fy(\))27 b(=)h Fs(h)p Fy(\()p Fs(s)p Fy(\))p Fs(h)p Fy(\()p Fs(s)3178 4375 y Fq(0)3201 4412 y Fy(\).)p Black 0 4584 a(1.2.11.)j Fv(Examples.)p Black 42 w Fy(The)h(iden)m(tit)m(y)h(function)f(on)f(an) m(y)h(monoid)f(is)h(a)f(monoid)h(homomorphism.)44 b(If)31 b Fs(M)0 4701 y Fy(is)c(a)e(monoid)i(and)f Fs(S)32 b Fy(is)26 b(a)g(submonoid,)i(the)f(inclusion)g(function)g(from)f Fs(S)31 b Fy(to)26 b Fs(M)37 b Fy(is)26 b(a)g(monoid)g(homomor-)0 4817 y(phism.)47 b(Another)34 b(example)g(is)g(the)g(function)g(that)f (tak)m(es)h(an)f(ev)m(en)i(in)m(teger)f(to)f(0)g(and)h(an)f(o)s(dd)g (in)m(teger)0 4933 y(to)f(1.)43 b(This)33 b(is)f(a)g(monoid)g (homomorphism)h(from)f(the)g(monoid)g(of)g(in)m(tegers)h(on)f(m)m (ultiplication)h(to)f(the)0 5049 y(set)42 b Ft(f)p Fy(0)p Fs(;)17 b Fy(1)p Ft(g)40 b Fy(on)h(m)m(ultiplication.)71 b(It)41 b(is)h(easy)g(to)f(see)i(that)e(iden)m(tit)m(y)i(functions)f (are)f(homomorphisms)0 5165 y(and)33 b(homomorphisms)i(comp)s(ose)f(to) f(giv)m(e)i(homomorphisms.)47 b(Th)m(us)35 b(w)m(e)f(ha)m(v)m(e)h(t)m (w)m(o)f(categories:)45 b Fv(Sem)0 5282 y Fy(is)35 b(the)h(category)f (of)f(semigroups)i(and)f(semigroup)h(homomorphisms,)h(and)e Fv(Mon)h Fy(is)f(the)g(category)g(of)0 5398 y(monoids)e(and)g(monoid)g (homomorphisms.)p Black Black eop end %%Page: 11 11 TeXDict begin 11 10 bop Black 1808 -99 a Fw(Monoids)1732 b(11)p Black Black 0 100 a Fy(1.2.12.)36 b Fv(Example.)p Black 46 w Fy(Let)h Fs(S)43 b Fy(b)s(e)37 b(a)g(semigroup)h(with)g (elemen)m(t)h Fs(s)p Fy(.)57 b(Let)37 b Fm(N)2763 64 y Fr(+)2859 100 y Fy(denote)h(the)f(semigroup)h(of)0 217 y(p)s(ositiv)m(e)i(in)m(tegers)g(with)f(addition)g(as)g(op)s (eration.)61 b(There)39 b(is)h(a)e(semigroup)h(homomorphism)h Fs(p)e Fy(:)g Fm(N)3841 180 y Fr(+)0 333 y Ft(\000)-60 b(!)28 b Fs(S)38 b Fy(for)32 b(whic)m(h)i Fs(p)p Fy(\()p Fs(k)s Fy(\))28 b(=)f Fs(s)1027 297 y Fp(k)1070 333 y Fy(.)43 b(That)33 b(this)g(is)h(a)e(homomorphism)i(is)f(just)g(the)g (statemen)m(t)h Fs(s)3401 297 y Fp(k)r Fr(+)p Fp(n)3569 333 y Fy(=)27 b Fs(s)3718 297 y Fp(k)3761 333 y Fs(s)3807 297 y Fp(n)3854 333 y Fy(.)p Black 0 502 a(1.2.13.)g Fv(Remark.)p Black 39 w Fy(A)g(semigroup)i(homomorphism)g(b)s(et)m(w)m (een)h(monoids)e(need)h(not)e(preserv)m(e)k(the)d(iden-)0 618 y(tities.)72 b(An)42 b(example)h(of)e(this)h(in)m(v)m(olv)m(es)j (the)d(trivial)g(monoid)g Fs(E)48 b Fy(with)42 b(only)g(one)g(elemen)m (t)i Fs(e)d Fy(\(whic)m(h)0 734 y(is)e(p)s(erforce)g(the)g(iden)m(tit)m (y)i(elemen)m(t\))f(and)f(the)g(monoid)g(of)g(all)f(in)m(tegers)i(with) g(m)m(ultiplication)g(as)f(the)0 850 y(op)s(eration,)32 b(whic)m(h)h(is)g(a)e(monoid)h(with)h(iden)m(tit)m(y)g(1.)43 b(The)33 b(function)g(that)e(tak)m(es)i(the)g(one)f(elemen)m(t)i(of)d Fs(E)0 966 y Fy(to)h(0)g(is)h(a)f(semigroup)i(homomorphism)f(that)g(is) g(not)f(a)g(monoid)h(homomorphism.)45 b(And,)33 b(b)m(y)g(the)g(w)m(a)m (y)-8 b(,)0 1083 y(ev)m(en)33 b(though)e Ft(f)p Fy(0)p Ft(g)g Fy(is)g(a)g(subsemigroup)i(of)e(the)h(in)m(tegers)g(with)g(m)m (ultiplication)h(and)e(ev)m(en)i(though)e(it)g(is)0 1199 y(actually)i(a)g(monoid,)f(it)h(is)g(not)g(a)f(submonoid.)p Black 0 1368 a(1.2.14.)d Fv(Remark)34 b Fy(\()p Fv(In)m(v)m(erses)f(of) h(homomorphisms\).)p Black 41 w Fy(As)c(an)f(example)i(of)e(ho)m(w)h (to)f(use)h(the)f(de\014ni-)0 1484 y(tion)i(of)g(homomorphism,)i(w)m(e) f(sho)m(w)h(that)e(the)h(in)m(v)m(erse)h(of)e(a)g(bijectiv)m(e)j (semigroup)e(homomorphism)g(is)0 1600 y(also)j(a)g(semigroup)h (homomorphism.)53 b(Let)35 b Fs(f)43 b Fy(:)32 b Fs(S)38 b Ft(\000)-60 b(!)32 b Fs(T)48 b Fy(b)s(e)36 b(a)f(bijectiv)m(e)i (semigroup)f(homomorphism)0 1716 y(with)d(in)m(v)m(erse)i Fs(g)t Fy(.)43 b(Let)33 b Fs(t;)17 b(t)955 1680 y Fq(0)1006 1716 y Ft(2)29 b Fs(T)14 b Fy(.)43 b(W)-8 b(e)33 b(ha)m(v)m(e)h(to)f (sho)m(w)g(that)g Fs(g)t Fy(\()p Fs(t)p Fy(\))p Fs(g)t Fy(\()p Fs(t)2494 1680 y Fq(0)2516 1716 y Fy(\))28 b(=)f Fs(g)t Fy(\()p Fs(tt)2844 1680 y Fq(0)2867 1716 y Fy(\).)44 b(Since)34 b Fs(f)43 b Fy(is)33 b(injectiv)m(e,)i(it)0 1833 y(is)e(su\016cien)m(t)i(to)d(sho)m(w)i(that)e Fs(f)11 b Fy(\()p Fs(g)t Fy(\()p Fs(t)p Fy(\))p Fs(g)t Fy(\()p Fs(t)1463 1796 y Fq(0)1485 1833 y Fy(\)\))27 b(=)h Fs(f)11 b Fy(\()p Fs(g)t Fy(\()p Fs(tt)1948 1796 y Fq(0)1971 1833 y Fy(\)\).)0 1949 y(The)28 b(righ)m(t)e(hand)h(side)h(is)f Fs(tt)1014 1913 y Fq(0)1064 1949 y Fy(b)s(ecause)h Fs(g)i Fy(is)d(the)g(in)m(v)m(erse)i(of)d Fs(f)11 b Fy(,)28 b(and)e(the)h(left)g(hand)g(side)h(is)f Fs(f)11 b Fy(\()p Fs(g)t Fy(\()p Fs(t)p Fy(\))p Fs(g)t Fy(\()p Fs(t)3699 1913 y Fq(0)3721 1949 y Fy(\)\))27 b(=)0 2065 y Fs(f)11 b Fy(\()p Fs(g)t Fy(\()p Fs(t)p Fy(\)\))p Fs(f)g Fy(\()p Fs(g)t Fy(\()p Fs(t)518 2029 y Fq(0)539 2065 y Fy(\)\))32 b(b)s(ecause)h Fs(f)43 b Fy(is)32 b(a)f(homomorphism,)j(but)e(that)f (is)i(also)e Fs(tt)2741 2029 y Fq(0)2797 2065 y Fy(since)i Fs(g)i Fy(is)d(the)h(in)m(v)m(erse)h(of)d Fs(f)11 b Fy(.)0 2181 y(This)31 b(sort)g(of)f(theorem)h(is)g(true)f(of)g(other)h (algebraic)f(structures,)j(suc)m(h)e(as)g(monoids.)43 b(It)31 b(is)g(not)f(true)g(for)0 2298 y(p)s(osets.)p Black 0 2466 a(1.2.15.)i Fv(Remark)38 b Fy(\()p Fv(Isomorphisms)h(of)f (semigroups\).)p Black 42 w Fy(If)33 b(a)f(homomorphism)i(of)e (semigroups)j(has)0 2582 y(an)i(in)m(v)m(erse)i(that)e(is)h(a)f (homomorphism)h(\(equiv)-5 b(alen)m(tly)d(,)40 b(as)e(w)m(e)g(just)f (sa)m(w,)i(if)e(it)g(is)h(bijectiv)m(e\),)i(w)m(e)e(sa)m(y)0 2699 y(that)i(the)h(homomorphism)g(is)g(an)f(isomorphism.)69 b(In)40 b(this)h(case,)i(the)e(t)m(w)m(o)g(semigroups)h(in)e(question)0 2815 y(ha)m(v)m(e)g(the)e(same)i(abstract)e(structure)i(and)e(are)h (said)f(to)g(b)s(e)h Fu(isomorphic)p Fy(.)59 b(As)39 b(w)m(e)g(will)g(see)h(later,)g(the)0 2931 y(prop)s(ert)m(y)33 b(of)f(p)s(ossessing)j(an)d(in)m(v)m(erse)j(is)f(tak)m(en)f(to)f (de\014ne)i(the)f(categorical)g(notion)f(of)g(isomorphism.)0 3047 y(It)42 b(is)h(imp)s(ortan)m(t)f(to)g(understand)i(that)e(there)h (ma)m(y)g(in)f(general)h(b)s(e)f(man)m(y)h(di\013eren)m(t)h (isomorphisms)0 3164 y(b)s(et)m(w)m(een)35 b(isomorphic)f(semigroups.) 45 b(F)-8 b(or)32 b(example,)i(there)f(are)g(t)m(w)m(o)g(distinct)h (isomorphisms)h(b)s(et)m(w)m(een)0 3280 y(the)25 b(monoid)g(with)g (underlying)h(set)f Ft(f)p Fy(0)p Fs(;)17 b Fy(1)p Fs(;)g Fy(2)p Fs(;)g Fy(3)p Ft(g)23 b Fy(and)h(addition)h(\(mo)s(d)g(4\))f(as) h(op)s(eration)f(and)h(the)g(monoid)0 3396 y(with)33 b(underlying)h(set)g Ft(f)p Fy(1)p Fs(;)17 b Fy(2)p Fs(;)g Fy(3)p Fs(;)g Fy(4)p Ft(g)30 b Fy(and)j(m)m(ultiplication)g(\(mo)s(d)g (5\))f(as)h(op)s(eration.)0 3565 y(W)-8 b(e)31 b(no)m(w)g(discuss)h(t)m (w)m(o)f(imp)s(ortan)m(t)f(t)m(yp)s(es)i(of)e(examples)i(of)e(monoid)g (homomorphisms)i(that)e(will)h(reap-)0 3681 y(p)s(ear)h(later)h(in)g (the)g(notes.)44 b(The)34 b(\014rst)f(example)h(is)f(a)f(basic)i(prop)s (ert)m(y)f(of)f(free)h(monoids.)p Black 0 3850 a(1.2.16.)d Fv(Remark)36 b Fy(\()p Fv(Kleene)g(closure)g(induces)g (homomorphisms\).)p Black 42 w Fy(Let)31 b Fs(A)g Fy(and)g Fs(B)36 b Fy(denote)c(sets,)0 3966 y(though)m(t)k(of)f(as)h(alphab)s (ets.)53 b(Let)35 b Fs(f)44 b Fy(:)33 b Fs(A)g Ft(\000)-60 b(!)32 b Fs(B)41 b Fy(b)s(e)36 b(an)m(y)g(set)g(function.)53 b(W)-8 b(e)36 b(de\014ne)h Fs(f)3216 3930 y Fq(\003)3288 3966 y Fy(:)c Fs(A)3421 3930 y Fq(\003)3493 3966 y Ft(\000)-59 b(!)32 b Fs(B)3722 3930 y Fq(\003)3797 3966 y Fy(b)m(y)0 4082 y Fs(f)59 4046 y Fq(\003)98 4082 y Fy(\(\()p Fs(a)225 4097 y Fr(1)265 4082 y Fs(;)17 b(a)360 4097 y Fr(2)399 4082 y Fs(;)g(:)g(:)g(:)f(;)h(a)669 4097 y Fp(k)711 4082 y Fy(\)\))35 b(=)g(\()p Fs(f)11 b Fy(\()p Fs(a)1119 4097 y Fr(1)1159 4082 y Fy(\))p Fs(;)17 b(f)11 b Fy(\()p Fs(a)1389 4097 y Fr(2)1428 4082 y Fy(\))p Fs(;)17 b(:)g(:)g(:)e(;)i(f)11 b Fy(\()p Fs(a)1832 4097 y Fp(k)1875 4082 y Fy(\)\).)56 b(In)37 b(particular,)i Fs(f)2702 4046 y Fq(\003)2741 4082 y Fy(\(\))c(=)g(\(\))i(and)g(for)f(an)m(y)i Fs(a)d Ft(2)h Fs(A)p Fy(,)0 4199 y Fs(f)59 4162 y Fq(\003)98 4199 y Fy(\()p Fs(a)p Fy(\))41 b(=)f Fs(f)11 b Fy(\()p Fs(a)p Fy(\).)66 b(Then)42 b Fs(f)983 4162 y Fq(\003)1062 4199 y Fy(is)f(a)e(homomorphism)j(of)d(monoids,)k(a)d(requiremen)m(t)j (that,)f(in)e(this)h(case,)0 4315 y(means)e(it)g(preserv)m(es)i(iden)m (tit)m(y)f(elemen)m(ts)h(\(b)m(y)e(de\014nition\))g(and)g (concatenation,)h(whic)m(h)g(can)f(b)s(e)g(seen)0 4431 y(from)d(the)h(follo)m(wing)g(calculation:)52 b(Let)37 b Fs(a)e Fy(=)f(\()p Fs(a)1825 4446 y Fr(1)1864 4431 y Fs(;)17 b(a)1959 4446 y Fr(2)1999 4431 y Fs(;)g(:)g(:)g(:)f(;)h(a) 2269 4446 y Fp(m)2335 4431 y Fy(\))36 b(and)h Fs(a)2654 4395 y Fq(0)2712 4431 y Fy(=)d(\()p Fs(a)2911 4395 y Fq(0)2911 4456 y Fr(1)2951 4431 y Fs(;)17 b(a)3046 4395 y Fq(0)3046 4456 y Fr(2)3085 4431 y Fs(;)g(:)g(:)g(:)f(;)h(a)3355 4395 y Fq(0)3355 4456 y Fp(n)3402 4431 y Fy(\))36 b(b)s(e)h(lists)h(in) 0 4547 y Fs(A)73 4511 y Fq(\003)113 4547 y Fy(.)43 b(Concatenating)33 b(them)h(giv)m(es)g(the)f(list)1197 4704 y Fs(aa)1299 4663 y Fq(0)1350 4704 y Fy(=)28 b(\()p Fs(a)1543 4719 y Fr(1)1582 4704 y Fs(;)17 b(a)1677 4719 y Fr(2)1717 4704 y Fs(;)g(:)g(:)g(:)e(;)i(a)1986 4719 y Fp(m)2053 4704 y Fs(;)g(a)2148 4663 y Fq(0)2148 4729 y Fr(1)2187 4704 y Fs(;)g(a)2282 4663 y Fq(0)2282 4729 y Fr(2)2322 4704 y Fs(;)g(:)g(:)g(:)e(;)i(a)2591 4663 y Fq(0)2591 4729 y Fp(n)2638 4704 y Fy(\))p Fs(:)0 4861 y Fy(Then)589 4951 y Fs(f)648 4915 y Fq(\003)687 4951 y Fy(\()p Fs(a)p Fy(\))p Fs(f)873 4915 y Fq(\003)912 4951 y Fy(\()p Fs(a)1001 4915 y Fq(0)1025 4951 y Fy(\))82 b(=)28 b Fs(f)1308 4915 y Fq(\003)1347 4951 y Fy(\()p Fs(a)1436 4966 y Fr(1)1476 4951 y Fs(;)17 b(a)1571 4966 y Fr(2)1610 4951 y Fs(;)g(:)g(:)g(:)f(;)h (a)1880 4966 y Fp(m)1946 4951 y Fy(\))p Fs(f)2043 4915 y Fq(\003)2083 4951 y Fy(\()p Fs(a)2172 4915 y Fq(0)2172 4975 y Fr(1)2211 4951 y Fs(;)g(a)2306 4915 y Fq(0)2306 4975 y Fr(2)2345 4951 y Fs(;)g(:)g(:)g(:)f(;)h(a)2615 4915 y Fq(0)2615 4975 y Fp(n)2662 4951 y Fy(\))1145 5067 y(=)28 b(\()p Fs(f)11 b Fy(\()p Fs(a)1435 5082 y Fr(1)1474 5067 y Fy(\))p Fs(;)17 b(f)11 b Fy(\()p Fs(a)1704 5082 y Fr(2)1743 5067 y Fy(\))p Fs(;)17 b(:)g(:)g(:)f(;)h(f)11 b Fy(\()p Fs(a)2148 5082 y Fp(m)2214 5067 y Fy(\)\)\()p Fs(f)g Fy(\()p Fs(a)2476 5031 y Fq(0)2476 5092 y Fr(1)2515 5067 y Fy(\))p Fs(;)17 b(f)11 b Fy(\()p Fs(a)2745 5031 y Fq(0)2745 5092 y Fr(2)2784 5067 y Fy(\))p Fs(;)17 b(:)g(:)g(:)f(;)h (f)11 b Fy(\()p Fs(a)3189 5031 y Fq(0)3189 5092 y Fp(n)3235 5067 y Fy(\)\))1145 5183 y(=)28 b(\()p Fs(f)11 b Fy(\()p Fs(a)1435 5198 y Fr(1)1474 5183 y Fy(\))p Fs(;)17 b(f)11 b Fy(\()p Fs(a)1704 5198 y Fr(2)1743 5183 y Fy(\))p Fs(;)17 b(:)g(:)g(:)f(;)h(f)11 b Fy(\()p Fs(a)2148 5198 y Fp(m)2214 5183 y Fy(\))p Fs(;)17 b(f)11 b Fy(\()p Fs(a)2444 5147 y Fq(0)2444 5208 y Fr(1)2483 5183 y Fy(\))p Fs(;)17 b(f)11 b Fy(\()p Fs(a)2713 5147 y Fq(0)2713 5208 y Fr(2)2752 5183 y Fy(\))p Fs(;)17 b(:)g(:)g(:)f(;)h(f)11 b Fy(\()p Fs(a)3157 5147 y Fq(0)3157 5208 y Fp(n)3203 5183 y Fy(\)\))1145 5299 y(=)28 b Fs(f)1308 5263 y Fq(\003)1347 5299 y Fy(\()p Fs(a)1436 5314 y Fr(1)1476 5299 y Fs(;)17 b(a)1571 5314 y Fr(2)1610 5299 y Fs(;)g(:)g(:)g(:)f(;)h(a)1880 5314 y Fp(m)1946 5299 y Fs(;)g(a)2041 5263 y Fq(0)2041 5324 y Fr(1)2081 5299 y Fs(;)g(a)2176 5263 y Fq(0)2176 5324 y Fr(2)2215 5299 y Fs(;)g(:)g(:)g(:)f(;)h(a)2485 5263 y Fq(0)2485 5324 y Fp(n)2532 5299 y Fy(\))1145 5416 y(=)28 b Fs(f)1308 5379 y Fq(\003)1347 5416 y Fy(\()p Fs(aa)1487 5379 y Fq(0)1511 5416 y Fy(\))p Black Black eop end %%Page: 12 12 TeXDict begin 12 11 bop Black 0 -99 a Fw(12)1668 b(F)-6 b(oundations)p Black 0 100 a Fy(Th)m(us)44 b(an)m(y)e(set)h(function)g (b)s(et)m(w)m(een)h(sets)f(induces)h(a)e(monoid)g(homomorphism)h(b)s (et)m(w)m(een)i(the)d(corre-)0 217 y(sp)s(onding)36 b(free)f(monoids.) 52 b(The)36 b(reader)g(ma)m(y)g(wish)g(to)f(v)m(erify)i(that)e(if)g Fs(f)45 b Fy(is)36 b(an)f(isomorphism)i(then)f(so)0 333 y(is)g Fs(f)160 297 y Fq(\003)200 333 y Fy(.)53 b(The)36 b(function)h Fs(f)928 297 y Fq(\003)1003 333 y Fy(is)f(called)h Fs(\013)q(f)46 b Fy(in)36 b([Bac)m(kus,)i(1981a])d(and)h(in)g(mo)s (dern)g(functional)h(languages)0 449 y(is)c(usually)h(called)f(map)g Fs(f)43 b Fy(or)33 b(map)f(list)h Fs(f)11 b Fy(.)0 630 y(The)34 b(other)e(imp)s(ortan)m(t)h(example)h(is)f(a)f(basic)i (construction)f(of)g(n)m(um)m(b)s(er)h(theory)-8 b(.)p Black 0 811 a(1.2.17.)41 b Fv(Remark)49 b Fy(\()p Fv(The)g(remainder)h (function\).)p Black 46 w Fy(The)43 b(set)g Fm(Z)f Fy(of)g(all)g(in)m (tegers)i(forms)e(a)g(monoid)0 927 y(with)37 b(resp)s(ect)g(to)f (either)h(addition)g(or)f(m)m(ultiplication.)56 b(If)36 b Fs(k)j Fy(is)e(an)m(y)g(p)s(ositiv)m(e)h(in)m(teger,)g(the)f(set)g Fs(Z)3748 942 y Fp(k)3824 927 y Fy(=)0 1043 y Ft(f)p Fy(0)p Fs(;)17 b Fy(1)p Fs(;)g(:)g(:)g(:)e(;)i(k)12 b Ft(\000)d Fy(1)p Ft(g)25 b Fy(of)h(remainders)h(of)f Fs(k)j Fy(is)d(also)g(a)g(monoid)g(with)h(resp)s(ect)g(to)f(addition)g (or)g(m)m(ultiplication)0 1160 y(\(mo)s(d)32 b Fs(k)s Fy(\).)44 b(Here)33 b(are)g(more)g(precise)h(de\014nitions.)p Black 0 1341 a(1.2.18.)40 b Fv(De\014nition.)p Black 46 w Fy(Let)h Fs(k)i Fy(b)s(e)e(a)f(p)s(ositiv)m(e)i(in)m(teger)f(and)f Fs(n)h Fy(an)m(y)g(in)m(teger.)68 b(Then)41 b Fs(n)67 b Fy(mo)s(d)33 b Fs(k)44 b Fy(is)d(the)0 1457 y(unique)34 b(in)m(teger)f Fs(r)e Ft(2)d Fs(Z)875 1472 y Fp(k)950 1457 y Fy(for)k(whic)m(h)i(there)f(is)g(an)g(in)m(teger)g Fs(q)k Fy(suc)m(h)d(that)e Fs(n)c Fy(=)g Fs(q)t(k)d Fy(+)d Fs(r)35 b Fy(and)d(0)c Ft(\024)g Fs(r)i(<)e(k)s Fy(.)0 1638 y(It)k(is)g(not)f(di\016cult)i(to)e(see)h(that)g(there)g(is)g (indeed)h(a)e(unique)i(in)m(teger)f Fs(r)i Fy(with)f(these)f(prop)s (erties.)44 b(De\014ne)0 1754 y(an)32 b(op)s(eration)h(`+)675 1769 y Fp(k)717 1754 y Fy(')g(of)f(addition)h(\(mo)s(d)f Fs(k)s Fy(\))h(b)m(y)g(requiring)h(that)e Fs(r)25 b Fy(+)2561 1769 y Fp(k)2626 1754 y Fs(s)i Fy(=)h(\()p Fs(r)d Fy(+)d Fs(s)p Fy(\))66 b(mo)s(d)33 b Fs(k)s Fy(.)0 1870 y(The)25 b(op)s(eration)e(of)g(addition)h(of)f(the)h(con)m(ten)m(ts)h(of)e(t)m (w)m(o)i(registers)f(in)g(a)g(micropro)s(cessor)h(ma)m(y)f(b)s(e)g (addition)0 1986 y(\(mo)s(d)32 b Fs(k)s Fy(\))h(for)f Fs(k)k Fy(some)d(p)s(o)m(w)m(er)h(of)e(2)g(\(often)g(complicated)i(b)m (y)g(the)f(presence)i(of)d(sign)h(bits\).)p Black 0 2167 a(1.2.19.)f Fv(Prop)s(osition.)p Black 42 w Fy(\()p Fm(Z)1054 2182 y Fp(k)1097 2167 y Fs(;)17 b Fy(+)1217 2182 y Fp(k)1259 2167 y Fy(\))35 b Fu(is)f(a)h(monoid)f(with)g(identity)i(0.)0 2348 y Fy(W)-8 b(e)33 b(also)g(ha)m(v)m(e)h(the)f(follo)m(wing.)p Black 0 2529 a(1.2.20.)24 b Fv(Prop)s(osition.)p Black 36 w Fu(The)k(function)f Fs(n)h Ft(7!)f Fy(\()p Fs(n)67 b Fy(mo)s(d)33 b Fs(k)s Fy(\))28 b Fu(is)g(a)f(monoid)g(homomorphism)f (fr)-5 b(om)27 b Fy(\()p Fm(Z)p Fs(;)17 b Fy(+\))0 2646 y Fu(to)35 b Fy(\()p Fs(Z)222 2661 y Fp(k)264 2646 y Fs(;)17 b Fy(+)384 2661 y Fp(k)427 2646 y Fy(\))p Fu(:)44 b(A)36 b(similar)e(de\014nition)f(and)i(pr)-5 b(op)g(osition)34 b(c)-5 b(an)34 b(b)-5 b(e)35 b(given)f(for)g(multiplic)-5 b(ation.)-438 2735 y Fy(29.04.04)0 2908 y(1.3.)49 b Fv(Categories.)p Black 0 3089 a Fy(1.3.1.)32 b Fv(De\014nition.)p Black 43 w Fy(A)g Fu(c)-5 b(ate)g(gory)33 b Fy(is)g(a)f(quadruple)i Ft(C)g Fy(=)27 b(\(Ob\()p Ft(C)6 b Fy(\))p Fs(;)17 b Fy(Mor\()p Ft(C)6 b Fy(\))p Fs(;)17 b Fy(\()p Fs(\026)p Fy(\))p Fs(;)g Fy(\(1\)\))32 b(consisting)h(of)p Black 148 3231 a(\(1\))p Black 42 w(a)f(class)i(of)e Fu(obje)-5 b(cts)1585 3359 y Fs(A;)17 b(B)5 b(;)17 b(C)34 b Ft(2)29 b Fy(Ob\()p Ft(C)6 b Fy(\))p Fs(;)p Black 148 3507 a Fy(\(2\))p Black 42 w(a)32 b(family)h(of)f(m)m(utually)i(disjoin)m(t)f (sets)1361 3675 y(\(Mor)1575 3690 y Fq(C)1620 3675 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\))p Ft(j)p Fs(A;)17 b(B)32 b Ft(2)c Fy(Ob\()p Ft(C)6 b Fy(\)\))315 3844 y(whose)33 b(elemen)m(ts)i Fs(f)5 b(;)17 b(g)t(;)g(h)g(:)g(:)g(:)26 b Ft(2)i Fy(Mor)1677 3859 y Fq(C)1722 3844 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\))33 b(are)f(called)i Fu(morphisms)p Fy(,)p Black 148 3960 a(\(3\))p Black 42 w(a)e(family)h(of)f(\()p Fu(c)-5 b(omp)g(osition)p Fy(\))31 b(maps)192 4129 y(\()p Fs(\026)289 4144 y Fp(A;B)s(;C)524 4129 y Fy(:)d(Mor)755 4144 y Fq(C)800 4129 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\))22 b Ft(\002)h Fy(Mor)1370 4144 y Fq(C)1415 4129 y Fy(\()p Fs(B)5 b(;)17 b(C)7 b Fy(\))27 b Ft(3)i Fy(\()p Fs(f)5 b(;)17 b(g)t Fy(\))26 b Ft(7!)i Fs(g)t(f)37 b Ft(2)28 b Fy(Mor)2598 4144 y Fq(C)2643 4129 y Fy(\()p Fs(A;)17 b(C)7 b Fy(\))p Ft(j)p Fs(A;)17 b(B)5 b(;)17 b(C)33 b Ft(2)28 b Fy(Ob\()p Ft(C)6 b Fy(\)\))p Fs(;)315 4297 y Fy(and)p Black 148 4413 a(\(4\))p Black 42 w(a)32 b(family)h(of)f (elemen)m(ts)j(called)e Fu(identities)p Fy(:)1311 4582 y(\(1)1398 4597 y Fp(A)1483 4582 y Ft(2)28 b Fy(Mor)1753 4597 y Fq(C)1798 4582 y Fy(\()p Fs(A;)17 b(A)p Fy(\))p Ft(j)p Fs(A)27 b Ft(2)h Fy(Ob)q(\()p Ft(C)6 b Fy(\)\))0 4750 y(satisfying)34 b(the)f(follo)m(wing)g(axioms)p Black 240 4893 a(-)p Black 42 w Ft(8)p Fs(A;)17 b(B)5 b(;)17 b(C)r(;)g(D)29 b Ft(2)f Fy(Ob\()p Ft(C)6 b Fy(\))33 b Ft(8)p Fs(f)39 b Ft(2)28 b Fy(Mor)1639 4908 y Fp(C)1698 4893 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\))p Fs(;)17 b(g)31 b Ft(2)d Fy(Mor)2362 4908 y Fq(C)2407 4893 y Fy(\()p Fs(B)5 b(;)17 b(C)7 b Fy(\))p Fs(;)49 b Fy(and)32 b Fs(h)c Ft(2)g Fy(Mor)3302 4908 y Fq(C)3347 4893 y Fy(\()p Fs(C)r(;)17 b(D)s Fy(\))27 b(:)1320 5061 y Fs(h)p Fy(\()p Fs(g)t(f)11 b Fy(\))27 b(=)g(\()p Fs(hg)t Fy(\))p Fs(f)38 b Ft(2)28 b Fy(Mor)2231 5076 y Fq(C)2276 5061 y Fy(\()p Fs(A;)17 b(D)s Fy(\))p Fs(;)p Black 240 5229 a Fy(-)p Black 42 w Ft(8)p Fs(A;)g(B)5 b(;)17 b(C)34 b Ft(2)28 b Fy(Ob\()p Ft(C)6 b Fy(\))p Ft(8)p Fs(f)39 b Ft(2)28 b Fy(Mor)1484 5244 y Fq(C)1529 5229 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\))p Fs(;)17 b(g)31 b Ft(2)d Fy(Mor)2193 5244 y Fq(C)2238 5229 y Fy(\()p Fs(B)5 b(;)17 b(C)7 b Fy(\))28 b(:)1476 5398 y(1)1525 5413 y Fp(B)1585 5398 y Fs(f)39 b Fy(=)27 b Fs(f)43 b Fy(and)33 b Fs(g)t Fy(1)2156 5413 y Fp(B)2243 5398 y Fy(=)28 b Fs(g)t(:)p Black Black eop end %%Page: 13 13 TeXDict begin 13 12 bop Black 1775 -99 a Fw(Categories)1700 b(13)p Black Black 0 100 a Fy(1.3.2.)32 b Fv(Remark.)p Black 42 w(Alternativ)m(e)38 b(de\014nition)g(\(Barr-W)-9 b(ells\):)0 217 y Fy(Let)43 b Fs(k)49 b(>)c Fy(0.)74 b(In)44 b(a)f(graph)f Ft(G)6 b Fy(,)46 b(a)d Fu(p)-5 b(ath)43 b Fy(from)f(a)h(no)s(de)g Fs(A)g Fy(to)g(a)g(no)s(de)g Fs(B)48 b Fy(of)42 b(length)i Fs(k)i Fy(is)e(a)e(sequence)0 333 y(\()p Fs(f)86 348 y Fr(1)125 333 y Fs(;)17 b(f)217 348 y Fr(2)257 333 y Fs(;)g(:)g(:)g(:)e(;)i(f)523 348 y Fp(k)566 333 y Fy(;)g Fs(A;)g(B)5 b Fy(\))32 b(of)g(\(not)h (necessarily)i(distinct\))e(arro)m(ws)h(for)e(whic)m(h)p Black 148 478 a(\(1\))p Black 42 w(source)q(\()p Fs(f)667 493 y Fp(k)709 478 y Fy(\))c(=)f Fs(A)p Fy(,)p Black 148 594 a(\(2\))p Black 42 w(target)o(\()p Fs(f)655 609 y Fp(i)683 594 y Fy(\))h(=)g(source)q(\()p Fs(f)1205 609 y Fp(i)p Fq(\000)p Fr(1)1323 594 y Fy(\))33 b(for)f Fs(i)c Fy(=)f(2)p Fs(;)17 b(:)g(:)g(:)f(;)h(k)s Fy(,)32 b(and)p Black 148 711 a(\(3\))p Black 42 w(target)o(\()p Fs(f)655 726 y Fr(1)695 711 y Fy(\))27 b(=)h Fs(B)5 b Fy(.)0 856 y(By)26 b(con)m(v)m(en)m(tion,)i(for)d(eac)m(h)h(no)s(de)f Fs(A)h Fy(there)f(is)h(a)f(unique)h(path)f(of)g(length)h(0)f(from)f Fs(A)i Fy(to)e Fs(A)h Fy(that)g(is)h(denoted)0 972 y(\()32 b(;)h(A,)g(A\).)f(It)h(is)g(called)h(the)f Fu(empty)i(p)-5 b(ath)32 b Fy(at)g Fs(A)p Fy(.)0 1088 y(Observ)m(e)i(that)f(if)f(y)m (ou)i(dra)m(w)f(a)f(path)h(as)f(follo)m(ws:)1501 1296 y Ft(\001)1570 1236 y Fp(f)1604 1248 y Fk(k)1557 1296 y Ft(!)27 b(\001)1739 1230 y Fp(f)1773 1242 y Fk(k)q Fl(\000)p Fj(1)1765 1296 y Ft(!)52 b(\001)17 b(\001)g(\001)2077 1236 y Fp(f)2111 1245 y Fj(2)2061 1296 y Ft(!)27 b(\001)2259 1236 y Fp(f)2293 1245 y Fj(1)2244 1296 y Ft(!)g(\001)0 1471 y Fy(with)41 b(the)g(arro)m(ws)g(going)f(from)g(left)h(to)f(righ)m (t,)i Fs(f)1858 1486 y Fp(k)1942 1471 y Fy(will)f(b)s(e)f(on)h(the)g (left)f(and)h(the)g(subscripts)h(will)f(go)0 1587 y(do)m(wn)33 b(from)g(left)f(to)h(righ)m(t.)43 b(W)-8 b(e)33 b(do)g(it)f(this)i(w)m (a)m(y)f(for)f(consistency)k(with)d(comp)s(osition.)0 1703 y(F)-8 b(or)32 b(an)m(y)h(arro)m(w)g Fs(f)38 b Fy(:)28 b Fs(A)g Ft(\000)-60 b(!)27 b Fs(B)5 b Fy(,)33 b(\()p Fs(f)11 b Fy(;)17 b Fs(A;)g(B)5 b Fy(\))32 b(is)h(a)f(path)h(of)f (length)h(1.)0 1819 y Fu(De\014nition:)42 b Fy(The)34 b(set)f(of)f(paths)h(of)f(length)h Fs(k)j Fy(in)d(a)f(graph)g Ft(G)39 b Fy(is)33 b(denoted)h Ft(G)2819 1834 y Fp(k)2861 1819 y Fy(.)0 1936 y(In)29 b(particular,)g Ft(G)650 1951 y Fr(2)690 1936 y Fy(,)g(whic)m(h)h(will)f(b)s(e)g(used)g(in)g(the)f (de\014nition)i(of)e(category)-8 b(,)29 b(is)g(the)g(set)g(of)f(pairs)g (of)g(arro)m(ws)0 2052 y(\()p Fs(f)5 b(;)17 b(g)t Fy(;)g(source\()p Fs(g)t Fy(\))p Fs(;)g Fy(target)o(\()p Fs(f)11 b Fy(\)\))44 b(for)h(whic)m(h)i(the)f(target)f(of)g Fs(g)j Fy(is)e(the)g(source)g (of)f Fs(f)11 b Fy(.)82 b(These)47 b(are)e(called)0 2202 y Fu(c)-5 b(omp)g(osable)33 b(p)-5 b(airs)32 b Fy(of)g(arro)m(ws:)44 b Ft(\001)1289 2141 y Fp(g)1258 2202 y Ft(!)27 b(\001)1470 2141 y Fp(f)1440 2202 y Ft(!)h(\001)k Fy(.)0 2318 y(W)-8 b(e)37 b(ha)m(v)m(e)g(no)m(w)g(assigned)h(t)m(w)m(o)e(meanings)i(to)e Ft(G)1799 2333 y Fr(0)1875 2318 y Fy(and)g Ft(G)2127 2333 y Fr(1)2167 2318 y Fy(.)54 b(This)37 b(will)g(cause)h(no)e (con\015ict)h(as)f Ft(G)3593 2333 y Fr(1)3669 2318 y Fy(refers)0 2434 y(indi\013eren)m(tly)g(either)f(to)e(the)i(collection) g(of)e(arro)m(ws)i(of)e Ft(G)41 b Fy(or)33 b(to)h(the)g(collection)h (of)f(paths)g(of)g(length)g(1,)0 2550 y(whic)m(h)40 b(is)e(essen)m (tially)j(the)d(same)h(thing.)60 b(Similarly)-8 b(,)40 b(w)m(e)f(use)g Ft(G)2415 2565 y Fr(0)2493 2550 y Fy(to)f(represen)m(t) i(either)f(the)f(collection)0 2667 y(of)33 b(no)s(des)h(of)f Ft(G)39 b Fy(or)33 b(the)h(collection)g(of)f(empt)m(y)i(paths,)f(of)e (whic)m(h)j(there)f(is)g(one)g(for)e(eac)m(h)j(no)s(de.)45 b(In)34 b(eac)m(h)0 2783 y(case)44 b(w)m(e)g(are)f(using)h(the)g(same)g (name)g(for)e(t)m(w)m(o)i(collections)h(that)e(are)g(not)g(the)g(same)h (but)g(are)f(in)g(a)0 2899 y(natural)37 b(one)g(to)g(one)g(corresp)s (ondence.)59 b(Compare)38 b(the)f(use)h(of)f(`2')g(to)f(denote)i (either)g(the)f(in)m(teger)h(or)0 3015 y(the)32 b(real)h(n)m(um)m(b)s (er.)44 b(As)33 b(this)g(last)f(remark)g(suggests,)i(one)e(migh)m(t)h (w)m(an)m(t)g(to)f(k)m(eep)h(the)g(t)m(w)m(o)f(meanings)h(of)0 3131 y Ft(G)59 3146 y Fr(1)131 3131 y Fy(separate)h(for)e(purp)s(oses)h (of)g(implemen)m(ting)h(a)e(graph)h(as)g(a)f(data)g(structure.)0 3248 y(The)e(one)g(to)e(one)i(corresp)s(ondences)i(men)m(tioned)f(in)e (the)h(preceding)g(paragraph)f(w)m(ere)i(called)f(`)p Fu(natur)-5 b(al)p Fy('.)0 3364 y(The)49 b(w)m(ord)g(is)g(used)h (informally)f(here,)k(but)c(in)f(fact)h(these)g(corresp)s(ondences)i (are)e(natural)f(in)h(the)0 3480 y(tec)m(hnical)34 b(sense.)0 3596 y Fv(De\014nition:)55 b Fy(A)38 b Fu(c)-5 b(ate)g(gory)38 b Fy(is)g(a)g(graph)g Ft(C)44 b Fy(together)38 b(with)h(t)m(w)m(o)g (functions)g Fs(c)d Fy(:)h Ft(C)3061 3611 y Fr(2)3138 3596 y Ft(\000)-59 b(!)36 b Fs(C)3362 3611 y Fr(1)3439 3596 y Fy(and)i Fs(u)f Fy(:)g Fs(C)3861 3611 y Fr(0)0 3713 y Ft(\000)-60 b(!)31 b Fs(C)218 3728 y Fr(1)292 3713 y Fy(with)k(prop)s(erties)h(C-1)e(through)h(C-4)f(b)s(elo)m(w.)51 b(\(Recall)35 b(that)g Ft(C)2641 3728 y Fr(2)2715 3713 y Fy(is)g(the)g(set)h(of)e(paths)h(of)f(length)0 3829 y(2.\))42 b(The)32 b(elemen)m(ts)g(of)e Ft(C)912 3844 y Fr(0)982 3829 y Fy(are)g(called)h Fu(obje)-5 b(cts)30 b Fy(and)g(those)h(of)f Ft(C)2329 3844 y Fr(1)2399 3829 y Fy(are)g(called)h Fu(arr)-5 b(ows)p Fy(.)42 b(The)32 b(function)e Fs(c)g Fy(is)0 3945 y(called)g Fu(c)-5 b(omp)g(osition)p Fy(,)28 b(and)h(if)g(\()p Fs(f)5 b(;)17 b(g)t Fy(;)g Fs(A;)g(C)7 b Fy(\))27 b(is)j(a)e(comp)s(osable)i(pair,)g Fs(c)p Fy(\()p Fs(f)5 b(;)17 b(g)t Fy(;)g Fs(A;)g(C)7 b Fy(\))27 b(is)j(written)g Fs(g)t(f)37 b Fy(=)28 b Fs(g)18 b Ft(\016)d Fs(f)0 4061 y Fy(and)33 b(is)g(called)h(the)f Fu(c)-5 b(omp)g(osite)32 b Fy(of)g Fs(f)43 b Fy(and)33 b Fs(g)t Fy(.)43 b(If)33 b Fs(A)g Fy(is)g(an)g(ob)5 b(ject)33 b(of)g Ft(C)39 b Fy(,)32 b Fs(u)p Fy(\()p Fs(A)p Fy(\))h(is)g(denoted)h (1)3439 4076 y Fp(A)3495 4061 y Fy(,)f(whic)m(h)h(is)0 4178 y(called)f(the)g Fu(identity)g Fy(of)f(the)h(ob)5 b(ject)34 b(A.)p Black 121 4323 a(C-1)p Black 42 w(The)f(source)h(of)e Fs(g)t(f)42 b Fy(is)33 b(the)g(source)h(of)e Fs(f)43 b Fy(and)33 b(the)g(target)f(of)g Fs(g)t(f)43 b Fy(is)33 b(the)g(target)f(of)g Fs(g)t Fy(.)p Black 121 4439 a(C-2)p Black 42 w(\()p Fs(hg)t Fy(\))p Fs(f)37 b Fy(=)28 b Fs(h)p Fy(\()p Fs(g)t(f)11 b Fy(\))31 b(whenev)m(er)k(either)f(side)g(is)f (de\014ned.)p Black 121 4555 a(C-3)p Black 42 w(The)g(source)h(and)e (target)h(of)f(1)1451 4570 y Fp(A)1540 4555 y Fy(are)h(b)s(oth)f Fs(A)p Fy(.)p Black 121 4672 a(C-4)p Black 42 w(If)g Fs(f)38 b Fy(:)28 b Fs(A)g Ft(\000)-60 b(!)28 b Fs(B)5 b Fy(,)33 b(then)g Fs(f)11 b Fy(1)1268 4687 y Fp(A)1352 4672 y Fy(=)27 b(1)1504 4687 y Fp(B)1565 4672 y Fs(f)38 b Fy(=)28 b Fs(f)11 b Fy(.)0 4817 y(The)32 b(signi\014cance)h(of)d(the) h(fact)g(that)g(the)g(comp)s(osite)h Fs(c)e Fy(is)i(de\014ned)g(on)f Ft(G)2708 4832 y Fr(2)2779 4817 y Fy(is)g(that)g Fs(g)t(f)40 b Fy(is)32 b(de\014ned)g(if)f(and)0 4933 y(only)k(if)g(the)h(source)g (of)e Fs(g)k Fy(is)e(the)f(target)g(of)f Fs(f)11 b Fy(.)51 b(This)36 b(means)g(that)f(comp)s(osition)g(is)h(a)e(function)i(whose)0 5049 y(domain)g(is)h(an)f(equationally)h(de\014ned)g(subset)h(of)e Ft(G)1963 5064 y Fr(1)2027 5049 y Ft(\002)25 b(G)2188 5064 y Fr(1)2227 5049 y Fy(:)51 b(the)36 b(equation)h(requires)h(that)d (the)i(source)0 5165 y(of)31 b Fs(g)j Fy(equal)f(the)e(target)h(of)e Fs(f)11 b Fy(.)43 b(It)32 b(follo)m(ws)g(from)f(this)h(and)f(C-1)g (that)g(in)h(C-2,)f(one)h(side)h(of)d(the)i(equation)0 5282 y(is)h(de\014ned)h(if)f(and)f(only)h(if)g(the)g(other)f(side)i(is) f(de\014ned.)0 5398 y(In)g(the)g(category)g(theory)g(literature,)g(1) 1493 5413 y Fp(A)1583 5398 y Fy(is)g(often)f(written)i(just)f Fs(A)p Fy(.)p Black Black eop end %%Page: 14 14 TeXDict begin 14 13 bop Black 0 -99 a Fw(14)1668 b(F)-6 b(oundations)p Black Black 0 100 a Fy(1.3.3.)43 b Fv(Remark)50 b Fy(\(T)-8 b(erminology\))p Fv(.)p Black 48 w Fy(In)43 b(m)m(uc)m(h)i(of)e(the)g(categorical)h(literature,)i(`)p Fu(morphism)p Fy(')c(is)i(more)0 217 y(common)36 b(than)g(`)p Fu(arr)-5 b(ow)p Fy('.)52 b(W)-8 b(e)36 b(will)g(normally)g(denote)h (ob)5 b(jects)36 b(of)g(categories)g(b)m(y)g(capital)g(letters)h(but)0 333 y(no)s(des)25 b(of)e(graphs)i(\(except)h(when)f(w)m(e)g(think)g(of) f(a)f(category)i(as)f(a)g(graph\))g(b)m(y)h(lo)m(w)m(er)g(case)g (letters.)42 b(Arro)m(ws)0 449 y(are)33 b(alw)m(a)m(ys)h(lo)m(w)m(er)f (case.)0 565 y(In)28 b(the)f(computing)h(science)i(literature,)f(the)f (comp)s(osite)g Fs(g)15 b Ft(\016)c Fs(f)38 b Fy(is)27 b(sometimes)j(written)e(f;)h(g)e(,)h(a)f(notation)0 681 y(suggested)34 b(b)m(y)g(the)f(p)s(erception)g(of)f(a)h(t)m(yp)s(ed)g (functional)g(programming)g(language)f(as)h(a)f(category)-8 b(.)0 798 y(W)g(e)33 b(ha)m(v)m(e)g(presen)m(ted)i(the)d(concept)i(of)d (category)i(as)f(a)g(t)m(w)m(o-sorted)h(data)f(structure;)i(the)f (sorts)f(are)h(the)0 914 y(ob)5 b(jects)43 b(and)e(the)h(arro)m(ws.)70 b(Categories)43 b(are)e(sometimes)i(presen)m(ted)h(as)e(one-sorted)f({) h(arro)m(ws)f(only)-8 b(.)0 1030 y(The)35 b(ob)5 b(jects)35 b(can)g(b)s(e)f(reco)m(v)m(ered)i(from)e(the)g(fact)g(that)g(C-3)g(and) g(C-4)f(together)i(c)m(haracterize)g(1)3630 1045 y Fp(A)3721 1030 y Fy(\(not)0 1146 y(hard)k(to)g(pro)m(v)m(e\),)j(so)d(that)g (there)g(is)h(a)e(one)i(to)e(one)i(corresp)s(ondence)h(b)s(et)m(w)m (een)g(the)e(ob)5 b(jects)40 b(and)g(the)0 1263 y(iden)m(tit)m(y)34 b(arro)m(ws)g(1)722 1278 y Fp(A)778 1263 y Fy(.)p Black 0 1437 a(1.3.4.)e Fv(De\014nition.)p Black 42 w Fy(A)g(category)g(is)h Fu(smal)5 b(l)31 b Fy(if)h(its)h(ob)5 b(jects)33 b(and)g(arro)m(ws)f (constitute)i(sets;)f(otherwise)h(it)0 1554 y(is)f Fu(lar)-5 b(ge)p Fy(.)0 1670 y(A)26 b(category)h(with)f(the)h(prop)s(ert)m(y)g (that)e(Mor)1636 1685 y Fq(C)1681 1670 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\))25 b(is)i(a)f(set)h(for)e(all)h(ob)5 b(jects)28 b Fs(A)e Fy(and)g Fs(B)31 b Fy(is)c(called)f Fu(lo)-5 b(c)g(al)5 b(ly)0 1786 y(smal)g(l)p Fy(.)43 b(All)32 b(categories)i(in)f(these)g(notes)h(are)e(lo)s(cally)h(small.)p Black 0 1961 a(1.3.5.)k Fv(Remark.)p Black 44 w Fy(The)h(category)f(of) g(sets)h(and)f(functions)h(is)f(an)g(example)h(of)f(a)g(large)f (category)-8 b(.)57 b(Al-)0 2077 y(though)39 b(one)h(m)m(ust)g(in)f (principle)i(b)s(e)f(w)m(ary)g(in)f(dealing)h(with)g(large)f(classes,)k (it)c(is)h(not)f(in)g(practice)h(a)0 2193 y(problem;)33 b(category)g(theorists)h(ha)m(v)m(e)g(rarely)-8 b(,)33 b(if)f(ev)m(er,)j(run)d(in)m(to)h(set)g(theoretic)h(di\016culties.)p Black 0 2368 a(1.3.6.)43 b Fv(De\014nition.)p Black 47 w Fy(F)-8 b(or)43 b(an)m(y)h(path)f(\()p Fs(f)1539 2383 y Fr(1)1578 2368 y Fs(;)17 b(f)1670 2383 y Fr(2)1709 2368 y Fs(;)g(:)g(:)g(:)f(;)h(f)1976 2383 y Fp(n)2023 2368 y Fy(\))43 b(in)g(a)g(category)h Ft(C)49 b Fy(,)d(de\014ne)e Fs(f)3238 2383 y Fr(1)3307 2368 y Ft(\016)29 b Fs(f)3434 2383 y Fr(2)3503 2368 y Ft(\016)g Fs(:)17 b(:)g(:)29 b Ft(\016)g Fs(f)3853 2383 y Fp(n)0 2484 y Fy(recursiv)m(ely)36 b(b)m(y)823 2601 y Fs(f)871 2616 y Fr(1)933 2601 y Ft(\016)22 b Fs(f)1053 2616 y Fr(2)1114 2601 y Ft(\016)g Fs(:)17 b(:)g(:)22 b Ft(\016)g Fs(f)1443 2616 y Fp(n)1518 2601 y Fy(:=)27 b(\()p Fs(f)1734 2616 y Fr(1)1796 2601 y Ft(\016)22 b Fs(f)1916 2616 y Fr(2)1977 2601 y Ft(\016)g Fs(:)17 b(:)g(:)22 b Ft(\016)g Fs(f)2306 2616 y Fp(n)p Fq(\000)p Fr(1)2443 2601 y Fy(\))g Ft(\016)g Fs(f)2623 2616 y Fp(n)2670 2601 y Fs(;)115 b(n)27 b(>)h Fy(2)p Fs(:)p Black 0 2776 a Fy(1.3.7.)d Fv(Prop)s(osition)30 b Fy(\(The)c(general)g(asso)s (ciativ)m(e)h(la)m(w.\))p Fv(.)p Black 37 w Fu(F)-7 b(or)28 b(any)g(p)-5 b(ath)28 b Fy(\()p Fs(f)2813 2791 y Fr(1)2853 2776 y Fs(;)17 b(f)2945 2791 y Fr(2)2984 2776 y Fs(;)g(:)g(:)g(:)f(;)h (f)3251 2791 y Fp(n)3297 2776 y Fy(\))29 b Fu(in)f(a)g(c)-5 b(ate)g(gory)0 2893 y Ft(C)41 b Fu(and)34 b(any)h(inte)-5 b(ger)35 b Fs(k)j Fu(with)c Fy(1)28 b Fs(<)f(k)k(<)d(n)p Fu(,)975 3050 y Fy(\()p Fs(f)1061 3065 y Fr(1)1123 3050 y Ft(\016)22 b Fs(:)17 b(:)g(:)22 b Ft(\016)g Fs(f)1452 3065 y Fp(k)1494 3050 y Fy(\))g Ft(\016)g Fy(\()p Fs(f)1712 3065 y Fp(k)r Fr(+1)1867 3050 y Ft(\016)g Fs(:)17 b(:)g(:)22 b Ft(\016)g Fs(f)2196 3065 y Fp(n)2243 3050 y Fy(\))28 b(=)f Fs(f)2460 3065 y Fr(1)2522 3050 y Ft(\016)22 b Fs(:)17 b(:)g(:)k Ft(\016)h Fs(f)2850 3065 y Fp(n)2897 3050 y Fs(:)0 3208 y Fu(In)34 b(other)h(wor)-5 b(ds,)34 b(you)h(c)-5 b(an)35 b(unambiguously)f(dr)-5 b(op)35 b(the)g(p)-5 b(ar)g(entheses.)0 3383 y Fy(In)33 b(this)g(prop)s (osition,)g(the)g(notation)f Fs(f)1458 3398 y Fp(k)r Fr(+1)1613 3383 y Ft(\016)22 b Fs(:)17 b(:)g(:)22 b Ft(\016)g Fs(f)1942 3398 y Fp(n)2021 3383 y Fy(when)34 b Fs(k)d Fy(=)c Fs(n)c Ft(\000)f Fy(1)33 b(means)g(simply)h Fs(f)3381 3398 y Fp(n)3428 3383 y Fy(.)0 3499 y(This)i(is)f(a)g(standard)g(fact)g (for)f(asso)s(ciativ)m(e)i(binary)g(op)s(erations)f(\(see)h([Jacobson,) d(1974)o(],)j(Section)f(1.4\))0 3615 y(and)e(can)g(b)s(e)f(pro)m(v)m (ed)i(in)f(exactly)h(the)f(same)h(w)m(a)m(y)f(for)f(categories.)p Black 0 3790 a(1.3.8.)g Fv(Examples.)p Black Black 192 w Fy(\(1\))p Black 41 w(Degenerate)h(categories)g(suc)m(h)h(as:)p Black 422 3906 a Ft(\017)p Black 41 w Fy(Sets)g Fs(X)40 b Fy({)32 b(i.e.)44 b Fs(X)d Fy(is)33 b(the)g(class)g(of)g(ob)5 b(jects)33 b(and)g(all)g(arro)m(ws)g(are)f(iden)m(tities.)p Black 422 4023 a Ft(\017)p Black 41 w Fy(Monoids)i Ft(M)e Fy({)g(an)m(y)h(monoid)g Ft(M)f Fy(determines)j(a)d(category)h Ft(C)6 b Fy(\()p Ft(M)p Fy(\).)p Black 481 4139 a(CM-1)p Black 41 w Ft(C)g Fy(\()p Ft(M)p Fy(\))31 b(has)h(one)f(ob)5 b(ject,)33 b(whic)m(h)g(w)m(e)f(will)g(denote)g Ft(\003)p Fy(,)f Ft(\003)g Fy(can)h(b)s(e)f(c)m(hosen)i(arbitrarily)-8 b(.)763 4255 y(A)33 b(simple)h(uniform)f(c)m(hoice)h(is)f(to)f(tak)m(e) h Ft(\003)28 b Fy(=)g Fs(M)10 b Fy(.)p Black 481 4371 a(CM-2)p Black 41 w(The)34 b(arro)m(ws)f(of)f Ft(C)6 b Fy(\()p Ft(M)p Fy(\))32 b(are)h(the)g(elemen)m(ts)i(of)d Fs(M)43 b Fy(with)34 b Ft(\003)e Fy(as)h(source)g(and)g(target.)p Black 481 4487 a(CM-3)p Black 41 w(Comp)s(osition)h(is)f(the)g(binary)g (op)s(eration)f(of)g Ft(M)p Fy(.)513 4604 y(Th)m(us)44 b(a)d(category)h(can)g(b)s(e)g(regarded)g(as)g(a)g(generalized)h (monoid,)h(or)d(a)h(`)p Fu(monoid)g(with)513 4720 y(many)32 b(obje)-5 b(cts)p Fy('.)42 b(This)30 b(p)s(oin)m(t)f(of)g(view)i(has)e (not)g(b)s(een)h(as)g(fruitful)f(in)g(mathematics)i(as)f(the)513 4836 y(p)s(erception)35 b(of)e(a)h(category)g(as)g(a)f(generalized)i(p) s(oset.)47 b(It)34 b(do)s(es)g(ha)m(v)m(e)h(some)g(applications)513 4952 y(in)e(computing)g(science.)p Black 422 5069 a Ft(\017)p Black 41 w Fy(Preorders)26 b({)e(an)m(y)g(preorder)h(\()p Fs(P)s(;)17 b Ft(\024)p Fy(\))24 b(determines)i(a)e(category)g Ft(C)6 b Fy(\()p Fs(P)14 b Fy(\).)41 b(The)25 b(class)g(of)f(ob)5 b(jects)513 5185 y(of)37 b Ft(C)6 b Fy(\()p Fs(P)14 b Fy(\))36 b(is)i(the)g(set)f Fs(P)14 b Fy(.)57 b(There)38 b(is)g(exactly)g(one)g(arro)m(w)f(b)s(et)m(w)m(een)i Fs(x)d Ft(2)g Fs(P)50 b Fy(and)37 b Fs(y)i Ft(2)d Fs(P)50 b Fy(if)513 5301 y(and)36 b(only)f(if)h Fs(x)c Ft(\024)h Fs(y)39 b Fy(\(otherwise)d(there)h(is)e(no)h(arro)m(w\).)51 b(So)36 b(there)g(is)g(at)e(most)i(one)g(arro)m(w)513 5417 y(b)s(et)m(w)m(een)f(an)m(y)e(t)m(w)m(o)g(ob)5 b(jects)34 b(\(see)g(1.3.8\(11\)\).)p Black Black eop end %%Page: 15 15 TeXDict begin 15 14 bop Black 1775 -99 a Fw(Categories)1700 b(15)p Black 315 100 a Fy(Man)m(y)31 b(categorists)g(de\014ne)h(a)e (monoid)h(to)f(b)s(e)g(a)h(category)f(with)h(one)g(ob)5 b(ject)31 b(and)g(a)f(preordered)315 217 y(set)j(to)f(b)s(e)h(a)f (category)h(in)g(whic)m(h)h(ev)m(ery)g(hom)f(set)g(is)h(either)f(empt)m (y)h(or)e(a)h(singleton.)p Black 148 333 a(\(2\))p Black 42 w(Categories)g(determined)h(b)m(y)g(graphs:)p Black 422 449 a Ft(\017)p Black 41 w Fv(0)f Fy({)f(the)h(category)g(with)g (empt)m(y)h(class)g(of)e(ob)5 b(jects)34 b(\(and)f(no)f(morphisms\).)p Black 422 565 a Ft(\017)p Black 41 w Fv(1)27 b Fy({)g(the)h(category)f (with)h(exactly)h(one)e(ob)5 b(ject)28 b(and)f(exactly)i(one)e (morphism)i(\(the)e(iden)m(tit)m(y)513 681 y(of)32 b(the)h(ob)5 b(ject\).)p Black 422 798 a Ft(\017)p Black 41 w Fv(2)45 b Fy(=)k(\()p Ft(\001)g(\000)-60 b(!)48 b(\001)p Fy(\))d({)g(the)g (category)h(with)f(t)m(w)m(o)h(ob)5 b(jects)46 b(and)g(one)f(arro)m(w)g (b)s(et)m(w)m(een)i(them.)513 914 y(T)-8 b(ogether)33 b(with)h(the)f(iden)m(tit)m(y)h(arro)m(ws)f(there)g(are)g(3)f(arro)m (ws.)513 1030 y(This)51 b(can)f(b)s(e)f(represen)m(ted)j(b)m(y)e(the)g (category)g Ft(C)6 b Fy(\()p Fs(S;)17 b(\013)q Fy(\))49 b(for)g Fs(S)62 b Fy(=)57 b Ft(f)p Fs(C)r(;)17 b(D)s Ft(g)48 b Fy(and)h Fs(\013)57 b Fy(=)513 1146 y Ft(fh)p Fs(C)r(;)17 b(C)7 b Ft(i)p Fs(;)17 b Ft(h)p Fs(C)r(;)g(D)s Ft(i)p Fs(;)g Ft(h)p Fs(D)s(;)g(D)s Ft(ig)p Fy(.)p Black 422 1263 a Ft(\017)p Black 41 w Fs(!)50 b Fy({)45 b(the)i(category)f (with)h(a)f(coun)m(tably)h(in\014nite)g(n)m(um)m(b)s(er)h(of)d(ob)5 b(jects)47 b(and)g(ascending)513 1379 y(arro)m(ws)33 b(\(succ\))h(b)s(et)m(w)m(een)h(them.)p Black 422 1495 a Ft(\017)p Black 41 w Fy(Categories)f(freely)f(generated)h(b)m(y)f (directed)h(graphs)f Ft(G)6 b Fy(.)p Black 148 1611 a(\(3\))p Black 42 w(The)40 b(opp)s(osite)f(category)h Ft(C)1374 1575 y Fp(op)1487 1611 y Fy(obtained)f(b)m(y)h(rev)m(ersing)h(the)f (arro)m(ws)f(of)g(a)g(giv)m(en)h(category)g Ft(C)6 b Fy(,)315 1728 y(while)33 b(k)m(eeping)i(the)e(same)g(ob)5 b(jects.)p Black 148 1844 a(\(4\))p Black 42 w Fv(Set)37 b Fy({)g(the)h(category)g(of)f(\(small\))h(sets)h(and)f(functions;)j (comp)s(osition)d(is)g(the)g(usual)g(function)315 1960 y(comp)s(osition)k(\(as)f(w)m(ell)i(as)f(in)f(the)h(remaining)g (examples\).)72 b(Note)42 b(that)f(t)m(yp)s(e)i(matters:)62 b(the)315 2076 y(iden)m(tit)m(y)48 b(on)f(the)h(natural)f(n)m(um)m(b)s (ers)i(is)e(a)g(di\013eren)m(t)i(function)e(from)g(the)g(inclusion)i (of)e(the)315 2192 y(natural)32 b(n)m(um)m(b)s(ers)i(in)m(to)f(the)g (in)m(tegers.)p Black 148 2309 a(\(5\))p Black 42 w Fv(Set)472 2324 y Fq(\003)539 2309 y Fy({)28 b(p)s(oin)m(ted)g(sets)h(\(i.e.)43 b(sets)29 b(with)g(a)e(selected)j(base-p)s(oin)m(t\))f(and)f(functions) h(preserving)h(the)315 2425 y(base)j(p)s(oin)m(t.)p Black 148 2541 a(\(6\))p Black 42 w(A)27 b Fu(p)-5 b(artial)30 b(function)e Fy(from)f(a)g(set)i Fs(S)k Fy(to)27 b(a)h(set)g Fs(T)41 b Fy(is)28 b(a)g(function)g(with)g(domain)g Fs(S)3239 2556 y Fr(0)3306 2541 y Fy(and)g(co)s(domain)315 2657 y Fs(T)14 b Fy(,)43 b(where)h Fs(S)808 2672 y Fr(0)889 2657 y Fy(is)e(some)h(subset)g(of)e Fs(S)6 b Fy(.)71 b(The)43 b(category)f Fv(Pfn)g Fy(of)f(sets)i(and)f(partial)g (functions)315 2774 y(has)37 b(all)h(sets)g(as)g(ob)5 b(jects)39 b(and)e(all)h(partial)f(functions)i(as)e(arro)m(ws.)59 b(If)37 b Fs(f)47 b Fy(:)36 b Fs(S)42 b Ft(\000)-59 b(!)35 b Fs(T)51 b Fy(and)38 b Fs(g)h Fy(:)d Fs(T)315 2890 y Ft(\000)-60 b(!)33 b Fs(V)58 b Fy(are)36 b(partial)f(functions)i(with)g Fs(f)46 b Fy(de\014ned)38 b(on)e Fs(S)2346 2905 y Fr(0)2419 2890 y Ft(\022)e Fs(S)41 b Fy(and)36 b Fs(g)k Fy(de\014ned)d(on)f Fs(T)3446 2905 y Fr(0)3519 2890 y Ft(\022)e Fs(T)14 b Fy(,)37 b(the)315 3006 y(comp)s(osite)f Fs(g)28 b Ft(\016)c Fs(f)43 b Fy(:)33 b Fs(S)39 b Ft(\000)-60 b(!)33 b Fs(V)57 b Fy(is)36 b(the)g(partial)f(function)i(from)e Fs(S)41 b Fy(to)36 b Fs(V)57 b Fy(de\014ned)37 b(on)e(the)h(subset)315 3122 y Fs(S)375 3137 y Fr(0)436 3122 y Ft(\\)23 b Fs(f)584 3086 y Fq(\000)p Fr(1)678 3122 y Fy(\()p Fs(T)773 3137 y Fr(0)812 3122 y Fy(\))33 b(of)f Fs(S)38 b Fy(b)m(y)c(the)f (requiremen)m(t)i(\()p Fs(g)25 b Ft(\016)d Fs(f)11 b Fy(\)\()p Fs(x)p Fy(\))28 b(=)f Fs(g)t Fy(\()p Fs(f)11 b Fy(\()p Fs(x)p Fy(\)\).)p Black 148 3239 a(\(7\))p Black 42 w Fv(\001)23 b Fy({)h(\014nite)g(ordinals)g(\(the)g(ordinal)g Fs(n)f Fu(is)h Fy(the)g(totally)f(ordered)i(set)f(of)f(all)g(the)h (preceding)h(ordinals)315 3355 y Ft(f)p Fy(0)p Fs(;)17 b Fy(1)p Fs(;)g(:)g(:)g(:)d(;)j(n)e Ft(\000)g Fy(1)p Ft(g)29 b Fy(and)g(0)f(is)i(the)f(empt)m(y)i(set\))e(and)g(monotone)h (or)e(order)h(preserving)i(functions.)315 3471 y(This)i(category)g(is)g (called)h(the)f Fu(simplicial)g(c)-5 b(ate)g(gory)p Fy(.)p Black 148 3587 a(\(8\))p Black 42 w Fv(Fin)33 b Fy({)f(\014nite)i(sets) f(and)g(functions.)2355 b(30.4.04)p Black 148 3703 a(\(9\))p Black 42 w(Let)43 b Fs(\013)g Fy(b)s(e)g(a)g(relation)g(from)f(a)h(set) g Fs(S)49 b Fy(to)42 b(a)h(set)g Fs(T)57 b Fy(and)43 b Fs(\014)48 b Fy(a)43 b(relation)g(from)f Fs(T)57 b Fy(to)42 b Fs(U)10 b Fy(.)75 b(The)315 3820 y Fu(c)-5 b(omp)g(osite)35 b Fs(\014)30 b Ft(\016)24 b Fs(\013)37 b Fy(is)g(the)f(relation)g(from)g Fs(S)42 b Fy(to)36 b Fs(U)47 b Fy(de\014ned)37 b(as)g(follo)m(ws:)51 b(If)36 b Fs(x)e Ft(2)h Fs(S)41 b Fy(and)c Fs(z)h Ft(2)c Fs(U)315 3936 y Fy(then)g(\()p Fs(x;)17 b(z)t Fy(\))31 b Ft(2)g Fs(\014)d Ft(\016)23 b Fs(\013)35 b Fy(if)f(and)g(only)g(if)g(there)h (is)f(an)g(elemen)m(t)i Fs(y)d Ft(2)e Fs(T)47 b Fy(for)34 b(whic)m(h)h(\()p Fs(x;)17 b(y)t Fy(\))30 b Ft(2)g Fs(\013)35 b Fy(and)315 4052 y(\()p Fs(y)t(;)17 b(z)t Fy(\))27 b Ft(2)h Fs(\014)6 b Fy(.)41 b(With)28 b(this)g(de\014nition)h(of)e(comp) s(osition,)i(the)f Fu(c)-5 b(ate)g(gory)31 b Fv(Rel)f Fu(of)g(sets)g(and)g(r)-5 b(elations)315 4168 y Fy(has)35 b(sets)h(as)g(ob)5 b(jects)36 b(and)f(relations)h(as)f(arro)m(ws.)52 b(The)36 b(iden)m(tit)m(y)h(for)e(a)f(set)i Fs(S)41 b Fy(is)36 b(the)f(diagonal)315 4285 y(relation)d(\001)753 4300 y Fp(S)832 4285 y Fy(=)c Ft(f)p Fy(\()p Fs(x;)17 b(x)p Fy(\))p Ft(j)p Fs(x)28 b Ft(2)g Fs(A)p Ft(g)p Fy(.)414 4401 y(In)33 b(order)g(to)f(mak)m(e)h(the)g(morphism)h(sets)g(disjoin)m (t,)f(one)g(has)g(to)f(tak)m(e)h(monads)g(\()p Fs(\013)q(;)17 b(S;)g(T)d Fy(\))31 b(for)315 4517 y(the)i(morphisms,)h(where)g Fs(\013)28 b Ft(\022)g Fs(S)g Ft(\002)23 b Fs(T)14 b Fy(.)p Black 100 4633 a(\(10\))p Black 41 w(Other)45 b(examples)i(of)e(categories)h(whose)g(ob)5 b(jects)47 b(are)e(sets)h(are)g(the)f(category)h(of)e(sets)j(and)315 4750 y(injectiv)m(e)34 b(functions)g(and)e(the)h(category)g(of)f(sets)i (and)f(surjectiv)m(e)i(functions.)p Black 100 4866 a(\(11\))p Black 41 w(Preordered)28 b(sets:)42 b(If)27 b Fs(S)32 b Fy(is)c(a)e(set,)j(a)e(subset)i Fs(\013)f Ft(\032)g Fs(S)16 b Ft(\002)11 b Fs(S)33 b Fy(is)28 b(called)g(a)e Fu(binary)k(r)-5 b(elation)26 b Fy(on)h Fs(S)6 b Fy(.)41 b(It)27 b(is)315 4982 y(often)k(con)m(v)m(enien)m(t)j(to)e(write)g Fs(x\013)q(y)j Fy(as)c(shorthand)i(for)e(\()p Fs(x;)17 b(y)t Fy(\))27 b Ft(2)h Fs(\013)q Fy(.)42 b(W)-8 b(e)32 b(sa)m(y)h(that)e Fs(\013)h Fy(is)h Fu(r)-5 b(e\015exive)315 5098 y Fy(if)32 b Fs(x\013)q(x)h Fy(for)f(all)h Fs(x)28 b Ft(2)g Fs(S)38 b Fy(and)33 b Fu(tr)-5 b(ansitive)32 b Fy(if)g Fs(x\013)q(y)k Fy(and)d Fs(y)t(\013)q(z)j Fy(implies)e Fs(x\013)q(z)k Fy(for)32 b(all)g Fs(x;)17 b(y)t(;)g(z)31 b Ft(2)e Fs(S)6 b Fy(.)414 5214 y(A)42 b(set)h Fs(S)48 b Fy(with)43 b(a)e(re\015exiv)m(e,)47 b(transitiv)m(e)d(relation)e Fs(\013)h Fy(on)f(it)g(is)g(a)g(structure)h(\()p Fs(S)6 b Fy(;)17 b Fs(\013)q Fy(\),)44 b(i.e.)72 b(a)315 5331 y(preordered)33 b(set)h(determines)g(a)f(category)g Ft(C)6 b Fy(\()p Fs(S)g Fy(;)17 b Fs(\013)q Fy(\))31 b(de\014ned)j(as)f(follo) m(ws.)p Black Black eop end %%Page: 16 16 TeXDict begin 16 15 bop Black 0 -99 a Fw(16)1668 b(F)-6 b(oundations)p Black Black 245 100 a Fy(CO-1)p Black 40 w(The)34 b(ob)5 b(jects)34 b(of)e Ft(C)6 b Fy(\()p Fs(S;)17 b(\013)q Fy(\))32 b(are)h(the)g(elemen)m(ts)i(of)d Fs(S)6 b Fy(.)p Black 245 217 a(CO-2)p Black 40 w(If)38 b Fs(x;)17 b(y)40 b Ft(2)e Fs(S)44 b Fy(and)38 b Fs(x\013)q(y)t Fy(,)h(then)f Ft(C)6 b Fy(\()p Fs(S;)17 b(\013)q Fy(\))38 b(has)h(exactly)g(one)f(arro)m(w)g(from)g Fs(x)h Fy(to)e Fs(y)t Fy(,)i(denoted)513 333 y(\()p Fs(y)t(;)17 b(x)p Fy(\).)43 b(\(The)32 b(reader)g(migh)m(t)h(ha)m(v)m(e)g(exp)s(ected)g (\()p Fs(x;)17 b(y)t Fy(\))31 b(here.)44 b(This)33 b(c)m(hoice)g(of)e (notation)g(\014ts)513 449 y(b)s(etter)36 b(with)f(the)h(righ)m (t-to-left)e(comp)s(osition)h(that)g(w)m(e)h(use.)52 b(Note)35 b(that)g(the)g(domain)g(of)513 565 y(\()p Fs(y)t(;)17 b(x)p Fy(\))32 b(is)h Fs(x)g Fy(and)g(the)g(co)s(domain)f(is)h Fs(y)t Fy(.\))p Black 245 681 a(CO-3)p Black 40 w(If)g Fs(x)h Fy(is)g(not)f(related)h(b)m(y)g Fs(\013)g Fy(to)f Fs(y)j Fy(there)e(is)g(no)f(arro)m(w)h(from)f Fs(x)g Fy(to)g Fs(y)t Fy(.)45 b(The)34 b(iden)m(tit)m(y)h(arro)m(ws)513 798 y(of)g Ft(C)6 b Fy(\()p Fs(S;)17 b(\013)q Fy(\))36 b(are)f(those)i(of)e(the)h(form)f(\()p Fs(x;)17 b(x)p Fy(\);)37 b(they)g(b)s(elong)e(to)h Fs(\013)g Fy(b)s(ecause)h(it)e(is)h (re\015exiv)m(e.)513 914 y(The)f(transitiv)m(e)g(prop)s(ert)m(y)f(of)f Fs(\013)h Fy(is)g(needed)i(to)d(ensure)i(the)f(existence)i(of)d(the)h (comp)s(osite)513 1030 y(describ)s(ed)h(in)d(2.1.3,)h(so)f(that)h(\()p Fs(z)t(;)17 b(y)t Fy(\))k Ft(\016)h Fy(\()p Fs(y)t(;)17 b(x)p Fy(\))27 b(=)h(\()p Fs(z)t(;)17 b(x)p Fy(\).)p Black 100 1146 a(\(12\))p Black 41 w Fv(Preord)35 b Fy({)h(preorders)i (and)e(monotone)h(functions:)52 b(The)37 b(ob)5 b(jects)37 b(of)f(this)h(category)g(are)f(pre-)315 1263 y(ordered)46 b(sets.)86 b(If)46 b(\()p Fs(S;)17 b(\013)q Fy(\))45 b(and)h(\()p Fs(T)8 b(;)17 b(\014)6 b Fy(\))46 b(are)g(preordered)h (sets,)k(a)46 b(function)g Fs(f)62 b Fy(:)51 b Fs(S)56 b Ft(\000)-60 b(!)51 b Fs(T)59 b Fy(is)315 1379 y Fu(monotone)38 b Fy(if)h(whenev)m(er)j Fs(x\013)q(y)h Fy(in)d Fs(S)6 b Fy(,)41 b Fs(f)11 b Fy(\()p Fs(x)p Fy(\))p Fs(\014)6 b(f)11 b Fy(\()p Fs(y)t Fy(\))38 b(in)h Fs(T)14 b Fy(.)64 b(If)40 b(w)m(e)g(write,)i(as)e(usual,)i Fs(x)e Ft(\024)g Fs(y)i Fy(for)315 1495 y(\()p Fs(x;)17 b(y)t Fy(\))43 b Ft(2)h Fs(\013)f Fy(and)g(use)g(the)g(same)g(for)e Fs(\014)6 b Fy(:)63 b Fs(u)44 b Ft(\024)g Fs(v)i Fy(if)c(\()p Fs(u;)17 b(v)t Fy(\))43 b Ft(2)i Fs(\014)6 b Fy(,)44 b(then)f(the)g(condition)g(for)e(a)315 1611 y(monotone)32 b(function)h(is)1201 1778 y Ft(8)p Fs(x;)17 b(y)32 b Ft(2)c Fs(S)33 b Fy(:)60 b Fs(x)29 b Ft(\024)f Fs(y)i Fy(=)-17 b Ft(\))28 b Fs(f)11 b Fy(\()p Fs(x)p Fy(\))28 b Ft(\024)g Fs(f)11 b Fy(\()p Fs(y)t Fy(\))p Fs(:)414 1945 y Fy(The)35 b(iden)m(tit)m(y)h(function)e(on)g(a)f(preordered)i (set)g(is)f(clearly)h(monotone,)g(and)f(the)g(comp)s(osite)315 2061 y(of)25 b(t)m(w)m(o)i(monotone)g(functions)g(is)g(easily)g(seen)h (to)e(b)s(e)g(monotone,)i(so)e(that)g(preordered)i(sets)f(with)315 2178 y(monotone)32 b(functions)i(form)e(a)h(category)-8 b(.)414 2294 y(A)29 b(v)-5 b(ariation)28 b(on)h(this)g(is)h(to)e (consider)i(only)f Fu(strictly)j(monotone)f(functions)p Fy(,)e(whic)m(h)h(are)f(func-)315 2410 y(tions)k Fs(f)43 b Fy(with)33 b(the)g(prop)s(ert)m(y)g(that)g(if)912 2577 y Fs(x\013)q(y)i Fy(and)e Fs(x)28 b Ft(6)p Fy(=)g Fs(y)35 b Fy(then)f Fs(f)11 b Fy(\()p Fs(x)p Fy(\))p Fs(\014)6 b(f)11 b Fy(\()p Fs(y)t Fy(\))31 b(and)h Fs(f)11 b Fy(\()p Fs(x)p Fy(\))28 b Ft(6)p Fy(=)f Fs(f)11 b Fy(\()p Fs(y)t Fy(\))p Fs(:)315 2744 y Fy(W)-8 b(e)23 b(sa)m(w)h(ho)m(w)g(a)f(single)h (preordered)g(set)g(is)g(a)f(category)-8 b(.)40 b(No)m(w)24 b(w)m(e)g(are)f(considering)i(the)f(category)315 2860 y(of)32 b(preordered)h(sets.)414 2976 y(W)-8 b(e)39 b(m)m(ust)g(giv)m (e)g(a)e(few)i(w)m(ords)g(of)e(w)m(arning)i(on)f(terminology)-8 b(.)60 b(The)39 b(usual)g(w)m(ord)f(in)g(math-)315 3093 y(ematical)h(texts)g(for)f(what)h(w)m(e)g(ha)m(v)m(e)h(called)f(`)p Fu(monotone)p Fy(')f(is)h(`)p Fu(incr)-5 b(e)g(asing)p Fy(')37 b(or)h(`)p Fu(monotonic)-5 b(al)5 b(ly)315 3209 y(incr)-5 b(e)g(asing)p Fy('.)83 b(The)47 b(w)m(ord)g(`)p Fu(monotone)p Fy(')f(is)h(used)g(for)f(a)g(function)h(that)f(either)h (preserv)m(es)i(or)315 3325 y(rev)m(erses)e(the)d(order)h(relation.)79 b(That)44 b(is,)k(in)d(mathematical)g(texts)g(a)f(function)h Fs(f)59 b Fy(:)47 b(\()p Fs(X)r(;)17 b(\013)q Fy(\))315 3441 y Ft(\000)-60 b(!)27 b Fy(\()p Fs(T)8 b(;)17 b(\014)6 b Fy(\))32 b(is)h(also)g(called)g(monotone)g(if)g(whenev)m(er)i Fs(x\013)q(y)h Fy(in)c Fs(S)6 b Fy(,)33 b Fs(f)11 b Fy(\()p Fs(y)t Fy(\))p Fs(\014)6 b(f)11 b Fy(\()p Fs(x)p Fy(\))31 b(in)h Fs(T)14 b Fy(.)p Black 100 3558 a(\(13\))p Black 41 w Fv(P)m(oset)38 b Fy({)g(partial)h(orders)g(and)g(monotone)g (functions:)57 b(A)39 b(preordered)h(set)g(\()p Fs(S;)17 b(\013)q Fy(\))38 b(for)g(whic)m(h)315 3674 y Fs(\013)g Fy(is)f(an)m(tisymmetric)j(\(that)d(is)h Fs(x\013)q(y)j Fy(and)c Fs(y)t(\013)q(x)g Fy(imply)h Fs(x)e Fy(=)g Fs(y)t Fy(\))g(is)i(called)g(a)f Fu(p)-5 b(artial)5 b(ly)40 b(or)-5 b(der)g(e)g(d)315 3790 y(set)40 b Fy(or)g Fu(p)-5 b(oset)p Fy(.)67 b(Tw)m(o)41 b(examples)i(of)d(p)s(osets)h(are)g(\()p Fs(R)q(;)17 b Ft(\024)p Fy(\),)42 b(the)f(real)g(n)m(um)m(b)s(ers)h (with)f(the)g(usual)315 3906 y(ordering,)27 b(and)f(for)f(an)m(y)i(set) f Fs(S)6 b Fy(,)27 b(the)g(p)s(oset)f(\()p Ft(P)8 b Fy(\()p Fs(S)e Fy(\))p Fs(;)17 b Ft(\022)p Fy(\),)27 b(the)f(set)h(of)e (subsets)j(of)e Fs(S)31 b Fy(with)c(inclusion)315 4023 y(as)32 b(ordering.)44 b(The)34 b(p)s(osets)f(and)g(the)g(monotone)g (functions)g(form)f(the)h(category)g Fv(P)m(oset)p Fy(.)p Black 100 4139 a(\(14\))p Black 41 w Fv(Mon)g Fy({)f(monoids)h(and)g (monoid)g(homomorphisms.)p Black 100 4255 a(\(15\))p Black 41 w Fv(Grp)f Fy({)h(groups)f(and)h(group)f(homomorphisms.)p Black 100 4371 a(\(16\))p Black 41 w Fv(SL)h Fy({)f(semi-lattices)i (and)f(join-preserving)h(functions.)p Black 100 4487 a(\(17\))p Black 41 w Fv(T)-9 b(op)32 b Fy({)g(top)s(ological)g(spaces) i(and)f(con)m(tin)m(uous)h(functions.)p Black 100 4604 a(\(18\))p Black 41 w Fv(Met)e Fy({)g(metric)i(spaces)g(and)f (non-expansiv)m(e)i(\(con)m(tracting\))e(functions.)p Black 100 4720 a(\(19\))p Black 41 w Fv(CMet)p Fy(:)43 b(complete)34 b(metric)f(spaces)i(and)d(non-expansiv)m(e)j(functions.)p Black 100 4836 a(\(20\))p Black 41 w Fv(V)-9 b(ec)31 b Fy({)i(v)m(ector)g(spaces,)p Black 100 4952 a(\(21\))p Black 41 w Fv(Ab)f Fy({)g(Ab)s(elian)h(groups,)p Black 100 5069 a(\(22\))p Black 41 w Fv(SGrp)f Fy({)h(semigroups:)p Black 100 5185 a(\(23\))p Black 41 w Fv(Ban)g Fy({)f(Banac)m(h)h (spaces)h(and)f(linear)g(functions,)p Black 100 5301 a(\(24\))p Black 41 w Fv(Ban)511 5316 y Fr(1)583 5301 y Fy({)f(Banac)m(h)h(spaces)i(and)d(linear)h(functions)h(of)e(norm)h Ft(\024)28 b Fy(1,)p Black 100 5417 a(\(25\))p Black 41 w Fv(Mf)33 b Fy({)f(manifolds)h(\(top)s(ological)f(or)g(di\013eren)m (tial\),)p Black Black eop end %%Page: 17 17 TeXDict begin 17 16 bop Black 1775 -99 a Fw(Categories)1700 b(17)p Black Black 100 100 a Fy(\(26\))p Black 41 w Fv(Grf)41 b Fy({)31 b(graphs:)43 b(The)32 b(category)g(of)f(graphs)g(has)h (graphs)f(as)h(ob)5 b(jects)32 b(and)f(homomorphisms)i(of)315 217 y(graphs)f(as)h(arro)m(ws.)44 b(It)33 b(is)g(denoted)h Fv(Grf)10 b Fy(.)414 333 y(The)27 b(iden)m(tit)m(y)g(homomorphism)f(id) 1724 348 y Fq(G)1799 333 y Fy(is)g(the)g(iden)m(tit)m(y)h(function)f (for)f(b)s(oth)g(no)s(des)h(and)f(arro)m(ws.)315 449 y(Let)k(us)h(c)m(hec)m(k)h(that)e(the)g(comp)s(osite)h(of)f(graph)g (homomorphisms)h(is)g(a)f(graph)g(homomorphism)315 565 y(\(iden)m(tities)c(are)f(easy\).)42 b(Supp)s(ose)25 b Fs(\036)j Fy(:)f Ft(G)34 b(\000)-59 b(!)27 b(H)e Fy(and)f Fs( )32 b Fy(:)27 b Ft(H)i(\000)-59 b(!)27 b(K)e Fy(are)f(graph)g (homomorphisms,)315 681 y(and)35 b(supp)s(ose)i(that)e Fs(u)d Fy(:)h Fs(m)f Ft(\000)-59 b(!)32 b Fs(n)k Fy(in)f Ft(G)42 b Fy(.)52 b(Then)36 b(b)m(y)h(de\014nition)f Fs(\036)2786 696 y Fp(E)2845 681 y Fy(\()p Fs(u)p Fy(\))c(:)h Fs(\036)3127 696 y Fp(V)3187 681 y Fy(\()p Fs(m)p Fy(\))g Ft(\000)-60 b(!)33 b Fs(\036)3589 696 y Fp(V)3649 681 y Fy(\()p Fs(n)p Fy(\))j(in)315 798 y Fs(H)k Fy(,)32 b(and)h(so)g(b)m(y)g(de\014nition)1003 998 y Fs( )1066 1013 y Fp(E)1126 998 y Fy(\()p Fs(\036)1222 1013 y Fp(E)1281 998 y Fy(\()p Fs(u)p Fy(\)\))27 b(:)h Fs( )1596 1013 y Fp(V)1658 998 y Fy(\()p Fs(\036)1754 1013 y Fp(V)1814 998 y Fy(\()p Fs(m)p Fy(\)\))g Ft(\000)-60 b(!)28 b Fs( )2249 1013 y Fp(V)2310 998 y Fy(\()p Fs(\036)2406 1013 y Fp(V)2467 998 y Fy(\()p Fs(n)p Fy(\)\))k(in)h Fs(K)r(:)315 1199 y Fy(Hence)g Fs( )27 b Ft(\016)22 b Fs(\036)32 b Fy(is)h(a)f(graph)h (homomorphism.)p Black 100 1315 a(\(27\))p Black 41 w(An)f(example)i (from)f(computer)g(science:)315 1431 y(A)f(functional)h(programming)g (language)f(has:)p Black 199 1548 a(FPL-1)p Black 41 w(Primitiv)m(e)j(data)d(t)m(yp)s(es,)i(giv)m(en)g(in)e(the)h(language.) p Black 199 1664 a(FPL-2)p Black 41 w(Constan)m(ts)h(of)e(eac)m(h)i(t)m (yp)s(e.)p Black 199 1780 a(FPL-3)p Black 41 w(Op)s(erations,)f(whic)m (h)h(are)f(functions)g(b)s(et)m(w)m(een)i(the)e(t)m(yp)s(es.)p Black 199 1896 a(FPL-4)p Black 41 w(Constructors,)48 b(whic)m(h)d(can)f(b)s(e)g(applied)h(to)e(data)g(t)m(yp)s(es)i(and)f (op)s(erations)g(to)f(pro)s(duce)513 2012 y(deriv)m(ed)35 b(data)d(t)m(yp)s(es)i(and)f(op)s(erations)f(of)g(the)h(language.)414 2129 y(The)44 b(language)g(consists)g(of)f(the)h(set)g(of)f(all)g(op)s (erations)g(and)h(t)m(yp)s(es)g(deriv)-5 b(able)45 b(from)e(the)315 2245 y(primitiv)m(e)i(data)f(t)m(yp)s(es)h(and)f(primitiv)m(e)i(op)s (erations.)78 b(The)45 b(w)m(ord)f(`)p Fu(primitive)p Fy(')g(means)h(giv)m(en)315 2361 y(in)d(the)h(de\014nition)h(of)e(the)h (language)g(rather)f(than)h(constructed)h(b)m(y)g(a)e(constructor.)74 b(Some)315 2477 y(authors)32 b(use)i(the)f(w)m(ord)g(`)p Fu(c)-5 b(onstructor)p Fy(')33 b(for)f(the)h(primitiv)m(e)h(op)s (erations.)414 2594 y(Giv)m(en)29 b(a)e(functional)i(programming)e (language)h Fs(L)p Fy(,)h(there's)g(an)f(asso)s(ciated)h(category)-8 b(,)29 b(where)315 2710 y(the)k(ob)5 b(jects)35 b(are)e(the)h(data)f(t) m(yp)s(es)h(of)f Fs(L)p Fy(,)h(and)f(the)h(arro)m(ws)g(are)f(the)h (computable)g(functions)g(of)315 2826 y Fs(L)h Fy(\(\\pro)s(cesses",)i (\\pro)s(cedures",)g(\\programs"\).)50 b(The)36 b(comp)s(osition)f(of)g (t)m(w)m(o)g(suc)m(h)i(programs)315 2976 y Fs(X)477 2915 y Fp(f)448 2976 y Ft(!)45 b Fs(Y)746 2915 y Fp(g)r Fr(!)716 2976 y Ft(\000)-60 b(!)44 b Fs(Z)50 b Fy(is)43 b(giv)m(en)h(b)m(y)f (applying)h Fs(g)i Fy(to)c(the)h(output)g(of)f Fs(f)11 b Fy(,)45 b(sometimes)f(also)f(written)315 3092 y Fs(g)32 b Ft(\016)d Fs(f)55 b Fy(=)45 b Fs(f)11 b Fy(;)17 b Fs(g)t Fy(.)72 b(The)44 b(iden)m(tit)m(y)h(is)e(the)g(\\do)f(nothing")h (program.)73 b(This)44 b(example)g(is)f(closely)315 3208 y(related)33 b(to)f(the)h(notion)f(of)h(\\cartesian)g(closed)h (category")e(to)g(b)s(e)h(considered)i(later.)414 3325 y(As)49 b(a)e(concrete)i(example,)k(w)m(e)c(will)g(supp)s(ose)g(w)m(e)g (ha)m(v)m(e)g(a)e(simple)i(suc)m(h)h(language)d(with)315 3441 y(three)34 b(data)g(t)m(yp)s(es,)h Fx(NA)-9 b(T)35 b Fy(\(natural)e(n)m(um)m(b)s(ers\),)j Fx(BOOLEAN)e Fy(\(true)g(or)g (false\))g(and)g Fx(CHAR)315 3557 y Fy(\(c)m(haracters\).)44 b(W)-8 b(e)33 b(giv)m(e)h(a)e(description)i(of)e(its)h(op)s(erations)g (in)g(categorical)g(st)m(yle.)p Black 369 3673 a(\(i\))p Black 41 w Fx(NA)-9 b(T)42 b Fy(should)g(ha)m(v)m(e)g(a)e(constan)m(t)i (0)g(:)f(1)h Ft(\000)-60 b(!)42 b Fx(NA)-9 b(T)41 b Fy(and)g(an)g(op)s (eration)g Fx(succ)78 b Fy(:)42 b Fx(NA)-9 b(T)513 3790 y Ft(\000)-59 b(!)27 b Fx(NA)-9 b(T)q Fy(.)p Black 342 3906 a(\(ii\))p Black 41 w(There)35 b(should)g(b)s(e)f(t)m(w)m(o)g (constan)m(ts)h Fx(tr)n(ue)p Fy(;)d Fx(f)-9 b(alse)30 b Fy(:)f(1)h Ft(\000)-60 b(!)29 b Fx(BOOLEAN)34 b Fy(and)g(an)g(op)s (era-)513 4022 y(tion)f Ft(:)g Fy(sub)5 b(ject)34 b(to)e(the)h (equations)h Ft(:)23 b(\016)e Fx(tr)n(ue)28 b Fy(=)f Fx(f)-9 b(alse)32 b Fy(and)h Ft(:)23 b(\016)f Fx(f)-9 b(alse)27 b Fy(=)h Fx(tr)n(ue)o Fy(.)p Black 315 4138 a(\(iii\))p Black 41 w Fx(CHAR)33 b Fy(should)g(ha)m(v)m(e)h(one)f (constan)m(t)h Fs(c)27 b Fy(:)h(1)f Ft(\000)-59 b(!)27 b Fx(CHAR)33 b Fy(for)f(eac)m(h)h(desired)i(c)m(haracter)e Fs(c)p Fy(.)p Black 318 4254 a(\(iv\))p Black 41 w(There)43 b(should)f(b)s(e)f(t)m(w)m(o)h(t)m(yp)s(e)g(con)m(v)m(ersion)h(op)s (erations)f Fx(ord)h Fy(:)f Fx(CHAR)h Ft(\000)-60 b(!)42 b Fx(NA)-9 b(T)42 b Fy(and)513 4371 y Fx(chr)55 b Fy(:)f Fx(NA)-9 b(T)55 b Ft(\000)-59 b(!)54 b Fx(CHAR)p Fy(.)91 b(These)50 b(are)e(sub)5 b(ject)50 b(to)e(the)h(equation)g Fx(chr)33 b Ft(\016)f Fx(ord)55 b Fy(=)513 4487 y(id)595 4521 y Fx(CHAR)919 4487 y Fy(.)41 b(\(Y)-8 b(ou)25 b(can)g(think)h(of)e Fx(chr)h Fy(as)g(op)s(erating)g(mo)s(dulo)g(the)h(n)m(um)m(b)s(er)g(of) f(c)m(haracters,)513 4604 y(so)33 b(that)f(it)h(is)g(de\014ned)h(on)e (all)h(natural)f(n)m(um)m(b)s(ers.\))414 4720 y(An)f(example)h(program) f(is)g(the)g(arro)m(w)g(`)p Fu(next)p Fy(')f(de\014ned)i(to)f(b)s(e)g (the)g(comp)s(osite)g Fx(chr)18 b Ft(\016)g Fx(succ)g Ft(\016)315 4836 y Fx(ord)28 b Fy(:)g Fx(CHAR)f Ft(\000)-59 b(!)27 b Fx(CHAR)p Fy(.)414 4952 y(It)45 b(calculates)g(the)g(next)h(c) m(haracter)f(in)f(order.)80 b(This)45 b(arro)m(w)g(`next')g(is)g(an)f (arro)m(w)h(in)g(the)315 5069 y(category)37 b(represen)m(ting)i(the)f (language,)g(and)f(so)g(is)h(an)m(y)g(other)f(comp)s(osite)h(of)f(a)g (sequence)i(of)315 5185 y(op)s(erations.)59 b(The)39 b(ob)5 b(jects)39 b(of)e(the)h(category)g Ft(C)6 b Fy(\()p Fs(L)p Fy(\))39 b(of)e(this)h(language)g(are)g(the)g(t)m(yp)s(es)h Fx(NA)-9 b(T)p Fy(,)315 5301 y Fx(BOOLEAN)p Fy(,)33 b Fx(CHAR)h Fy(and)f Fv(1)p Fy(.)46 b(Observ)m(e)36 b(that)d(t)m(yping)h (is)g(a)f(natural)h(part)f(of)g(the)h(syn)m(tax)h(in)315 5417 y(this)e(approac)m(h.)p Black Black eop end %%Page: 18 18 TeXDict begin 18 17 bop Black 0 -99 a Fw(18)1668 b(F)-6 b(oundations)p Black 414 100 a Fy(The)36 b(arro)m(ws)f(of)f Ft(C)6 b Fy(\()p Fs(L)p Fy(\))35 b(consist)g(of)f(all)h(programs,)g (with)g(t)m(w)m(o)g(programs)g(b)s(eing)g(iden)m(ti\014ed)h(if)315 217 y(they)d(m)m(ust)h(b)s(e)f(the)g(same)g(b)s(ecause)h(of)e(the)h (equations.)45 b(F)-8 b(or)31 b(example,)k(the)e(arro)m(w)1113 390 y Fx(chr)22 b Ft(\016)g Fx(succ)g Ft(\016)g Fx(ord)28 b Fy(:)g Fx(CHAR)g Ft(\000)-60 b(!)28 b Fx(CHAR)315 564 y Fy(just)k(men)m(tioned)j(and)d(the)h(arro)m(w)836 738 y Fx(chr)23 b Ft(\016)f Fx(succ)f Ft(\016)h Fx(ord)h Ft(\016)f Fx(chr)g Ft(\016)g Fx(ord)28 b Fy(:)g Fx(CHAR)g Ft(\000)-60 b(!)27 b Fx(CHAR)315 912 y Fy(m)m(ust)33 b(b)s(e)g(the)g(same)g(b)s(ecause)h(of)e(the)h(equation)h(in)f(\(iv\).) 414 1028 y(Observ)m(e)h(that)d Fx(NA)-9 b(T)32 b Fy(has)g(constan)m(ts) h Fx(succ)20 b Ft(\016)g Fx(succ)g Ft(\016)g Fs(:)d(:)g(:)i Ft(\016)h Fx(succ)g Ft(\016)g Fy(0)31 b(where)i Fx(succ)e Fy(o)s(ccurs)315 1144 y(zero)h(or)h(more)g(times.)414 1260 y(Comp)s(osition)25 b(in)f(the)g(category)g(is)g(comp)s(osition)h (of)e(programs.)41 b(Note)24 b(that)f(for)g(comp)s(osition)315 1376 y(to)41 b(b)s(e)i(w)m(ell)g(de\014ned,)j(if)c(t)m(w)m(o)h(comp)s (osites)g(of)f(primitiv)m(e)i(op)s(erations)e(are)g(equal,)k(then)c (their)315 1493 y(comp)s(osites)34 b(with)f(an)m(y)g(other)g(program)f (m)m(ust)i(b)s(e)e(equal.)45 b(F)-8 b(or)31 b(example,)k(w)m(e)e(m)m (ust)h(ha)m(v)m(e)474 1666 y Fx(ord)23 b Ft(\016)e Fy(\()p Fx(chr)i Ft(\016)e Fx(succ)h Ft(\016)g Fx(ord)q Fy(\))27 b(=)h Fx(ord)22 b Ft(\016)g Fy(\()p Fx(chr)g Ft(\016)g Fx(succ)g Ft(\016)g Fx(ord)h Ft(\016)f Fx(chr)g Ft(\016)g Fx(ord)p Fy(\))315 1840 y(as)32 b(arro)m(ws)h(from)g Fx(CHAR)g Fy(to)f Fx(NA)-9 b(T)p Fy(.)0 2024 y(1.4.)49 b Fv(Constructions)37 b(on)h(categories.)0 2140 y Fy(If)h(y)m(ou)h(are) f(familiar)g(with)g(some)h(branc)m(h)g(of)e(abstract)i(algebra)f(\(for) f(example)j(the)e(theory)h(of)e(semi-)0 2257 y(groups,)c(groups)g(or)f (rings\))h(then)h(y)m(ou)f(kno)m(w)h(that)e(giv)m(en)i(t)m(w)m(o)f (structures)h(of)f(a)f(giv)m(en)i(t)m(yp)s(e)f(\(e.g.,)g(t)m(w)m(o)0 2373 y(semigroups\),)47 b(y)m(ou)d(can)g(construct)g(a)f(`)p Fu(dir)-5 b(e)g(ct)45 b(pr)-5 b(o)g(duct)p Fy(')43 b(structure,)48 b(de\014ning)c(the)g(op)s(erations)f(co)s(or-)0 2489 y(dinatewise.)65 b(Also,)41 b(a)d(structure)j(ma)m(y)e(ha)m(v)m(e)i (substructures,)i(whic)m(h)e(are)e(subsets)i(closed)f(under)g(the)0 2605 y(op)s(erations,)f(and)f(quotien)m(t)h(structures,)i(formed)d (from)g(equiv)-5 b(alence)40 b(classes)f(mo)s(dulo)f(a)g(congruence)0 2722 y(relation.)72 b(Another)43 b(construction)g(that)f(is)h(p)s (ossible)g(in)f(man)m(y)h(cases)h(is)f(the)f(formation)g(of)f(a)h(`)p Fu(fr)-5 b(e)g(e)p Fy(')0 2838 y(structure)43 b(of)e(the)h(giv)m(en)h (t)m(yp)s(e)f(for)f(a)g(giv)m(en)i(set.)71 b(All)42 b(these)h (constructions)g(can)f(b)s(e)f(p)s(erformed)h(for)0 2954 y(categories.)68 b(W)-8 b(e)41 b(will)g(outline)g(the)g(constructions)h (here,)h(except)g(for)c(quotien)m(ts.)69 b(W)-8 b(e)41 b(will)g(also)g(de-)0 3070 y(scrib)s(e)f(the)f(construction)h(of)e(the) h(slice)i(category)-8 b(,)40 b(whic)m(h)g(do)s(es)g(not)e(quite)i (corresp)s(ond)g(to)e(an)m(ything)0 3187 y(in)33 b(abstract)h(algebra)f (\(although)g(it)g(is)h(akin)g(to)e(the)i(adjunction)g(of)e(a)h (constan)m(t)h(to)f(a)g(logical)g(theory\).)0 3303 y(Y)-8 b(ou)30 b(do)g(not)g(need)h(to)f(b)s(e)g(familiar)g(with)h(the)g (constructions)g(in)g(other)f(branc)m(hes)i(of)e(abstract)g(algebra,)0 3419 y(since)k(they)f(are)g(all)g(de\014ned)h(from)e(scratc)m(h)i (here.)0 3627 y(1.4.1.)48 b Fu(Slic)-5 b(e)35 b(c)-5 b(ate)g(gories.)p Black 0 3811 a Fy(1.4.1.)46 b Fv(De\014nition.)p Black 50 w Fy(If)h Ft(C)53 b Fy(is)47 b(a)g(category)g(and)g Fs(A)g Fy(an)m(y)g(ob)5 b(ject)48 b(of)e Ft(C)53 b Fy(,)e(the)c Fu(slic)-5 b(e)47 b(c)-5 b(ate)g(gory)47 b Ft(C)6 b Fs(=)-5 b(A)46 b Fy(is)0 3927 y(describ)s(ed)34 b(this)g(w)m(a)m(y:)p Black 67 4072 a(SC-1)p Black 42 w(An)e(ob)5 b(ject)34 b(of)e Ft(C)6 b Fs(=)-5 b(A)32 b Fy(is)h(an)g(arro)m(w)f Fs(f)39 b Fy(:)28 b Fs(C)34 b Ft(\000)-59 b(!)27 b Fs(A)33 b Fy(of)f Ft(C)38 b Fy(for)32 b(some)i(ob)5 b(ject)33 b Fs(C)7 b Fy(.)p Black 67 4188 a(SC-2)p Black 42 w(An)34 b(arro)m(w)h(of)f Ft(C)6 b Fs(=)-5 b(A)34 b Fy(from)g Fs(f)41 b Fy(:)31 b Fs(C)38 b Ft(\000)-60 b(!)30 b Fs(A)35 b Fy(to)f Fs(f)1996 4152 y Fq(0)2049 4188 y Fy(:)d Fs(C)2184 4152 y Fq(0)2238 4188 y Ft(\000)-59 b(!)30 b Fs(A)k Fy(is)h(an)f(arro)m (w)h Fs(h)c Fy(:)g Fs(C)37 b Ft(\000)-59 b(!)30 b Fs(C)3483 4152 y Fq(0)3541 4188 y Fy(with)35 b(the)315 4305 y(prop)s(ert)m(y)e (that)f Fs(f)39 b Fy(=)27 b Fs(f)1173 4269 y Fq(0)1218 4305 y Ft(\016)22 b Fs(h)p Fy(.)p Black 67 4421 a(SC-3)p Black 42 w(The)33 b(comp)s(osite)h(of)e Fs(h)27 b Fy(:)h Fs(f)39 b Ft(\000)-60 b(!)27 b Fs(f)1513 4385 y Fq(0)1569 4421 y Fy(and)33 b Fs(h)1815 4385 y Fq(0)1866 4421 y Fy(:)27 b Fs(f)1979 4385 y Fq(0)2030 4421 y Ft(\000)-59 b(!)27 b Fs(f)2234 4385 y Fq(00)2309 4421 y Fy(is)33 b Fs(h)2463 4385 y Fq(0)2508 4421 y Ft(\016)22 b Fs(h)p Fy(.)0 4605 y(It)32 b(is)g(necessary)i(to)d(sho)m(w)i(that)f Fs(h)1259 4569 y Fq(0)1303 4605 y Ft(\016)20 b Fs(h)p Fy(,)32 b(as)g(de\014ned)h(in)f(SC-2,)g(satis\014es)h(the)f(requiremen) m(ts)j(of)c(b)s(eing)h(an)0 4721 y(arro)m(w)27 b(from)h Fs(f)38 b Fy(to)27 b Fs(f)753 4685 y Fq(00)795 4721 y Fy(.)41 b(Let)28 b Fs(h)g Fy(:)g Fs(f)38 b Ft(\000)-60 b(!)28 b Fs(f)1462 4685 y Fq(0)1512 4721 y Fy(and)g Fs(h)1753 4685 y Fq(0)1804 4721 y Fy(:)f Fs(f)1917 4685 y Fq(0)1968 4721 y Ft(\000)-59 b(!)27 b Fs(f)2172 4685 y Fq(00)2214 4721 y Fy(.)42 b(This)28 b(means)h Fs(f)2853 4685 y Fq(0)2887 4721 y Ft(\016)11 b Fs(h)28 b Fy(=)g Fs(f)38 b Fy(and)27 b Fs(f)3465 4685 y Fq(00)3519 4721 y Ft(\016)11 b Fs(h)3636 4685 y Fq(0)3687 4721 y Fy(=)28 b Fs(f)3850 4685 y Fq(0)3873 4721 y Fy(.)0 4837 y(T)-8 b(o)31 b(sho)m(w)h(that)f Fs(h)648 4801 y Fq(0)691 4837 y Ft(\016)19 b Fs(h)28 b Fy(:)f Fs(f)39 b Ft(\000)-60 b(!)28 b Fs(f)1189 4801 y Fq(00)1262 4837 y Fy(is)j(an)g(arro)m(w)h(of)e Ft(C)6 b Fs(=)-5 b(A)p Fy(,)31 b(w)m(e)i(m)m(ust)f(sho)m(w)g(that)f Fs(f)2999 4801 y Fq(00)3060 4837 y Ft(\016)19 b Fy(\()p Fs(h)3223 4801 y Fq(0)3266 4837 y Ft(\016)g Fs(h)p Fy(\))27 b(=)h Fs(f)11 b Fy(.)43 b(That)0 4954 y(follo)m(ws)33 b(from)g(this)g (calculation:)1096 5127 y Fs(f)1155 5086 y Fq(00)1219 5127 y Ft(\016)22 b Fy(\()p Fs(h)1385 5086 y Fq(0)1431 5127 y Ft(\016)g Fs(h)p Fy(\))28 b(=)f(\()p Fs(f)1825 5086 y Fq(00)1889 5127 y Ft(\016)22 b Fs(h)2017 5086 y Fq(0)2041 5127 y Fy(\))g Ft(\016)g Fs(h)28 b Fy(=)f Fs(f)2419 5086 y Fq(0)2464 5127 y Ft(\016)22 b Fs(h)28 b Fy(=)g Fs(f)5 b(:)0 5301 y Fy(The)37 b(usual)f(notation)g(for)f(arro) m(ws)i(in)f Ft(C)6 b Fs(=)-5 b(A)35 b Fy(is)h(de\014cien)m(t:)52 b(the)37 b(same)f(arro)m(w)g Fs(h)g Fy(can)g(satisfy)h Fs(f)44 b Fy(=)33 b Fs(f)3722 5265 y Fq(0)3770 5301 y Ft(\016)24 b Fs(h)0 5417 y Fy(and)31 b Fs(g)g Fy(=)c Fs(g)420 5381 y Fq(0)461 5417 y Ft(\016)18 b Fs(h)31 b Fy(with)g Fs(f)895 5381 y Fq(0)946 5417 y Ft(6)p Fy(=)c Fs(g)1100 5381 y Fq(0)1153 5417 y Fy(or)j Fs(f)39 b Ft(6)p Fy(=)27 b Fs(g)34 b Fy(\(and)d(then)g Fs(f)2046 5381 y Fq(0)2097 5417 y Ft(6)p Fy(=)c Fs(g)2251 5381 y Fq(0)2274 5417 y Fy(\).)43 b(Then)31 b Fs(h)d Fy(:)g Fs(f)38 b Ft(\000)-59 b(!)27 b Fs(f)3063 5381 y Fq(0)3117 5417 y Fy(and)k Fs(h)c Fy(:)h Fs(g)j Ft(\000)-60 b(!)28 b Fs(g)3717 5381 y Fq(0)3770 5417 y Fy(are)p Black Black eop end %%Page: 19 19 TeXDict begin 19 18 bop Black 1486 -99 a Fw(Constructions)27 b(on)f(categories)1411 b(19)p Black 0 100 a Fy(di\013eren)m(t)34 b(arro)m(ws)f(of)f Ft(C)6 b Fs(=)-5 b(A)1079 298 y(B)414 b(C)p 1187 266 352 4 v 1456 264 a Fo(-)1334 245 y Fs(h)1325 786 y(A)1122 533 y(f)1152 416 y Fo(A)1194 499 y(A)1235 582 y(A)1277 665 y(A)1286 683 y(A)-42 b(U)1543 535 y Fs(f)1602 499 y Fq(0)1530 416 y Fo(\001)1489 499 y(\001)1447 582 y(\001)1406 665 y(\001)1396 683 y(\001)g(\013)1871 752 y Fy(and)2256 298 y Fs(B)414 b(C)p 2363 266 V 2632 264 a Fo(-)2511 245 y Fs(h)2489 786 y(A:)2307 520 y(g)2329 416 y Fo(A)2371 499 y(A)2412 582 y(A)2454 665 y(A)2463 683 y(A)-42 b(U)2720 535 y Fs(g)2771 499 y Fq(0)2707 416 y Fo(\001)2666 499 y(\001)2624 582 y(\001)2582 665 y(\001)2573 683 y(\001)g(\013)0 911 y Fy(Indeed)42 b Fs(h)g Fy(:)g(\()p Fs(B)5 b(;)17 b(f)11 b Fy(\))41 b Ft(\000)-59 b(!)41 b Fy(\()p Fs(C)r(;)17 b(f)1163 875 y Fq(0)1185 911 y Fy(\))41 b(and)g Fs(h)h Fy(:)g(\()p Fs(B)5 b(;)17 b(g)t Fy(\))40 b Ft(\000)-59 b(!)41 b Fy(\()p Fs(C)r(;)17 b(g)2283 875 y Fq(0)2305 911 y Fy(\),)43 b(or)d Fs(h)i Ft(2)h Fy(Mor)2923 926 y Fq(C)t Fp(=)l(A)3052 911 y Fy(\(\()p Fs(B)5 b(;)17 b(f)11 b Fy(\))p Fs(;)17 b Fy(\()p Fs(C)r(;)g(f)3605 875 y Fq(0)3626 911 y Fy(\)\))41 b(and)0 1027 y Fs(h)28 b Ft(2)g Fy(Mor)355 1043 y Fq(C)t Fp(=)l(A)484 1027 y Fy(\(\()p Fs(B)5 b(;)17 b(g)t Fy(\))p Fs(;)g Fy(\()p Fs(C)r(;)g(g)1021 991 y Fq(0)1041 1027 y Fy(\)\).)44 b(But)33 b(Mor)1558 1043 y Fq(C)t Fp(=)l(A)1687 1027 y Fy(\(\()p Fs(B)5 b(;)17 b(f)11 b Fy(\))p Fs(;)17 b Fy(\()p Fs(C)r(;)g(f)2240 991 y Fq(0)2262 1027 y Fy(\)\))22 b Ft(\\)g Fy(Mor)2624 1043 y Fq(C)t Fp(=)l(A)2754 1027 y Fy(\(\()p Fs(B)5 b(;)17 b(g)t Fy(\))p Fs(;)g Fy(\()p Fs(C)r(;)g(g)3291 991 y Fq(0)3311 1027 y Fy(\)\))28 b(=)g Ft(;)k Fy(so)h(that)0 1143 y(the)g(t)m(w)m(o)g(morphisms,)i(b)s(oth)d (denoted)h Fs(h)p Fy(,)g(are)g(di\013eren)m(t.)0 1260 y(Th)m(us)40 b(one)e(often)g(sa)m(ys,)j(that)c(an)h(\\arro)m(w")g(in)g (the)g(slice)i(category)e(is)g(a)g(\\)p Fu(c)-5 b(ommutative)39 b(diagr)-5 b(am)p Fy(")37 b(as)0 1376 y(ab)s(o)m(v)m(e.)p Black 0 1552 a(1.4.2.)j Fv(Example.)p Black 47 w Fy(Let)h(\()p Fs(P)s(;)17 b(\013)q Fy(\))40 b(b)s(e)h(a)g(p)s(oset)g(and)g(let)g Ft(C)6 b Fy(\()p Fs(P)14 b Fy(\))40 b(b)s(e)h(the)h(corresp)s(onding)f (category)h(as)f(in)0 1668 y(1.3.8\(11\).)h(F)-8 b(or)30 b(an)h(elemen)m(t)h Fs(x)c Ft(2)h Fs(P)14 b Fy(,)30 b(the)i(slice)g (category)f Ft(C)6 b Fy(\()p Fs(P)14 b Fy(\))p Fs(=x)31 b Fy(is)g(the)g(category)g(corresp)s(onding)h(to)0 1784 y(the)j(set)f(of)g(elemen)m(ts)i(greater)f(than)f(or)g(equal)g(to)g Fs(x)p Fy(.)49 b(The)35 b(dual)f(notion)g(of)g Fu(c)-5 b(oslic)g(e)p Fy(,)33 b(i.e.)49 b(the)35 b(category)0 1900 y Fs(A)p Ft(nC)k Fy(of)33 b(arro)m(ws)g Fs(f)39 b Fy(:)29 b Fs(A)f Ft(\000)-59 b(!)28 b Fs(C)40 b Fy(for)32 b(some)i Fs(C)40 b Fy(in)33 b Ft(C)6 b Fy(,)33 b(giv)m(es)i(the)e(set)h (of)e(elemen)m(ts)k(less)e(than)f(or)g(equal)h(to)e(a)0 2016 y(giv)m(en)i(elemen)m(t.)p Black 0 2192 a(1.4.3.)28 b Fv(Remark.)p Black 39 w Fy(The)i(imp)s(ortance)f(of)f(slice)i (categories)f(comes)h(in)e(part)h(with)g(their)g(connection)g(with)0 2308 y(indexing.)47 b(An)33 b Fs(S)6 b Fu(-indexe)-5 b(d)34 b(set)f Fy(or)g Fu(gr)-5 b(ade)g(d)34 b(set)f Fy(is)h(a)f(set)h Fs(X)41 b Fy(together)33 b(with)h(a)f(function)g Fs(\034)40 b Fy(:)29 b Fs(X)36 b Ft(\000)-59 b(!)28 b Fs(S)6 b Fy(.)45 b(If)0 2425 y Fs(x)33 b Ft(2)f Fs(X)43 b Fy(and)35 b Fs(\034)11 b Fy(\()p Fs(x)p Fy(\))33 b(=)f Fs(s)j Fy(then)h(w)m(e)g(sa)m(y)h Fs(x)e Fy(is)h(of)e Fu(typ)-5 b(e)36 b Fs(s)p Fy(,)g(and)f(w)m(e)h(also)g(refer)f(to)g Fs(X)43 b Fy(as)35 b(a)g Fu(typ)-5 b(e)g(d)38 b(set)p Fy(.)51 b(The)0 2541 y(terminology)31 b(`)p Fs(S)6 b Fu(-indexe)-5 b(d)32 b(set)p Fy(')f(is)g(that)g(used)h(b)m(y)g (category)f(theorists.)44 b(Man)m(y)32 b(mathematicians)g(w)m(ould)0 2657 y(cast)f(the)f(discussion)j(in)d(terms)h(of)f(the)h(collection)g (\()p Fs(\034)1996 2621 y Fq(\000)p Fr(1)2091 2657 y Fy(\()p Fs(s)p Fy(\))p Ft(j)p Fs(s)c Ft(2)h Fs(S)6 b Fy(\))30 b(of)f(subsets)k(of)c Fs(X)8 b Fy(,)31 b(whic)m(h)h(w)m(ould)f (b)s(e)0 2773 y(called)i(a)g Fu(family)h(of)h(sets)f(indexe)-5 b(d)34 b(by)f Fs(S)6 b Fy(.)p Black 0 2949 a(1.4.4.)32 b Fv(Example.)p Black 43 w Fy(The)h(set)g Fs(G)28 b Fy(=)f Fs(G)1395 2964 y Fr(0)1457 2949 y Ft([)22 b Fs(G)1622 2964 y Fr(1)1694 2949 y Fy(of)32 b(ob)5 b(jects)34 b(and)e(arro)m(ws)h (of)f(a)g(graph)h Ft(G)38 b Fy(is)33 b(an)f(example)i(of)0 3065 y(a)d(t)m(yp)s(ed)h(set,)g(t)m(yp)s(ed)h(b)m(y)f(the)f(function)h Fs(\034)39 b Fy(:)28 b Fs(G)g Ft(\000)-60 b(!)27 b(f)p Fy(0)p Fs(;)17 b Fy(1)p Ft(g)30 b Fy(that)h(tak)m(es)i(a)e(no)s(de)g (to)g(0)g(and)g(an)g(arro)m(w)g(to)g(1.)0 3181 y(Note)i(that)f(this)h (dep)s(ends)h(on)f(the)g(fact)f(that)h(a)f(no)s(de)h(is)g(not)f(an)h (arro)m(w:)43 b Fs(G)2834 3196 y Fr(0)2906 3181 y Fy(and)33 b Fs(G)3173 3196 y Fr(1)3245 3181 y Fy(are)f(disjoin)m(t.)p Black 0 3357 a(1.4.5.)24 b Fv(Remark)30 b Fy(\()p Fv(Indexed)f (functions\).)p Black 36 w Fy(A)c(function)g(from)g(a)g(set)g Fs(X)33 b Fy(t)m(yp)s(ed)26 b(b)m(y)g Fs(S)k Fy(to)25 b(a)f(set)i Fs(X)3611 3321 y Fq(0)3659 3357 y Fy(t)m(yp)s(ed)0 3473 y(b)m(y)40 b(the)f(same)h(set)f Fs(S)45 b Fy(that)39 b(preserv)m(es)j(the)d(t)m(yping)h(\(tak)m(es)g(an)f(elemen)m(t)h(of)f (t)m(yp)s(e)h Fs(s)e Fy(to)h(an)g(elemen)m(t)h(of)0 3590 y(t)m(yp)s(e)31 b Fs(s)p Fy(\))e(is)i(exactly)g(an)f(arro)m(w)g(of)f (the)h(slice)i(category)e Fv(Set)16 b Fs(=S)6 b Fy(.)42 b(Suc)m(h)31 b(a)f(function)g(is)h(called)f(an)g Fu(indexe)-5 b(d)0 3706 y(function)p Fy(,)42 b Fu(typ)-5 b(e)g(d)43 b(function)p Fy(,)g(or)d Fu(gr)-5 b(ade)g(d)42 b(function)p Fy(.)67 b(It)41 b(has)g(b)s(een)g(fruitful)g(for)f(category)h (theorists)h(to)0 3822 y(pursue)32 b(this)g(analogy)f(b)m(y)h(thinking) g(of)e(ob)5 b(jects)33 b(of)d(an)m(y)i(slice)h(category)e Ft(C)6 b Fs(=)-5 b(A)31 b Fy(as)g(ob)5 b(jects)32 b(of)f Ft(C)37 b Fy(indexed)0 3938 y(b)m(y)c Fs(A)p Fy(.)p Black 0 4114 a(1.4.6.)45 b Fv(Example.)p Black 50 w Fy(A)h(graph)f (homomorphism)j Fs(f)60 b Fy(:)51 b Ft(G)56 b(\000)-59 b(!)49 b(H)e Fy(corresp)s(onds)g(to)f(a)g(t)m(yp)s(ed)g(function)0 4230 y(according)33 b(to)f(the)h(construction)h(in)f(Example)h(1.4.4.)0 4346 y(Ho)m(w)m(ev)m(er,)g(there)e(are)g(t)m(yp)s(ed)h(functions)f(b)s (et)m(w)m(een)i(graphs)d(that)h(are)f(not)h(graph)f(homomorphisms,)i (for)0 4463 y(example)h(the)f(function)g(from)f(the)h(graph)g(in)g (1.1.3\(1\))p 1760 4680 381 4 v 2058 4678 a Fo(-)1929 4659 y Fs(b)1682 4730 y Fy(1)438 b(2)p 1760 4719 V 1760 4717 a Fo(\033)1929 4778 y Fs(c)1638 4649 y Fn(\016\015)1638 4516 y(\017\014)p 1706 4645 1 4 v 1624 4643 a Fo(-)1784 4610 y Fy(a)0 4883 y(to)32 b(the)h(graph)g(in)f(1.1.3\(4\))1730 5034 y(1)338 b(n)p 1808 5004 281 4 v 2006 5002 a Fo(-)1924 4983 y Fy(0)2076 4953 y Fn(\016\015)2076 4820 y(\017)o(\014)p 2144 4950 1 4 v 2062 4948 a Fo(-)2222 4914 y Fy(succ)0 5140 y(de\014ned)34 b(b)m(y)1156 5259 y(1)27 b Ft(7!)g Fy(1)p Fs(;)17 b Fy(2)27 b Ft(7!)h Fy(n)p Fs(;)17 b(a)27 b Ft(7!)h Fy(0)p Fs(;)17 b(b)27 b Ft(7!)h Fy(0)p Fs(;)17 b(c)27 b Ft(7!)g Fy(succ)q Fs(:)0 5398 y Fy(This)34 b(is)f(not)f(a)h (graph)f(homomorphism)i(b)s(ecause)g(it)e(do)s(es)h(not)g(preserv)m(e)i (source)e(and)g(target.)p Black Black eop end %%Page: 20 20 TeXDict begin 20 19 bop Black 0 -99 a Fw(20)1668 b(F)-6 b(oundations)p Black 0 100 a Fy(1.4.2.)48 b Fu(Sub)-5 b(c)g(ate)g(gories.)p Black 0 276 a Fy(1.4.7.)32 b Fv(De\014nition.)p Black 43 w Fy(A)g Fu(sub)-5 b(c)g(ate)g(gory)33 b Ft(D)i Fy(of)d(a)g(category)h Ft(C)39 b Fy(is)33 b(a)f(category)h(for)f(whic)m (h:)p Black 138 414 a(S-1)p Black 41 w(All)d(the)g(ob)5 b(jects)30 b(of)e Ft(D)j Fy(are)e(ob)5 b(jects)30 b(of)e Ft(C)35 b Fy(and)29 b(all)g(the)g(arro)m(ws)g(of)f Ft(D)k Fy(are)c(arro)m(ws)i(of)e Ft(C)35 b Fy(\(in)29 b(other)315 531 y(w)m(ords,)k Ft(D)698 546 y Fr(0)765 531 y Ft(\022)28 b(C)922 546 y Fr(0)995 531 y Fy(and)33 b Ft(D)1262 546 y Fr(1)1328 531 y Ft(\022)c(C)1486 546 y Fr(1)1526 531 y Fy(\).)p Black 138 647 a(S-2)p Black 41 w(The)h(source)g(and)f (target)g(of)g(an)g(arro)m(w)g(of)g Ft(D)j Fy(are)d(the)g(same)i(as)e (its)h(source)g(and)f(target)g(in)g Ft(C)36 b Fy(\(in)315 763 y(other)31 b(w)m(ords,)h(the)f(source)h(and)f(target)f(maps)i(for)e Ft(D)j Fy(are)e(the)g(restrictions)i(of)d(those)i(for)e Ft(C)6 b Fy(\).)43 b(It)315 879 y(follo)m(ws)33 b(that)f(for)g(an)m(y)i (ob)5 b(jects)33 b Fs(A)g Fy(and)g Fs(B)k Fy(of)32 b Ft(D)s Fy(,)h(Mor)2347 894 y Fq(D)2407 879 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\))28 b Ft(\022)g Fy(Mor)2988 894 y Fq(C)3033 879 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\).)p Black 138 996 a(S-3)p Black 41 w(If)32 b Fs(A)h Fy(is)g(an)f(ob)5 b(ject)34 b(of)e Ft(D)j Fy(then)e(its)g(iden)m(tit)m(y)i(arro)m(w)d(1) 2311 1011 y Fp(A)2400 996 y Fy(in)h Ft(C)39 b Fy(is)33 b(in)g Ft(D)s Fy(.)p Black 138 1112 a(S-4)p Black 41 w(If)j Fs(f)44 b Fy(:)34 b Fs(A)f Ft(\000)-59 b(!)33 b Fs(B)41 b Fy(and)36 b Fs(g)h Fy(:)d Fs(B)39 b Ft(\000)-60 b(!)33 b Fs(C)43 b Fy(in)37 b Ft(D)s Fy(,)f(then)h(the)f(comp)s(osite)h Fs(g)28 b Ft(\016)d Fs(f)46 b Fy(\(in)37 b Ft(C)6 b Fy(\))36 b(is)g(in)h Ft(D)h Fy(and)e(is)315 1228 y(the)d(comp)s(osite)g(in)g Ft(D)s Fy(.)p Black 0 1404 a(1.4.8.)g Fv(Examples.)p Black 43 w Fy(As)h(an)f(example,)j(the)d(category)h Fv(Fin)g Fy(of)f(\014nite)h(sets)h(and)e(all)h(functions)g(b)s(et)m(w)m(een)0 1520 y(them)47 b(is)f(a)f(sub)s(category)i(of)e Fv(Set)p Fy(,)50 b(and)45 b(in)h(turn)g Fv(Set)g Fy(is)h(a)e(sub)s(category)i (of)e(the)h(category)g(of)g(sets)0 1637 y(and)41 b(partial)g(functions) g(b)s(et)m(w)m(een)i(sets)f(\(see)g(2.1.12)e(and)h(2.1.13\).)68 b(These)43 b(examples)g(illustrate)e(t)m(w)m(o)0 1753 y(phenomena:)p Black 170 1891 a(\(i\))p Black 42 w(If)30 b Fs(A)h Fy(and)g Fs(B)36 b Fy(are)31 b(\014nite)h(sets,)h(then)e(Mor) 1834 1906 y Fi(Fin)1957 1891 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\))28 b(=)f(Mor)2536 1906 y Fi(Set)2655 1891 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\).)42 b(In)32 b(other)f(w)m(ords,)h(ev)m(ery)315 2007 y(arro)m(w)g(of)g Fv(Set)h Fy(b)s(et)m(w)m(een)h(ob)5 b(jects)34 b(of)e Fv(Fin)i Fy(is)f(an)f(arro)m(w)h(of)f Fv(Fin)q Fy(.)p Black 143 2123 a(\(ii\))p Black 42 w(The)26 b(category)f(of)g(sets)h(and)f(the)h(category)f(of)g(sets)h(and)f (partial)g(functions,)j(on)d(the)g(other)h(hand,)315 2239 y(ha)m(v)m(e)33 b(exactly)h(the)f(same)h(ob)5 b(jects.)414 2356 y(The)29 b(phenomenon)h(of)e(\(i\))g(do)s(es)h(not)f(o)s(ccur)h (here:)42 b(there)29 b(are)f(generally)h(man)m(y)h(more)e(partial)315 2472 y(functions)33 b(b)s(et)m(w)m(een)i(t)m(w)m(o)e(sets)h(than)e (there)i(are)e(full)h(functions.)0 2610 y(Example)h(\(i\))f(motiv)-5 b(ates)33 b(the)g(follo)m(wing)g(de\014nition.)p Black 0 2786 a(1.4.9.)46 b Fv(De\014nition.)p Black 49 w Fy(If)h Ft(D)h Fy(is)f(a)f(sub)s(category)i(of)d Ft(C)53 b Fy(and)46 b(for)g(ev)m(ery)i(pair)f(of)e(ob)5 b(jects)48 b Fs(A)p Fy(,)i Fs(B)h Fy(of)46 b Ft(D)s Fy(,)0 2902 y(Mor)176 2917 y Fq(D)237 2902 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\))27 b(=)h(Mor)816 2917 y Fq(C)861 2902 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\),)32 b(then)i Ft(D)h Fy(is)e(a)f Fu(ful)5 b(l)35 b(sub)-5 b(c)g(ate)g(gory)33 b Fy(of)f Ft(C)38 b Fy(.)0 3078 y(Th)m(us)g Fv(Fin)g Fy(is)g(a)e(full)h(sub)s(category)h (of)f Fv(Set)g Fy(but)g Fv(Set)g Fy(is)g(not)g(a)f(full)i(sub)s (category)f(of)g(the)g(category)g(of)0 3195 y(sets)d(and)e(partial)h (functions.)0 3311 y(Example)h(1.4.8\(ii\))e(also)h(motiv)-5 b(ates)33 b(a)f(\(less)i(useful\))g(de\014nition,)f(as)g(follo)m(ws.)p Black 0 3487 a(1.4.10.)44 b Fv(De\014nition.)p Black 48 w Fy(If)h Ft(D)i Fy(is)e(a)f(sub)s(category)i(of)e Ft(C)51 b Fy(with)45 b(the)g(same)g(ob)5 b(jects,)49 b(then)c Ft(D)i Fy(is)e(a)g Fu(wide)0 3603 y(sub)-5 b(c)g(ate)g(gory)32 b Fy(of)h Ft(C)6 b Fy(.)0 3779 y(Th)m(us)30 b(in)f(the)g(case)g(of)g(a) f(wide)h(sub)s(category)-8 b(,)31 b(only)e(the)g(arro)m(ws)g(are)g (di\013eren)m(t)g(from)g(those)g(of)f(the)h(larger)0 3895 y(category)-8 b(.)42 b(In)29 b(2.4.9)e(w)m(e)j(pro)m(vide)f(an)f (impro)m(v)m(emen)m(t)j(on)d(this)h(concept.)43 b(As)29 b(an)f(example,)j Fv(Set)d Fy(is)h(a)f(wide)0 4012 y(sub)s(category)33 b(of)g(the)g(category)f Fv(Pfn)h Fy(of)f(sets)i(and)f(partial)f (functions.)p Black 0 4188 a(1.4.11.)27 b Fv(Example.)p Black 38 w Fy(Among)h(all)f(the)h(ob)5 b(jects)28 b(of)f(the)h (category)g(of)f(semigroups)i(are)e(the)h(monoids,)h(and)0 4304 y(among)j(all)g(the)h(semigroup)h(homomorphisms)g(b)s(et)m(w)m (een)g(t)m(w)m(o)f(monoids)g(are)g(those)g(that)f(preserv)m(e)j(the)0 4420 y(iden)m(tit)m(y)-8 b(.)48 b(Th)m(us)35 b(the)f(category)g(of)g (monoids)g(is)g(a)f(sub)s(category)i(of)e(the)h(category)g(of)f (semigroups)i(that)0 4536 y(is)e(neither)h(wide)g(nor)f(full)g(\(see)h Fv(??)o Fy(\).)44 b(As)34 b(it)f(stands,)h(b)s(eing)f(a)f(sub)s (category)i(requires)h(the)e(ob)5 b(jects)34 b(and)0 4652 y(arro)m(ws)27 b(of)f(the)h(sub)s(category)g(to)f(b)s(e)g(iden)m (tical)i(with)f(some)g(of)f(the)h(ob)5 b(jects)28 b(and)e(arro)m(ws)h (of)f(the)h(category)0 4769 y(con)m(taining)37 b(it.)55 b(This)37 b(requires)h(an)f(uncategorical)g(emphasis)h(on)e(what)h (something)g(is)g(instead)g(of)f(on)0 4885 y(the)d(sp)s(eci\014cation)h (it)f(satis\014es.)-438 4964 y(06.05.04)0 5125 y(1.4.3.)48 b Fu(The)35 b(pr)-5 b(o)g(duct)35 b(of)f(c)-5 b(ate)g(gories.)p Black 0 5301 a Fy(1.4.12.)24 b Fv(De\014nition.)p Black 36 w Fy(If)h Ft(C)31 b Fy(and)24 b Ft(D)k Fy(are)c(categories,)j(the)e Fu(pr)-5 b(o)g(duct)25 b Ft(C)12 b(\002)6 b(D)28 b Fy(is)d(the)g (category)g(whose)h(ob)5 b(jects)0 5417 y(are)36 b(all)g(ordered)g (pairs)g(\()p Fs(C)r(;)17 b(D)s Fy(\))35 b(with)h Fs(C)43 b Fy(an)36 b(ob)5 b(ject)37 b(of)e Ft(C)42 b Fy(and)36 b Fs(D)j Fy(an)c(ob)5 b(ject)37 b(of)e Ft(D)s Fy(,)i(and)f(in)g(whic)m (h)h(an)p Black Black eop end %%Page: 21 21 TeXDict begin 21 20 bop Black 1486 -99 a Fw(Constructions)27 b(on)f(categories)1411 b(21)p Black 0 100 a Fy(arro)m(w)34 b(\()p Fs(f)5 b(;)17 b(g)t Fy(\))29 b(:)h(\()p Fs(C)r(;)17 b(D)s Fy(\))29 b Ft(\000)-60 b(!)30 b Fy(\()p Fs(C)1152 64 y Fq(0)1175 100 y Fs(;)17 b(D)1303 64 y Fq(0)1326 100 y Fy(\))34 b(is)g(a)g(pair)f(of)h(arro)m(ws)g Fs(f)41 b Fy(:)30 b Fs(C)37 b Ft(\000)-60 b(!)30 b Fs(C)2684 64 y Fq(0)2741 100 y Fy(in)k Ft(C)40 b Fy(and)34 b Fs(g)g Fy(:)c Fs(D)i Ft(\000)-59 b(!)29 b Fs(D)3621 64 y Fq(0)3678 100 y Fy(in)34 b Ft(D)s Fy(.)0 217 y(The)39 b(iden)m(tit)m(y)h(of)e(\() p Fs(C)r(;)17 b(D)s Fy(\))37 b(is)i(\(1)1193 232 y Fp(C)1252 217 y Fs(;)17 b Fy(1)1345 232 y Fp(D)1408 217 y Fy(\).)60 b(If)39 b(\()p Fs(f)1734 180 y Fq(0)1757 217 y Fs(;)17 b(g)1852 180 y Fq(0)1874 217 y Fy(\))37 b(:)h(\()p Fs(C)2129 180 y Fq(0)2152 217 y Fs(;)17 b(D)2280 180 y Fq(0)2302 217 y Fy(\))38 b Ft(\000)-60 b(!)37 b Fy(\()p Fs(C)2647 180 y Fq(00)2689 217 y Fs(;)17 b(D)2817 180 y Fq(00)2859 217 y Fy(\))38 b(is)h(another)f(arro)m(w,)i(then)0 333 y(the)33 b(comp)s(osite)g(is)h(de\014ned)g(b)m(y)853 490 y(\()p Fs(f)950 449 y Fq(0)973 490 y Fs(;)17 b(g)1068 449 y Fq(0)1091 490 y Fy(\))22 b Ft(\016)g Fy(\()p Fs(f)5 b(;)17 b(g)t Fy(\))26 b(=)i(\()p Fs(f)1674 449 y Fq(0)1719 490 y Ft(\016)22 b Fs(f)5 b(;)17 b(g)1939 449 y Fq(0)1984 490 y Ft(\016)22 b Fs(g)t Fy(\))27 b(:)g(\()p Fs(C)r(;)17 b(D)s Fy(\))27 b Ft(\000)-60 b(!)28 b Fy(\()p Fs(C)2789 449 y Fq(00)2831 490 y Fs(;)17 b(D)2959 449 y Fq(0)2982 490 y Fy(\))p Fs(:)0 645 y Fy(1.4.4.)48 b Fu(The)35 b(dual)f(of)h(a)g (c)-5 b(ate)g(gory.)p Black 0 800 a Fy(1.4.13.)32 b Fv(De\014nition.)p Black 42 w Fy(The)i Fu(dual)h(or)f(opp)-5 b(osite)32 b Ft(C)1837 764 y Fp(op)1944 800 y Fy(of)g(a)g(category)h Ft(C)39 b Fy(is)33 b(de\014ned)h(b)m(y:)p Black 117 937 a(D-1)p Black 41 w(The)f(ob)5 b(jects)34 b(and)f(arro)m(ws)g(of)f Ft(C)1520 901 y Fp(op)1626 937 y Fy(are)h(the)g(ob)5 b(jects)34 b(and)f(arro)m(ws)g(of)f Ft(C)39 b Fy(.)p Black 117 1053 a(D-2)p Black 41 w(If)32 b Fs(f)38 b Fy(:)28 b Fs(A)g Ft(\000)-60 b(!)28 b Fs(B)37 b Fy(in)c Ft(C)6 b Fy(,)33 b(then)g Fs(f)39 b Fy(:)27 b Fs(B)33 b Ft(\000)-59 b(!)27 b Fs(A)33 b Fy(in)f Ft(C)2034 1017 y Fp(op)2109 1053 y Fy(,)g(i.e.)44 b(Mor)2512 1068 y Fq(C)2553 1049 y Fk(op)2624 1053 y Fy(\()p Fs(B)5 b(;)17 b(A)p Fy(\))27 b(:=)h(Mor)3230 1068 y Fq(C)3275 1053 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\).)p Black 117 1169 a(D-3)p Black 41 w(If)32 b Fs(h)c Fy(=)f Fs(g)f Ft(\016)c Fs(f)43 b Fy(in)33 b Ft(C)39 b Fy(,)32 b(then)h Fs(h)28 b Fy(=)g Fs(f)33 b Ft(\016)22 b Fs(g)35 b Fy(in)e Ft(C)1916 1133 y Fp(op)1990 1169 y Fy(.)0 1325 y(The)h(meaning)g(of)e(D-2)g(is)i(that)e(source)j (and)e(target)f(ha)m(v)m(e)j(b)s(een)f(rev)m(ersed.)47 b(It)33 b(is)h(easy)g(to)e(see)j(that)e(the)0 1441 y(iden)m(tit)m(y)38 b(arro)m(ws)e(ha)m(v)m(e)h(to)f(b)s(e)g(the)g(same)h(in)f(the)g(t)m(w)m (o)h(categories)f Ft(C)42 b Fy(and)36 b Ft(C)2859 1405 y Fp(op)2969 1441 y Fy(and)g(that)f(C-1)h(through)0 1557 y(C-4)c(of)g(de\014nition)i(1.3.1)e(hold,)h(so)g(that)f Ft(C)1595 1521 y Fp(op)1702 1557 y Fy(is)h(a)f(category)-8 b(.)p Black 0 1713 a(1.4.14.)27 b Fv(Example.)p Black 39 w Fy(If)h Ft(M)g Fy(is)g(a)g(monoid,)h(then)g(the)f(opp)s(osite)g (of)g(the)g(category)g Ft(C)6 b Fy(\()p Ft(M)p Fy(\))28 b(is)g(the)h(category)0 1829 y(determined)47 b(b)m(y)f(a)f(monoid)g Ft(M)1243 1793 y Fp(op)1316 1829 y Fy(,)k(if)c Fs(xy)52 b Fy(=)d Fs(z)h Fy(in)45 b Ft(M)p Fy(,)j(then)e Fs(y)t(x)i Fy(=)h Fs(z)h Fy(in)45 b Ft(M)3046 1793 y Fp(op)3120 1829 y Fy(.)80 b(\(Hence)47 b(if)e Ft(M)f Fy(is)0 1945 y(comm)m(utativ)m(e)35 b(then)e Ft(C)6 b Fy(\()p Ft(M)p Fy(\))32 b(is)i(its)f(o)m(wn)g(dual.)44 b(Similar)34 b(remarks)f(ma)m(y)h(b)s(e)f(made)g(ab)s(out)f(the)h(opp)s(osite)0 2061 y(of)24 b(the)h(category)g Ft(C)6 b Fy(\()p Ft(P)i Fy(\))25 b(determined)h(b)m(y)f(a)g(p)s(oset)f Ft(P)8 b Fy(.)42 b(The)25 b(opp)s(osite)g(of)f(the)h(p)s(oset)g(\()p Fm(Z)p Fs(;)17 b Ft(\024)p Fy(\),)26 b(for)e(example,)0 2178 y(is)33 b(\()p Fm(Z)p Fs(;)17 b Ft(\025)p Fy(\).)0 2333 y(Both)30 b(the)h(construction)h(of)e(the)h(pro)s(duct)g(of)f(t)m (w)m(o)h(categories)h(and)f(the)g(construction)g(of)f(the)h(dual)g(of)f (a)0 2449 y(category)h(are)f(purely)i(formal)e(constructions.)44 b(Ev)m(en)32 b(though)f(the)g(original)f(categories)h(ma)m(y)g(ha)m(v)m (e,)h(for)0 2565 y(example,)40 b(structure-preserving)f(functions)f(of) e(some)i(kind)g(as)f(arro)m(ws,)i(the)e(arro)m(ws)g(in)g(the)h(pro)s (duct)0 2682 y(category)33 b(are)f(simply)j(pairs)e(of)f(arro)m(ws)h (of)f(the)h(original)f(categories.)0 2798 y(Consider)e Fv(Set)p Fy(,)g(for)e(example.)44 b(Let)29 b Fs(A)f Fy(b)s(e)h(the)h (set)f(of)f(letters)i(of)e(the)h(English)h(alphab)s(et.)43 b(The)29 b(function)0 2914 y Fs(v)42 b Fy(:)d Fs(A)g Ft(\000)-60 b(!)38 b(f)p Fy(0)p Fs(;)17 b Fy(1)p Ft(g)38 b Fy(that)h(tak)m(es)h(consonan)m(ts)h(to)d(0)h(and)g(v)m(o)m(w)m(els)i (to)e(1)g(is)g(an)g(arro)m(w)g(of)g Fv(Set)p Fy(.)62 b(Then)41 b(the)0 3030 y(arro)m(w)d(\(1)366 3045 y Fp(A)422 3030 y Fs(;)17 b(v)t Fy(\))36 b(:)g(\()p Fs(A;)17 b(A)p Fy(\))36 b Ft(\000)-59 b(!)36 b Fy(\()p Fs(A;)17 b Ft(f)p Fy(0)p Fs(;)g Fy(1)p Ft(g)p Fy(\))36 b(of)h Fv(Set)16 b Ft(\002)h Fv(Set)38 b Fy(is)g(not)g(a)f(function,)i(not)f(ev)m(en)h (a)e(function)h(of)0 3147 y(t)m(w)m(o)e(v)-5 b(ariables,)37 b(since)f(there)g(are)g(no)f(reasonable)h(elemen)m(ts)i(in)d(\()p Fs(A;)17 b(A)p Fy(\).)51 b(It)36 b(is)g(merely)g(the)g(arro)m(w)f(of)g (a)0 3263 y(pro)s(duct)e(category)g(and)f(as)h(suc)m(h)h(is)f(an)g (ordered)g(pair)g(of)f(functions.)0 3379 y(A)h(similar)h(remark)f (applies)h(to)f(duals.)45 b(In)33 b Fv(Set)1779 3337 y Fp(op)1853 3379 y Fy(,)g Fs(v)j Fy(is)e(an)e(arro)m(w)h(from)g Ft(f)p Fy(0)p Fs(;)17 b Fy(1)p Ft(g)32 b Fy(to)g Fs(A)p Fy(.)45 b(And)33 b(that)g(is)g(all)0 3495 y(it)g(is.)44 b(It)32 b(is)h(in)g(particular)g(not)f(a)h(function)g(from)f Ft(f)p Fy(0)p Fs(;)17 b Fy(1)p Ft(g)31 b Fy(to)i Fs(A)p Fy(.)0 3611 y(Nev)m(ertheless,)48 b(it)42 b(is)h(p)s(ossible)g(in)g (some)g(cases)g(to)f(pro)m(v)m(e)i(that)d(the)i(dual)f(of)g(a)g (familiar)g(category)g(is)0 3728 y(essen)m(tially)h(the)f(same)f(as)g (some)h(other)f(familiar)f(category)-8 b(.)69 b(One)41 b(suc)m(h)h(category)f(is)g Fv(Fin)q Fy(,)i(whic)m(h)f(is)0 3844 y(equiv)-5 b(alen)m(t)34 b(to)f(the)g(opp)s(osite)g(of)f(the)h (category)g(of)f(\014nite)h(Bo)s(olean)f(algebras.)0 3960 y(The)39 b(pro)s(duct)f(of)f(categories)h(is)g(a)g(formal)f(w)m(a) m(y)i(to)f(mak)m(e)g(constructions)i(dep)s(enden)m(t)f(on)f(more)g (than)0 4076 y(one)33 b(v)-5 b(ariable.)45 b(The)34 b(ma)5 b(jor)33 b(use)h(w)m(e)g(mak)m(e)g(of)e(the)i(concept)g(of)e(dual)h(is) h(that)f(man)m(y)h(of)e(the)h(de\014nitions)0 4193 y(w)m(e)47 b(mak)m(e)f(ha)m(v)m(e)h(another)f(meaning)g(when)h(applied)g(to)e(the) h(dual)g(of)f(a)g(category)h(that)g(is)g(often)f(of)0 4309 y(indep)s(enden)m(t)f(in)m(terest.)72 b(The)43 b(phrase)g(dual)f (concept)h(or)e(dual)h(notion)f(is)i(often)e(used)i(to)f(refer)g(to)f (a)0 4425 y(concept)34 b(or)e(notion)g(applied)i(in)f(the)g(dual)f (category)-8 b(.)0 4599 y(1.4.5.)48 b Fu(The)35 b(fr)-5 b(e)g(e)34 b(c)-5 b(ate)g(gory)35 b(gener)-5 b(ate)g(d)34 b(by)h(a)g(gr)-5 b(aph.)p Black 0 4755 a Fy(1.4.15.)35 b Fv(De\014nition.)p Black 44 w Fy(F)-8 b(or)35 b(an)m(y)i(giv)m(en)g (graph)f Ft(G)42 b Fy(there)37 b(is)f(a)g(category)g Ft(F)10 b Fy(\()p Ft(G)c Fy(\))35 b(whose)i(ob)5 b(jects)38 b(are)e(the)0 4871 y(no)s(des)d(of)f Ft(G)39 b Fy(and)33 b(whose)g(arro)m(ws)h(are)e(the)h(paths)g(in)g Ft(G)6 b Fy(.)44 b(Comp)s(osition)33 b(is)g(de\014ned)h(b)m(y)g(the)f(form)m (ula)933 5028 y(\()p Fs(f)1019 5043 y Fr(1)1058 5028 y Fs(;)17 b(f)1150 5043 y Fr(2)1189 5028 y Fs(;)g(:)g(:)g(:)f(;)h(f) 1456 5043 y Fp(k)1499 5028 y Fy(\))22 b Ft(\016)g Fy(\()p Fs(f)1717 5043 y Fp(k)r Fr(+1)1849 5028 y Fs(;)17 b(:)g(:)g(:)f(;)h(f) 2116 5043 y Fp(n)2163 5028 y Fy(\))28 b(=)f(\()p Fs(f)2418 5043 y Fr(1)2458 5028 y Fs(;)17 b(f)2550 5043 y Fr(2)2589 5028 y Fs(;)g(:)g(:)g(:)f(;)h(f)2856 5043 y Fp(n)2902 5028 y Fy(\))p Fs(:)0 5185 y Fy(This)37 b(comp)s(osition)f(is)f(asso)s (ciativ)m(e,)j(and)e(for)e(eac)m(h)j(ob)5 b(ject)36 b Fs(A)p Fy(,)g(1)2441 5200 y Fp(A)2533 5185 y Fy(is)g(the)g(empt)m(y)h (path)e(from)g Fs(A)h Fy(to)f Fs(A)p Fy(.)0 5301 y(The)f(category)g Ft(F)10 b Fy(\()p Ft(G)c Fy(\))33 b(is)g(called)h(the)g Fu(fr)-5 b(e)g(e)35 b(c)-5 b(ate)g(gory)36 b(gener)-5 b(ate)g(d)35 b(by)g(the)h(gr)-5 b(aph)32 b Ft(G)6 b Fy(.)46 b(It)33 b(is)h(also)f(called)i(the)0 5417 y Fu(p)-5 b(ath)35 b(c)-5 b(ate)g(gory)35 b(of)d Ft(G)6 b Fy(.)p Black Black eop end %%Page: 22 22 TeXDict begin 22 21 bop Black 0 -99 a Fw(22)1668 b(F)-6 b(oundations)p Black Black 0 100 a Fy(1.4.16.)27 b Fv(Examples.)p Black 39 w Fy({)f(The)j(free)e(category)h(generated)g(b)m(y)g(the)g (graph)f(with)h(one)f(no)s(de)h(and)f(no)g(arro)m(ws)0 217 y(is)33 b(the)g(category)g(with)g(one)g(ob)5 b(ject)33 b(and)g(only)g(the)g(iden)m(tit)m(y)i(arro)m(w,)d(whic)m(h)i(is)g(the)f (empt)m(y)h(path.)0 333 y({)g(The)g(free)g(category)h(generated)f(b)m (y)h(the)f(graph)g(with)g(one)g(no)s(de)g(and)g(one)g(lo)s(op)f(on)h (the)g(no)s(de)g(is)h(the)0 449 y(free)e(monoid)g(with)g(one)f (generator)h(\(Kleene)g(closure)h(of)e(a)g(one-letter)h(alphab)s(et\);) g(this)g(is)g(isomorphic)0 565 y(with)g(the)g(nonnegativ)m(e)h(in)m (tegers)g(with)f(+)g(as)f(op)s(eration.)0 681 y({)g(The)i(free)f (category)g(generated)g(b)m(y)h(the)f(graph)f(in)h(Example)h (1.1.3\(4\))e(has)h(the)g(follo)m(wing)f(arro)m(ws)p Black 148 818 a(\(a\))p Black 42 w(An)g(arro)m(w)h(1)797 833 y Fr(1)864 818 y Fy(:)28 b(1)f Ft(\000)-59 b(!)27 b Fy(1.)p Black 143 934 a(\(b\))p Black 42 w(F)-8 b(or)53 b(eac)m(h)i(nonnegativ)m(e)g(in)m(teger)g Fs(k)s Fy(,)60 b(the)54 b(arro)m(w)h(succ)2464 898 y Fp(k)2571 934 y Fy(:)64 b(n)h Ft(\000)-60 b(!)64 b Fy(n.)108 b(This)56 b(is)e(the)h(path)315 1051 y(\(succ)q Fs(;)17 b Fy(succ)q Fs(;)g(:)g(:)g(:)f(;)h(suc)p Fy(succ\))42 b(\()p Fs(k)j Fy(o)s(ccurrences)f(of)e(succ\).)73 b(This)43 b(includes)h Fs(k)j Fy(=)d(0)e(whic)m(h)i(giv)m(es)315 1167 y(1)364 1182 y Fp(n)410 1167 y Fy(.)p Black 154 1283 a(\(c\))p Black 42 w(F)-8 b(or)34 b(eac)m(h)h(nonnegativ)m(e)h(in)m(teger)g Fs(k)s Fy(,)f(the)h(arro)m(w)f(succ)2324 1247 y Fp(k)2390 1283 y Ft(\016)24 b Fy(0)31 b(:)g(1)h Ft(\000)-60 b(!)31 b Fy(n.)50 b(Here)36 b Fs(k)e Fy(=)e(0)i(giv)m(es)i(0)c(:)f(1)315 1399 y Ft(\000)-60 b(!)27 b Fy(n.)44 b(Comp)s(osition)33 b(ob)s(eys)h(the)f(rule)g(succ)1970 1363 y Fp(k)2035 1399 y Ft(\016)22 b Fy(succ)2286 1363 y Fp(m)2381 1399 y Fy(=)27 b(succ)2664 1363 y Fp(k)r Fr(+)p Fp(m)2824 1399 y Fs(:)0 1564 y Fy(It)36 b(is)h(useful)h(to)e(regard)g(the)h(free) g(category)f(generated)i(b)m(y)f(an)m(y)g(graph)f(as)h(analogous)f(to)g (the)h(Kleene)0 1680 y(closure)50 b(\(free)f(monoid\))g(generated)g(b)m (y)h(a)f(set)g(\(as)g(in)g(1.2.5\).)91 b(The)50 b(paths)f(in)g(the)g (free)h(category)0 1796 y(corresp)s(ond)35 b(to)e(the)i(strings)g(in)f (the)g(Kleene)h(closure.)49 b(The)35 b(di\013erence)h(is)e(that)g(y)m (ou)h(can)f(concatenate)0 1913 y(an)m(y)j(sym)m(b)s(ols)i(together)d (to)h(get)f(a)h(string,)h(but)f(arro)m(ws)g(can)g(b)s(e)g(strung)g (together)g(only)g(head)g(to)f(tail,)0 2029 y(th)m(us)e(taking)g(in)m (to)g(accoun)m(t)g(the)g(t)m(yping.)47 b(In)34 b Fv(??)f Fy(w)m(e)i(giv)m(e)f(a)f(precise)i(tec)m(hnical)g(meaning)f(to)f(the)h (w)m(ord)0 2145 y(`free'.)0 2319 y(1.5.)49 b Fv(F)-9 b(unctors.)0 2436 y Fy(A)35 b(functor)f Ft(F)44 b Fy(from)35 b(a)f(category)h Ft(C)40 b Fy(to)35 b(a)f(category)h Ft(D)i Fy(is)e(a)f(graph)g(homomorphism)i(whic)m(h)g(preserv)m(es)0 2552 y(iden)m(tities)i(and)f(comp)s(osition.)55 b(It)37 b(pla)m(ys)g(the)g(same)h(role)e(as)h(monoid)f(homomorphisms)i(for)e (monoids)0 2668 y(and)27 b(monotone)g(maps)h(for)e(p)s(osets:)42 b(it)27 b(preserv)m(es)i(the)f(structure)g(that)e(a)h(category)g(has.) 42 b(F)-8 b(unctors)28 b(ha)m(v)m(e)0 2784 y(another)37 b(signi\014cance,)j(ho)m(w)m(ev)m(er:)54 b(since)38 b(one)f(sort)g(of)f (thing)h(a)f(category)h(can)g(b)s(e)g(is)h(a)e(mathematical)0 2901 y(w)m(orkspace)c(\(see)g(In)m(tro)s(duction\),)f(man)m(y)g(of)f (the)h(most)f(useful)i(functors)f(used)g(b)m(y)g(mathematicians)h(are)0 3017 y(transformations)i(from)g(one)g(t)m(yp)s(e)g(of)g(mathematics)h (to)e(another.)48 b(Less)35 b(ob)m(vious,)g(but)f(p)s(erhaps)h(more)0 3133 y(imp)s(ortan)m(t)41 b(is)g(the)g(fact)g(that)g(man)m(y)g (categories)h(that)f(are)f(mathematically)j(in)m(teresting)f(app)s(ear) f(as)0 3249 y(categories)33 b(whose)h(ob)5 b(jects)34 b(are)f(a)f(natural)g(class)i(of)e(functors)h(in)m(to)g(the)g(category) g(of)f(sets.)0 3366 y(A)j(functor)g(is)h(a)f(structure-preserving)j (map)d(b)s(et)m(w)m(een)i(categories,)g(in)e(the)g(same)h(w)m(a)m(y)h (that)e(a)f(homo-)0 3482 y(morphism)45 b(is)f(a)g(structure-preserving) i(map)e(b)s(et)m(w)m(een)i(graphs)e(or)f(monoids.)78 b(Here)45 b(is)f(the)g(formal)0 3598 y(de\014nition.)p Black 0 3763 a(1.5.1.)34 b Fv(De\014nition.)p Black 44 w Fy(Let)h Ft(C)j Fy(=)31 b(\(Ob\()p Ft(C)6 b Fy(\))p Fs(;)17 b Fy(Mor\()p Ft(C)6 b Fy(\))p Fs(;)17 b Fy(\()p Fs(\026)p Fy(\))p Fs(;)g Fy(\(1\)\))33 b(and)i Ft(D)f Fy(=)e(\(Ob\()p Ft(D)s Fy(\))p Fs(;)17 b Fy(Mor)o(\()p Ft(D)s Fy(\))p Fs(;)g Fy(\()p Fs(\026)p Fy(\))p Fs(;)g Fy(\(1\)\))33 b(b)s(e)0 3879 y(categories.)44 b(Let)33 b Ft(F)42 b Fy(consist)34 b(of)p Black 148 4016 a(\(1\))p Black 42 w(a)e(map)h Ft(F)k Fy(:)28 b(Ob\()p Ft(C)6 b Fy(\))27 b Ft(\000)-59 b(!)27 b Fy(Ob\()p Ft(D)s Fy(\))32 b(and)h(a)p Black 148 4132 a(\(2\))p Black 42 w(a)f(family)h(of)f(maps) 566 4289 y(\(Mor)780 4304 y Fq(C)825 4289 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\))28 b Ft(3)g Fs(f)38 b Ft(7!)28 b(F)10 b Fy(\()p Fs(f)h Fy(\))27 b Ft(2)h Fy(Mor)1947 4304 y Fq(D)2007 4289 y Fy(\()p Ft(F)10 b Fy(\()p Fs(A)p Fy(\))p Fs(;)17 b Ft(F)10 b Fy(\()p Fs(B)5 b Fy(\)\))31 b Ft(j)i Fs(A;)17 b(B)32 b Ft(2)c Fy(Ob\()p Ft(C)6 b Fy(\)\))p Fs(:)315 4446 y Ft(F)42 b Fy(is)33 b(called)g(a)f Fu(c)-5 b(ovariant)35 b(functor)d Fy(if)p Black 422 4562 a Ft(\017)p Black 41 w(8)p Fs(A)c Ft(2)g Fy(Ob)q(\()p Ft(C)6 b Fy(\))27 b(:)1630 4678 y Ft(F)10 b Fy(\(1)1799 4693 y Fp(A)1856 4678 y Fy(\))27 b(=)h(1)2074 4694 y Fq(F)7 b Fr(\()p Fp(A)p Fr(\))2242 4678 y Fy(;)p Black 422 4815 a Ft(\017)p Black 41 w(8)p Fs(A;)17 b(B)5 b(;)17 b(C)35 b Ft(2)28 b Fy(Ob\()p Ft(C)6 b Fy(\))p Fs(;)49 b Ft(8)p Fs(f)39 b Ft(2)28 b Fy(Mor)1759 4830 y Fq(C)1804 4815 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\))p Fs(;)17 b(g)31 b Ft(2)d Fy(Mor)2468 4830 y Fq(C)2513 4815 y Fy(\()p Fs(B)5 b(;)17 b(C)7 b Fy(\))27 b(:)1526 4972 y Ft(F)10 b Fy(\()p Fs(g)t(f)h Fy(\))26 b(=)h Ft(F)10 b Fy(\()p Fs(g)t Fy(\))p Ft(F)g Fy(\()p Fs(f)h Fy(\))p Fs(:)0 5136 y Fy(An)33 b(equiv)-5 b(alen)m(t)34 b(de\014nition)g(is:)p Black 0 5301 a(1.5.2.)j Fv(De\014nition.)p Black 45 w Fy(A)g(functor)h Ft(F)45 b Fy(:)36 b Ft(C)42 b(\000)-59 b(!)35 b(D)40 b Fy(is)e(a)f(pair)g(of)g (functions)i Ft(F)2832 5316 y Fr(0)2907 5301 y Fy(:)c Ft(C)3021 5316 y Fr(0)3097 5301 y Ft(\000)-59 b(!)35 b(D)3327 5316 y Fr(0)3404 5301 y Fy(and)i Ft(F)3670 5316 y Fr(1)3745 5301 y Fy(:)f Ft(C)3860 5316 y Fr(1)0 5417 y Ft(\000)-60 b(!)28 b(D)222 5432 y Fr(1)294 5417 y Fy(for)k(whic)m(h)p Black Black eop end %%Page: 23 23 TeXDict begin 23 22 bop Black 1804 -99 a Fw(F)-6 b(unctors)1727 b(23)p Black Black 128 100 a Fy(F-1)p Black 41 w(If)32 b Fs(f)38 b Fy(:)28 b Fs(A)g Ft(\000)-60 b(!)28 b Fs(B)37 b Fy(in)c Ft(C)39 b Fy(,)33 b(then)g Ft(F)1469 115 y Fr(1)1508 100 y Fy(\()p Fs(f)11 b Fy(\))27 b(:)h Ft(F)1797 115 y Fr(0)1836 100 y Fy(\()p Fs(A)p Fy(\))g Ft(\000)-60 b(!)27 b(F)2229 115 y Fr(0)2268 100 y Fy(\()p Fs(B)5 b Fy(\))33 b(in)g Ft(D)s Fy(.)p Black 128 217 a(F-2)p Black 41 w(F)-8 b(or)31 b(an)m(y)j(ob)5 b(ject)33 b Fs(A)g Fy(of)f Ft(C)38 b Fy(,)33 b Ft(F)1408 232 y Fr(1)1447 217 y Fy(\(1)1534 232 y Fp(A)1591 217 y Fy(\))27 b(=)h(1)1809 232 y Fq(F)1859 241 y Fj(0)1894 232 y Fr(\()p Fp(A)p Fr(\))2006 217 y Fy(.)p Black 128 333 a(F-3)p Black 41 w(If)c Fs(g)9 b Ft(\016)c Fs(f)34 b Fy(is)24 b(de\014ned)i(in)e Ft(C)31 b Fy(,)26 b(then)f Ft(F)1541 348 y Fr(1)1580 333 y Fy(\()p Fs(g)t Fy(\))5 b Ft(\016)g(F)1839 348 y Fr(1)1877 333 y Fy(\()p Fs(f)11 b Fy(\))23 b(is)i(de\014ned)h(in)e Ft(D)j Fy(and)d Ft(F)2915 348 y Fr(1)2954 333 y Fy(\()p Fs(g)9 b Ft(\016)c Fs(f)11 b Fy(\))27 b(=)g Ft(F)3402 348 y Fr(1)3441 333 y Fy(\()p Fs(g)t Fy(\))5 b Ft(\016)g(F)3700 348 y Fr(1)3738 333 y Fy(\()p Fs(f)11 b Fy(\).)0 470 y(By)23 b(F-1,)h(a)e(functor)h(is)g(in)g(particular)g(a)f(homomorphism) i(of)e(graphs.)41 b(F)-8 b(ollo)m(wing)22 b(the)h(practice)h(for)e (graph)0 586 y(homomorphisms,)32 b(the)e(notation)f(is)h(customarily)h (o)m(v)m(erloaded:)44 b(if)29 b Fs(A)h Fy(is)g(an)f(ob)5 b(ject,)31 b Ft(F)10 b Fy(\()p Fs(A)p Fy(\))27 b(=)h Ft(F)3617 601 y Fr(0)3656 586 y Fy(\()p Fs(A)p Fy(\))h(is)0 702 y(an)g(ob)5 b(ject,)30 b(and)f(if)g Fs(f)40 b Fy(is)29 b(an)g(arro)m(w,)h Ft(F)10 b Fy(\()p Fs(f)h Fy(\))27 b(=)g Ft(F)1754 717 y Fr(1)1793 702 y Fy(\()p Fs(f)11 b Fy(\))29 b(is)g(an)g(arro)m(w.)43 b(The)29 b(notation)g(for)f(the)i (constituen)m(ts)0 819 y Ft(F)72 834 y Fr(0)139 819 y Fy(:)d Ft(C)245 834 y Fr(0)313 819 y Ft(\000)-60 b(!)28 b Fs(D)539 834 y Fr(0)611 819 y Fy(and)k Ft(F)872 834 y Fr(1)939 819 y Fy(:)c Ft(C)1046 834 y Fr(1)1113 819 y Ft(\000)-59 b(!)27 b(D)1335 834 y Fr(1)1407 819 y Fy(is)33 b(not)g(standard,)g(and)f(w)m(e)i(will)f(use)h(it)e(only)h(for)f (emphasis.)p Black 0 994 a(1.5.3.)37 b Fv(Example.)p Black 46 w Fy(It)h(is)g(easy)h(to)e(see)i(that)f(a)f(monoid)h (homomorphism)h Fs(f)47 b Fy(:)37 b Ft(M)f(\000)-59 b(!)36 b(N)52 b Fy(determines)0 1110 y(a)34 b(functor)g(from)f Ft(C)6 b Fy(\()p Ft(M)p Fy(\))34 b(to)f Ft(C)6 b Fy(\()p Ft(N)15 b Fy(\))34 b(as)g(de\014ned)h(in)f(1.3.8\(1\).)46 b(On)34 b(ob)5 b(jects,)36 b(a)d(homomorphism)i Fs(f)45 b Fy(m)m(ust)0 1226 y(tak)m(e)e(the)g(single)g(ob)5 b(ject)43 b(of)f Ft(C)6 b Fy(\()p Ft(M)p Fy(\))42 b(to)g(the)h(single)g(ob)5 b(ject)43 b(of)f Ft(C)6 b Fy(\()p Ft(N)15 b Fy(\),)44 b(and)f(F-1)e(is)i(trivially)g(v)m(eri\014ed)0 1342 y(since)30 b(all)e(arro)m(ws)g(in)h Ft(C)6 b Fy(\()p Ft(M)p Fy(\))28 b(ha)m(v)m(e)h(the)g(same)g(domain)f(and)h(co)s(domain)f(and)g (similarly)i(for)d Ft(C)6 b Fy(\()p Ft(N)15 b Fy(\).)42 b(Then)0 1458 y(F-2)35 b(and)h(F-3)f(sa)m(y)i(precisely)i(that)d Fs(f)47 b Fy(is)36 b(a)g(monoid)h(homomorphism.)55 b(Con)m(v)m(ersely) -8 b(,)40 b(ev)m(ery)e(functor)e(is)0 1575 y(determined)e(in)f(this)g (w)m(a)m(y)h(b)m(y)g(a)e(monoid)h(homomorphism.)p Black 0 1750 a(1.5.4.)28 b Fv(Example.)p Black 40 w Fy(Let)h(us)g(see)h(what) f(a)g(functor)g(from)f Ft(C)6 b Fy(\()p Fs(S;)17 b(\013)q Fy(\))29 b(to)f Ft(C)6 b Fy(\()p Fs(T)i(;)17 b(\014)6 b Fy(\))29 b(m)m(ust)h(b)s(e)f(when)h(\()p Fs(S;)17 b(\013)q Fy(\))28 b(and)0 1866 y(\()p Fs(T)8 b(;)17 b(\014)6 b Fy(\))35 b(are)g(p)s(osets)h(as)g(in)f(1.3.8\(1\).)51 b(It)35 b(is)h(suggestiv)m(e)h(to)e(write)h(b)s(oth)f(relations)h Fs(\013)g Fy(and)g Fs(\014)k Fy(as)c(`)p Ft(\024)p Fy(')g(and)0 1982 y(the)c(p)s(osets)h(simply)g(as)f Fs(S)37 b Fy(and)32 b Fs(T)14 b Fy(.)43 b(Then)33 b(there)f(is)h(exactly)g(one)f(arro)m(w)f (from)h Fs(x)g Fy(to)f Fs(y)k Fy(in)d Fs(S)38 b Fy(\(or)31 b(in)h Fs(T)14 b Fy(\))31 b(if)0 2098 y(and)i(only)g(if)f Fs(x)c Ft(\024)g Fs(y)t Fy(;)k(otherwise)i(there)g(are)e(no)h(arro)m (ws)g(from)f Fs(x)h Fy(to)f Fs(y)t Fy(.)0 2215 y(Let)37 b Fs(f)45 b Fy(:)35 b Fs(S)40 b Ft(\000)-59 b(!)34 b Fs(T)50 b Fy(b)s(e)37 b(the)g(functor.)56 b(F-1)35 b(sa)m(ys)j(if)f (there)g(is)g(an)g(arro)m(w)g(from)f Fs(x)h Fy(to)f Fs(y)t Fy(,)h(then)h(there)f(is)g(an)0 2331 y(arro)m(w)c(from)f Fs(f)11 b Fy(\()p Fs(x)p Fy(\))33 b(to)f Fs(f)11 b Fy(\()p Fs(y)t Fy(\);)31 b(in)i(other)g(w)m(ords,)g(if)g Fs(x)28 b Ft(\024)g Fs(y)36 b Fy(then)d Fs(f)11 b Fy(\()p Fs(x)p Fy(\))28 b Ft(\024)g Fs(f)11 b Fy(\()p Fs(y)t Fy(\).)0 2447 y(Th)m(us)32 b Fs(f)41 b Fy(is)31 b(a)f(monotone)h(map.)43 b(F-2)29 b(and)i(F-3)e(imp)s(ose)i(no)g(additional)f(conditions)i(on)e Fs(f)41 b Fy(b)s(ecause)32 b(they)0 2563 y(eac)m(h)f(assert)g(the)g (equalit)m(y)h(of)d(t)m(w)m(o)i(sp)s(eci\014ed)h(arro)m(ws)f(b)s(et)m (w)m(een)h(t)m(w)m(o)f(sp)s(eci\014ed)h(ob)5 b(jects)32 b(and)e(in)h(a)f(p)s(oset)0 2679 y(as)j(category)g(all)f(arro)m(ws)h(b) s(et)m(w)m(een)i(t)m(w)m(o)e(ob)5 b(jects)34 b(are)f(equal.)p Black 0 2854 a(1.5.5.)e Fv(Remark)36 b Fy(\()p Fv(The)f(category)h(of)g (categories\).)p Black 40 w Fy(The)c(category)f Fv(Cat)g Fy(has)h(all)f(small)g(categories)0 2971 y(as)j(ob)5 b(jects)34 b(and)g(all)f(functors)h(b)s(et)m(w)m(een)i(suc)m(h)f (categories)f(as)g(arro)m(ws.)47 b(The)34 b(comp)s(osite)g(of)f (functors)h(is)0 3087 y(their)k(comp)s(osite)g(as)f(graph)g (homomorphisms:)55 b(if)37 b Ft(F)45 b Fy(:)35 b Ft(C)42 b(\000)-59 b(!)35 b(D)k Fy(and)f Ft(G)j Fy(:)36 b Ft(D)i(\000)-59 b(!)35 b(E)9 b Fy(,)38 b(then)g Ft(G)31 b(\016)25 b(F)45 b Fy(:)36 b Ft(C)0 3203 y(\000)-60 b(!)39 b(E)48 b Fy(satis\014es)41 b Ft(G)32 b(\016)27 b(F)10 b Fy(\()p Fs(C)d Fy(\))38 b(=)h Ft(G)6 b Fy(\()p Ft(F)k Fy(\()p Fs(C)d Fy(\)\))38 b(for)h(an)m(y)h(ob)5 b(ject)40 b Fs(C)46 b Fy(of)39 b Ft(C)45 b Fy(,)c(and)e Fs(G)27 b Ft(\016)f(F)10 b Fy(\()p Fs(f)h Fy(\))38 b(=)h Ft(G)6 b Fy(\()p Ft(F)k Fy(\()p Fs(f)h Fy(\)\))38 b(for)0 3319 y(an)m(y)43 b(arro)m(w)g Fs(f)53 b Fy(of)42 b Ft(C)6 b Fy(.)73 b(Th)m(us)44 b(\()p Fs(G)28 b Ft(\016)h(F)10 b Fy(\))1457 3334 y Fp(i)1529 3319 y Fy(=)44 b Ft(G)1708 3334 y Fp(i)1765 3319 y Ft(\016)29 b(F)1916 3334 y Fp(i)1986 3319 y Fy(for)42 b Fs(i)j Fy(=)f(0)p Fs(;)17 b Fy(1.)72 b(W)-8 b(e)43 b(note)f(that)h(the)f(comp)s(osition)0 3436 y(circle)31 b(is)f(usually)h(omitted)g(when)g(comp)s(osing)f (functors)h(so)f(that)f(w)m(e)i(write)g Ft(G)6 b(F)k Fy(\()p Fs(C)d Fy(\))27 b(=)h Ft(G)6 b Fy(\()p Ft(F)k Fy(\()p Fs(C)d Fy(\)\).)42 b(It)29 b(is)0 3552 y(sometimes)e(con)m(v)m (enien)m(t)h(to)d(refer)g(to)g(a)g(category)h Fv(CA)-9 b(T)24 b Fy(whic)m(h)j(has)e(all)g(small)h(categories)g(and)g(ordinary) 0 3668 y(large)39 b(categories)h(as)g(ob)5 b(jects,)42 b(and)d(functors)h(b)s(et)m(w)m(een)h(them.)65 b(Since)40 b(trying)g(to)f(ha)m(v)m(e)h Fv(CA)-9 b(T)39 b Fy(b)s(e)g(an)0 3784 y(ob)5 b(ject)31 b(of)g(itself)g(w)m(ould)h(raise)f(delicate)h (foundational)e(questions,)j(w)m(e)f(do)f(not)f(attempt)h(here)h(a)e (formal)0 3900 y(de\014nition)k(of)e Fv(CA)-9 b(T)o Fy(.)p Black 0 4075 a(1.5.6.)28 b Fv(Example.)p Black 40 w Fy(If)h Ft(C)35 b Fy(is)30 b(a)e(category)-8 b(,)30 b(the)g(functor)f Fs(P)2076 4090 y Fr(1)2143 4075 y Fy(:)e Ft(C)21 b(\002)15 b(C)34 b(\000)-59 b(!)27 b(C)35 b Fy(whic)m(h)c(tak)m(es)f(an)f(ob)5 b(ject)29 b(\()p Fs(C)r(;)17 b(D)s Fy(\))0 4192 y(to)34 b Fs(C)41 b Fy(and)34 b(an)g(arro)m(w)g(\()p Fs(f)5 b(;)17 b(g)t Fy(\))29 b(:)h(\()p Fs(C)r(;)17 b(D)s Fy(\))29 b Ft(\000)-60 b(!)30 b Fy(\()p Fs(C)1712 4156 y Fq(0)1735 4192 y Fs(;)17 b(D)1863 4156 y Fq(0)1886 4192 y Fy(\))34 b(to)g Fs(f)44 b Fy(is)35 b(called)g(the)f Fu(\014rst)i(pr)-5 b(oje)g(ction)p Fy(.)47 b(There)36 b(is)e(an)0 4308 y(analogous)e Fu(se)-5 b(c)g(ond)34 b(pr)-5 b(oje)g(ction)34 b(functor)f Fs(P)1612 4323 y Fr(2)1684 4308 y Fy(taking)f(an)h(ob)5 b(ject)33 b(or)g(arro)m(w)f(to)g(its)i(second)f(co)s(ordinate.)p Black 0 4483 a(1.5.7.)f Fv(Example.)p Black 43 w Fy(Let)h Fv(2)22 b Fy(+)g Fv(2)32 b Fy(b)s(e)h(the)g(category)g(that)f(can)h(b)s (e)g(pictured)h(as)1571 4641 y(0)27 b Ft(\000)-59 b(!)27 b Fy(1)195 b(1)2085 4600 y Fq(0)2136 4641 y Ft(\000)-60 b(!)27 b Fy(2)0 4799 y(with)33 b(no)g(other)f(noniden)m(tit)m(y)j(arro) m(ws,)e(and)g(the)g(category)g Fv(3)f Fy(the)h(one)g(that)g(lo)s(oks)f (lik)m(e)1682 4931 y(0)438 b(1)p 1760 4901 381 4 v 2058 4899 a Fo(-)1926 5175 y Fy(2)1775 5051 y Fo(@)1799 5075 y(@)-83 b(R)2042 5051 y(\000)2018 5075 y(\000)g(\011)0 5301 y Fy(De\014ne)37 b(the)g(functor)f Ft(F)44 b Fy(:)34 b Fv(2)24 b Fy(+)h Fv(2)34 b Ft(\000)-60 b(!)34 b Fv(3)i Fy(to)g(tak)m(e)h(0)f(to)g(0,)i(1)e(and)g(1')g(to)g(1,)h(and)f(2)h(to)e (2.)55 b(Then)37 b(what)g(it)0 5417 y(do)s(es)c(on)g(arro)m(ws)g(is)g (forced.)p Black Black eop end %%Page: 24 24 TeXDict begin 24 23 bop Black 0 -99 a Fw(24)1668 b(F)-6 b(oundations)p Black 0 100 a Fy(Note)37 b(that)h(the)f(image)h(of)f Ft(F)46 b Fy(includes)40 b(all)d(of)g Fv(3)g Fy(except)i(the)e(comp)s (osite)i(arro)m(w)e(from)g(0)f Ft(\000)-60 b(!)35 b Fy(2.)58 b(This)0 217 y(example)47 b(sho)m(ws)h(that)e(the)g(image)g(of)f(a)h (functor)g(need)h(not)f(b)s(e)g(a)f(sub)s(category)i(of)f(the)g(co)s (domain)0 333 y(category)-8 b(.)p Black 0 520 a(1.5.8.)40 b Fv(Example.)p Black 47 w Fy(The)i(inclusion)g(map)e(of)h(a)f(sub)s (category)h(is)g(a)g(functor.)67 b(The)42 b(categorical)f(p)s(oin)m(t)0 637 y(of)f(view)j(do)s(es)e(not)g(require)h(that)f(the)g(ob)5 b(ject)42 b(and)f(arro)m(ws)h(of)e(a)h(sub)s(category)h(actually)g(b)s (e)f(ob)5 b(jects)0 753 y(and)30 b(arro)m(ws)h(of)f(the)g(bigger)h (category)-8 b(,)31 b(only)f(that)g(there)h(b)s(e)f(an)g(injectiv)m(e)j (iden)m(ti\014cation)e(of)f(ob)5 b(jects)31 b(or)0 869 y(morphisms)h(of)f(one)g(category)g(with)g(the)h(ob)5 b(jects)32 b(or)e(morphisms)i(of)f(the)g(other.)43 b(F)-8 b(or)30 b(example,)j Fv(Set)d Fy(is)0 985 y(a)k(sub)s(category)i(of)e Fv(Rel)p Fy(:)47 b(the)35 b(functor)g(tak)m(es)h(ev)m(ery)h(set)e(to)f (itself)h(and)g(eac)m(h)h(function)f Fs(f)42 b Fy(:)31 b Fs(S)37 b Ft(\000)-60 b(!)31 b Fs(T)48 b Fy(to)0 1101 y(its)33 b(graph)f Ft(f)p Fy(\()p Fs(s;)17 b(t)p Fy(\))p Ft(j)p Fs(t)28 b Fy(=)f Fs(f)11 b Fy(\()p Fs(s)p Fy(\))p Ft(g)p Fy(,)32 b(whic)m(h)i(is)f(indeed)h(a)e(relation)h(from)f Fs(S)39 b Fy(to)32 b Fs(T)14 b Fy(.)0 1218 y(This)37 b(approac)m(h)g(has)g(the)f(strange)h(result)g(that)f(t)m(w)m(o)h (di\013eren)m(t)h(categories)f(can)f(eac)m(h)i(b)s(e)e(regarded)h(as)0 1334 y(sub)s(categories)d(of)e(the)h(other)g(one.)0 1450 y(Observ)m(e)24 b(that)e(the)h(category)f(Ri)g(of)g(rings)h(is)f(not)g (a)g(sub)s(category)i(of)d(the)i(category)f(Ab)h(of)f(ab)s(elian)g (group,)0 1566 y(although)34 b(eac)m(h)h(ring)f(is)h(also)f(an)g(ab)s (elian)h(group)f(\(under)g(the)h(addition\))f(and)h(ev)m(ery)h (homomorphism)0 1683 y(of)d(rings)i(is)f(also)g(a)g(homomorphism)h(of)e (ab)s(elian)h(groups.)48 b(There)35 b(can)g(b)s(e)f(t)m(w)m(o)g (nonisomorphic)h(rings,)0 1799 y(that)d(ha)m(v)m(e)i(the)f(same)h (additiv)m(e)g(ab)s(elian)e(group.)0 1986 y(1.6.)49 b Fv(Sp)s(ecial)38 b(t)m(yp)s(es)g(of)g(functors.)0 2207 y Fy(1.6.1.)48 b Fu(Underlying)35 b(functors.)p Black 0 2394 a Fy(1.6.1.)29 b Fv(Example.)p Black 41 w Fy(F)-8 b(orgetting)29 b(some)i(of)e(the)h(structure)i(in)e(a)f(category)h(of)g (structures)h(and)f(structure-)0 2511 y(preserving)40 b(functions)f(giv)m(es)h(a)e(functor)h(called)g(an)f Fu(underlying)i(functor)e Fy(or)g Fu(for)-5 b(getful)40 b(functor)p Fy(.)61 b(The)0 2627 y(functor)46 b Fs(U)62 b Fy(:)51 b Fv(Mon)h Ft(\000)-60 b(!)51 b Fv(Sem)c Fy(whic)m(h)h(em)m (b)s(eds)g(the)f(category)g(of)e(monoids)i(in)m(to)g(the)g(category)f (of)0 2743 y(semigroups)i(b)m(y)e(forgetting)g(that)g(a)g(monoid)g(has) g(an)g(iden)m(tit)m(y)i(is)f(an)e(example)j(of)e(an)f(underlying)0 2859 y(functor.)0 2976 y(Another)d(example)g(is)g(the)g(functor)f(whic) m(h)i(forgets)e(all)g(the)h(structure)g(of)f(a)g(semigroup.)70 b(This)43 b(is)e(a)0 3092 y(functor)d Fs(U)46 b Fy(:)36 b Fv(Sem)h Ft(\000)-59 b(!)35 b Fv(Set)p Fy(.)59 b(There)38 b(are)g(lots)g(of)f(semigroups)i(with)f(the)g(same)g(set)g(of)f(elemen) m(ts;)42 b(for)0 3208 y(example,)33 b(the)e(set)h Ft(f)p Fy(0)p Fs(;)17 b Fy(1)p Fs(;)g Fy(2)p Ft(g)29 b Fy(is)j(a)e(semigroup)i (on)f(addition)g(\(mo)s(d)g(3\))g(and)g(also)g(a)g(di\013eren)m(t)h (semigroup)0 3324 y(on)26 b(m)m(ultiplication)i(\(mo)s(d)e(3\).)41 b(The)27 b(functor)g Fs(U)37 b Fy(applied)27 b(to)f(these)h(t)m(w)m(o)g (di\013eren)m(t)h(semigroups)g(giv)m(es)g(the)0 3441 y(same)34 b(set,)f(so)g Fs(U)43 b Fy(is)33 b(not)g(injectiv)m(e)h(on)f (ob)5 b(jects,)34 b(in)f(con)m(trast)g(to)g(the)g(forgetful)f(functor)h (from)f(monoids)0 3557 y(to)k(semigroups.)57 b(W)-8 b(e)36 b(will)i(not)e(giv)m(e)h(a)f(formal)g(de\014nition)i(of)e(underlying)h (functor.)56 b(It)36 b(is)h(reasonable)0 3673 y(to)e(exp)s(ect)h(an)m (y)g(underlying)h(functor)e Fs(U)46 b Fy(to)34 b(b)s(e)i(faithful,)f (i.e.)52 b(injectiv)m(e)37 b(on)e(the)g(morphism)i(sets,)g(and)0 3789 y(that)32 b(if)h Fs(f)43 b Fy(is)33 b(an)g(isomorphism)h(and)e Fs(U)10 b Fy(\()p Fs(f)h Fy(\))33 b(is)g(an)g(iden)m(tit)m(y)h(arro)m (w)f(then)g Fs(f)43 b Fy(is)33 b(an)g(iden)m(tit)m(y)h(arro)m(w.)p Black 0 3977 a(1.6.2.)45 b Fv(Example.)p Black 49 w Fy(A)g(small)h (graph)f(has)g Fu(two)g Fy(underlying)i(sets:)70 b(its)45 b(set)h(of)f(no)s(des)h(and)f(its)h(set)f(of)0 4093 y(arro)m(ws.)62 b(Th)m(us)41 b(there)e(is)g(an)g(underlying)h(functor)f Fs(U)48 b Fy(:)39 b Fv(Grf)48 b Ft(\000)-60 b(!)38 b Fv(Set)17 b Ft(\002)g Fv(Set)38 b Fy(for)g(whic)m(h)j(for)d(a)g(graph)0 4209 y Ft(G)k Fy(,)37 b Fs(U)10 b Fy(\()p Ft(G)c Fy(\))34 b(=)f(\()p Ft(G)622 4224 y Fr(0)661 4209 y Fs(;)17 b Ft(G)764 4224 y Fr(1)804 4209 y Fy(\),)36 b(an)g(arro)m(wset)h(functor) f Fs(A)d Fy(:)h Fv(Grf)43 b Ft(\000)-59 b(!)33 b Fv(Set)i Fy(whic)m(h)j(tak)m(es)f(a)e(graph)h(to)g(its)g(set)g(of)0 4325 y(arro)m(ws)k(and)g(a)g(graph)g(homomorphism)h(to)e(the)i(corresp) s(onding)f(function)h(from)e(arro)m(ws)i(to)e(arro)m(ws,)0 4442 y(and)f(a)g(similarly)i(de\014ned)f(no)s(deset)g(functor)g Fs(N)47 b Fy(:)37 b Fv(Grf)48 b Ft(\000)-60 b(!)37 b Fv(Set)h Fy(whic)m(h)i(tak)m(es)f(a)f(graph)g(to)g(its)h(set)f(of)0 4558 y(no)s(des.)p Black 0 4745 a(1.6.3.)c Fv(Example.)p Black 44 w Fy(If)g(y)m(ou)h(forget)f(y)m(ou)g(can)h(comp)s(ose)g(arro)m (ws)g(in)g(a)f(category)g(and)h(y)m(ou)g(forget)e(whic)m(h)0 4862 y(arro)m(ws)d(are)f(the)h(iden)m(tities,)i(then)e(y)m(ou)g(ha)m(v) m(e)h(remem)m(b)s(ered)h(only)e(that)f(the)h(category)f(is)h(a)g (graph.)42 b(This)0 4978 y(giv)m(es)34 b(an)f(underlying)i(functor)e Fs(U)38 b Fy(:)29 b Fv(Cat)f Ft(\000)-59 b(!)27 b Fv(Grf)11 b Fy(,)33 b(since)h(ev)m(ery)h(functor)e(is)g(a)g(graph)g(homomorphism) 0 5094 y(although)23 b(not)g(vice)h(v)m(ersa.)42 b(As)23 b(for)g(graphs,)i(there)f(are)f(also)g(set-of-ob)5 b(jects)24 b(and)f(set-of-arro)m(ws)g(functors)0 5210 y Fs(O)35 b Fy(:)d Fv(Cat)g Ft(\000)-59 b(!)32 b Fv(Set)j Fy(and)g Fs(A)e Fy(:)f Fv(Cat)h Ft(\000)-60 b(!)32 b Fv(Set)j Fy(whic)m(h)i(tak)m(e)f(a)f(category)h(to)f(its)h(set)g(of)e(ob)5 b(jects)37 b(and)e(set)h(of)0 5327 y(arro)m(ws)d(resp)s(ectiv)m(ely)-8 b(,)36 b(and)c(a)h(functor)f(to)h(the)g(appropriate)f(set)i(map.)-341 5417 y(7.5.04)p Black Black eop end %%Page: 25 25 TeXDict begin 25 24 bop Black 1538 -99 a Fw(Sp)r(ecial)26 b(t)n(yp)r(es)f(of)i(functors)1461 b(25)p Black Black 0 100 a Fy(1.6.4.)23 b Fv(Example.)p Black 36 w Fy(In)h(1.4.1,)h(w)m(e) g(describ)s(ed)g(the)f(notion)g(of)f(a)g(slice)i(category)f Ft(C)6 b Fs(=)-5 b(A)23 b Fy(based)i(on)e(a)h(category)0 217 y Ft(C)41 b Fy(and)35 b(an)f(ob)5 b(ject)36 b Fs(A)p Fy(.)50 b(An)35 b(ob)5 b(ject)35 b(is)g(an)g(arro)m(w)g Fs(B)h Ft(\000)-59 b(!)30 b Fs(A)35 b Fy(and)g(an)g(arro)m(w)f(from)h Fs(f)42 b Fy(:)31 b Fs(B)37 b Ft(\000)-60 b(!)31 b Fs(A)k Fy(to)f Fs(g)h Fy(:)c Fs(C)0 333 y Ft(\000)-60 b(!)28 b Fs(A)g Fy(is)h(an)g(arro)m(w)f Fs(h)g Fy(:)g Fs(B)33 b Ft(\000)-60 b(!)27 b Fs(C)36 b Fy(for)27 b(whic)m(h)j Fs(g)17 b Ft(\016)d Fs(h)28 b Fy(=)f Fs(f)11 b Fy(.)42 b(There)30 b(is)f(a)f(functor)h Fs(U)38 b Fy(:)28 b Ft(C)6 b Fs(=)-5 b(A)27 b Ft(\000)-60 b(!)28 b(C)34 b Fy(that)29 b(tak)m(es)0 449 y(the)35 b(ob)5 b(ject)36 b Fs(f)42 b Fy(:)31 b Fs(B)36 b Ft(\000)-59 b(!)31 b Fs(A)j Fy(to)h Fs(B)k Fy(and)c(the)g(arro)m(w)g Fs(h)g Fy(from)f Fs(B)j Ft(\000)-60 b(!)31 b Fs(A)k Fy(to)f Fs(C)k Ft(\000)-59 b(!)31 b Fs(A)j Fy(to)h Fs(h)c Fy(:)g Fs(B)37 b Ft(\000)-60 b(!)31 b Fs(C)7 b Fy(.)50 b(This)0 565 y(is)35 b(called)g(the)g Fu(underlying)h(functor)h(of)f(the)h(slic)-5 b(e)p Fy(.)49 b(In)34 b(the)h(case)h(that)e Ft(C)j Fy(=)31 b Fv(Set)p Fy(,)k(an)f(ob)5 b(ject)36 b Fs(T)44 b Ft(\000)-59 b(!)30 b Fs(S)40 b Fy(of)0 681 y Fv(Set)17 b Fs(=S)39 b Fy(for)33 b(some)h(set)h Fs(S)k Fy(is)34 b(an)g Fs(S)6 b Fy(-indexed)34 b(ob)5 b(ject,)35 b(and)f(the)g(e\013ect)g(of)f(the)h(underlying)h (functor)f(is)g(to)0 798 y(forget)e(the)h(indexing.)0 989 y(1.6.2.)48 b Fu(F)-7 b(r)i(e)g(e)34 b(functors.)p Black 0 1181 a Fy(1.6.5.)g Fv(Example.)p Black 43 w Fy(The)h(free)g (monoid)f(functor)g(from)g Fv(Set)g Fy(to)g(the)g(category)h(of)e (monoids)i(tak)m(es)g(a)f(set)0 1297 y Fs(A)e Fy(to)f(the)h(free)f (monoid)h Fs(F)14 b Fy(\()p Fs(A)p Fy(\),)31 b(whic)m(h)i(is)f(the)g (Kleene)h(closure)f Fs(A)2463 1261 y Fq(\003)2534 1297 y Fy(with)g(concatenation)h(as)e(op)s(eration)0 1413 y(\(see)h(1.2.5\),)f(and)g(a)g(function)g Fs(f)39 b Fy(:)27 b Fs(A)h Ft(\000)-59 b(!)27 b Fs(B)36 b Fy(to)31 b(the)g(function)g Fs(F)14 b Fy(\()p Fs(f)d Fy(\))27 b(=)h Fs(f)2702 1377 y Fq(\003)2769 1413 y Fy(:)g Fs(F)14 b Fy(\()p Fs(A)p Fy(\))27 b Ft(\000)-60 b(!)28 b Fs(F)14 b Fy(\()p Fs(B)5 b Fy(\))30 b(de\014ned)j(in)0 1529 y(1.2.16.)48 b(T)-8 b(o)34 b(see)i(that)e(the)g(free)h(monoid)g(functor)f(is)h(indeed)h(a)e (functor)g(it)g(is)h(necessary)i(to)d(sho)m(w)h(that)0 1646 y(if)h Fs(f)44 b Fy(:)34 b Fs(A)g Ft(\000)-60 b(!)33 b Fs(B)41 b Fy(and)36 b Fs(g)h Fy(:)d Fs(B)39 b Ft(\000)-60 b(!)33 b Fs(C)7 b Fy(,)37 b(then)g Fs(F)14 b Fy(\()p Fs(g)27 b Ft(\016)e Fs(f)11 b Fy(\))33 b(:)g Fs(F)14 b Fy(\()p Fs(A)p Fy(\))34 b Ft(\000)-60 b(!)33 b Fs(F)14 b Fy(\()p Fs(C)7 b Fy(\))36 b(is)g(the)h(same)g(as)f Fs(F)14 b Fy(\()p Fs(g)t Fy(\))23 b Ft(\016)i Fs(F)14 b Fy(\()p Fs(f)d Fy(\),)0 1762 y(whic)m(h)36 b(is)f(immediate)h(from)f (the)g(de\014nition,)h(and)f(that)f(it)h(preserv)m(es)i(iden)m(tit)m(y) g(arro)m(ws,)f(whic)m(h)g(is)f(also)0 1878 y(immediate.)49 b(The)35 b(Kleene)h(closure)f(is)f(itself)h(a)f(functor)g(from)g Fv(Set)16 b Fs(to)h Fv(Set)p Fy(,)35 b(taking)f Fs(A)g Fy(to)g Fs(A)3456 1842 y Fq(\003)3529 1878 y Fy(and)h Fs(f)44 b Fy(to)0 1994 y Fs(f)59 1958 y Fq(\003)98 1994 y Fy(.)e(It)28 b(is)h(the)f(comp)s(osite)h Fs(U)24 b Ft(\016)13 b Fs(F)42 b Fy(of)27 b(the)i(underlying)g(functor)f Fs(U)39 b Fy(:)28 b Fv(Mon)g Ft(\000)-60 b(!)28 b Fv(Set)g Fy(and)g(the)g(free)h(functor)0 2111 y Fs(F)41 b Fy(:)28 b Fv(Set)g Ft(\000)-60 b(!)28 b Fv(Mon)p Fy(,)33 b(but)g(of)f(course)h (it)g(can)g(b)s(e)f(de\014ned)i(indep)s(enden)m(tly)i(of)c Fs(U)43 b Fy(and)33 b Fs(F)14 b Fy(.)p Black 0 2302 a(1.6.6.)34 b Fv(Example.)p Black 43 w Fy(The)i(free)e(category)h(on)f(a)g(graph)g (is)h(also)f(the)h(ob)5 b(ject)35 b(part)f(of)g(a)f(functor)i Fs(F)44 b Fy(:)31 b Fv(Grf)0 2418 y Ft(\000)-60 b(!)38 b Fv(Cat)p Fy(.)62 b(What)39 b(it)f(do)s(es)h(to)g(a)f(graph)g(is)i (describ)s(ed)g(in)f(1.4.15.)61 b(Supp)s(ose)40 b Fs(')e Fy(:)g Ft(G)44 b(\000)-60 b(!)38 b(H)i Fy(is)f(a)f(graph)0 2535 y(homomorphism.)j(The)23 b(ob)5 b(jects)23 b(of)e(the)i(free)f (category)g(on)g(a)g(graph)f(are)h(the)g(no)s(des)h(of)e(the)i(graph,)h (so)e(it)f(is)0 2651 y(reasonable)30 b(to)f(de\014ne)h Fs(F)14 b Fy(\()p Fs(')p Fy(\))1085 2666 y Fr(0)1152 2651 y Fy(=)27 b Fs(')1319 2666 y Fr(0)1359 2651 y Fy(.)42 b(No)m(w)30 b(supp)s(ose)g(\()p Fs(f)2096 2666 y Fp(n)2143 2651 y Fs(;)17 b(f)2235 2666 y Fp(n)p Fq(\000)p Fr(1)2372 2651 y Fs(;)g(:)g(:)g(:)f(;)h(f)2639 2666 y Fr(1)2678 2651 y Fy(\))29 b(is)h(a)e(path,)i(that)f(is,)i(an)e(arro)m(w,)0 2767 y(in)24 b Fs(F)14 b Fy(\()p Ft(G)6 b Fy(\).)41 b(Since)25 b(functors)g(preserv)m(e)h(domain)f(and)f(co)s(domain,)i(w)m(e)f(can)g (de\014ne)g Fs(F)14 b Fy(\()p Fs(')p Fy(\))3155 2782 y Fr(1)3194 2767 y Fy(\()p Fs(f)3280 2782 y Fp(n)3327 2767 y Fs(;)j(f)3419 2782 y Fp(n)p Fq(\000)p Fr(1)3556 2767 y Fs(;)g(:)g(:)g(:)f(;)h(f)3823 2782 y Fr(1)3862 2767 y Fy(\))0 2883 y(to)42 b(b)s(e)h(\()p Fs(')374 2898 y Fr(1)413 2883 y Fy(\()p Fs(f)499 2898 y Fp(n)546 2883 y Fy(\))p Fs(;)17 b(')692 2898 y Fr(1)731 2883 y Fy(\()p Fs(f)817 2898 y Fp(n)p Fq(\000)p Fr(1)955 2883 y Fy(\))p Fs(;)g(:)g(:)g(:)e(;)i(')1275 2898 y Fr(1)1314 2883 y Fy(\()p Fs(f)1400 2898 y Fr(1)1440 2883 y Fy(\)\))42 b(and)h(kno)m(w)h(w)m(e)g(get)e(a)h(path)f(in)h Fs(F)14 b Fy(\()p Ft(H)q Fy(\).)74 b(That)43 b Fs(F)56 b Fy(preserv)m(es)0 2999 y(comp)s(osition)33 b(of)f(paths)h(is)g(also)g(clear.)p Black 0 3191 a(1.6.7.)h Fv(Remark)39 b Fy(\()p Fv(The)h(map-lifting)h (prop)s(ert)m(y\).)p Black 42 w Fy(The)35 b(free)f(category)h(functor)f Fs(F)44 b Fy(:)30 b Fv(Grf)41 b Ft(\000)-60 b(!)30 b Fv(Cat)0 3307 y Fy(and)23 b(also)h(other)f(free)h(functors,)i(suc)m(h)e (as)g(the)g(free)f(monoid)h(functor)f(1.6.5,)i(ha)m(v)m(e)f(a)f(map)h (lifting)f(prop)s(ert)m(y)0 3423 y(called)31 b(its)g Fu(universal)h(mapping)f(pr)-5 b(op)g(erty)31 b Fy(whic)m(h)h(will)f(b) s(e)f(seen)i(as)e(the)h(de\014ning)g(prop)s(ert)m(y)g(of)f(freeness.)0 3540 y(W)-8 b(e)33 b(will)g(describ)s(e)h(the)f(prop)s(ert)m(y)h(for)e (free)h(categories)g(since)h(w)m(e)g(use)f(it)g(later.)0 3656 y(Let)27 b Ft(G)33 b Fy(b)s(e)27 b(a)g(graph)g(and)g Fs(F)14 b Fy(\()p Ft(G)6 b Fy(\))27 b(b)s(e)g(the)g(free)h(category)f (generated)h(b)m(y)g Ft(G)33 b Fy(.)41 b(There)28 b(is)g(a)f(graph)f (homomor-)0 3772 y(phism)i(with)g(the)g(sp)s(ecial)g(name)g Fs(\021)t Ft(G)34 b Fy(:)28 b Ft(G)33 b(\000)-59 b(!)27 b Fs(U)10 b Fy(\()p Fs(F)k Fy(\()p Ft(G)6 b Fy(\)\))28 b(whic)m(h)h(includes)g(a)e(graph)g Ft(G)33 b Fy(in)m(to)28 b Fs(U)10 b Fy(\()p Fs(F)k Fy(\()p Ft(G)6 b Fy(\)\),)29 b(the)0 3888 y(underlying)h(graph)e(of)h(the)g(free)g(category)g Fs(F)14 b Fy(\()p Ft(G)6 b Fy(\).)41 b(The)30 b(map)f(\()p Fs(\021)t(G)p Fy(\))2498 3903 y Fr(0)2565 3888 y Fy(is)g(the)g(iden)m (tit)m(y)-8 b(,)32 b(since)e(the)f(ob)5 b(jects)0 4005 y(of)38 b Fs(F)14 b Fy(\()p Ft(G)6 b Fy(\))38 b(are)h(the)g(no)s(des)g (of)f Ft(G)6 b Fy(.)62 b(F)-8 b(or)38 b(an)g(arro)m(w)h Fs(f)49 b Fy(of)38 b Ft(G)6 b Fy(,)40 b(\()p Fs(\021)t Ft(G)6 b Fy(\))2408 4020 y Fr(1)2448 4005 y Fy(\()p Fs(f)11 b Fy(\))38 b(is)h(the)g(path)f(\()p Fs(f)11 b Fy(\))38 b(of)h(length)g(one.)0 4121 y(This)30 b(is)g(an)e(inclusion)j(arro)m(w) e(in)g(the)g(generalized)i(categorical)e(sense,)i(since)g Fs(f)39 b Fy(and)29 b(\()p Fs(f)11 b Fy(\))29 b(are)g(really)g(t)m(w)m (o)0 4237 y(distinct)34 b(en)m(tities.)p Black 0 4429 a(1.6.8.)24 b Fv(Prop)s(osition.)p Black 36 w Fu(L)-5 b(et)27 b Ft(G)34 b Fu(b)-5 b(e)27 b(a)g(gr)-5 b(aph)27 b(and)f Ft(C)34 b Fu(a)27 b(c)-5 b(ate)g(gory.)42 b(Then)27 b(for)g(every)g(gr)-5 b(aph)27 b(homomorphism)0 4554 y Fs(h)h Fy(:)g Ft(G)33 b(\000)-57 b(!)28 b Fs(U)10 b Fy(\()p Ft(C)c Fy(\))p Fu(,)32 b(ther)-5 b(e)32 b(is)f(a)g(unique)g (functor)1717 4528 y Fh(b)1719 4554 y Fs(h)d Fy(:)g Fs(F)14 b Fy(\()p Ft(G)6 b Fy(\))27 b Ft(\000)-57 b(!)27 b(C)38 b Fu(with)31 b(the)g(pr)-5 b(op)g(erty)32 b(that)f Fs(U)10 b Fy(\()3391 4528 y Fh(b)3393 4554 y Fs(h)q Fy(\))k Ft(\016)g Fs(\021)t Ft(G)33 b Fy(=)28 b Fs(h)p Fu(.)p Black 0 4761 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(If)30 b(\(\))g(is)h(the)f(empt)m(y)i (path)e(at)g(an)g(ob)5 b(ject)31 b Fs(a)p Fy(,)g(w)m(e)g(set)2222 4735 y Fh(b)2224 4761 y Fs(h)p Fy(\(\))d(=)f(1)2536 4776 y Fp(a)2578 4761 y Fy(.)42 b(F)-8 b(or)29 b(an)i(ob)5 b(ject)30 b Fs(a)h Fy(of)e Fs(F)14 b Fy(\()p Ft(G)6 b Fy(\))30 b(\(that)0 4893 y(is,)j(no)s(de)g(of)f Ft(G)6 b Fy(\),)33 b(de\014ne)914 4866 y Fh(b)917 4893 y Fs(h)p Fy(\()p Fs(a)p Fy(\))27 b(=)h Fs(h)p Fy(\()p Fs(a)p Fy(\).)44 b(And)33 b(for)f(a)g(path)h(\()p Fs(a)2246 4908 y Fp(n)2293 4893 y Fs(;)17 b(a)2388 4908 y Fp(n)p Fq(\000)p Fr(1)2525 4893 y Fs(;)g(:)g(:)g(:)f(;)h(a)2795 4908 y Fr(1)2834 4893 y Fy(\),)2929 4866 y Fh(b)2932 4893 y Fs(h)32 b Fy(is)h(`map)g Fs(h)p Fy(':)927 5068 y Fh(b)929 5095 y Fs(h)q Fy(\()p Fs(a)1075 5110 y Fp(n)1122 5095 y Fs(;)17 b(a)1217 5110 y Fp(n)p Fq(\000)p Fr(1)1354 5095 y Fs(;)g(:)g(:)g(:)f(;) h(a)1624 5110 y Fr(1)1663 5095 y Fy(\))28 b(=)f(\()p Fs(h)p Fy(\()p Fs(a)2015 5110 y Fp(n)2062 5095 y Fy(\))p Fs(;)17 b(h)p Fy(\()p Fs(a)2289 5110 y Fp(n)p Fq(\000)p Fr(1)2426 5095 y Fy(\))p Fs(;)g(:)g(:)g(:)f(;)h(h)p Fy(\()p Fs(a)2828 5110 y Fr(1)2868 5095 y Fy(\)\))p Fs(:)0 5282 y Fy(As)31 b(noted)g(in)g(1.1.1,)f(there)h(is)g(a)f(unique)i(empt)m(y)g (path)f(for)f(eac)m(h)h(no)s(de)g Fs(a)f Fy(of)g Ft(G)6 b Fy(.)43 b(Comp)s(osing)32 b(the)e(empt)m(y)0 5398 y(path)j(at)f(a)g (with)h(an)m(y)h(path)e Fs(p)h Fy(from)f Fs(a)h Fy(to)f Fs(b)h Fy(giv)m(es)h Fs(p)e Fy(again,)h(and)f(similarly)i(on)f(the)g (other)f(side.)229 b Fg(\003)p Black Black eop end %%Page: 26 26 TeXDict begin 26 25 bop Black 0 -99 a Fw(26)1668 b(F)-6 b(oundations)p Black 0 100 a Fy(1.6.3.)48 b Fu(Powerset)35 b(functors.)0 217 y Fy(An)m(y)28 b(set)f Fs(S)32 b Fy(has)27 b(a)f(p)s(o)m(w)m(erset)i Ft(P)8 b Fs(S)e Fy(,)28 b(the)f(set)g(of)f (all)h(subsets)h(of)e Fs(S)6 b Fy(.)41 b(There)28 b(are)f(three)g (di\013eren)m(t)g(functors)h Ft(F)0 333 y Fy(for)h(whic)m(h)j Ft(F)495 348 y Fr(0)563 333 y Fy(tak)m(es)f(a)f(set)g(to)g(its)g(p)s(o) m(w)m(erset;)i(they)f(di\013er)f(on)g(what)g(they)h(do)e(to)h(arro)m (ws.)43 b(One)30 b(of)f(them)0 449 y(is)k(fundamen)m(tal)h(in)f(top)s (os)f(theory;)h(that)g(one)f(w)m(e)i(single)g(out)e(to)g(b)s(e)h (called)g(the)g(p)s(o)m(w)m(erset)i(functor.)0 565 y(If)25 b Fs(f)39 b Fy(:)28 b Fs(A)f Ft(\000)-59 b(!)27 b Fs(B)k Fy(is)26 b(an)m(y)g(set)g(function)g(and)g Fs(C)32 b Fy(is)26 b(a)g(subset)h(of)e Fs(B)5 b Fy(,)27 b(then)f(the)g Fu(inverse)h(image)e Fy(of)g Fs(C)7 b Fy(,)27 b(denoted)0 681 y Fs(f)59 645 y Fq(\000)p Fr(1)153 681 y Fy(\()p Fs(C)7 b Fy(\),)29 b(is)g(the)f(set)h(of)f(elemen)m(ts)i(of)e Fs(A)g Fy(whic)m(h)i Fs(f)38 b Fy(tak)m(es)30 b(in)m(to)e Fs(C)7 b Fy(:)41 b Fs(f)2480 645 y Fq(\000)p Fr(1)2574 681 y Fy(\()p Fs(C)7 b Fy(\))28 b(=)g Ft(f)p Fs(a)f Ft(2)h Fs(A)p Ft(j)p Fs(f)11 b Fy(\()p Fs(a)p Fy(\))28 b Ft(2)g Fs(C)7 b Ft(g)p Fy(.)41 b(Th)m(us)0 798 y Fs(f)59 762 y Fq(\000)p Fr(1)187 798 y Fy(is)34 b(a)g(function)g(from)g Ft(P)8 b Fs(B)39 b Fy(to)34 b Ft(P)8 b Fs(A)p Fy(.)48 b(Note)34 b(that)g(for)f(a)g(bijection)i Fs(f)11 b Fy(,)34 b(the)g(sym)m(b)s(ol)i Fs(f)3286 762 y Fq(\000)p Fr(1)3413 798 y Fy(is)f(also)f(used)0 914 y(to)k(denote)i(the)f(in)m(v)m(erse)i (function.)62 b(Con)m(text)40 b(mak)m(es)g(it)f(clear)g(whic)m(h)h(is)f (mean)m(t,)i(since)f(the)f(input)g(to)0 1030 y(the)32 b(in)m(v)m(erse)j(image)d(function)g(m)m(ust)h(b)s(e)f(a)g(subset)h(of) f(the)g(co)s(domain)g(of)f Fs(f)11 b Fy(,)32 b(whereas)h(the)g(input)f (to)g(the)0 1146 y(actual)h(in)m(v)m(erse)i(of)d(a)g(bijection)h(m)m (ust)h(b)s(e)f(an)f(elemen)m(t)j(of)d(the)h(co)s(domain.)p Black 0 1354 a(1.6.9.)28 b Fv(De\014nition.)p Black 40 w Fy(The)h Fu(p)-5 b(owerset)31 b(functor)d Ft(P)37 b Fy(:)27 b Fv(Set)2052 1312 y Fp(op)2154 1354 y Ft(\000)-60 b(!)28 b Fv(Set)g Fy(tak)m(es)i(a)e(set)i Fs(S)k Fy(to)28 b(the)h(p)s(o)m(w)m(erset)i Ft(P)8 b Fs(S)e Fy(,)0 1470 y(and)31 b(a)g(set)g(function)h Fs(f)38 b Fy(:)28 b Fs(A)g Ft(\000)-60 b(!)28 b Fs(B)36 b Fy(\(that)30 b(is,)i(an)f(arro)m(w)g (from)g Fs(B)36 b Fy(to)30 b Fs(A)i Fy(in)f Fv(Set)2903 1428 y Fp(op)2976 1470 y Fy(\))g(to)g(the)g(in)m(v)m(erse)j(image)0 1586 y(function)f Fs(f)441 1550 y Fq(\000)p Fr(1)563 1586 y Fy(:)28 b Ft(P)8 b Fs(B)33 b Ft(\000)-60 b(!)28 b(P)8 b Fs(A)p Fy(.)0 1702 y(Although)26 b(w)m(e)h(will)g(con)m(tin)m (ue)h(to)d(use)i(the)g(notation)e Fs(f)2001 1666 y Fq(\000)p Fr(1)2095 1702 y Fy(,)j(it)e(is)g(denoted)h Fs(f)2753 1666 y Fq(\003)2818 1702 y Fy(in)f(m)m(uc)m(h)i(of)d(the)i(categorical) 0 1819 y(literature.)53 b(T)-8 b(o)35 b(c)m(hec)m(k)j(that)d Ft(P)44 b Fy(is)36 b(a)f(functor)h(requires)h(sho)m(wing)g(that)e(1) 2748 1777 y Fq(\000)p Fr(1)2748 1846 y Fp(A)2875 1819 y Fy(=)d(1)3032 1834 y Fq(P)6 b Fp(A)3179 1819 y Fy(and)36 b(that)f(if)g Fs(g)h Fy(:)d Fs(B)0 1935 y Ft(\000)-60 b(!)28 b Fs(C)7 b Fy(,)32 b(then)h(\()p Fs(g)26 b Ft(\016)c Fs(f)11 b Fy(\))783 1899 y Fq(\000)p Fr(1)904 1935 y Fy(=)28 b Fs(f)1067 1899 y Fq(\000)p Fr(1)1183 1935 y Ft(\016)22 b Fs(g)1306 1899 y Fq(\000)p Fr(1)1400 1935 y Fy(,)32 b(where)i(b)s(oth)e(comp)s(ositions)i(tak)m(e)g(place)f(in)g Fv(Set)p Fy(.)p Black 0 2142 a(1.6.10.)f Fv(De\014nition.)p Black 43 w Fy(A)h(functor)h Ft(F)k Fy(:)28 b Ft(C)1537 2106 y Fp(op)1640 2142 y Ft(\000)-59 b(!)28 b(D)35 b Fy(is)f(also)f(called)h(a)f Fu(c)-5 b(ontr)g(avariant)35 b(functor)e Fy(from)g Ft(C)39 b Fy(to)0 2258 y Ft(D)s Fy(.)0 2465 y(As)c(illustrated)h(in)f(the)g(preceding)h(de\014nition,)h (the)e(functor)g(is)g(often)g(de\014ned)h(in)f(terms)h(of)e(arro)m(ws)h (of)0 2582 y Ft(C)43 b Fy(rather)38 b(than)f(of)g(arro)m(ws)g(of)g Ft(C)1231 2545 y Fp(op)1305 2582 y Fy(.)58 b(Opp)s(osite)37 b(categories)h(are)g(most)f(commonly)i(used)f(to)f(pro)m(vide)h(a)0 2698 y(w)m(a)m(y)h(of)f(talking)g(ab)s(out)f(con)m(tra)m(v)-5 b(arian)m(t)39 b(functors)f(as)g(ordinary)g(\(co)m(v)-5 b(arian)m(t\))38 b(functors:)55 b(the)38 b(opp)s(osite)0 2814 y(category)33 b(in)g(this)g(situation)g(is)g(a)f(purely)i(formal)e (construction)i(of)e(no)h(indep)s(enden)m(t)h(in)m(terest.)-4029 b(13.05.04)p Black 0 3021 a(1.6.11.)27 b Fv(Remark.)p Black 38 w Fy(The)h(other)g(t)m(w)m(o)g(functors)g(whic)m(h)h(tak)m(e)f (a)f(set)h(to)f(its)h(p)s(o)m(w)m(erset)h(are)e(b)s(oth)g(co)m(v)-5 b(arian)m(t.)0 3137 y(The)39 b Fu(dir)-5 b(e)g(ct)39 b(or)h(existential)f(image)g(functor)f Fy(tak)m(es)h Fs(f)47 b Fy(:)37 b Fs(A)f Ft(\000)-59 b(!)36 b Fs(B)43 b Fy(to)37 b(the)h(function)h Fs(f)3236 3152 y Fq(\003)3312 3137 y Fy(:)d Ft(P)8 b Fs(A)38 b Ft(\000)-60 b(!)36 b(P)8 b Fs(B)d Fy(,)0 3254 y(where)34 b Fs(f)330 3269 y Fq(\003)369 3254 y Fy(\()p Fs(A)480 3269 y Fr(0)520 3254 y Fy(\))27 b(=)h Ft(f)p Fs(f)11 b Fy(\()p Fs(x)p Fy(\))p Ft(j)p Fs(x)28 b Ft(2)g Fs(A)1207 3269 y Fr(0)1246 3254 y Ft(g)p Fy(,)33 b(the)g(set)g(of)f(v)-5 b(alues)34 b(of)e Fs(f)43 b Fy(on)32 b Fs(A)2488 3269 y Fr(0)2528 3254 y Fy(.)0 3370 y(The)25 b Fu(universal)i(image)f(functor)e Fy(tak)m(es)i Fs(A)1522 3385 y Fr(0)1585 3370 y Fy(to)e(those)h(v)-5 b(alues)25 b(of)f Fs(f)35 b Fy(whic)m(h)25 b(come)g(only)g(from)f Fs(A)3423 3385 y Fr(0)3463 3370 y Fy(:)39 b(formally)-8 b(,)0 3486 y(it)33 b(tak)m(es)g Fs(f)39 b Fy(:)28 b Fs(A)f Ft(\000)-59 b(!)27 b Fs(B)38 b Fy(to)32 b Fs(f)1013 3501 y Fr(!)1064 3486 y Fy(:)c Ft(P)8 b Fs(A)29 b Ft(\000)-60 b(!)27 b(P)8 b Fs(B)d Fy(,)34 b(with)470 3701 y Fs(f)518 3716 y Fr(!)542 3701 y Fy(\()p Fs(A)653 3716 y Fr(0)693 3701 y Fy(\))27 b(=)h Ft(f)p Fs(y)i Ft(2)f Fs(B)5 b Ft(j)p Fs(f)11 b Fy(\()p Fs(x)p Fy(\))27 b(=)h Fs(y)35 b Fy(implies)f Fs(x)28 b Ft(2)h Fs(A)2178 3716 y Fr(0)2217 3701 y Ft(g)f Fy(=)f Ft(f)p Fs(y)k Ft(2)d Fs(B)5 b Ft(j)p Fs(f)2787 3659 y Fq(\000)p Fr(1)2881 3701 y Fy(\()p Ft(f)p Fs(y)t Ft(g)p Fy(\))26 b Ft(\022)i Fs(A)3313 3716 y Fr(0)3353 3701 y Ft(g)p Fs(:)0 3908 y Fy(1.6.4.)48 b Fu(Hom)35 b(functors)g(or)g(Mor)g(functors.)0 4024 y Fy(Let)i Ft(C)43 b Fy(b)s(e)37 b(a)f(category)h(with)h(an)f(ob)5 b(ject)37 b Fs(C)44 b Fy(and)37 b(an)f(arro)m(w)h Fs(f)46 b Fy(:)35 b Fs(A)f Ft(\000)-59 b(!)34 b Fs(B)5 b Fy(.)56 b Fs(f)48 b Fy(induces)38 b(a)f(set)g(function)0 4140 y(Mor\()p Fs(A;)17 b(f)11 b Fy(\))37 b(:)h(Mor)q(\()p Fs(A;)17 b(B)5 b Fy(\))37 b Ft(\000)-59 b(!)37 b Fy(Mor\()p Fs(A;)17 b(C)7 b Fy(\))38 b(de\014ned)j(b)m(y)e(comp)s(osing)g(b)m(y)h Fs(f)49 b Fy(on)38 b(the)h(left:)56 b(for)38 b(an)m(y)h Fs(g)j Ft(2)0 4256 y Fy(Mor\()p Fs(A;)17 b(B)5 b Fy(\),)33 b(that)g(is,)h(for)f(an)m(y)h Fs(g)e Fy(:)d Fs(A)g Ft(\000)-60 b(!)29 b Fs(B)5 b Fy(,)33 b(Mor)q(\()p Fs(A;)17 b(f)11 b Fy(\)\()p Fs(g)t Fy(\))27 b(=)i Fs(f)k Ft(\016)22 b Fs(g)t Fy(,)33 b(whic)m(h)i(do)s(es)f(indeed)g(go)f(from)g Fs(A)0 4373 y Fy(to)f Fs(C)7 b Fy(.)43 b(Similarly)-8 b(,)34 b(for)d(an)m(y)i(ob)5 b(ject)33 b Fs(D)s Fy(,)f Fs(f)39 b Fy(:)27 b Fs(B)33 b Ft(\000)-59 b(!)27 b Fs(C)39 b Fy(induces)34 b(a)e(set)h(function)g(Mor\()p Fs(f)5 b(;)17 b(D)s Fy(\))27 b(:)h(Mor\()p Fs(C)r(;)17 b(D)s Fy(\))0 4489 y Ft(\000)-60 b(!)28 b Fy(Mor\()p Fs(B)5 b(;)17 b(D)s Fy(\))27 b(\(note)i(the)f(rev)m(ersal\))i(b)m(y)f (requiring)g(that)f(Mor\()p Fs(f)5 b(;)17 b(D)s Fy(\)\()p Fs(h)p Fy(\))27 b(=)h Fs(h)13 b Ft(\016)g Fs(f)39 b Fy(for)27 b Fs(h)h Ft(2)g Fy(Mor\()p Fs(C)r(;)17 b(D)s Fy(\).)p Black 0 4696 a(1.6.12.)32 b Fv(De\014nition.)p Black 43 w Fy(F)-8 b(or)32 b(a)g(giv)m(en)i(ob)5 b(ject)33 b Fs(C)40 b Fy(the)33 b Fu(c)-5 b(ovariant)35 b(Mor)g(functor)e Fy(Mor\()p Fs(C)r(;)17 b Fy(-)n(\))28 b(:)g Ft(C)35 b(\000)-60 b(!)28 b Fv(Set)k Fy(is)0 4812 y(de\014ned)i(as)f(follo)m(ws:)p Black 55 4978 a(HF-1)p Black 41 w(Mor\()p Fs(C)r(;)17 b Fy(-)n(\)\()p Fs(A)p Fy(\))28 b(:=)g(Mor\()p Fs(C)r(;)17 b(A)p Fy(\))31 b(for)h(eac)m(h)i(ob)5 b(ject)33 b Fs(A)g Fy(of)f Ft(C)6 b Fy(;)p Black 55 5094 a(HF-2)p Black 41 w(Mor\()p Fs(C)r(;)17 b Fy(-)n(\)\()p Fs(f)11 b Fy(\))28 b(:=)f(Mor\()p Fs(C)r(;)17 b(f)11 b Fy(\))27 b(:)h(Mor\()p Fs(C)r(;)17 b(A)p Fy(\))27 b Ft(\000)-60 b(!)27 b Fy(Mor\()p Fs(C)r(;)17 b(B)5 b Fy(\))32 b(for)g Fs(f)39 b Fy(:)27 b Fs(A)h Ft(\000)-59 b(!)27 b Fs(B)5 b Fy(.)0 5301 y(The)36 b(follo)m(wing)g(calculations)h(sho)m(w)f(that)f(Mor)q(\()p Fs(C)r(;)17 b Fy(-)n(\))36 b(is)f(a)h(functor.)52 b(F)-8 b(or)34 b(an)i(ob)5 b(ject)36 b Fs(A)p Fy(,)g(Mor\()p Fs(C)r(;)17 b Fy(1)3746 5316 y Fp(A)3802 5301 y Fy(\))33 b(:)0 5417 y(Mor\()p Fs(C)r(;)17 b(A)p Fy(\))39 b Ft(\000)-59 b(!)40 b Fy(Mor\()p Fs(C)r(;)17 b(A)p Fy(\))39 b(tak)m(es)i(an)f(arro)m (w)g Fs(f)51 b Fy(:)40 b Fs(C)47 b Ft(\000)-60 b(!)40 b Fs(A)g Fy(to)g(1)2528 5432 y Fp(A)2612 5417 y Ft(\016)27 b Fs(f)50 b Fy(=)40 b Fs(f)11 b Fy(;)44 b(hence)d(Mor\()p Fs(C)r(;)17 b Fy(1)3690 5432 y Fp(A)3746 5417 y Fy(\))40 b(=)p Black Black eop end %%Page: 27 27 TeXDict begin 27 26 bop Black 1544 -99 a Fw(Natural)26 b(transformations)1469 b(27)p Black 0 100 a Fy(1)49 116 y Fr(Mor)o(\()p Fp(C)q(;A)p Fr(\))359 100 y Fy(.)43 b(No)m(w)33 b(supp)s(ose)h Fs(f)39 b Fy(:)27 b Fs(A)h Ft(\000)-59 b(!)27 b Fs(B)38 b Fy(and)32 b Fs(g)f Fy(:)d Fs(B)33 b Ft(\000)-60 b(!)28 b Fs(D)s Fy(.)43 b(Then)33 b(for)f(an)m(y)i(arro)m (w)e Fs(k)f Fy(:)d Fs(C)35 b Ft(\000)-60 b(!)27 b Fs(A)p Fy(,)728 185 y Fh(\000)791 266 y Fy(Mor\()p Fs(C)r(;)17 b(g)t Fy(\))j Ft(\016)i Fy(Mor\()p Fs(C)r(;)17 b(f)11 b Fy(\))1729 185 y Fh(\001)1774 266 y Fy(\()p Fs(k)s Fy(\))83 b(=)27 b(Mor\()p Fs(C)r(;)17 b(g)t Fy(\))2509 185 y Fh(\000)2570 266 y Fy(Mor\()p Fs(C)r(;)g(f)11 b Fy(\)\()p Fs(k)s Fy(\))3127 185 y Fh(\001)1987 382 y Fy(=)27 b(Mor\()p Fs(C)r(;)17 b(g)t Fy(\)\()p Fs(f)32 b Ft(\016)22 b Fs(k)s Fy(\))1987 499 y(=)27 b Fs(g)f Ft(\016)c Fy(\()p Fs(f)33 b Ft(\016)21 b Fs(k)s Fy(\))1987 615 y(=)27 b(\()p Fs(g)f Ft(\016)c Fs(f)11 b Fy(\))21 b Ft(\016)h Fs(k)1987 731 y Fy(=)27 b(Mor\()p Fs(C)r(;)17 b(g)25 b Ft(\016)d Fs(f)11 b Fy(\)\()p Fs(k)s Fy(\))p Fs(:)0 890 y Fy(There)33 b(is)f(a)g(distinct)h(co)m(v)-5 b(arian)m(t)32 b(Mor)g(functor)g(Mor\()p Fs(C)r(;)17 b Fy(-)o(\))31 b(for)h(eac)m(h)g(ob)5 b(ject)33 b Fs(C)7 b Fy(.)43 b(In)32 b(this)h(expression,)h Fs(C)0 1006 y Fy(is)f(a)g(parameter)g(for)g(a)f(family)i(of)e(functors.)45 b(The)34 b(argumen)m(t)g(of)e(eac)m(h)i(of)f(these)h(functors)f(is)h (indicated)0 1122 y(b)m(y)28 b(the)g(dash.)42 b(An)27 b(analogous)g(de\014nition)h(in)g(calculus)g(w)m(ould)g(b)s(e)g(to)f (de\014ne)h(the)g(function)f(whic)m(h)i(raises)0 1238 y(a)34 b(real)h(n)m(um)m(b)s(er)h(to)e(the)h Fs(n)p Fy(th)g(p)s(o)m(w)m (er)g(as)g Fs(f)11 b Fy(\(-)o(\))31 b(=)g(\(-)o(\))1929 1202 y Fp(n)2011 1238 y Fy(\(here)k Fs(n)g Fy(is)g(the)g(parameter\).) 50 b(One)34 b(di\013erence)j(in)0 1355 y(the)d(Mor)f(functor)g(case)h (is)g(that)f(the)h(Mor)f(functor)g(is)h(o)m(v)m(erloaded)h(and)e(so)h (has)f(to)g(b)s(e)g(de\014ned)i(on)e(t)m(w)m(o)0 1471 y(di\013eren)m(t)h(kinds)g(of)e(things:)44 b(ob)5 b(jects)34 b(and)e(arro)m(ws.)p Black 0 1631 a(1.6.13.)42 b Fv(De\014nition.)p Black 48 w Fy(F)-8 b(or)42 b(a)h(giv)m(en)h(ob)5 b(ject)44 b Fs(D)s Fy(,)h(the)e Fu(c)-5 b(ontr)g(avariant)44 b(mor)g(functor)f Fy(Mor\(-)p Fs(;)17 b(D)s Fy(\))44 b(:)i Ft(C)3826 1595 y Fp(op)0 1748 y Ft(\000)-60 b(!)50 b Fv(Set)45 b Fy(is)i(de\014ned)g (for)e(eac)m(h)h(ob)5 b(ject)47 b Fs(A)e Fy(b)m(y)i(Mor\(-)o Fs(;)17 b(D)s Fy(\)\()p Fs(A)p Fy(\))50 b(:=)f(Mor)q(\()p Fs(A;)17 b(D)s Fy(\))45 b(and)g(for)g(eac)m(h)i(arro)m(w)0 1864 y Fs(f)h Fy(:)37 b Fs(A)h Ft(\000)-60 b(!)37 b Fs(B)5 b Fy(,)40 b(Mor\(-)o Fs(;)17 b(D)s Fy(\)\()p Fs(f)11 b Fy(\))36 b(:=)i(Mor\()p Fs(f)5 b(;)17 b(D)s Fy(\))37 b(:)g(Mor\()p Fs(B)5 b(;)17 b(D)s Fy(\))37 b Ft(\000)-60 b(!)37 b Fy(Mor\()p Fs(A;)17 b(D)s Fy(\).)60 b(Th)m(us)40 b(if)e Fs(g)i Fy(:)e Fs(B)k Ft(\000)-60 b(!)37 b Fs(D)s Fy(,)0 1980 y(Mor\()p Fs(f)5 b(;)17 b(D)s Fy(\)\()p Fs(g)t Fy(\))27 b(=)g Fs(g)e Ft(\016)d Fs(f)11 b Fy(.)p Black 0 2141 a(1.6.14.)32 b Fv(De\014nition.)p Black 42 w Fy(The)i Fu(two-variable)g(Mor)h(functor)1408 2298 y Fy(Mor\(-)o Fs(;)17 b Fy(-)o(\))28 b(:)g Ft(C)1909 2257 y Fp(op)2005 2298 y Ft(\002)23 b(C)34 b(\000)-60 b(!)27 b Fv(Set)0 2455 y Fy(tak)m(es)k(a)e(pair)g(\()p Fs(C)r(;)17 b(D)s Fy(\))29 b(of)g(ob)5 b(jects)30 b(of)f Ft(C)36 b Fy(to)29 b(Mor\()p Fs(C)r(;)17 b(D)s Fy(\),)29 b(and)h(a)f(pair)h(\()p Fs(f)5 b(;)17 b(g)t Fy(\))28 b(of)h(arro)m(ws)h(with)g Fs(f)39 b Fy(:)28 b Fs(C)34 b Ft(\000)-59 b(!)27 b Fs(A)0 2571 y Fy(and)33 b Fs(g)e Fy(:)c Fs(B)33 b Ft(\000)-59 b(!)27 b Fs(D)35 b Fy(to)1174 2687 y(Mor\()p Fs(f)5 b(;)17 b(g)t Fy(\))26 b(:)i(Mor\()p Fs(A;)17 b(B)5 b Fy(\))28 b Ft(\000)-60 b(!)28 b Fy(Mor\()p Fs(C)r(;)17 b(D)s Fy(\))0 2824 y(where)34 b(for)e Fs(h)c Fy(:)f Fs(A)h Ft(\000)-59 b(!)27 b Fs(B)5 b Fy(,)1442 2940 y(Mor\()p Fs(f)g(;)17 b(g)t Fy(\)\()p Fs(h)p Fy(\))27 b(=)h Fs(g)d Ft(\016)d Fs(h)g Ft(\016)g Fs(f)0 3076 y Fy(whic)m(h)34 b(is)f(indeed)h(an)f (arro)m(w)f(from)h Fs(C)39 b Fy(to)32 b Fs(D)s Fy(.)0 3237 y(In)27 b(this)h(case)f(w)m(e)h(also)f(use)h(the)f(pro)s(duct)h (of)e(categories)i(as)f(a)f(formal)h(construction)h(to)e(express)j (functors)0 3353 y(of)37 b(more)h(than)f(one)h(argumen)m(t.)58 b(F)-8 b(rom)37 b(the)h(categorical)f(p)s(oin)m(t)h(of)e(view,)k(a)e (functor)f(alw)m(a)m(ys)i(has)f(one)0 3470 y(argumen)m(t,)h(whic)m(h)g (as)e(in)h(the)f(presen)m(t)i(case)f(migh)m(t)g(w)m(ell)g(b)s(e)g(an)f (ob)5 b(ject)38 b(in)f(a)g(pro)s(duct)h(category)f(\(an)0 3586 y(ordered)c(pair\).)0 3760 y(1.7.)49 b Fv(Natural)37 b(transformations.)0 3876 y Fy(In)g(order)g(to)g(see)h(one)f(of)g(the)g (aims)h(of)e(this)i(section)g(w)m(e)g(\014rst)g(in)m(tro)s(duce)g (natural)f(transformation)f(of)0 3993 y(functors)d(and)g(study)h(their) f(most)g(elemen)m(tary)h(prop)s(erties.)0 4167 y(1.7.1.)48 b Fu(Natur)-5 b(al)36 b(tr)-5 b(ansformations)34 b(b)-5 b(etwe)g(en)34 b(functors)h(I.)p Black 0 4328 a Fy(1.7.1.)g Fv(De\014nition.)p Black 44 w Fy(Let)h Fs(D)s(;)17 b(E)38 b Fy(:)32 b Ft(C)39 b(\000)-59 b(!)32 b(D)38 b Fy(b)s(e)e(t)m(w)m(o)g (co)m(v)-5 b(arian)m(t)36 b(functors.)53 b(A)35 b Fu(natur)-5 b(al)38 b(tr)-5 b(ansformation)0 4444 y Fs(\013)28 b Fy(:)g Fs(D)j Ft(\000)-60 b(!)27 b Fs(E)34 b Fy(is)28 b(giv)m(en)h(b)m(y)g(a)f(family)g(of)f(morphisms)j Fs(\013)2009 4459 y Fp(A)2094 4444 y Fy(of)d Ft(D)k Fy(indexed)e(b)m(y)g(the)f(ob)5 b(jects)29 b(of)f Ft(C)34 b Fy(suc)m(h)29 b(that:)p Black -15 4580 a(NTF-1)p Black 41 w Fs(\013)377 4595 y Fp(A)461 4580 y Fy(:)f Fs(D)s Fy(\()p Fs(A)p Fy(\))f Ft(\000)-59 b(!)27 b Fs(E)6 b Fy(\()p Fs(A)p Fy(\))33 b(for)f(eac)m(h)h(no)s(de)g Fs(A)g Fy(of)f Ft(C)6 b Fy(.)p Black -15 4697 a(NTF-2)p Black 41 w(F)-8 b(or)31 b(an)m(y)j(morphism)f Fs(f)39 b Fy(:)28 b Fs(A)f Ft(\000)-59 b(!)27 b Fs(B)38 b Fy(in)33 b Ft(C)6 b Fy(,)32 b(the)h(diagram)0 5231 y(\(1\))1641 4866 y Fs(D)s Fy(\()p Fs(A)p Fy(\))160 b Fs(E)6 b Fy(\()p Fs(A)p Fy(\))p 1903 4843 103 4 v 1923 4841 a Fo(-)1894 4807 y Fs(\013)1956 4822 y Fp(A)1638 5256 y Fs(D)s Fy(\()p Fs(B)f Fy(\))154 b Fs(E)6 b Fy(\()p Fs(B)f Fy(\))p 1906 5233 97 4 v 1920 5231 a Fo(-)1892 5293 y Fs(\013)1954 5308 y Fp(B)p 1756 5163 4 254 v 1757 5163 a Fo(?)1500 5061 y Fs(D)s Fy(\()p Fs(f)11 b Fy(\))p 2146 5163 V 2147 5163 a Fo(?)2186 5061 y Fs(E)6 b Fy(\()p Fs(f)11 b Fy(\))315 5417 y(comm)m(utes.)p Black Black eop end %%Page: 28 28 TeXDict begin 28 27 bop Black 0 -99 a Fw(28)1668 b(F)-6 b(oundations)p Black Black 0 100 a Fy(1.7.2.)37 b Fv(De\014nition.)p Black 44 w Fy(Let)g Fs(D)s Fy(,)h Fs(E)43 b Fy(and)37 b Fs(F)51 b Fy(b)s(e)37 b(functors)h(from)e Ft(C)43 b Fy(to)37 b Ft(D)j Fy(,)e(and)f Fs(\013)f Fy(:)f Fs(D)j Ft(\000)-60 b(!)35 b Fs(E)43 b Fy(and)37 b Fs(\014)k Fy(:)35 b Fs(E)0 217 y Ft(\000)-60 b(!)39 b Fs(F)53 b Fy(natural)40 b(transformations.)64 b(The)40 b(comp)s(osite)h Fs(\014)32 b Ft(\016)27 b Fs(\013)40 b Fy(:)f Fs(D)j Ft(\000)-60 b(!)39 b Fs(F)53 b Fy(is)40 b(de\014ned)h(comp)s(onen)m(t)m (wise:)0 333 y(\()p Fs(\014)28 b Ft(\016)22 b Fs(\013)q Fy(\))294 348 y Fp(A)378 333 y Fy(=)27 b Fs(\014)536 348 y Fp(A)616 333 y Ft(\016)22 b Fs(\013)750 348 y Fp(A)807 333 y Fy(.)p Black 0 503 a(1.7.3.)36 b Fv(Prop)s(osition.)p Black 44 w Fu(The)j(c)-5 b(omp)g(osite)38 b(of)g(two)h(natur)-5 b(al)39 b(tr)-5 b(ansformations)38 b(is)g(also)h(a)f(natur)-5 b(al)39 b(tr)-5 b(ans-)0 619 y(formation.)p Black 0 789 a(Pr)g(o)g(of.)p Black 41 w Fy(The)34 b(diagram)e(that)g(has)h(to)g(b)s (e)f(sho)m(wn)i(comm)m(utativ)m(e)h(is)e(the)g(outer)g(rectangle)g(of)0 1354 y(\(2\))1447 989 y Fs(D)s Fy(\()p Fs(A)p Fy(\))160 b Fs(E)6 b Fy(\()p Fs(A)p Fy(\))p 1709 966 103 4 v 1729 964 a Fo(-)1700 931 y Fs(\013)1762 946 y Fp(A)2231 989 y Fs(F)14 b Fy(\()p Fs(A)p Fy(\))p 2096 966 107 4 v 2120 964 a Fo(-)2092 926 y Fs(\014)2147 941 y Fp(A)1444 1379 y Fs(D)s Fy(\()p Fs(B)5 b Fy(\))154 b Fs(E)6 b Fy(\()p Fs(B)f Fy(\))p 1712 1356 97 4 v 1726 1354 a Fo(-)1698 1416 y Fs(\013)1760 1431 y Fp(B)2228 1379 y Fs(F)14 b Fy(\()p Fs(B)5 b Fy(\))p 2099 1356 101 4 v 2117 1354 a Fo(-)2091 1443 y Fs(\014)2146 1458 y Fp(B)p 1562 1286 4 254 v 1563 1286 a Fo(?)1306 1184 y Fs(D)s Fy(\()p Fs(f)11 b Fy(\))p 1952 1286 V 1953 1286 a Fo(?)1702 1184 y Fs(E)6 b Fy(\()p Fs(f)11 b Fy(\))p 2342 1286 V 2343 1286 a Fo(?)2382 1184 y Fs(F)j Fy(\()p Fs(f)d Fy(\))0 1580 y(for)36 b(eac)m(h)h(arro)m (w)f Fs(f)45 b Fy(:)33 b Fs(A)h Ft(\000)-59 b(!)33 b Fs(B)42 b Fy(in)36 b Ft(C)6 b Fy(.)55 b(The)37 b(rectangle)g(comm)m (utes)h(b)s(ecause)f(the)g(t)m(w)m(o)g(squares)h(do;)g(the)0 1696 y(squares)c(comm)m(ute)g(as)f(a)f(consequence)k(of)c(the)h (naturalit)m(y)g(of)f Fs(\013)i Fy(and)e Fs(\014)6 b Fy(.)1088 b Fg(\003)p Black 0 1866 a Fy(1.7.4.)38 b Fv(Example.)p Black 46 w Fy(Examples)j(for)d(natural)h(transformations)g({)f(lik)m(e) i(for)e(functors)h({)g(are)g(built)g(in)m(to)0 1982 y(the)f (de\014nition)g(of)f(categories.)59 b(Let)37 b Fs(f)47 b Fy(:)36 b Fs(A)g Ft(\000)-59 b(!)35 b Fs(B)43 b Fy(b)s(e)37 b(a)g(morphism)i(in)e(a)h(category)f Ft(C)6 b Fy(.)59 b(In)37 b(1.6.12)g(w)m(e)0 2099 y(ha)m(v)m(e)d(already)f(studied)h(co)m (v)-5 b(arian)m(t)33 b(functors)g(Mor)1884 2114 y Fq(C)1929 2099 y Fy(\()p Fs(A;)17 b Fy(-\))p Fs(;)g Fy(Mor)2374 2114 y Fq(C)2419 2099 y Fy(\()p Fs(B)5 b(;)17 b Fy(-\))27 b(:)h Ft(C)34 b(\000)-59 b(!)27 b Fv(Set)p Fy(.)0 2215 y(The)34 b(morphism)f Fs(f)44 b Fy(induces)34 b(a)e(family)h(of)f(maps) 854 2372 y(Mor)1030 2387 y Fq(C)1075 2372 y Fy(\()p Fs(f)5 b(;)17 b(C)7 b Fy(\))27 b(:)h(Mor)1583 2387 y Fq(C)1628 2372 y Fy(\()p Fs(B)5 b(;)17 b(C)7 b Fy(\))27 b Ft(3)i Fs(g)i Ft(7!)c Fs(g)e Ft(\016)d Fs(f)39 b Ft(2)28 b Fy(Mor)2732 2387 y Fq(C)2777 2372 y Fy(\()p Fs(A;)17 b(C)7 b Fy(\))0 2529 y(whic)m(h)34 b(is)f(a)f(natural)h(transformation)f(b)m(y)i (Exercise)h Fv(??)p Fy(.)p Black 0 2699 a(1.7.5.)46 b Fv(De\014nition.)p Black 50 w Fy(A)h(natural)g(transformation)g Fs(\013)53 b Fy(:)f Fs(F)66 b Ft(\000)-60 b(!)52 b Fs(G)g Fy(:)g Ft(C)58 b(\000)-59 b(!)52 b(D)d Fy(is)e(called)h(a)f Fu(natur)-5 b(al)0 2815 y(isomorphism)31 b Fy(if)h(there)h(is)h(a)e (natural)g(transformation)h Fs(\014)g Fy(:)28 b Fs(G)f Ft(\000)-59 b(!)27 b Fs(F)46 b Fy(whic)m(h)34 b(is)f(an)g(in)m(v)m (erse)i(to)d Fs(\013)q Fy(.)p Black 0 2985 a(1.7.6.)g Fv(De\014nition.)p Black 43 w Fy(A)g(functor)h Fs(F)41 b Fy(:)28 b Ft(C)34 b(\000)-60 b(!)28 b(D)35 b Fy(is)e(an)f Fu(e)-5 b(quivalenc)g(e)34 b(of)h(c)-5 b(ate)g(gories)31 b Fy(if)i(there)g(are:)p Black 125 3121 a(E-1)p Black 42 w(A)f(functor)h Fs(G)28 b Fy(:)f Ft(D)k(\000)-60 b(!)27 b(C)6 b Fy(.)p Black 125 3238 a(E-2)p Black 42 w(A)43 b(family)g(\()p Fs(u)833 3253 y Fp(C)937 3238 y Fy(:)j Fs(C)52 b Ft(\000)-59 b(!)45 b Fs(G)p Fy(\()p Fs(F)14 b Fy(\()p Fs(C)7 b Fy(\)\))p Ft(j)p Fs(C)51 b Ft(2)46 b Fy(Ob\()p Ft(C)6 b Fy(\)\))43 b(of)g(isomorphisms)i(of)d Ft(C)50 b Fy(indexed)45 b(b)m(y)f(the)315 3354 y(ob)5 b(jects)40 b(of)f Ft(C)46 b Fy(with)40 b(the)g(prop)s(ert)m(y)g(that)f (for)g(ev)m(ery)j(arro)m(w)d Fs(f)50 b Fy(:)40 b Fs(C)46 b Ft(\000)-59 b(!)39 b Fs(C)3114 3318 y Fq(0)3176 3354 y Fy(of)g Ft(C)6 b Fy(,)42 b Fs(G)p Fy(\()p Fs(F)14 b Fy(\()p Fs(f)d Fy(\)\))38 b(=)315 3471 y Fs(u)371 3486 y Fp(C)426 3467 y Fl(0)474 3471 y Ft(\016)22 b Fs(f)33 b Ft(\016)21 b Fs(u)754 3430 y Fq(\000)p Fr(1)754 3498 y Fp(C)848 3471 y Fy(.)p Black 125 3587 a(E-3)p Black 42 w(A)40 b(family)h Fs(v)781 3602 y Fp(D)887 3587 y Fy(:)h Fs(D)i Ft(\000)-60 b(!)41 b Fs(F)14 b Fy(\()p Fs(G)p Fy(\()p Fs(D)s Fy(\)\))40 b(of)g(isomorphisms)j(of)d Ft(D)j Fy(indexed)g(b)m(y)e(the)g(ob)5 b(jects)42 b(of)e Ft(D)s Fy(,)315 3704 y(with)33 b(the)g(prop)s(ert)m(y)g(that)f(for)g (ev)m(ery)j(arro)m(w)e Fs(g)e Fy(:)c Fs(D)k Ft(\000)-60 b(!)27 b Fs(D)2467 3668 y Fq(0)2523 3704 y Fy(of)32 b Ft(D)s Fy(,)g Fs(F)14 b Fy(\()p Fs(G)p Fy(\()p Fs(g)t Fy(\)\))27 b(=)g Fs(v)3307 3719 y Fp(D)3367 3700 y Fl(0)3416 3704 y Ft(\016)22 b Fs(g)j Ft(\016)d Fs(v)3683 3663 y Fq(\000)p Fr(1)3679 3731 y Fp(D)3777 3704 y Fy(.)0 3841 y(If)33 b Fs(F)46 b Fy(is)33 b(an)f(equiv)-5 b(alence)35 b(of)d(categories,)i(the)f(functor)f Fs(G)h Fy(of)f(E-1)g(is)h(called)h (a)e Fu(pseudo-inverse)f Fy(of)h Fs(F)14 b Fy(.)0 3957 y(The)33 b(idea)f(b)s(ehind)h(the)f(de\014nition)h(is)f(that)g(not)f (only)i(is)f(ev)m(ery)i(ob)5 b(ject)32 b(of)g Ft(D)i Fy(isomorphic)f(to)e(an)h(ob)5 b(ject)0 4073 y(in)30 b(the)h(image)g(of)e Fs(F)14 b Fy(,)31 b(but)f(the)h(isomorphisms)h (are)e(compatible)i(with)e(the)h(arro)m(ws)g(of)f Ft(D)s Fy(;)g(and)h(similarly)0 4190 y(for)h Ft(C)6 b Fy(.)-438 4243 y(14.05.04)p Black 0 4413 a(1.7.7.)24 b Fv(Example.)p Black 37 w Fy(An)g(isomorphism)i(of)e(categories)h(is)g(an)g(equiv)-5 b(alence)26 b(of)e(categories,)j(and)e(its)g(in)m(v)m(erse)0 4530 y(is)33 b(its)g(pseudo-in)m(v)m(erse.)p Black 0 4700 a(1.7.8.)g Fv(Example)40 b Fy(\(Monoids)34 b(and)g(one-ob)5 b(ject)34 b(categories.\))p Fv(.)p Black 43 w Fy(F)-8 b(or)33 b(eac)m(h)h(monoid)g Fs(M)45 b Fy(w)m(e)34 b(constructed)0 4816 y(a)i(small)i(category)f Fs(C)7 b Fy(\()p Fs(M)j Fy(\))37 b(in)g(1.3.8.)56 b(W)-8 b(e)37 b(mak)m(e)g(the)h(c)m(hoice)g (men)m(tioned)g(there)g(that)e(the)h(one)g(ob)5 b(ject)0 4932 y(of)39 b Fs(C)7 b Fy(\()p Fs(M)j Fy(\))41 b(is)f Fs(M)10 b Fy(.)66 b(Note)40 b(that)g(although)g(an)f(elemen)m(t)j(of)d Fs(C)7 b Fy(\()p Fs(M)j Fy(\))41 b(is)f(no)m(w)h(an)e(arro)m(w)h(from)g Fs(M)51 b Fy(to)39 b Fs(M)10 b Fy(,)0 5048 y(it)36 b(is)g(not)f(a)h (set)g(function.)53 b(F)-8 b(or)35 b(eac)m(h)h(monoid)g(homomorphism)h Fs(h)c Fy(:)g Fs(M)44 b Ft(\000)-60 b(!)33 b Fs(N)10 b Fy(,)37 b(construct)f(a)g(functor)0 5164 y Fs(C)7 b Fy(\()p Fs(h)p Fy(\))28 b(:)f Fs(C)7 b Fy(\()p Fs(M)j Fy(\))29 b Ft(\000)-60 b(!)27 b Fs(C)7 b Fy(\()p Fs(N)j Fy(\))33 b(as)g(follo)m(ws:)p Black 58 5301 a(CF-1)p Black 41 w(On)f(ob)5 b(jects,)34 b Fs(C)7 b Fy(\()p Fs(h)p Fy(\)\()p Fs(M)j Fy(\))28 b(=)g Fs(N)10 b Fy(.)p Black 58 5417 a(CF-2)p Black 41 w Fs(C)d Fy(\()p Fs(h)p Fy(\))32 b(m)m(ust)i(b)s(e)f(exactly)h(the)f(same)g(as)g Fs(h)f Fy(on)h(arro)m(ws)g(\(elemen)m(ts)i(of)d Fs(M)10 b Fy(\).)p Black Black eop end %%Page: 29 29 TeXDict begin 29 28 bop Black 1544 -99 a Fw(Natural)26 b(transformations)1469 b(29)p Black 0 100 a Fy(It)43 b(is)g(straigh)m(tforw)m(ard)g(to)f(see)i(that)e Fs(C)7 b Fy(\()p Fs(h)p Fy(\))43 b(is)g(a)f(functor)h(and)g(that)f(this)i (construction)f(mak)m(es)i Fs(C)k Fy(a)0 217 y(functor)32 b(from)f Fv(Mon)h Fy(to)f(the)h(full)f(sub)s(category)i(of)e Fv(Cat)g Fy(of)g(categories)h(with)g(exactly)h(one)f(ob)5 b(ject.)44 b(W)-8 b(e)0 333 y(will)33 b(denote)h(this)f(full)g(sub)s (category)g(as)g Fv(Oo)s(c)p Fy(.)0 449 y(There)h(is)f(also)g(a)f (functor)h Fs(U)38 b Fy(:)28 b Fv(Oo)s(c)f Ft(\000)-59 b(!)27 b Fv(Mon)33 b Fy(going)f(the)h(other)g(w)m(a)m(y)-8 b(.)p Black 43 598 a(UO-1)p Black 41 w(F)g(or)29 b(a)h(category)h Ft(C)37 b Fy(with)31 b(one)g(ob)5 b(ject,)32 b Fs(U)10 b Fy(\()p Ft(C)c Fy(\))31 b(is)g(the)g(monoid)f(whose)i(elemen)m(ts)h (are)d(the)h(arro)m(ws)315 715 y(of)h Ft(C)38 b Fy(and)33 b(whose)h(binary)f(op)s(eration)f(is)h(the)g(comp)s(osition)h(of)e Ft(C)6 b Fy(.)p Black 43 831 a(UO-2)p Black 41 w(If)37 b Fs(F)50 b Fy(:)36 b Ft(C)42 b(\000)-60 b(!)36 b(D)k Fy(is)e(a)f(functor)h(b)s(et)m(w)m(een)h(one-)f(ob)5 b(ject)38 b(categories,)i Fs(U)10 b Fy(\()p Fs(F)k Fy(\))36 b(=)g Fs(F)3312 846 y Fr(1)3351 831 y Fy(,)j(that)e(is,)j(the)315 947 y(functor)32 b Fs(F)46 b Fy(on)33 b(arro)m(ws.)0 1096 y(The)28 b(functors)g Fs(U)37 b Fy(and)28 b Fs(C)33 b Fy(are)28 b(not)e(in)m(v)m(erse)k(to)d(eac)m(h)h(other,)g(and)f(it)g (is)h(w)m(orth)m(while)h(to)e(see)h(in)f(detail)h(wh)m(y)-8 b(.)0 1213 y(The)34 b(construction)g(of)f Fs(C)40 b Fy(is)33 b(in)h(part)f(arbitrary)-8 b(.)44 b(W)-8 b(e)34 b(needed)h(to)d(regard) h(eac)m(h)h(monoid)g(as)f(a)g(category)0 1329 y(with)27 b(one)g(ob)5 b(ject.)43 b(The)27 b(c)m(hoice)i(of)d(the)h(elemen)m(ts)i (of)d Fs(M)38 b Fy(to)26 b(b)s(e)h(the)g(arro)m(ws)h(of)e(the)h (category)g(is)h(ob)m(vious,)0 1445 y(but)g(what)g(should)h(b)s(e)f (the)g(one)g(ob)5 b(ject?)43 b(W)-8 b(e)28 b(c)m(hose)h Fs(M)39 b Fy(itself,)29 b(but)f(w)m(e)h(could)g(ha)m(v)m(e)g(c)m(hosen) g(some)g(other)0 1561 y(thing,)i(suc)m(h)h(as)e(the)h(set)g Ft(f)p Fs(e)p Ft(g)p Fy(,)g(where)h Fs(e)e Fy(is)h(the)g(iden)m(tit)m (y)h(of)e Fs(M)10 b Fy(.)43 b(The)32 b(only)f(real)f(requiremen)m(t)j (is)e(that)f(it)0 1678 y(not)e(b)s(e)h(an)f(elemen)m(t)i(of)e Fs(M)39 b Fy(\(suc)m(h)30 b(as)f(its)g(iden)m(tit)m(y\))h(in)f(order)f (to)g(a)m(v)m(oid)h(set-theoretic)h(problems)g(caused)0 1794 y(b)m(y)j(the)f(category)g(b)s(eing)g(an)g(elemen)m(t)i(of)d (itself.)44 b(The)33 b(consequence)h(is)f(that)e(w)m(e)i(ha)m(v)m(e)g (giv)m(en)g(a)f(functor)0 1910 y Fs(C)44 b Fy(:)38 b Fv(Mon)g Ft(\000)-59 b(!)37 b Fv(Oo)s(c)h Fy(in)h(a)f(w)m(a)m(y)i(whic) m(h)f(required)h(arbitrary)f(c)m(hoices.)62 b(The)40 b(arbitrary)e(c)m(hoice)i(of)e(one)0 2026 y(ob)5 b(ject)29 b(for)f Fs(C)7 b Fy(\()p Fs(M)j Fy(\))29 b(means)g(that)f(if)g(w)m(e)h (b)s(egin)g(with)g(a)f(one-ob)5 b(ject)29 b(category)f Ft(C)35 b Fy(,)29 b(construct)g Fs(M)39 b Fy(=)27 b Fs(U)10 b Fy(\()p Ft(C)c Fy(\),)0 2143 y(and)37 b(then)g(construct)h Fs(C)7 b Fy(\()p Fs(M)j Fy(\),)39 b(the)e(result)h(will)g(not)e(b)s(e)h (the)h(same)f(as)g Ft(C)44 b Fy(unless)38 b(it)f(happ)s(ens)h(that)f (the)0 2259 y(one)e(ob)5 b(ject)35 b(of)f Ft(C)41 b Fy(is)35 b Fs(M)10 b Fy(.)50 b(Th)m(us)36 b Fs(C)30 b Ft(\016)24 b Fs(U)41 b Ft(6)p Fy(=)31 b(id)1683 2274 y Fi(Oo)r(c)1828 2259 y Fy(,)k(so)f(that)h Fs(U)45 b Fy(is)35 b(not)f(the)h(in)m(v)m (erse)i(of)d Fs(C)7 b Fy(.)49 b(\(In)35 b(this)g(case)0 2375 y Fs(U)e Ft(\016)22 b Fs(C)39 b Fy(is)33 b(indeed)h(id)769 2390 y Fi(Mon)936 2375 y Fy(.\))0 2491 y Fs(C)i Fy(is)30 b(not)f(surjectiv)m(e)i(on)e(ob)5 b(jects,)31 b(since)g(not)e(ev)m(ery) i(small)f(category)f(with)h(one)f(ob)5 b(ject)30 b(is)g(in)f(the)h (image)0 2607 y(of)40 b Fs(C)7 b Fy(;)45 b(in)c(fact)f(a)h(category)g Ft(D)i Fy(is)e Fs(C)7 b Fy(\()p Fs(M)j Fy(\))42 b(for)e(some)h(monoid)g Fs(M)52 b Fy(only)41 b(if)g(the)g(single)g(ob)5 b(ject)42 b(of)e Ft(D)j Fy(is)0 2724 y(actually)h(a)g(monoid)f(and)h(the)g(arro)m (ws)g(of)f Ft(D)j Fy(are)e(actually)g(the)g(arro)m(ws)g(of)g(that)f (monoid.)77 b(This)44 b(is)0 2840 y(en)m(tirely)h(con)m(trary)f(to)e (the)i(spirit)g(of)f(category)g(theory:)65 b(w)m(e)45 b(are)e(talking)g(ab)s(out)g(sp)s(eci\014c)i(elemen)m(ts)0 2956 y(rather)d(than)f(sp)s(ecifying)j(b)s(eha)m(vior.)71 b(Indeed,)46 b(in)c(terms)g(of)f(sp)s(ecifying)j(b)s(eha)m(vior,)g(the) e(category)g(of)0 3072 y(monoids)g(and)g(the)f(category)h(of)f(small)h (categories)g(with)g(one)g(ob)5 b(ject)42 b(ough)m(t)f(to)g(b)s(e)h (essen)m(tially)i(the)0 3189 y(same)33 b(thing.)0 3305 y(The)27 b(fact)e(that)h Fs(C)32 b Fy(is)27 b(not)e(an)h(isomorphism)h (of)e(categories)i(is)f(a)g(signal)g(that)f(isomorphism)i(is)g(the)f (wrong)0 3421 y(idea)34 b(for)e(capturing)i(the)f(concept)i(that)e(t)m (w)m(o)h(categories)g(are)f(essen)m(tially)j(the)d(same.)46 b(Ho)m(w)m(ev)m(er,)36 b(ev)m(ery)0 3537 y(small)d(category)g(with)h (one)f(ob)5 b(ject)33 b(is)h(isomorphic)f(to)g(one)g(of)f(those)h (constructed)i(as)e Fs(C)7 b Fy(\()p Fs(M)j Fy(\))33 b(for)f(some)0 3654 y(monoid)h Fs(M)10 b Fy(.)44 b(This)34 b(is)f(the)g(starting)g(p)s(oin)m(t)f(for)g(the)h(de\014nition)h(of)e (equiv)-5 b(alence.)p Black 0 3842 a(1.7.9.)44 b Fv(Prop)s(osition.)p Black 48 w Fu(A)j(functor)f Fs(F)62 b Fy(:)48 b Ft(C)55 b(\000)-58 b(!)48 b(D)h Fu(is)d(an)f(e)-5 b(quivalenc)g(e)45 b(of)h(c)-5 b(ate)g(gories)45 b(with)h(pseudo-)0 3959 y(inverse)31 b Fs(G)d Fy(:)g Ft(D)i(\000)-57 b(!)27 b(C)39 b Fu(if)32 b(and)f(only)h(if)g Fs(G)16 b Ft(\016)g Fs(F)47 b Fu(is)32 b(natur)-5 b(al)5 b(ly)32 b(isomorphic)f(to)h Fy(id)2889 3974 y Fq(C)2966 3959 y Fu(and)g Fs(F)d Ft(\016)16 b Fs(G)33 b Fu(is)f(natur)-5 b(al)5 b(ly)0 4075 y(isomorphic)33 b(to)i Fy(id)698 4090 y Fq(D)758 4075 y Fu(.)p Black 0 4264 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(Conditions)33 b(E-2)f(and)g(E-3)g(of)f(1.7.6)h(can)g(b)s(e)h(recast)f(as)h(the)f (statemen)m(t)i(that)e Fs(G)p Fy(\()p Fs(F)14 b Fy(\()p Fs(f)d Fy(\)\))20 b Ft(\016)h Fs(u)3738 4279 y Fp(C)3824 4264 y Fy(=)0 4380 y Fs(u)56 4395 y Fp(C)111 4376 y Fl(0)148 4380 y Ft(\016)11 b Fs(f)38 b Fy(and)27 b(that)g Fs(F)14 b Fy(\()p Fs(G)p Fy(\()p Fs(g)t Fy(\)\))d Ft(\016)g Fs(v)1161 4395 y Fp(D)1251 4380 y Fy(=)28 b Fs(v)1402 4395 y Fp(D)1462 4376 y Fl(0)1500 4380 y Ft(\016)11 b Fs(g)t Fy(,)27 b(in)g(other)h(w)m (ords)g(that)f(the)h(follo)m(wing)f(diagrams)g(comm)m(ute:)0 4946 y(\(3\))933 4581 y Fs(C)167 b(G)p Fy(\()p Fs(F)14 b Fy(\()p Fs(C)7 b Fy(\)\))p 1038 4557 103 4 v 1058 4555 a Fo(-)1032 4522 y Fs(u)1088 4537 y Fp(C)921 4971 y Fs(C)998 4934 y Fq(0)1158 4971 y Fs(G)p Fy(\()p Fs(F)14 b Fy(\()p Fs(C)1465 4934 y Fq(0)1488 4971 y Fy(\)\))p 1050 4948 79 4 v 1046 4946 a Fo(-)1021 5007 y Fs(u)1077 5022 y Fp(C)1132 5003 y Fl(0)p 969 4877 4 254 v 971 4877 a Fo(?)873 4776 y Fs(f)p 1359 4877 V 1361 4877 a Fo(?)1400 4776 y Fs(G)p Fy(\()p Fs(F)g Fy(\()p Fs(f)d Fy(\)\))2201 4581 y Fs(D)156 b(F)14 b Fy(\()p Fs(G)p Fy(\()p Fs(D)s Fy(\)\))p 2313 4557 97 4 v 2327 4555 a Fo(-)2305 4522 y Fs(v)2352 4537 y Fp(D)2189 4971 y Fs(D)2273 4934 y Fq(0)2426 4971 y Fs(F)g Fy(\()p Fs(G)p Fy(\()p Fs(D)2740 4934 y Fq(0)2763 4971 y Fy(\)\))p 2324 4948 74 4 v 2315 4946 a Fo(-)2294 5007 y Fs(v)2341 5022 y Fp(D)2401 5003 y Fl(0)p 2241 4877 4 254 v 2243 4877 a Fo(?)2153 4762 y Fs(g)p 2631 4877 V 2633 4877 a Fo(?)2672 4776 y Fs(F)g Fy(\()p Fs(G)p Fy(\()p Fs(g)t Fy(\)\))0 5165 y(In)36 b(this)g(form,)f(they)i(are)e (the)h(statemen)m(ts)h(that)e Fs(u)g Fy(is)h(a)f(natural)g (transformation)g(from)g(id)3446 5180 y Fq(C)3527 5165 y Fy(to)g Fs(G)23 b Ft(\016)h Fs(F)0 5282 y Fy(and)36 b(that)f Fs(v)k Fy(is)e(a)e(natural)g(transformation)h(from)f(id)2006 5297 y Fq(D)2102 5282 y Fy(to)g Fs(F)j Ft(\016)24 b Fs(G)p Fy(.)53 b(Since)36 b(eac)m(h)h(comp)s(onen)m(t)g(of)e Fs(u)g Fy(and)0 5398 y(eac)m(h)e(comp)s(onen)m(t)h(of)e Fs(v)k Fy(is)e(an)e(isomorphism,)i Fs(u)e Fy(and)h Fs(v)j Fy(are)d(natural)f(isomorphisms.)614 b Fg(\003)p Black Black eop end %%Page: 30 30 TeXDict begin 30 29 bop Black 0 -99 a Fw(30)1668 b(F)-6 b(oundations)p Black 0 100 a Fy(1.7.2.)48 b Fu(Diagr)-5 b(ams.)0 217 y Fy(Comm)m(utativ)m(e)39 b(diagrams)e(are)g(the)g (categorist's)h(w)m(a)m(y)g(of)e(expressing)j(equations.)58 b(Natural)37 b(transfor-)0 333 y(mations)j(are)g(maps)g(b)s(et)m(w)m (een)i(functors;)i(one)c(w)m(a)m(y)h(to)e(think)i(of)e(them)h(is)g(as)g (a)g(deformation)f(of)h(one)0 449 y(construction)34 b(\(construed)g(as) e(a)h(functor\))f(in)m(to)h(another.)0 565 y(W)-8 b(e)33 b(b)s(egin)g(with)g(diagrams)g(in)g(a)f(graph)g(and)h(discuss)i(comm)m (utativit)m(y)g(later.)p Black 0 747 a(1.7.10.)e Fv(De\014nition.)p Black 42 w Fy(Let)h Fs(I)41 b Fy(and)34 b Ft(G)39 b Fy(b)s(e)34 b(graphs.)46 b(A)33 b Fu(diagr)-5 b(am)35 b(in)e Ft(G)39 b Fy(of)33 b Fu(shap)-5 b(e)33 b Fs(I)41 b Fy(is)34 b(a)f(homomorphism) 0 863 y Ft(D)41 b Fy(:)d Fs(I)46 b Ft(\000)-60 b(!)38 b(G)44 b Fy(of)39 b(graphs.)62 b Fs(I)46 b Fy(is)39 b(called)h(the)f Fu(shap)-5 b(e)39 b(gr)-5 b(aph)38 b Fy(of)g(the)h(diagram)g Ft(D)s Fy(.)61 b(W)-8 b(e)39 b(ha)m(v)m(e)h(th)m(us)g(giv)m(en)0 979 y(a)f(new)h(name)g(to)f(a)f(concept)j(whic)m(h)f(w)m(as)g(already)g (de\014ned)h(\(not)e(uncommon)h(in)f(mathematics\).)65 b(A)0 1096 y Fu(diagr)-5 b(am)31 b Fy(is)j(a)e(graph)g(homomorphism)i (from)e(a)h(di\013eren)m(t)g(p)s(oin)m(t)g(of)f(view.)p Black 0 1277 a(1.7.11.)e Fv(Example.)p Black 42 w Fy(A)m(t)h(\014rst)g (glance,)h(De\014nition)f(1.7.10)f(ma)m(y)i(seem)g(to)e(ha)m(v)m(e)j (little)e(to)f(do)h(with)h(what)0 1393 y(are)h(informally)g(called)g (diagrams,)g(for)f(example)1668 1616 y Fs(A)412 b(B)p 1770 1584 354 4 v 2041 1582 a Fo(-)1917 1543 y Fs(f)1910 1859 y(C)1710 1738 y(h)1773 1733 y Fo(@)1797 1757 y(@)-83 b(R)2131 1715 y Fs(g)2041 1733 y Fo(\000)2017 1757 y(\000)g(\011)0 1989 y Fy(The)37 b(connection)h(is)f(this:)51 b(a)37 b(diagram)f(in)g(the)h(sense)h(of)e(De\014nition)h(1.7.10)e(is)i (pictured)h(on)e(the)h(page)0 2106 y(with)31 b(a)g(dra)m(wing)g(of)g (no)s(des)g(and)g(arro)m(ws)g(as)g(for)f(example)j(in)e(the)g(previous) h(diagram,)f(whic)m(h)h(could)g(b)s(e)0 2222 y(the)h(picture)h(of)e(a)g (diagram)g Ft(D)j Fy(with)f(shap)s(e)f(graph)1687 2414 y Fs(i)448 b(j)p 1749 2393 390 4 v 2056 2391 a Fo(-)1916 2373 y Fs(u)1920 2670 y(k)1692 2535 y(w)1772 2543 y Fo(@)1796 2567 y(@)-83 b(R)2129 2535 y Fs(v)2040 2543 y Fo(\000)2015 2567 y(\000)g(\011)0 2806 y Fy(de\014ned)34 b(b)m(y)f Ft(D)s Fy(\()p Fs(i)p Fy(\))28 b(=)f Fs(A)p Fy(,)33 b Ft(D)s Fy(\()p Fs(j)6 b Fy(\))27 b(=)h Fs(B)5 b Fy(,)33 b Ft(D)s Fy(\()p Fs(k)s Fy(\))27 b(=)g Fs(C)7 b Fy(,)33 b Ft(D)s Fy(\()p Fs(u)p Fy(\))27 b(=)g Fs(f)11 b Fy(,)33 b Ft(D)s Fy(\()p Fs(v)t Fy(\))26 b(=)i Fs(g)36 b Fy(and)c Fs(D)s Fy(\()p Fs(w)s Fy(\))27 b(=)h Fs(h)p Fy(.)p Black 0 2987 a(1.7.12.)36 b Fv(Example.)p Black 45 w Fy(Here)h(is)h(an)e (example)i(illustrating)g(some)f(subtleties)i(in)m(v)m(olving)f(the)g (concept)f(of)0 3103 y(diagram.)48 b(Let)34 b Ft(G)40 b Fy(b)s(e)34 b(a)g(graph)g(with)h(ob)5 b(jects)35 b Fs(A)p Fy(,)g Fs(B)k Fy(and)34 b Fs(C)41 b Fy(\(and)34 b(ma)m(yb)s(e)h(others\))g(and)f(arro)m(ws)h Fs(f)41 b Fy(:)30 b Fs(A)0 3220 y Ft(\000)-60 b(!)37 b Fs(B)5 b Fy(,)40 b Fs(g)g Fy(:)e Fs(B)k Ft(\000)-60 b(!)37 b Fs(C)45 b Fy(and)39 b Fs(h)e Fy(:)g Fs(B)43 b Ft(\000)-60 b(!)37 b Fs(B)5 b Fy(.)60 b(Consider)40 b(these)f(t)m(w)m(o)g (diagrams,)h(where)f(here)g(w)m(e)g(use)h(the)0 3336 y(w)m(ord)33 b(`)p Fu(diagr)-5 b(am)p Fy(')32 b(informally:)1062 3558 y Fs(A)396 b(B)p 1165 3526 338 4 v 1420 3524 a Fo(-)1304 3486 y Fs(f)2019 3558 y(C)p 1638 3526 352 4 v 1907 3524 a Fo(-)1789 3486 y Fs(g)2323 3558 y(A)f(B)p 2425 3526 338 4 v 2680 3524 a Fo(-)2565 3486 y Fs(f)2762 3476 y Fn(\016\015)2762 3343 y(\017\014)p 2831 3472 1 4 v 2749 3470 a Fo(-)2909 3436 y Fy(h)0 3694 y(These)47 b(are)e(clearly)h(of)e (di\013eren)m(t)i(shap)s(es)g(\(again)f(using)g(the)h(w)m(ord)f(`)p Fu(shap)-5 b(e)p Fy(')44 b(informally\).)81 b(But)46 b(the)0 3810 y(diagram)1425 3992 y Fs(A)411 b(B)p 1526 3960 354 4 v 1797 3958 a Fo(-)1673 3919 y Fs(f)2396 3992 y(B)p 2017 3960 351 4 v 2285 3958 a Fo(-)2164 3939 y Fs(h)0 4107 y Fy(is)29 b(the)g(same)g(shap)s(e)g(as)g Ft(I)36 b Fy(ev)m(en)30 b(though)e(as)h(a)f(graph)g(it)g(is)h(the)g (same)g(as)g Ft(J)18 b Fy(.)42 b(T)-8 b(o)28 b(capture)h(the)g (di\013erence)0 4223 y(th)m(us)34 b(illustrated)f(b)s(et)m(w)m(een)i(a) d(graph)h(and)f(a)h(diagram,)f(w)m(e)i(in)m(tro)s(duce)f(t)m(w)m(o)g (shap)s(e)h(graphs)880 4502 y Ft(I)i Fy(:)60 b(1)448 b(2)p 1134 4470 390 4 v 1441 4468 a Fo(-)1302 4450 y Fs(u)2041 4502 y Fy(3)p 1646 4470 366 4 v 1929 4468 a Fo(-)1803 4450 y Fs(v)2285 4497 y Ft(J)46 b Fy(:)60 b(1)435 b(2)p 2564 4470 378 4 v 2859 4468 a Fo(-)2724 4450 y Fs(u)2926 4420 y Fn(\016\015)2926 4287 y(\017\014)p 2995 4416 1 4 v 2913 4414 a Fo(-)3073 4380 y Fy(w)0 4655 y(\(where,)33 b(as)g(will)f(b)s(e)g(customary)-8 b(,)34 b(w)m(e)f(use)g(n)m(um)m(b)s (ers)g(for)f(the)g(no)s(des)h(of)e(shap)s(e)i(graphs\).)43 b(No)m(w)33 b(the)f(\014rst)0 4771 y(diagram)43 b(is)h(seen)h(to)f(b)s (e)f(the)h(diagram)g Ft(D)49 b Fy(:)d Ft(I)54 b(\000)-60 b(!)46 b(G)k Fy(with)44 b Ft(D)s Fy(\(1\))i(=)g Fs(A)p Fy(,)h Ft(D)s Fy(\(2\))e(=)i Fs(B)5 b Fy(,)46 b Ft(D)s Fy(\(3\))g(=)g Fs(C)7 b Fy(,)0 4887 y Ft(D)s Fy(\()p Fs(u)p Fy(\))47 b(=)h Fs(f)11 b Fy(,)47 b(and)e Ft(D)s Fy(\()p Fs(v)t Fy(\))i(=)h Fs(g)t Fy(;)i(whereas)c(the)f(second)h (diagram)f(is)g Ft(E)56 b Fy(:)48 b Ft(J)67 b(\000)-60 b(!)48 b(G)i Fy(with)c Ft(E)9 b Fy(\(1\))47 b(=)h Fs(A)p Fy(,)0 5003 y Ft(E)9 b Fy(\(2\))38 b(=)g Fs(B)5 b Fy(,)41 b Ft(E)9 b Fy(\()p Fs(u)p Fy(\))38 b(=)g Fs(f)11 b Fy(,)41 b(and)e Ft(E)9 b Fy(\()p Fs(w)s Fy(\))38 b(=)g Fs(h)p Fy(.)63 b(Moreo)m(v)m(er,)43 b(the)c(third)g(diagram)g(is)h(just)f(lik) m(e)i Ft(D)g Fy(\(has)f(the)0 5119 y(same)33 b(shap)s(e\),)h(except)g (that)e Fs(v)k Fy(go)s(es)d(to)f Fs(h)h Fy(and)g(3)f(go)s(es)h(to)f Fs(B)5 b Fy(.)p Black 0 5301 a(1.7.13.)30 b Fv(Remark.)p Black 41 w Fy(Our)h(de\014nition)h(in)f(1.7.10)g(of)f(a)h(diagram)g(as) g(a)f(graph)h(homomorphism,)i(with)f(the)0 5417 y(domain)h(graph)f(b)s (eing)h(the)g(shap)s(e,)g(captures)h(b)s(oth)e(the)h(follo)m(wing)g (ideas:)p Black Black eop end %%Page: 31 31 TeXDict begin 31 30 bop Black 1544 -99 a Fw(Natural)26 b(transformations)1469 b(31)p Black Black 148 100 a Fy(\(1\))p Black 42 w(A)28 b(diagram)h(can)g(ha)m(v)m(e)h(rep)s(eated)g(lab)s(els) f(on)g(its)g(no)s(des)g(and)g(\(although)g(the)g(examples)i(did)e(not) 315 217 y(sho)m(w)k(it\))g(on)f(its)h(arro)m(ws,)h(and)p Black 148 333 a(\(2\))p Black 42 w(Tw)m(o)29 b(diagrams)g(can)f(ha)m(v) m(e)i(the)f(same)g(lab)s(els)g(on)g(their)g(no)s(des)g(and)f(arro)m(ws) h(but)g(b)s(e)g(of)f(di\013eren)m(t)315 449 y(shap)s(es:)61 b(the)41 b(second)h(diagram)e(and)h(the)g(third)g(diagram)g(are)g (di\013eren)m(t)h(diagrams)f(b)s(ecause)315 565 y(they)33 b(ha)m(v)m(e)h(di\013eren)m(t)g(shap)s(es.)0 740 y(1.7.3.)48 b Fu(Commutative)35 b(diagr)-5 b(ams.)0 856 y Fy(When)38 b(the)g(target)f(graph)h(of)e(a)i(diagram)f(is)h(the)g(underlying)h (graph)e(of)g(a)g(category)h(some)g(new)g(p)s(os-)0 973 y(sibilities)h(arise,)f(in)f(particular)g(the)g(concept)h(of)e(comm)m (utativ)m(e)j(diagram,)e(whic)m(h)i(is)e(the)g(categorist's)0 1089 y(w)m(a)m(y)h(of)d(expressing)k(equations.)56 b(In)36 b(this)h(situation,)h(w)m(e)f(will)g(not)f(distinguish)i(in)f(notation) f(b)s(et)m(w)m(een)0 1205 y(the)e(category)f(and)g(its)h(underlying)g (graph:)45 b(if)33 b Fs(I)41 b Fy(is)34 b(a)e(graph)h(and)h Ft(C)39 b Fy(is)34 b(a)e(category)i(w)m(e)g(will)g(refer)f(to)g(a)0 1321 y(diagram)f Ft(D)e Fy(:)e Fs(I)35 b Ft(\000)-59 b(!)27 b(C)6 b Fy(.)44 b(W)-8 b(e)32 b(sa)m(y)h(that)f Ft(D)i Fy(is)f Fu(c)-5 b(ommutative)31 b Fy(\(or)h Fu(c)-5 b(ommutes)p Fy(\))31 b(pro)m(vided)j(for)d(an)m(y)i(no)s(des)g Fs(i)0 1438 y Fy(and)g Fs(j)38 b Fy(of)32 b Fs(I)41 b Fy(and)32 b(an)m(y)i(t)m(w)m(o)f(paths)955 1916 y Fs(i)973 1751 y(s)1019 1766 y Fr(1)1040 1815 y Fo(\000)1113 1742 y(\000)-83 b(\022)1220 1618 y Fs(k)1271 1633 y Fr(1)1610 1618 y Fs(k)1661 1633 y Fr(2)p 1339 1593 242 4 v 1497 1591 a Fo(-)1417 1557 y Fs(s)1463 1572 y Fr(2)1898 1618 y Fs(:)17 b(:)g(:)p 1729 1593 133 4 v 1779 1591 a Fo(-)2146 1615 y Fs(k)2197 1630 y Fp(n)p Fq(\000)p Fr(2)p 2033 1593 84 4 v 2034 1591 a Fo(-)2536 1615 y Fs(k)2587 1630 y Fp(n)p Fq(\000)p Fr(1)p 2362 1593 145 4 v 2424 1591 a Fo(-)2343 1550 y Fs(s)2389 1565 y Fp(n)p Fq(\000)p Fr(1)2899 1907 y Fs(j)2836 1751 y(s)2882 1766 y Fp(n)2698 1742 y Fo(@)2771 1815 y(@)-83 b(R)983 2053 y Fs(t)1018 2068 y Fr(1)1040 2035 y Fo(@)1113 2108 y(@)g(R)1230 2203 y Fs(l)1259 2218 y Fr(1)1620 2203 y Fs(l)1649 2218 y Fr(2)p 1328 2178 264 4 v 1508 2176 a Fo(-)1422 2142 y Fs(t)1457 2157 y Fr(2)1898 2203 y Fs(:)17 b(:)g(:)p 1718 2178 144 4 v 1779 2176 a Fo(-)2147 2200 y Fs(l)2176 2215 y Fp(m)p Fq(\000)p Fr(2)p 2033 2178 85 4 v 2035 2176 a Fo(-)2537 2200 y Fs(l)2566 2215 y Fp(m)p Fq(\000)p Fr(1)p 2361 2178 147 4 v 2425 2176 a Fo(-)2339 2135 y Fs(t)2374 2150 y Fp(m)p Fq(\000)p Fr(1)2836 2053 y Fs(t)2871 2068 y Fp(m)2698 2108 y Fo(\000)2771 2035 y(\000)-83 b(\022)0 2340 y Fy(from)32 b Fs(i)h Fy(to)f Fs(j)39 b Fy(in)33 b Fs(I)8 b Fy(,)32 b(the)h(t)m(w)m(o)g(paths)910 2845 y Ft(D)s Fs(i)888 2692 y Ft(D)s Fs(s)1014 2707 y Fr(1)1035 2743 y Fo(\000)1108 2670 y(\000)-83 b(\022)1174 2546 y Ft(D)s Fs(k)1305 2561 y Fr(1)1564 2546 y Ft(D)s Fs(k)1695 2561 y Fr(2)p 1373 2521 162 4 v 1452 2519 a Fo(-)1372 2485 y Ft(D)s Fs(s)1498 2500 y Fr(2)1893 2546 y Fs(:)17 b(:)g(:)p 1763 2521 93 4 v 1773 2519 a Fo(-)2100 2543 y Ft(D)s Fs(k)2231 2558 y Fp(n)p Fq(\000)p Fr(2)p 2028 2521 44 4 v 1988 2519 a Fo(-)2490 2543 y Ft(D)s Fs(k)2621 2558 y Fp(n)p Fq(\000)p Fr(1)p 2397 2521 65 4 v 2378 2519 a Fo(-)2298 2478 y Ft(D)s Fs(s)2424 2493 y Fp(n)p Fq(\000)p Fr(1)2854 2836 y Ft(D)s Fs(j)2831 2692 y Ft(D)s Fs(s)2957 2707 y Fp(n)2692 2670 y Fo(@)2765 2743 y(@)-83 b(R)898 2984 y Ft(D)s Fs(t)1013 2999 y Fr(1)1035 2963 y Fo(@)1108 3036 y(@)g(R)1185 3131 y Ft(D)s Fs(l)1294 3146 y Fr(1)1575 3131 y Ft(D)s Fs(l)1684 3146 y Fr(2)p 1362 3106 186 4 v 1464 3104 a Fo(-)1377 3070 y Ft(D)s Fs(t)1492 3085 y Fr(2)1893 3131 y Fs(:)17 b(:)g(:)p 1752 3106 105 4 v 1774 3104 a Fo(-)2101 3128 y Ft(D)s Fs(l)2210 3143 y Fp(m)p Fq(\000)p Fr(2)p 2028 3106 45 4 v 1989 3104 a Fo(-)2491 3128 y Ft(D)s Fs(l)2600 3143 y Fp(m)p Fq(\000)p Fr(1)p 2396 3106 67 4 v 2379 3104 a Fo(-)2293 3063 y Ft(D)s Fs(t)2408 3078 y Fp(m)p Fq(\000)p Fr(1)2831 2984 y Ft(D)s Fs(t)2946 2999 y Fp(m)2692 3036 y Fo(\000)2765 2963 y(\000)-83 b(\022)0 3268 y Fy(comp)s(ose)33 b(to)g(the)g(same)g (arro)m(w)g(in)g Ft(C)6 b Fy(.)43 b(This)34 b(means)g(that)870 3426 y Ft(D)s Fs(s)996 3441 y Fp(n)1065 3426 y Ft(\016)22 b(D)s Fs(s)1263 3441 y Fp(n)p Fq(\000)p Fr(1)1422 3426 y Ft(\016)g Fs(:)17 b(:)g(:)k Ft(\016)h(D)s Fs(s)1828 3441 y Fr(1)1895 3426 y Fy(=)28 b Ft(D)s Fs(t)2114 3441 y Fp(m)2202 3426 y Ft(\016)22 b(D)s Fs(t)2389 3441 y Fp(m)p Fq(\000)p Fr(1)2568 3426 y Ft(\016)g Fs(:)17 b(:)g(:)k Ft(\016)h(D)s Fs(t)2963 3441 y Fr(1)3003 3426 y Fs(:)p Black 0 3601 a Fy(1.7.14.)31 b Fv(Remark)37 b Fy(\(Muc)m(h)c(ado)e(ab)s (out)g(nothing\))p Fv(.)p Black 41 w Fy(There)i(is)f(one)g(subtlet)m(y) i(to)d(the)h(de\014nition)h(of)e(com-)0 3718 y(m)m(utativ)m(e)37 b(diagram:)50 b(what)36 b(happ)s(ens)h(if)f(one)g(of)f(the)i(n)m(um)m (b)s(ers)g Fs(m)g Fy(or)e Fs(n)h Fy(in)g(the)g(last)g(diagram)g(should) 0 3834 y(happ)s(en)c(to)f(b)s(e)g(0?)43 b(If,)32 b(sa)m(y)-8 b(,)32 b Fs(m)c Fy(=)g(0,)j(then)h(w)m(e)g(in)m(terpret)h(the)f(ab)s(o) m(v)m(e)g(equation)g(to)f(b)s(e)g(meaningful)h(only)0 3950 y(if)k(the)g(no)s(des)g Fs(i)g Fy(and)g Fs(j)42 b Fy(are)36 b(the)g(same)h(\(y)m(ou)f(go)f(no)m(where)j(on)d(an)h(empt) m(y)h(path\))f(and)g(the)g(meaning)h(in)0 4066 y(this)c(case)h(is)f (that)1303 4184 y Ft(D)s Fs(s)1429 4199 y Fp(n)1498 4184 y Ft(\016)22 b(D)s Fs(s)1696 4199 y Fp(n)p Fq(\000)p Fr(1)1854 4184 y Ft(\016)g Fs(:)17 b(:)g(:)22 b Ft(\016)g(D)s Fs(s)2261 4199 y Fr(1)2328 4184 y Fy(=)27 b(id)2512 4199 y Fq(D)r Fp(i)0 4321 y Fy(\(y)m(ou)33 b(do)g(nothing)f(on)h(an)f(empt)m (y)i(path\).)44 b(In)33 b(particular,)g(a)f(diagram)g Ft(D)j Fy(based)f(on)e(the)h(graph)1950 4555 y(i)1882 4487 y Fn(\016\015)1882 4354 y(\017)o(\014)p 1950 4484 1 4 v 1868 4482 a Fo(-)2028 4448 y Fy(e)0 4693 y(comm)m(utes)j(if)e (and)h(only)g(if)f Ft(D)s Fy(\()p Fs(e)p Fy(\))g(is)h(the)f(iden)m(tit) m(y)j(arro)m(w)d(from)g Ft(D)s Fy(\()p Fs(i)p Fy(\))g(to)g Ft(D)s Fy(\()p Fs(i)p Fy(\).)49 b(Note,)35 b(and)f(note)h(w)m(ell,)0 4809 y(that)d(b)s(oth)h(shap)s(e)g(graphs)1429 5043 y(i)1361 4975 y Fn(\016\015)1361 4842 y(\017\014)p 1429 4971 V 1347 4969 a Fo(-)1507 4935 y Fy(e)1657 5043 y(and)2042 5066 y Fs(i)350 b(j)p 2104 5045 293 4 v 2314 5043 a Fo(-)2225 5024 y Fs(d)0 5184 y Fy(ha)m(v)m(e)34 b(mo)s(dels)f(that)g(one)g(migh)m (t)g(think)g(to)f(represen)m(t)j(the)e(diagram)1950 5417 y(A)1882 5349 y Fn(\016\015)1882 5216 y(\017)o(\014)p 1950 5346 1 4 v 1868 5344 a Fo(-)2028 5310 y Fy(f)p Black Black eop end %%Page: 32 32 TeXDict begin 32 31 bop Black 0 -99 a Fw(32)1668 b(F)-6 b(oundations)p Black 0 100 a Fy(but)28 b(the)g(diagram)g(based)g(on)g (the)g(\014rst)g(graph)g(comm)m(utes)h(if)f(and)g(only)g(if)f Fs(f)39 b Fy(=)27 b(id)3027 115 y Fp(A)3084 100 y Fy(,)i(while)g(the)f (diagram)0 217 y(based)j(on)e(the)h(second)h(graph)e(comm)m(utes)j (automatically)e(\(no)f(t)m(w)m(o)h(no)s(des)h(ha)m(v)m(e)g(more)e (than)h(one)g(path)0 333 y(b)s(et)m(w)m(een)j(them)f(so)f(the)g(comm)m (utativit)m(y)i(condition)f(is)f(v)-5 b(acuous\).)44 b(W)-8 b(e)31 b(will)h(alw)m(a)m(ys)h(picture)f(diagrams)0 449 y(so)27 b(that)f(distinct)h(no)s(des)g(of)f(the)h(shap)s(e)g(graph) f(are)g(represen)m(ted)j(b)m(y)e(distinct)h(\(but)e(p)s(ossibly)i(iden) m(tically)0 565 y(lab)s(eled\))37 b(no)s(des)g(in)g(the)g(picture.)57 b(Th)m(us)38 b(a)e(diagram)h(based)g(on)g(the)g(second)g(graph)g(in)g (whic)m(h)h Fs(d)e Fy(go)s(es)0 681 y(to)c Fs(f)43 b Fy(and)33 b Fs(i)g Fy(and)g Fs(j)38 b Fy(b)s(oth)32 b(go)g(to)h Fs(A)f Fy(will)i(b)s(e)e(pictured)i(as)1712 891 y Fs(A)303 b(A:)p 1814 859 246 4 v 1977 857 a Fo(-)1907 819 y Fs(f)0 1014 y Fy(In)42 b(consequence,)48 b(one)43 b(can)f(alw)m(a)m(ys)i (deduce)g(the)e(shap)s(e)h(graph)f(of)g(a)f(diagram)h(from)g(the)h(w)m (a)m(y)g(it)f(is)0 1130 y(pictured,)33 b(except)g(of)e(course)i(for)e (the)h(actual)g(names)g(of)g(the)g(no)s(des)g(and)f(arro)m(ws)i(of)e (the)h(shap)s(e)g(graph.)p Black 0 1284 a(1.7.15.)26 b Fv(Example)33 b Fy(\(Examples)28 b(of)f(comm)m(utativ)m(e)i(diagrams) e({)g(and)g(others\))p Fv(.)p Black 38 w Fy(The)h(protot)m(ypical)g (com-)0 1400 y(m)m(utativ)m(e)34 b(diagram)f(is)g(the)g(triangle)1668 1569 y Fs(A)412 b(B)p 1770 1537 354 4 v 2041 1535 a Fo(-)1917 1496 y Fs(f)1910 1813 y(C)1710 1691 y(h)1773 1686 y Fo(@)1797 1710 y(@)-83 b(R)2131 1668 y Fs(g)2041 1686 y Fo(\000)2017 1710 y(\000)g(\011)0 1909 y Fy(that)30 b(comm)m(utes)h(if)f(and)g(only) g(if)g Fs(h)g Fy(is)g(the)g(comp)s(osite)h Fs(g)20 b Ft(\016)c Fs(f)11 b Fy(.)42 b(The)31 b(reason)f(this)h(is)f(protot)m (ypical)h(is)f(that)0 2026 y(an)m(y)35 b(comm)m(utativ)m(e)i(diagram)d ({)g(unless)j(it)d(in)m(v)m(olv)m(es)k(an)c(empt)m(y)i(path)f({)f(can)h (b)s(e)g(replaced)g(b)m(y)h(a)e(set)h(of)0 2142 y(comm)m(utativ)m(e)41 b(triangles.)63 b(This)40 b(fact)e(is)i(easy)f(to)g(sho)m(w)h(and)f (not)f(particularly)i(enligh)m(tening,)i(so)d(w)m(e)0 2258 y(are)33 b(con)m(ten)m(t)g(to)g(giv)m(e)g(an)g(example.)45 b(The)33 b(diagram)1723 2448 y Fs(A)314 b(B)p 1825 2416 257 4 v 1999 2414 a Fo(-)1924 2395 y Fs(h)1721 2838 y(C)j(D)p 1827 2806 253 4 v 1997 2804 a Fo(-)1925 2892 y Fs(k)p 1758 2736 4 254 v 1759 2736 a Fo(?)1662 2634 y Fs(f)p 2148 2736 V 2149 2736 a Fo(?)2188 2621 y Fs(g)0 3010 y Fy(comm)m(utes)34 b(if)f(and)g(only)g(if)f(the)h(t)m(w)m(o)g (diagrams)1195 3688 y Fs(C)414 b(D)p 1301 3656 351 4 v 1569 3654 a Fo(-)1448 3742 y Fs(k)1197 3200 y(A)1537 3435 y(g)26 b Ft(\016)c Fs(h)1302 3318 y Fo(@)1385 3401 y(@)1468 3484 y(@)1551 3567 y(@)1570 3585 y(@)-83 b(R)p 1232 3586 4 351 v 1233 3586 a(?)1136 3435 y Fs(f)2151 3200 y(A)412 b(B)p 2253 3168 354 4 v 2524 3166 a Fo(-)2402 3147 y Fs(h)2634 3688 y(D)2164 3435 y(k)26 b Ft(\016)c Fs(f)2256 3318 y Fo(@)2339 3401 y(@)2422 3484 y(@)2505 3567 y(@)2524 3585 y(@)-83 b(R)p 2674 3586 4 351 v 2675 3586 a(?)2714 3422 y Fs(g)0 3865 y Fy(comm)m(ute)34 b(\(in)f(fact)f(if) h(and)f(only)h(if)g(either)g(one)g(do)s(es\).)p Black 0 4019 a(1.7.16.)d Fv(De\014nition.)p Black 41 w Fy(Let)h Ft(C)37 b Fy(b)s(e)32 b(a)e(category)-8 b(.)43 b(A)31 b(morphism)h Fs(f)39 b Fy(:)27 b Fs(X)36 b Ft(\000)-60 b(!)28 b Fs(Y)52 b Fy(is)31 b(called)h(an)f Fu(isomorphism)p Fy(,)0 4135 y(if)h(there)i(exists)g(a)e(morphism)i Fs(g)d Fy(:)d Fs(Y)49 b Ft(\000)-60 b(!)28 b Fs(X)40 b Fy(with)33 b Fs(g)25 b Ft(\016)d Fs(f)39 b Fy(=)27 b(1)2255 4150 y Fp(X)2355 4135 y Fy(and)33 b Fs(f)g Ft(\016)22 b Fs(g)30 b Fy(=)e(1)2928 4150 y Fp(Y)2989 4135 y Fy(.)0 4288 y Fs(g)38 b Fy(is)c(uniquely)j(determined)f(b)m(y)f Fs(f)45 b Fy(and)35 b(is)g(itself)g(an)f(isomorphism.)50 b(W)-8 b(e)35 b(use)g(the)g(notation)f Fs(f)3564 4252 y Fq(\000)p Fr(1)3689 4288 y Fy(:=)d Fs(g)t Fy(.)0 4405 y(Th)m(us)j(w)m(e)g(ha)m(v) m(e)g(\()p Fs(f)713 4368 y Fq(\000)p Fr(1)807 4405 y Fy(\))845 4368 y Fq(\000)p Fr(1)967 4405 y Fy(=)27 b Fs(g)1121 4368 y Fq(\000)p Fr(1)1242 4405 y Fy(=)h Fs(f)11 b Fy(.)p Black 0 4558 a(1.7.17.)35 b Fv(Example.)p Black 44 w Fy(An)h(arro)m(w)g Fs(f)43 b Fy(:)33 b Fs(A)g Ft(\000)-59 b(!)32 b Fs(B)41 b Fy(is)36 b(an)f(isomorphism)j(with)e(in)m(v)m(erse)i Fs(g)e Fy(:)d Fs(B)38 b Ft(\000)-60 b(!)33 b Fs(A)i Fy(if)h(and)0 4674 y(only)d(if)p 1770 4811 357 4 v 2044 4809 a Fo(-)1919 4771 y Fs(f)1668 4863 y(A)412 b(B)p 1770 4850 V 1770 4848 a Fo(\033)1923 4910 y Fs(g)0 5031 y Fy(comm)m(utes.)59 b(The)38 b(reason)f(for)g(this)g(is)h(that)f(for)f(this)i(diagram)f(to) g(comm)m(ute,)i(the)f(t)m(w)m(o)f(paths)h(\(\))f(and)0 5148 y(\()p Fs(g)t(;)17 b(f)11 b Fy(\))44 b(from)i Fs(A)g Fy(to)f Fs(A)h Fy(m)m(ust)h(comp)s(ose)f(to)g(the)g(same)h(v)-5 b(alue)46 b(in)g(the)g(diagram,)j(whic)m(h)e(means)g(that)0 5264 y Fs(g)25 b Ft(\016)d Fs(f)39 b Fy(=)27 b(1)383 5279 y Fp(A)440 5264 y Fy(.)44 b(A)32 b(similar)h(observ)-5 b(ation)34 b(sho)m(ws)g(that)e Fs(f)h Ft(\016)22 b Fs(g)36 b Fy(m)m(ust)d(b)s(e)g(1)2605 5279 y Fp(B)2666 5264 y Fy(.)-438 5417 y(20.05.04)p Black Black eop end %%Page: 33 33 TeXDict begin 33 32 bop Black 1544 -99 a Fw(Natural)26 b(transformations)1469 b(33)p Black 0 100 a Fy(1.7.4.)48 b Fu(Gr)-5 b(aph)35 b(homomorphisms)e(by)i(c)-5 b(ommutative)34 b(diagr)-5 b(ams.)p Black 0 278 a Fy(1.7.18.)43 b Fv(Remark.)p Black 48 w Fy(The)i(de\014nition)g(of)e(graph)h(homomorphism)h(in)f (1.1.2)f(can)h(b)s(e)g(expressed)j(b)m(y)d(a)0 394 y(comm)m(utativ)m(e) 36 b(diagram.)48 b(Let)34 b Fs(')c Fy(=)g(\()p Fs(')1484 409 y Fr(0)1523 394 y Fy(;)17 b Fs(')1631 409 y Fr(1)1670 394 y Fy(\))34 b(b)s(e)g(a)g(graph)g(homomorphism)h(from)f Ft(G)40 b Fy(to)33 b Ft(H)i Fy(.)48 b(F)-8 b(or)33 b(an)m(y)0 510 y(arro)m(w)38 b Fs(u)e Fy(:)h Fs(m)h Ft(\000)-60 b(!)37 b Fs(n)h Fy(in)g Ft(G)44 b Fy(,)39 b(1.1.2)f(requires)i(that)d Fs(')1987 525 y Fr(1)2027 510 y Fy(\()p Fs(u)p Fy(\))f(:)h Fs(')2323 525 y Fr(0)2362 510 y Fy(\()p Fs(m)p Fy(\))g Ft(\000)-59 b(!)36 b Fs(')2778 525 y Fr(0)2818 510 y Fy(\()p Fs(n)p Fy(\))i(in)g Ft(H)q Fy(.)60 b(This)39 b(sa)m(ys)g(that)0 626 y Fs(')64 641 y Fr(0)103 626 y Fy(\(source)q(\()p Fs(u)p Fy(\)\))27 b(=)h(source)q(\()p Fs(')1076 641 y Fr(1)1115 626 y Fy(\()p Fs(u)p Fy(\)\),)h(and)g(a)g (similar)h(statemen)m(t)g(ab)s(out)f(targets.)42 b(In)30 b(other)f(w)m(ords,)i(these)0 743 y(diagrams)i(m)m(ust)h(comm)m(ute:)0 1286 y(\(4\))1022 923 y Ft(G)1081 938 y Fr(1)1400 923 y Ft(H)1484 938 y Fr(1)p 1149 898 222 4 v 1288 896 a Fo(-)1208 858 y Fs(')1272 873 y Fr(1)1022 1313 y Ft(G)1081 1328 y Fr(0)1400 1313 y Ft(H)1484 1328 y Fr(0)p 1149 1288 V 1288 1286 a Fo(-)1208 1348 y Fs(')1272 1363 y Fr(0)p 1070 1218 4 254 v 1071 1218 a Fo(?)766 1113 y Fy(source)p 1460 1218 V 1461 1218 a Fo(?)1500 1113 y Fy(source)2400 923 y Ft(G)2459 938 y Fr(1)2777 923 y Ft(H)2861 938 y Fr(1)p 2527 898 222 4 v 2666 896 a Fo(-)2586 858 y Fs(')2650 873 y Fr(1)2400 1313 y Ft(G)2459 1328 y Fr(0)2777 1313 y Ft(H)2861 1328 y Fr(0)p 2527 1288 V 2666 1286 a Fo(-)2586 1348 y Fs(')2650 1363 y Fr(0)p 2448 1218 4 254 v 2449 1218 a Fo(?)2156 1112 y Fy(target)p 2838 1218 V 2839 1218 a Fo(?)2878 1112 y Fy(target)0 1490 y(In)h(these)g(t)m(w)m(o)g(diagrams)g(the)f(t)m(w)m(o)h(arro)m(ws) g(lab)s(eled)g(`source')h(are)e(of)g(course)h(di\013eren)m(t)g (functions;)i(one)0 1606 y(is)c(the)g(source)h(function)f(for)f Ft(G)38 b Fy(and)33 b(the)g(other)g(for)f Ft(H)q Fy(.)43 b(A)33 b(similar)g(remark)h(is)f(true)g(of)f(`target'.)0 1722 y(This)25 b(p)s(oin)m(t)f(of)f(view)i(pro)m(vides)h(a)d(pictorial) h(pro)s(of)f(that)g(the)h(comp)s(osite)h(of)e(t)m(w)m(o)i(graph)e (homomorphisms)0 1838 y(is)47 b(a)f(graph)g(homomorphism)i(\(see)f (1.3.8\(26\)\).)83 b(If)47 b Fs(')k Fy(:)g Ft(G)57 b(\000)-60 b(!)51 b(H)c Fy(and)g Fs( )55 b Fy(:)c Ft(H)h(\000)-59 b(!)50 b(K)e Fy(are)e(graph)0 1954 y(homomorphisms,)31 b(then)e(to)f(see)h(that)f Fs( )17 b Ft(\016)c Fs(')29 b Fy(is)f(a)g(graph)g(homomorphism)i(requires)g(c)m(hec)m(king)g(that)f (the)0 2071 y(outside)34 b(rectangle)f(b)s(elo)m(w)g(comm)m(utes,)i (and)d(similarly)i(with)g(target)e(in)h(place)g(of)f(source:)0 2642 y(\(5\))1511 2278 y Ft(G)1570 2293 y Fr(1)1888 2278 y Ft(H)1972 2293 y Fr(1)p 1638 2253 222 4 v 1776 2251 a Fo(-)1697 2214 y Fs(')1761 2229 y Fr(1)1511 2668 y Ft(G)1570 2683 y Fr(0)1888 2668 y Ft(H)1972 2683 y Fr(0)p 1638 2644 V 1776 2642 a Fo(-)1697 2703 y Fs(')1761 2718 y Fr(0)p 1558 2573 4 254 v 1560 2573 a Fo(?)1255 2468 y Fy(source)p 1948 2573 V 1950 2573 a Fo(?)1645 2468 y Fy(source)1888 2278 y Ft(H)1972 2293 y Fr(1)2282 2278 y Ft(K)2358 2293 y Fr(1)p 2041 2253 213 4 v 2170 2251 a Fo(-)2096 2213 y Fs( )2159 2228 y Fr(1)1888 2668 y Ft(H)1972 2683 y Fr(0)2282 2668 y Ft(K)2358 2683 y Fr(0)p 2041 2644 V 2170 2642 a Fo(-)2096 2730 y Fs( )2159 2745 y Fr(0)p 2338 2573 4 254 v 2340 2573 a Fo(?)2379 2468 y Fy(source)0 2872 y(The)41 b(outside)h(rectangle)f(comm)m(utes)i(b)s (ecause)f(the)e(t)m(w)m(o)i(squares)g(comm)m(ute.)69 b(This)41 b(can)g(b)s(e)g(c)m(hec)m(k)m(ed)0 2988 y(b)m(y)j(tracing)f (\(men)m(tally)h(or)f(with)g(a)g(\014nger)g(or)g(p)s(oin)m(ter\))g(the) h(paths)f(from)g Ft(G)2940 3003 y Fr(1)3022 2988 y Fy(to)g Ft(K)3228 3003 y Fr(0)3310 2988 y Fy(to)g(v)m(erify)h(that)0 3105 y(source)18 b Ft(\016)p Fs( )396 3120 y Fr(1)435 3105 y Ft(\016)p Fs(')549 3120 y Fr(1)616 3105 y Fy(=)28 b Fs( )783 3120 y Fr(0)823 3105 y Ft(\016)p Fy(source)17 b Ft(\016)p Fs(')1269 3120 y Fr(1)1330 3105 y Fy(b)s(ecause)23 b(the)f(righ)m(t)g(square)h(comm)m(utes,)j(and)c(that)f Fs( )3277 3120 y Fr(0)3317 3105 y Ft(\016)p Fy(source)d Ft(\016)p Fs(')3764 3120 y Fr(1)3830 3105 y Fy(=)0 3221 y Fs( )63 3236 y Fr(0)128 3221 y Ft(\016)25 b Fs(')267 3236 y Fr(0)332 3221 y Ft(\016)g Fy(source)38 b(b)s(ecause)h(the)e (left)h(square)g(comm)m(utes.)59 b(The)39 b(v)m(eri\014cation)f(pro)s (cess)h(just)e(describ)s(ed)0 3337 y(is)i(called)h(`)p Fu(chasing)g(the)g(diagr)-5 b(am)p Fy('.)62 b(Of)39 b(course,)i(one)e (can)h(v)m(erify)g(the)f(required)i(fact)d(b)m(y)i(writing)g(the)0 3453 y(equations)27 b(do)m(wn,)h(but)d(those)h(equations)h(hide)f(the)g (source)h(and)e(target)h(information)f(giv)m(en)h(in)g(diagram)0 3570 y(and)36 b(th)m(us)h(pro)m(vide)g(a)f(p)s(ossibilit)m(y)i(of)d (writing)h(an)g(imp)s(ossible)i(comp)s(osite)f(do)m(wn.)54 b(F)-8 b(or)35 b(man)m(y)i(p)s(eople,)0 3686 y(the)g(diagram)g(is)h(m)m (uc)m(h)g(easier)g(to)e(remem)m(b)s(er)j(than)e(the)g(equations.)58 b(Ho)m(w)m(ev)m(er,)41 b(diagrams)c(are)g(more)0 3802 y(than)f(informal)g(aids;)i(they)f(are)f(formally-de\014ned)i (mathematical)e(ob)5 b(jects)38 b(just)e(lik)m(e)h(automata)f(and)0 3918 y(categories.)47 b(The)35 b(pro)s(of)e(in)g(1.4.1)g(that)h(the)g (comp)s(osition)g(of)f(arro)m(ws)h(in)g(a)f(slice)i(giv)m(es)g(another) f(arro)m(w)0 4035 y(in)f(the)g(category)g(can)g(b)s(e)f(represen)m(ted) j(b)m(y)f(a)e(similar)i(diagram:)1511 4236 y Fs(C)308 b(C)1966 4200 y Fq(0)p 1617 4202 244 4 v -208 w Fo(-)1710 4181 y Fs(h)2270 4236 y(C)2347 4200 y Fq(00)p 2018 4202 223 4 v -227 w Fo(-)2090 4181 y Fs(h)2146 4145 y Fq(0)1903 4624 y Fs(A)1625 4420 y(f)1618 4351 y Fo(@)1701 4434 y(@)1784 4517 y(@)1788 4522 y(@)-83 b(R)p 1938 4522 4 254 v 68 w(?)1978 4422 y Fs(f)2037 4386 y Fq(0)2195 4422 y Fs(f)2254 4386 y Fq(00)2178 4351 y Fo(\000)2095 4434 y(\000)2012 4517 y(\000)2008 4522 y(\000)g(\011)0 4752 y Fy(These)34 b(examples)f(are)f(instances)i(of)d(pasting)i(comm)m (utativ)m(e)h(diagrams)e(together)g(to)f(get)h(bigger)g(ones.)0 4929 y(1.7.5.)48 b Fu(Asso)-5 b(ciativity)35 b(by)g(c)-5 b(ommutative)35 b(diagr)-5 b(ams.)0 5046 y Fy(The)30 b(fact)g(that)f(the)h(m)m(ultiplication)h(in)e(a)h(monoid)f(or)h (semigroup)g(is)g(asso)s(ciativ)m(e)h(can)f(b)s(e)f(expressed)k(as)0 5162 y(the)g(assertion)h(that)e(a)g(certain)h(diagram)g(in)g Fv(Set)f Fy(comm)m(utes.)0 5278 y(Let)h Fs(S)38 b Fy(b)s(e)33 b(a)f(semigroup.)45 b(De\014ne)33 b(the)g(follo)m(wing)g(functions:)p Black 148 5417 a(\(1\))p Black 42 w(m)m(ult)28 b(:)g Fs(S)g Ft(\002)22 b Fs(S)34 b Ft(\000)-60 b(!)28 b Fs(S)38 b Fy(satis\014es)c(m)m(ult)q(\()p Fs(x;)17 b(y)t Fy(\))27 b(=)g Fs(xy)t Fy(.)p Black Black eop end %%Page: 34 34 TeXDict begin 34 33 bop Black 0 -99 a Fw(34)1668 b(F)-6 b(oundations)p Black Black 148 100 a Fy(\(2\))p Black 42 w Fs(S)27 b Ft(\002)c Fy(m)m(ult)29 b(:)e Fs(S)h Ft(\002)23 b Fs(S)28 b Ft(\002)22 b Fs(S)34 b Ft(\000)-60 b(!)28 b Fs(S)g Ft(\002)22 b Fs(S)39 b Fy(satis\014es)34 b(\()p Fs(S)28 b Ft(\002)22 b Fy(m)m(ult)q(\)\()p Fs(x;)17 b(y)t(;)g(z)t Fy(\))27 b(=)h(\()p Fs(x;)17 b(y)t(z)t Fy(\).)p Black 148 217 a(\(3\))p Black 42 w(m)m(ult)g Ft(\002)p Fs(S)34 b Fy(:)28 b Fs(S)g Ft(\002)22 b Fs(S)28 b Ft(\002)23 b Fs(S)33 b Ft(\000)-59 b(!)27 b Fs(S)h Ft(\002)23 b Fs(S)38 b Fy(satis\014es)c(\(m)m(ult)18 b Ft(\002)p Fs(S)6 b Fy(\)\()p Fs(x;)17 b(y)t(;)g(z)t Fy(\))27 b(=)h(\()p Fs(xy)t(;)17 b(z)t Fy(\).)0 368 y(That)33 b(the)g(follo)m(wing)g (diagram)f(comm)m(utes)j(is)e(exactly)h(the)f(asso)s(ciativ)m(e)h(la)m (w.)1420 591 y Fs(S)27 b Ft(\002)c Fs(S)28 b Ft(\002)23 b Fs(S)438 b(S)28 b Ft(\002)23 b Fs(S)p 1890 562 376 4 v 2183 560 a Fo(-)1884 534 y Fs(S)28 b Ft(\002)23 b Fy(m)m(ult)1513 981 y Fs(S)28 b Ft(\002)23 b Fs(S)626 b(S)p 1795 953 564 4 v 2276 951 a Fo(-)1978 1039 y Fy(m)m(ult)p 1638 882 4 254 v 1640 882 a Fo(?)1243 786 y Fy(m)m(ult)18 b Ft(\002)p Fs(S)p 2418 882 V 2420 882 a Fo(?)2459 790 y Fy(m)m(ult)0 1191 y(Normally)-8 b(,)29 b(asso)s(ciativit)m(y)h(is)e (expressed)j(b)m(y)d(the)h(equation)f Fs(x)p Fy(\()p Fs(y)t(z)t Fy(\))g(=)f(\()p Fs(xy)t Fy(\))p Fs(z)32 b Fy(for)c(all)f Fs(x)p Fy(,)j Fs(y)t Fy(,)e Fs(z)k Fy(in)c(the)g(semi-)0 1307 y(group.)46 b(The)35 b(comm)m(utativ)m(e)g(diagram)e(expresses)k (this)d(same)g(fact)g(without)g(the)g(use)g(of)f(v)-5 b(ariables.)47 b(Of)0 1424 y(course,)29 b(w)m(e)e(did)g(use)h(v)-5 b(ariables)27 b(in)g(de\014ning)g(the)g(functions)h(in)m(v)m(olv)m(ed,) i(but)d(w)m(e)g(remedy)h(that)e(de\014ciency)0 1540 y(in)32 b(Chapter)h(6)f(when)h(w)m(e)h(giv)m(e)f(a)f(categorical)g (de\014nition)h(of)f(pro)s(ducts.)44 b(Another)32 b(adv)-5 b(an)m(tage)33 b(of)e(using)0 1656 y(diagrams)i(to)g(express)i (equations)g(is)e(that)g(diagrams)g(sho)m(w)h(the)g(source)g(and)f (target)g(of)f(the)i(functions)0 1772 y(in)m(v)m(olv)m(ed.)43 b(This)26 b(is)e(not)h(particularly)g(comp)s(elling)g(here)g(but)f(in)h (other)f(situations)h(the)g(t)m(w)m(o-dimensional)0 1889 y(picture)34 b(of)e(the)h(comp)s(ositions)g(in)m(v)m(olv)m(ed)i(mak)m (es)g(it)d(m)m(uc)m(h)i(easier)g(to)e(follo)m(w)h(the)g(discussion.)p Black 0 2080 a(1.7.19.)e Fv(Remark)36 b Fy(\(F)-8 b(unctors)31 b(b)m(y)h(comm)m(utativ)m(e)i(diagrams\))p Fv(.)p Black 40 w Fy(W)-8 b(e)32 b(express)h(the)f(de\014nition)g(of)f(functor)0 2196 y(using)f(comm)m(utativ)m(e)h(diagrams.)43 b(Let)29 b Ft(C)36 b Fy(and)29 b Ft(D)j Fy(b)s(e)d(categories)h(with)g(sets)h (of)e(ob)5 b(jects)30 b Ft(C)3313 2211 y Fr(0)3382 2196 y Fy(and)g Ft(D)3646 2211 y Fr(0)3685 2196 y Fy(,)g(sets)0 2312 y(of)i(arro)m(ws)h Ft(C)475 2327 y Fr(1)547 2312 y Fy(and)g Ft(D)814 2327 y Fr(1)853 2312 y Fy(,)f(sets)i(of)e(comp)s (osable)h(pairs)g(of)f(arro)m(ws)h Ft(C)2451 2327 y Fr(2)2523 2312 y Fy(and)g Ft(D)2790 2327 y Fr(2)2829 2312 y Fy(,)g(and)f(iden)m (tit)m(y)i(morphisms)0 2428 y(giv)m(en)39 b(b)m(y)h(id)e(:)f Ft(C)637 2443 y Fr(0)715 2428 y Ft(\000)-60 b(!)37 b(C)921 2443 y Fr(1)999 2428 y Fy(and)i(id)f(:)f Ft(D)1455 2443 y Fr(0)1532 2428 y Ft(\000)-60 b(!)38 b(D)1764 2443 y Fr(1)1803 2428 y Fy(,)i(resp)s(ectiv)m(ely)-8 b(.)64 b(A)38 b(functor)g Ft(F)47 b Fy(:)38 b Ft(C)44 b(\000)-60 b(!)37 b(D)k Fy(consists)f(of)0 2545 y(functions)34 b Ft(F)493 2560 y Fr(0)561 2545 y Fy(:)29 b Ft(C)669 2560 y Fr(0)737 2545 y Ft(\000)-59 b(!)28 b(D)960 2560 y Fr(0)999 2545 y Fy(,)34 b Ft(F)1132 2560 y Fr(1)1200 2545 y Fy(:)28 b Ft(C)1307 2560 y Fr(1)1376 2545 y Ft(\000)-59 b(!)28 b(D)1599 2560 y Fr(1)1671 2545 y Fy(along)33 b(with)h(the)g(uniquely)h (determined)g(function)f Ft(F)3685 2560 y Fr(2)3752 2545 y Fy(:)29 b Ft(C)3860 2560 y Fr(2)0 2661 y Ft(\000)-60 b(!)28 b(D)222 2676 y Fr(2)294 2661 y Fy(\(think)33 b(of)f Ft(F)772 2676 y Fr(2)811 2661 y Fy(\(\()p Fs(f)5 b(;)17 b(g)t Fy(\)\))27 b(=)g(\()p Ft(F)1351 2676 y Fr(1)1390 2661 y Fy(\()p Fs(f)11 b Fy(\))p Fs(;)17 b Ft(F)1641 2676 y Fr(1)1680 2661 y Fy(\()p Fs(g)t Fy(\)\)\))31 b(suc)m(h)j(that) 1904 2831 y Ft(C)1956 2846 y Fr(2)1417 3319 y Ft(C)1469 3334 y Fr(1)1430 3070 y Fy(pro)5 b(j)1606 3093 y Fr(1)1799 2956 y Fo(\000)1716 3039 y(\000)1633 3122 y(\000)1550 3205 y(\000)1531 3224 y(\000)-83 b(\011)1404 3806 y Ft(D)1481 3821 y Fr(1)p 1461 3711 4 351 v 1463 3711 a Fo(?)1312 3563 y Ft(F)1384 3578 y Fr(1)1892 3319 y Ft(D)1969 3334 y Fr(2)p 1948 3224 V 1950 3224 a Fo(?)1989 3075 y Ft(F)2061 3090 y Fr(2)2379 3806 y Ft(D)2456 3821 y Fr(1)p 2436 3711 V 2437 3711 a Fo(?)2476 3563 y Ft(F)2548 3578 y Fr(1)2392 3319 y Ft(C)2444 3334 y Fr(1)2254 3070 y Fy(pro)5 b(j)2430 3093 y Fr(2)2018 2956 y Fo(@)2101 3039 y(@)2184 3122 y(@)2267 3205 y(@)2286 3224 y(@)-83 b(R)1892 3319 y Ft(D)1969 3334 y Fr(2)1799 3443 y Fo(\000)1716 3527 y(\000)1633 3610 y(\000)1550 3693 y(\000)1531 3711 y(\000)g(\011)2018 3443 y(@)2101 3527 y(@)2184 3610 y(@)2267 3693 y(@)2286 3711 y(@)g(R)1528 3460 y Fy(pro)5 b(j)1704 3483 y Fr(1)2157 3460 y Fy(pro)g(j)2333 3483 y Fr(2)0 4453 y Fy(comm)m(utes.)45 b(In)33 b(addition,)g(the)g(follo)m(wing)g(diagrams)g(m)m(ust)h(comm)m (ute:)631 4665 y Ft(C)683 4680 y Fr(1)1021 4665 y Ft(C)1073 4680 y Fr(0)p 752 4640 240 4 v 908 4638 a Fo(-)779 4619 y Fy(dom)618 5055 y Ft(D)695 5070 y Fr(1)1008 5055 y Ft(D)1085 5070 y Fr(0)p 763 5030 217 4 v 897 5028 a Fo(-)779 5117 y Fy(dom)p 675 4960 4 254 v 677 4960 a Fo(?)527 4860 y Ft(F)599 4875 y Fr(1)p 1065 4960 V 1067 4960 a Fo(?)917 4860 y Ft(F)989 4875 y Fr(0)1411 4665 y Ft(C)1463 4680 y Fr(1)p 1142 4640 240 4 v 1142 4638 a Fo(\033)1187 4619 y Fy(co)s(d)1398 5055 y Ft(D)1475 5070 y Fr(1)p 1142 5030 229 4 v 1142 5028 a Fo(\033)1181 5117 y Fy(co)s(d)p 1455 4960 4 254 v 1457 4960 a Fo(?)1496 4860 y Ft(F)1568 4875 y Fr(1)1904 4665 y Ft(C)1956 4680 y Fr(2)2294 4665 y Ft(C)2346 4680 y Fr(1)p 2025 4640 240 4 v 2182 4638 a Fo(-)2031 4600 y Fy(comp)1892 5055 y Ft(D)1969 5070 y Fr(2)2282 5055 y Ft(D)2359 5070 y Fr(1)p 2037 5030 217 4 v 2170 5028 a Fo(-)2031 5090 y Fy(comp)p 1948 4960 4 254 v 1950 4960 a Fo(?)1800 4860 y Ft(F)1872 4875 y Fr(2)p 2338 4960 V 2340 4960 a Fo(?)2379 4860 y Ft(F)2451 4875 y Fr(1)2787 4665 y Ft(C)2839 4680 y Fr(0)3177 4665 y Ft(C)3229 4680 y Fr(1)p 2908 4640 240 4 v 3065 4638 a Fo(-)2988 4619 y Fy(id)2775 5055 y Ft(D)2852 5070 y Fr(0)3165 5055 y Ft(D)3242 5070 y Fr(1)p 2920 5030 217 4 v 3054 5028 a Fo(-)2988 5117 y Fy(id)p 2832 4960 4 254 v 2833 4960 a Fo(?)2683 4860 y Ft(F)2755 4875 y Fr(0)p 3222 4960 V 3223 4960 a Fo(?)3262 4860 y Ft(F)3334 4875 y Fr(1)0 5269 y Fy(where)48 b(the)g(second)g(diagram)f(represen)m(ts)i Ft(F)1747 5284 y Fr(1)1786 5269 y Fy(\()p Fs(f)43 b Ft(\016)31 b Fs(g)t Fy(\))52 b(=)g Ft(F)2337 5284 y Fr(1)2376 5269 y Fy(\()p Fs(f)11 b Fy(\))32 b Ft(\016)f(F)2696 5284 y Fr(1)2735 5269 y Fy(\()p Fs(g)t Fy(\))46 b(and)h(the)h(third)f (diagram)0 5385 y(represen)m(ts)35 b Ft(F)531 5400 y Fr(1)570 5385 y Fy(\(1)657 5400 y Fp(A)714 5385 y Fy(\))27 b(=)h(1)932 5401 y Fq(F)982 5410 y Fj(0)1017 5401 y Fr(\()p Fp(A)p Fr(\))1129 5385 y Fy(.)p Black Black eop end %%Page: 35 35 TeXDict begin 35 34 bop Black 1544 -99 a Fw(Natural)26 b(transformations)1469 b(35)p Black Black 0 100 a Fy(1.7.20.)39 b Fv(Remark)46 b Fy(\(Diagrams)39 b(as)h(functors\))p Fv(.)p Black 45 w Fy(In)g(m)m(uc)m(h)h(of)e(the)h(categorical)g (literature,)i(a)d(diagram)0 217 y(in)44 b(a)f(category)h Ft(C)50 b Fy(is)44 b(a)f(functor)h Ft(D)49 b Fy(:)d Ft(E)55 b(\000)-59 b(!)46 b(C)k Fy(where)44 b Ft(E)52 b Fy(is)44 b(a)g(category)-8 b(.)76 b(Because)46 b(of)d(Prop)s(osition)0 333 y(1.6.8,)d(a)e(graph)h(homomorphism)h(in)m(to)f(a)g(category)g (extends)h(uniquely)h(to)e(a)f(functor)h(based)h(on)f(the)0 449 y(free)28 b(category)g(generated)g(b)m(y)g(the)g(graph,)h(so)e (that)h(diagrams)g(in)f(our)h(sense)h(generate)f(diagrams)g(in)g(the)0 565 y(functorial)c(sense.)43 b(On)24 b(the)h(other)f(hand,)i(an)m(y)f (functor)g(is)f(a)g(graph)g(homomorphism)i(on)e(the)g(underlying)0 681 y(graph)k(of)g(its)g(domain)h(\(although)f(not)g(con)m(v)m (ersely!\),)k(so)d(that)f(ev)m(ery)i(diagram)e(in)g(the)h(sense)h(of)e (functor)0 798 y(is)33 b(a)f(diagram)h(in)g(the)g(sense)h(of)e(graph)g (homomorphism.)3991 878 y(21.05.04)0 1041 y(1.7.6.)48 b Fu(Natur)-5 b(al)36 b(tr)-5 b(ansformations.)0 1158 y Fy(W)d(e)47 b(sa)m(w)h(that)f(diagrams)g(in)h(a)e(category)i(are)f (graph)f(homomorphisms)j(to)e(the)g(category)g(from)g(a)0 1274 y(di\013eren)m(t)35 b(p)s(oin)m(t)f(of)g(view.)49 b(No)m(w)35 b(w)m(e)g(in)m(tro)s(duce)g(a)e(third)h(w)m(a)m(y)i(to)d (lo)s(ok)h(at)g(graph)g(homomorphisms)h(to)0 1390 y(a)d(category)-8 b(,)33 b(namely)h(as)f(mo)s(dels.)44 b(T)-8 b(o)33 b(giv)m(e)g(an)g (example,)h(w)m(e)f(need)h(a)e(de\014nition.)p Black 0 1567 a(1.7.21.)g Fv(De\014nition.)p Black 42 w Fy(A)h Fu(unary)i(op)-5 b(er)g(ation)32 b Fy(on)g(a)h(set)g Fs(S)38 b Fy(is)33 b(a)g(function)g Fs(u)27 b Fy(:)h Fs(S)33 b Ft(\000)-59 b(!)27 b Fs(S)6 b Fy(.)0 1744 y(This)40 b(de\014nition)f(is)g(b)m(y)h(analogy)e(with)h(the)g(concept)g(of)f (binary)i(op)s(eration)e(on)g(a)g(set.)62 b(A)39 b(set)g(with)g(a)0 1860 y(unary)g(op)s(eration)f(is)h(a)f(\(v)m(ery)i(simple\))g (algebraic)e(structure,)k(whic)m(h)e(w)m(e)f(call)g(a)f Fs(u)p Fy(-structure.)61 b(If)39 b(the)0 1976 y(set)34 b(is)g Fs(S)39 b Fy(and)34 b(the)f(op)s(eration)g(is)h Fs(f)40 b Fy(:)29 b Fs(S)35 b Ft(\000)-60 b(!)29 b Fs(S)6 b Fy(,)33 b(w)m(e)i(sa)m(y)f(that)f(\()p Fs(S;)17 b(f)11 b Fy(\))33 b(is)h(a)f Fs(u)p Fy(-structure,)h(meaning)g(\()p Fs(S;)17 b(f)11 b Fy(\))0 2092 y(denotes)33 b(a)f Fs(u)p Fy(-structure)h(whose)g(underlying)h(set)f(is)f Fs(S)6 b Fy(,)32 b(and)h(whose)g(unary)g(op)s(eration)e(is)i Fs(f)11 b Fy(.)43 b(This)33 b(uses)0 2209 y(p)s(ositional)i(notation)g (in)g(m)m(uc)m(h)i(the)f(same)g(w)m(a)m(y)g(as)f(pro)s(cedures)i(in)e (man)m(y)h(computer)h(languages:)49 b(the)0 2325 y(\014rst)32 b(en)m(try)h(in)e(the)h(expression)i(`\()p Fs(S;)17 b(f)11 b Fy(\)')31 b(is)h(the)g(name)g(of)f(the)h(underlying)h(set)f(of)f(the) h Fs(u)p Fy(-structure)g(and)0 2441 y(the)h(second)h(en)m(try)g(is)f (the)g(name)g(of)f(its)h(op)s(eration.)0 2557 y(A)23 b(homomorphism)g(of)f Fs(u)p Fy(-structures)i(should)f(b)s(e)g(a)f (function)h(whic)m(h)h(preserv)m(es)h(the)e(structure.)42 b(There)23 b(is)0 2674 y(really)28 b(only)f(one)g(de\014nition)h(that)f (is)g(reasonable)h(for)f(this)g(idea:)41 b(if)27 b(\()p Fs(S;)17 b(u)p Fy(\))27 b(and)g(\()p Fs(T)8 b(;)17 b(v)t Fy(\))26 b(are)h Fs(u)p Fy(-structures,)0 2790 y Fs(f)41 b Fy(:)30 b Fs(S)35 b Ft(\000)-59 b(!)29 b Fs(T)48 b Fy(is)34 b(a)g Fu(homomorphism)f(of)j Fs(u)p Fu(-structur)-5 b(es)34 b Fy(if)g Fs(f)11 b Fy(\()p Fs(u)p Fy(\()p Fs(s)p Fy(\)\))29 b(=)h Fs(v)t Fy(\()p Fs(f)11 b Fy(\()p Fs(s)p Fy(\)\))33 b(for)g(all)h Fs(s)29 b Ft(2)i Fs(S)6 b Fy(.)47 b(Th)m(us)35 b(this)0 2906 y(diagram)d(m)m(ust)i(comm)m(ute:)1724 3079 y Fs(S)328 b(T)p 1818 3047 265 4 v 2000 3045 a Fo(-)1921 3007 y Fs(f)1724 3469 y(S)g(T)p 1818 3437 V 2000 3435 a Fo(-)1921 3524 y Fs(f)p 1755 3367 4 254 v 1757 3367 a Fo(?)1662 3262 y Fs(u)p 2145 3367 V 2147 3367 a Fo(?)2186 3262 y Fs(v)0 3645 y Fy(It)24 b(is)g(not)f(di\016cult)i(to)e(sho)m(w)i (that)e(the)h(comp)s(osite)h(of)e(t)m(w)m(o)h(homomorphisms)h(of)e Fs(u)p Fy(-structures)i(is)f(another)0 3761 y(one,)i(and)e(that)g(the)h (iden)m(tit)m(y)g(map)g(is)f(a)g(homomorphism,)j(so)d(that)g Fs(u)p Fy(-structures)h(and)f(homomorphisms)0 3877 y(form)32 b(a)h(category)-8 b(.)0 3993 y(W)g(e)31 b(no)m(w)h(use)f(the)h(concept) f(of)g Fs(u)p Fy(-structure)g(to)f(motiv)-5 b(ate)31 b(the)g(third)g(w)m(a)m(y)h(of)f(lo)s(oking)f(at)h(graph)f(homo-)0 4110 y(morphisms)k(to)e(a)h(category)-8 b(.)0 4226 y(Let)33 b Ft(U)43 b Fy(b)s(e)32 b(the)h(graph)g(with)g(one)g(no)s(de)f Fs(u)1549 4241 y Fr(0)1621 4226 y Fy(and)h(one)f(arro)m(w)h Fs(e)p Fy(:)1950 4463 y Fs(u)2006 4478 y Fr(0)1882 4395 y Fn(\016\015)1882 4262 y(\017)o(\014)p 1950 4391 1 4 v 1868 4389 a Fo(-)2028 4355 y Fs(e)0 4604 y Fy(Let)f(us)h(de\014ne)g (a)f(graph)g(homomorphism)h Fs(D)e Fy(:)c Ft(U)38 b(\000)-59 b(!)27 b Fv(Set)32 b Fy(as)g(follo)m(ws:)44 b Fs(D)s Fy(\()p Fs(u)2880 4619 y Fr(0)2919 4604 y Fy(\))28 b(=)f Fm(R)32 b Fy(and)g Fs(D)s Fy(\()p Fs(e)p Fy(\))c(=)f Fs(x)h Ft(7!)0 4720 y Fs(x)55 4684 y Fr(2)95 4720 y Fy(.)58 b(No)m(w)38 b(\()p Fm(R)p Fs(;)17 b(x)36 b Ft(7!)g Fs(x)843 4684 y Fr(2)883 4720 y Fy(\))h(is)h(a)g Fs(u)p Fy(-structure,)h(and)e (the)h(notation)f(w)m(e)i(ha)m(v)m(e)g(in)m(tro)s(duced)g(in)e(1.7.21)g (tells)0 4836 y(us)i(that)g(w)m(e)h(ha)m(v)m(e)g(c)m(hosen)g Fm(R)f Fy(to)g(b)s(e)g(its)g(underlying)h(set)g(and)f Fs(x)f Ft(7!)g Fs(x)2698 4800 y Fr(2)2777 4836 y Fy(to)h(b)s(e)g(its)g (unary)g(op)s(eration.)0 4952 y(Except)34 b(for)d(the)i(arbitrary)f (names)h(`)p Fs(u)1440 4967 y Fr(0)1479 4952 y Fy(')f(and)g(`)p Fs(e)p Fy(',)h(the)f(graph)g(homomorphism)h Fs(D)i Fy(comm)m(unicates)g (the)0 5069 y(same)i(information:)51 b(`)p Fm(R)36 b Fy(is)h(the)f(particular)h(set)g(c)m(hosen)g(to)f(b)s(e)h(the)f(v)-5 b(alue)37 b(of)f Fs(u)3013 5084 y Fr(0)3052 5069 y Fy(,)h(and)f Fs(x)e Ft(7!)g Fs(x)3587 5032 y Fr(2)3663 5069 y Fy(is)j(the)0 5185 y(particular)j(function)g(c)m(hosen)h(to)e(b)s(e)h(the)g(v)-5 b(alue)40 b(of)f Fs(e)p Fy(.')65 b(In)40 b(this)g(sense,)j(a)c Fs(u)p Fy(-structure)h(is)g(essen)m(tially)0 5301 y(the)35 b(same)g(thing)g(as)g(a)f(diagram)g(in)h Fv(Set)g Fy(of)f(shap)s(e)h Ft(U)45 b Fy(:)i(a)34 b Fs(u)p Fy(-structure)h(`mo)s(dels')h(the)f (graph)f Ft(U)10 b Fy(.)50 b(This)0 5417 y(suggests)34 b(the)f(follo)m(wing)g(de\014nition.)p Black Black eop end %%Page: 36 36 TeXDict begin 36 35 bop Black 0 -99 a Fw(36)1668 b(F)-6 b(oundations)p Black Black 0 100 a Fy(1.7.22.)32 b Fv(De\014nition.)p Black 42 w Fy(A)h Fu(mo)-5 b(del)32 b Fs(M)43 b Fu(of)34 b(a)h(gr)-5 b(aph)32 b Ft(G)39 b Fy(is)33 b(a)f(graph)g(homomorphism)i Fs(M)39 b Fy(:)27 b Ft(G)34 b(\000)-59 b(!)27 b Fv(Set)p Fy(.)0 272 y(A)c(monoid)g(can)g(b)s(e)f(de\014ned)i(as)f(a)g(mo)s(del)g (in)m(v)m(olving)h(a)e(graph)h(homomorphism)h(\(and)e(other)h (ingredien)m(ts\))0 388 y(using)g(the)h(concept)g(of)e(\014nite)h(pro)s (duct.)41 b(W)-8 b(e)23 b(had)g(to)f(in)m(tro)s(duce)i Fs(u)p Fy(-structures)g(here)f(to)g(ha)m(v)m(e)h(an)e(example)0 504 y(for)32 b(whic)m(h)i(w)m(e)g(had)e(the)h(requisite)i(tec)m (hniques.)p Black 0 676 a(1.7.23.)d Fv(Example.)p Black 43 w Fy(As)h(another)f(example,)j(consider)f(this)f(graph:)p 1759 815 379 4 v 2055 813 a Fo(-)1815 795 y Fy(source)1679 854 y Fs(a)433 b(n)p 1759 854 V 2055 852 a Fo(-)1821 932 y Fy(target)0 1075 y(A)29 b(mo)s(del)g Fs(M)40 b Fy(of)28 b(this)i(graph)e(consists)j(of)d(sets)i Ft(G)1797 1090 y Fr(0)1865 1075 y Fy(=)d Fs(M)10 b Fy(\()p Fs(n)p Fy(\))30 b(and)f Ft(G)2481 1090 y Fr(1)2548 1075 y Fy(=)f Fs(M)10 b Fy(\()p Fs(a)p Fy(\))29 b(together)g(with)h(functions)0 1191 y(source)f(=)e Fs(M)10 b Fy(\(source)r(\))28 b(:)g Ft(G)986 1206 y Fr(1)1053 1191 y Ft(\000)-60 b(!)28 b(G)1257 1206 y Fr(0)1326 1191 y Fy(and)h(target)e(=)h Fs(M)10 b Fy(\(target\))28 b(:)g Ft(G)2475 1206 y Fr(1)2542 1191 y Ft(\000)-60 b(!)28 b(G)2746 1206 y Fr(0)2785 1191 y Fy(.)43 b(T)-8 b(o)29 b(understand)i(what)e(this)0 1308 y(structure)36 b(is,)g(imagine)f(a)f(picture)i(in)f(whic)m(h)h(there)f (is)h(a)e(dot)g(corresp)s(onding)i(to)e(eac)m(h)i(elemen)m(t)g(of)f Fs(G)3861 1323 y Fr(0)0 1424 y Fy(and)d(an)g(arro)m(w)h(corresp)s (onding)g(to)e(eac)m(h)i(elemen)m(t)h Fs(a)28 b Ft(2)g Fs(G)2171 1439 y Fr(1)2243 1424 y Fy(whic)m(h)33 b(go)s(es)g(from)e (the)i(dot)f(corresp)s(onding)0 1540 y(to)39 b(source)q(\()p Fs(a)p Fy(\))g(to)g(the)h(one)f(corresp)s(onding)h(to)f(target\()p Fs(a)p Fy(\).)63 b(It)40 b(should)g(b)s(e)f(clear)h(that)f(the)h (picture)g(so)0 1656 y(describ)s(ed)34 b(is)f(a)g(graph)f(and)h(th)m (us)g(the)g(giv)m(en)h(graph)f(is)g(a)f(graph)g(whose)i(mo)s(dels)g (are)e(graphs!)p Black 0 1828 a(1.7.24.)f Fv(Remark)37 b Fy(\(Mo)s(dels)c(in)f(arbitrary)g(categories\))p Fv(.)p Black 42 w Fy(The)h(concept)g(of)f(mo)s(del)g(can)g(b)s(e)h (generalized)0 1944 y(to)38 b(arbitrary)h(categories:)56 b(if)38 b Ft(C)44 b Fy(is)39 b(an)m(y)g(category)-8 b(,)41 b(a)d(mo)s(del)h(of)f Ft(G)44 b Fy(in)39 b Ft(C)44 b Fy(is)39 b(a)f(graph)h(homomorphism)0 2060 y(from)34 b Ft(G)41 b Fy(to)34 b Ft(C)40 b Fy(.)50 b(F)-8 b(or)33 b(example,)k(a)d(mo)s(del)h(of)f(the)g(graph)h(for)f Fs(u)p Fy(-structures)h(in)f(the)h(category)g(of)f(p)s(osets)0 2176 y(and)c(monotone)g(maps)h(is)g(a)f(p)s(oset)g(and)g(a)g(monotone)g (map)h(from)e(the)i(p)s(oset)f(to)g(itself.)43 b(In)31 b(these)g(notes,)0 2293 y(the)i(bare)g(w)m(ord)g(`mo)s(del')g(alw)m(a)m (ys)h(means)g(a)e(mo)s(del)h(in)g Fv(Set)p Fy(.)p Black 0 2464 a(1.7.25.)d Fv(Remark)36 b Fy(\(Natural)31 b(transformations)g (b)s(et)m(w)m(een)i(mo)s(dels)f(of)f(a)f(graph\))p Fv(.)p Black 41 w Fy(In)h(a)g(category)-8 b(,)31 b(there)0 2580 y(is)38 b(a)f(natural)h(notion)f(of)g(an)g(arro)m(w)h(from)f(one)h(mo)s (del)g(of)f(a)g(graph)g(to)g(another.)59 b(This)39 b(usually)f(turns)0 2697 y(out)32 b(to)h(coincide)h(with)f(the)g(standard)g(de\014nition)g (of)f(homomorphism)i(for)e(that)h(kind)g(of)f(structure.)p Black 0 2868 a(1.7.26.)37 b Fv(De\014nition.)p Black 44 w Fy(Let)h Fs(D)s(;)17 b(E)41 b Fy(:)36 b Ft(G)42 b(\000)-60 b(!)36 b(C)43 b Fy(b)s(e)38 b(t)m(w)m(o)g(mo)s(dels)g(of)e (the)i(same)g(graph)f(in)h(a)f(category)-8 b(.)58 b(A)0 2984 y Fu(natur)-5 b(al)40 b(tr)-5 b(ansformation)37 b Fs(\013)h Fy(:)f Fs(D)j Ft(\000)-60 b(!)37 b Fs(E)44 b Fy(is)39 b(giv)m(en)g(b)m(y)g(a)f(family)g(of)g(arro)m(ws)h Fs(\013)q(a)f Fy(of)f Ft(C)45 b Fy(indexed)40 b(b)m(y)f(the)0 3100 y(no)s(des)33 b(of)f Ft(G)39 b Fy(suc)m(h)34 b(that:)p Black 48 3237 a(NT-1)p Black 42 w Fs(\013)q(a)27 b Fy(:)h Fs(D)s(a)f Ft(\000)-59 b(!)27 b Fs(E)6 b(a)33 b Fy(for)f(eac)m(h)i(no)s (de)e Fs(a)h Fy(of)f Ft(G)6 b Fy(.)p Black 48 3353 a(NT-2)p Black 42 w(F)-8 b(or)31 b(an)m(y)j(arro)m(w)e Fs(s)c Fy(:)g Fs(a)g Ft(\000)-60 b(!)27 b Fs(b)33 b Fy(in)g Ft(G)6 b Fy(,)33 b(the)g(diagram)0 3872 y(\(6\))1690 3516 y Fs(D)s(a)258 b(E)6 b(a)p 1854 3484 200 4 v 1971 3482 a Fo(-)1896 3464 y Fs(\013)q(a)1695 3907 y(D)s(b)268 b(E)6 b(b)p 1849 3874 210 4 v 1976 3872 a Fo(-)1901 3960 y Fs(\013)q(b)p 1756 3804 4 254 v 1757 3804 a Fo(?)1589 3711 y Fs(D)s(s)p 2146 3804 V 2147 3804 a Fo(?)2186 3711 y Fs(E)g(s)315 4070 y Fy(comm)m(utes.)0 4241 y(The)34 b(comm)m(utativit)m(y)h(of)d(the)i(diagram)e(in)i(NT-2)e(is)i(referred) f(to)g(as)g(the)g(em)h(naturalit)m(y)g(condition)f(on)0 4358 y Fs(\013)q Fy(.)65 b(The)41 b(arro)m(w)f Fs(\013)q(a)g Fy(for)f(an)h(ob)5 b(ject)41 b Fs(a)f Fy(is)h(the)f(comp)s(onen)m(t)h (of)f(the)g(natural)g(transformation)g Fs(\013)g Fy(at)g Fs(a)p Fy(.)0 4474 y(Note)35 b(that)g(y)m(ou)h(talk)g(ab)s(out)f(a)g (natural)g(transformation)g(from)g Fs(D)j Fy(to)c Fs(E)42 b Fy(only)35 b(if)g Fs(D)j Fy(and)e Fs(E)41 b Fy(ha)m(v)m(e)c(the)0 4590 y(same)29 b(domain)f(\(here)g Ft(G)6 b Fy(\))28 b(as)g(w)m(ell)g(as)g(the)g(same)h(co)s(domain)f(\(here)g Ft(C)6 b Fy(\))28 b(and)g(if,)h(moreo)m(v)m(er,)h(the)e(co)s(domain)0 4706 y(is)33 b(a)f(category)-8 b(.)44 b(In)33 b(this)g(situation,)g(it) g(is)g(often)g(con)m(v)m(enien)m(t)i(to)d(write)h Fs(\013)c Fy(:)f Fs(D)i Ft(\000)-60 b(!)28 b Fs(E)33 b Fy(:)28 b Ft(G)34 b(\000)-60 b(!)28 b(C)6 b Fy(.)p Black 0 4878 a(1.7.27.)41 b Fv(De\014nition.)p Black 48 w Fy(Let)h Fs(D)s Fy(,)i Fs(E)k Fy(and)42 b Fs(F)56 b Fy(b)s(e)42 b(mo)s(dels)h(of)f Ft(G)48 b Fy(in)42 b Ft(C)49 b Fy(,)44 b(and)e Fs(\013)j Fy(:)f Fs(D)i Ft(\000)-59 b(!)43 b Fs(E)48 b Fy(and)43 b Fs(\014)49 b Fy(:)44 b Fs(E)0 4994 y Ft(\000)-60 b(!)39 b Fs(F)53 b Fy(natural)40 b(transformations.)64 b(The)40 b(comp)s(osite)h Fs(\014)32 b Ft(\016)27 b Fs(\013)40 b Fy(:)f Fs(D)j Ft(\000)-60 b(!)39 b Fs(F)53 b Fy(is)40 b(de\014ned)h(comp)s(onen)m(t)m(wise:)0 5110 y(\()p Fs(\014)28 b Ft(\016)22 b Fs(\013)q Fy(\))p Fs(a)27 b Fy(=)h Fs(\014)6 b(a)22 b Ft(\016)g Fs(\013)q(a)p Fy(.)p Black 0 5282 a(1.7.28.)32 b Fv(Prop)s(osition.)p Black 41 w Fu(The)i(c)-5 b(omp)g(osite)34 b(of)g(two)h(natur)-5 b(al)35 b(tr)-5 b(ansformations)33 b(is)i(also)f(a)g(natur)-5 b(al)35 b(tr)-5 b(ans-)0 5398 y(formation.)p Black Black eop end %%Page: 37 37 TeXDict begin 37 36 bop Black 1544 -99 a Fw(Natural)26 b(transformations)1469 b(37)p Black Black 0 100 a Fu(Pr)-5 b(o)g(of.)p Black 41 w Fy(The)34 b(diagram)e(that)g(has)h(to)g(b)s(e)f (sho)m(wn)i(comm)m(utativ)m(e)h(is)e(the)g(outer)g(rectangle)g(of)0 688 y(\(7\))1496 332 y Fs(D)s(a)258 b(E)6 b(a)p 1660 300 200 4 v 1777 298 a Fo(-)1702 280 y Fs(\013)q(a)2279 332 y(F)14 b(a)p 2047 300 204 4 v 2168 298 a Fo(-)2092 260 y Fs(\014)6 b(a)1501 723 y(D)s(b)268 b(E)6 b(b)p 1655 690 210 4 v 1782 688 a Fo(-)1707 777 y Fs(\013)q(b)2284 723 y(F)14 b(b)p 2042 690 214 4 v 2173 688 a Fo(-)2097 777 y Fs(\014)6 b(b)p 1562 620 4 254 v 1563 620 a Fo(?)1395 527 y Fs(D)s(s)p 1952 620 V 1953 620 a Fo(?)1790 527 y Fs(E)g(s)p 2342 620 V 2343 620 a Fo(?)2382 527 y Fs(F)14 b(s)0 936 y Fy(for)38 b(eac)m(h)i(arro)m(w)f Fs(s)g Fy(:)g Fs(a)f Ft(\000)-59 b(!)38 b Fs(b)i Fy(in)f Ft(G)6 b Fy(.)63 b(The)40 b(rectangle)f(comm)m(utes)i(b)s(ecause)g(the)e(t)m(w)m(o)h (squares)g(do;)j(the)0 1053 y(squares)34 b(comm)m(ute)g(as)f(a)f (consequence)k(of)c(the)h(naturalit)m(y)g(of)f Fs(\013)i Fy(and)e Fs(\014)6 b Fy(.)1088 b Fg(\003)0 1246 y Fy(It)37 b(is)g(in)m(teresting)h(that)e(categorists)i(b)s(egan)e(using)i(mo)s (des)f(of)f(reasoning)h(lik)m(e)h(that)f(in)f(the)i(preceding)0 1362 y(pro)s(of)31 b(b)s(ecause)j(ob)5 b(jects)33 b(of)f(categories)h (generally)g(lac)m(k)m(ed)h(elemen)m(ts;)h(no)m(w)e(one)f(appreciates)i (them)e(for)0 1479 y(their)h(o)m(wn)g(sak)m(e)h(b)s(ecause)g(they)g (allo)m(w)f(elemen)m(t-free)h(\(and)f(th)m(us)g(v)-5 b(ariable-free\))33 b(argumen)m(ts.)0 1711 y(It)d(is)h(ev)m(en)g (easier)h(to)d(sho)m(w)j(that)d(there)i(is)g(an)f(iden)m(tit)m(y)i (natural)e(transformation)g(b)s(et)m(w)m(een)i(an)m(y)f(mo)s(del)0 1827 y Fs(D)k Fy(and)e(itself,)g(de\014ned)h(b)m(y)g(1)1090 1842 y Fp(D)1154 1827 y Fs(a)28 b Fy(=)f(1)1385 1842 y Fp(D)r(a)1486 1827 y Fy(.)44 b(W)-8 b(e)33 b(then)g(ha)m(v)m(e)h(the) f(follo)m(wing)g(prop)s(osition,)g(whose)h(pro)s(of)d(is)0 1944 y(straigh)m(tforw)m(ard.)p Black 0 2131 a(1.7.29.)h Fv(Prop)s(osition.)p Black 42 w Fu(The)i(mo)-5 b(dels)34 b(of)h(a)f(given)h(gr)-5 b(aph)34 b Ft(G)41 b Fu(in)35 b(a)f(given)h(c)-5 b(ate)g(gory)34 b Ft(C)6 b Fu(,)36 b(and)e(the)h(natur)-5 b(al)0 2247 y(tr)g(ansformations)34 b(b)-5 b(etwe)g(en)34 b(them,)h(form)f(a)h(c)-5 b(ate)g(gory.)44 b(We)35 b(denote)g(this)f(c)-5 b(ate)g(gory)35 b(by)g Fv(Mo)s(d)q Fy(\()p Ft(G)6 b Fs(;)17 b Ft(C)6 b Fy(\))p Fu(.)p Black 0 2434 a Fy(1.7.30.)40 b Fv(Example.)p Black 47 w Fy(The)i(natural)f(transformations)g(b)s(et)m(w)m(een)i(mo)s(dels) f(in)f Fv(Set)g Fy(of)f(the)i Fs(u)p Fy(-structure)0 2550 y(graph)52 b Ft(U)62 b Fy(\(one)53 b(v)m(ertex)g(and)g(one)f (non-trivial)g(arro)m(w\))g(are)g(exactly)i(the)f(homomorphisms)g(of)f Fs(u)p Fy(-)0 2667 y(structures)44 b(de\014ned)g(in)f(1.7.21.)72 b(The)43 b(graph)g Ft(U)52 b Fy(has)43 b(one)g(ob)5 b(ject)43 b Fs(u)2630 2682 y Fr(0)2711 2667 y Fy(and)g(one)g(arro)m(w)f Fs(e)p Fy(,)j(so)e(that)f(a)0 2783 y(natural)c(transformation)f(from)h (a)f(mo)s(del)i Fs(D)h Fy(to)e(a)f(mo)s(del)h Fs(E)44 b Fy(has)38 b(only)h(one)f(comp)s(onen)m(t)h(whic)m(h)g(is)f(a)0 2899 y(function)e(from)g Fs(D)s Fy(\()p Fs(u)797 2914 y Fr(0)836 2899 y Fy(\))g(to)f Fs(E)6 b Fy(\()p Fs(u)1204 2914 y Fr(0)1243 2899 y Fy(\).)54 b(If)36 b(w)m(e)h(set)g Fs(S)i Fy(=)33 b Fs(D)s Fy(\()p Fs(u)2152 2914 y Fr(0)2191 2899 y Fy(\),)k Fs(u)c Fy(=)g Fs(D)s Fy(\()p Fs(e)p Fy(\),)k Fs(T)47 b Fy(=)33 b Fs(E)6 b Fy(\()p Fs(u)3145 2914 y Fr(0)3184 2899 y Fy(\),)37 b Fs(v)g Fy(=)d Fs(E)6 b Fy(\()p Fs(e)p Fy(\),)37 b(and)0 3015 y(w)m(e)d(de\014ne)f Fs(\013)q(u)544 3030 y Fr(0)611 3015 y Fy(=)27 b Fs(f)11 b Fy(,)33 b(this)g(is)g(the)g (single)g(comp)s(onen)m(t)h(of)e(a)g(natural)h(transformation)f(from)h Fs(D)i Fy(to)d Fs(E)6 b Fy(.)0 3132 y(Condition)38 b(NT-2)g(in)f (1.7.26)g(coincides)j(in)d(this)i(case)f(with)g(the)g(diagram)g(in)g (1.7.21:)52 b(the)38 b(naturalit)m(y)0 3248 y(condition)31 b(is)g(the)g(same)h(as)f(the)g(de\014nition)g(of)f(homomorphism)i(of)e Fs(u)p Fy(-structures.)44 b(It)31 b(follo)m(ws)g(that)g(the)0 3364 y(category)i(of)f Fs(u)p Fy(-structures)h(and)g(homomorphisms)h (is)f(essen)m(tially)j Fv(Mo)s(d)p Fy(\()p Ft(U)10 b Fs(;)17 b Fv(Set)p Fy(\).)p Black 0 3551 a(1.7.31.)33 b Fv(Example.)p Black 44 w Fy(A)h(homomorphism)h(of)f(graphs)g(is)h(a)e (natural)h(transformation)g(b)s(et)m(w)m(een)i(mo)s(dels)0 3668 y(of)c(the)h(graph)p 1759 3788 379 4 v 2055 3786 a Fo(-)1815 3768 y Fy(source)1679 3828 y Fs(a)433 b(n)p 1759 3827 V 2055 3825 a Fo(-)1821 3906 y Fy(target)0 4051 y(The)35 b(t)m(w)m(o)g(graphs)g(in)f(diagram)g(\(4\))g(are)g(the)h (t)m(w)m(o)g(necessary)i(instances)f(\(one)e(for)g(the)h(source)g(and)g (the)0 4167 y(other)k(for)g(the)g(target\))g(of)f(the)i(diagram)f (\(6\).)62 b(In)40 b(a)f(similar)g(w)m(a)m(y)-8 b(,)42 b(the)e(diagram)f(\(7\),)h(used)g(to)f(sho)m(w)0 4284 y(that)g(the)h(comp)s(osite)g(of)f(t)m(w)m(o)g(natural)h (transformations)f(is)h(a)f(natural)g(transformation,)i(reduces)g(in)0 4400 y(this)31 b(case)f(to)g(the)g(comm)m(utativit)m(y)j(of)c(diagram)h (\(5\):)42 b(sp)s(eci\014cally)-8 b(,)32 b(the)e(only)h(p)s (ossibilities)h(\(other)e(than)0 4516 y(those)h(in)g(whic)m(h)h(s)f(is) g(an)g(iden)m(tit)m(y)h(arro)m(w\))f(for)f Fs(a)g Fy(and)h Fs(b)g Fy(in)g(diagram)f(\(7\))g(are)h Fs(a)d Fy(=)f Fs(a)k Fy(and)g Fs(b)d Fy(=)f Fs(n)p Fy(,)32 b(giving)0 4632 y(t)m(w)m(o)c(diagrams)g(shap)s(ed)g(lik)m(e)g(diagram)f(\(7\),)h (one)g(for)f Fs(s)g Fy(=)h(source)g(\(that)f(is)h(diagram)f(\(5\)\))g (and)g(the)h(other)0 4749 y(for)k Fs(s)c Fy(=)f(target.)p Black 0 4936 a(1.7.32.)32 b Fv(Example.)p Black 43 w Fy(A)g(mo)s(del)h(of)f(the)h(graph)0 5122 y(\(8\))1690 b(0)1930 5065 y Fp(u)1891 5122 y Ft(\000)-59 b(!)27 b Fy(1)0 5301 y(in)40 b(an)g(arbitrary)g(category)g Ft(C)46 b Fy(is)40 b(essen)m(tially)j(the)d(same)h(as)f(an)g(arro)m(w)g(in)g Ft(C)46 b Fy(\(see)41 b(5.2.23)e(b)s(elo)m(w\).)66 b(A)0 5417 y(natural)42 b(transformation)g(from)g(the)g(mo)s(del)h(represen)m (ted)h(b)m(y)f(the)g(arro)m(w)f Fs(f)54 b Fy(:)44 b Fs(A)g Ft(\000)-59 b(!)43 b Fs(B)k Fy(to)42 b(the)h(one)p Black Black eop end %%Page: 38 38 TeXDict begin 38 37 bop Black 0 -99 a Fw(38)1668 b(F)-6 b(oundations)p Black 0 100 a Fy(represen)m(ted)46 b(b)m(y)f Fs(g)50 b Fy(:)d Fs(C)54 b Ft(\000)-60 b(!)47 b Fs(D)f Fy(is)e(a)g(pair)g(of)f(arro)m(ws)i Fs(h)h Fy(:)h Fs(A)g Ft(\000)-59 b(!)46 b Fs(C)51 b Fy(and)44 b Fs(k)50 b Fy(:)d Fs(B)52 b Ft(\000)-60 b(!)46 b Fs(D)h Fy(making)d(a)0 217 y(comm)m(utativ)m(e)35 b(diagram:)0 735 y(\(9\))1690 379 y Fs(D)s(a)258 b(E)6 b(a)p 1854 347 200 4 v 1971 345 a Fo(-)1896 327 y Fs(\013)q(a)1695 770 y(D)s(b)268 b(E)6 b(b)p 1849 737 210 4 v 1976 735 a Fo(-)1901 824 y Fs(\013)q(b)p 1756 667 4 254 v 1757 667 a Fo(?)1589 574 y Fs(D)s(s)p 2146 667 V 2147 667 a Fo(?)2186 574 y Fs(E)g(s)0 941 y Fy(The)31 b(comp)s(onen)m(t)g(at)f(0)g(is)h Fs(h)f Fy(and)h(the)f(comp)s(onen)m(t)i(at)d(1)h(is)h Fs(k)s Fy(.)43 b(The)31 b(category)g(of)e(mo)s(dels)i(in)g Ft(C)36 b Fy(is)31 b(called)0 1057 y(the)i Fu(arr)-5 b(ow)34 b(c)-5 b(ate)g(gory)33 b Fy(of)f Ft(C)6 b Fy(;)33 b(it)f(is)i(often)e(denoted)i Fs(C)1939 1021 y Ft(\000)-60 b(!)2060 1057 y Fy(.)p Black 0 1228 a(1.7.33.)35 b Fv(Example.)p Black 45 w Fy(Let)h Ft(G)42 b Fy(b)s(e)37 b(the)f(graph)g(with)g(t)m(w) m(o)h(no)s(des)g(and)f(no)g(arro)m(ws,)i(and)e Ft(C)42 b Fy(an)m(y)37 b(category)-8 b(.)0 1345 y(Then)34 b Fv(Mo)s(d)p Fy(\()p Ft(G)6 b Fs(;)17 b Ft(C)6 b Fy(\))33 b(is)g(isomorphic)h(to)e Fs(C)d Ft(\002)23 b Fs(C)7 b Fy(.)0 1516 y(1.7.7.)48 b Fu(Natur)-5 b(al)36 b(isomorphisms.)p Black 0 1686 a Fy(1.7.34.)44 b Fv(De\014nition.)p Black 48 w Fy(A)h(natural)f (transformation)g Fs(\013)49 b Fy(:)f Fs(F)61 b Ft(\000)-59 b(!)47 b Fs(G)h Fy(:)g Ft(G)54 b(\000)-60 b(!)48 b(D)f Fy(is)e(called)g(a)f Fu(natur)-5 b(al)0 1803 y(isomorphism)31 b Fy(if)h(there)i(is)f(a)g(natural)f(transformation)h Fs(\014)g Fy(:)28 b Fs(G)g Ft(\000)-59 b(!)27 b Fs(F)47 b Fy(whic)m(h)34 b(is)f(an)g(in)m(v)m(erse)i(to)d Fs(\013)i Fy(in)f(the)0 1919 y(category)g Fv(Mo)s(d)q Fy(\()p Ft(G)6 b Fs(;)17 b Ft(D)s Fy(\).)42 b(Natural)33 b(isomorphisms)h(are)f(often) g(called)g Fu(natur)-5 b(al)35 b(e)-5 b(quivalenc)g(es)p Fy(.)p Black 0 2090 a(1.7.35.)27 b Fv(Example.)p Black 39 w Fy(The)h(arro)m(w)g(\()p Fs(h;)17 b(k)s Fy(\))27 b(:)h Fs(f)38 b Ft(\000)-59 b(!)27 b Fs(g)k Fy(in)c(the)h(arro)m(w)g (category)g(of)f(a)g(category)h Ft(C)33 b Fy(,)c(as)f(sho)m(wn)0 2206 y(in)34 b(\(9\),)g(is)h(a)f(natural)g(isomorphism)h(if)f(and)g (only)h(if)f Fs(h)g Fy(and)g Fs(k)j Fy(are)d(b)s(oth)g(isomorphisms)i (in)e Ft(C)6 b Fy(.)48 b(This)35 b(is)0 2322 y(a)d(sp)s(ecial)i(case)f (of)f(an)h(imp)s(ortan)m(t)g(fact)f(ab)s(out)g(natural)h(isomorphisms,) h(whic)m(h)g(w)m(e)g(no)m(w)f(state.)p Black 0 2493 a(1.7.36.)k Fv(Theorem.)p Black 45 w Fu(Supp)-5 b(ose)39 b Fs(F)50 b Fy(:)37 b Ft(G)42 b(\000)-57 b(!)36 b(D)43 b Fu(and)c Fs(G)d Fy(:)h Ft(G)42 b(\000)-57 b(!)37 b(D)42 b Fu(ar)-5 b(e)39 b(mo)-5 b(dels)39 b(of)g Ft(G)46 b Fu(in)39 b Ft(D)j Fu(and)e Fs(\013)d Fy(:)f Fs(F)0 2609 y Ft(\000)-57 b(!)27 b Fs(G)33 b Fu(is)g(a)g(natur)-5 b(al)33 b(tr)-5 b(ansformation)33 b(of)f(mo)-5 b(dels.)43 b(Then)33 b Fs(\013)h Fu(is)e(a)h(natur)-5 b(al)34 b(isomorphism)d(if)i(and)f(only) h(if)0 2726 y(for)i(e)-5 b(ach)34 b(no)-5 b(de)34 b Fs(a)h Fu(of)g Ft(G)6 b Fu(,)35 b Fs(\013)q(a)27 b Fy(:)h Fs(F)14 b Fy(\()p Fs(a)p Fy(\))27 b Ft(\000)-57 b(!)28 b Fs(G)p Fy(\()p Fs(a)p Fy(\))34 b Fu(is)h(an)g(isomorphism)e(of)h Ft(D)s Fu(.)p Black 0 2897 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(Supp)s(ose)48 b Fs(\013)f Fy(has)g(an)f(in)m(v)m(erse)j Fs(\014)57 b Fy(:)52 b Fs(G)g Ft(\000)-60 b(!)51 b Fs(F)60 b Fy(in)47 b(Mo)s(d\()p Ft(G)6 b Fs(;)17 b Ft(D)s Fy(\).)85 b(Then)48 b(for)e(an)m(y)h(no)s(de)g Fs(a)p Fy(,)j(b)m(y)0 3013 y(de\014nition)37 b(1.7.27)e(the)h(de\014nition)h(of)f(the)g(iden) m(tit)m(y)i(natural)d(transformation,)i(and)f(the)h(de\014nition)f(of)0 3129 y(in)m(v)m(erse,)1201 3245 y Fs(\013)q(a)22 b Ft(\016)g Fs(\014)6 b(a)27 b Fy(=)h(\()p Fs(\013)22 b Ft(\016)g Fs(\014)6 b Fy(\))p Fs(a)28 b Fy(=)f(id)2208 3260 y Fp(G)2284 3245 y Fs(a)h Fy(=)g(id)2548 3261 y Fp(G)p Fr(\()p Fp(a)p Fr(\))0 3382 y Fy(and)1201 3498 y Fs(\014)6 b(a)22 b Ft(\016)g Fs(\013)q(a)28 b Fy(=)f(\()p Fs(\014)h Ft(\016)22 b Fs(\013)q Fy(\))p Fs(a)27 b Fy(=)h(id)2209 3513 y Fp(F)2284 3498 y Fs(a)g Fy(=)g(id)2548 3514 y Fp(F)10 b Fr(\()p Fp(a)p Fr(\))0 3635 y Fy(whic)m(h)32 b(means)f(that)f(the)h(arro)m(w)g Fs(\014)6 b(a)30 b Fy(is)h(the)g(in)m(v)m(erse)h(of)e(the)h(arro)m(w)g Fs(\013)q(a)p Fy(,)f(so)h(that)f Fs(\013)q(a)g Fy(is)h(an)f (isomorphism)0 3751 y(in)j Ft(D)i Fy(as)e(required.)0 3867 y(Con)m(v)m(ersely)-8 b(,)37 b(supp)s(ose)e(that)e(for)g(eac)m(h)i (no)s(de)e Fs(a)h Fy(of)f Ft(G)40 b Fy(,)34 b Fs(\013)q(a)29 b Fy(:)g Fs(F)14 b Fy(\()p Fs(a)p Fy(\))30 b Ft(\000)-60 b(!)29 b Fs(G)p Fy(\()p Fs(a)p Fy(\))34 b(is)g(an)f(isomorphism)i(of)e Ft(D)s Fy(.)0 3983 y(The)j(comp)s(onen)m(t)g(of)e(the)i(in)m(v)m(erse)h Fs(\014)k Fy(at)34 b(a)h(no)s(de)g Fs(a)g Fy(is)h(de\014ned)g(b)m(y)g (letting)f Fs(\014)6 b(a)32 b Fy(=)f(\()p Fs(\013)q(a)p Fy(\))3267 3947 y Fq(\000)p Fr(1)3361 3983 y Fy(.)51 b(This)36 b(is)g(the)0 4100 y(only)f(p)s(ossible)h(de\014nition,)g(but) e(it)h(m)m(ust)g(b)s(e)g(sho)m(wn)h(to)e(b)s(e)g(natural.)49 b(Let)35 b Fs(f)41 b Fy(:)31 b Fs(a)g Ft(\000)-59 b(!)30 b Fs(b)35 b Fy(b)s(e)g(an)f(arro)m(w)g(of)0 4216 y(the)f(domain)g(of)f Fs(F)46 b Fy(and)33 b Fs(G)p Fy(.)43 b(Then)34 b(w)m(e)g(ha)m(v)m(e) 1017 4346 y Fs(F)14 b(f)32 b Ft(\016)22 b Fy(\()p Fs(\013)q(a)p Fy(\))1436 4310 y Fq(\000)p Fr(1)1613 4346 y Fy(=)28 b(\()p Fs(\013)q(b)p Fy(\))1897 4310 y Fq(\000)p Fr(1)2014 4346 y Ft(\016)21 b Fy(\()p Fs(\013)q(b)p Fy(\))i Ft(\016)f Fs(F)14 b(f)32 b Ft(\016)22 b Fy(\()p Fs(\013)q(a)p Fy(\))2779 4310 y Fq(\000)p Fr(1)1613 4462 y Fy(=)28 b(\()p Fs(\013)q(b)p Fy(\))1897 4426 y Fq(\000)p Fr(1)2014 4462 y Ft(\016)21 b Fs(Gf)33 b Ft(\016)22 b Fy(\()p Fs(\013)q(a)p Fy(\))g Ft(\016)g Fy(\()p Fs(\013)q(a)p Fy(\))2789 4426 y Fq(\000)p Fr(1)1613 4579 y Fy(=)28 b(\()p Fs(\013)q(b)p Fy(\))1897 4542 y Fq(\000)p Fr(1)2014 4579 y Ft(\016)21 b Fs(Gf)5 b(:)0 4732 y Fy(whic)m(h)34 b(sa)m(ys)g(that)e Fs(\014)39 b Fy(is)33 b(natural.)43 b(The)34 b(second)f(equalit)m(y)i(uses)f(the)f (naturalit)m(y)g(of)f Fs(\013)q Fy(.)637 b Fg(\003)-438 4801 y Fy(27.05.04)p Black 0 4952 a(1.7.37.)29 b Fv(Remark.)p Black 39 w Fy(In)h(1.7.32,)f(w)m(e)h(said)g(that)f(a)g(mo)s(del)h(in)f (an)g(arbitrary)h(category)f Ft(C)36 b Fy(of)29 b(the)g(graph)g(\(8\))0 5069 y(is)36 b(`essen)m(tially)j(the)d(same')h(as)f(an)g(arro)m(w)g(in) g Ft(C)42 b Fy(.)54 b(This)37 b(is)f(common)g(terminology)h(and)f (usually)h(refers)0 5185 y(implicitly)d(to)e(an)h(equiv)-5 b(alence)35 b(of)d(categories.)44 b(W)-8 b(e)33 b(sp)s(ell)h(it)e(out)h (in)f(this)i(case.)0 5301 y(Let)h(us)h(sa)m(y)g(that)f(for)f(a)h (category)g Ft(C)42 b Fy(,)35 b Ft(C)1534 5265 y Fq(0)1593 5301 y Fy(is)g(the)h(category)f(whose)i(ob)5 b(jects)36 b(are)f(the)g(arro)m(ws)h(of)f Ft(C)41 b Fy(and)0 5417 y(for)32 b(whic)m(h)i(an)f(arro)m(w)f(from)h Fs(f)43 b Fy(to)32 b Fs(g)k Fy(is)d(a)f(pair)h(\()p Fs(h;)17 b(k)s Fy(\))32 b(making)h(diagram)g(\(9\))f(comm)m(ute.)p Black Black eop end %%Page: 39 39 TeXDict begin 39 38 bop Black 1544 -99 a Fw(Natural)26 b(transformations)1469 b(39)p Black 0 100 a Fy(A)36 b(mo)s(del)g Fs(M)46 b Fy(of)36 b(the)g(graph)f(\(8\))h(in)g(a)f(category)h Ft(C)42 b Fy(sp)s(eci\014es)c(the)e(ob)5 b(jects)38 b Fs(M)10 b Fy(\(0\))36 b(and)g Fs(M)10 b Fy(\(1\))36 b(and)g(the)0 217 y(arro)m(w)e Fs(M)10 b Fy(\()p Fs(u)p Fy(\).)49 b Fs(M)10 b Fy(\()p Fs(u)p Fy(\))35 b(has)f(domain)h Fs(M)10 b Fy(\(0\))35 b(and)f(co)s(domain)h Fs(M)10 b Fy(\(1\).)49 b(But)34 b(the)h(domain)f(and)h(co)s(domain)0 333 y(of)c(an)g(arro)m(w) g(in)h(a)f(category)h(are)f(uniquely)i(determined)h(b)m(y)e(the)g(arro) m(w.)43 b(So)31 b(that)g(the)h(only)g(necessary)0 449 y(information)g(is)h(whic)m(h)i(arro)m(w)d Fs(M)10 b Fy(\()p Fs(u)p Fy(\))33 b(is.)0 565 y(No)m(w)i(w)m(e)g(can)g(de\014ne)g (a)f(functor)h Fs(F)44 b Fy(:)31 b Ft(C)1480 529 y(\000)-60 b(!)1632 565 y(\000)g(!)30 b(C)1837 529 y Fq(0)1861 565 y Fy(.)48 b(On)35 b(ob)5 b(jects)35 b(it)f(tak)m(es)i Fs(M)45 b Fy(to)34 b Fs(M)10 b Fy(\()p Fs(u)p Fy(\).)49 b(The)35 b(remarks)0 681 y(in)40 b(the)h(preceding)h(paragraph)d(sho)m (w)i(that)f(this)h(map)f(on)h(ob)5 b(jects)41 b(is)g(bijectiv)m(e.)68 b(If)40 b Fs(M)10 b Fy(\()p Fs(u)p Fy(\))41 b(=)f Fs(f)51 b Fy(and)0 798 y Fs(N)10 b Fy(\()p Fs(u)p Fy(\))28 b(=)f Fs(g)t Fy(,)j(an)g(arro)m(w)g(from)g Fs(M)41 b Fy(to)30 b Fs(N)40 b Fy(in)31 b Ft(C)1631 762 y(\000)-60 b(!)1782 798 y Fy(and)30 b(an)g(arro)m(w)h(from)e Fs(f)41 b Fy(to)30 b Fs(g)j Fy(in)e Ft(C)3057 762 y Fq(0)3110 798 y Fy(are)f(the)h(same)g (thing)0 914 y({)37 b(a)f(pair)h(\()p Fs(h;)17 b(k)s Fy(\))37 b(making)g(diagram)g(\(9\))g(comm)m(ute.)58 b(So)36 b(w)m(e)i(sa)m(y)g Fs(F)51 b Fy(is)37 b(the)h(iden)m(tit)m(y)g (on)f(arro)m(ws.)57 b(It)37 b(is)0 1030 y(straigh)m(tforw)m(ard)c(to)f (see)i(that)e Fs(F)47 b Fy(is)33 b(actually)g(an)f(isomorphism)j(of)d (categories.)0 1198 y(1.7.8.)48 b Fu(Natur)-5 b(al)36 b(tr)-5 b(ansformations)34 b(b)-5 b(etwe)g(en)34 b(functors)h(II.)p Black 0 1366 a Fy(1.7.38.)h Fv(De\014nition.)p Black 45 w Fy(A)g(functor)h(is)h(among)e(other)h(things)g(a)g(graph)f (homomorphism,)j(so)e(a)g Fu(natur)-5 b(al)0 1483 y(tr)g(ansformation) 33 b(b)-5 b(etwe)g(en)33 b(two)g(functors)e Fy(is)h(a)f(natural)g (transformation)g(of)f(the)i(corresp)s(onding)g(graph)0 1599 y(homomorphisms.)45 b(The)34 b(follo)m(wing)f(prop)s(osition)f(is) h(an)g(immediate)h(consequence)h(of)e(1.7.28.)p Black 0 1767 a(1.7.39.)i Fv(Prop)s(osition.)p Black 44 w Fu(If)i Ft(C)44 b Fu(and)37 b Ft(D)k Fu(ar)-5 b(e)37 b(c)-5 b(ate)g(gories,)38 b(the)g(functors)f(fr)-5 b(om)38 b Ft(C)44 b Fu(to)38 b Ft(D)i Fu(form)d(a)h(c)-5 b(ate)g(gory)0 1883 y(with)35 b(natur)-5 b(al)35 b(tr)-5 b(ansformations)34 b(as)g(arr)-5 b(ows.)0 2051 y Fy(W)d(e)34 b(denote)g(this)h(category)e(b)m(y)i Fv(F)-9 b(unc)p Fy(\()p Ft(C)6 b Fs(;)17 b Ft(D)s Fy(\).)46 b(Other)34 b(common)g(notations)g(for)f(it)h(are)f Ft(D)3368 2015 y Fq(C)3446 2051 y Fy(and)h([)p Ft(C)6 b Fs(;)17 b Ft(D)s Fy(].)0 2167 y(T)-8 b(ennen)m(t)50 b([1986])d(pro)m(vides)j (an)e(exp)s(osition)h(of)e(the)i(use)g(of)e(functor)i(categories)f(for) g(programming)0 2284 y(language)g(seman)m(tics.)93 b(Of)47 b(course,)54 b(the)48 b(graph)g(homomorphisms)i(from)e Ft(C)55 b Fy(to)47 b Ft(D)s Fy(,)52 b(whic)m(h)e(do)e(not)0 2400 y(necessarily)39 b(preserv)m(e)f(the)f(comp)s(osition)g(of)f(arro) m(ws)h(in)f Ft(C)42 b Fy(,)c(also)e(form)g(a)g(category)g Fv(Mo)s(d)q Fy(\()p Ft(C)6 b Fs(;)17 b Ft(D)s Fy(\))36 b(\(see)0 2516 y(1.7.29\),)24 b(of)f(whic)m(h)i Fv(F)-9 b(unc)q Fy(\()p Ft(C)6 b Fs(;)17 b Ft(D)s Fy(\))22 b(is)i(a)f(full)h (sub)s(category)-8 b(.)41 b(A)24 b(natural)f(transformation)g(from)g (one)h(functor)0 2632 y(to)37 b(another)g(is)g(a)g(sp)s(ecial)g(case)h (of)f(a)f(natural)h(transformation)g(from)f(one)h(graph)g(homomorphism) h(to)0 2749 y(another,)e(so)f(the)g(ideas)g(w)m(e)h(ha)m(v)m(e)g (presen)m(ted)h(concerning)f(natural)f(transformations)g(b)s(et)m(w)m (een)i(graph)0 2865 y(homomorphisms)j(apply)e(to)g(natural)g (transformations)g(b)s(et)m(w)m(een)i(functors)f(as)f(w)m(ell.)61 b(In)39 b(particular,)0 2981 y(Theorems)34 b(1.7.28)e(and)h(1.7.36)f (are)g(true)h(of)f(natural)h(transformations)g(of)f(functors.)0 3097 y(If)c Ft(C)35 b Fy(is)28 b(not)g(a)g(small)h(category)g(\(see)g (1.3.4\),)f(then)h Fv(F)-9 b(unc)q Fy(\()p Ft(C)6 b Fs(;)17 b Ft(D)s Fy(\))27 b(ma)m(y)i(not)f(b)s(e)h(lo)s(cally)f(small)h(\(see)g (1.3.4\).)0 3214 y(In)i(fact)f(functors)i(will)f(b)s(e)g(large,)g(to)s (o,)f(so)h(they)g(cannot)g(b)s(e)g(elemen)m(ts)i(\(ob)5 b(jects\))31 b(of)f(a)h(class)g(of)g(ob)5 b(jects.)0 3330 y(This)36 b(is)f(a)f(rather)h(esoteric)h(question)g(that)e(will)h (not)g(concern)h(us)f(in)g(these)g(notes)h(since)g(w)m(e)f(will)h(ha)m (v)m(e)0 3446 y(no)c(o)s(ccasion)i(to)e(form)g(functor)h(categories)g (of)f(that)h(sort.)0 3562 y(W)-8 b(e)37 b(motiv)-5 b(ated)37 b(the)g(concept)g(of)f(natural)g(transformation)h(b)m(y)g(considering)h (mo)s(dels)f(of)f(graphs,)i(and)0 3678 y(most)g(of)f(the)h(discussion)h (in)f(the)g(rest)g(of)f(this)h(section)h(concerns)g(that)e(p)s(oin)m(t) g(of)g(view.)60 b(Historically)-8 b(,)0 3795 y(the)33 b(concept)h(\014rst)f(arose)g(for)f(functors)h(and)f(not)h(from)f(the)h (p)s(oin)m(t)g(of)f(view)i(of)e(mo)s(dels.)p Black 0 3963 a(1.7.40.)39 b Fv(Examples.)p Black 46 w Fy(W)-8 b(e)40 b(ha)m(v)m(e)h(already)f(describ)s(ed)h(some)g(examples)g(of)e (natural)h(transformations,)0 4079 y(as)33 b(summed)i(up)f(in)f(the)h (follo)m(wing)f(prop)s(ositions.)46 b(In)34 b(1.6.7,)e(w)m(e)j (de\014ned)f(the)g(graph)f(homomorphism)0 4195 y Fs(\021)t Ft(G)h Fy(:)27 b Ft(G)34 b(\000)-59 b(!)27 b Fs(U)10 b Fy(\()p Fs(F)k Fy(\()p Ft(G)6 b Fy(\)\))30 b(whic)m(h)h(includes)g(a) e(graph)h Ft(G)35 b Fy(in)m(to)30 b Fs(U)10 b Fy(\()p Fs(F)k Fy(\()p Ft(G)6 b Fy(\)\),)30 b(the)g(underlying)h(graph)f(of)f (the)h(free)0 4312 y(category)j Fs(F)14 b Fy(\()p Ft(G)6 b Fy(\).)p Black 0 4480 a(1.7.41.)27 b Fv(Prop)s(osition.)p Black 39 w Fu(The)j(family)g(of)g(arr)-5 b(ows)30 b Fs(\021)t Ft(G)37 b Fu(form)30 b(a)g(natur)-5 b(al)31 b(tr)-5 b(ansformation)30 b(fr)-5 b(om)30 b(the)h(iden-)0 4596 y(tity)36 b(functor)f(on)f Fv(Grf)45 b Fu(to)36 b Fs(U)c Ft(\016)22 b Fs(F)14 b Fu(,)35 b(wher)-5 b(e)34 b Fs(U)46 b Fu(is)34 b(the)h(underlying)f(gr) -5 b(aph)35 b(functor)g(fr)-5 b(om)34 b Fv(Cat)h Fu(to)g Fv(Grf)10 b Fu(.)0 4764 y Fy(The)34 b(pro)s(of)d(is)i(left)g(as)g(an)f (exercise.)0 4880 y(F)-8 b(urther)34 b(examples)i(of)d(natural)h (transformations)g(are)g(giv)m(en)h(b)m(y)g(actions)f(on)g(sets.)48 b(W)-8 b(e)35 b(b)s(egin)f(with)g(a)0 4996 y(de\014nition.)p Black 0 5164 a(1.7.42.)d Fv(De\014nition.)p Black 42 w Fy(Let)h Fs(M)43 b Fy(b)s(e)32 b(a)g(monoid)g(with)h(iden)m(tit)m(y)h (1)d(and)i(let)f Fs(S)38 b Fy(b)s(e)32 b(a)f(set.)44 b(An)33 b Fu(action)h(of)d Fs(M)0 5281 y Fu(on)h Fs(S)38 b Fy(is)c(a)e(function)h Fs(\013)28 b Fy(:)g Fs(M)33 b Ft(\002)23 b Fs(S)33 b Ft(\000)-60 b(!)28 b Fs(S)38 b Fy(for)32 b(whic)m(h)p Black 119 5417 a(A-1)p Black 41 w Fs(\013)q Fy(\(1)p Fs(;)17 b(s)p Fy(\))26 b(=)i Fs(s)k Fy(for)g(all)h Fs(s)27 b Ft(2)h Fs(S)6 b Fy(.)p Black Black eop end %%Page: 40 40 TeXDict begin 40 39 bop Black 0 -99 a Fw(40)1668 b(F)-6 b(oundations)p Black Black 119 100 a Fy(A-2)p Black 41 w Fs(\013)q Fy(\()p Fs(mn;)17 b(s)p Fy(\))27 b(=)h Fs(\013)q Fy(\()p Fs(m;)17 b(\013)q Fy(\()p Fs(n;)g(s)p Fy(\)\))31 b(for)h(all)h Fs(m;)17 b(n)28 b Ft(2)g Fs(M)43 b Fy(and)33 b Fs(s)27 b Ft(2)h Fs(S)6 b Fy(.)0 244 y(It)40 b(is)h(customary)g(in)f (mathematics)i(to)d(write)i Fs(ms)g Fy(for)e Fs(\013)q Fy(\()p Fs(m;)17 b(s)p Fy(\);)43 b(then)e(the)g(preceding)g(requiremen) m(ts)0 360 y(b)s(ecome)p Black 92 504 a(A'-1)p Black 41 w(1)p Fs(s)27 b Fy(=)h Fs(s)k Fy(for)g(all)g Fs(s)c Ft(2)g Fs(S)6 b Fy(.)p Black 92 621 a(A'-2)p Black 41 w(\()p Fs(mn)p Fy(\))p Fs(s)28 b Fy(=)f Fs(m)p Fy(\()p Fs(ns)p Fy(\))33 b(for)f(all)h Fs(m;)17 b(n)28 b Ft(2)g Fs(M)43 b Fy(and)33 b Fs(s)27 b Ft(2)h Fs(S)6 b Fy(.)0 765 y(When)25 b(actions)f(are)g(written)h(this)g(w)m(a)m(y)-8 b(,)26 b Fs(S)k Fy(is)25 b(also)f(called)g(an)g Fs(M)10 b Fu(-set)p Fy(.)41 b(The)25 b(same)g(syn)m(tax)h Fs(ms)e Fy(for)f Fs(m)28 b Ft(2)g Fs(M)0 881 y Fy(and)38 b Fs(s)e Ft(2)h Fs(S)44 b Fy(is)38 b(used)h(ev)m(en)g(when)g(di\013eren)m(t)g (actions)f(are)g(in)m(v)m(olv)m(ed.)61 b(This)39 b(notation)f(is)g (analogous)f(to)0 997 y(\(and)32 b(presumably)i(suggested)g(b)m(y\))f (the)f(notation)g Fs(cv)j Fy(for)d(scalar)g(m)m(ultiplication,)i(where) f Fs(c)f Fy(is)h(a)f(scalar)0 1113 y(and)h Fs(v)j Fy(is)d(a)f(v)m (ector.)0 1230 y(It)g(is)h(useful)h(to)e(think)h(of)f(the)h(set)g Fs(S)38 b Fy(as)33 b(a)f(state)h(space)g(and)g(the)g(elemen)m(ts)h(of)e Fs(M)43 b Fy(as)33 b(acting)g(to)f(induce)0 1346 y(transitions)h(from)g (one)g(state)g(to)f(another.)p Black 0 1529 a(1.7.43.)d Fv(Example.)p Black 41 w Fy(One)h(ma)5 b(jor)30 b(t)m(yp)s(e)h(of)e (action)h(b)m(y)h(a)f(monoid)g(is)g(the)h(case)g(when)g(the)f(state)g (space)h(is)0 1645 y(a)37 b(v)m(ector)h(space)f(and)g Fs(M)48 b Fy(is)37 b(a)g(collection)h(of)e(linear)i(transformations)f (closed)h(under)f(m)m(ultiplication.)0 1761 y(Ho)m(w)m(ev)m(er,)d(in)e (that)f(case)i(the)f(linear)g(structure)h(\(the)e(fact)h(that)f(states) i(can)f(b)s(e)f(added)h(and)g(m)m(ultiplied)0 1877 y(b)m(y)42 b(scalars\))g(is)f(extra)g(structure)i(whic)m(h)f(the)f(de\014nition)h (ab)s(o)m(v)m(e)g(do)s(es)f(not)g(require.)70 b(Our)41 b(de\014nition)0 1993 y(also)47 b(do)s(es)g(not)g(require)i(that)d (there)i(b)s(e)f(an)m(y)h(concept)g(of)e(con)m(tin)m(uit)m(y)j(of)e (transitions.)87 b(Th)m(us,)53 b(the)0 2110 y(de\014nition)44 b(is)h(v)m(ery)f(general)g(and)g(can)g(b)s(e)g(regarded)f(as)h(a)f (nonlinear,)k(discrete)e(approac)m(h)f(to)g(state)0 2226 y(transition)31 b(systems.)45 b(Less)32 b(structure)f(means,)h(as)f (alw)m(a)m(ys,)i(that)d(few)m(er)h(theorems)h(are)e(true)h(and)g(few)m (er)0 2342 y(useful)36 b(to)s(ols)e(are)h(a)m(v)-5 b(ailable.)51 b(On)35 b(the)g(other)g(hand,)h(less)g(structure)g(means)g(that)f(more) g(situations)h(\014t)0 2458 y(the)j(axioms,)j(so)d(that)g(the)g (theorems)h(that)f(are)g(true)g(and)g(the)g(to)s(ols)g(that)f(do)h (exist)i(w)m(ork)e(for)g(more)0 2575 y(applications.)p Black 0 2757 a(1.7.44.)32 b Fv(De\014nition.)p Black 43 w Fy(Let)h Fs(M)44 b Fy(b)s(e)33 b(a)g(monoid)g(with)h(actions)f(on) g(sets)h Fs(S)39 b Fy(and)33 b Fs(T)14 b Fy(.)45 b(An)33 b Fu(e)-5 b(quivariant)35 b(map)0 2874 y Fy(from)d Fs(S)38 b Fy(to)32 b Fs(T)46 b Fy(is)33 b(a)g(function)f Fs(')c Fy(:)g Fs(S)33 b Ft(\000)-59 b(!)27 b Fs(T)46 b Fy(with)33 b(the)g(prop)s(ert)m(y)g(that)f Fs(m')p Fy(\()p Fs(s)p Fy(\))c(=)g Fs(')p Fy(\()p Fs(ms)p Fy(\))k(for)g(all)g Fs(m)c Ft(2)g Fs(M)0 2990 y Fy(and)f Fs(s)g Ft(2)h Fs(S)6 b Fy(.)42 b(The)27 b(iden)m(tit)m(y)i(function)e(is)g(an)f(equiv)-5 b(arian)m(t)28 b(map)f(and)g(the)g(comp)s(osite)g(of)f(t)m(w)m(o)i (equiv)-5 b(arian)m(t)0 3106 y(maps)36 b(is)h(equiv)-5 b(arian)m(t.)54 b(This)36 b(means)h(that)f(for)f(eac)m(h)h(monoid)g Fs(M)10 b Fy(,)38 b(monoid)e(actions)g(and)g(equiv)-5 b(arian)m(t)0 3222 y(maps)33 b(form)g(a)f(category)h Fs(M)10 b Fy(-)17 b Fv(Act)o Fy(.)p Black 0 3405 a(1.7.45.)43 b Fv(Remark.)p Black 48 w Fy(Let)h Fs(\013)h Fy(b)s(e)f(an)g(action)g (of)g(a)f(monoid)i Fs(M)54 b Fy(on)44 b(a)g(set)g Fs(S)6 b Fy(.)78 b(Let)44 b Ft(C)6 b Fy(\()p Fs(M)k Fy(\))45 b(denote)g(the)0 3521 y(category)35 b(determined)h(b)m(y)g Fs(M)45 b Fy(with)35 b(one)g(ob)5 b(ject)35 b(and)g(morphisms)h(the)f (elemen)m(ts)h(of)e Fs(M)10 b Fy(.)50 b(The)36 b(action)0 3637 y Fs(\013)d Fy(determines)i(a)d(functor)h Fs(F)1072 3652 y Fp(\013)1149 3637 y Fy(:)28 b Ft(C)6 b Fy(\()p Fs(M)k Fy(\))29 b Ft(\000)-60 b(!)27 b Fv(Set)33 b Fy(de\014ned)h(b)m (y:)p Black 55 3781 a(AF-1)p Black 41 w Fs(F)378 3796 y Fp(\013)427 3781 y Fy(\()p Ft(\003)p Fy(\))28 b(=)f Fs(S)6 b Fy(.)p Black 55 3898 a(AF-2)p Black 41 w Fs(F)378 3913 y Fp(\013)427 3898 y Fy(\()p Fs(m)p Fy(\))28 b(=)g Fs(s)f Ft(7!)h Fs(\013)q Fy(\()p Fs(m;)17 b(s)p Fy(\))32 b(for)g Fs(m)c Ft(2)g Fs(M)43 b Fy(and)33 b Fs(s)27 b Ft(2)h Fs(S)6 b Fy(.)p Black 0 4080 a(1.7.46.)29 b Fv(Example.)p Black 41 w Fy(Let)h Fs(\013)e Fy(:)g Fs(M)g Ft(\002)17 b Fs(S)33 b Ft(\000)-59 b(!)27 b Fs(S)35 b Fy(and)30 b Fs(\014)k Fy(:)27 b Fs(M)h Ft(\002)17 b Fs(T)41 b Ft(\000)-59 b(!)27 b Fs(T)44 b Fy(b)s(e)30 b(t)m(w)m(o)g(actions)h(b)m(y)g(a)e (monoid)h Ft(M)p Fy(.)0 4197 y(Let)j Fs(')27 b Fy(:)h Fs(S)33 b Ft(\000)-59 b(!)27 b Fs(T)46 b Fy(b)s(e)33 b(an)f(equiv)-5 b(arian)m(t)33 b(map.)44 b(If)32 b Fs(F)46 b Fy(and)32 b Fs(G)h Fy(are)f(the)h(functors)g(corresp)s(onding)g(to)f Fs(\013)h Fy(and)0 4313 y Fs(\014)6 b Fy(,)40 b(as)e(in)h(1.7.45,)g (then)g Fs(')g Fy(is)g(the)f(\(only\))h(comp)s(onen)m(t)h(of)e(a)g (natural)g(transformation)h(from)f Fs(F)52 b Fy(to)38 b Fs(G)p Fy(.)0 4429 y(Con)m(v)m(ersely)-8 b(,)32 b(the)27 b(only)h(comp)s(onen)m(t)h(of)e(an)m(y)h(natural)f(transformation)h (from)f Fs(F)41 b Fy(to)27 b Fs(G)g Fy(is)h(an)g(equiv)-5 b(arian)m(t)0 4545 y(map)33 b(b)s(et)m(w)m(een)h(the)f(corresp)s (onding)h(actions.)0 4662 y(If)e Fs(')c Fy(:)g Fs(S)33 b Ft(\000)-60 b(!)28 b Fs(T)46 b Fy(is)33 b(an)f(isomorphism)i(of)d (actions)i(b)m(y)h Fs(M)43 b Fy(then)33 b Fs(')f Fy(determines)i(a)e (natural)g(isomorphism.)p Black 0 4844 a(1.7.47.)42 b Fv(Example.)p Black 48 w Fy(Let)h Fs(U)56 b Fy(:)46 b Fv(Mon)f Ft(\000)-59 b(!)45 b Fv(Set)d Fy(b)s(e)i(the)f(underlying)h (functor)f(from)g(the)g(category)g(of)0 4961 y(monoids.)h(De\014ne)33 b Fs(U)g Ft(\002)23 b Fs(U)38 b Fy(:)28 b Fv(Mon)g Ft(\000)-59 b(!)27 b Fs(S)6 b(et)33 b Fy(as)f(follo)m(ws:)p Black 148 5105 a(\(1\))p Black 42 w(F)-8 b(or)31 b(a)i(monoid)f Fs(M)10 b Fy(,)34 b(\()p Fs(U)f Ft(\002)22 b Fs(U)10 b Fy(\)\()p Fs(M)g Fy(\))29 b(=)f Fs(U)10 b Fy(\()p Fs(M)g Fy(\))23 b Ft(\002)g Fs(U)10 b Fy(\()p Fs(M)g Fy(\).)p Black 148 5221 a(\(2\))p Black 42 w(F)-8 b(or)31 b(a)i(monoid)f (homomorphism)i Fs(h)28 b Fy(:)g Fs(M)38 b Ft(\000)-59 b(!)27 b Fs(N)10 b Fy(,)1234 5392 y(\()p Fs(U)33 b Ft(\002)23 b Fs(U)10 b Fy(\)\()p Fs(h)p Fy(\)\()p Fs(m;)17 b(n)p Fy(\))28 b(=)g(\()p Fs(h)p Fy(\()p Fs(m)p Fy(\))p Fs(;)17 b(h)p Fy(\()p Fs(n)p Fy(\)\))p Fs(:)p Black Black eop end %%Page: 41 41 TeXDict begin 41 40 bop Black 1544 -99 a Fw(Natural)26 b(transformations)1469 b(41)p Black 0 100 a Fy(Then)34 b(monoid)f(m)m(ultiplication)h(is)f(a)f(natural)g(transformation)h (from)f Fs(U)h Ft(\002)22 b Fs(U)10 b(toU)g Fy(.)0 217 y(F)-8 b(ormally:)56 b(Let)40 b Fs(\026)e Fy(:)h Fs(U)e Ft(\002)27 b Fs(U)49 b Ft(\000)-59 b(!)38 b Fs(U)49 b Fy(b)s(e)40 b(the)f(family)h(of)e(maps)i(whose)g(v)-5 b(alue)40 b(at)e(a)h(monoid)g Fs(M)50 b Fy(is)40 b(the)0 333 y(function)f Fs(\026M)47 b Fy(:)37 b Fs(U)10 b Fy(\()p Fs(M)g Fy(\))28 b Ft(\002)e Fs(U)10 b Fy(\()p Fs(M)g Fy(\))38 b Ft(\000)-59 b(!)37 b Fs(U)10 b Fy(\()p Fs(M)g Fy(\))39 b(de\014ned)h(b)m(y)f Fs(\026M)10 b Fy(\()p Fs(m;)17 b(m)2681 297 y Fq(0)2705 333 y Fy(\))37 b(=)g Fs(mm)3063 297 y Fq(0)3087 333 y Fy(,)i(the)g(pro)s(duct)f(of)g Fs(m)0 449 y Fy(and)h Fs(m)281 413 y Fq(0)343 449 y Fy(in)g Fs(M)10 b Fy(.)63 b(Then)39 b Fs(\026)g Fy(is)g(a)f(natural)h (transformation.)62 b(\(The)39 b(function)g Fs(\026M)49 b Fy(is)40 b Fu(not)e Fy(in)h(general)g(a)0 565 y(monoid)33 b(homomorphism,)h(unless)g Fs(M)43 b Fy(is)33 b(comm)m(utativ)m(e.\))0 681 y(It)40 b(is)h(instructiv)m(e)h(to)d(see)j(wh)m(y)f Fs(\026)e Fy(is)i(a)f(natural)f(transformation.)66 b(Let)40 b Fs(h)h Fy(:)f Fs(M)51 b Ft(\000)-60 b(!)40 b Fs(N)51 b Fy(b)s(e)40 b(a)g(monoid)0 798 y(homomorphism.)45 b(W)-8 b(e)33 b(m)m(ust)g(sho)m(w)h(that)e(the)h(follo)m(wing)g(diagram)g (comm)m(utes:)0 1373 y(\(10\))1540 1008 y(\()p Fs(U)g Ft(\002)22 b Fs(U)10 b Fy(\)\()p Fs(M)g Fy(\))290 b Fs(U)10 b Fy(\()p Fs(M)g Fy(\))p 2100 984 232 4 v 2249 982 a Fo(-)2133 945 y Fs(\026M)1548 1398 y Fy(\()p Fs(U)33 b Ft(\002)22 b Fs(U)10 b Fy(\)\()p Fs(N)g Fy(\))306 b Fs(U)10 b Fy(\()p Fs(N)g Fy(\))p 2092 1375 247 4 v 2256 1373 a Fo(-)2142 1459 y Fs(\026N)p 1804 1304 4 254 v 1806 1304 a Fo(?)1284 1203 y Fy(\()p Fs(U)32 b Ft(\002)23 b Fs(U)10 b Fy(\)\()p Fs(h)p Fy(\))p 2487 1304 V 2488 1304 a Fo(?)2527 1212 y Fs(h)0 1613 y Fy(The)38 b(top)f(route)g(tak)m (es)h(an)f(elemen)m(t)i(\()p Fs(m;)17 b(m)1653 1577 y Fq(0)1677 1613 y Fy(\))35 b Ft(2)g Fy(\()p Fs(U)h Ft(\002)26 b Fs(U)10 b Fy(\)\()p Fs(M)g Fy(\))38 b(to)f Fs(h)p Fy(\()p Fs(mm)2814 1577 y Fq(0)2838 1613 y Fy(\).)56 b(The)38 b(lo)m(w)m(er)h(route)e(tak)m(es)0 1729 y(it)f(to)f Fs(h)p Fy(\()p Fs(m)p Fy(\))p Fs(h)p Fy(\()p Fs(m)619 1693 y Fq(0)644 1729 y Fy(\).)53 b(The)37 b(comm)m(utativit)m(y)h(of)d(the)i (diagram)e(then)i(follo)m(ws)f(from)g(the)g(fact)g(that)g Fs(h)g Fy(is)g(a)0 1846 y(homomorphism.)p Black 0 2026 a(1.7.48.)29 b Fv(De\014nition.)p Black 40 w Fy(Let)g Ft(C)36 b Fy(b)s(e)29 b(a)g(category)-8 b(.)43 b(A)29 b Fu(subfunctor)h Fy(of)e(a)h(functor)h Fs(F)41 b Fy(:)28 b Ft(C)34 b(\000)-60 b(!)28 b Fv(Set)h Fy(is)h(a)f(functor)0 2143 y Fs(G)35 b Fy(:)g Ft(C)41 b(\000)-59 b(!)34 b Fv(Set)j Fy(with)h(the)f(prop)s(ert)m(y)h(that)e(for)g(eac)m(h)i(ob)5 b(ject)38 b Fs(C)44 b Fy(of)36 b Ft(C)6 b Fy(,)38 b Fs(G)p Fy(\()p Fs(C)7 b Fy(\))35 b Ft(\022)h Fs(F)14 b Fy(\()p Fs(C)7 b Fy(\))36 b(and)h(suc)m(h)h(that)0 2259 y(for)j(eac)m(h)i(arro) m(w)f Fs(f)53 b Fy(:)44 b Fs(C)50 b Ft(\000)-60 b(!)43 b Fs(C)1199 2223 y Fq(0)1264 2259 y Fy(and)f(eac)m(h)g(elemen)m(t)i Fs(x)f Ft(2)h Fs(G)p Fy(\()p Fs(C)7 b Fy(\),)44 b(w)m(e)e(ha)m(v)m(e)i (that)d Fs(Gf)11 b Fy(\()p Fs(x)p Fy(\))43 b(=)g Fs(F)14 b(f)d Fy(\()p Fs(x)p Fy(\).)0 2375 y(It)40 b(is)g(straigh)m(tforw)m (ard)g(to)f(c)m(hec)m(k)j(that)d(the)i(inclusion)g(function)f Fs(i)2537 2390 y Fp(C)2636 2375 y Fy(:)f Fs(G)p Fy(\()p Fs(C)7 b Fy(\))40 b Ft(\000)-60 b(!)40 b Fs(F)14 b Fy(\()p Fs(C)7 b Fy(\))39 b(is)h(a)f(natural)0 2491 y(transformation.)p Black 0 2672 a(1.7.49.)g Fv(Example.)p Black 46 w Fy(Let)g Fs(B)44 b Fy(b)s(e)c(a)f(\014xed)h(set.)64 b(W)-8 b(e)40 b(de\014ne)g(a)f(functor)h Fs(R)g Fy(:)f Fv(Set)3030 2630 y Fp(op)3142 2672 y Ft(\000)-59 b(!)38 b Fv(Set)h Fy(suc)m(h)i(that)0 2788 y(for)35 b(a)g(set)h Fs(A)p Fy(,)g Fs(R)q Fy(\()p Fs(A)p Fy(\))d(=)f Fv(Rel)p Fy(\()p Fs(A;)17 b(B)5 b Fy(\),)36 b(the)g(set)g(of)f(relations)h(from)f Fs(A)g Fy(to)g Fs(B)5 b Fy(.)52 b(\(A)35 b Fu(r)-5 b(elation)35 b Fy(from)g Fs(A)h Fy(to)f Fs(B)0 2905 y Fy(is)40 b(essen)m(tially)i (set)e(of)f(ordered)h(pairs)f(in)h Fs(A)27 b Ft(\002)g Fs(B)5 b Fy(.\))64 b(F)-8 b(or)38 b(a)h(set)h(function)g Fs(f)50 b Fy(:)39 b Fs(A)3047 2868 y Fq(0)3110 2905 y Ft(\000)-60 b(!)39 b Fs(A)g Fy(and)h(relation)0 3021 y Fs(\013)f Ft(2)h Fv(Rel)p Fy(\()p Fs(A;)17 b(B)5 b Fy(\),)40 b(de\014ne)g Fs(R)q Fy(\()p Fs(f)11 b Fy(\)\()p Fs(\013)q Fy(\))39 b(to)f(b)s(e)i(the)f(relation)g Fs(\013)2254 2985 y Fq(0)2316 3021 y Ft(2)g Fv(Rel)p Fy(\()p Fs(A)2698 2985 y Fq(0)2722 3021 y Fs(;)17 b(B)5 b Fy(\))38 b(de\014ned)j(b)m(y)f Fs(a)3457 2985 y Fq(0)3480 3021 y Fs(\013)3543 2985 y Fq(0)3566 3021 y Fs(b)g Fy(if)f(and)0 3137 y(only)g(if)g Fs(f)11 b Fy(\()p Fs(a)464 3101 y Fq(0)487 3137 y Fy(\))p Fs(\013)q(b)p Fy(.)63 b(It)39 b(is)g(easy)h(to)e(see)i(that)f(this)g (mak)m(es)i Fs(R)e Fy(:)g Fv(Set)2495 3095 y Fp(op)2607 3137 y Ft(\000)-60 b(!)38 b Fv(Set)h Fy(a)g(functor.)62 b(\(Note)39 b(that)0 3253 y Fs(R)q Fy(\()p Fs(A)p Fy(\))28 b(=)f Fv(Rel)p Fy(\()p Fs(A;)17 b(B)5 b Fy(\),)33 b(but)f Fs(R)i Fy(is)f Fu(not)g Fy(Mor)1583 3268 y Fi(Rel)1708 3253 y Fy(\(-)o Fs(;)17 b(B)5 b Fy(\).\))0 3370 y(F)-8 b(or)29 b(eac)m(h)i Fs(A)p Fy(,)g(let)g Fs(')723 3385 y Fp(A)807 3370 y Fy(:)d Fv(Rel)p Fy(\()p Fs(A;)17 b(B)5 b Fy(\))27 b Ft(\000)-59 b(!)27 b Fy(Mor\()p Fs(A;)17 b Ft(P)8 b Fs(B)d Fy(\))30 b(b)s(e)h(the)f(bijection)h(that)f(tak)m(es) h(a)f(relation)g Fs(\013)h Fy(from)0 3486 y Fs(A)37 b Fy(to)g Fs(B)42 b Fy(to)36 b(the)i(function)f(that)g(tak)m(es)h(an)f (elemen)m(t)h Fs(a)e Ft(2)f Fs(A)i Fy(to)g(the)g(set)h Ft(f)p Fs(b)d Ft(2)h Fs(B)5 b Ft(j)p Fs(a\013)q(b)p Ft(g)p Fy(.)56 b(\(Y)-8 b(ou)37 b(should)0 3602 y(c)m(hec)m(k)j(that)d(this)i (is)f(a)f(bijection.\))60 b(If)38 b(w)m(e)g(c)m(hec)m(k)i(that)e(the)g (functions)g Fs(')2757 3617 y Fp(A)2852 3602 y Fy(are)g(the)g(comp)s (onen)m(ts)h(of)e(a)0 3718 y(natural)f(transformation)g(from)f Fs(R)i Fy(to)f(Mor\()p Fs(A;)17 b Ft(P)8 b Fs(B)d Fy(\),)37 b(the)g(transformation)f(will)g(automatically)h(b)s(e)f(a)0 3834 y(natural)d(isomorphism)h(b)m(y)g(Theorem)h(1.7.36.)44 b(T)-8 b(o)33 b(sho)m(w)h(that)e(it)h(is)h(natural,)f(let)g Fs(\013)c Ft(2)g Fv(Rel)p Fy(\()p Fs(A;)17 b(B)5 b Fy(\))33 b(and)0 3951 y Fs(a)51 3915 y Fq(0)102 3951 y Ft(2)28 b Fs(A)269 3915 y Fq(0)293 3951 y Fy(.)43 b(Then)204 4119 y(Mor\()p Fs(f)5 b(;)17 b Ft(P)8 b Fs(B)d Fy(\)\()p Fs(')811 4134 y Fp(A)868 4119 y Fy(\()p Fs(\013)q Fy(\)\()p Fs(a)1096 4078 y Fq(0)1119 4119 y Fy(\)\))28 b(=)f Fs(')1390 4134 y Fp(A)1447 4119 y Fy(\()p Fs(\013)q Fy(\)\()p Fs(f)11 b Fy(\()p Fs(a)1772 4078 y Fq(0)1795 4119 y Fy(\)\))27 b(=)h Ft(f)p Fs(b)p Ft(j)p Fs(f)11 b Fy(\()p Fs(a)2269 4078 y Fq(0)2292 4119 y Fy(\))p Fs(\013)q(b)p Ft(g)28 b Fy(=)f Ft(f)p Fs(b)p Ft(j)p Fs(a)2785 4078 y Fq(0)2809 4119 y Fs(\013)2872 4078 y Fq(0)2895 4119 y Fs(b)p Ft(g)h Fy(=)f Fs(')3181 4134 y Fp(A)3234 4115 y Fl(0)3260 4119 y Fy(\()p Fs(R)q Fy(\()p Fs(f)11 b Fy(\)\()p Fs(a)3597 4078 y Fq(0)3620 4119 y Fy(\)\))0 4287 y(as)33 b(required.)0 4403 y(This)h(natural)f(isomorphism)h(can)f(b)s(e)h(tak)m(en)f(to)g(b)s (e)g(the)g(de\014ning)h(prop)s(ert)m(y)g(of)e(a)h(top)s(os.)44 b(A)33 b Fu(top)-5 b(os)33 b Fy(is)g(a)0 4520 y(cartesian)f(closed)h (category)f(with)h(some)f(extra)g(structure)h(whic)m(h)g(pro)s(duces)g (an)f(ob)5 b(ject)32 b(of)f(sub)s(ob)5 b(jects)0 4636 y(for)32 b(eac)m(h)i(ob)5 b(ject.)44 b(This)34 b(structure)f(mak)m(es)i (top)s(oses)e(v)m(ery)h(m)m(uc)m(h)g(lik)m(e)g(the)f(category)g(of)f (sets.)p Black 0 4817 a(1.7.50.)47 b Fv(Example.)p Black 51 w Fy(F)-8 b(or)47 b(eac)m(h)i(set)g Fs(S)6 b Fy(,)52 b(let)d Ft(fg)p Fs(S)59 b Fy(:)54 b Fs(S)60 b Ft(\000)-59 b(!)53 b(P)8 b Fs(S)55 b Fy(b)s(e)48 b(the)g(function)h(whic)m(h)h(tak) m(es)f(an)0 4933 y(elemen)m(t)38 b Fs(x)f Fy(of)f Fs(S)42 b Fy(to)37 b(the)g(singleton)g(subset)h Ft(f)p Fs(x)p Ft(g)p Fy(.)55 b(Then)38 b Fs(f)11 b(g)39 b Fy(is)e(a)g(natural)f (transformation)g(from)h(the)0 5049 y(iden)m(tit)m(y)i(functor)f(on)f Fv(Set)h Fy(to)f(the)h(direct)g(image)g(p)s(o)m(w)m(erset)h(functor)f Ft(P)8 b Fy(.)59 b(\(See)38 b(1.6.3.\))58 b(Ho)m(w)m(ev)m(er,)41 b Fs(f)11 b(g)0 5165 y Fy(is)45 b(not)g(a)f(natural)h(transformation)f (from)h(the)g(iden)m(tit)m(y)i(functor)d(on)h Fv(Set)g Fy(to)f(the)h(univ)m(ersal)i(image)0 5282 y(p)s(o)m(w)m(erset)32 b(functor)e(\(see)h(1.6.11\),)f(and)g(it)g(do)s(es)g(not)g(ev)m(en)h (mak)m(e)h(sense)f(to)f(ask)h(whether)g(it)f(is)g(a)g(natural)0 5398 y(transformation)i(to)h(the)g(in)m(v)m(erse)i(image)d(p)s(o)m(w)m (erset)j(functor.)p Black Black eop end %%Page: 42 42 TeXDict begin 42 41 bop Black 0 -99 a Fw(42)1668 b(F)-6 b(oundations)p Black 0 100 a Fy(1.7.9.)48 b Fu(Natur)-5 b(al)36 b(tr)-5 b(ansformations)34 b(of)g(gr)-5 b(aphs.)0 217 y Fy(W)d(e)40 b(no)m(w)h(consider)g(some)g(natural)f (transformations)g(in)m(v)m(olving)h(the)g(category)f Fv(Grf)50 b Fy(of)40 b(graphs)g(and)0 333 y(homomorphisms)34 b(of)e(graphs.)p Black 0 512 a(1.7.51.)47 b Fv(Example.)p Black 50 w Fy(The)h(map)f(whic)m(h)i(tak)m(es)g(an)e(arro)m(w)g(of)g(a) g(graph)g(to)g(its)g(source)h(is)g(a)f(natural)0 628 y(transformation)42 b(from)h Fs(A)f Fy(to)g Fs(N)10 b Fy(.)74 b(\(See)43 b(1.6.2.\))73 b(The)43 b(same)g(is)g(true)g(for)f (targets.)73 b(Actually)-8 b(,)46 b(ev)m(ery)0 744 y(op)s(eration)39 b(in)h(an)m(y)g(m)m(ultisorted)h(algebraic)e(structure)i(giv)m(es)g(a)e (natural)g(transformation.)63 b(Example)0 861 y(1.7.47)32 b(w)m(as)h(another)g(example)h(of)e(this.)p Black 0 1040 a(1.7.52.)j Fv(Example.)p Black 45 w Fy(In)h(1.6.2,)h(w)m(e)g (de\014ned)g(the)g(functor)f Fs(N)44 b Fy(:)34 b Fv(Grf)44 b Ft(\000)-60 b(!)33 b Fv(Set)p Fy(.)54 b(It)36 b(tak)m(es)i(a)d(graph) h Ft(G)42 b Fy(to)0 1156 y(its)36 b(set)h Fs(G)372 1171 y Fr(0)447 1156 y Fy(of)e(no)s(des)h(and)g(a)g(homomorphism)h Fs(')e Fy(to)g Fs(')2093 1171 y Fr(0)2133 1156 y Fy(.)53 b(No)m(w)36 b(pic)m(k)h(a)f(graph)f(with)h(one)g(no)s(de)g Ft(\003)g Fy(and)0 1272 y(no)c(arro)m(ws)i(and)e(call)h(it)g Ft(E)9 b Fy(.)43 b(Let)32 b Fs(V)50 b Fy(=)27 b(Mor)1606 1287 y Fi(Grf)1741 1272 y Fy(\()p Ft(E)9 b Fs(;)17 b Fy(-)n(\).)0 1388 y(A)34 b(graph)g(homomorphism)i(from)d(the)i(graph)f Ft(E)43 b Fy(to)33 b(an)h(arbitrary)h(graph)f Ft(G)40 b Fy(is)35 b(eviden)m(tly)h(determined)0 1505 y(b)m(y)30 b(the)g(image)g(of)f Ft(E)38 b Fy(and)29 b(that)g(can)h(b)s(e)g(an)m(y) g(no)s(de)f(of)g Ft(G)6 b Fy(.)43 b(In)30 b(other)f(w)m(ords,)i(no)s (des)f(of)f Ft(G)36 b Fy(are)29 b(`essen)m(tially)0 1621 y(the)38 b(same)h(thing')f(as)g(graph)g(homomorphisms)h(from)f Ft(E)46 b Fy(to)38 b Ft(G)6 b Fy(,)39 b(that)e(is,)j(as)e(the)h(elemen) m(ts)h(of)d(the)h(set)0 1737 y Fs(V)22 b Fy(\()p Ft(G)6 b Fy(\).)0 1853 y(W)-8 b(e)33 b(can)f(de\014ne)i(a)e(natural)g (transformation)h Fs(\013)28 b Fy(:)g Fs(V)49 b Ft(\000)-60 b(!)28 b Fs(N)42 b Fy(b)m(y)34 b(de\014ning)f Fs(\013)q Ft(G)6 b Fy(\()p Fs(f)11 b Fy(\))27 b(=)h Fs(f)3177 1868 y Fr(0)3216 1853 y Fy(\()p Ft(\003)p Fy(\))k(where)i Ft(G)k Fy(is)33 b(a)0 1969 y(graph)28 b(and)h Fs(f)38 b Fy(:)28 b Ft(E)36 b(\000)-59 b(!)27 b(G)35 b Fy(is)29 b(a)f(graph)h(homomorphism)h(\(arro)m(w)e(of)g Fv(Grf)11 b Fy(\).)42 b(There)29 b(m)m(ust)h(b)s(e)f(a)f(naturalit)m(y)0 2086 y(diagram)38 b(\(6\))f(for)h(eac)m(h)h(arro)m(w)f(of)f(the)i (source)g(category)-8 b(,)39 b(whic)m(h)h(in)e(this)g(case)h(is)g Fv(Grf)10 b Fy(.)60 b(Th)m(us)39 b(to)f(see)0 2202 y(that)32 b Fs(\013)i Fy(is)f(natural,)f(w)m(e)i(require)g(that)e(for)g(eac)m(h)i (graph)e(homomorphism)i Fs(g)d Fy(:)c Ft(G)2981 2217 y Fr(1)3049 2202 y Ft(\000)-60 b(!)28 b(G)3253 2217 y Fr(2)3292 2202 y Fy(,)33 b(the)g(diagram)0 2774 y(\(11\))1666 2410 y Fs(V)22 b Ft(G)1804 2425 y Fr(1)2056 2410 y Fs(V)g Ft(G)2194 2425 y Fr(2)p 1872 2386 156 4 v 1945 2384 a Fo(-)1886 2346 y Fs(V)f(g)1661 2800 y(N)10 b Ft(G)1808 2815 y Fr(1)2051 2800 y Fs(N)g Ft(G)2198 2815 y Fr(2)p 1878 2776 145 4 v 1939 2774 a Fo(-)1881 2861 y Fs(N)g(g)p 1753 2706 4 254 v 1755 2706 a Fo(?)1555 2605 y Fs(\013)q Ft(G)1677 2620 y Fr(1)p 2143 2706 V 2145 2706 a Fo(?)2184 2605 y Fs(\013)q Ft(G)2306 2620 y Fr(2)0 3011 y Fy(comm)m(utes.)59 b(No)m(w)38 b Fs(N)10 b(g)41 b Fy(is)c Fs(g)1062 3026 y Fr(0)1139 3011 y Fy(\(the)g(no)s(de)g(map)h(of)e Fs(g)t Fy(\))h(b)m(y)h(de\014nition,)h(and)e(the)h(v)-5 b(alue)38 b(of)e Fs(V)59 b Fy(\(whic)m(h)38 b(is)0 3127 y(a)i(hom)g(functor\))g (at)g(a)f(homomorphism)j Fs(g)h Fy(comp)s(oses)e Fs(g)i Fy(with)e(a)f(graph)g(homomorphism)h(from)f(the)0 3244 y(graph)31 b Ft(E)9 b Fy(.)43 b(Then)33 b(w)m(e)f(ha)m(v)m(e,)h(for)e (a)g(homomorphism)i Fs(f)38 b Fy(:)28 b Fs(E)34 b Ft(\000)-60 b(!)28 b(G)2421 3259 y Fr(1)2492 3244 y Fy(\(i.e.,)k(an)g(elemen)m(t)h (of)e(the)h(upp)s(er)g(left)0 3360 y(corner)h(of)f(the)h(diagram\),) 1079 3525 y(\()p Fs(\013)q Ft(G)1239 3540 y Fr(2)1301 3525 y Ft(\016)22 b Fs(V)f(g)t Fy(\)\()p Fs(f)11 b Fy(\))27 b(=)g Fs(\013)q Ft(G)1927 3540 y Fr(2)1967 3525 y Fy(\()p Fs(g)e Ft(\016)d Fs(f)11 b Fy(\))27 b(=)h(\()p Fs(g)d Ft(\016)d Fs(f)11 b Fy(\))2656 3540 y Fr(0)2695 3525 y Fy(\()p Ft(\003)p Fy(\))0 3690 y(while)1115 3815 y(\()p Fs(N)f(g)26 b Ft(\016)c Fs(\013)q Ft(G)1508 3830 y Fr(1)1547 3815 y Fy(\)\()p Fs(f)11 b Fy(\))27 b(=)h Fs(N)10 b(g)t Fy(\()p Fs(f)2076 3830 y Fr(0)2115 3815 y Fy(\()p Ft(\003)p Fy(\)\))27 b(=)h Fs(g)2457 3830 y Fr(0)2496 3815 y Fy(\()p Fs(f)2582 3830 y Fr(0)2622 3815 y Fy(\()p Ft(\003)p Fy(\)\))0 3960 y(and)33 b(these)h(are)e(equal)i(from)e(the)h(de\014nition)g(of)g (comp)s(osition)g(of)f(graph)g(homomorphisms.)0 4076 y(The)i(natural)e(transformation)h Fs(\013)g Fy(is)g(in)g(fact)g(a)f (natural)h(isomorphism.)45 b(This)34 b(sho)m(ws)g(that)f Fs(N)43 b Fy(is)33 b(natu-)0 4192 y(rally)27 b(isomorphic)h(to)f(a)f (hom)h(functor.)42 b(Suc)m(h)28 b(functors)g(are)f(called)g Fu(r)-5 b(epr)g(esentable)p Fy(,)27 b(and)g(are)g(considered)0 4308 y(in)33 b(greater)f(detail)h(in)g(2.1.1)p Black 0 4487 a(1.7.53.)39 b Fv(Remark)45 b Fy(\(Connected)c(comp)s(onen)m (ts\))p Fv(.)p Black 47 w Fy(A)e(no)s(de)h Fs(a)f Fy(can)h(b)s(e)f Fu(c)-5 b(onne)g(cte)g(d)38 b Fy(to)h(the)h(no)s(de)g Fs(b)f Fy(of)g(a)0 4604 y(graph)j Ft(G)49 b Fy(if)42 b(it)h(is)g(p)s(ossible)g(to)f(get)h(from)f Fs(a)h Fy(to)f Fs(b)h Fy(follo)m(wing)f(a)h(sequence)i(of)d(arro)m(ws)h(of)f Ft(G)48 b Fy(in)43 b(either)0 4720 y(direction.)50 b(In)34 b(order)h(to)f(state)g(this)h(more)g(precisely)-8 b(,)37 b(let)e(us)g(sa)m(y)g(that)f(an)g(arro)m(w)h Fs(a)f Fy(`has')h(a)f(no)s (de)h Fs(n)f Fy(if)0 4836 y Fs(n)f Fy(is)h(the)g(domain)f(or)g(the)h (co)s(domain)f(\(or)g(b)s(oth\))g(of)g Fs(a)p Fy(.)46 b(Then)34 b Fs(a)f Fy(is)h Fu(c)-5 b(onne)g(cte)g(d)32 b Fy(to)h Fs(b)h Fy(means)g(that)f(there)0 4952 y(is)40 b(a)f(sequence)j(\()p Fs(c)684 4967 y Fr(0)723 4952 y Fs(;)17 b(c)809 4967 y Fr(1)848 4952 y Fs(;)g(:)g(:)g(:)f(;)h(c)1109 4967 y Fp(n)1156 4952 y Fy(\))39 b(of)f(arro)m(ws)i(of)f Ft(G)45 b Fy(with)40 b(the)g(prop)s(ert)m(y)g(that)f Fs(a)g Fy(is)h(a)f(no)s(de)h(\(either)g(the)0 5069 y(source)33 b(or)f(the)h(target\))e(of)h Fs(c)1062 5084 y Fr(0)1101 5069 y Fy(,)h Fs(b)f Fy(is)h(a)f(no)s(de)g(of)g Fs(c)1801 5084 y Fp(n)1848 5069 y Fy(,)g(and)g(for)g Fs(i)c Fy(=)f(1)p Fs(;)17 b(:)g(:)g(:)f(;)h(n)p Fy(,)32 b Fs(c)2836 5084 y Fp(i)p Fq(\000)p Fr(1)2987 5069 y Fy(and)g Fs(c)3218 5084 y Fp(i)3278 5069 y Fy(ha)m(v)m(e)i(a)d(no)s(de)i(in)0 5185 y(common.)44 b(W)-8 b(e)33 b(call)g(suc)m(h)h(a)e(sequence)k(an)c Fu(undir)-5 b(e)g(cte)g(d)35 b(p)-5 b(ath)34 b(b)-5 b(etwe)g(en)32 b Fs(a)h Fu(and)f Fs(b)p Fy(.)0 5301 y(It)i(is)g(a)f(go)s(o)s(d)f (exercise)k(to)d(see)i(that)e(`b)s(eing)h(connected)h(to')e(is)h(an)f (equiv)-5 b(alence)36 b(relation.)47 b(\(F)-8 b(or)32 b(re\015ex-)0 5417 y(ivit)m(y:)53 b(a)36 b(no)s(de)h(is)g(connected)i (to)d(itself)h(b)m(y)h(the)f(empt)m(y)h(sequence.\))59 b(An)36 b(equiv)-5 b(alence)39 b(class)f(of)e(no)s(des)p Black Black eop end %%Page: 43 43 TeXDict begin 43 42 bop Black 1544 -99 a Fw(Natural)26 b(transformations)1469 b(43)p Black 0 100 a Fy(with)36 b(resp)s(ect)g(to)f(this)g(relation)h(is)f(called)h(a)f Fu(c)-5 b(onne)g(cte)g(d)36 b(c)-5 b(omp)g(onent)36 b(of)h(the)g(gr)-5 b(aph)34 b Ft(G)6 b Fy(,)36 b(and)f(the)h(set)f(of)0 217 y(connected)f(comp)s(onen)m(ts)g(is)f(called)h Fs(W)14 b Ft(G)6 b Fy(.)0 333 y(Connected)33 b(comp)s(onen)m(ts)h(can)e(b)s(e)f (de\014ned)j(for)d(categories)h(in)g(the)g(same)h(w)m(a)m(y)g(as)e(for) h(graphs.)43 b(In)32 b(that)0 449 y(case,)i(eac)m(h)f(connected)h(comp) s(onen)m(t)g(is)f(a)f(full)h(sub)s(category)-8 b(.)0 565 y(If)28 b Fs(f)38 b Fy(:)28 b Ft(G)34 b(\000)-60 b(!)28 b(H)h Fy(is)f(a)g(graph)g(homomorphism)h(and)f(if)g(t)m(w)m(o)g (no)s(des)h Fs(a)f Fy(and)g Fs(b)h Fy(are)f(in)g(the)g(same)h(comp)s (onen)m(t)0 681 y(of)43 b Ft(G)50 b Fy(,)c(then)e Fs(f)11 b Fy(\()p Fs(a)p Fy(\))43 b(and)h Fs(f)11 b Fy(\()p Fs(b)p Fy(\))43 b(are)h(in)g(the)f(same)i(comp)s(onen)m(t)f(of)f Ft(H)i Fy(,)h(this)e(is)g(b)s(ecause)h Fs(f)54 b Fy(tak)m(es)45 b(an)0 798 y(undirected)39 b(path)f(b)s(et)m(w)m(een)i Fs(a)e Fy(and)g Fs(b)g Fy(to)f(an)h(undirected)h(path)f(b)s(et)m(w)m (een)i Fs(f)11 b Fy(\()p Fs(a)p Fy(\))37 b(and)h Fs(f)11 b Fy(\()p Fs(b)p Fy(\).)59 b(Th)m(us)40 b(the)0 914 y(arro)m(w)35 b Fs(f)45 b Fy(induces)36 b(a)e(function)h Fs(W)14 b(f)41 b Fy(:)31 b Fs(W)14 b Ft(G)37 b(\000)-60 b(!)31 b Fs(W)14 b Ft(H)q Fy(,)34 b(namely)i(the)f(one)f(whic)m(h)i(tak)m(es)g(the)f (comp)s(onen)m(t)0 1030 y(of)d Fs(a)h Fy(to)f(the)h(comp)s(onen)m(t)h (of)e Fs(f)11 b Fy(\()p Fs(a)p Fy(\);)32 b(and)h(this)g(mak)m(es)h Fs(W)46 b Fy(a)33 b(functor)f(from)h Fv(Grf)43 b Fy(to)32 b Fv(Set)p Fy(.)0 1146 y(F)-8 b(or)41 b(a)g(graph)h Ft(G)6 b Fy(,)44 b(let)e Fs(\014)6 b Ft(G)49 b Fy(:)43 b Fs(N)10 b Ft(G)50 b(\000)-59 b(!)43 b Fs(W)14 b Ft(G)47 b Fy(b)s(e)42 b(the)g(set)g(function)h(whic)m(h)g(tak)m(es)g(a)e(no)s(de)h(of)f Ft(G)48 b Fy(to)42 b(the)0 1263 y(comp)s(onen)m(t)c(of)e Ft(G)42 b Fy(that)37 b(con)m(tains)g(that)g(no)s(de.)55 b(\(The)38 b(comp)s(onen)m(t)f(is)g(the)g(v)-5 b(alue)37 b(of)f Fs(\014)6 b Ft(G)42 b Fy(at)37 b(the)g(no)s(de,)0 1379 y(not)31 b(the)h(co)s(domain.\))43 b(Then)32 b Fs(\014)i Fy(:)27 b Fs(N)39 b Ft(\000)-60 b(!)27 b Fs(W)45 b Fy(is)32 b(a)f(natural)g(transformation.)43 b(It)31 b(is)h(instructiv)m(e)i(to)d (c)m(hec)m(k)0 1495 y(the)i(comm)m(utativit)m(y)i(of)d(the)h(requisite) h(diagram.)0 1690 y(1.7.10.)48 b Fu(Combining)33 b(natur)-5 b(al)35 b(tr)-5 b(ansformations)34 b(and)g(functors.)p Black 0 1885 a Fy(1.7.54.)g Fv(Remark)39 b Fy(\(Comp)s(osites)d(of)e (natural)g(transformations\))p Fv(.)p Black 42 w Fy(Let)h Fs(F)44 b Fy(:)30 b Ft(A)g(\000)-59 b(!)30 b(B)37 b Fy(and)e Fs(G)30 b Fy(:)g Ft(B)k(\000)-59 b(!)30 b(C)0 2001 y Fy(b)s(e)43 b(functors.)77 b(There)44 b(is)g(a)f(comp)s(osite)h (functor)f Fs(G)30 b Ft(\016)f Fs(F)59 b Fy(:)46 b Ft(A)g(\000)-60 b(!)45 b(C)50 b Fy(de\014ned)45 b(in)e(the)h(usual)g(w)m(a)m(y)g(b)m(y) 0 2117 y Fs(G)23 b Ft(\016)g Fs(F)14 b Fy(\()p Fs(A)p Fy(\))29 b(=)g Fs(G)p Fy(\()p Fs(F)14 b Fy(\()p Fs(A)p Fy(\)\).)46 b(Similarly)-8 b(,)35 b(let)f Fs(H)8 b Fy(,)34 b Fs(K)41 b Fy(and)33 b Fs(L)h Fy(b)s(e)g(functors)h(from)e Ft(A)g Fy(to)g Ft(B)38 b Fy(and)33 b Fs(\013)e Fy(:)e Fs(H)37 b Ft(\000)-59 b(!)29 b Fs(K)0 2234 y Fy(and)35 b Fs(\014)i Fy(:)31 b Fs(K)39 b Ft(\000)-60 b(!)32 b Fs(L)j Fy(b)s(e)g(natural)f(transformations.)51 b(Recall)35 b(that)g(this)g(means)h(that)e(for)h(eac)m(h)g(ob)5 b(ject)36 b Fs(A)0 2350 y Fy(of)c Ft(A)h Fy(,)g Fs(\013)q(A)28 b Fy(:)g Fs(H)8 b(A)28 b Ft(\000)-60 b(!)28 b Fs(K)7 b(A)33 b Fy(and)g Fs(\014)6 b(A)28 b Fy(:)g Fs(K)7 b(A)29 b Ft(\000)-60 b(!)28 b Fs(LA)p Fy(.)45 b(Then)34 b(as)f(in)g Fv(??)p Fy(.2.11,)f(w)m(e)i(de\014ne)g Fs(\014)28 b Ft(\016)23 b Fs(\013)28 b Fy(:)h Fs(H)35 b Ft(\000)-59 b(!)28 b Fs(L)0 2466 y Fy(b)m(y)33 b(\()p Fs(\014)28 b Ft(\016)22 b Fs(\013)q Fy(\))p Fs(A)28 b Fy(=)f Fs(\014)6 b(A)22 b Ft(\016)g Fs(\013)q(A)p Fy(.)p Black 0 2661 a(1.7.55.)30 b Fv(Remark)35 b Fy(\(F)-8 b(unctors)31 b(and)f(natural)h (transformations\))p Fv(.)p Black 40 w Fy(Things)h(get)e(more)h(in)m (teresting)h(when)0 2777 y(w)m(e)27 b(mix)g(functors)g(and)f(natural)g (transformations.)42 b(F)-8 b(or)25 b(example,)k(supp)s(ose)f(w)m(e)f (ha)m(v)m(e)g(three)g(categories)0 2893 y Ft(A)33 b Fy(,)h Ft(B)j Fy(and)d Ft(C)39 b Fy(,)34 b(four)f(functors,)i(t)m(w)m(o)f(of)f (them,)i Fs(F)s(;)17 b(G)29 b Fy(:)g Ft(A)g(\000)-59 b(!)29 b(B)37 b Fy(and)c(the)h(other)g(t)m(w)m(o)g Fs(H)r(;)17 b(K)36 b Fy(:)30 b Ft(B)j(\000)-60 b(!)29 b(C)40 b Fy(,)0 3010 y(and)34 b(t)m(w)m(o)h(natural)f(transformations)g Fs(\013)d Fy(:)g Fs(F)44 b Ft(\000)-60 b(!)30 b Fs(G)k Fy(and)g Fs(\014)i Fy(:)31 b Fs(H)37 b Ft(\000)-59 b(!)30 b Fs(K)7 b Fy(.)48 b(W)-8 b(e)34 b(picture)h(this)g(situation)g(as)0 3126 y(follo)m(ws:)0 3458 y(\(12\))1331 3394 y Ft(A)510 b(B)p 1565 3264 195 4 v 1468 3311 a Fo(\010)1482 3304 y(\010)195 b(H)1775 3311 y(H)-83 b(j)p 1565 3460 V 1468 3451 a(H)1482 3458 y(H)195 b(\010)1775 3451 y(\010)-83 b(*)1921 3394 y Ft(B)525 b(C)p 2150 3264 V 2053 3311 a Fo(\010)2067 3304 y(\010)195 b(H)2360 3311 y(H)-83 b(j)p 2150 3460 V 2053 3451 a(H)2067 3458 y(H)195 b(\010)2360 3451 y(\010)-83 b(*)1625 3248 y Fs(F)516 b(H)1624 3541 y(G)502 b(K)1587 3385 y Ft(+)28 b Fs(\013)435 b Ft(+)28 b Fs(\014)p Black 0 3653 a Fy(1.7.56.)22 b Fv(De\014nition.)p Black 34 w Fy(The)i(natural)e(transformation)g Fs(\014)6 b(F)41 b Fy(:)28 b Fs(H)9 b Ft(\016)q Fs(F)42 b Ft(\000)-60 b(!)28 b Fs(K)9 b Ft(\016)q Fs(F)36 b Fy(is)23 b(de\014ned)h(b)m(y)f (the)g(form)m(ula)0 3769 y(\()p Fs(\014)6 b(F)14 b Fy(\))p Fs(A)35 b Fy(=)h Fs(\014)6 b Fy(\()p Fs(F)14 b(A)p Fy(\))37 b(for)g(an)g(ob)5 b(ject)39 b Fs(A)e Fy(of)g Ft(A)p Fy(.)58 b(The)39 b(notation)e Fs(\014)6 b Fy(\()p Fs(F)14 b(A)p Fy(\))36 b(means)j(the)f(comp)s(onen)m(t)g(of)g(the)0 3885 y(natural)33 b(transformation)f Fs(\014)39 b Fy(at)32 b(the)i(ob)5 b(ject)33 b Fs(F)14 b(A)p Fy(.)44 b(This)34 b(is)g(indeed)g(an)f(arro)m(w)g Fs(H)8 b Fy(\()p Fs(F)14 b Fy(\()p Fs(A)p Fy(\)\))27 b Ft(\000)-60 b(!)28 b Fs(K)7 b Fy(\()p Fs(F)14 b Fy(\()p Fs(A)p Fy(\)\))0 4001 y(as)35 b(required.)52 b(T)-8 b(o)34 b(sho)m(w)i(that)f Fs(\014)6 b(F)48 b Fy(is)35 b(natural)g(requires)h(sho)m(wing)g(that)f(for)f(an)h (arro)m(w)g Fs(f)42 b Fy(:)31 b Fs(A)h Ft(\000)-60 b(!)31 b Fs(A)3763 3965 y Fq(0)3821 4001 y Fy(of)0 4118 y Ft(A)p Fy(,)h(the)h(diagram)0 4719 y(\(13\))1364 4354 y Fs(H)8 b Fy(\()p Fs(F)14 b Fy(\()p Fs(A)p Fy(\)\))388 b Fs(K)7 b Fy(\()p Fs(F)14 b Fy(\()p Fs(A)p Fy(\)\))p 1783 4331 332 4 v 2032 4329 a Fo(-)1844 4291 y Fs(\014)6 b(F)14 b(A)1352 4744 y(H)8 b Fy(\()p Fs(F)14 b Fy(\()p Fs(A)1667 4708 y Fq(0)1690 4744 y Fy(\)\))365 b Fs(K)7 b Fy(\()p Fs(F)14 b Fy(\()p Fs(A)2447 4708 y Fq(0)2471 4744 y Fy(\)\))p 1795 4721 309 4 v 2021 4719 a Fo(-)1832 4811 y Fs(\014)6 b(F)14 b(A)2043 4775 y Fq(0)p 1557 4651 4 254 v 1559 4651 a Fo(?)1144 4549 y Fs(H)8 b Fy(\()p Fs(F)14 b Fy(\()p Fs(f)d Fy(\)\))p 2337 4651 V 2339 4651 a Fo(?)2378 4549 y Fs(K)c Fy(\()p Fs(F)14 b Fy(\()p Fs(f)d Fy(\)\))0 4990 y(comm)m(utes,)43 b(but)d(this)h(is)f(just)g(the)g(naturalit)m(y)h (diagram)e(of)g Fs(\014)45 b Fy(applied)c(to)e(the)i(arro)m(w)e Fs(F)14 b Fy(\()p Fs(f)d Fy(\))39 b(:)h Fs(F)14 b Fy(\()p Fs(A)p Fy(\))0 5106 y Ft(\000)-60 b(!)28 b Fs(F)14 b Fy(\()p Fs(A)333 5070 y Fq(0)356 5106 y Fy(\).)p Black 0 5301 a(1.7.57.)33 b Fv(De\014nition.)p Black 43 w Fy(The)i(natural)f (transformation)f Fs(H)8 b(\013)30 b Fy(:)g Fs(H)h Ft(\016)23 b Fs(F)43 b Ft(\000)-59 b(!)29 b Fs(H)i Ft(\016)22 b Fs(G)34 b Fy(is)h(de\014ned)g(b)m(y)g(letting)0 5417 y(\()p Fs(H)8 b(\013)q Fy(\))p Fs(A)28 b Fy(=)i Fs(H)8 b Fy(\()p Fs(\013)q(A)p Fy(\))32 b(for)h(an)h(ob)5 b(ject)34 b Fs(A)g Fy(of)f Ft(A)p Fy(,)g(that)g(is)h(the)g(v)-5 b(alue)34 b(of)f Ft(H)i Fy(applied)f(to)f(the)h(arro)m(w)g Fs(\013)q(A)p Fy(.)46 b(T)-8 b(o)p Black Black eop end %%Page: 44 44 TeXDict begin 44 43 bop Black 0 -99 a Fw(44)1668 b(F)-6 b(oundations)p Black 0 100 a Fy(see)34 b(that)e Fs(H)8 b(\013)33 b Fy(th)m(us)g(de\014ned)h(is)f(natural)g(requires)h(sho)m (wing)g(that)1365 313 y Fs(H)8 b Fy(\()p Fs(F)14 b Fy(\()p Fs(A)p Fy(\)\))389 b Fs(H)8 b Fy(\()p Fs(G)p Fy(\()p Fs(A)p Fy(\)\))p 1784 289 332 4 v 2033 287 a Fo(-)1800 243 y Fs(H)g Fy(\()p Fs(\013)q(A)p Fy(\))1353 702 y Fs(H)g Fy(\()p Fs(F)14 b Fy(\()p Fs(A)1668 666 y Fq(0)1691 702 y Fy(\)\))366 b Fs(H)8 b Fy(\()p Fs(G)p Fy(\()p Fs(A)2448 666 y Fq(0)2471 702 y Fy(\)\))p 1796 680 309 4 v 2022 678 a Fo(-)1788 772 y Fs(H)g Fy(\()p Fs(\013)q(A)2051 736 y Fq(0)2074 772 y Fy(\))p 1558 609 4 254 v 1560 609 a Fo(?)1145 508 y Fs(H)g Fy(\()p Fs(F)14 b Fy(\()p Fs(f)d Fy(\)\))p 2338 609 V 2340 609 a Fo(?)2379 508 y Fs(H)d Fy(\()p Fs(G)p Fy(\()p Fs(f)j Fy(\)\))0 915 y(comm)m(utes.)44 b(This)29 b(diagram)f(is)h(obtained)f(b)m(y)h(applying)g(the)g(functor) f Fs(H)35 b Fy(to)28 b(the)h(naturalit)m(y)g(diagram)e(of)0 1031 y Fs(\013)q Fy(.)53 b(Since)37 b(functors)g(preserv)m(e)h(comm)m (utativ)m(e)g(diagrams,)f(the)f(result)h(follo)m(ws.)54 b(Note)36 b(that)g(the)g(pro)s(ofs)0 1147 y(of)f(naturalit)m(y)h(for)f Fs(\014)6 b(F)48 b Fy(and)36 b(for)f Fs(H)8 b(\013)35 b Fy(are)h(quite)g(di\013eren)m(t.)53 b(F)-8 b(or)35 b(example,)i(the)f(second)h(requires)g(that)0 1263 y Fs(H)j Fy(b)s(e)33 b(a)f(functor,)h(while)h(the)f(\014rst)g(w)m(orks)h (if)e Fs(F)46 b Fy(is)33 b(merely)h(an)f(ob)5 b(ject)33 b(function.)p Black Black eop end %%Page: 45 45 TeXDict begin 45 44 bop Black 1567 -99 a Fw(Represen)n(table)26 b(functors)1490 b(45)p Black 651 100 a Fy(2.)49 b Fx(Represent)-7 b(able)35 b(functors)j(and)g(the)f(Yoned)n(a)h(Lemma)0 275 y Fy(2.1.)49 b Fv(Represen)m(table)38 b(functors.)0 391 y Fy(F)-8 b(or)27 b(an)g(arbitrary)g(category)h Ft(C)6 b Fy(,)29 b(the)f(functors)g(from)f Ft(C)34 b Fy(to)27 b Fv(Set)g Fy(are)h(sp)s(ecial)g(b)s(ecause)h(the)f(hom)f(functors)0 507 y(Mor\()p Fs(C)r(;)17 b Fy(-)o(\))47 b(for)h(eac)m(h)g(ob)5 b(ject)49 b Fs(C)55 b Fy(of)47 b Ft(C)54 b Fy(are)48 b(set-v)-5 b(alued)48 b(functors.)90 b(In)48 b(this)g(section,)53 b(w)m(e)c(in)m(tro)s(duce)0 623 y(the)37 b(concept)h(of)e(represen)m (table)j(functor)d(and)h(discuss)i(ho)m(w)e(certain)g(set)g(theoretic)h (concepts)g(can)f(b)s(e)0 740 y(transferred)g(to)g(arbitrary)f (categories)i(b)m(y)f(represen)m(table)i(functors.)56 b(The)38 b(main)e(to)s(ol)g(for)g(this)h(is)h(the)0 856 y(Y)-8 b(oneda)33 b(Lemma,)g(and)g(univ)m(ersal)h(elemen)m(ts,)h(all)e (of)f(whic)m(h)i(are)e(based)i(on)e(these)i(hom)f(functors.)0 972 y(These)k(ideas)g(ha)m(v)m(e)g(turned)f(out)g(to)f(b)s(e)h (fundamen)m(tal)g(to)s(ols)g(for)f(categorists.)53 b(They)37 b(are)f(also)f(closely)0 1088 y(connected)f(with)f(the)g(concept)h(of)e (adjunction,)h(to)g(b)s(e)f(discussed)k(later.)0 1205 y(If)j(y)m(ou)g(are)g(familiar)f(with)h(group)g(theory)-8 b(,)41 b(it)d(ma)m(y)i(b)s(e)f(illuminating)g(to)g(realize)g(that)g (represen)m(table)0 1321 y(functors)k(are)f(a)g(generalization)h(of)f (the)g(regular)h(represen)m(tation,)j(and)c(the)h(Y)-8 b(oneda)43 b(em)m(b)s(edding)g(is)0 1437 y(a)e(generalization)g(of)g (Ca)m(yley's)i(Theorem.)70 b(W)-8 b(e)42 b(ha)m(v)m(e)g(already)f (considered)i(set-v)-5 b(alued)42 b(functors)g(as)0 1553 y(actions)33 b(in)g(1.7.42.)p Black 0 1735 a(2.1.1.)g Fv(De\014nition.)p Black 43 w Fy(A)h(functor)f Fs(F)48 b Fy(from)33 b(a)g(category)h Ft(C)40 b Fy(to)33 b(the)h(category)g(of) f(sets)i Fv(Set)f Fy(\(a)f(set-v)-5 b(alued)0 1851 y(functor\))26 b(is)h(said)g(to)e(b)s(e)i Fu(r)-5 b(epr)g(esentable)25 b Fy(if)h(there)h(exists)h(an)e(ob)5 b(ject)27 b Fs(C)33 b Fy(of)26 b Ft(C)32 b Fy(and)26 b(a)g(natural)g(isomorphism)0 1967 y Fs(\013)32 b Fy(:)f Fs(F)45 b Ft(\000)-60 b(!)31 b Fy(Mor)584 1982 y Fq(C)629 1967 y Fy(\()p Fs(C)r(;)17 b Fy(-)o(\))34 b(to)g(the)h(hom)g(functor)g(Mor)1914 1982 y Fq(C)1959 1967 y Fy(\()p Fs(C)r(;)17 b Fy(-)o(\);)35 b(in)g(this)g(case)h(one)f(sa)m(ys)h(that)e Fs(C)42 b Fu(r)-5 b(epr)g(esents)0 2083 y(the)35 b(functor)p Fy(.)0 2200 y(A)49 b Fu(c)-5 b(ontr)g(avariant)49 b(functor)h(is)f(r)-5 b(epr)g(esentable)48 b Fy(if)h(there)g(exists)i(an)d(ob)5 b(ject)50 b Fs(C)55 b Fy(of)49 b Ft(C)55 b Fy(and)49 b(a)f(natural)0 2316 y(isomorphism)43 b Fs(\013)h Fy(:)f Fs(F)57 b Ft(\000)-60 b(!)43 b Fy(Mor)1211 2331 y Fq(C)1256 2316 y Fy(\(-)p Fs(;)17 b(C)7 b Fy(\))41 b(to)g(the)h(hom)g(functor)g (Mor)2582 2331 y Fq(C)2627 2316 y Fy(\(-)p Fs(;)17 b(C)7 b Fy(\);)45 b(again)d(one)g(sa)m(ys)h(that)e Fs(C)0 2432 y Fu(r)-5 b(epr)g(esents)34 b(the)h(functor)p Fy(.)0 2614 y(W)-8 b(e)41 b(ha)m(v)m(e)h(already)f(lo)s(ok)m(ed)h(at)e(one)h (example)h(of)e(represen)m(table)j(functor)e(in)g(some)h(detail)f(in)g (1.7.52,)0 2730 y(where)36 b(w)m(e)g(sho)m(w)m(ed)h(that)e(the)g (set-of-no)s(des)g(functor)g(for)f(graphs)i(is)f(represen)m(ted)i(b)m (y)f(the)g(graph)e(with)0 2846 y(one)41 b(no)s(de)f(and)h(no)f(arro)m (ws.)68 b(The)41 b(set-of-arro)m(ws)f(functor)h(is)g(represen)m(ted)i (b)m(y)e(the)g(graph)f(with)h(t)m(w)m(o)0 2962 y(no)s(des)33 b(and)g(one)g(arro)m(w)f(b)s(et)m(w)m(een)j(them.)p Black 0 3144 a(2.1.2.)44 b Fv(Example.)p Black 49 w Fy(The)i(arro)m(w)f (functor)f Fs(A)49 b Fy(:)f Fv(Grf)59 b Ft(\000)-60 b(!)48 b Fv(Set)d Fy(of)f(1.6.2)g(is)h(a)g(represen)m(table)i(functor)0 3260 y(represen)m(ted)35 b(b)m(y)f(the)f(graph)f Fv(2)h Fy(whic)m(h)h(is)f(pictured)h(as)1780 3436 y(1)1920 3380 y Fp(e)1856 3436 y Ft(\000)-16 b(!)27 b Fy(2)p Fs(:)0 3618 y Fy(Represen)m(table)34 b(functors)e(are)g(used)h(to)f(think)g (of)f(ob)5 b(jects)34 b(as)d(if)h(they)h(w)m(ere)g(sets.)44 b(The)33 b(main)f(aim)g(is)g(to)0 3734 y(write)h(morphisms)i(then)e(as) g(set)g(maps.)p Black 0 3915 a(2.1.3.)c Fv(De\014nition.)p Black 40 w Fy(In)h(de\014nition)g(2.5.2)f(and)g(man)m(y)i(lik)m(e)f (it,)g(what)g(replaces)h(the)f(concept)g(of)f(elemen)m(t)0 4032 y(of)36 b Fs(A)g Fy(is)g(an)g(arbitrary)g(arro)m(w)g(in)m(to)g Fs(A)p Fy(.)54 b(In)37 b(this)f(con)m(text,)i(an)e(arbitrary)g(arro)m (w)g Fs(a)e Fy(:)g Fs(T)47 b Ft(\000)-60 b(!)34 b Fs(A)i Fy(is)g(called)0 4148 y(a)c Fu(variable)i(element)f(of)i Fs(A)p Fu(,)f(p)-5 b(ar)g(ametrize)g(d)34 b(by)h Fs(T)14 b Fy(.)43 b(The)33 b(set)g(of)f(v)-5 b(ariable)32 b(elemen)m(ts)j(of)c Fs(A)i Fy(parametrized)0 4264 y(b)m(y)g Fs(T)47 b Fy(is)33 b Fs(A)p Fy(\()p Fs(T)14 b Fy(\))27 b(:=)h(Mor)891 4279 y Fq(C)936 4264 y Fy(\()p Fs(T)8 b(;)17 b(A)p Fy(\).)0 4380 y(When)38 b Fs(a)g Fy(is)g(treated)g(as)f(a)g(v)-5 b(ariable)38 b(elemen)m(t)h(of)e Fs(A)h Fy(and)f Fs(f)48 b Fy(has)38 b(source)h Fs(A)p Fy(,)f(one)g(ma)m(y)g(write)g Fs(f)11 b Fy(\()p Fs(a)p Fy(\))37 b(for)0 4497 y Fs(f)c Ft(\016)22 b Fs(a)p Fy(.)43 b(So)33 b(w)m(e)h(ma)m(y)f(consider)h Fs(f)43 b Fy(as)33 b(a)f(map)h(of)f(v)-5 b(ariable)33 b(elemen)m(ts:)999 4666 y Fs(f)39 b Fy(=)27 b(Mor)1366 4681 y Fq(C)1411 4666 y Fy(\()p Fs(T)8 b(;)17 b(f)11 b Fy(\))27 b(:)h(Mor)1913 4681 y Fq(C)1958 4666 y Fy(\()p Fs(T)8 b(;)17 b(A)p Fy(\))27 b Ft(\000)-59 b(!)27 b Fy(Mor)2564 4681 y Fq(C)2609 4666 y Fy(\()p Fs(T)8 b(;)17 b(B)5 b Fy(\))p Fs(:)0 4836 y Fy(So)34 b Fs(f)44 b Fy(tak)m(es)35 b(the)f(v)-5 b(ariable)34 b(elemen)m(ts)i(of)d Fs(A)h Fy(with)g(parameter)g Fs(T)47 b Fy(to)34 b(the)g(v)-5 b(ariable)33 b(elemen)m(ts)j(of)e Fs(B)k Fy(with)0 4952 y(the)33 b(same)g(parameter)g Fs(T)14 b Fy(.)p Black 0 5133 a(2.1.4.)32 b Fv(Prop)s(osition.)p Black 42 w Fu(If)i Fs(f)5 b(;)17 b(g)31 b Fy(:)d Fs(A)g Ft(\000)-57 b(!)27 b Fs(B)40 b Fu(ar)-5 b(e)35 b(morphisms)e(in)i Ft(C)41 b Fu(then)34 b(the)h(fol)5 b(lowing)34 b(ar)-5 b(e)34 b(e)-5 b(quivalent:)p Black 148 5276 a Fy(\(1\))p Black 42 w Fs(f)38 b Fy(=)27 b Fs(g)t Fu(,)p Black 148 5392 a Fy(\(2\))p Black 42 w Fs(f)11 b Fy(\()p Fs(a)p Fy(\))27 b(=)h Fs(g)t Fy(\()p Fs(a)p Fy(\))34 b Fu(for)g(al)5 b(l)35 b(p)-5 b(ar)g(ameters)34 b Fs(T)49 b Fu(and)34 b(al)5 b(l)34 b(variable)g(elements)g Fs(a)28 b Ft(2)g Fs(A)p Fy(\()p Fs(T)14 b Fy(\))p Fu(.)p Black Black eop end %%Page: 46 46 TeXDict begin 46 45 bop Black 0 -99 a Fw(46)1077 b(Represen)n(table)25 b(functors)h(and)g(the)f(Y)-6 b(oneda)25 b(Lemma)p Black Black 0 100 a Fu(Pr)-5 b(o)g(of.)p Black 41 w Fy(Clearly)43 b(\(1\))d(implies)j(\(2\).)69 b(Assume)44 b(that)d(\(2\))f(holds.)71 b(T)-8 b(ak)m(e)42 b Fs(T)56 b Fy(:=)43 b Fs(A)e Fy(and)g Fs(a)i Fy(=)f(1)3524 115 y Fp(A)3581 100 y Fy(.)70 b(Then)0 217 y Fs(f)11 b Fy(\()p Fs(a)p Fy(\))27 b(=)h Fs(g)t Fy(\()p Fs(a)p Fy(\))k(implies)i Fs(f)k Fy(=)28 b Fs(f)33 b Ft(\016)22 b Fy(1)1250 232 y Fp(A)1334 217 y Fy(=)28 b Fs(f)11 b Fy(\(1)1584 232 y Fp(A)1640 217 y Fy(\))28 b(=)f Fs(g)t Fy(\(1)1947 232 y Fp(A)2003 217 y Fy(\))h(=)g Fs(g)d Ft(\016)d Fy(1)2366 232 y Fp(A)2450 217 y Fy(=)28 b Fs(g)t Fy(.)1191 b Fg(\003)0 427 y Fy(2.2.)49 b Fv(T)-9 b(erminal)38 b(and)g(initial)g(ob)6 b(jects.)0 543 y Fy(One)30 b(of)f(the)h(most)g(fundamen)m(tal)h(ob)5 b(jects)31 b(in)e(the)h(category)g(of)f(sets)i(is)f(a)g Fu(singleton)h(set)e Fs(T)42 b Fy(=)27 b Ft(f\003g)p Fy(,)j(a)f(set)0 659 y(with)k(exactly)g(one)f(elemen)m(t.)45 b(It)32 b(has)h(the)f (categorical)g(prop)s(ert)m(y)-8 b(,)33 b(that)f(there)h(is)f(exactly)i (one)e(arro)m(w)g Fs(A)0 775 y Ft(\000)-60 b(!)28 b Fs(T)44 b Fy(for)30 b(eac)m(h)h(set)g Fs(A)p Fy(.)43 b(The)32 b(last)e(prop)s(ert)m(y)h(can)g(b)s(e)g(generalized)h(to)e(arbitrary)g (categories)h(as)g(follo)m(ws.)p Black 0 960 a(2.2.1.)g Fv(De\014nition.)p Black 42 w Fy(An)h(ob)5 b(ject)32 b Fs(T)46 b Fy(of)31 b(a)g(category)h Ft(C)38 b Fy(is)32 b(called)h(a)e Fu(terminal)i(obje)-5 b(ct)31 b Fy(if)h(there)g(is)h (exactly)0 1076 y(one)i(arro)m(w)g Fs(A)c Ft(\000)-60 b(!)31 b Fs(T)48 b Fy(for)34 b(eac)m(h)i(ob)5 b(ject)35 b Fs(A)g Fy(of)f Ft(C)6 b Fy(.)50 b(W)-8 b(e)35 b(usually)h(denote)f (the)g(terminal)h(ob)5 b(ject)35 b(b)m(y)h(1)e(and)0 1192 y(the)f(unique)h(arro)m(w)f Fs(A)28 b Ft(\000)-60 b(!)27 b Fy(1)33 b(b)m(y)g Ft(hi)p Fy(.)0 1308 y(The)e(dual)g(notion)f (\(see)h(1.4.13\),)f(an)h(ob)5 b(ject)31 b(of)e(a)h(category)h(that)f (has)h(a)f(unique)i(arro)m(w)e(to)g(eac)m(h)h(ob)5 b(ject)0 1425 y(\(including)34 b(itself)7 b(\),)33 b(is)g(called)g(an)g Fu(initial)h(obje)-5 b(ct)32 b Fy(and)h(is)g(often)g(denoted)g(0.)p Black 0 1609 a(2.2.2.)c Fv(Examples.)p Black 41 w Fy(In)h(the)h (category)f(of)f(sets,)j(the)e(empt)m(y)h(set)g(is)f(initial)g(and)g (an)m(y)g(one-elemen)m(t)i(set)e(is)0 1725 y(terminal.)53 b(Th)m(us)38 b(the)e(category)g(of)f(sets)i(has)f(a)f(unique)i(initial) f(ob)5 b(ject)37 b(but)f(man)m(y)g(terminal)h(ob)5 b(jects.)0 1842 y(The)34 b(one-elemen)m(t)g(monoid)f(is)g(b)s(oth)f(initial)h(and) g(terminal)g(in)g(the)g(category)f(of)h(monoids.)0 1958 y(In)40 b(the)g(category)g(determined)h(b)m(y)g(a)e(p)s(oset,)j(an)e (ob)5 b(ject)40 b(is)g(initial)g(if)g(and)f(only)h(if)g(it)g(is)g(an)f (absolute)0 2074 y(minim)m(um)f(for)e(the)g(p)s(oset,)i(and)f(it)f(is)h (terminal)g(if)f(and)g(only)h(if)f(it)g(is)h(an)f(absolute)h(maxim)m (um.)57 b(Since)0 2190 y(there)32 b(is)g(no)g(largest)f(or)h(smallest)g (whole)h(n)m(um)m(b)s(er,)g(the)f(category)g(determined)h(b)m(y)f(the)g (set)h(of)e(in)m(tegers)0 2307 y(with)f(its)g(natural)f(order)h (\(there)g(is)g(an)f(arro)m(w)g(from)h Fs(m)f Fy(to)g Fs(n)h Fy(if)f(and)h(only)f(if)h Fs(m)e Ft(\024)g Fs(n)p Fy(\))h(giv)m(es)i(an)e(example)0 2423 y(of)j(a)g(category)h(without)g (initial)g(or)f(terminal)i(ob)5 b(ject.)0 2539 y(In)32 b(the)h(category)f(of)f(semigroups,)j(the)e(empt)m(y)i(semigroup)e (\(see)h(1.2.9\))f(is)g(the)g(initial)h(ob)5 b(ject)32 b(and)g(an)m(y)0 2655 y(one-)h(elemen)m(t)i(semigroup)f(is)f(a)g (terminal)h(ob)5 b(ject.)46 b(On)33 b(the)g(other)g(hand,)h(the)f (category)h(of)e(nonempt)m(y)0 2772 y(semigroups)i(do)s(es)f(not)g(ha)m (v)m(e)g(an)g(initial)g(ob)5 b(ject.)0 2888 y(W)-8 b(arning:)59 b(T)-8 b(o)40 b(pro)m(v)m(e)i(this,)h(it)d(is)h(not)f(enough)g(to)g(sa) m(y)h(that)f(the)h(initial)g(ob)5 b(ject)41 b(in)f(the)h(category)f(of) 0 3004 y(semigroups)d(is)f(the)g(empt)m(y)h(semigroup)g(and)e(that)h (semigroup)g(is)g(missing)h(here!)53 b(Y)-8 b(ou)36 b(ha)m(v)m(e)h(to)e (sho)m(w)0 3120 y(that)i(no)g(other)h(ob)5 b(ject)38 b(can)f(b)s(e)h(the)f(initial)h(ob)5 b(ject)38 b(in)f(the)h(smaller)g (category)-8 b(.)58 b(One)38 b(w)m(a)m(y)g(to)f(do)g(this)0 3236 y(is)e(to)f(let)g Fs(U)45 b Fy(b)s(e)34 b(the)h(semigroup)g(with)g (t)m(w)m(o)g(elemen)m(ts)i(1)d(and)g Fs(e)g Fy(with)h(1)23 b Ft(\001)g Fs(e)31 b Fy(=)f Fs(e)24 b Ft(\001)f Fy(1)30 b(=)g Fs(e)p Fy(,)35 b(1)23 b Ft(\001)g Fy(1)31 b(=)f(1)k(and)0 3353 y Fs(e)28 b Ft(\001)f Fs(e)40 b Fy(=)h Fs(e)p Fy(.)67 b(Then)41 b(an)m(y)g(nonempt)m(y)h(semigroup)f Fs(S)46 b Fy(has)40 b(t)m(w)m(o)h(homomorphisms)h(to)e Fs(U)10 b Fy(:)59 b(the)41 b(constan)m(t)0 3469 y(function)j(taking)g(ev)m (erything)i(to)e(1)f(and)h(the)g(one)g(taking)g(ev)m(erything)i(to)e Fs(e)p Fy(.)77 b(Th)m(us)46 b(no)d(nonempt)m(y)0 3585 y(semigroup)34 b Fs(S)k Fy(can)33 b(b)s(e)g(the)g(initial)f(ob)5 b(ject.)0 3701 y(In)44 b(the)f(category)h(of)f(graphs)h(and)f(graph)g (homomorphisms,)48 b(the)c(graph)f(with)h(one)g(no)s(de)f(and)h(one)0 3818 y(arro)m(w)33 b(is)g(the)g(terminal)g(ob)5 b(ject.)p Black 0 4002 a(2.2.3.)35 b Fv(Prop)s(osition.)p Black 43 w Fu(A)n(ny)i(two)g(terminal)g(\(r)-5 b(esp)g(e)g(ctively)36 b(initial\))h(obje)-5 b(cts)36 b(in)h(a)g(c)-5 b(ate)g(gory)37 b Ft(C)44 b Fu(ar)-5 b(e)37 b(iso-)0 4118 y(morphic.)p Black 0 4303 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(Supp)s(ose)38 b(1)g(and)f(1)1015 4267 y Fq(0)1075 4303 y Fy(are)h(terminal)g(ob)5 b(jects.)59 b(Since)38 b(1)f(is)h(terminal,)h(there)f(is)g(an)f(arro)m (w)h Fs(f)46 b Fy(:)36 b(1)3877 4267 y Fq(0)0 4419 y Ft(\000)-60 b(!)37 b Fy(1.)60 b(Similarly)-8 b(,)41 b(there)e(is)g(an)f (arro)m(w)g Fs(g)i Fy(:)e(1)f Ft(\000)-60 b(!)37 b Fy(1)1951 4383 y Fq(0)1974 4419 y Fy(.)60 b(The)39 b(arro)m(w)g Fs(f)d Ft(\016)26 b Fs(g)41 b Fy(:)c(1)g Ft(\000)-60 b(!)37 b Fy(1)h(is)h(an)f(arro)m(w)g(with)0 4535 y(target)31 b(1.)43 b(Since)32 b(1)f(is)h(a)f(terminal)h(ob)5 b(ject)32 b(of)e(the)i(category)-8 b(,)32 b(there)g(can)f(b)s(e)h(only)f(one)h (arro)m(w)f(from)g(1)g(to)0 4652 y(1.)42 b(Th)m(us)32 b(it)e(m)m(ust)h(b)s(e)f(that)g Fs(f)d Ft(\016)17 b Fs(g)33 b Fy(is)d(the)h(iden)m(tit)m(y)h(of)d(1.)42 b(An)31 b(analogous)e(pro)s (of)g(sho)m(ws)j(that)e Fs(g)20 b Ft(\016)c Fs(f)41 b Fy(is)31 b(the)0 4768 y(iden)m(tit)m(y)j(of)e(1)520 4732 y Fq(0)544 4768 y Fy(.)3252 b Fg(\003)p Black 0 4952 a Fy(2.2.4.)32 b Fv(Remark.)p Black 42 w Fy(In)g Fv(Set)p Fy(,)h(an)f(elemen)m(t)i Fs(x)e Fy(of)g(a)g(set)h Fs(A)f Fy(is)h(the)f(image)h(of)f(a)g(function)g(from)g(a)g(singleton)0 5069 y(set)44 b(to)e Fs(A)h Fy(that)g(tak)m(es)h(the)f(unique)h(elemen) m(t)h(of)d(the)i(singleton)f(to)g Fs(x)p Fy(.)75 b(Th)m(us)44 b(if)f(w)m(e)g(pic)m(k)i(a)d(sp)s(eci\014c)0 5185 y(singleton)34 b Ft(f\003g)e Fy(and)h(call)g(it)f(1,)h(the)g(elemen)m(ts)i(of)e(the)g (set)g Fs(A)g Fy(are)g(in)g(one)g(to)f(one)h(corresp)s(ondence)i(with)0 5301 y(Mor\(1)p Fs(;)17 b(A)p Fy(\),)37 b(whic)m(h)i(is)e(the)g(set)h (of)e(functions)i(from)e(the)i(terminal)f(ob)5 b(ject)38 b(to)e Fs(A)p Fy(.)56 b(Moreo)m(v)m(er,)40 b(if)c Fs(f)46 b Fy(:)35 b Fs(A)0 5417 y Ft(\000)-60 b(!)32 b Fs(B)41 b Fy(is)36 b(a)f(set)h(function)g(and)f Fs(x)h Fy(is)g(an)f(elemen)m(t) i(of)e Fs(A)g Fy(determining)i(the)f(function)f Fs(x)e Fy(:)g(1)f Ft(\000)-60 b(!)32 b Fs(A)p Fy(,)k(then)p Black Black eop end %%Page: 47 47 TeXDict begin 47 46 bop Black 1556 -99 a Fw(The)26 b(extension)g (principle)1479 b(47)p Black 0 100 a Fy(the)30 b(elemen)m(t)h Fs(f)11 b Fy(\()p Fs(x)p Fy(\))30 b(of)f Fs(B)34 b Fy(is)c(essen)m (tially)i(the)e(same)g(thing)g(as)f(the)h(comp)s(osite)h Fs(f)26 b Ft(\016)16 b Fs(x)28 b Fy(:)g(1)f Ft(\000)-59 b(!)27 b Fs(B)5 b Fy(.)42 b(Because)0 217 y(of)30 b(this,)i(the)f (categorist)f(t)m(ypically)j(thinks)e(of)g(an)f(elemen)m(t)i Fs(x)c Ft(2)g Fs(A)j Fy(as)g(b)s(eing)f(the)h(constan)m(t)h Fs(x)c Fy(:)g(1)f Ft(\000)-60 b(!)28 b Fs(A)p Fy(.)p Black 0 372 a(2.2.5.)34 b Fv(De\014nition.)p Black 43 w Fy(An)g(arro)m(w)h(1)30 b Ft(\000)-59 b(!)30 b Fs(A)k Fy(in)g(a)g(category)-8 b(,)35 b(where)h(1)e(is)g(the)h(terminal)g(ob)5 b(ject,)35 b(is)g(called)0 489 y(a)d Fu(c)-5 b(onstant)35 b(of)f(typ)-5 b(e)33 b Fs(A)p Fy(.)0 645 y(Th)m(us)40 b(eac)m(h)f(elemen)m(t)h(of)d(a)h(set)h(is)g(a)f(constan)m(t)h(in)f Fv(Set)p Fy(.)60 b(On)38 b(the)h(other)f(hand,)i(eac)m(h)f(monoid)g Fs(M)49 b Fy(has)0 761 y(just)36 b(one)h(constan)m(t)g(1)c Ft(\000)-59 b(!)33 b Fs(M)47 b Fy(in)36 b(the)h(category)f(of)g (monoids,)i(since)g(monoid)e(homomorphisms)i(m)m(ust)0 877 y(preserv)m(e)33 b(the)f(iden)m(tit)m(y)-8 b(.)45 b(The)32 b(more)f(common)h(name)f(in)h(the)f(categorical)g(literature)h (for)f(a)f(constan)m(t)i(is)0 993 y Fu(glob)-5 b(al)34 b(element)g(of)e Fs(A)p Fy(,)h(a)f(name)i(that)e(comes)i(from)e(sheaf)h (theory)-8 b(.)p Black 0 1149 a(2.2.6.)40 b Fv(Example.)p Black 47 w Fy(The)i(iden)m(tit)m(y)h(functor)e(on)f Fv(Set)h Fy(is)g(a)g(represen)m(table)i(functor)e(represen)m(ted)j(b)m(y)d(a)0 1265 y(terminal)c(ob)5 b(ject)36 b(in)h Fv(Set)p Fy(;)g(in)g(other)f(w) m(ords,)i(Mor)1894 1280 y Fi(Set)2012 1265 y Fy(\()p Fv(1)p Fs(;)17 b Fy(-)o(\))36 b(is)h(naturally)f(isomorphic)h(to)f(the) g(iden)m(tit)m(y)0 1382 y(functor.)44 b(This)33 b(can)g(b)s(e)g (describ)s(ed)h(b)m(y)g(sa)m(ying)f(that)g(`a)f(set)i(is)f(its)g(set)g (of)f(global)g(elemen)m(ts.')0 1537 y(A)i(terminal)g(ob)5 b(ject)34 b(is)g(an)f(ob)5 b(ject)34 b(with)h(exactly)f(one)g(arro)m(w) g Ft(hi)28 b Fy(:)i Fs(A)f Ft(\000)-60 b(!)29 b Fy(1)k(to)h(it)f(from)g (eac)m(h)i(ob)5 b(ject)34 b Fs(A)p Fy(.)0 1654 y(So)c(the)g(arro)m(ws)h (to)e(1)h(are)g(not)g(in)m(teresting.)44 b(Global)30 b(elemen)m(ts)i(are)e(arro)m(ws)g(from)g(the)g(terminal)h(ob)5 b(ject.)0 1770 y(There)34 b(ma)m(y)f(b)s(e)g(none)g(or)f(man)m(y)-8 b(,)34 b(so)e(they)i(are)f(in)m(teresting.)0 1886 y(If)j(1)f(and)h(1) 427 1850 y Fq(0)486 1886 y Fy(are)g(t)m(w)m(o)h(terminal)f(ob)5 b(jects)38 b(in)e(a)f(category)h(and)g Fs(x)e Fy(:)g(1)f Ft(\000)-60 b(!)33 b Fs(A)j Fy(and)g Fs(x)3100 1850 y Fq(0)3157 1886 y Fy(:)e(1)3267 1850 y Fq(0)3323 1886 y Ft(\000)-60 b(!)33 b Fs(A)j Fy(are)g(t)m(w)m(o)0 2002 y(constan)m(ts)f(with)f(the)g(prop)s(ert)m(y)g(that)f Fs(x)1491 1966 y Fq(0)1538 2002 y Ft(\016)23 b(hi)28 b Fy(=)h Fs(x)34 b Fy(\(where)h Ft(hi)e Fy(is)h(the)g(unique)h (isomorphism)g(from)e(1)g(to)0 2119 y(1)49 2082 y Fq(0)72 2119 y Fy(\),)h(then)g(w)m(e)h(regard)e Fs(x)h Fy(and)g Fs(x)1178 2082 y Fq(0)1235 2119 y Fy(as)g(the)g(same)g(constan)m(t.)47 b(Think)35 b(ab)s(out)e(this)i(commen)m(t)g(as)e(it)h(applies)0 2235 y(to)k(elemen)m(ts)j(in)e(the)g(category)g(of)f(sets,)j(with)f(t)m (w)m(o)f(di\013eren)m(t)h(c)m(hoices)g(of)e(terminal)i(ob)5 b(ject,)41 b(and)d(y)m(ou)0 2351 y(will)33 b(see)h(wh)m(y)-8 b(.)0 2467 y(There)44 b(is)f(an)g(in)m(teresting)h(tec)m(hnique)h(to)d (generalize)i(notions)f(in)g(the)g(categories)h Fv(Set)f Fy(to)f(arbitrary)0 2584 y(categories)33 b Ft(C)39 b Fy(b)m(y)34 b(using)f(represen)m(table)i(functors.)44 b(W)-8 b(e)33 b(apply)g(this)g(tec)m(hnique)i(to)e(terminal)g(ob)5 b(jects.)p Black 0 2739 a(2.2.7.)34 b Fv(Prop)s(osition.)p Black 42 w Fu(A)n(n)i(obje)-5 b(ct)36 b Fy(1)g Fu(in)g(an)g(arbitr)-5 b(ary)36 b(c)-5 b(ate)g(gory)37 b Ft(C)42 b Fu(is)36 b(a)g(terminal)g(obje)-5 b(ct)35 b(if)i(and)e(only)0 2856 y(if)j(the)g(\(c)-5 b(ontr)g(avariant\))37 b(r)-5 b(epr)g(esentable)37 b(functor)h Fy(Mor)2051 2871 y Fq(C)2096 2856 y Fy(\()p Fu(-)p Fs(;)17 b Fy(1\))33 b(:)g Ft(C)2451 2819 y Fp(op)2559 2856 y Ft(\000)-57 b(!)33 b Fv(Set)38 b Fu(maps)f(every)h(obje)-5 b(ct)37 b Fs(A)h Fu(in)0 2972 y Ft(C)j Fu(to)35 b(a)g(terminal)f(obje)-5 b(ct)35 b Fy(Mor)1140 2987 y Fq(C)1185 2972 y Fy(\()p Fs(A;)17 b Fy(1\))34 b Fu(in)h Fv(Set)p Fu(.)p Black 0 3128 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(Since)45 b(Mor)740 3143 y Fq(C)785 3128 y Fy(\()p Fs(A;)17 b Fy(1\))43 b(is)i(a)e(singleton)i(for)e(all)g Fs(A)p Fy(,)k(this)d(is)h(nothing)e(but)h(the)h(de\014nition)f(of)g (the)0 3244 y(terminal)33 b(ob)5 b(ject.)3144 b Fg(\003)p Black 0 3400 a Fy(2.2.8.)36 b Fv(Remark.)p Black 43 w Fy(The)h(de\014nition)g(of)f(an)g(initial)g(ob)5 b(ject)37 b Fs(I)43 b Fy(is)37 b(dual)f(to)g(the)g(de\014nition)h(of)f(a)f (terminal)0 3516 y(ob)5 b(ject,)28 b(so)e(it)g(is)g(a)f(terminal)i(ob)5 b(ject)26 b(in)g Ft(C)1523 3480 y Fp(op)1597 3516 y Fy(.)42 b(It)25 b(is)i(c)m(haracterized)g(b)m(y)g(the)f(fact)g(that)f(all)h (Mor)3427 3531 y Fp(C)3482 3512 y Fk(op)3553 3516 y Fy(\()p Fs(A;)17 b(I)8 b Fy(\))27 b(=)0 3632 y(Mor)176 3647 y Fq(C)221 3632 y Fy(\()p Fs(I)8 b(;)17 b(A)p Fy(\))32 b(are)h(singleton)g(sets.)3991 3697 y(28.05.04)0 3846 y(2.3.)49 b Fv(The)37 b(extension)i(principle.)p Black 0 4002 a Fy(2.3.1.)e Fv(Remark)44 b Fy(\()p Fv(Co)m(v)-6 b(arian)m(t)44 b(extension)g(of)f(set-theoretic)g(prop)s(erties\).)p Black 45 w Fy(F)-8 b(or)37 b(the)h(notion)f(of)0 4118 y(terminal)26 b(ob)5 b(ject)27 b(w)m(e)g(should)g(pro)s(ceed)f (according)g(to)g(the)g(follo)m(wing)g Fu(principle)i(of)g(c)-5 b(ovariant)28 b(extension)0 4235 y(of)35 b(set-the)-5 b(or)g(etic)34 b(pr)-5 b(op)g(erties)32 b Fy(or)g Fu(extension)i (principle)p Fy(:)p Black 148 4371 a(\(1\))p Black 42 w(W)-8 b(e)38 b(de\014ne)i(a)e(\(set-theoretic\))h(prop)s(ert)m(y)g Ft(P)47 b Fy(of)38 b(a)g(set)h Fs(A)g Fy(\(or)f(a)g(map)g Fs(f)49 b Fy(or)38 b(a)g(diagram)g Fs(D)j Fy(:)c Fs(I)315 4487 y Ft(\000)-60 b(!)27 b Fv(Set)p Fy(\))c(in)g(suc)m(h)h(a)e(w)m(a)m (y)i(that)f(this)g(prop)s(ert)m(y)g(holds)h(for)e(all)g(sets)i(\(resp.) 41 b(maps)24 b(resp.)41 b(diagrams\))315 4604 y(of)31 b(the)h(isomorphism)i(class)f(of)e Fs(A)h Fy(\(resp.)44 b Fs(f)f Fy(resp.)h Fs(D)s Fy(\),)32 b(i.e.)43 b(it)32 b(holds)h(for)e(all)h(sets)h(\(resp.)44 b(maps)315 4720 y(resp.)g(diagrams\))33 b(isomorphic)g(to)g Fs(A)f Fy(\(resp.)45 b Fs(f)e Fy(resp.)h Fs(D)s Fy(\).)p Black 148 4836 a(\(2\))p Black 42 w(W)-8 b(e)22 b(sa)m(y)h(that)f(the)h Fu(\(c)-5 b(ate)g(goric)g(al\))24 b(pr)-5 b(op)g(erty)25 b Ft(P)34 b Fu(holds)21 b Fy(for)h(an)g(ob)5 b(ject)23 b Fs(C)29 b Fy(\(resp.)41 b(morphism)23 b Fs(f)33 b Fy(resp.)315 4952 y(diagram)i Fs(D)g Fy(:)d Fs(I)41 b Ft(\000)-60 b(!)32 b(C)6 b Fy(\))36 b(of)f(an)g(arbitrary)g(category)h Ft(C)42 b Fy(b)m(y)36 b(requiring)g(that)g(the)f(con)m(tra)m(v)-5 b(arian)m(t)315 5069 y(represen)m(table)39 b(functor)f(Mor)1433 5084 y Fq(C)1478 5069 y Fy(\(-)p Fs(;)17 b(C)7 b Fy(\))36 b(\(resp.)59 b(the)38 b(natural)f(transformation)h(Mor)3406 5084 y Fq(C)3451 5069 y Fy(\(-)o Fs(;)17 b(f)11 b Fy(\))37 b(resp.)315 5185 y(the)29 b(diagram)g(functor)h(Mor)1367 5200 y Fq(C)1412 5185 y Fy(\(-)o Fs(;)17 b(D)s Fy(\))27 b(:)h Ft(C)22 b(\002)15 b Fs(I)36 b Ft(\000)-60 b(!)28 b Fv(Set)p Fy(\))h(has)g(as)h(images)g(sets)g(Mor)3311 5200 y Fq(C)3356 5185 y Fy(\()p Fs(B)5 b(;)17 b(C)7 b Fy(\))29 b(\(resp.)315 5301 y(maps)h(Mor)743 5316 y Fq(C)788 5301 y Fy(\()p Fs(B)5 b(;)17 b(f)11 b Fy(\))28 b(resp.)44 b(diagrams)29 b(Mor)1908 5316 y Fq(C)1954 5301 y Fy(\()p Fs(B)5 b(;)17 b(D)s Fy(\))27 b(:)g Fs(I)36 b Ft(\000)-60 b(!)28 b Fv(Set)p Fy(\))h(with)h(prop)s(ert)m(y)g Ft(P)38 b Fy(in)29 b Fv(Set)g Fy(for)315 5417 y(all)j(ob)5 b(jects)34 b Fs(B)k Fy(in)32 b Ft(C)6 b Fy(.)p Black Black eop end %%Page: 48 48 TeXDict begin 48 47 bop Black 0 -99 a Fw(48)1077 b(Represen)n(table)25 b(functors)h(and)g(the)f(Y)-6 b(oneda)25 b(Lemma)p Black Black 148 100 a Fy(\(3\))p Black 42 w(W)-8 b(e)48 b(c)m(hec)m(k)i(that) d(the)h(ob)5 b(jects)49 b(\(resp.)90 b(morphisms)49 b(resp.)90 b(diagrams\))48 b(with)g(\(categorical\))315 217 y(prop)s(ert)m(y)h Ft(P)56 b Fy(in)49 b Fv(Set)f Fy(are)g(exactly)i(the)f Fu(sets)f Fy(\(resp.)92 b(maps)49 b(resp.)91 b(diagrams\))49 b(with)g(\(set-)315 333 y(theoretic\))33 b(prop)s(ert)m(y)g Ft(P)8 b Fy(.)0 472 y(The)34 b(last)g(condition)f(means)i(in)e(our)g (example)i(of)e(a)f(terminal)i(ob)5 b(ject,)35 b(that)e(a)f(set)i(1)f (is)h(a)f(singleton)h(i\013)0 588 y(all)e(Mor)312 603 y Fi(Set)430 588 y Fy(\()p Fs(B)5 b(;)17 b Fy(1\))32 b(are)g(singletons.)0 705 y(V)-8 b(ery)38 b(often)f(the)g(prop)s(ert)m (y)h Ft(P)46 b Fy(is)37 b(giv)m(en)h(b)m(y)g(a)f(de\014nition)h (referring)f(to)g(sp)s(eci\014c)i(elemen)m(ts.)59 b(The)38 b(con-)0 821 y(struction)h(of)f(pro)s(ducts)h(is)f(an)h(example.)62 b(Suc)m(h)39 b(a)f(prop)s(ert)m(y)h(migh)m(t)g(not)f(hold)g(for)g(all)g (ob)5 b(jects)39 b(of)f(an)0 937 y(isomorphism)k(class.)68 b(Then)41 b(w)m(e)h(will)f(ha)m(v)m(e)g(to)f(extend)i(the)f (de\014nition)g(to)f(the)h(whole)g(isomorphism)0 1053 y(class)34 b(\(see)f(for)f(example)i(section)g(2.7\).)p Black 0 1231 a(2.3.2.)41 b Fv(Example.)p Black 47 w Fy(The)i(set)f(of)f (ob)5 b(jects)43 b(of)e(a)g(small)i(category)e(is)h(`essen)m(tially)j (the)d(same)g(thing')g(as)0 1347 y(the)35 b(set)g(of)f(global)h(elemen) m(ts)i(of)d(the)h(category)g(\(as)f(an)h(ob)5 b(ject)35 b(of)f Fv(Cat)p Fy(\).)50 b(In)35 b(other)f(w)m(ords,)j(the)e Fu(set)h(of)0 1463 y(obje)-5 b(cts)33 b(functor)f Fy(is)g(represen)m (ted)i(b)m(y)e(the)g(terminal)h(ob)5 b(ject)32 b(of)f Fv(Cat)p Fy(,)h(whic)m(h)h(is)f(the)g(category)g(with)g(one)0 1580 y(ob)5 b(ject)33 b(and)g(one)g(arro)m(w.)0 1696 y(The)j(set)g(of)f(arro)m(ws)h(of)f(a)g(small)h(category)f(is)h(the)g (ob)5 b(ject)36 b(part)f(of)g(a)g(functor)g(that)g(is)h(represen)m(ted) i(b)m(y)0 1812 y(the)33 b(category)g Fv(2)p Fy(,)g(whic)m(h)h(is)f(the) g(graph)f Fv(2)h Fy(with)g(the)g(addition)g(of)f(t)m(w)m(o)h(iden)m (tit)m(y)h(arro)m(ws.)0 1990 y(2.4.)49 b Fv(Isomorphisms.)0 2106 y Fy(In)42 b(1.7.16)f(w)m(e)i(ha)m(v)m(e)h(de\014ned)f(the)f (notion)g(of)f(an)h(isomorphism.)73 b(This)43 b(is)g(another)f(example) h(of)f(the)0 2222 y(principle)34 b(of)e(co)m(v)-5 b(arian)m(t)33 b(extension)i(of)d(set-theoretic)h(prop)s(erties.)0 2339 y(In)24 b(general,)i(the)e(w)m(ord)h(`isomorphic')g(is)f(used)h(in)f(a) f(mathematical)i(con)m(text)g(to)e(mean)i(indistinguishable)0 2455 y(in)33 b(form.)p Black 0 2632 a(2.4.1.)f Fv(De\014nition.)p Black 43 w Fy(A)g(map)h Fs(f)38 b Fy(:)28 b Fs(A)g Ft(\000)-60 b(!)28 b Fs(B)37 b Fy(in)c Fv(Set)g Fy(is)g(called)g(an)g Fu(isomorphism)d Fy(if)j(it)f(is)h(bijectiv)m(e.)0 2810 y(It)k(is)h(clear)g(that)f Fs(f)46 b Fy(:)36 b Fs(A)f Ft(\000)-59 b(!)35 b Fs(B)42 b Fy(is)c(an)f(isomorphism)i(i\013)e (there)h(is)g(an)f(in)m(v)m(erse)j(map)d Fs(g)i Fy(:)d Fs(B)41 b Ft(\000)-60 b(!)35 b Fs(A)i Fy(suc)m(h)0 2926 y(that)32 b Fs(g)26 b Ft(\016)c Fs(f)38 b Fy(=)28 b(1)595 2941 y Fp(A)684 2926 y Fy(and)33 b Fs(f)g Ft(\016)21 b Fs(g)31 b Fy(=)d(1)1257 2941 y Fp(B)1317 2926 y Fy(.)0 3043 y(In)34 b(the)g(category)g(of)f(arro)m(ws)h(of)f Fv(Set)h Fy(t)m(w)m(o)g(arro)m(ws)g Fs(f)40 b Fy(:)30 b Fs(A)f Ft(\000)-59 b(!)29 b Fs(B)38 b Fy(and)c Fs(f)2668 3006 y Fq(0)2720 3043 y Fy(:)c Fs(A)2850 3006 y Fq(0)2902 3043 y Ft(\000)-59 b(!)29 b Fs(B)3128 3006 y Fq(0)3185 3043 y Fy(are)k(isomorphic)i(if)0 3159 y(and)29 b(only)h(if)e(there)i (are)f(maps)h Fs(g)h Fy(:)c Fs(A)h Ft(\000)-59 b(!)27 b Fs(A)1590 3123 y Fq(0)1613 3159 y Fy(,)j Fs(h)e Fy(:)g Fs(B)k Ft(\000)-59 b(!)27 b Fs(B)2139 3123 y Fq(0)2163 3159 y Fy(,)i Fs(g)2270 3123 y Fq(0)2320 3159 y Fy(:)f Fs(A)2448 3123 y Fq(0)2499 3159 y Ft(\000)-59 b(!)27 b Fs(A)p Fy(,)j(and)f Fs(h)3016 3123 y Fq(0)3067 3159 y Fy(:)f Fs(B)3201 3123 y Fq(0)3252 3159 y Ft(\000)-60 b(!)28 b Fs(B)34 b Fy(suc)m(h)c(that)1276 3314 y Fs(h)22 b Ft(\016)g Fs(f)39 b Fy(=)27 b Fs(f)1675 3278 y Fq(0)1720 3314 y Ft(\016)22 b Fs(g)t(;)114 b(h)2040 3278 y Fq(0)2085 3314 y Ft(\016)22 b Fs(f)2216 3278 y Fq(0)2267 3314 y Fy(=)28 b Fs(f)k Ft(\016)22 b Fs(g)2574 3278 y Fq(0)2597 3314 y Fs(;)1400 3430 y(g)1451 3394 y Fq(0)1495 3430 y Ft(\016)g Fs(g)31 b Fy(=)d(1)1798 3445 y Fp(A)1855 3430 y Fs(;)114 b(g)25 b Ft(\016)d Fs(g)2191 3394 y Fq(0)2242 3430 y Fy(=)27 b(1)2394 3445 y Fp(A)2447 3427 y Fl(0)2473 3430 y Fs(;)1384 3547 y(h)1440 3511 y Fq(0)1486 3547 y Ft(\016)22 b Fs(h)28 b Fy(=)f(1)1794 3562 y Fp(B)1855 3547 y Fs(;)114 b(h)22 b Ft(\016)g Fs(h)2202 3511 y Fq(0)2253 3547 y Fy(=)28 b(1)2406 3562 y Fp(B)2462 3543 y Fl(0)2489 3547 y Fs(:)0 3706 y Fy(with)0 4261 y(\(14\))1317 3908 y Fs(A)305 b(A)1768 3872 y Fq(0)p 1419 3873 248 4 v 1583 3871 a Fo(-)1517 3833 y Fs(g)1314 4298 y(B)f(B)1771 4262 y Fq(0)p 1422 4263 242 4 v 1580 4261 a Fo(-)1514 4350 y Fs(h)2097 3908 y(A)p 1820 3873 248 4 v 1985 3871 a Fo(-)1907 3833 y Fs(g)1958 3797 y Fq(0)2094 4298 y Fs(B)p 1823 4263 242 4 v 1982 4261 a Fo(-)1904 4353 y Fs(h)1960 4317 y Fq(0)2097 3908 y Fs(A)h(A)2548 3872 y Fq(0)p 2199 3873 248 4 v 2363 3871 a Fo(-)2297 3833 y Fs(g)2094 4298 y(B)f(B)2551 4262 y Fq(0)p 2202 4263 242 4 v 2360 4261 a Fo(-)2294 4350 y Fs(h)p 1352 4193 4 254 v 1353 4193 a Fo(?)1256 4091 y Fs(f)p 1742 4193 V 1743 4193 a Fo(?)1622 4093 y Fs(f)1681 4057 y Fq(0)p 2132 4193 V 2133 4193 a Fo(?)2172 4091 y Fs(f)p 2522 4193 V 2523 4193 a Fo(?)2562 4093 y Fs(f)2621 4057 y Fq(0)0 4481 y Fy(It)32 b(is)h(clear)g(that)f Fs(f)706 4445 y Fq(0)762 4481 y Fy(is)h(bijectiv)m(e)h(if)e Fs(f)43 b Fy(is)33 b(bijectiv)m(e,)i(since)e Fs(f)2237 4445 y Fq(0)2288 4481 y Fy(=)28 b Fs(f)2451 4445 y Fq(0)2495 4481 y Ft(\016)22 b Fs(g)j Ft(\016)d Fs(g)2762 4445 y Fq(0)2812 4481 y Fy(=)28 b Fs(h)21 b Ft(\016)h Fs(f)33 b Ft(\016)21 b Fs(g)3268 4445 y Fq(0)3323 4481 y Fy(with)33 b(bijectiv)m(e)0 4597 y(maps)41 b Fs(h)p Fy(,)h Fs(f)11 b Fy(,)42 b(and)e Fs(g)764 4561 y Fq(0)787 4597 y Fy(.)66 b(Hence)41 b Fs(f)51 b Fy(is)40 b(bijectiv)m(e)i(if)e(and)h(only)f(if)g (all)g Fs(f)2591 4561 y Fq(0)2654 4597 y Fy(that)g(are)g(isomorphic)h (to)f Fs(f)51 b Fy(are)0 4713 y(bijectiv)m(e)39 b(maps.)58 b(This)39 b(is)e(the)h(extension)h(principle)g(2.3.1)e(\(1\).)57 b(The)38 b(extension)h(principle)g(2.3.1)d(\(2\))0 4830 y(pro)m(vides)e(the)f(follo)m(wing)g(de\014nition.)p Black 0 5007 a(2.4.2.)e Fv(De\014nition.)p Black 42 w Fy(A)h(morphism)g Fs(f)39 b Fy(:)28 b Fs(A)f Ft(\000)-59 b(!)27 b Fs(B)37 b Fy(in)32 b(an)f(arbitrary)h(category)g Ft(C)38 b Fy(is)32 b(called)g Fu(invertible)f Fy(or)0 5123 y(an)d Fu(isomorphism)f Fy(if)i(Mor)961 5138 y Fq(C)1006 5123 y Fy(\()p Fs(C)r(;)17 b(f)11 b Fy(\))26 b(:)i(Mor)1514 5138 y Fq(C)1559 5123 y Fy(\()p Fs(C)r(;)17 b(A)p Fy(\))27 b Ft(\000)-60 b(!)28 b Fy(Mor)2172 5138 y Fq(C)2217 5123 y Fy(\()p Fs(C)r(;)17 b(B)5 b Fy(\))28 b(is)h(bijectiv)m(e)h(for)e(all) h(ob)5 b(jects)29 b Fs(C)36 b Fy(in)29 b Ft(C)6 b Fy(.)0 5301 y(This)24 b(de\014nition)g(coincides)h(with)e(the)g(original)g (de\014nition)h(1.7.16)e(of)g(an)h(isomorphism)i(b)m(y)e(the)h(follo)m (wing)0 5417 y(Lemma:)p Black Black eop end %%Page: 49 49 TeXDict begin 49 48 bop Black 1720 -99 a Fw(Isomorphisms)1644 b(49)p Black Black 0 100 a Fy(2.4.3.)33 b Fv(Lemma.)p Black 44 w Fu(L)-5 b(et)37 b Fs(f)j Fy(:)30 b Fs(A)g Ft(\000)-57 b(!)30 b Fs(B)41 b Fu(b)-5 b(e)36 b(a)f(morphism)g(in)h Ft(C)6 b Fu(.)48 b Fs(f)f Fu(is)36 b(an)f(isomorphism)g(\(as)g(in)h (de\014nition)0 217 y(2.4.2\))31 b(if)g(and)g(only)g(if)h(ther)-5 b(e)31 b(exists)g(a)h(morphism)e Fs(g)h Fy(:)d Fs(B)k Ft(\000)-57 b(!)28 b Fs(A)j Fu(such)h(that)f Fs(g)18 b Ft(\016)d Fs(f)38 b Fy(=)28 b(1)3167 232 y Fp(A)3255 217 y Fu(and)j Fs(f)26 b Ft(\016)15 b Fs(g)30 b Fy(=)e(1)3810 232 y Fp(B)3870 217 y Fu(.)p Black 0 381 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(Let)47 b Fs(f)57 b Fy(b)s(e)46 b(an)g(isomorphism.)87 b(Cho)s(ose)47 b Fs(C)58 b Fy(:=)51 b Fs(B)5 b Fy(.)85 b(Then)47 b(Mor)2807 396 y Fq(C)2852 381 y Fy(\()p Fs(B)5 b(;)17 b(f)11 b Fy(\))51 b(:)g(Mor)3415 396 y Fq(C)3460 381 y Fy(\()p Fs(B)5 b(;)17 b(A)p Fy(\))51 b Ft(\000)-60 b(!)0 497 y Fy(Mor)176 512 y Fq(C)221 497 y Fy(\()p Fs(B)5 b(;)17 b(B)5 b Fy(\))32 b(is)g(a)g(bijectiv)m(e)h(map.)44 b(Th)m(us)33 b(there)g(is)f Fs(g)f Ft(2)d Fy(Mor)2290 512 y Fq(C)2335 497 y Fy(\()p Fs(B)5 b(;)17 b(A)p Fy(\))32 b(with)g Fs(f)g Ft(\016)20 b Fs(g)31 b Fy(=)d(Mor)3368 512 y Fq(C)3413 497 y Fy(\()p Fs(B)5 b(;)17 b(f)11 b Fy(\)\()p Fs(g)t Fy(\))26 b(=)0 613 y(1)49 628 y Fp(B)109 613 y Fy(.)49 b(F)-8 b(urthermore)35 b(Mor)928 628 y Fq(C)973 613 y Fy(\()p Fs(A;)17 b(f)11 b Fy(\))30 b(:)g(Mor)1488 628 y Fq(C)1533 613 y Fy(\()p Fs(A;)17 b(A)p Fy(\))31 b Ft(\000)-60 b(!)30 b Fy(Mor)2153 628 y Fq(C)2199 613 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\))34 b(is)g(bijectiv)m(e)i(hence)g(Mor) 3442 628 y Fq(C)3487 613 y Fy(\()p Fs(A;)17 b(f)11 b Fy(\)\()p Fs(g)26 b Ft(\016)0 730 y Fs(f)11 b Fy(\))27 b(=)h Fs(f)33 b Ft(\016)22 b Fs(g)j Ft(\016)d Fs(f)38 b Fy(=)28 b(1)764 745 y Fp(B)847 730 y Ft(\016)22 b Fs(f)38 b Fy(=)27 b Fs(f)33 b Ft(\016)22 b Fy(1)1310 745 y Fp(A)1395 730 y Fy(=)27 b(Mor)1674 745 y Fq(C)1719 730 y Fy(\()p Fs(A;)17 b(f)11 b Fy(\)\(1)2058 745 y Fp(A)2115 730 y Fy(\))32 b(implies)i Fs(g)26 b Ft(\016)c Fs(f)38 b Fy(=)27 b(1)2899 745 y Fp(A)2956 730 y Fy(.)0 846 y(Con)m(v)m(ersely)32 b(assume)e(that)e(there)h(is)g(a)g(morphism)g Fs(g)i Fy(:)d Fs(B)33 b Ft(\000)-60 b(!)28 b Fs(A)g Fy(suc)m(h)i(that)f Fs(g)17 b Ft(\016)d Fs(f)38 b Fy(=)28 b(1)3175 861 y Fp(A)3260 846 y Fy(and)h Fs(f)24 b Ft(\016)14 b Fs(g)31 b Fy(=)c(1)3812 861 y Fp(B)3873 846 y Fy(.)0 962 y(Let)45 b Fs(C)51 b Fy(b)s(e)45 b(an)f(ob)5 b(ject)46 b(in)e Ft(C)51 b Fy(and)45 b Fs(h)j Fy(:)g Fs(C)55 b Ft(\000)-60 b(!)48 b Fs(A)p Fy(.)79 b(Then)46 b(Mor)2429 977 y Fq(C)2474 962 y Fy(\()p Fs(C)r(;)17 b(g)t Fy(\))29 b Ft(\016)h Fy(Mor)3002 977 y Fq(C)3047 962 y Fy(\()p Fs(C)r(;)17 b(f)11 b Fy(\)\()p Fs(h)p Fy(\))47 b(=)h Fs(g)33 b Ft(\016)d Fs(f)41 b Ft(\016)0 1078 y Fs(h)46 b Fy(=)f Fs(h)e Fy(hence)i(Mor)780 1093 y Fq(C)825 1078 y Fy(\()p Fs(C)r(;)17 b(g)t Fy(\))27 b Ft(\016)i Fy(Mor)1351 1093 y Fq(C)1396 1078 y Fy(\()p Fs(C)r(;)17 b(f)11 b Fy(\))44 b(=)h(1)1861 1094 y Fr(Mor)1988 1105 y Fl(C)2029 1094 y Fr(\()p Fp(C)q(;A)p Fr(\))2211 1078 y Fy(.)75 b(F)-8 b(urthermore)43 b(let)h Fs(k)k Fy(:)e Fs(C)52 b Ft(\000)-59 b(!)45 b Fs(B)5 b Fy(.)75 b(Then)0 1195 y(Mor)176 1210 y Fq(C)221 1195 y Fy(\()p Fs(C)r(;)17 b(f)11 b Fy(\))j Ft(\016)g Fy(Mor)725 1210 y Fq(C)770 1195 y Fy(\()p Fs(C)r(;)j(g)t Fy(\)\()p Fs(k)s Fy(\))26 b(=)h Fs(f)e Ft(\016)14 b Fs(g)j Ft(\016)d Fs(k)30 b Fy(=)e Fs(k)j Fy(hence)f(Mor)2247 1210 y Fq(C)2292 1195 y Fy(\()p Fs(C)r(;)17 b(f)11 b Fy(\))j Ft(\016)g Fy(Mor)2796 1210 y Fq(C)2841 1195 y Fy(\()p Fs(C)r(;)j(g)t Fy(\))26 b(=)i(1)3263 1210 y Fr(Mor)3390 1221 y Fl(C)3430 1210 y Fr(\()p Fp(C)q(;B)s Fr(\))3616 1195 y Fy(.)42 b(Th)m(us)0 1311 y(Mor)176 1326 y Fq(C)221 1311 y Fy(\()p Fs(B)5 b(;)17 b(f)11 b Fy(\))27 b(:)h(Mor)737 1326 y Fq(C)782 1311 y Fy(\()p Fs(C)r(;)17 b(A)p Fy(\))27 b Ft(\000)-59 b(!)27 b Fy(Mor)1395 1326 y Fq(C)1440 1311 y Fy(\()p Fs(C)r(;)17 b(B)5 b Fy(\))32 b(is)h(a)f(bijectiv)m(e)j(map.) 1302 b Fg(\003)0 1477 y Fy(W)-8 b(e)33 b(no)m(w)g(ha)m(v)m(e)h(to)e (sho)m(w)i(that)e(this)i(de\014nition)f(satis\014es)h(extension)h (principle)f(2.3.1)e(\(3\).)0 1593 y(Let)38 b Fs(f)46 b Fy(:)37 b Fs(A)f Ft(\000)-60 b(!)36 b Fs(B)43 b Fy(b)s(e)37 b(a)g(\(categorical\))h(isomorphism)h(in)f Fv(Set)p Fy(.)58 b(By)38 b(Lemma)g(2.4.3)f Fs(f)48 b Fy(has)38 b(an)g(in)m(v)m(erse)0 1709 y(map)33 b Fs(g)e Fy(:)d Fs(B)k Ft(\000)-59 b(!)27 b Fs(A)p Fy(,)33 b(hence)h(it)e(is)h(bijectiv)m(e.)p Black 0 1874 a(2.4.4.)39 b Fv(Prop)s(osition.)p Black 46 w Fu(If)h Fs(f)51 b Fy(:)40 b Fs(A)f Ft(\000)-57 b(!)40 b Fs(B)46 b Fu(and)41 b Fs(g)i Fy(:)d Fs(B)45 b Ft(\000)-58 b(!)40 b Fs(C)48 b Fu(ar)-5 b(e)41 b(isomorphisms)f(in)h(a)g(c)-5 b(ate)g(gory)41 b(with)0 1990 y(inverses)27 b Fs(f)427 1954 y Fq(\000)p Fr(1)549 1990 y Fy(:)h Fs(B)33 b Ft(\000)-57 b(!)27 b Fs(A)i Fu(and)f Fs(g)1194 1954 y Fq(\000)p Fr(1)1315 1990 y Fy(:)g Fs(C)34 b Ft(\000)-57 b(!)27 b Fs(B)5 b Fu(,)30 b(then)f Fs(g)12 b Ft(\016)c Fs(f)38 b Fu(is)28 b(an)g(isomorphism)f(with)h(inverse)g Fs(f)3566 1954 y Fq(\000)p Fr(1)3668 1990 y Ft(\016)8 b Fs(g)3777 1954 y Fq(\000)p Fr(1)3870 1990 y Fu(.)0 2154 y Fy(The)43 b(pro)s(of)e(is)h(omitted.)72 b(This)43 b(prop)s(osition)f(is)g (sometimes)i(called)e(the)h(`Sho)s(e-So)s(c)m(k)f(Theorem':)63 b(to)0 2271 y(undo)29 b(the)f(act)g(of)g(putting)h(on)f(y)m(our)h(so)s (c)m(ks,)h(then)f(y)m(our)g(sho)s(es,)h(y)m(ou)f(ha)m(v)m(e)h(to)d(tak) m(e)j(o\013)d(y)m(our)i(sho)s(es,)h(then)0 2387 y(y)m(our)j(so)s(c)m (ks.)p Black 0 2551 a(2.4.5.)e Fv(De\014nition.)p Black 41 w Fy(Let)h Ft(C)37 b Fy(b)s(e)32 b(a)f(category)g(and)h(supp)s(ose)g (that)f Fs(A)h Fy(and)f Fs(B)37 b Fy(are)31 b(t)m(w)m(o)h(ob)5 b(jects)32 b(of)f Ft(C)6 b Fy(.)44 b(W)-8 b(e)0 2667 y(sa)m(y)34 b(that)e Fs(A)h Fy(is)g Fu(isomorphic)g(to)g Fs(B)5 b Fy(,)32 b(written)i Fs(A)1779 2640 y Ft(\030)1780 2672 y Fy(=)1884 2667 y Fs(B)5 b Fy(,)33 b(if)f(there)h(is)g(an)g (isomorphism)h Fs(f)k Fy(:)28 b Fs(A)g Ft(\000)-60 b(!)28 b Fs(B)5 b Fy(.)p Black 0 2832 a(2.4.6.)28 b Fv(De\014nition.)p Black 40 w Fy(An)h(arro)m(w)f Fs(f)39 b Fy(:)27 b Fs(A)h Ft(\000)-59 b(!)27 b Fs(A)i Fy(in)g(a)f(category)h(\(with)g(the)g (source)h(and)f(target)f(the)h(same\))0 2948 y(is)k(called)g(an)g Fu(endomorphism)p Fy(.)41 b(If)33 b(it)f(is)i(in)m(v)m(ertible,)g(it)f (is)g(called)g(an)g Fu(automorphism)p Fy(.)p Black 0 3113 a(2.4.7.)23 b Fv(Examples.)p Black 35 w Fy(Iden)m(tit)m(y)i(arro)m (ws)f(in)f(a)g(category)g(are)g(isomorphisms)i(\(hence)g(an)e (automorphisms\).)0 3229 y(In)k(the)h(category)f(determined)i(b)m(y)e (a)g(partially)g(ordered)h(set,)h(the)e Fu(only)g Fy(isomorphisms)i (are)e(the)g(iden)m(tit)m(y)0 3345 y(arro)m(ws.)0 3461 y(If,)j(in)h(the)f(category)g(determined)i(b)m(y)f(a)e(monoid,)i(ev)m (ery)h(arro)m(w)e(is)g(an)g(isomorphism)i(then)e(the)h(monoid)0 3577 y(is)37 b(a)g(group.)55 b(Because)39 b(of)d(this,)i(a)f(category)g (in)g(whic)m(h)h(ev)m(ery)h(arro)m(w)d(is)i(an)e(isomorphism)i(is)g (called)f(a)0 3694 y Fu(gr)-5 b(oup)g(oid)p Fy(.)0 3810 y(In)33 b(the)g(category)g(of)f(semigroups)i(and)f(semigroup)g (homomorphisms,)i(and)e(lik)m(ewise)i(in)e(the)g(category)0 3926 y(of)h(monoids)g(and)g(monoid)h(homomorphisms,)h(the)e (isomorphisms)j(are)d(exactly)h(the)f(bijectiv)m(e)i(homo-)0 4042 y(morphisms.)68 b(On)41 b(the)g(other)f(hand,)j(in)d(the)h (category)g(of)f(p)s(osets)h(and)f(monotone)h(maps,)i(there)e(are)0 4159 y(bijectiv)m(e)34 b(homomorphisms)h(that)d(ha)m(v)m(e)i(no)f(in)m (v)m(erse.)p Black 0 4323 a(2.4.8.)j Fv(De\014nition.)p Black 44 w Fy(A)g Fu(pr)-5 b(op)g(erty)37 b Fy(that)e(ob)5 b(jects)38 b(of)e(a)g(category)g(ma)m(y)h(ha)m(v)m(e)g Fu(is)h(pr)-5 b(eserve)g(d)38 b(by)g(isomor-)0 4439 y(phisms)29 b Fy(if)g(for)g(an)m(y)i(ob)5 b(ject)30 b Fs(A)g Fy(with)g(the)g(prop)s (ert)m(y)-8 b(,)31 b(an)m(y)g(ob)5 b(ject)30 b(isomorphic)h(to)e Fs(A)h Fy(m)m(ust)h(also)e(ha)m(v)m(e)j(the)0 4555 y(prop)s(ert)m(y)-8 b(.)0 4720 y(F)g(rom)29 b(the)g(categorist's)h(p)s(oin)m(t)g(of)e(view) j(there)f(is)f(no)g(reason)h(to)f(distinguish)i(b)s(et)m(w)m(een)g(t)m (w)m(o)f(isomorphic)0 4836 y(ob)5 b(jects)39 b(in)f(a)g(category)-8 b(,)40 b(since)f(the)g(in)m(teresting)g(fact)f(ab)s(out)g(a)f (mathematical)i(ob)5 b(ject)39 b(is)f(the)h(w)m(a)m(y)g(it)0 4952 y(relates)44 b(to)e(other)h(mathematical)h(ob)5 b(jects)44 b(and)f(t)m(w)m(o)g(isomorphic)h(ob)5 b(jects)44 b(relate)f(to)g(other)g(ob)5 b(jects)0 5069 y(in)44 b(the)h(same)g(w)m (a)m(y)-8 b(.)79 b(F)-8 b(or)43 b(this)i(reason,)i(the)d(concept)i(of)d (wide)i(sub)s(category)g(\(de\014nition)g(1.4.10\))e(is)0 5185 y(not)34 b(in)h(the)g(spirit)g(of)e(category)i(theory)-8 b(.)49 b(What)35 b(really)g(should)g(matter)g(is)g(whether)g(the)g(sub) s(category)0 5301 y(con)m(tains)27 b(an)g(isomorphic)g(cop)m(y)h(of)d (ev)m(ery)k(ob)5 b(ject)27 b(in)f(the)h(big)g(category)-8 b(.)41 b(This)28 b(motiv)-5 b(ates)27 b(the)g(follo)m(wing)0 5417 y(de\014nition.)p Black Black eop end %%Page: 50 50 TeXDict begin 50 49 bop Black 0 -99 a Fw(50)1077 b(Represen)n(table)25 b(functors)h(and)g(the)f(Y)-6 b(oneda)25 b(Lemma)p Black Black 0 100 a Fy(2.4.9.)h Fv(De\014nition.)p Black 38 w Fy(A)h(sub)s(category)h Ft(D)h Fy(of)e(a)f(category)h Ft(C)33 b Fy(is)28 b(said)f(to)g(b)s(e)g(a)f Fu(r)-5 b(epr)g(esentative)29 b(sub)-5 b(c)g(ate)g(gory)0 217 y Fy(if)32 b(ev)m(ery)j(ob)5 b(ject)33 b(of)f Ft(C)39 b Fy(is)33 b(isomorphic)h(to)e(some)i(ob)5 b(ject)33 b(of)f Ft(D)s Fy(.)p Black 0 400 a(2.4.10.)d Fv(Example.)p Black 40 w Fy(Let)h Ft(D)i Fy(b)s(e)d(the)h(category)g(whose)h(ob)5 b(jects)31 b(are)e(the)h(empt)m(y)h(set)f(and)g(all)f(sets)i(of)e(the)0 516 y(form)e Ft(f)p Fy(1)p Fs(;)17 b Fy(2)p Fs(;)g(:)g(:)g(:)e(;)i(n)p Ft(g)28 b Fy(for)f(some)h(p)s(ositiv)m(e)h(in)m(teger)g Fs(n)f Fy(and)g(whose)h(arro)m(ws)f(are)f(all)h(the)g(functions)h(b)s (et)m(w)m(een)0 632 y(them.)66 b(Then)41 b Ft(D)h Fy(is)e(a)g(represen) m(tativ)m(e)i(sub)s(category)f(of)e Fv(Fin)i Fy(\(De\014nition)f (2.1.12\),)g(since)i(there)e(is)g(a)0 748 y(bijection)33 b(from)f(an)m(y)g(nonempt)m(y)i(\014nite)f(set)g(to)e(some)i(set)g(of)f (the)g(form)g Ft(f)p Fy(1)p Fs(;)17 b Fy(2)p Fs(;)g(:)g(:)g(:)e(;)i(n)p Ft(g)p Fy(.)43 b(Note)32 b(that)g Ft(D)i Fy(is)0 864 y(also)f(full)f(in)h Fv(Fin)h Fy(and)e(that)h Ft(D)i Fy(is)e(a)f(small)h(category)-8 b(.)0 1047 y(2.5.)49 b Fv(Monomorphisms)39 b(and)g(epimorphisms.)0 1164 y Fy(Recall)i(that)g(a)g(function)g Fs(f)53 b Fy(:)42 b Fs(A)g Ft(\000)-60 b(!)42 b Fs(B)k Fy(in)41 b Fv(Set)g Fy(is)g Fu(inje)-5 b(ctive)41 b Fy(if)f(for)h(an)m(y)g Fs(x;)17 b(y)46 b Ft(2)c Fs(A)p Fy(,)h(if)e Fs(x)h Ft(6)p Fy(=)g Fs(y)t Fy(,)g(then)0 1280 y Fs(f)11 b Fy(\()p Fs(x)p Fy(\))28 b Ft(6)p Fy(=)f Fs(f)11 b Fy(\()p Fs(y)t Fy(\).)p Black 0 1463 a(2.5.1.)34 b Fv(De\014nition.)p Black 43 w Fy(A)h(map)f Fs(f)42 b Fy(:)30 b Fs(A)h Ft(\000)-59 b(!)30 b Fs(B)40 b Fy(in)34 b Fv(Set)g Fy(is)h(called)h(a)e Fu(\(set-the)-5 b(or)g(etic\))36 b(monomorphism)c Fy(if)i(it)0 1579 y(is)f(injectiv)m(e.)0 1762 y(Let)i(the)g(t)m(w)m(o)g(arro)m(ws)h Fs(f)42 b Fy(:)31 b Fs(A)g Ft(\000)-59 b(!)31 b Fs(B)40 b Fy(and)34 b Fs(f)1613 1726 y Fq(0)1668 1762 y Fy(:)d Fs(A)1799 1726 y Fq(0)1854 1762 y Ft(\000)-60 b(!)31 b Fs(B)2081 1726 y Fq(0)2139 1762 y Fy(b)s(e)k(isomorphic)h(with)f (bijectiv)m(e)i Fs(g)d Fy(:)e Fs(A)f Ft(\000)-59 b(!)30 b Fs(A)3849 1726 y Fq(0)3873 1762 y Fy(,)0 1878 y Fs(h)i Fy(:)g Fs(B)37 b Ft(\000)-59 b(!)32 b Fs(B)487 1842 y Fq(0)510 1878 y Fy(,)k Fs(g)624 1842 y Fq(0)678 1878 y Fy(:)c Fs(A)810 1842 y Fq(0)866 1878 y Ft(\000)-60 b(!)32 b Fs(A)p Fy(,)k(and)f Fs(h)1399 1842 y Fq(0)1455 1878 y Fy(:)d Fs(B)1593 1842 y Fq(0)1648 1878 y Ft(\000)-59 b(!)31 b Fs(B)40 b Fy(as)c(in)f(diagram)g(\(14\).)51 b(Then)36 b Fs(f)3100 1842 y Fq(0)3158 1878 y Fy(is)g(injectiv)m(e)h (if)e Fs(f)45 b Fy(is)0 1994 y(injectiv)m(e.)60 b(In)37 b(fact)g(assume)i Fs(f)1164 1958 y Fq(0)1187 1994 y Fy(\()p Fs(x)p Fy(\))d(=)f Fs(f)1524 1958 y Fq(0)1547 1994 y Fy(\()p Fs(y)t Fy(\).)57 b(Then)38 b Fs(f)11 b(g)2128 1958 y Fq(0)2151 1994 y Fy(\()p Fs(x)p Fy(\))36 b(=)f Fs(h)2485 1958 y Fq(0)2509 1994 y Fs(f)2568 1958 y Fq(0)2591 1994 y Fy(\()p Fs(x)p Fy(\))h(=)f Fs(h)2925 1958 y Fq(0)2949 1994 y Fs(f)3008 1958 y Fq(0)3031 1994 y Fy(\()p Fs(y)t Fy(\))f(=)i Fs(f)11 b(g)3415 1958 y Fq(0)3437 1994 y Fy(\()p Fs(y)t Fy(\))36 b(implies)0 2111 y Fs(g)51 2075 y Fq(0)74 2111 y Fy(\()p Fs(x)p Fy(\))28 b(=)f Fs(g)387 2075 y Fq(0)410 2111 y Fy(\()p Fs(y)t Fy(\))k(and)i(hence)h Fs(x)28 b Fy(=)g Fs(y)35 b Fy(since)f Fs(g)1590 2075 y Fq(0)1645 2111 y Fy(is)f(bijectiv)m(e)i(and)e Fs(f)43 b Fy(is)33 b(injectiv)m(e.)0 2227 y(So)40 b(the)h(notion)f(of)f (monomorphism)j(satis\014es)g(the)e(extension)i(principle)g(2.3.1)d (\(1\).)66 b(The)41 b(extension)0 2343 y(principle)34 b(2.3.1)e(\(2\))g(pro)m(vides)j(the)e(follo)m(wing)f(de\014nition.)p Black 0 2526 a(2.5.2.)g Fv(De\014nition.)p Black Black 191 w Fy(\(1\))p Black 41 w(A)41 b(morphism)h Fs(f)52 b Fy(:)41 b Fs(A)h Ft(\000)-59 b(!)41 b Fs(B)k Fy(in)c(an)g(arbitrary)g (category)g Ft(C)47 b Fy(is)41 b(called)g(a)315 2642 y Fu(\(c)-5 b(ate)g(goric)g(al\))38 b(monomorphism)e Fy(if)i(Mor)1839 2657 y Fq(C)1884 2642 y Fy(\()p Fs(C)r(;)17 b(f)11 b Fy(\))36 b(:)h(Mor)2411 2657 y Fq(C)2457 2642 y Fy(\()p Fs(C)r(;)17 b(A)p Fy(\))36 b Ft(\000)-60 b(!)37 b Fy(Mor)3088 2657 y Fq(C)3133 2642 y Fy(\()p Fs(C)r(;)17 b(B)5 b Fy(\))37 b(is)i(injectiv)m(e)315 2759 y(for)32 b(all)g(ob)5 b(jects)34 b Fs(C)39 b Fy(in)33 b Ft(C)6 b Fy(.)p Black 148 2875 a(\(2\))p Black 42 w(A)45 b(morphism)h Fs(f)60 b Fy(:)49 b Fs(A)g Ft(\000)-60 b(!)48 b Fs(B)j Fy(in)45 b(an)g(arbitrary)g(category)g Ft(C)52 b Fy(is)45 b(called)h(an)f Fu(epimorphism)e Fy(if)315 2991 y(Mor)491 3006 y Fq(C)532 2987 y Fk(op)602 2991 y Fy(\()p Fs(C)r(;)17 b(f)11 b Fy(\))27 b(:)h(Mor)1111 3006 y Fq(C)1152 2987 y Fk(op)1222 2991 y Fy(\()p Fs(C)r(;)17 b(A)p Fy(\))27 b Ft(\000)-59 b(!)27 b Fy(Mor)1835 3006 y Fq(C)1876 2987 y Fk(op)1947 2991 y Fy(\()p Fs(C)r(;)17 b(B)5 b Fy(\))32 b(is)h(injectiv)m(e)h(for)e(all)h(ob)5 b(jects)34 b Fs(C)39 b Fy(in)33 b Ft(C)6 b Fy(.)p Black 0 3174 a(2.5.3.)32 b Fv(Prop)s(osition.)p Black Black 190 w Fy(\(1\))p Black 42 w Fu(A)40 b(morphism)f Fs(f)47 b Fy(:)38 b Fs(A)f Ft(\000)-57 b(!)37 b Fs(B)45 b Fu(is)39 b(a)h(monomorphism)e(if)i(and)f (only)h(if)g(it)315 3290 y(satis\014es)34 b(the)h Fy(left)d (cancelation)i(prop)s(ert)m(y)p Fu(:)p Black 422 3406 a Ft(\017)p Black 41 w(8)p Fs(C)h Ft(2)28 b(C)6 b Fs(;)52 b Ft(8)p Fs(g)t(;)17 b(h)27 b Fy(:)h Fs(C)35 b Ft(\000)-57 b(!)27 b Fs(A)p Fu(:)1439 3578 y Fs(f)33 b Ft(\016)22 b Fs(g)31 b Fy(=)c Fs(f)33 b Ft(\016)22 b Fs(h)28 b Fy(=)-17 b Ft(\))27 b Fs(g)k Fy(=)d Fs(h:)p Black 148 3750 a Fy(\(2\))p Black 42 w Fu(A)48 b(morphism)g Fs(f)63 b Fy(:)53 b Fs(A)g Ft(\000)-57 b(!)53 b Fs(B)h Fu(is)48 b(an)g(epimorphism)f(if)h(and)g (only)g(if)h(it)f(satis\014es)g(the)h Fy(righ)m(t)315 3867 y(cancelation)33 b(prop)s(ert)m(y)p Fu(:)p Black 422 3983 a Ft(\017)p Black 41 w(8)p Fs(C)i Ft(2)28 b(C)6 b Fs(;)52 b Ft(8)p Fs(g)t(;)17 b(h)27 b Fy(:)h Fs(B)33 b Ft(\000)-57 b(!)27 b Fs(C)7 b Fu(:)1439 4155 y Fs(g)25 b Ft(\016)d Fs(f)39 b Fy(=)27 b Fs(h)22 b Ft(\016)g Fs(f)39 b Fy(=)-17 b Ft(\))27 b Fs(g)k Fy(=)d Fs(h:)p Black 0 4338 a Fu(Pr)-5 b(o)g(of.)p Black 41 w Fy(The)34 b(left)e(cancelation)i (prop)s(ert)m(y)f(sa)m(ys)h(that)1099 4510 y(Mor)1275 4525 y Fq(C)1320 4510 y Fy(\()p Fs(C)r(;)17 b(f)11 b Fy(\))26 b(:)i(Mor)1828 4525 y Fq(C)1873 4510 y Fy(\()p Fs(C)r(;)17 b(A)p Fy(\))27 b Ft(\000)-59 b(!)27 b Fy(Mor)2486 4525 y Fq(C)2531 4510 y Fy(\()p Fs(C)r(;)17 b(B)5 b Fy(\))0 4682 y(is)33 b(injectiv)m(e)i(for)d(all)g Fs(C)40 b Fy(in)32 b Ft(C)6 b Fy(.)0 4798 y(The)34 b(righ)m(t)e(cancelation)i(prop)s (erties)f(follo)m(ws)g(b)m(y)h(dualit)m(y)-8 b(.)1647 b Fg(\003)-438 4886 y Fy(03.06.04)0 4983 y(W)-8 b(e)27 b(no)m(w)h(ha)m(v)m(e)g(to)f(sho)m(w)h(that)f(the)g(de\014nition)h(of)f (a)f(monomorphism)j(satis\014es)f(the)g(extension)g(principle)0 5099 y(2.3.1)k(\(3\).)p Black 0 5282 a(2.5.4.)45 b Fv(Prop)s(osition.)p Black 49 w Fu(A)i(map)f(in)g Fv(Set)h Fu(is)g(a)f(\(c)-5 b(ate)g(goric)g(al\))46 b(monomorphism)e(if)j(and)f(only)h(if)f(it)h (is)0 5398 y(inje)-5 b(ctive.)p Black Black eop end %%Page: 51 51 TeXDict begin 51 50 bop Black 1355 -99 a Fw(Monomorphisms)27 b(and)e(epimorphisms)1279 b(51)p Black Black 0 100 a Fu(Pr)-5 b(o)g(of.)p Black 41 w Fy(Let)45 b Fs(f)59 b Fy(:)48 b Fs(A)h Ft(\000)-60 b(!)48 b Fs(B)i Fy(b)s(e)45 b(a)f(monomorphism)i(in)f Fv(Set)p Fy(.)80 b(Then)46 b(Mor)2850 115 y Fi(Set)2968 100 y Fy(\()p Fs(C)r(;)17 b(f)11 b Fy(\))47 b(:)h(Mor)3518 115 y Fi(Set)3636 100 y Fy(\()p Fs(C)r(;)17 b(A)p Fy(\))0 217 y Ft(\000)-60 b(!)49 b Fy(Mor)342 232 y Fi(Set)460 217 y Fy(\()p Fs(C)r(;)17 b(B)5 b Fy(\))44 b(is)h(injectiv)m(e)i(for)d(all)h(sets)h Fs(C)7 b Fy(.)81 b(Let)45 b Fs(x;)17 b(y)51 b Ft(2)e Fs(A)c Fy(with)h Fs(f)11 b Fy(\()p Fs(x)p Fy(\))48 b(=)h Fs(f)11 b Fy(\()p Fs(y)t Fy(\).)79 b(Let)45 b Fs(C)52 b Fy(b)s(e)0 333 y(a)42 b(terminal)i(ob)5 b(ject)43 b Ft(f\003g)f Fy(in)h Fv(Set)p Fy(.)74 b(Then)43 b(there)h(are)e(maps)i Fs(g)t(;)17 b(h)43 b Fy(:)i Ft(f\003g)g(\000)-60 b(!)44 b Fs(A)f Fy(with)g Fs(g)t Fy(\()p Ft(\003)p Fy(\))h(=)h Fs(x)e Fy(and)0 449 y Fs(h)p Fy(\()p Ft(\003)p Fy(\))28 b(=)f Fs(y)t Fy(.)43 b(The)33 b(comp)s(osites)h(satisfy)f Fs(f)f Ft(\016)22 b Fs(g)t Fy(\()p Ft(\003)p Fy(\))k(=)i Fs(f)11 b Fy(\()p Fs(x)p Fy(\))27 b(=)h Fs(f)11 b Fy(\()p Fs(y)t Fy(\))26 b(=)i Fs(f)k Ft(\016)22 b Fs(h)p Fy(\()p Ft(\003)p Fy(\))32 b(hence)h Fs(f)g Ft(\016)21 b Fs(g)31 b Fy(=)d Fs(f)k Ft(\016)21 b Fs(h)33 b Fy(and)0 565 y Fs(g)e Fy(=)d Fs(h)p Fy(.)43 b(So)33 b(w)m(e)g(get)g Fs(x)28 b Fy(=)f Fs(g)t Fy(\()p Ft(\003)p Fy(\))g(=)h Fs(h)p Fy(\()p Ft(\003)p Fy(\))f(=)h Fs(y)35 b Fy(whic)m(h)f(sho)m(ws)h (that)d Fs(f)43 b Fy(is)33 b(injectiv)m(e.)0 681 y(Con)m(v)m(ersely)42 b(assume)e(that)e Fs(f)49 b Fy(is)39 b(injectiv)m(e.)64 b(Let)39 b Fs(g)t(;)17 b(h)37 b Fy(:)h Fs(C)44 b Ft(\000)-59 b(!)37 b Fs(A)i Fy(maps)g(with)g Fs(f)e Ft(\016)26 b Fs(g)42 b Fy(=)37 b Fs(f)g Ft(\016)26 b Fs(h)p Fy(.)62 b(Then)0 798 y Fs(f)11 b Fy(\()p Fs(g)t Fy(\()p Fs(x)p Fy(\)\))27 b(=)g Fs(f)11 b Fy(\()p Fs(h)p Fy(\()p Fs(x)p Fy(\)\))30 b(for)g(all)g Fs(x)e Ft(2)g Fs(C)7 b Fy(,)30 b(hence)h Fs(g)t Fy(\()p Fs(x)p Fy(\))d(=)f Fs(h)p Fy(\()p Fs(x)p Fy(\))k(and)f Fs(g)h Fy(=)c Fs(h)p Fy(.)43 b(Th)m(us)31 b Fs(f)41 b Fy(is)30 b(left)g(cancelable)i(and)0 914 y(hence)i(a)e(monomorphism.)2789 b Fg(\003)0 1092 y Fy(Using)40 b(the)g(notation)f(of)g(v)-5 b(ariable)40 b(elemen)m(ts)i(of)d(2.1.3,)h Fs(f)50 b Fy(is)40 b(a)g(monomorphism)g(if)g(for)f(an)m(y)h(v)-5 b(ariable)0 1208 y(elemen)m(ts)35 b Fs(x;)17 b(y)32 b Fy(:)d Fs(T)43 b Ft(\000)-60 b(!)28 b Fs(A)p Fy(,)34 b(if)f Fs(x)c Ft(6)p Fy(=)f Fs(y)t Fy(,)33 b(then)h Fs(f)11 b Fy(\()p Fs(x)p Fy(\))28 b Ft(6)p Fy(=)h Fs(f)11 b Fy(\()p Fs(y)t Fy(\),)32 b(i.e.)46 b Fs(f)39 b Fy(:)29 b Fs(A)p Fy(\()p Fs(T)14 b Fy(\))28 b Ft(\000)-59 b(!)28 b Fs(B)5 b Fy(\()p Fs(T)14 b Fy(\))33 b(is)g(injectiv)m(e)i(for)e(all)0 1324 y(parameters)h Fs(T)14 b Fy(.)p Black 0 1504 a(2.5.5.)37 b Fv(Remark.)p Black 44 w Fy(No)m(w)g(that)g(w)m(e)h(ha)m(v)m(e)h (completed)f(all)f(three)h(steps)g(of)e(the)i(extension)g(principle)h (w)m(e)0 1621 y(ma)m(y)33 b(abbreviate)h(the)f(term)g(`categorical)g (monomorphism')h(just)f(to)f(`monomorphism'.)0 1737 y(An)f(arro)m(w,)h (that)f(is)h(a)e(monomorphism)j(in)e(a)g(category)-8 b(,)32 b(is)f(a)g(monomorphism)i(in)e(an)m(y)h(sub)s(category)g(it)0 1853 y(happ)s(ens)c(to)e(b)s(e)h(in.)42 b(Ho)m(w)m(ev)m(er,)30 b(an)d(arro)m(w)g(can)g(b)s(e)g(a)g(monomorphism)h(in)f(a)f(sub)s (category)i(of)e(a)h(category)0 1969 y Ft(C)39 b Fy(without)33 b(b)s(eing)g(a)f(monomorphism)i(in)f Ft(C)6 b Fy(.)p Black 0 2149 a(2.5.6.)32 b Fv(Examples.)p Black 42 w Fy(In)h(most)f(familiar)g(categories)h(of)f(sets)h(with)g(structure)h (and)e(functions)h(that)f(pre-)0 2266 y(serv)m(e)39 b(structure,)i(the) d(monomorphisms)h(are)f(exactly)h(the)f(injectiv)m(e)i(functions.)59 b(In)38 b(particular,)i(the)0 2382 y(monomorphisms)28 b(in)e Fv(Mon)h Fy(are)f(the)h(injectiv)m(e)h(homomorphisms)f(\(see)h (2.5.7\).)40 b(This)28 b(is)e(more)h(evidence)0 2498 y(that)e(de\014nition)i(2.5.2)d(is)i(the)g(correct)g(categorical)g (de\014nition)g(generalizing)g(the)g(set-theoretic)h(concept)0 2614 y(of)32 b(injectivit)m(y)-8 b(.)0 2731 y(In)33 b(the)h(category)f (determined)i(b)m(y)f(a)f(p)s(oset,)g(ev)m(ery)i(arro)m(w)e(is)h(a)f (monomorphism.)46 b(A)33 b(monomorphism)0 2847 y(of)f(the)h(category)g (determined)h(b)m(y)g(a)e(monoid)h(is)g(generally)h(called)f(left)g (cancelable.)0 2963 y(An)e(isomorphism)i(in)e(an)m(y)h(category)f(is)h (a)e(monomorphism.)45 b(F)-8 b(or)30 b(supp)s(ose)i Fs(f)42 b Fy(is)31 b(an)g(isomorphism)i(and)0 3079 y(assume)h Fs(f)f Ft(\016)22 b Fs(x)28 b Fy(=)g Fs(f)k Ft(\016)22 b Fs(y)t Fy(.)43 b(Then)34 b Fs(x)28 b Fy(=)f Fs(f)1451 3043 y Fq(\000)p Fr(1)1568 3079 y Ft(\016)21 b Fs(f)33 b Ft(\016)22 b Fs(x)28 b Fy(=)g Fs(f)2038 3043 y Fq(\000)p Fr(1)2154 3079 y Ft(\016)22 b Fs(f)33 b Ft(\016)22 b Fs(y)31 b Fy(=)c Fs(y)t Fy(.)p Black 0 3259 a(2.5.7.)j Fv(Prop)s(osition.)p Black 40 w Fu(A)j(monomorphism)d(in)j(the)f(c)-5 b(ate)g(gory)33 b(of)f(monoids)g(is)g(an)h(inje)-5 b(ctive)31 b(homomor-)0 3375 y(phism,)j(and)g(c)-5 b(onversely.)p Black 0 3555 a(Pr)g(o)g(of.)p Black 41 w Fy(Let)36 b Fs(f)43 b Fy(:)32 b Fs(M)44 b Ft(\000)-60 b(!)32 b Fs(M)1017 3519 y Fq(0)1077 3555 y Fy(b)s(e)j(a)g(monoid)h(homomorphism.)53 b(Supp)s(ose)37 b(it)e(is)h(injectiv)m(e.)54 b(Let)35 b Fs(g)t(;)17 b(h)32 b Fy(:)g Fs(V)0 3672 y Ft(\000)-60 b(!)36 b Fs(M)49 b Fy(b)s(e)38 b(homomorphisms)h(for)e(whic)m(h)j Fs(f)c Ft(\016)25 b Fs(g)40 b Fy(=)c Fs(f)h Ft(\016)25 b Fs(h)p Fy(.)59 b(F)-8 b(or)37 b(an)m(y)i Fs(v)h Ft(2)d Fs(V)21 b Fy(,)39 b Fs(f)11 b Fy(\()p Fs(g)t Fy(\()p Fs(v)t Fy(\)\))35 b(=)h Fs(f)11 b Fy(\()p Fs(h)p Fy(\()p Fs(v)t Fy(\)\),)39 b(so)0 3788 y Fs(g)t Fy(\()p Fs(v)t Fy(\))27 b(=)g Fs(h)p Fy(\()p Fs(v)t Fy(\))32 b(since)i Fs(f)44 b Fy(is)33 b(injectiv)m(e.)45 b(Hence)34 b Fs(g)d Fy(=)d Fs(h)p Fy(.)43 b(It)33 b(follo)m(ws)g(that)f Fs(f)44 b Fy(is)33 b(a)f(monomorphism.)0 3904 y(Essen)m(tially)38 b(the)f(same)f(pro)s(of)f(w)m(orks)i(in)f(other)g(categories)h(of)e (structures)i(and)f(structure-preserving)0 4020 y(maps)44 b({)e(if)h(the)g(map)g(is)h(injectiv)m(e)h(it)e(is)g(a)g(monomorphism)h (for)e(the)i(same)f(reason)h(as)f(in)g Fv(Set)g Fy(\(see)0 4137 y(Exercise)35 b Fv(??)p Fy(\).)0 4253 y(Ho)m(w)m(ev)m(er,)46 b(the)41 b(con)m(v)m(erse)j(de\014nitely)f(do)s(es)f(not)f(w)m(ork)h (that)f(w)m(a)m(y)-8 b(.)71 b(The)42 b(pro)s(of)e(for)h Fv(Set)g Fy(in)h(Theorem)0 4369 y(2.5.4)27 b(ab)s(o)m(v)m(e)h(uses)g (distinct)h(global)e(elemen)m(ts)i Fs(x)f Fy(and)f Fs(y)t Fy(,)h(but)f(a)g(monoid)h(need)g(not)f(ha)m(v)m(e)i(distinct)f(global)0 4485 y(elemen)m(ts.)62 b(F)-8 b(or)37 b(example,)j(let)e Fs(N)49 b Fy(denote)38 b(the)g(monoid)h(of)e(nonnegativ)m(e)i(in)m (tegers)g(with)g(addition)f(as)0 4601 y(op)s(eration.)48 b(Then)35 b(the)g(only)g(global)e(elemen)m(t)j(of)e Fs(N)45 b Fy(on)34 b(addition)g(is)h(0.)48 b(So)34 b(w)m(e)h(ha)m(v)m(e)h(to)e (w)m(ork)h(harder)0 4718 y(to)d(get)h(a)f(pro)s(of.)0 4834 y(Supp)s(ose)37 b Fs(f)46 b Fy(is)37 b(a)e(monomorphism.)55 b(Let)36 b Fs(x;)17 b(y)37 b Ft(2)c Fs(M)47 b Fy(b)s(e)36 b(distinct)h(elemen)m(ts.)56 b(Let)36 b Fs(p)3171 4849 y Fp(x)3248 4834 y Fy(:)d Fs(N)44 b Ft(\000)-59 b(!)33 b Fs(M)46 b Fy(tak)m(e)0 4950 y Fs(k)37 b Fy(to)c Fs(x)263 4914 y Fp(k)340 4950 y Fy(and)h(similarly)h(de\014ne)f Fs(p)1262 4965 y Fp(y)1304 4950 y Fy(;)g Fs(p)1414 4965 y Fp(x)1492 4950 y Fy(and)f Fs(p)1731 4965 y Fp(y)1806 4950 y Fy(are)h(homomorphisms)h(since)g(for)f(all)f Fs(x)p Fy(,)i Fs(x)3397 4914 y Fp(k)r Fr(+)p Fp(n)3567 4950 y Fy(=)29 b Fs(x)3727 4914 y Fp(k)3770 4950 y Fs(x)3825 4914 y Fp(n)3873 4950 y Fy(.)0 5066 y(Since)34 b Fs(x)28 b Ft(6)p Fy(=)f Fs(y)t Fy(,)32 b Fs(p)601 5081 y Fp(x)677 5066 y Fy(and)h Fs(p)916 5081 y Fp(y)990 5066 y Fy(are)g(distinct)g (homomorphisms.)0 5185 y(If)g Fs(f)11 b Fy(\()p Fs(x)p Fy(\))28 b(=)h Fs(f)11 b Fy(\()p Fs(y)t Fy(\))32 b(then)h(for)g(all)g (p)s(ositiv)m(e)h(in)m(tegers)h Fs(k)s Fy(,)e Fs(f)11 b Fy(\()p Fs(p)2131 5200 y Fp(x)2174 5185 y Fy(\()p Fs(k)s Fy(\)\))29 b(=)f Fs(f)11 b Fy(\()p Fs(x)2627 5149 y Fp(k)2670 5185 y Fy(\))28 b(=)h Fs(f)11 b Fy(\()p Fs(x)p Fy(\))3031 5149 y Fp(k)3102 5185 y Fy(=)28 b Fs(f)11 b Fy(\()p Fs(y)t Fy(\))3393 5149 y Fp(k)3463 5185 y Fy(=)28 b Fs(f)11 b Fy(\()p Fs(y)3716 5149 y Fp(k)3758 5185 y Fy(\))28 b(=)0 5301 y Fs(f)11 b Fy(\()p Fs(p)146 5316 y Fp(y)187 5301 y Fy(\()p Fs(k)s Fy(\)\))31 b(so)g(that)g Fs(f)e Ft(\016)19 b Fs(p)909 5316 y Fp(x)980 5301 y Fy(=)28 b Fs(f)h Ft(\016)19 b Fs(p)1279 5316 y Fp(y)1351 5301 y Fy(whic)m(h)33 b(w)m(ould)f(mean)f(that)g Fs(f)41 b Fy(is)32 b(not)f(a)f(monomorphism.)44 b(Th)m(us)33 b(w)m(e)0 5417 y(m)m(ust)h(ha)m(v)m(e)g Fs(f)11 b Fy(\()p Fs(x)p Fy(\))27 b Ft(6)p Fy(=)h Fs(f)11 b Fy(\()p Fs(y)t Fy(\))31 b(so)i(that)f Fs(f)43 b Fy(is)34 b(injectiv)m(e.)1916 b Fg(\003)p Black Black eop end %%Page: 52 52 TeXDict begin 52 51 bop Black 0 -99 a Fw(52)1077 b(Represen)n(table)25 b(functors)h(and)g(the)f(Y)-6 b(oneda)25 b(Lemma)p Black 0 100 a Fy(The)i(tric)m(k)h(in)e(the)h(preceding)h(pro)s(of)d(w)m(as)i (to)f(\014nd)h(an)f(ob)5 b(ject)28 b(\()p Fs(N)36 b Fy(here\))27 b(that)f(allo)m(ws)i(one)e(to)g(distinguish)0 217 y(elemen)m(ts)44 b(of)e(the)g(arbitrary)g(monoid)h Fs(M)10 b Fy(.)72 b(In)42 b Fv(Set)p Fy(,)j(the)d(corresp)s(onding)h(ob)5 b(ject)43 b(w)m(as)g(the)f(terminal)0 333 y(ob)5 b(ject,)53 b(but)c(that)f(do)s (es)h(not)f(w)m(ork)h(for)f Fv(Mon)q Fy(:)75 b(eac)m(h)49 b(monoid)g(has)g(exactly)g(one)g(global)f(elemen)m(t)0 449 y(b)s(ecause)34 b(a)e(map)h(from)f(the)h(one-elemen)m(t)i(monoid)d (m)m(ust)i(ha)m(v)m(e)g(the)f(iden)m(tit)m(y)h(elemen)m(t)h(as)e(v)-5 b(alue.)0 565 y(W)d(e)33 b(no)m(w)g(state)g(t)m(w)m(o)g(prop)s (ositions)h(that)e(giv)m(e)h(some)h(elemen)m(tary)g(prop)s(erties)g(of) e(monomorphisms.)p Black 0 742 a(2.5.8.)g Fv(Prop)s(osition.)p Black 42 w Fu(Supp)-5 b(ose)34 b Fs(f)k Fy(:)28 b Fs(A)g Ft(\000)-57 b(!)27 b Fs(B)40 b Fu(and)35 b Fs(g)c Fy(:)c Fs(B)33 b Ft(\000)-57 b(!)27 b Fs(C)42 b Fu(in)35 b(a)f(c)-5 b(ate)g(gory)35 b Ft(C)6 b Fu(.)45 b(Then)p Black 148 880 a Fy(\(1\))p Black 42 w Fu(If)34 b Fs(f)45 b Fu(and)35 b Fs(g)j Fu(ar)-5 b(e)35 b(monomorphisms,)d(so)i(is)h Fs(g)26 b Ft(\016)21 b Fs(f)11 b Fu(.)p Black 148 996 a Fy(\(2\))p Black 42 w Fu(If)34 b Fs(g)25 b Ft(\016)d Fs(f)46 b Fu(is)34 b(a)h(monomorphism,)e(so)h(is)h Fs(f)11 b Fu(.)p Black 0 1172 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(\(1\))36 b(The)i(extension)h(principle)f(and)f(the)g(de\014nition)h (2.5.2)e(of)g(monomorphisms)j(giv)m(e)e(a)g(short)0 1289 y(pro)s(of.)43 b(Using)33 b(Mor)743 1304 y Fq(C)788 1289 y Fy(\()p Fs(T)8 b(;)17 b(g)t Fy(\))k Ft(\016)h Fy(Mor)1293 1304 y Fq(C)1338 1289 y Fy(\()p Fs(T)8 b(;)17 b(f)11 b Fy(\))28 b(=)f(Mor)1889 1304 y Fq(C)1934 1289 y Fy(\()p Fs(T)8 b(;)17 b(g)26 b Ft(\016)c Fs(f)11 b Fy(\))32 b(w)m(e)i(get:)636 1447 y Fs(f)5 b(;)17 b(g)36 b Fy(are)d(monomorphisms)89 b Ft(\()-17 b(\))636 1564 y Fy(Mor)812 1579 y Fq(C)857 1564 y Fy(\()p Fs(T)8 b(;)17 b(f)11 b Fy(\))p Fs(;)17 b Fy(Mor)1321 1579 y Fq(C)1366 1564 y Fy(\()p Fs(T)8 b(;)17 b(g)t Fy(\))31 b(are)i(injectiv)m(e)i(for)d(all)g(ob)5 b(jects)34 b Fs(T)46 b Fy(in)33 b Ft(C)h Fy(=)-17 b Ft(\))636 1680 y Fy(Mor)812 1695 y Fq(C)857 1680 y Fy(\()p Fs(T)8 b(;)17 b(g)26 b Ft(\016)c Fs(f)11 b Fy(\))32 b(is)h(injectiv)m(e)h(for) e(all)h(ob)5 b(jects)34 b Fs(T)46 b Fy(in)33 b Ft(C)61 b(\()-17 b(\))636 1796 y Fs(g)26 b Ft(\016)c Fs(f)43 b Fy(is)33 b(a)f(monomorphism.)0 1958 y(\(2\))g(With)h(the)g(same)h (argumen)m(ts)f(w)m(e)h(get:)846 2117 y Fs(g)26 b Ft(\016)c Fs(f)43 b Fy(is)33 b(a)f(monomorphism)89 b Ft(\()-17 b(\))846 2233 y Fy(Mor)1022 2248 y Fq(C)1067 2233 y Fy(\()p Fs(T)8 b(;)17 b(g)26 b Ft(\016)c Fs(f)11 b Fy(\))32 b(is)h(injectiv)m (e)h(for)f(all)f(ob)5 b(jects)34 b Fs(T)46 b Fy(in)33 b Ft(C)h Fy(=)-17 b Ft(\))846 2349 y Fy(Mor)1022 2364 y Fq(C)1067 2349 y Fy(\()p Fs(T)8 b(;)17 b(f)11 b Fy(\))33 b(is)g(injectiv)m(e)h(for)e(all)h(ob)5 b(jects)33 b Fs(T)47 b Fy(in)33 b Ft(C)61 b(\()-17 b(\))846 2465 y Fs(f)43 b Fy(is)34 b(a)e(monomorphism.)3823 2620 y Fg(\003)p Black 0 2796 a Fy(2.5.9.)i Fv(Prop)s(osition.)p Black 43 w Fu(L)-5 b(et)38 b Fs(m)32 b Fy(:)f Fs(C)39 b Ft(\000)-57 b(!)31 b Fy(0)37 b Fu(b)-5 b(e)37 b(a)f(monomorphism)f(into)i(an)g (initial)f(obje)-5 b(ct.)51 b(Then)36 b Fs(m)h Fu(is)0 2912 y(an)d(isomorphism.)p Black 0 3089 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(Let)26 b Fs(i)i Fy(:)g(0)f Ft(\000)-59 b(!)27 b Fs(C)33 b Fy(b)s(e)26 b(the)g(unique)h(arro)m(w)f(giv)m(en)h (b)m(y)g(de\014nition)g(of)e(initial)h(ob)5 b(ject.)42 b(Then)27 b Fs(m)8 b Ft(\016)g Fs(i)27 b Fy(and)0 3205 y(1)49 3220 y Fr(0)117 3205 y Fy(are)h(b)s(oth)g(arro)m(ws)h(from)f(0)h (to)f(0)g(and)g(so)h(m)m(ust)h(b)s(e)e(the)h(same.)43 b(It)29 b(remains)g(to)f(sho)m(w)i(that)e Fs(i)14 b Ft(\016)g Fs(m)27 b Fy(=)h(1)3814 3220 y Fp(C)3873 3205 y Fy(.)0 3321 y(This)34 b(follo)m(ws)f(from)f(the)h(fact)g(that)f Fs(m)23 b Ft(\016)f Fs(i)g Ft(\016)g Fs(m)28 b Fy(=)f Fs(m)c Ft(\016)f Fy(1)2097 3336 y Fp(C)2188 3321 y Fy(and)33 b(that)f Fs(m)h Fy(is)g(a)g(monomorphism.)254 b Fg(\003)p Black 0 3498 a Fy(2.5.10.)29 b Fv(Remark)34 b Fy(\()p Fv(Prop)s(erties)g(of)g(Cat\).)p Black 39 w Fy(W)-8 b(e)29 b(note)h(some)g(prop)s(erties)h(without)f(pro)s(of.)41 b(The)31 b(initial)0 3614 y(category)d(has)g(no)f(ob)5 b(jects)28 b(and,)h(therefore,)g(no)f(arro)m(ws.)42 b(The)28 b(terminal)g(category)g(has)g(just)f(one)h(ob)5 b(ject)0 3730 y(and)44 b(the)g(iden)m(tit)m(y)i(arro)m(w)e(of)g(that)f(ob)5 b(ject.)79 b(T)-8 b(o)44 b(an)m(y)g(category)g Ft(C)51 b Fy(there)44 b(is)h(just)f(one)g(functor)g(that)0 3846 y(tak)m(es)e(ev)m(ery)h(ob)5 b(ject)41 b(to)g(that)f(single)i(ob)5 b(ject)42 b(and)f(ev)m(ery)h(arro)m(w)f(to)g(that)f(one)h(arro)m(w.)69 b(A)40 b(functor)h(is)0 3962 y(a)k(monomorphism)i(in)e Fv(Cat)h Fy(if)f(and)h(only)g(if)f(it)g(is)h(injectiv)m(e)i(on)d(b)s (oth)g(ob)5 b(jects)47 b(and)e(arro)m(ws.)83 b(The)0 4079 y(corresp)s(onding)33 b(statemen)m(t)i(for)d(epimorphisms)i(is)g (not)e(true.)p Black 0 4255 a(2.5.11.)j Fv(Example.)p Black 44 w Fy(Not)g(all)g(monomorphisms,)j(ho)m(w)m(ev)m(er,)g (coincide)f(with)f(injectiv)m(e)h(maps)f(b)s(et)m(w)m(een)0 4371 y(ob)5 b(jects)32 b(in)f Ft(C)6 b Fy(,)32 b(ev)m(en)g(if)f(there)g (is)g(an)g(underlying)h(\(faithful\))f(functor)g(from)f Ft(C)37 b Fy(to)31 b Fv(Set)p Fy(.)43 b(F)-8 b(or)30 b(an)g(example)0 4487 y(consider)k(the)f(category)g(of)f(divisible)j (ab)s(elian)d(groups.)0 4604 y(An)d(ab)s(elian)f(group)g Fs(G)h Fy(is)f(called)i Fu(divisible)d Fy(if)h Fs(nG)g Fy(=)f Fs(G)h Fy(for)g(eac)m(h)i(natural)e(n)m(um)m(b)s(er)i Fs(n)d Ft(\025)i Fy(1,)g(i.e.)42 b(for)28 b(eac)m(h)0 4720 y Fs(g)j Ft(2)d Fs(G)33 b Fy(and)f Fs(n)h Fy(there)g(is)g(an)g (elemen)m(t)h Fs(g)1456 4684 y Fq(0)1506 4720 y Ft(2)29 b Fs(G)j Fy(with)h Fs(ng)2041 4684 y Fq(0)2092 4720 y Fy(=)27 b Fs(g)t Fy(.)0 4836 y(Consider)36 b(the)e(residue)i(class)f (homomorphism)h Fs(\027)h Fy(:)30 b Fm(Q)h Ft(\000)-59 b(!)30 b Fm(Q)p Fs(=)p Fm(Z)35 b Fy(from)f(rational)f(n)m(um)m(b)s(ers) k(to)c(rational)0 4952 y(n)m(um)m(b)s(ers)48 b(mo)s(dulo)f(in)m (tegers.)86 b(This)47 b(is)g(a)f(monomorphism)i(in)e(the)h(category)g (of)e(divisible)k(ab)s(elian)0 5069 y(groups)35 b(\(with)h(group)f (homomorphisms)i(as)e(morphisms\).)52 b(Let)35 b Fs(f)5 b(;)17 b(g)36 b Fy(:)c Fs(A)g Ft(\000)-60 b(!)32 b Fm(Q)j Fy(b)s(e)g(homomorphisms)0 5185 y(with)h Fs(f)42 b Ft(6)p Fy(=)31 b Fs(g)t Fy(.)50 b(Then)36 b(there)g(is)f Fs(a)d Ft(2)g Fs(A)j Fy(with)h(0)31 b Ft(6)p Fy(=)g Fs(f)11 b Fy(\()p Fs(a)p Fy(\))24 b Ft(\000)g Fs(g)t Fy(\()p Fs(a)p Fy(\))31 b(=)h Fs(r)s(=s)f Ft(2)h Fm(Q)p Fy(.)51 b(Let)35 b Fs(b)d Ft(2)g Fs(A)j Fy(with)g Fs(r)s(b)d Fy(=)g Fs(a)p Fy(.)0 5301 y(Then)i Fs(r)s Fy(\()p Fs(f)11 b Fy(\()p Fs(b)p Fy(\))22 b Ft(\000)h Fs(g)t Fy(\()p Fs(b)p Fy(\)\))28 b(=)h Fs(f)11 b Fy(\()p Fs(a)p Fy(\))22 b Ft(\000)h Fs(g)t Fy(\()p Fs(a)p Fy(\))k(=)i Fs(r)s(=s)p Fy(,)j(hence)j Fs(f)11 b Fy(\()p Fs(a)p Fy(\))22 b Ft(\000)h Fs(g)t Fy(\()p Fs(a)p Fy(\))28 b(=)g(1)p Fs(=s)k Fy(and)i Fs(\027)6 b(f)11 b Fy(\()p Fs(b)p Fy(\))29 b Ft(6)p Fy(=)f Fs(\027)6 b(g)t Fy(\()p Fs(b)p Fy(\).)45 b(This)0 5417 y(implies)34 b Fs(\027)6 b(f)39 b Ft(6)p Fy(=)28 b Fs(\027)6 b(g)36 b Fy(hence)e Fs(\027)39 b Fy(is)33 b(a)f(monomorphism.)p Black Black eop end %%Page: 53 53 TeXDict begin 53 52 bop Black 1355 -99 a Fw(Monomorphisms)27 b(and)e(epimorphisms)1279 b(53)p Black 0 100 a Fy(F)-8 b(or)32 b(the)h(dual)g(notion)f(of)g(epimorphisms)j(w)m(e)f(ha)m(v)m(e) g(similar)f(prop)s(erties.)p Black 0 285 a(2.5.12.)c Fv(Prop)s(osition.)p Black 39 w Fu(A)j(set)g(function)f(is)h(an)f (epimorphism)f(in)i Fv(Set)g Fu(if)f(and)h(only)f(if)h(it)g(is)f(surje) -5 b(ctive.)p Black 0 469 a(Pr)g(o)g(of.)p Black 41 w Fy(Supp)s(ose)34 b Fs(f)k Fy(:)28 b Fs(S)33 b Ft(\000)-59 b(!)27 b Fs(T)46 b Fy(is)33 b(surjectiv)m(e,)i(and)d Fs(g)t(;)17 b(h)27 b Fy(:)h Fs(T)41 b Ft(\000)-59 b(!)27 b Fs(X)40 b Fy(are)32 b(t)m(w)m(o)h(functions.)45 b(If)32 b Fs(g)f Ft(6)p Fy(=)d Fs(h)p Fy(,)k(then)0 585 y(there)k(is)f(some)h (particular)f(elemen)m(t)i Fs(t)32 b Ft(2)h Fs(T)48 b Fy(for)35 b(whic)m(h)h Fs(g)t Fy(\()p Fs(t)p Fy(\))c Ft(6)p Fy(=)f Fs(h)p Fy(\()p Fs(t)p Fy(\).)51 b(Since)36 b Fs(f)46 b Fy(is)36 b(surjectiv)m(e,)i(there)d(is)0 702 y(an)d(elemen)m(t)j Fs(s)28 b Ft(2)g Fs(S)38 b Fy(for)32 b(whic)m(h)i Fs(f)11 b Fy(\()p Fs(s)p Fy(\))27 b(=)h Fs(t)p Fy(.)43 b(Then)34 b Fs(g)t Fy(\()p Fs(f)11 b Fy(\()p Fs(s)p Fy(\)\))27 b Ft(6)p Fy(=)g Fs(h)p Fy(\()p Fs(f)11 b Fy(\()p Fs(s)p Fy(\)\),)32 b(so)h(that)f Fs(g)26 b Ft(\016)c Fs(f)38 b Ft(6)p Fy(=)28 b Fs(h)22 b Ft(\016)g Fs(f)11 b Fy(.)0 818 y(Con)m(v)m(ersely)-8 b(,)32 b(supp)s(ose)d Fs(f)39 b Fy(is)29 b(not)f(surjectiv)m(e.)44 b(Then)29 b(there)g(is)f(some)h Fs(t)f Ft(2)g Fs(T)42 b Fy(for)28 b(whic)m(h)h(there)g(is)g(no)e Fs(s)h Ft(2)g Fs(S)0 934 y Fy(suc)m(h)34 b(that)e Fs(f)11 b Fy(\()p Fs(s)p Fy(\))28 b(=)f Fs(t)p Fy(.)44 b(No)m(w)33 b(de\014ne)h(t)m(w)m(o)f(functions)h Fs(g)d Fy(:)c Fs(T)42 b Ft(\000)-60 b(!)27 b(f)p Fy(0)p Fs(;)17 b Fy(1)p Ft(g)32 b Fy(and)h Fs(h)27 b Fy(:)h Fs(T)42 b Ft(\000)-60 b(!)27 b(f)p Fy(0)p Fs(;)17 b Fy(1)p Ft(g)32 b Fy(as)g(follo)m(ws:)p Black 170 1080 a(\(i\))p Black 42 w Fs(g)t Fy(\()p Fs(x)p Fy(\))27 b(=)g Fs(h)p Fy(\()p Fs(x)p Fy(\))i(=)e(0)32 b(for)g(all)h Fs(x)g Fy(in)g Fs(T)46 b Fy(except)34 b Fs(t)p Fy(.)p Black 143 1196 a(\(ii\))p Black 42 w Fs(g)t Fy(\()p Fs(t)p Fy(\))27 b(=)g(0.)p Black 116 1312 a(\(iii\))p Black 42 w Fs(h)p Fy(\()p Fs(t)p Fy(\))g(=)h(1.)0 1457 y(Then)34 b Fs(g)d Ft(6)p Fy(=)c Fs(h)33 b Fy(but)g Fs(g)25 b Ft(\016)d Fs(f)39 b Fy(=)27 b Fs(h)22 b Ft(\016)g Fs(f)11 b Fy(,)33 b(so)f Fs(f)44 b Fy(is)33 b(not)f(an)h(epimorphism.)1325 b Fg(\003)3991 1548 y Fy(04.06.04)p Black 0 1713 a(2.5.13.)32 b Fv(Prop)s(osition.)p Black 42 w Fu(L)-5 b(et)35 b Fs(f)j Fy(:)28 b Fs(A)g Ft(\000)-57 b(!)27 b Fs(B)40 b Fu(and)34 b Fs(g)d Fy(:)d Fs(B)33 b Ft(\000)-57 b(!)27 b Fs(C)7 b Fu(.)45 b(Then)p Black 148 1859 a Fy(\(1\))p Black 42 w Fu(If)34 b Fs(f)45 b Fu(and)35 b Fs(g)j Fu(ar)-5 b(e)35 b(epimorphisms,)d(so)j(is)f Fs(g)26 b Ft(\016)c Fs(f)11 b Fu(.)p Black 148 1975 a Fy(\(2\))p Black 42 w Fu(If)34 b Fs(g)25 b Ft(\016)d Fs(f)46 b Fu(is)34 b(an)h (epimorphism,)e(so)h(is)h Fs(g)t Fu(.)p Black 0 2159 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(This)34 b(is)f(the)g(dual)g(of)f (Prop)s(osition)h(2.5.8.)1955 b Fg(\003)p Black 0 2344 a Fy(2.5.14.)39 b Fv(Remark.)p Black 46 w Fy(In)i Fv(Set)f Fy(an)f(arro)m(w)i(that)e(is)i(b)s(oth)f(monic)g(and)g(epic)h(is)g (bijectiv)m(e,)j(and)c(hence)h(an)0 2460 y(isomorphism.)54 b(In)35 b(general,)i(this)f(need)g(not)g(happ)s(en.)52 b(One)36 b(example)h(is)f(the)g(inclusion)h(of)d Fm(Z)i Fy(in)g Fm(Q)g Fy(in)0 2576 y(Ri)f(describ)s(ed)i(in)f Fv(??)f Fy(\(an)g(in)m(v)m(erse)j(w)m(ould)e(also)g(ha)m(v)m(e)h(to)e (b)s(e)g(an)g(in)m(v)m(erse)j(in)e Fv(Set)p Fy(,)g(but)f(there)i(isn't) f(one)0 2693 y(since)e(the)f(inclusion)h(is)f(not)g(bijectiv)m(e\).)0 2809 y(An)g(easier)g(example)h(is)g(the)f(arro)m(w)f(in)1715 3093 y Fs(C)317 b(D)p 1821 3061 253 4 v 1991 3059 a Fo(-)1685 3010 y Fn(\016\015)1685 2878 y(\017\014)p 1754 3007 1 4 v 1672 3005 a Fo(-)2075 3010 y Fn(\016\015)2075 2878 y(\017\014)p 2144 3007 V 2061 3005 a Fo(-)0 3213 y Fy(from)35 b Fs(C)42 b Fy(to)35 b Fs(D)s Fy(.)51 b(It)35 b(is)h(b)s(oth)e(monic)i (and)f(epic)i(\(v)-5 b(acuously\))36 b(but)f(there)h(is)g(no)f(arro)m (w)g(from)g Fs(D)j Fy(to)d Fs(C)42 b Fy(so)0 3329 y(it)31 b(is)h(not)f(an)g(isomorphism)h(b)s(ecause)h(there)f(is)f(no)g(arro)m (w)h(in)f(the)g(category)h(that)f(could)h(b)s(e)f(its)g(in)m(v)m(erse.) 0 3514 y(If)e(w)m(e)h(try)f(to)g(generalize)h(the)g(notion)e(of)h(a)g (surjectiv)m(e)i(map)e(according)h(to)e(the)i(extension)g(principle)h (w)m(e)0 3630 y(obtain)h(the)h(notion)g(of)f(a)g(split)i(epimorphism.) 45 b(W)-8 b(e)33 b(\014rst)g(in)m(tro)s(duce)h(this)f(notion.)0 3746 y(An)h(arro)m(w)f Fs(f)40 b Fy(:)29 b Fs(A)g Ft(\000)-60 b(!)29 b Fs(B)38 b Fy(in)33 b(a)g(category)h(is)g(an)f(isomorphism)i (if)e(it)g(has)h(an)f(in)m(v)m(erse)j Fs(g)c Fy(:)d Fs(B)34 b Ft(\000)-59 b(!)28 b Fs(A)33 b Fy(whic)m(h)0 3863 y(m)m(ust)39 b(satisfy)f(b)s(oth)g(the)g(equations)h Fs(g)28 b Ft(\016)e Fs(f)47 b Fy(=)36 b(1)1814 3878 y Fp(A)1908 3863 y Fy(and)i Fs(f)e Ft(\016)26 b Fs(g)39 b Fy(=)d(1)2510 3878 y Fp(B)2571 3863 y Fy(.)58 b(If)38 b(it)f(only)h(satis\014es)i(the)e(second)0 3979 y(equation,)k Fs(f)c Ft(\016)27 b Fs(g)43 b Fy(=)d(1)852 3994 y Fp(B)913 3979 y Fy(,)h(then)g Fs(f)50 b Fy(is)40 b(a)g Fu(left)h(inverse)e Fy(of)h Fs(g)j Fy(and)c(\(as)h(y)m(ou)h(migh) m(t)f(exp)s(ect\))h Fs(g)i Fy(is)d(a)g Fu(right)0 4095 y(inverse)32 b Fy(of)g Fs(f)11 b Fy(.)p Black 0 4280 a(2.5.15.)36 b Fv(De\014nition.)p Black 44 w Fy(Supp)s(ose)i Fs(f)47 b Fy(has)37 b(a)g(righ)m(t)f(in)m(v)m(erse)k Fs(g)t Fy(.)54 b(Then)38 b Fs(f)47 b Fy(is)38 b(called)f(a)f Fu(split)j(epimorphism)0 4396 y Fy(\()p Fs(f)k Fy(is)33 b Fu(split)i(by)e Fs(g)t Fy(\))e(and)i Fs(g)j Fy(is)d(called)g(a)g Fu(split)h(monomorphism)p Fy(.)p Black 0 4580 a(2.5.16.)e Fv(Lemma.)p Black 43 w Fu(Every)j(surje)-5 b(ction)35 b(in)f Fv(Set)h Fu(is)g(a)g(split)f(epimorphism.)p Black 0 4765 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(If)34 b Fs(f)42 b Fy(:)30 b Fs(A)h Ft(\000)-60 b(!)30 b Fs(B)5 b Fy(,)35 b(then)g(c)m(ho)s(ose,)h(for)d(eac)m(h)i Fs(b)c Ft(2)g Fs(B)5 b Fy(,)35 b(some)g(elemen)m(t)h Fs(a)31 b Ft(2)g Fs(A)j Fy(suc)m(h)i(that)e Fs(f)11 b Fy(\()p Fs(a)p Fy(\))30 b(=)g Fs(b)p Fy(.)0 4881 y(The)e(existence)i(of)d(suc)m(h)i(an)e Fs(a)g Fy(is)h(guaran)m(teed)g(b)m(y)h(surjectivit)m(y)-8 b(.)44 b(De\014ne)27 b Fs(g)t Fy(\()p Fs(b)p Fy(\))g(to)g(b)s(e)h Fs(a)p Fy(.)42 b(Then)28 b Fs(f)11 b Fy(\()p Fs(g)t Fy(\()p Fs(b)p Fy(\)\))27 b(=)0 4997 y Fs(f)11 b Fy(\()p Fs(a)p Fy(\))27 b(=)h Fs(b)33 b Fy(for)f(an)m(y)h Fs(b)28 b Ft(2)h Fs(B)5 b Fy(,)32 b(so)h Fs(f)g Ft(\016)22 b Fs(g)31 b Fy(=)c(1)1529 5012 y Fp(B)1590 4997 y Fy(.)2206 b Fg(\003)0 5185 y Fy(The)27 b(so-called)f(axiom)g(of)g(c)m(hoice)h(is)f(exactly)h (what)f(is)h(required)g(to)e(mak)m(e)i(all)f(those)h(generally)f (in\014nitely)0 5301 y(man)m(y)34 b(c)m(hoices.)0 5417 y(And)27 b(in)g(fact,)h(one)f(p)s(ossible)h(form)m(ulation)f(of)f(the)h (axiom)g(of)g(c)m(hoice)h(is)f(that)f(ev)m(ery)j(epimorphism)g(splits.) p Black Black eop end %%Page: 54 54 TeXDict begin 54 53 bop Black 0 -99 a Fw(54)1077 b(Represen)n(table)25 b(functors)h(and)g(the)f(Y)-6 b(oneda)25 b(Lemma)p Black Black 0 100 a Fy(2.5.17.)32 b Fv(Prop)s(osition.)p Black 42 w Fu(A)j(morphism)f Fs(f)k Fy(:)28 b Fs(A)g Ft(\000)-58 b(!)28 b Fs(B)40 b Fu(in)34 b Ft(C)41 b Fu(is)35 b(a)g(split)f (epimorphism)g(if)g(and)g(only)h(if)1097 263 y Fy(Mor)1274 278 y Fq(C)1319 263 y Fy(\()p Fs(C)r(;)17 b(f)11 b Fy(\))26 b(:)i(Mor)1827 278 y Fq(C)1872 263 y Fy(\()p Fs(C)r(;)17 b(A)p Fy(\))27 b Ft(\000)-57 b(!)27 b Fy(Mor)2487 278 y Fq(C)2532 263 y Fy(\()p Fs(C)r(;)17 b(B)5 b Fy(\))0 426 y Fu(is)35 b(surje)-5 b(ctive)34 b(for)h(al)5 b(l)34 b(obje)-5 b(cts)35 b Fs(C)42 b Fu(in)34 b Ft(C)6 b Fu(.)p Black 0 603 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(Let)35 b Fs(f)45 b Fy(ha)m(v)m(e)36 b(the)f(splitting)g Fs(g)f Fy(:)d Fs(B)36 b Ft(\000)-60 b(!)31 b Fs(A)p Fy(.)49 b(Let)35 b Fs(h)c Ft(2)g Fy(Mor)2435 618 y Fq(C)2480 603 y Fy(\()p Fs(C)r(;)17 b(B)5 b Fy(\).)49 b(Then)35 b Fs(g)27 b Ft(\016)c Fs(h)31 b Ft(2)h Fy(Mor)3591 618 y Fq(C)3636 603 y Fy(\()p Fs(C)r(;)17 b(A)p Fy(\))0 720 y(and)33 b Fs(f)g Ft(\016)21 b Fy(\()p Fs(g)26 b Ft(\016)c Fs(h)p Fy(\))28 b(=)f(\()p Fs(f)33 b Ft(\016)22 b Fs(g)t Fy(\))f Ft(\016)h Fs(h)28 b Fy(=)g Fs(h)k Fy(so)h(that)f(Mor)1906 735 y Fq(C)1952 720 y Fy(\()p Fs(C)r(;)17 b(f)11 b Fy(\))31 b(is)i(surjectiv)m(e.)0 836 y(Con)m(v)m(ersely)c(assume)e(that)e(all)g (Mor)1325 851 y Fq(C)1370 836 y Fy(\()p Fs(C)r(;)17 b(f)11 b Fy(\))25 b(are)g(surjectiv)m(e.)44 b(Cho)s(ose)26 b Fs(C)34 b Fy(=)28 b Fs(B)j Fy(and)25 b(let)h Fs(g)31 b Ft(2)d Fy(Mor)3583 851 y Fq(C)3628 836 y Fy(\()p Fs(B)5 b(;)17 b(A)p Fy(\))0 952 y(with)34 b(Mor)399 967 y Fq(C)444 952 y Fy(\()p Fs(B)5 b(;)17 b(f)11 b Fy(\)\()p Fs(g)t Fy(\))27 b(=)i(1)1010 967 y Fp(B)1099 952 y Ft(2)h Fy(Mor)1371 967 y Fq(C)1416 952 y Fy(\()p Fs(B)5 b(;)17 b(B)5 b Fy(\).)45 b(Then)35 b Fs(f)e Ft(\016)22 b Fs(g)32 b Fy(=)d(1)2408 967 y Fp(B)2502 952 y Fy(so)k(that)g Fs(f)44 b Fy(is)34 b(a)f(split)h(epimorphism.)3823 1068 y Fg(\003)0 1241 y Fy(So)46 b(w)m(e)h(ha)m(v)m(e)g(c)m(hec)m(k)m(ed)i(all)d(items)h(for) f(the)g(extension)i(principle)f(and)f(a)g Fu(split)h(epimorphism)d Fy(is)j(the)0 1358 y(co)m(v)-5 b(arian)m(t)33 b(extension)h(of)e(the)h (notion)g(of)f(surjectiv)m(e)j(map)e(in)f Fv(Set)p Fy(.)0 1474 y(Epimorphisms)c(in)d(other)h(categories)g(ma)m(y)g(not)g(b)s(e)f (split.)42 b(The)26 b(function)g(that)g(includes)h(the)f(monoid)f(of)0 1590 y(non-negativ)m(e)30 b(in)m(tegers)h(\()p Fm(N)p Fs(;)17 b Fy(+\))29 b(on)h(addition)g(in)f(the)h(monoid)g(of)f(all)h (the)g(in)m(tegers)h(\()p Fm(Z)p Fs(;)17 b Fy(+\))29 b(on)h(addition)0 1706 y(certainly)36 b(do)s(es)f(not)f(ha)m(v)m(e)i(a) f(righ)m(t)g(in)m(v)m(erse)i(in)e(the)g(category)g(of)f(monoids,)i (since)g(it)f(do)s(es)g(not)f(ha)m(v)m(e)i(a)0 1823 y(righ)m(t)23 b(in)m(v)m(erse)i(in)f(the)f(category)g(of)g(sets.)41 b(There)24 b(are)f(plen)m(t)m(y)i(of)d(examples)j(of)e(epimorphisms)i (of)d(monoids)0 1939 y(whic)m(h)44 b(are)e(surjectiv)m(e)j(whic)m(h)f (ha)m(v)m(e)g(no)e(righ)m(t)g(in)m(v)m(erse)j(in)e(the)g(category)g(of) e(monoids,)46 b(although)c(of)0 2055 y(course)e(they)g(do)g(in)f(the)h (category)f(of)g(sets.)65 b(One)39 b(suc)m(h)i(epimorphism)g(of)e (monoids)h(is)g(the)f(function)0 2171 y(that)c(tak)m(es)i(the)f(in)m (tegers)g(mo)s(d)f(4)h(on)f(addition)g(to)g(the)h(in)m(tegers)h(mo)s(d) e(2)g(on)g(addition,)i(with)f(0)f(and)g(2)0 2287 y(going)d(to)g(0)h (and)f(1)h(and)f(3)h(going)f(to)g(1.)0 2404 y(Unlik)m(e)40 b(epis,)h(whic)m(h)f(alw)m(a)m(ys)g(split)f(in)g(the)g(category)g(of)f (sets,)j(monics)e(in)g Fv(Set)f Fy(do)h(not)f(alw)m(a)m(ys)i(split.)0 2520 y(Ev)m(ery)i(arro)m(w)d(out)h(of)f(the)h(empt)m(y)i(set)e(is)g (monic)h(and,)g(sa)m(v)m(e)h(for)d(the)h(iden)m(tit)m(y)h(of)f Ft(;)f Fy(to)h(itself,)i(is)e(not)0 2636 y(split.)j(On)28 b(the)g(other)g(hand,)i(ev)m(ery)f(monic)g(with)g(nonempt)m(y)g(source) g(do)s(es)g(split.)43 b(W)-8 b(e)28 b(lea)m(v)m(e)i(the)e(details)0 2752 y(to)k(the)h(reader.)0 2938 y(2.6.)49 b Fv(Sub)s(ob)6 b(jects.)0 3055 y Fy(The)30 b(concept)h(of)d(sub)s(ob)5 b(ject)31 b(is)f(in)m(tended)h(to)e(generalize)h(the)g(concept)h(of)d (subset)j(of)e(a)g(set,)i(submonoid)0 3171 y(of)k(a)h(monoid,)h(sub)s (category)g(of)e(a)h(category)-8 b(,)37 b(and)f(so)g(on.)53 b(This)38 b(idea)e(cannot)g(b)s(e)g(translated)h(exactly)0 3287 y(in)m(to)i(categorical)g(terms,)j(since)e(the)g(usual)f(concept)i (of)d(subset)j(violates)e(the)h(strict)g(t)m(yping)f(rules)h(of)0 3403 y(category)28 b(theory:)41 b(to)28 b(go)f(from)g(a)g(subset)i(to)e (a)h(set)g(requires)h(a)e(c)m(hange)i(of)e(t)m(yp)s(e,)i(so)f(there)g (is)g(no)g(feasible)0 3519 y(w)m(a)m(y)42 b(to)e(sa)m(y)h(that)g(the)g (same)g(elemen)m(t)i Fs(x)d Fy(is)i(in)e(b)s(oth)h(a)f(set)h(and)g(a)f (subset)i(of)e(the)h(set.)68 b(Because)42 b(of)0 3636 y(this,)32 b(an)m(y)f(categorical)f(de\014nition)h(of)f(sub)s(ob)5 b(ject)32 b(will)f(not)f(giv)m(e)h(exactly)h(the)f(concept)g(of)f (subset)i(when)0 3752 y(applied)f(to)f(the)h(category)g(of)e(sets.)44 b(Ho)m(w)m(ev)m(er,)34 b(the)c(usual)h(de\014nition)h(of)e(sub)s(ob)5 b(ject)31 b(pro)s(duces,)h(in)f Fv(Set)p Fy(,)0 3868 y(a)e(concept)g(that)g(is)g(naturally)h(equiv)-5 b(alen)m(t)30 b(to)f(the)g(concept)h(of)e(subset.)44 b(The)30 b(de\014nition,)g(when) g(applied)0 3984 y(to)i(sets,)i(de\014nes)g(subset)h(in)d(terms)i(of)e (the)h(inclusion)h(function.)0 4101 y(W)-8 b(e)35 b(need)h(a)e (preliminary)i(idea.)50 b(Let)34 b Ft(C)6 b Fs(=C)42 b Fy(b)s(e)34 b(a)h(comma)g(category)-8 b(.)49 b(W)-8 b(e)35 b(call)g(an)g(ob)5 b(ject)35 b Fs(f)42 b Fy(:)31 b Fs(A)g Ft(\000)-60 b(!)31 b Fs(C)0 4217 y Fu(monic)h Fy(if)g Fs(f)43 b Fy(is)33 b(a)g(monomorphism)g(in)g Ft(C)6 b Fy(.)p Black 0 4395 a(2.6.1.)36 b Fv(Prop)s(osition.)p Black 44 w Fu(If)i Fs(f)45 b Fy(:)35 b Fs(A)f Ft(\000)-57 b(!)35 b Fs(C)45 b Fu(and)38 b Fs(f)1797 4358 y Fq(0)1855 4395 y Fy(:)c Fs(A)1989 4358 y Fq(0)2047 4395 y Ft(\000)-57 b(!)34 b Fs(C)46 b Fu(ar)-5 b(e)38 b(monic,)g(then)h(ther)-5 b(e)38 b(is)h(at)f(most)h(one)0 4511 y(morphism)34 b Fs(g)d Fy(:)c(\()p Fs(A;)17 b(f)11 b Fy(\))27 b Ft(\000)-57 b(!)28 b Fy(\()p Fs(A)1125 4475 y Fq(0)1148 4511 y Fs(;)17 b(f)1251 4475 y Fq(0)1274 4511 y Fy(\))34 b Fu(in)h Ft(C)6 b Fs(=C)h Fu(.)p Black 0 4688 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(Giv)m(en)48 b Fs(g)t(;)17 b(g)741 4652 y Fq(0)816 4688 y Fy(:)53 b(\()p Fs(A;)17 b(f)11 b Fy(\))52 b Ft(\000)-60 b(!)53 b Fy(\()p Fs(A)1481 4652 y Fq(0)1504 4688 y Fs(;)17 b(f)1607 4652 y Fq(0)1630 4688 y Fy(\).)88 b(Then)48 b Fs(f)2111 4652 y Fq(0)2167 4688 y Ft(\016)32 b Fs(g)56 b Fy(=)c Fs(f)64 b Fy(=)53 b Fs(f)2780 4652 y Fq(0)2835 4688 y Ft(\016)32 b Fs(g)2968 4652 y Fq(0)3038 4688 y Fy(in)47 b Ft(C)6 b Fy(.)89 b(Since)48 b Fs(f)3668 4652 y Fq(0)3738 4688 y Fy(is)g(a)0 4805 y(monomorphism)34 b(in)f Ft(C)38 b Fy(w)m(e)c(get)f Fs(g)e Fy(=)c Fs(g)1432 4768 y Fq(0)1455 4805 y Fy(.)2341 b Fg(\003)p Black 0 4982 a Fy(2.6.2.)39 b Fv(Corollary)-9 b(.)p Black 45 w Fu(If)40 b(ther)-5 b(e)41 b(ar)-5 b(e)41 b(morphisms)e Fs(g)k Fy(:)c(\()p Fs(A;)17 b(f)11 b Fy(\))38 b Ft(\000)-57 b(!)39 b Fy(\()p Fs(A)2539 4946 y Fq(0)2562 4982 y Fs(;)17 b(f)2665 4946 y Fq(0)2688 4982 y Fy(\))41 b Fu(and)f Fs(h)f Fy(:)g(\()p Fs(A)3234 4946 y Fq(0)3258 4982 y Fs(;)17 b(f)3361 4946 y Fq(0)3383 4982 y Fy(\))39 b Ft(\000)-57 b(!)39 b Fy(\()p Fs(A;)17 b(f)11 b Fy(\))p Fu(,)0 5099 y(then)35 b Fs(g)j Fu(is)c(an)h(isomorphism)e(and)h Fs(h)28 b Fy(=)g Fs(g)1548 5062 y Fq(\000)p Fr(1)1641 5099 y Fu(.)p Black 0 5276 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(By)39 b(the)f(prop)s(osition)g(w)m(e)h(ha)m(v)m(e)g Fs(h)26 b Ft(\016)f Fs(g)40 b Fy(=)d(1)1933 5291 y Fp(A)2026 5276 y Fy(:)g(\()p Fs(A;)17 b(f)11 b Fy(\))36 b Ft(\000)-59 b(!)36 b Fy(\()p Fs(A;)17 b(f)11 b Fy(\))37 b(and)h Fs(g)29 b Ft(\016)d Fs(h)37 b Fy(=)f(1)3422 5291 y Fp(A)3475 5272 y Fl(0)3538 5276 y Fy(:)h(\()p Fs(A)3713 5240 y Fq(0)3736 5276 y Fs(;)17 b(f)3839 5240 y Fq(0)3862 5276 y Fy(\))0 5392 y Ft(\000)-60 b(!)28 b Fy(\()p Fs(A)256 5356 y Fq(0)279 5392 y Fs(;)17 b(f)382 5356 y Fq(0)405 5392 y Fy(\))32 b(so)h(that)f Fs(g)k Fy(and)d Fs(h)g Fy(are)f(m)m(utually)i(in)m(v)m(erse)h(morphisms.)1271 b Fg(\003)p Black Black eop end %%Page: 55 55 TeXDict begin 55 54 bop Black 1799 -99 a Fw(Pro)r(ducts)1722 b(55)p Black Black 0 100 a Fy(2.6.3.)32 b Fv(Remark.)p Black 42 w Fy(Isomorphisms)j(b)s(et)m(w)m(een)g(ob)5 b(jects)34 b(\()p Fs(A;)17 b(f)11 b Fy(\))31 b(in)i Ft(C)39 b Fy(de\014ne)34 b(an)e(equiv)-5 b(alence)35 b(relation.)0 228 y(The)43 b(equiv)-5 b(alence)45 b(classes)f(are)e(partially)g (ordered)h(b)m(y)p 2136 141 252 4 v 43 w(\()p Fs(A;)17 b(f)11 b Fy(\))44 b Ft(\024)p 2553 141 299 4 v 44 w Fy(\()p Fs(A)2664 199 y Fq(0)2687 228 y Fs(;)17 b(f)2790 199 y Fq(0)2813 228 y Fy(\))42 b(i\013)g(there)h(is)g(a)f(morphism)0 344 y Fs(g)31 b Fy(:)d(\()p Fs(A;)17 b(f)11 b Fy(\))27 b Ft(\000)-60 b(!)28 b Fy(\()p Fs(A)668 308 y Fq(0)691 344 y Fs(;)17 b(f)794 308 y Fq(0)817 344 y Fy(\).)p Black 0 520 a(2.6.4.)35 b Fv(De\014nition.)p Black 44 w Fy(In)h(a)f(category) h Ft(C)6 b Fy(,)36 b(a)g Fu(sub)-5 b(obje)g(ct)35 b Fy(of)g(an)g(ob)5 b(ject)36 b Fs(C)43 b Fy(is)36 b(an)f(equiv)-5 b(alence)38 b(or)d(isomor-)0 636 y(phism)42 b(class)h(of)d(monics)j(in)e Ft(C)6 b Fs(=C)h Fy(.)69 b(The)42 b(sub)s(ob)5 b(ject)43 b(is)f(a)f Fu(pr)-5 b(op)g(er)42 b(sub)-5 b(obje)g(ct)41 b Fy(if)g(it)g(do)s(es)g(not)g(con)m(tain)0 752 y(1)49 767 y Fp(C)136 752 y Fy(:)27 b Fs(C)35 b Ft(\000)-60 b(!)28 b Fs(C)7 b Fy(.)0 928 y(Observ)m(e)25 b(that)f(it)f(follo)m(ws)h (immediately)i(from)d(Prop)s(osition)h(2.5.9)f(that)g(an)h(initial)f (ob)5 b(ject)25 b(in)e(a)h(category)0 1044 y(has)33 b(no)f(prop)s(er)h (sub)s(ob)5 b(jects.)p Black 0 1219 a(2.6.5.)40 b Fv(Remark.)p Black 46 w Fy(Let)g Fs(\013)h Fy(:)g Fs(F)55 b Ft(\000)-60 b(!)40 b Fs(G)g Fy(b)s(e)h(a)f(natural)g(transformation)g(b)s(et)m(w)m (een)i(mo)s(dels)f(of)f Ft(G)46 b Fy(in)40 b Ft(D)s Fy(.)0 1335 y(Supp)s(ose)c(eac)m(h)f(comp)s(onen)m(t)h(of)e Fs(\013)h Fy(is)h(a)e(monomorphism)i(in)f Ft(D)s Fy(.)49 b(Then)36 b(it)f(is)g(easy)g(to)g(pro)m(v)m(e)h(that)e Fs(\013)h Fy(is)0 1452 y(a)d(monomorphism)i(in)f Fv(Mo)s(d)q Fy(\()p Ft(G)6 b Fs(;)17 b Ft(D)s Fy(\).)42 b(The)34 b(con)m(v)m(erse)h(is)e(not)g(true.)0 1689 y(2.7.)49 b Fv(Pro)s(ducts.)0 1805 y Fy(Another)23 b(application)g(of)g(the)g (extension)i(principle)f(relates)g(to)e(pro)s(ducts.)41 b(W)-8 b(e)23 b(\014rst)g(de\014ne)h(the)g(pro)s(duct)0 1921 y(of)32 b(t)m(w)m(o)h(sets.)p Black 0 2096 a(2.7.1.)d Fv(De\014nition.)p Black 40 w Fy(If)g Fs(A)g Fy(and)g Fs(B)35 b Fy(are)30 b(sets,)i(the)f Fu(Cartesian)g(pr)-5 b(o)g(duct)30 b Fs(A)17 b Ft(\002)h Fs(B)35 b Fy(is)c(the)f(set)h(of)e (all)h(ordered)0 2213 y(pairs)j(with)g(\014rst)g(co)s(ordinate)g(in)g Fs(A)f Fy(and)h(second)h(co)s(ordinate)e(in)h Fs(B)5 b Fy(;)33 b(in)g(other)g(w)m(ords,)1209 2371 y Fs(A)22 b Ft(\002)h Fs(B)32 b Fy(=)c Ft(f)p Fy(\()p Fs(a;)17 b(b)p Fy(\))p Ft(j)p Fs(a)28 b Ft(2)g Fs(A)k Fy(and)h Fs(b)28 b Ft(2)g Fs(B)5 b Ft(g)p Fs(:)0 2530 y Fy(The)35 b(co)s(ordinates)f(de\014ne)h(functions)f Fs(p)1474 2545 y Fp(A)1561 2530 y Fy(=)29 b(pro)5 b(j)1842 2554 y Fr(1)1911 2530 y Fy(:)30 b Fs(A)23 b Ft(\002)g Fs(B)35 b Ft(\000)-60 b(!)30 b Fs(A)j Fy(and)h(pro)5 b(j)2893 2554 y Fr(2)2962 2530 y Fy(=)30 b(pro)5 b(j)3244 2554 y Fr(2)3313 2530 y Fy(:)29 b Fs(A)23 b Ft(\002)h Fs(B)34 b Ft(\000)-59 b(!)29 b Fs(B)0 2646 y Fy(called)k(the)g Fu(c)-5 b(o)g(or)g(dinate)34 b(functions)p Fy(,)f(or)f(the)h Fu(pr)-5 b(oje)g(ctions)p Fy(.)0 2822 y(No)m(w)39 b(this)g(de\014nition)h(do)s(es)f(not)f (satisfy)h(the)g(\014rst)g(prop)s(ert)m(y)g(for)f(the)h(extension)h (principle,)i(a)c(set)h Fs(X)0 2938 y Fy(isomorphic)26 b(to)e Fs(A)5 b Ft(\002)g Fs(B)30 b Fy(will)c(in)e(general)h(not)f (consist)i(of)e(pairs)h(of)e(elemen)m(ts.)44 b(So)24 b(the)h(sets)g Ft(f)p Fy(0)p Fs(;)17 b Fy(1)p Fs(;)g Fy(2)p Fs(;)g Fy(3)p Fs(;)g Fy(4)p Fs(;)g Fy(5)p Ft(g)0 3054 y Fy(and)30 b Ft(f)p Fy(0)p Fs(;)17 b Fy(1)p Fs(;)g Ft(g)f(\002)g(f)p Fy(0)p Fs(;)h Fy(1)p Fs(;)g Fy(2)p Ft(g)27 b Fy(are)j(clearly)h(isomorphic,)g(b)s(ecause)g(b)s(oth)f(ha)m (v)m(e)h(6)e(elemen)m(ts,)k(but)d(the)g(\014rst)g(set)0 3170 y(do)s(es)39 b(not)f(consist)i(of)e(pairs.)62 b(So)39 b(here)g(w)m(e)h(ha)m(v)m(e)g(a)e(set)h(theoretic)h(de\014nition)f (that)g(refers)g(to)f(sp)s(eci\014c)0 3287 y(prop)s(erties)33 b(of)g(the)g(elemen)m(ts.)0 3403 y(All)e(the)g(more)h(it)f(is)g(in)m (teresting)h(to)f(\014nd)g(out)g(that)g(there)g(is)h(an)f(example)h (for)e(the)i(extension)g(principle)0 3519 y(hidden)i(b)s(ehind)f(their) g(concept.)p Black 0 3694 a(2.7.2.)47 b Fv(Prop)s(osition.)p Black 49 w Fu(L)-5 b(et)49 b Fs(A)p Fu(,)i Fs(B)i Fu(b)-5 b(e)48 b(sets.)85 b(The)48 b(Cartesian)f(pr)-5 b(o)g(duct)49 b Fs(A)32 b Ft(\002)g Fs(B)54 b Fu(to)-5 b(gether)48 b(with)g(the)0 3811 y(pr)-5 b(oje)g(ctions)41 b Fy(pro)5 b(j)675 3834 y Fr(1)756 3811 y Fy(:)41 b Fs(A)28 b Ft(\002)g Fs(B)46 b Ft(\000)-57 b(!)40 b Fs(A)j Fu(and)e Fy(pro)5 b(j)1798 3834 y Fr(2)1879 3811 y Fy(:)41 b Fs(A)27 b Ft(\002)h Fs(B)47 b Ft(\000)-57 b(!)40 b Fs(B)48 b Fu(satis\014es)41 b(the)h(fol)5 b(lowing)41 b(universal)0 3927 y(pr)-5 b(op)g(erty:)p Black 148 4064 a Fy(\(*\))p Black 42 w Fu(for)31 b(every)h(set)g Fs(T)46 b Fu(and)31 b(every)h(p)-5 b(air)31 b(of)h(maps)f Fs(f)38 b Fy(:)28 b Fs(T)42 b Ft(\000)-58 b(!)28 b Fs(A)p Fu(,)k Fs(g)f Fy(:)d Fs(T)41 b Ft(\000)-57 b(!)28 b Fs(B)37 b Fu(ther)-5 b(e)31 b(is)h(a)g(unique)g (map)315 4180 y Fy(\()p Fs(f)5 b(;)17 b(g)t Fy(\))26 b(:)i Fs(T)42 b Ft(\000)-58 b(!)28 b Fs(A)22 b Ft(\002)h Fs(B)40 b Fu(such)34 b(that)i(the)f(diagr)-5 b(am)1425 4807 y Fs(A)314 b(A)22 b Ft(\002)g Fs(B)p 1526 4779 257 4 v 1526 4777 a Fo(\033)1546 4861 y Fy(pro)5 b(j)1722 4885 y Fr(1)2396 4807 y Fs(B)p 2114 4779 254 4 v 2285 4777 a Fo(-)2133 4861 y Fy(pro)g(j)2309 4885 y Fr(2)1686 4655 y Fy(\()p Fs(f)g(;)17 b(g)t Fy(\))1913 4323 y Fs(T)p 1947 4709 4 351 v 1949 4709 a Fo(?)1586 4558 y Fs(f)1797 4441 y Fo(\000)1714 4524 y(\000)1631 4607 y(\000)1548 4690 y(\000)1529 4708 y(\000)-83 b(\011)2253 4545 y Fs(g)2017 4441 y Fo(@)2100 4524 y(@)2183 4607 y(@)2266 4690 y(@)2285 4708 y(@)g(R)315 5009 y Fu(c)-5 b(ommutes,)34 b(i.e.)44 b Fy(pro)5 b(j)1153 5033 y Fr(1)1209 5009 y Ft(\016)p Fy(\()p Fs(f)g(;)17 b(g)t Fy(\))27 b(=)g Fs(f)46 b Fu(and)34 b Fy(pro)5 b(j)2072 5033 y Fr(2)2128 5009 y Ft(\016)p Fy(\()p Fs(f)g(;)17 b(g)t Fy(\))27 b(=)h Fs(g)t Fu(.)p Black 0 5185 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(W)d(e)35 b(\014rst)f(sho)m(w)h(the)f(uniqueness)j(of)d(the)g(map)g(\()p Fs(f)5 b(;)17 b(g)t Fy(\))30 b(:)g Fs(T)44 b Ft(\000)-60 b(!)30 b Fs(A)23 b Ft(\002)h Fs(B)5 b Fy(:)46 b(Giv)m(en)35 b Fs(T)14 b Fy(,)34 b Fs(f)11 b Fy(,)34 b(and)g Fs(g)t Fy(.)47 b(If)0 5301 y Fs(h;)17 b(k)34 b Fy(:)e Fs(T)44 b Ft(\000)-59 b(!)31 b Fs(A)23 b Ft(\002)h Fs(B)40 b Fy(are)35 b(maps)g(suc)m(h)h(that)f(pro)5 b(j)1839 5325 y Fr(1)1895 5301 y Ft(\016)p Fs(h)31 b Fy(=)g Fs(f)42 b Fy(=)31 b(pro)5 b(j)2513 5325 y Fr(1)2569 5301 y Ft(\016)p Fs(k)37 b Fy(and)e(pro)5 b(j)3075 5325 y Fr(2)3131 5301 y Ft(\016)p Fs(h)31 b Fy(=)g Fs(g)k Fy(=)c(pro)5 b(j)3740 5325 y Fr(2)3796 5301 y Ft(\016)p Fs(k)0 5417 y Fy(then)43 b(for)e(an)m(y)i Fs(t)h Ft(2)g Fs(T)55 b Fy(w)m(e)43 b(ha)m(v)m(e)h Fs(h)p Fy(\()p Fs(t)p Fy(\))g(=:)f(\()p Fs(a;)17 b(b)p Fy(\))44 b Ft(2)g Fs(A)29 b Ft(\002)g Fs(B)47 b Fy(and)42 b Fs(k)s Fy(\()p Fs(t)p Fy(\))i(=:)g(\()p Fs(a)2969 5381 y Fq(0)2992 5417 y Fs(;)17 b(b)3077 5381 y Fq(0)3101 5417 y Fy(\))43 b Ft(2)h Fs(A)29 b Ft(\002)g Fs(B)5 b Fy(.)72 b(Then)p Black Black eop end %%Page: 56 56 TeXDict begin 56 55 bop Black 0 -99 a Fw(56)1077 b(Represen)n(table)25 b(functors)h(and)g(the)f(Y)-6 b(oneda)25 b(Lemma)p Black 0 100 a Fy(w)m(e)49 b(get)g Fs(a)55 b Fy(=)f(pro)5 b(j)750 124 y Fr(1)790 100 y Fy(\()p Fs(a;)17 b(b)p Fy(\))55 b(=)f(\(pro)5 b(j)1401 124 y Fr(1)1457 100 y Ft(\016)p Fs(h)p Fy(\)\()p Fs(t)p Fy(\))55 b(=)f Fs(f)11 b Fy(\()p Fs(t)p Fy(\))55 b(=)f(\(pro)5 b(j)2466 124 y Fr(1)2522 100 y Ft(\016)p Fs(k)s Fy(\)\()p Fs(t)p Fy(\))55 b(=)f(pro)5 b(j)3137 124 y Fr(1)3176 100 y Fy(\()p Fs(a)3265 64 y Fq(0)3288 100 y Fs(;)17 b(b)3373 64 y Fq(0)3397 100 y Fy(\))54 b(=)h Fs(a)3671 64 y Fq(0)3743 100 y Fy(and)0 217 y Fs(b)49 b Fy(=)f(pro)5 b(j)390 240 y Fr(2)429 217 y Fy(\()p Fs(a;)17 b(b)p Fy(\))49 b(=)f(\(pro)5 b(j)1028 240 y Fr(2)1084 217 y Ft(\016)p Fs(h)p Fy(\)\()p Fs(t)p Fy(\))48 b(=)g Fs(g)t Fy(\()p Fs(t)p Fy(\))f(=)i(\(pro)5 b(j)2059 240 y Fr(2)2115 217 y Ft(\016)p Fs(k)s Fy(\)\()p Fs(t)p Fy(\))48 b(=)g(pro)5 b(j)2716 240 y Fr(2)2755 217 y Fy(\()p Fs(a)2844 180 y Fq(0)2868 217 y Fs(;)17 b(b)2953 180 y Fq(0)2976 217 y Fy(\))48 b(=)g Fs(b)3227 180 y Fq(0)3251 217 y Fy(,)g(hence)e Fs(h)p Fy(\()p Fs(t)p Fy(\))i(=)0 333 y(\()p Fs(a;)17 b(b)p Fy(\))28 b(=)f(\()p Fs(a)432 297 y Fq(0)456 333 y Fs(;)17 b(b)541 297 y Fq(0)564 333 y Fy(\))28 b(=)g Fs(k)s Fy(\()p Fs(t)p Fy(\))k(and)h Fs(h)28 b Fy(=)f Fs(k)s Fy(.)44 b(This)34 b(sho)m(ws)g(the)f (uniqueness)i(of)d(the)h(map)g Fs(h)p Fy(.)0 449 y(Existence:)47 b(F)-8 b(rom)32 b(the)i(uniqueness)h(pro)s(of)e(w)m(e)h(obtain)e(a)h (reasonable)h(de\014nition)g(of)e(\()p Fs(f)5 b(;)17 b(g)t Fy(\).)44 b(F)-8 b(or)32 b Fs(t)d Ft(2)f Fs(T)0 565 y Fy(w)m(e)34 b(de\014ne)1465 693 y(\()p Fs(f)5 b(;)17 b(g)t Fy(\)\()p Fs(t)p Fy(\))27 b(:=)g(\()p Fs(f)11 b Fy(\()p Fs(t)p Fy(\))p Fs(;)17 b(g)t Fy(\()p Fs(t)p Fy(\)\))p Fs(:)0 841 y Fy(This)23 b(is)f(a)g(map)g(from)f Fs(T)35 b Fy(to)22 b Fs(A)p Ft(\002)p Fs(B)5 b Fy(.)40 b(Since)23 b(it)f(satis\014es)h(\(pro)5 b(j)2186 864 y Fr(1)2242 841 y Ft(\016)p Fy(\()p Fs(f)g(;)17 b(g)t Fy(\)\)\()p Fs(t)p Fy(\))26 b(=)i Fs(f)11 b Fy(\()p Fs(t)p Fy(\))21 b(and)h(\(pro)5 b(j)3379 864 y Fr(2)3435 841 y Ft(\016)p Fy(\()p Fs(f)g(;)17 b(g)t Fy(\)\)\()p Fs(t)p Fy(\))27 b(=)0 957 y Fs(g)t Fy(\()p Fs(t)p Fy(\))32 b(w)m(e)i(get)e(pro)5 b(j)676 980 y Fr(1)732 957 y Ft(\016)p Fy(\()p Fs(f)g(;)17 b(g)t Fy(\))27 b(=)g Fs(f)44 b Fy(and)32 b(pro)5 b(j)1594 980 y Fr(2)1650 957 y Ft(\016)p Fy(\()p Fs(f)g(;)17 b(g)t Fy(\))26 b(=)i Fs(g)t Fy(.)1691 b Fg(\003)0 1137 y Fy(Ob)m(viously)45 b(an)m(y)f(triple)g(\()p Fs(P)s(;)17 b(p)1132 1101 y Fq(0)1132 1162 y Fp(A)1234 1137 y Fy(:)46 b Fs(P)59 b Ft(\000)-59 b(!)45 b Fs(A;)17 b(p)1758 1101 y Fq(0)1758 1162 y Fp(B)1864 1137 y Fy(:)46 b Fs(P)60 b Ft(\000)-60 b(!)45 b Fs(B)5 b Fy(\))44 b(isomorphic)g(to)f(\()p Fs(A)29 b Ft(\002)h Fs(B)5 b(;)17 b Fy(pro)5 b(j)3563 1160 y Fr(1)3603 1137 y Fs(;)17 b Fy(pro)5 b(j)3823 1160 y Fr(2)3862 1137 y Fy(\))0 1253 y(satis\014es)39 b(the)f(same)h(univ)m(ersal)g (prop)s(ert)m(y)-8 b(.)60 b(In)38 b(fact)f(let)h Fs(h)f Fy(:)f Fs(P)50 b Ft(\000)-60 b(!)36 b Fs(A)26 b Ft(\002)g Fs(B)43 b Fy(b)s(e)38 b(an)f(isomorphism)i(suc)m(h)0 1369 y(that)1910 1456 y Fs(P)1425 1700 y(A)1536 1568 y(p)1585 1532 y Fq(0)1585 1593 y Fp(A)1729 1532 y Fo(\010)1646 1573 y(\010)1598 1598 y(\010)-83 b(\031)2396 1700 y Fs(B)2255 1568 y(p)2304 1532 y Fq(0)2304 1593 y Fp(B)2085 1532 y Fo(H)2168 1573 y(H)2216 1598 y(H)g(j)1812 1939 y Fs(A)22 b Ft(\002)g Fs(B)1427 1809 y Fy(pro)5 b(j)1603 1832 y Fr(1)1729 1841 y Fo(H)1646 1800 y(H)1598 1776 y(H)-83 b(Y)2255 1809 y Fy(pro)5 b(j)2431 1832 y Fr(2)2085 1841 y Fo(\010)2168 1800 y(\010)2216 1776 y(\010)-83 b(*)p 1947 1841 4 351 v 1949 1841 a(?)1988 1700 y Fs(h)0 2057 y Fy(comm)m(utes.)82 b(Let)45 b Fs(T)59 b Fy(b)s(e)45 b(a)f(set)i(and)f(let)g Fs(f)59 b Fy(:)49 b Fs(T)62 b Ft(\000)-59 b(!)48 b Fs(A)p Fy(,)g Fs(g)k Fy(:)d Fs(T)62 b Ft(\000)-60 b(!)48 b Fs(B)i Fy(b)s(e)45 b(maps.)81 b(Then)46 b(the)g(map)0 2174 y Fs(h)56 2137 y Fq(\000)p Fr(1)170 2174 y Ft(\016)19 b Fy(\()p Fs(f)5 b(;)17 b(g)t Fy(\))27 b(:)h Fs(T)41 b Ft(\000)-60 b(!)28 b Fs(P)44 b Fy(satis\014es)33 b Fs(p)1302 2137 y Fq(0)1302 2199 y Fp(A)1379 2174 y Ft(\016)19 b Fy(\()p Fs(h)1542 2137 y Fq(\000)p Fr(1)1655 2174 y Ft(\016)h Fy(\()p Fs(f)5 b(;)17 b(g)t Fy(\)\))26 b(=)i Fs(f)42 b Fy(and)31 b Fs(p)2444 2137 y Fq(0)2444 2199 y Fp(B)2524 2174 y Ft(\016)19 b Fy(\()p Fs(h)2687 2137 y Fq(\000)p Fr(1)2801 2174 y Ft(\016)g Fy(\()p Fs(f)5 b(;)17 b(g)t Fy(\)\))27 b(=)h Fs(g)t Fy(.)42 b(It)31 b(is)h(an)f(easy)0 2290 y(exercise)i(to)d(sho)m(w)h(that)f (this)h(map)g(is)g(unique)g(with)g(this)g(prop)s(ert)m(y)-8 b(.)44 b(So)30 b(the)h(univ)m(ersal)h(prop)s(ert)m(y)f(giv)m(en)0 2406 y(in)i(the)g(theorem)g(satis\014es)h(the)f(\014rst)h(prop)s(ert)m (y)f(of)f(the)h(extension)h(principle.)0 2522 y(In)c(arbitrary)g (categories)g(w)m(e)h(cannot)f(construct)h(the)f(Cartesian)h(pro)s (duct)e(of)h(t)m(w)m(o)g(ob)5 b(jects)31 b(since)g(there)0 2639 y(are)26 b(no)f(elemen)m(ts)j(and)d(w)m(e)i(th)m(us)f(cannot)g (construct)h(pairs)f(of)f(elemen)m(ts.)43 b(So)26 b(when)g(w)m(e)h(use) f(the)g(notation)0 2755 y Fs(A)19 b Ft(\002)f Fs(B)36 b Fy(in)31 b(an)g(arbitrary)g(category)g(this)g(cannot)g(mean)g(a)g (set)g(of)f(pairs)i(of)e(elemen)m(ts.)45 b(It)31 b(will)g(stand)g(for)0 2871 y(an)h(arbitrary)h(ob)5 b(ject)33 b(with)h(additional)e(prop)s (erties)i(describ)s(ed)g(b)m(y)g(morphisms.)0 2987 y(The)g(extension)g (principle)g(2.3.1)e(\(2\))g(pro)m(vides)i(the)f(follo)m(wing)g (de\014nition.)p Black 0 3168 a(2.7.3.)f Fv(De\014nition.)p Black 43 w Fy(Giv)m(en)i(ob)5 b(jects)34 b Fs(A)f Fy(and)g Fs(B)38 b Fy(in)33 b(a)f(category)i Ft(C)6 b Fy(.)44 b(An)33 b(ob)5 b(ject)34 b Fs(A)22 b Ft(\002)h Fs(B)38 b Fy(together)33 b(with)0 3284 y(morphisms)e Fs(p)540 3299 y Fp(A)625 3284 y Fy(:)d Fs(A)16 b Ft(\002)g Fs(B)33 b Ft(\000)-59 b(!)27 b Fs(A)i Fy(and)h Fs(p)1452 3299 y Fp(B)1540 3284 y Fy(:)e Fs(A)16 b Ft(\002)g Fs(B)34 b Ft(\000)-60 b(!)27 b Fs(B)35 b Fy(is)30 b(called)g(a)g(\(not)f (the!\))43 b Fu(\(c)-5 b(ate)g(goric)g(al\))31 b(pr)-5 b(o)g(duct)0 3401 y Fy(of)32 b Fs(A)h Fy(and)h Fs(B)5 b Fy(,)33 b(and)g(the)g(morphisms)i Fs(p)1449 3416 y Fp(A)1506 3401 y Fy(,)e Fs(p)1615 3416 y Fp(B)1708 3401 y Fy(are)g(called)h Fu(pr)-5 b(oje)g(ctions)p Fy(,)32 b(if)h(for)f(all)h(ob)5 b(jects)34 b Fs(T)47 b Fy(in)33 b Ft(C)39 b Fy(there)0 3517 y(is)33 b(an)g(isomorphism)h(of)e(sets)1000 3685 y(Mor)1177 3700 y Fq(C)1222 3685 y Fy(\()p Fs(T)8 b(;)17 b(A)22 b Ft(\002)g Fs(B)5 b Fy(\))1708 3657 y Ft(\030)1709 3689 y Fy(=)1813 3685 y(Mor)1989 3700 y Fq(C)2035 3685 y Fy(\()p Fs(T)j(;)17 b(A)p Fy(\))22 b Ft(\002)g Fy(Mor)2590 3700 y Fq(C)2635 3685 y Fy(\()p Fs(T)8 b(;)17 b(B)5 b Fy(\))0 3853 y(\(where)34 b(Mor)496 3868 y Fq(C)541 3853 y Fy(\()p Fs(T)8 b(;)17 b(A)p Fy(\))22 b Ft(\002)h Fy(Mor)1097 3868 y Fq(C)1142 3853 y Fy(\()p Fs(T)8 b(;)17 b(B)5 b Fy(\)is)33 b(the)g(Cartesian)g(pro)s(duct\))g (suc)m(h)h(that)f(the)g(diagram)1609 4013 y(Mor)1785 4028 y Fq(C)1830 4013 y Fy(\()p Fs(T)8 b(;)17 b(A)22 b Ft(\002)h Fs(B)5 b Fy(\))539 4403 y(Mor)715 4418 y Fq(C)760 4403 y Fy(\()p Fs(T)j(;)17 b(A)p Fy(\))787 4208 y(Mor)963 4223 y Fq(C)1008 4208 y Fy(\()p Fs(T)8 b(;)17 b(p)1204 4223 y Fp(A)1261 4208 y Fy(\))1661 4084 y Fo(\020)1578 4112 y(\020)1495 4139 y(\020)1412 4167 y(\020)1329 4195 y(\020)1246 4222 y(\020)1163 4250 y(\020)1080 4278 y(\020)997 4305 y(\020)983 4310 y(\020)-83 b(\))2876 4403 y Fy(Mor)3052 4418 y Fq(C)3097 4403 y Fy(\()p Fs(T)8 b(;)17 b(B)5 b Fy(\))2598 4208 y(Mor)2774 4223 y Fq(C)2819 4208 y Fy(\()p Fs(T)j(;)17 b(p)3015 4223 y Fp(B)3076 4208 y Fy(\))2153 4084 y Fo(P)2236 4112 y(P)2319 4139 y(P)2402 4167 y(P)2485 4195 y(P)2568 4222 y(P)2651 4250 y(P)2734 4278 y(P)2817 4305 y(P)2831 4310 y(P)-83 b(q)1405 4793 y Fy(Mor)1582 4808 y Fq(C)1627 4793 y Fy(\()p Fs(T)8 b(;)17 b(A)p Fy(\))22 b Ft(\002)g Fy(Mor)2183 4808 y Fq(C)2228 4793 y Fy(\()p Fs(T)8 b(;)17 b(B)5 b Fy(\))904 4579 y Fs(p)953 4594 y Fr(Mor)1081 4605 y Fl(C)1121 4594 y Fr(\()p Fp(T)h(;A)p Fr(\))1661 4700 y Fo(P)1578 4672 y(P)1495 4645 y(P)1412 4617 y(P)1329 4589 y(P)1246 4562 y(P)1163 4534 y(P)1080 4506 y(P)997 4478 y(P)983 4474 y(P)-83 b(i)2598 4579 y Fs(p)2647 4594 y Fr(Mor)2774 4605 y Fl(C)2814 4594 y Fr(\()p Fp(T)6 b(;B)s Fr(\))2153 4700 y Fo(\020)2236 4672 y(\020)2319 4645 y(\020)2402 4617 y(\020)2485 4589 y(\020)2568 4562 y(\020)2651 4534 y(\020)2734 4506 y(\020)2817 4478 y(\020)2831 4474 y(\020)-83 b(1)p 1947 4700 4 644 v 1949 4700 a(?)1988 4413 y Fs(h)0 4939 y Fy(comm)m(utes.)-438 5004 y(11.06.04)p Black 0 5185 a(2.7.4.)32 b Fv(Prop)s(osition)37 b Fy(\()p Fv(Characterization)h(of)g(pro)s(ducts)g(b)m(y)f(the)g(univ)m (ersal)i(mapping)g(prop-)0 5301 y(ert)m(y\).)p Black 43 w Fu(Given)g(obje)-5 b(cts)38 b Fs(A)h Fu(and)f Fs(B)44 b Fu(in)39 b(a)f(c)-5 b(ate)g(gory)39 b Ft(C)6 b Fu(.)57 b(A)n(n)39 b(obje)-5 b(ct)38 b Fs(A)25 b Ft(\002)h Fs(B)44 b Fu(to)-5 b(gether)39 b(with)f(morphisms)0 5417 y Fs(p)49 5432 y Fp(A)134 5417 y Fy(:)27 b Fs(A)c Ft(\002)f Fs(B)33 b Ft(\000)-57 b(!)27 b Fs(A)35 b Fu(and)g Fs(p)984 5432 y Fp(B)1072 5417 y Fy(:)28 b Fs(A)22 b Ft(\002)h Fs(B)32 b Ft(\000)-57 b(!)28 b Fs(B)40 b Fu(is)34 b(a)h(\(c)-5 b(ate)g(goric)g(al\))34 b(pr)-5 b(o)g(duct,)p Black Black eop end %%Page: 57 57 TeXDict begin 57 56 bop Black 1799 -99 a Fw(Pro)r(ducts)1722 b(57)p Black Black 100 100 a Fy(\(**\))p Black 41 w Fu(if)38 b(and)g(only)h(if)f(for)h(e)-5 b(ach)38 b(obje)-5 b(ct)38 b Fs(T)49 b Ft(2)35 b(C)45 b Fu(and)38 b(e)-5 b(ach)38 b(p)-5 b(air)38 b(of)h(morphisms)e Fs(f)46 b Fy(:)35 b Fs(T)48 b Ft(\000)-57 b(!)35 b Fs(A)p Fu(,)k Fs(g)f Fy(:)d Fs(T)315 217 y Ft(\000)-58 b(!)28 b Fs(B)40 b Fu(ther)-5 b(e)35 b(is)f(a)h(unique)g(morphism)e Fy(\()p Fs(f)5 b(;)17 b(g)t Fy(\))27 b(:)h Fs(T)41 b Ft(\000)-57 b(!)28 b Fs(A)22 b Ft(\002)g Fs(B)40 b Fu(such)35 b(that)g(the)g(diagr) -5 b(am)1425 848 y Fs(A)314 b(A)22 b Ft(\002)g Fs(B)p 1526 820 257 4 v 1526 818 a Fo(\033)1601 879 y Fs(p)1650 894 y Fp(A)2396 848 y Fs(B)p 2114 820 254 4 v 2285 818 a Fo(-)2186 879 y Fs(p)2235 894 y Fp(B)1686 696 y Fy(\()p Fs(f)5 b(;)17 b(g)t Fy(\))1913 364 y Fs(T)p 1947 750 4 351 v 1949 750 a Fo(?)1586 599 y Fs(f)1797 482 y Fo(\000)1714 565 y(\000)1631 648 y(\000)1548 731 y(\000)1529 750 y(\000)-83 b(\011)2253 586 y Fs(g)2017 482 y Fo(@)2100 565 y(@)2183 648 y(@)2266 731 y(@)2285 750 y(@)g(R)315 1028 y Fu(c)-5 b(ommutes,)34 b(i.e.)44 b Fs(p)1026 1043 y Fp(A)1105 1028 y Ft(\016)22 b Fy(\()p Fs(f)5 b(;)17 b(g)t Fy(\))27 b(=)h Fs(f)45 b Fu(and)34 b Fs(p)1863 1043 y Fp(B)1946 1028 y Ft(\016)22 b Fy(\()p Fs(f)5 b(;)17 b(g)t Fy(\))27 b(=)g Fs(g)t Fu(.)p Black 0 1206 a(Pr)-5 b(o)g(of.)p Black 41 w Ft(\()-17 b Fy(=:)42 b(Let)f(\()p Fs(A)29 b Ft(\002)g Fs(B)5 b(;)17 b(p)1127 1221 y Fp(A)1183 1206 y Fs(;)g(p)1276 1221 y Fp(B)1337 1206 y Fy(\))41 b(b)s(e)h(a)f(pro)s (duct)h(of)f Fs(A)h Fy(and)g Fs(B)5 b Fy(.)70 b(Let)42 b Fs(T)55 b Fy(b)s(e)42 b(an)g(ob)5 b(ject)42 b(in)g Ft(C)48 b Fy(and)0 1323 y(let)40 b Fs(u)f Ft(2)h Fy(Mor)525 1338 y Fq(C)570 1323 y Fy(\()p Fs(T)8 b(;)17 b(A)27 b Ft(\002)g Fs(B)5 b Fy(\).)65 b(De\014ne)40 b Fs(f)50 b Fy(:=)40 b Fs(p)1729 1338 y Fp(A)1813 1323 y Ft(\016)27 b Fs(u)39 b Fy(:)g Fs(T)54 b Ft(\000)-60 b(!)39 b Fs(A)h Fy(und)g Fs(g)j Fy(:=)c Fs(p)2914 1338 y Fp(B)3002 1323 y Ft(\016)27 b Fs(u)39 b Fy(:)g Fs(T)54 b Ft(\000)-60 b(!)39 b Fs(B)5 b Fy(.)65 b(Then)0 1439 y(\()p Fs(f)5 b(;)17 b(g)t Fy(\))27 b Ft(2)h Fy(Mor)521 1454 y Fq(C)566 1439 y Fy(\()p Fs(T)8 b(;)17 b(A)p Fy(\))h Ft(\002)g Fy(Mor)1113 1454 y Fq(C)1158 1439 y Fy(\()p Fs(T)8 b(;)17 b(B)5 b Fy(\).)43 b(No)m(w)30 b(w)m(e)i(de\014ne)f Fs(h)p Fy(\()p Fs(u)p Fy(\))d(:=)f(\()p Fs(f)5 b(;)17 b(g)t Fy(\))27 b Ft(2)h Fy(Mor)2999 1454 y Fq(C)3044 1439 y Fy(\()p Fs(T)8 b(;)17 b(A)p Fy(\))h Ft(\002)g Fy(Mor)3591 1454 y Fq(C)3636 1439 y Fy(\()p Fs(T)8 b(;)17 b(B)5 b Fy(\))0 1555 y(and)31 b(get)g(Mor)525 1570 y Fq(C)570 1555 y Fy(\()p Fs(T)8 b(;)17 b(p)766 1570 y Fp(A)823 1555 y Fy(\)\()p Fs(u)p Fy(\))27 b(=)h Fs(p)1173 1570 y Fp(A)1249 1555 y Ft(\016)19 b Fs(u)27 b Fy(=)g Fs(f)39 b Fy(=)27 b Fs(p)1743 1571 y Fr(Mor)1871 1582 y Fl(C)1911 1571 y Fr(\()p Fp(T)6 b(;A)p Fr(\))2108 1555 y Ft(\016)19 b Fs(h)p Fy(\()p Fs(u)p Fy(\))31 b(and)g(Mor)2760 1570 y Fq(C)2805 1555 y Fy(\()p Fs(T)8 b(;)17 b(p)3001 1570 y Fp(B)3061 1555 y Fy(\)\()p Fs(u)p Fy(\))27 b(=)h Fs(p)3411 1570 y Fp(B)3491 1555 y Ft(\016)18 b Fs(u)28 b Fy(=)f Fs(g)k Fy(=)0 1671 y Fs(p)49 1687 y Fr(Mor)176 1698 y Fl(C)217 1687 y Fr(\()p Fp(T)6 b(;B)s Fr(\))421 1671 y Ft(\016)22 b Fs(h)p Fy(\()p Fs(u)p Fy(\).)0 1788 y(It)33 b(remains)g(to)g(sho)m(w)g(that)g Fs(h)f Fy(is)h(bijectiv)m(e.)46 b(W)-8 b(e)33 b(construct)g(the)g(in)m(v)m(erse)i(map)e(as)531 1951 y Fs(k)e Fy(:)d(Mor)844 1966 y Fq(C)889 1951 y Fy(\()p Fs(T)8 b(;)17 b(A)p Fy(\))22 b Ft(\002)h Fy(Mor)1445 1966 y Fq(C)1490 1951 y Fy(\()p Fs(T)8 b(;)17 b(B)5 b Fy(\))28 b Ft(\000)-60 b(!)27 b Fy(Mor)2103 1966 y Fq(C)2148 1951 y Fy(\()p Fs(T)8 b(;)17 b(A)22 b Ft(\002)g Fs(B)5 b Fy(\))196 b Fs(k)s Fy(\(\()p Fs(f)5 b(;)17 b(g)t Fy(\)\))26 b(:=)i Fs(u)0 2115 y Fy(where)i(\()p Fs(f)5 b(;)17 b(g)t Fy(\))27 b Ft(2)h Fy(Mor)799 2130 y Fq(C)844 2115 y Fy(\()p Fs(T)8 b(;)17 b(A)p Fy(\))d Ft(\002)g Fy(Mor)1384 2130 y Fq(C)1429 2115 y Fy(\()p Fs(T)8 b(;)17 b(B)5 b Fy(\).)42 b(By)29 b(the)g(univ)m(ersal)i(prop)s(ert)m(y)e(of)g(the)g(pro)s(duct)g (there)g(is)g(a)0 2231 y(unique)j Fs(u)27 b Fy(:)h Fs(T)41 b Ft(\000)-59 b(!)27 b Fs(A)18 b Ft(\002)h Fs(B)36 b Fy(suc)m(h)c(that)e Fs(p)1469 2246 y Fp(A)1544 2231 y Ft(\016)18 b Fs(u)28 b Fy(=)f Fs(f)41 b Fy(and)31 b Fs(p)2125 2246 y Fp(B)2204 2231 y Ft(\016)18 b Fs(u)27 b Fy(=)h Fs(g)t Fy(.)42 b(W)-8 b(e)31 b(use)g(this)h Fs(u)e Fy(for)g(the)h (de\014nition)0 2347 y(of)h(the)h(map)g Fs(h)p Fy(.)0 2464 y(Let)d(\()p Fs(f)5 b(;)17 b(g)t Fy(\))27 b Ft(2)h Fy(Mor)693 2479 y Fq(C)738 2464 y Fy(\()p Fs(T)8 b(;)17 b(A)p Fy(\))g Ft(\002)g Fy(Mor)1283 2479 y Fq(C)1328 2464 y Fy(\()p Fs(T)8 b(;)17 b(B)5 b Fy(\).)43 b(Then)31 b(\()p Fs(h)17 b Ft(\016)g Fs(k)s Fy(\)\(\()p Fs(f)5 b(;)17 b(g)t Fy(\)\))26 b(=)i Fs(h)p Fy(\()p Fs(u)p Fy(\))f(=)h(\()p Fs(p)3020 2479 y Fp(A)3093 2464 y Ft(\016)17 b Fs(u;)g(p)3309 2479 y Fp(B)3386 2464 y Ft(\016)f Fs(u)p Fy(\))27 b(=)h(\()p Fs(f)5 b(;)17 b(g)t Fy(\))0 2580 y(hence)34 b(\()p Fs(i)22 b Ft(\016)g Fs(u)p Fy(\))27 b(=)h(1)710 2595 y Fr(Mor)837 2607 y Fl(C)877 2595 y Fr(\()p Fp(T)6 b(;A)p Fr(\))p Fq(\002)p Fr(Mor)1234 2606 y Fl(C)1274 2595 y Fr(\()p Fp(T)g(;B)s Fr(\))1456 2580 y Fy(.)0 2696 y(Let)33 b Fs(u)27 b Ft(2)h Fy(Mor)528 2711 y Fq(C)573 2696 y Fy(\()p Fs(T)8 b(;)17 b(A)22 b Ft(\002)g Fs(B)5 b Fy(\).)43 b(Then)34 b(\()p Fs(k)24 b Ft(\016)e Fs(h)p Fy(\)\()p Fs(u)p Fy(\))27 b(=)h Fs(k)s Fy(\(\()p Fs(f)5 b(;)17 b(g)t Fy(\)\))26 b(=)i Fs(k)s Fy(\(\()p Fs(p)2561 2711 y Fp(A)2639 2696 y Ft(\016)22 b Fs(u;)17 b(p)2860 2711 y Fp(B)2941 2696 y Ft(\016)22 b Fs(u)p Fy(\)\))27 b(=)g Fs(u)3331 2660 y Fq(0)3386 2696 y Fy(where)34 b Fs(u)3724 2660 y Fq(0)3775 2696 y Fy(:)27 b Fs(T)0 2812 y Ft(\000)-60 b(!)37 b Fs(A)26 b Ft(\002)h Fs(B)43 b Fy(is)c(the)g(unique)g(morphism)h(suc)m(h)g(that) e Fs(p)2028 2827 y Fp(A)2111 2812 y Ft(\016)25 b Fs(u)2242 2776 y Fq(0)2302 2812 y Fy(=)38 b Fs(p)2465 2827 y Fp(A)2548 2812 y Ft(\016)25 b Fs(f)49 b Fy(and)39 b Fs(p)2965 2827 y Fp(B)3051 2812 y Ft(\016)26 b Fs(u)3183 2776 y Fq(0)3243 2812 y Fy(=)37 b Fs(p)3405 2827 y Fp(B)3492 2812 y Ft(\016)26 b Fs(u)38 b Fy(hence)0 2929 y Fs(u)27 b Fy(=)h Fs(u)243 2892 y Fq(0)298 2929 y Fy(and)33 b(\()p Fs(k)25 b Ft(\016)d Fs(h)p Fy(\))28 b(=)f(1)948 2944 y Fr(Mor)1075 2955 y Fl(C)1116 2944 y Fr(\()p Fp(T)6 b(;A)p Fq(\002)p Fp(B)s Fr(\))1405 2929 y Fy(.)0 3045 y(=)-17 b Ft(\))p Fy(:)39 b(Giv)m(en)26 b(morphisms)g Fs(f)38 b Fy(:)28 b Fs(T)41 b Ft(\000)-59 b(!)27 b Fs(A)d Fy(and)h Fs(g)31 b Fy(:)d Fs(T)41 b Ft(\000)-60 b(!)28 b Fs(B)5 b Fy(.)41 b(Then)25 b(\()p Fs(f)5 b(;)17 b(g)t Fy(\))24 b(is)h(an)f(elemen)m(t)i(of)e(Mor) 3514 3060 y Fq(C)3559 3045 y Fy(\()p Fs(T)8 b(;)17 b(A)p Fy(\))5 b Ft(\002)0 3161 y Fy(Mor)176 3176 y Fq(C)221 3161 y Fy(\()p Fs(T)j(;)17 b(B)5 b Fy(\).)0 3277 y(So)25 b(there)g(is)g(a)g(unique)h(morphism)g Fs(u)h Fy(:=)h Fs(h)1560 3241 y Fq(\000)p Fr(1)1654 3277 y Fy(\(\()p Fs(f)5 b(;)17 b(g)t Fy(\)\))24 b(satisfying)i Fs(p)2454 3293 y Fr(Mor)2581 3304 y Fl(C)2621 3293 y Fr(\()p Fp(T)6 b(;A)p Fr(\))2806 3277 y Ft(\016)g Fs(h)p Fy(\()p Fs(u)p Fy(\))27 b(=)g Fs(f)36 b Fy(and)24 b Fs(p)3494 3293 y Fr(Mor)3622 3304 y Fl(C)3662 3293 y Fr(\()p Fp(T)6 b(;B)s Fr(\))3850 3277 y Ft(\016)0 3394 y Fs(h)p Fy(\()p Fs(u)p Fy(\))28 b(=)g Fs(g)t Fy(.)44 b(Equiv)-5 b(alen)m(tly)36 b(Mor)1184 3409 y Fq(C)1229 3394 y Fy(\()p Fs(T)8 b(;)17 b(p)1425 3409 y Fp(A)1482 3394 y Fy(\)\()p Fs(u)p Fy(\))28 b(=)g Fs(f)39 b Fy(=)28 b Fs(p)2024 3409 y Fp(A)2104 3394 y Ft(\016)22 b Fs(u)33 b Fy(and)g(Mor)2631 3409 y Fq(C)2676 3394 y Fy(\()p Fs(T)8 b(;)17 b(p)2872 3409 y Fp(B)2932 3394 y Fy(\)\()p Fs(u)p Fy(\))28 b(=)g Fs(g)k Fy(=)d Fs(p)3467 3409 y Fp(B)3550 3394 y Ft(\016)22 b Fs(u)32 b Fy(with)0 3510 y(a)g(unique)i Fs(u)p Fy(.)43 b(Th)m(us)34 b(\()p Fs(A)23 b Ft(\002)f Fs(B)5 b(;)17 b(p)1176 3525 y Fp(A)1233 3510 y Fs(;)g(p)1326 3525 y Fp(B)1386 3510 y Fy(\))33 b(is)g(a)f(pro)s(duct)h(of)f Fs(A)h Fy(and)f Fs(B)5 b Fy(.)1309 b Fg(\003)p Black 0 3688 a Fy(2.7.5.)32 b Fv(Prop)s(osition.)p Black 42 w Fu(The)i(family)h(of)f(isomorphisms)883 3852 y Fs(h)939 3867 y Fp(T)1022 3852 y Fy(:)27 b(Mor)1252 3867 y Fq(C)1297 3852 y Fy(\()p Fs(T)8 b(;)17 b(A)23 b Ft(\002)f Fs(B)5 b Fy(\))28 b Ft(\000)-57 b(!)27 b Fy(Mor)2107 3867 y Fq(C)2152 3852 y Fy(\()p Fs(T)8 b(;)17 b(A)p Fy(\))23 b Ft(\002)f Fy(Mor)2708 3867 y Fq(C)2753 3852 y Fy(\()p Fs(T)8 b(;)17 b(B)5 b Fy(\))0 4015 y Fu(such)35 b(that)1609 4146 y Fy(Mor)1785 4161 y Fq(C)1830 4146 y Fy(\()p Fs(T)8 b(;)17 b(A)22 b Ft(\002)h Fs(B)5 b Fy(\))539 4536 y(Mor)715 4551 y Fq(C)760 4536 y Fy(\()p Fs(T)j(;)17 b(A)p Fy(\))787 4341 y(Mor)963 4356 y Fq(C)1008 4341 y Fy(\()p Fs(T)8 b(;)17 b(p)1204 4356 y Fp(A)1261 4341 y Fy(\))1661 4217 y Fo(\020)1578 4244 y(\020)1495 4272 y(\020)1412 4300 y(\020)1329 4327 y(\020)1246 4355 y(\020)1163 4383 y(\020)1080 4410 y(\020)997 4438 y(\020)983 4442 y(\020)-83 b(\))2876 4536 y Fy(Mor)3052 4551 y Fq(C)3097 4536 y Fy(\()p Fs(T)8 b(;)17 b(B)5 b Fy(\))2598 4341 y(Mor)2774 4356 y Fq(C)2819 4341 y Fy(\()p Fs(T)j(;)17 b(p)3015 4356 y Fp(B)3076 4341 y Fy(\))2153 4217 y Fo(P)2236 4244 y(P)2319 4272 y(P)2402 4300 y(P)2485 4327 y(P)2568 4355 y(P)2651 4383 y(P)2734 4410 y(P)2817 4438 y(P)2831 4442 y(P)-83 b(q)1405 4926 y Fy(Mor)1582 4941 y Fq(C)1627 4926 y Fy(\()p Fs(T)8 b(;)17 b(A)p Fy(\))22 b Ft(\002)g Fy(Mor)2183 4941 y Fq(C)2228 4926 y Fy(\()p Fs(T)8 b(;)17 b(B)5 b Fy(\))904 4711 y Fs(p)953 4727 y Fr(Mor)1081 4738 y Fl(C)1121 4727 y Fr(\()p Fp(T)h(;A)p Fr(\))1661 4832 y Fo(P)1578 4805 y(P)1495 4777 y(P)1412 4749 y(P)1329 4722 y(P)1246 4694 y(P)1163 4666 y(P)1080 4639 y(P)997 4611 y(P)983 4607 y(P)-83 b(i)2598 4711 y Fs(p)2647 4727 y Fr(Mor)2774 4738 y Fl(C)2814 4727 y Fr(\()p Fp(T)6 b(;B)s Fr(\))2153 4832 y Fo(\020)2236 4805 y(\020)2319 4777 y(\020)2402 4749 y(\020)2485 4722 y(\020)2568 4694 y(\020)2651 4666 y(\020)2734 4639 y(\020)2817 4611 y(\020)2831 4607 y(\020)-83 b(1)p 1947 4832 4 644 v 1949 4832 a(?)1988 4538 y Fs(h)2044 4553 y Fp(T)0 5075 y Fu(c)-5 b(ommute)34 b(for)h(al)5 b(l)35 b(obje)-5 b(cts)34 b Fs(T)49 b Fu(in)34 b Ft(C)6 b Fu(,)35 b(is)g(a)f(natur)-5 b(al)35 b(isomorphism)e(in)i Fs(T)14 b Fu(,)35 b Fs(A)p Fu(,)f(and)h Fs(B)5 b Fu(.)p Black 0 5254 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(W)d(e)33 b(sho)m(w)h(that)e(the)h(in)m(v)m(erses)887 5417 y Fs(k)938 5432 y Fp(T)1020 5417 y Fy(:)28 b(Mor)1251 5432 y Fq(C)1296 5417 y Fy(\()p Fs(T)8 b(;)17 b(A)p Fy(\))22 b Ft(\002)h Fy(Mor)1852 5432 y Fq(C)1897 5417 y Fy(\()p Fs(T)8 b(;)17 b(B)5 b Fy(\))28 b Ft(\000)-60 b(!)27 b Fy(Mor)2509 5432 y Fq(C)2555 5417 y Fy(\()p Fs(T)8 b(;)17 b(A)22 b Ft(\002)g Fs(B)5 b Fy(\))p Black Black eop end %%Page: 58 58 TeXDict begin 58 57 bop Black 0 -99 a Fw(58)1077 b(Represen)n(table)25 b(functors)h(and)g(the)f(Y)-6 b(oneda)25 b(Lemma)p Black 0 100 a Fy(as)40 b(constructed)h(in)f(Prop)s(osition)f(2.7.4)g(form)h (a)f(natural)g(transformation.)64 b(So)40 b(for)f Fs(t)g Fy(:)h Fs(T)3460 64 y Fq(0)3522 100 y Ft(\000)-59 b(!)39 b Fs(T)53 b Fy(w)m(e)0 217 y(ha)m(v)m(e)34 b(to)e(sho)m(w)i(that)e(the) h(diagram)1010 432 y(Mor)1186 447 y Fq(C)1231 432 y Fy(\()p Fs(T)8 b(;)17 b(A)p Fy(\))22 b Ft(\002)h Fy(Mor)1787 447 y Fq(C)1832 432 y Fy(\()p Fs(T)8 b(;)17 b(B)5 b Fy(\))295 b(Mor)2567 447 y Fq(C)2613 432 y Fy(\()p Fs(T)8 b(;)17 b(A)22 b Ft(\002)g Fs(B)5 b Fy(\))p 2125 409 230 4 v 2272 407 a Fo(-)2187 373 y Fs(k)2238 388 y Fp(T)981 822 y Fy(Mor)1158 837 y Fq(C)1203 822 y Fy(\()p Fs(T)1312 786 y Fq(0)1335 822 y Fs(;)17 b(A)p Fy(\))k Ft(\002)i Fy(Mor)1787 837 y Fq(C)1832 822 y Fy(\()p Fs(T)1941 786 y Fq(0)1964 822 y Fs(;)17 b(B)5 b Fy(\))252 b(Mor)2553 837 y Fq(C)2598 822 y Fy(\()p Fs(T)2707 786 y Fq(0)2730 822 y Fs(;)17 b(A)22 b Ft(\002)h Fs(B)5 b Fy(\))p 2154 799 187 4 v 2258 797 a Fo(-)2182 763 y Fs(k)2233 778 y Fp(T)2284 759 y Fl(0)p 1552 729 4 254 v 1553 729 a Fo(?)488 627 y Fy(Mor)664 642 y Fq(C)709 627 y Fy(\()p Fs(t;)17 b(A)p Fy(\))22 b Ft(\002)h Fy(Mor)1235 642 y Fq(C)1280 627 y Fy(\()p Fs(t;)17 b(B)5 b Fy(\))p 2721 729 V 2723 729 a Fo(?)2762 627 y Fy(Mor)2938 642 y Fq(C)2983 627 y Fy(\()p Fs(t;)17 b(A)22 b Ft(\002)h Fs(B)5 b Fy(\))0 989 y(comm)m(utes.)65 b(Let)39 b(\()p Fs(f)5 b(;)17 b(g)t Fy(\))38 b Ft(2)h Fy(Mor)1240 1004 y Fq(C)1286 989 y Fy(\()p Fs(T)8 b(;)17 b(A)p Fy(\))26 b Ft(\002)h Fy(Mor)1850 1004 y Fq(C)1895 989 y Fy(\()p Fs(T)8 b(;)17 b(B)5 b Fy(\).)63 b(Then)41 b([)p Fs(f)5 b(;)17 b(g)t Fy(])38 b(:=)h Fs(k)2944 1004 y Fp(T)2998 989 y Fy(\(\()p Fs(f)5 b(;)17 b(g)t Fy(\)\))38 b(is)i(the)f(unique)0 1105 y(morphism)33 b(satisfying)g Fs(p)938 1120 y Fp(A)1015 1105 y Ft(\016)20 b Fy([)p Fs(f)5 b(;)17 b(g)t Fy(])27 b(=)g Fs(f)43 b Fy(and)32 b Fs(p)1746 1120 y Fp(B)1826 1105 y Ft(\016)20 b Fy([)p Fs(f)5 b(;)17 b(g)t Fy(])28 b(=)f Fs(g)t Fy(.)43 b(The)32 b(t)m(w)m(o)g(sides)i(of)d(the)h(square)h(giv)m(e)f(t)m(w)m(o) 0 1222 y(morphisms)h([)p Fs(f)c Ft(\016)19 b Fs(t;)e(g)22 b Ft(\016)c Fs(t)p Fy(])28 b(=)g(\()p Fs(k)1165 1237 y Fp(T)1238 1222 y Ft(\016)19 b Fy(Mor)1483 1237 y Fq(C)1528 1222 y Fy(\()p Fs(t;)e(A)p Fy(\))h Ft(\002)i Fy(Mor)2047 1237 y Fq(C)2092 1222 y Fy(\()p Fs(t;)d(B)5 b Fy(\)\)\(\()p Fs(f)g(;)17 b(g)t Fy(\)\))29 b(and)i([)p Fs(f)5 b(;)17 b(g)t Fy(])i Ft(\016)f Fs(t)28 b Fy(=)g(\(Mor)3551 1237 y Fq(C)3596 1222 y Fy(\()p Fs(f)5 b(;)17 b(A)i Ft(\002)0 1338 y Fs(B)5 b Fy(\))29 b Ft(\016)g Fs(k)276 1353 y Fp(T)327 1334 y Fl(0)353 1338 y Fy(\)\(\()p Fs(f)5 b(;)17 b(g)t Fy(\)\).)74 b(W)-8 b(e)43 b(ha)m(v)m(e)h(to)f(sho)m(w)h(that)f (these)h(are)f(equal.)75 b(Observ)m(e)45 b(that)e(a)g(morphism)h Fs(u)h Ft(2)0 1454 y Fy(Mor)176 1469 y Fq(C)221 1454 y Fy(\()p Fs(T)330 1418 y Fq(0)353 1454 y Fs(;)17 b(A)23 b Ft(\002)g Fs(B)5 b Fy(\))34 b(is)g(uniquely)i(determined)g(b)m(y)f (the)f(morphisms)h Fs(p)2601 1469 y Fp(A)2681 1454 y Ft(\016)23 b Fs(u)33 b Fy(and)h Fs(p)3083 1469 y Fp(B)3167 1454 y Ft(\016)23 b Fs(u)p Fy(.)46 b(W)-8 b(e)34 b(get)g(from)0 1570 y Fs(p)49 1585 y Fp(A)126 1570 y Ft(\016)20 b Fy([)p Fs(f)5 b(;)17 b(g)t Fy(])i Ft(\016)h Fs(t)28 b Fy(=)g Fs(f)i Ft(\016)20 b Fs(t)28 b Fy(=)g Fs(p)1018 1585 y Fp(A)1095 1570 y Ft(\016)20 b Fy([)p Fs(f)30 b Ft(\016)20 b Fs(t;)d(g)24 b Ft(\016)19 b Fs(t)p Fy(])32 b(and)g Fs(p)1891 1585 y Fp(B)1972 1570 y Ft(\016)19 b Fy([)p Fs(f)5 b(;)17 b(g)t Fy(])j Ft(\016)g Fs(t)28 b Fy(=)f Fs(g)d Ft(\016)19 b Fs(t)28 b Fy(=)g Fs(p)2855 1585 y Fp(B)2936 1570 y Ft(\016)19 b Fy([)p Fs(f)31 b Ft(\016)20 b Fs(t;)d(g)23 b Ft(\016)d Fs(t)p Fy(])32 b(the)g(result)0 1687 y([)p Fs(f)5 b(;)17 b(g)t Fy(])22 b Ft(\016)g Fs(t)27 b Fy(=)h([)p Fs(f)33 b Ft(\016)22 b Fs(t;)17 b(g)25 b Ft(\016)d Fs(t)p Fy(].)0 1803 y(No)m(w)33 b(let)g Fs(a)28 b Fy(:)g Fs(A)g Ft(\000)-60 b(!)27 b Fs(A)815 1767 y Fq(0)871 1803 y Fy(and)33 b Fs(b)28 b Fy(:)g Fs(B)33 b Ft(\000)-60 b(!)27 b Fs(B)1515 1767 y Fq(0)1571 1803 y Fy(b)s(e)33 b(giv)m(en.)45 b(Then)33 b(the)g(diagram)1025 2003 y(Mor)1201 2018 y Fq(C)1246 2003 y Fy(\()p Fs(T)8 b(;)17 b(A)p Fy(\))22 b Ft(\002)h Fy(Mor)1802 2018 y Fq(C)1847 2003 y Fy(\()p Fs(T)8 b(;)17 b(B)5 b Fy(\))295 b(Mor)2582 2018 y Fq(C)2627 2003 y Fy(\()p Fs(T)8 b(;)17 b(A)22 b Ft(\002)h Fs(B)5 b Fy(\))p 2140 1979 230 4 v 2287 1977 a Fo(-)2227 1959 y Fs(k)1001 2392 y Fy(Mor)1178 2407 y Fq(C)1223 2392 y Fy(\()p Fs(T)j(;)17 b(A)1443 2356 y Fq(0)1466 2392 y Fy(\))22 b Ft(\002)h Fy(Mor)1802 2407 y Fq(C)1847 2392 y Fy(\()p Fs(T)8 b(;)17 b(B)2073 2356 y Fq(0)2096 2392 y Fy(\))249 b(Mor)2559 2407 y Fq(C)2604 2392 y Fy(\()p Fs(T)8 b(;)17 b(A)2824 2356 y Fq(0)2869 2392 y Ft(\002)23 b Fs(B)3048 2356 y Fq(0)3071 2392 y Fy(\))p 2163 2370 184 4 v 2264 2368 a Fo(-)2227 2349 y Fs(k)p 1566 2299 4 254 v 1568 2299 a Fo(?)502 2197 y Fy(Mor)678 2212 y Fq(C)723 2197 y Fy(\()p Fs(T)8 b(;)17 b(a)p Fy(\))23 b Ft(\002)f Fy(Mor)1257 2212 y Fq(C)1302 2197 y Fy(\()p Fs(T)8 b(;)17 b(b)p Fy(\))p 2736 2299 V 2738 2299 a Fo(?)2777 2197 y Fy(Mor)2953 2212 y Fq(C)2998 2197 y Fy(\()p Fs(T)8 b(;)17 b(a)22 b Ft(\002)h Fs(b)p Fy(\))0 2560 y(comm)m(utes)38 b(since)g Fs(p)754 2575 y Fp(A)807 2556 y Fl(0)858 2560 y Ft(\016)24 b Fy(\(Mor)1146 2575 y Fq(C)1191 2560 y Fy(\()p Fs(T)8 b(;)17 b(a)25 b Ft(\002)g Fs(b)p Fy(\))g Ft(\016)f Fs(k)s Fy(\)\(\()p Fs(f)5 b(;)17 b(g)t Fy(\)\))33 b(=)h Fs(p)2278 2575 y Fp(A)2331 2556 y Fl(0)2382 2560 y Ft(\016)24 b Fy(\()p Fs(a)h Ft(\002)g Fs(b)p Fy(\))g Ft(\016)g Fy([)p Fs(f)5 b(;)17 b(g)t Fy(]\))33 b(=)h Fs(a)24 b Ft(\016)h Fs(p)3433 2575 y Fp(A)3514 2560 y Ft(\016)g Fy([)p Fs(f)5 b(;)17 b(g)t Fy(])33 b(=)0 2676 y Fs(a)9 b Ft(\016)g Fs(f)38 b Fy(=)27 b Fs(p)357 2640 y Fq(0)357 2701 y Fp(A)414 2676 y Fy(\([)p Fs(a)9 b Ft(\016)g Fs(f)c(;)17 b(b)9 b Ft(\016)g Fs(f)i Fy(]\))26 b(=)i Fs(p)1107 2640 y Fq(0)1107 2701 y Fp(A)1172 2676 y Ft(\016)9 b Fy(\()p Fs(k)j Ft(\016)d Fy(\(Mor)1604 2691 y Fq(C)1649 2676 y Fy(\()p Fs(T)f(;)17 b(a)p Fy(\))9 b Ft(\002)g Fy(Mor)2156 2691 y Fq(C)2201 2676 y Fy(\()p Fs(T)f(;)17 b(b)p Fy(\)\)\)\(\()p Fs(f)5 b(;)17 b(g)t Fy(\)\))25 b(and)h Fs(p)3060 2691 y Fp(B)3116 2672 y Fl(0)3152 2676 y Ft(\016)9 b Fy(\(Mor)3424 2691 y Fq(C)3469 2676 y Fy(\()p Fs(T)f(;)17 b(a)9 b Ft(\002)g Fs(b)p Fy(\))g Ft(\016)0 2792 y Fs(k)s Fy(\)\(\()p Fs(f)c(;)17 b(g)t Fy(\)\))27 b(=)g Fs(p)571 2807 y Fp(B)627 2788 y Fl(0)658 2792 y Ft(\016)s Fy(\()p Fs(a)s Ft(\002)s Fs(b)p Fy(\))s Ft(\016)s Fy([)p Fs(f)5 b(;)17 b(g)t Fy(]\))30 b(=)d Fs(b)s Ft(\016)s Fs(p)1537 2807 y Fp(B)1602 2792 y Ft(\016)s Fy([)p Fs(f)5 b(;)17 b(g)t Fy(])28 b(=)f Fs(b)s Ft(\016)s Fs(f)40 b Fy(=)27 b Fs(p)2325 2756 y Fq(0)2325 2817 y Fp(B)2386 2792 y Fy(\([)p Fs(a)s Ft(\016)s Fs(f)5 b(;)17 b(b)s Ft(\016)s Fs(f)11 b Fy(]\))29 b(=)f Fs(p)3058 2756 y Fq(0)3058 2817 y Fp(B)3122 2792 y Ft(\016)s Fy(\()p Fs(k)7 b Ft(\016)s Fy(\(Mor)3538 2807 y Fq(C)3583 2792 y Fy(\()p Fs(T)h(;)17 b(a)p Fy(\))s Ft(\002)0 2908 y Fy(Mor)176 2923 y Fq(C)221 2908 y Fy(\()p Fs(T)8 b(;)17 b(b)p Fy(\)\)\)\(\()p Fs(f)5 b(;)17 b(g)t Fy(\)\))32 b(implies)i(Mor)1362 2923 y Fq(C)1407 2908 y Fy(\()p Fs(T)8 b(;)17 b(a)23 b Ft(\002)f Fs(b)p Fy(\))h Ft(\016)f Fs(k)30 b Fy(=)e Fs(k)d Ft(\016)d Fy(\(Mor)2448 2923 y Fq(C)2493 2908 y Fy(\()p Fs(T)8 b(;)17 b(a)p Fy(\))22 b Ft(\002)h Fy(Mor)3027 2923 y Fq(C)3072 2908 y Fy(\()p Fs(T)8 b(;)17 b(b)p Fy(\)\).)460 b Fg(\003)0 3097 y Fy(Before)31 b(w)m(e)h(sho)m(w)h(that)e(the)g(de\014nition)h(of)f(a)g(pro)s(duct)g (satis\014es)i(the)e(extension)i(principle)g(2.3.1)d(\(3\))h(w)m(e)0 3214 y(sho)m(w)j(a)e(general)h(uniqueness)j(theorem.)p Black 0 3399 a(2.7.6.)42 b Fv(Theorem.)p Black 48 w Fu(L)-5 b(et)44 b Fs(A)g Fu(and)g Fs(B)49 b Fu(b)-5 b(e)43 b(obje)-5 b(cts)44 b(of)g(a)g(c)-5 b(ate)g(gory)44 b Ft(C)6 b Fu(.)72 b(If)43 b Fy(\()p Fs(P)s(;)17 b(p)2931 3414 y Fp(A)2988 3399 y Fs(;)g(p)3081 3414 y Fp(B)3141 3399 y Fy(\))44 b Fu(and)f Fy(\()p Fs(P)3536 3363 y Fq(0)3559 3399 y Fs(;)17 b(p)3652 3363 y Fq(0)3652 3424 y Fp(A)3709 3399 y Fs(;)g(p)3802 3363 y Fq(0)3802 3424 y Fp(B)3862 3399 y Fy(\))0 3515 y Fu(ar)-5 b(e)40 b(pr)-5 b(o)g(ducts)41 b(of)f Fs(A)h Fu(and)f Fs(B)46 b Fu(in)40 b Ft(C)6 b Fu(,)42 b(then)f(ther)-5 b(e)40 b(is)h(a)f(unique)h(isomorphism)d Fs(k)k Fy(:)c Fs(P)3172 3479 y Fq(0)3233 3515 y Ft(\000)-57 b(!)38 b Fs(P)54 b Fu(such)41 b(that)0 3631 y Fs(p)49 3646 y Fp(A)128 3631 y Ft(\016)22 b Fs(k)31 b Fy(=)c Fs(p)434 3595 y Fq(0)434 3656 y Fp(A)526 3631 y Fu(and)34 b Fs(p)764 3646 y Fp(B)847 3631 y Ft(\016)22 b Fs(k)31 b Fy(=)c Fs(p)1153 3595 y Fq(0)1153 3656 y Fp(B)1214 3631 y Fu(.)p Black 0 3816 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(Since)25 b(\()p Fs(P)s(;)17 b(p)741 3831 y Fp(A)797 3816 y Fs(;)g(p)890 3831 y Fp(B)950 3816 y Fy(\))23 b(satis\014es)i (the)f(univ)m(ersal)h(prop)s(ert)m(y)f(\(**\))f(there)h(is)g(a)f (unique)h(morphism)h Fs(k)31 b Fy(:)c Fs(P)3877 3780 y Fq(0)0 3932 y Ft(\000)-60 b(!)36 b Fs(P)51 b Fy(suc)m(h)39 b(that)e Fs(p)757 3947 y Fp(A)839 3932 y Ft(\016)26 b Fs(k)39 b Fy(=)d Fs(p)1166 3896 y Fq(0)1166 3958 y Fp(A)1260 3932 y Fy(and)i Fs(p)1504 3947 y Fp(B)1590 3932 y Ft(\016)25 b Fs(k)39 b Fy(=)d Fs(p)1916 3896 y Fq(0)1916 3958 y Fp(B)1977 3932 y Fy(.)58 b(Symmetrically)39 b(there)g(is)f(a)f(unique)i (morphism)0 4049 y Fs(h)d Fy(:)f Fs(P)231 4013 y Fq(0)289 4049 y Ft(\000)-59 b(!)35 b Fs(P)50 b Fy(suc)m(h)39 b(that)e Fs(p)1045 4013 y Fq(0)1045 4074 y Fp(A)1127 4049 y Ft(\016)25 b Fs(h)36 b Fy(=)f Fs(p)1454 4064 y Fp(A)1548 4049 y Fy(and)j Fs(p)1792 4013 y Fq(0)1792 4074 y Fp(B)1877 4049 y Ft(\016)26 b Fs(h)35 b Fy(=)g Fs(p)2204 4064 y Fp(B)2265 4049 y Fy(.)57 b(Consider)39 b(the)e(follo)m(wing)h(comm)m (utativ)m(e)0 4165 y(diagram:)1910 4279 y Fs(P)1327 4864 y(A)1490 4549 y(p)1539 4564 y Fp(A)1797 4396 y Fo(\000)1714 4479 y(\000)1631 4562 y(\000)1548 4645 y(\000)1465 4728 y(\000)1432 4761 y(\000)-83 b(\011)1899 4671 y Fs(P)1976 4635 y Fq(0)1486 4756 y Fs(p)1535 4720 y Fq(0)1535 4781 y Fp(A)1661 4730 y Fo(\020)1578 4758 y(\020)1568 4761 y(\020)g(\))1910 5058 y Fs(P)1486 4939 y(p)1535 4954 y Fp(A)1661 4956 y Fo(P)1578 4929 y(P)1568 4925 y(P)g(i)1899 5451 y Fs(P)1976 5415 y Fq(0)1490 5146 y Fs(p)1539 5110 y Fq(0)1539 5171 y Fp(A)1797 5346 y Fo(@)1714 5263 y(@)1631 5180 y(@)1548 5097 y(@)1465 5014 y(@)1432 4981 y(@)g(I)2494 4864 y Fs(B)2301 4549 y(p)2350 4564 y Fp(B)2017 4396 y Fo(@)2100 4479 y(@)2183 4562 y(@)2266 4645 y(@)2349 4728 y(@)2382 4761 y(@)g(R)2305 4756 y Fs(p)2354 4720 y Fq(0)2354 4781 y Fp(B)2153 4730 y Fo(P)2236 4758 y(P)2246 4761 y(P)g(q)2305 4939 y Fs(p)2354 4954 y Fp(B)2153 4956 y Fo(\020)2236 4929 y(\020)2246 4925 y(\020)g(1)2301 5146 y Fs(p)2350 5110 y Fq(0)2350 5171 y Fp(B)2017 5346 y Fo(\000)2100 5263 y(\000)2183 5180 y(\000)2266 5097 y(\000)2349 5014 y(\000)2382 4981 y(\000)g(\022)p 1947 4566 V 1949 4566 a(?)1853 4474 y Fs(h)p 1947 4956 V 1949 4956 a Fo(?)1921 4864 y Fs(k)p 1947 5346 V 1949 5346 a Fo(?)1988 5254 y Fs(h)p 2005 4956 4 644 v 2007 4956 a Fo(?)2046 4659 y Fy(1)2095 4674 y Fp(P)p 1888 5346 V 1890 5346 a Fo(?)1721 5049 y Fy(1)1770 5064 y Fp(P)1825 5045 y Fl(0)p Black Black eop end %%Page: 59 59 TeXDict begin 59 58 bop Black 1799 -99 a Fw(Pro)r(ducts)1722 b(59)p Black 0 100 a Fy(Since)29 b Fs(p)299 115 y Fp(A)367 100 y Ft(\016)12 b Fs(k)j Ft(\016)d Fs(h)28 b Fy(=)f Fs(p)793 115 y Fp(A)878 100 y Fy(=)g Fs(p)1030 115 y Fp(A)1099 100 y Ft(\016)12 b Fy(1)1210 115 y Fp(P)1296 100 y Fy(and)27 b Fs(p)1529 115 y Fp(B)1602 100 y Ft(\016)12 b Fs(k)j Ft(\016)d Fs(h)27 b Fy(=)g Fs(p)2027 115 y Fp(B)2116 100 y Fy(=)g Fs(p)2268 115 y Fp(B)2341 100 y Ft(\016)12 b Fy(1)2452 115 y Fp(P)2537 100 y Fy(w)m(e)29 b(get)f(b)m(y)g (uniqueness)i Fs(k)15 b Ft(\016)d Fs(h)28 b Fy(=)f(1)3814 115 y Fp(P)3873 100 y Fy(.)0 217 y(Symmetrically)j(w)m(e)e(get)f Fs(h)11 b Ft(\016)g Fs(k)32 b Fy(=)27 b(1)1298 232 y Fp(P)1353 213 y Fl(0)1379 217 y Fy(,)i(th)m(us)f Fs(h)f Fy(is)h(an)g(isomorphism)g(with)g(the)g(required)h(prop)s(erties.)99 b Fg(\003)0 383 y Fy(W)-8 b(e)34 b(no)m(w)g(ha)m(v)m(e)g(to)f(sho)m(w)i (that)e(the)h(de\014nition)g(of)f(a)g(pro)s(duct)h(satis\014es)h(the)f (extension)h(principle)f(2.3.1)0 499 y(\(3\).)p Black 0 670 a(2.7.7.)d Fv(Prop)s(osition.)p Black 40 w Fu(Given)j(sets)f Fs(A)h Fu(and)f Fs(B)5 b Fu(.)44 b(A)34 b(set)g Fs(P)47 b Fu(to)-5 b(gether)33 b(with)h(two)f(maps)g Fs(p)3248 634 y Fq(0)3248 695 y Fp(A)3333 670 y Fy(:)28 b Fs(P)41 b Ft(\000)-57 b(!)27 b Fs(A)34 b Fu(and)0 786 y Fs(p)49 750 y Fq(0)49 811 y Fp(B)145 786 y Fy(:)h Fs(P)49 b Ft(\000)-57 b(!)35 b Fs(B)44 b Fu(satis\014es)38 b(the)h(universal)g(pr)-5 b(op)g(erty)39 b(\(*\))g(of)f(pr)-5 b(op)g(osition)38 b(2.7.2)g(if)h(and)g(only)g(if)f(ther)-5 b(e)39 b(is)0 902 y(an)34 b(isomorphism)g Fs(h)27 b Fy(:)h Fs(P)41 b Ft(\000)-57 b(!)28 b Fs(A)22 b Ft(\002)g Fs(B)40 b Fu(such)35 b(that)g Fs(p)1882 917 y Fp(A)1961 902 y Ft(\016)22 b Fs(h)28 b Fy(=)g Fs(p)2270 866 y Fq(0)2270 928 y Fp(A)2362 902 y Fu(and)34 b Fs(p)2600 917 y Fp(B)2683 902 y Ft(\016)22 b Fs(h)27 b Fy(=)h Fs(p)2991 866 y Fq(0)2991 928 y Fp(B)3052 902 y Fu(.)p Black 0 1073 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(By)40 b(prop)s(osition)e(2.7.2)h(the)g(Cartesian)h(pro)s(duct)f Fs(A)26 b Ft(\002)h Fs(B)44 b Fy(and)39 b(the)h(pro)5 b(jections)40 b Fs(p)3457 1088 y Fp(A)3552 1073 y Fy(:)e Fs(A)27 b Ft(\002)g Fs(B)0 1190 y Ft(\000)-60 b(!)28 b Fs(A)i Fy(and)f Fs(p)483 1205 y Fp(B)572 1190 y Fy(:)e Fs(A)16 b Ft(\002)g Fs(B)34 b Ft(\000)-59 b(!)27 b Fs(B)35 b Fy(satisfy)c(the)f(univ)m(ersal)h(prop)s(ert)m(y)g(of)e(prop)s (osition)h(2.7.4.)42 b(F)-8 b(ollo)m(wing)30 b(the)0 1306 y(pro)s(of)d(of)g(prop)s(osition)g(2.7.2)g(w)m(e)i(ha)m(v)m(e)g (sho)m(wn)g(that)e(\()p Fs(P)s(;)17 b(p)2144 1270 y Fq(0)2144 1331 y Fp(A)2200 1306 y Fs(;)g(p)2293 1270 y Fq(0)2293 1331 y Fp(B)2354 1306 y Fy(\))27 b(also)h(satis\014es)h(the)f(univ)m (ersal)h(prop)s(ert)m(y)0 1422 y(\(*\).)0 1538 y(Con)m(v)m(ersely)51 b(if)c(a)h(triple)g(\()p Fs(P)s(;)17 b(p)1182 1502 y Fq(0)1182 1563 y Fp(A)1238 1538 y Fs(;)g(p)1331 1502 y Fq(0)1331 1563 y Fp(B)1392 1538 y Fy(\))47 b(satis\014es)j(the)e (univ)m(ersal)i(prop)s(ert)m(y)e(\(*\))g(resp.)90 b(\(**\))47 b(then)h(b)m(y)0 1655 y(theorem)33 b(2.7.6)f Fs(P)46 b Fy(and)33 b Fs(A)22 b Ft(\002)h Fs(B)38 b Fy(are)32 b(isomorphic)i(b)m(y)f Fs(h)g Fy(with)g Fs(p)2369 1670 y Fp(A)2448 1655 y Ft(\016)22 b Fs(h)28 b Fy(=)g Fs(p)2757 1618 y Fq(0)2757 1680 y Fp(A)2846 1655 y Fy(and)33 b Fs(p)3085 1670 y Fp(B)3168 1655 y Ft(\016)22 b Fs(h)27 b Fy(=)h Fs(p)3476 1618 y Fq(0)3476 1680 y Fp(B)3537 1655 y Fy(.)259 b Fg(\003)0 1821 y Fy(So)32 b(in)h(the)g(future)g(w)m (e)h(will)f(assume)h(that)f(pro)s(ducts)g(are)f(giv)m(en)i(b)m(y)g(and) e(satisfy)i(prop)s(ert)m(y)f(\(**\).)0 1937 y(All)f(prop)s(ositions)f (and)h(theorems)g(of)f(this)h(section)g(of)f(pro)s(ducts)h(are)f(as)h (w)m(ell)g(v)-5 b(alid)32 b(for)e(pro)s(ducts)i(with)0 2053 y(more)h(than)f(t)m(w)m(o)i(factors,)e(for)g(pro)s(ducts)i(of)e (arbitrary)g(families)i(of)e(ob)5 b(jects)34 b(\()p Fs(A)2991 2068 y Fp(i)3019 2053 y Ft(j)p Fs(i)28 b Ft(2)g Fs(I)8 b Fy(\).)p Black 0 2224 a(2.7.8.)33 b Fv(De\014nition.)p Black 42 w Fy(Let)h(\()p Fs(A)1106 2239 y Fp(i)1134 2224 y Ft(j)p Fs(i)29 b Ft(2)g Fs(I)8 b Fy(\))33 b(b)s(e)g(a)g(family)g(of)g (ob)5 b(jects)34 b(in)g(a)f(category)g Ft(C)6 b Fy(.)46 b(An)33 b(ob)5 b(ject)3577 2149 y Fh(Q)3671 2253 y Fp(i)p Fq(2)p Fp(I)3799 2224 y Fs(A)3872 2239 y Fp(i)0 2340 y Fy(together)43 b(with)g(a)g(family)g(of)g(morphisms)h(\()p Fs(p)1740 2355 y Fp(j)1822 2340 y Fy(:)1894 2266 y Fh(Q)1988 2369 y Fp(i)p Fq(2)p Fp(I)2116 2340 y Fs(A)2189 2355 y Fp(i)2262 2340 y Ft(\000)-60 b(!)45 b Fs(A)2497 2355 y Fp(j)2534 2340 y Ft(j)p Fs(j)50 b Ft(2)c Fs(I)8 b Fy(\))43 b(is)g(called)g(a)g Fu(pr)-5 b(o)g(duct)p Fy(,)46 b(the)0 2457 y(morphisms)29 b Fs(p)538 2472 y Fp(j)602 2457 y Fy(:)657 2382 y Fh(Q)751 2486 y Fp(i)p Fq(2)p Fp(I)878 2457 y Fs(A)951 2472 y Fp(i)1007 2457 y Ft(\000)-59 b(!)27 b Fs(A)1225 2472 y Fp(j)1288 2457 y Fy(are)g(called)h Fu(pr)-5 b(oje)g(ctions)p Fy(,)27 b(if)g(for)f(eac)m(h)i(ob)5 b(ject)28 b Fs(T)41 b Ft(2)28 b(C)34 b Fy(and)27 b(eac)m(h)g(family)0 2573 y(of)33 b(morphisms)h(\()p Fs(f)692 2588 y Fp(i)749 2573 y Fy(:)29 b Fs(T)42 b Ft(\000)-59 b(!)28 b Fs(A)1123 2588 y Fp(i)1151 2573 y Ft(j)p Fs(i)h Ft(2)g Fs(I)8 b Fy(\))32 b(there)i(is)g(a)f(unique)h(morphism)g([)p Fs(f)2736 2588 y Fp(i)2765 2573 y Ft(j)p Fs(i)28 b Ft(2)h Fs(I)8 b Fy(])29 b(:)g Fs(T)42 b Ft(\000)-60 b(!)3356 2498 y Fh(Q)3451 2602 y Fp(i)p Fq(2)p Fp(I)3578 2573 y Fs(A)3651 2588 y Fp(i)3712 2573 y Fy(suc)m(h)0 2689 y(that)32 b(for)g(all)h Fs(j)h Ft(2)28 b Fs(I)40 b Fy(the)33 b(diagrams)1602 3183 y Fh(Q)1696 3287 y Fp(i)p Fq(2)p Fp(I)1823 3258 y Fs(A)1896 3273 y Fp(i)2196 3258 y Fs(A)2269 3273 y Fp(j)p 1953 3239 214 4 v 2084 3237 a Fo(-)2017 3190 y Fs(p)2066 3205 y Fp(j)1728 2784 y Fs(T)p 1762 3169 4 351 v 1763 3169 a Fo(?)1594 3019 y Fy([)p Fs(f)1669 3034 y Fp(i)1697 3019 y Fy(])2067 3014 y Fs(f)2115 3029 y Fp(j)1832 2901 y Fo(@)1915 2984 y(@)1998 3067 y(@)2081 3150 y(@)2100 3169 y(@)-83 b(R)0 3381 y Fy(comm)m(ute.)0 3552 y(These)34 b(pro)s(ducts)g(consist)f(of)g(an)f(ob)5 b(ject)33 b(and)g(a)f(family)h(of)g(pro)5 b(jections)33 b(and)g(are)g(denoted)1245 3725 y(\()1283 3630 y Fh(Y)1293 3842 y Fp(i)p Fq(2)p Fp(I)1427 3725 y Fs(A)1500 3740 y Fp(i)1529 3725 y Fs(;)17 b Fy(\()p Fs(p)1660 3740 y Fp(j)1723 3725 y Fy(:)1778 3630 y Fh(Y)1788 3842 y Fp(i)p Fq(2)p Fp(I)1922 3725 y Fs(A)1995 3740 y Fp(i)2051 3725 y Ft(\000)-60 b(!)28 b Fs(A)2269 3740 y Fp(j)2305 3725 y Ft(j)p Fs(j)34 b Ft(2)28 b Fs(I)8 b Fy(\)\))p Fs(:)0 3974 y Fy(W)-8 b(e)33 b(lea)m(v)m(e)h(the)f(details)h(to)e(the)h (reader.)0 4090 y(If)i(a)g(category)h Ft(C)41 b Fy(has)36 b(a)f(pro)s(duct)h(for)f(an)m(y)h(t)m(w)m(o)g(ob)5 b(jects)36 b(in)g Ft(C)41 b Fy(then)36 b(it)f(is)h(clear)g(that)f(it)h(has)f(pro)s (ducts)0 4207 y(for)e(an)m(y)i(\014nite)g(non-empt)m(y)g(family)f(of)f (ob)5 b(jects.)49 b(If)34 b Ft(C)40 b Fy(has)34 b(a)g(pro)s(duct)g(for) f(an)m(y)i(t)m(w)m(o)f(ob)5 b(jects)36 b(in)e Ft(C)40 b Fy(and)0 4323 y(a)32 b(terminal)h(ob)5 b(ject)34 b(then)f(it)g(has)g (pro)s(ducts)g(for)f(an)m(y)h(\014nite)g(family)h(of)e(ob)5 b(jects.)p Black 0 4494 a(2.7.9.)32 b Fv(De\014nition.)p Black Black 191 w Fy(\(1\))p Black 41 w(A)k(category)g Ft(C)43 b Fy(is)36 b(called)h(a)f(category)g(with)g Fu(\014nite)i(pr)-5 b(o)g(ducts)p Fy(,)37 b(if)f(there)g(is)315 4610 y(a)c(pro)s(duct)h(in) f Ft(C)39 b Fy(for)32 b(an)m(y)i(\014nite)f(family)g(of)f(ob)5 b(jects)34 b(\(empt)m(y)g(families)f(included\).)p Black 148 4726 a(\(2\))p Black 42 w(A)40 b(category)g Ft(C)46 b Fy(is)40 b(called)h(a)f(category)g(with)g Fu(pr)-5 b(o)g(ducts)p Fy(,)42 b(if)e(there)g(is)h(a)f(pro)s(duct)g(in)g Ft(C)46 b Fy(for)39 b(an)m(y)315 4843 y(family)33 b(of)f(ob)5 b(jects)34 b(\(empt)m(y)g(families)f(included\).)3991 4922 y(17.06.04)0 5014 y(The)h(dual)e(notion)h(of)f(a)g(pro)s(duct)h (the)g(notion)f(of)h(a)f(copro)s(duct.)p Black 0 5185 a(2.7.10.)d Fv(De\014nition.)p Black 41 w Fy(Let)h(\()p Fs(A)1146 5200 y Fp(i)1174 5185 y Ft(j)p Fs(i)e Ft(2)g Fs(I)8 b Fy(\))29 b(b)s(e)h(a)g(family)h(of)e(ob)5 b(jects)31 b(in)f(a)g(category)g Ft(C)6 b Fy(.)43 b(An)30 b(ob)5 b(ject)3577 5110 y Fh(`)3671 5214 y Fp(i)p Fq(2)p Fp(I)3799 5185 y Fs(A)3872 5200 y Fp(i)0 5301 y Fy(together)40 b(with)f(a)g(family)h(of)f(morphisms)i(\()p Fs(\023)1704 5316 y Fp(j)1780 5301 y Fy(:)e Fs(A)1919 5316 y Fp(j)1995 5301 y Ft(\000)-59 b(!)2151 5226 y Fh(`)2245 5330 y Fp(i)p Fq(2)p Fp(I)2373 5301 y Fs(A)2446 5316 y Fp(i)2474 5301 y Ft(j)p Fs(j)45 b Ft(2)40 b Fs(I)8 b Fy(\))39 b(is)h(called)g(a)f Fu(c)-5 b(opr)g(o)g(duct)p Fy(,)41 b(the)0 5417 y(morphisms)34 b Fs(\023)528 5432 y Fp(j)593 5417 y Fy(:)28 b Fs(A)721 5432 y Fp(j)785 5417 y Ft(\000)-60 b(!)930 5343 y Fh(`)1024 5446 y Fp(i)p Fq(2)p Fp(I)1151 5417 y Fs(A)1224 5432 y Fp(i)1285 5417 y Fy(are)33 b(called)g Fu(inje)-5 b(ctions)p Fy(,)31 b(if)i(for)f(eac)m(h)h(ob)5 b(ject)33 b Fs(T)42 b Ft(2)28 b(C)38 b Fy(and)33 b(eac)m(h)g(family)p Black Black eop end %%Page: 60 60 TeXDict begin 60 59 bop Black 0 -99 a Fw(60)1077 b(Represen)n(table)25 b(functors)h(and)g(the)f(Y)-6 b(oneda)25 b(Lemma)p Black 0 100 a Fy(of)31 b(morphisms)j(\()p Fs(f)690 115 y Fp(i)745 100 y Fy(:)28 b Fs(A)873 115 y Fp(i)929 100 y Ft(\000)-59 b(!)27 b Fs(T)14 b Ft(j)p Fs(i)27 b Ft(2)h Fs(I)8 b Fy(\))32 b(there)g(is)g(a)g(unique)h(morphism)g Ft(h)p Fs(f)2732 115 y Fp(i)2760 100 y Ft(j)p Fs(i)28 b Ft(2)g Fs(I)8 b Ft(i)27 b Fy(:)3115 26 y Fh(`)3209 129 y Fp(i)p Fq(2)p Fp(I)3336 100 y Fs(A)3409 115 y Fp(i)3465 100 y Ft(\000)-59 b(!)27 b Fs(T)45 b Fy(suc)m(h)0 217 y(that)32 b(for)g(all)h Fs(j)h Ft(2)28 b Fs(I)40 b Fy(the)33 b(diagrams)1583 383 y Fs(A)1656 398 y Fp(j)1972 308 y Fh(`)2066 412 y Fp(i)p Fq(2)p Fp(I)2194 383 y Fs(A)2267 398 y Fp(i)p 1721 364 214 4 v 1852 362 a Fo(-)1792 315 y Fs(\023)1826 330 y Fp(j)2090 883 y Fs(T)p 2123 781 4 351 v 2125 781 a Fo(?)2164 631 y Ft(h)p Fs(f)2251 646 y Fp(i)2279 631 y Ft(i)1736 626 y Fs(f)1784 641 y Fp(j)1706 513 y Fo(@)1789 596 y(@)1872 679 y(@)1955 762 y(@)1974 781 y(@)-83 b(R)0 1014 y Fy(comm)m(ute.)p Black 0 1204 a(2.7.11.)32 b Fv(Examples.)p Black Black 191 w Fy(\(1\))p Black 41 w(The)g(Cartesian)f(pro)s(ducts)g (of)f(semigroups,)j(monoids,)f(groups,)f(ab)s(elian)315 1320 y(groups,)49 b(mo)s(dules,)h(v)m(ector)c(spaces,)51 b(rings,)e(algebras,)g(Lie)d(algebras)g(with)g(comp)s(onen)m(t)m(wise) 315 1437 y(op)s(erations)32 b(are)h(pro)s(ducts.)p Black 148 1553 a(\(2\))p Black 42 w(The)i(Cartesian)h(pro)s(duct)f(of)g(top)s (ological)f(spaces)i(with)g(the)f Fu(pr)-5 b(o)g(duct)37 b(top)-5 b(olo)g(gy)35 b Fy(is)g(a)g(pro)s(duct.)315 1669 y(Here)30 b(and)f(in)g(the)h(\014rst)g(example)h(the)e(more)h (precise)h(statemen)m(t)g(is)f(that)f(there)h(exist)g(pro)s(ducts)315 1785 y(and)f(that)h(the)g(underlying)h(functor)f(to)f(sets)i(maps)f (these)h(pro)s(ducts)g(and)e(their)h(pro)5 b(jections)31 b(to)315 1902 y(Cartesian)f(pro)s(ducts.)43 b(So)30 b(there)g(is)g(a)f (pro)s(duct)h(structure)h(on)e(the)h(Cartesian)g(pro)s(ducts)g(of)g (the)315 2018 y(underlying)k(sets,)f(but)g(the)g(pro)s(duct)g (structure)h(has)f(to)f(b)s(e)h(determined)h(in)f(eac)m(h)h(case.)p Black 148 2134 a(\(3\))p Black 42 w(In)e(the)h(category)g(of)f (\014elds)i(there)g(are)e(in)h(general)g(no)f(pro)s(ducts.)p Black 148 2250 a(\(4\))p Black 42 w(Let)43 b Ft(G)49 b Fy(and)43 b Ft(H)h Fy(b)s(e)f(t)m(w)m(o)h(graphs.)75 b(The)44 b(pro)s(duct)f Fs(G)30 b Ft(\002)f Fs(H)51 b Fy(in)43 b(the)h(category)f(of)g(graphs)g(and)315 2367 y(homomorphisms)32 b(is)g(de\014ned)g(as)g(follo)m(ws:)43 b(\()p Fs(G)19 b Ft(\002)h Fs(H)8 b Fy(\))2305 2382 y Fr(0)2371 2367 y Fy(=)28 b Fs(G)2552 2382 y Fr(0)2610 2367 y Ft(\002)20 b Fs(H)2788 2382 y Fr(0)2827 2367 y Fy(.)43 b(An)31 b(arro)m(w)g(from)g(\()p Fs(g)t(;)17 b(h)p Fy(\))30 b(to)315 2483 y(\()p Fs(g)404 2447 y Fq(0)426 2483 y Fy(;)17 b Fs(h)526 2447 y Fq(0)549 2483 y Fy(\))33 b(is)g(a)f(pair)h(\()p Fs(a;)17 b(b)p Fy(\))33 b(with)g Fs(a)28 b Fy(:)g Fs(g)j Ft(\000)-59 b(!)27 b Fs(g)1875 2447 y Fq(0)1931 2483 y Fy(in)33 b Ft(G)38 b Fy(and)33 b Fs(b)28 b Fy(:)g Fs(h)g Ft(\000)-59 b(!)27 b Fs(h)2741 2447 y Fq(0)2798 2483 y Fy(in)32 b Ft(H)q Fy(.)44 b(The)34 b(pro)5 b(jections)34 b(are)315 2599 y(the)f(usual)g(\014rst)g(and)g (second)g(pro)5 b(jections.)p Black 148 2715 a(\(5\))p Black 42 w(W)-8 b(e)26 b(ha)m(v)m(e)i(already)f(seen)g(in)g(1.3.8)e (that)h(an)m(y)h(p)s(oset)g(\(partially)f(ordered)h(set\))g(has)g(a)f (corresp)s(ond-)315 2831 y(ing)i(category)h(structure)h Ft(C)6 b Fy(\()p Fs(P)14 b Fy(\).)42 b(Let)29 b Fs(P)41 b Fy(b)s(e)29 b(a)g(p)s(oset)g(and)f Fs(x)h Fy(and)g Fs(y)j Fy(t)m(w)m(o)d(ob)5 b(jects)30 b(of)e Ft(C)6 b Fy(\()p Fs(P)14 b Fy(\))28 b(\(that)315 2948 y(is,)j(elemen)m(ts)h(of)e Fs(P)14 b Fy(\).)42 b(Let)30 b(us)h(see)g(what,)g(if)f(an)m(ything,)i (is)e(their)h(pro)s(duct.)43 b(A)30 b(pro)s(duct)g(m)m(ust)i(b)s(e)315 3064 y(an)e(elemen)m(t)i Fs(z)j Fy(together)c(with)g(a)f(pair)g(of)g (arro)m(ws)h Fs(z)h Ft(\000)-59 b(!)27 b Fs(x)k Fy(and)f Fs(z)j Ft(\000)-60 b(!)27 b Fs(y)t Fy(,)j(whic)m(h)i(is)f(just)g (another)315 3180 y(w)m(a)m(y)i(of)g(sa)m(ying)g(that)g Fs(z)f Ft(\024)c Fs(x)33 b Fy(and)g Fs(z)g Ft(\024)28 b Fs(y)t Fy(.)43 b(The)33 b(de\014nition)h(of)e(pro)s(duct)h(also)g (requires)h(that)e(for)315 3296 y(an)m(y)h Fs(w)d Ft(2)e Fs(P)14 b Fy(,)32 b(giv)m(en)i(an)e(arro)m(w)h Fs(w)d Ft(\000)-60 b(!)28 b Fs(x)33 b Fy(and)f(one)h Fs(w)d Ft(\000)-59 b(!)27 b Fs(y)t Fy(,)32 b(there)h(is)g(an)g(arro)m(w)f Fs(w)e Ft(\000)-59 b(!)27 b Fs(z)t Fy(.)414 3413 y(This)37 b(translates)f(to)g Fs(w)f Ft(\024)e Fs(x)j Fy(and)g Fs(w)f Ft(\024)e Fs(y)39 b Fy(implies)e Fs(w)e Ft(\024)e Fs(z)40 b Fy(whic)m(h,)e(together)e(with)g(the)g(fact)315 3529 y(that)28 b Fs(z)33 b Ft(\024)28 b Fs(x)h Fy(and)g Fs(z)j Ft(\024)d Fs(y)t Fy(,)f(c)m(haracterizes)j Fs(z)j Fy(as)29 b(the)g Fu(in\014mum)f Fy(of)g Fs(x)i Fy(and)f Fs(y)t Fy(,)f(often)h(denoted)h Fs(x)14 b Ft(^)g Fs(y)t Fy(.)315 3645 y(Th)m(us)40 b(the)f(existence)j(of)c(pro)s(ducts)i(in)f (suc)m(h)i(a)d(category)i(is)f(equiv)-5 b(alen)m(t)41 b(to)e(the)g(existence)i(of)315 3761 y(in\014m)m(ums.)414 3878 y(In)28 b(particular,)g(w)m(e)g(see)h(that)e(pro)s(ducts)h (generalize)g(a)f(w)m(ell-)h(kno)m(wn)g(construction)h(in)e(p)s(osets.) 315 3994 y(Note)e(that)g(a)f(p)s(oset)i(that)f(lac)m(ks)h(in\014m)m (ums)h(pro)m(vides)g(an)e(easy)h(example)h(of)d(a)h(category)g(without) 315 4110 y(pro)s(ducts.)p Black 148 4226 a(\(6\))p Black 42 w(The)j(pro)s(duct)g(of)f(categories)h(as)g(de\014ned)h(in)f(1.4.12) f(is)h(the)g(pro)s(duct)g(of)f(the)h(categories)g(in)g Fv(Cat)p Fy(.)p Black 148 4342 a(\(7\))p Black 42 w(The)33 b(copro)s(duct)g(of)f(v)m(ector)i(spaces)g(is)f(the)g(direct)g(sum.)p Black 148 4459 a(\(8\))p Black 42 w(The)i(copro)s(duct)g(of)f(t)m(w)m (o)i(ab)s(elian)e(groups)h(in)g(the)g(category)g(of)f(ab)s(elian)h (groups)g(is)g(the)g(direct)315 4575 y(sum)e(or)f(the)h(pro)s(duct.)p Black 148 4691 a(\(9\))p Black 42 w(The)44 b(copro)s(duct)f(of)g(t)m(w) m(o)h(\014nite)g(ab)s(elian)f(groups)g(\()p Ft(6)p Fy(=)j(0\))d(in)g (the)h(category)f(of)g(groups)g(is)h(an)315 4807 y(in\014nite)33 b(nonab)s(elian)g(group.)p Black 0 4998 a(2.7.12.)f Fv(Prop)s(osition.) p Black 42 w Fu(If)i Fs(A)h Fu(is)g(an)f(obje)-5 b(ct)35 b(in)f(a)h(c)-5 b(ate)g(gory)35 b(with)f(a)h(terminal)f(obje)-5 b(ct)35 b Fy(1)p Fu(,)f(then)1432 5247 y Fy(1)427 b Fs(A)p 1510 5215 369 4 v 1510 5213 a Fo(\033)1656 5169 y Ft(hi)2395 5247 y Fs(A)p 2009 5215 357 4 v 2283 5213 a Fo(-)2135 5179 y Fy(1)2184 5194 y Fp(A)0 5398 y Fu(is)35 b(a)f(pr)-5 b(o)g(duct)35 b(diagr)-5 b(am.)p Black Black eop end %%Page: 61 61 TeXDict begin 61 60 bop Black 1777 -99 a Fw(Equalizers)1702 b(61)p Black Black 0 100 a Fu(Pr)-5 b(o)g(of.)p Black 41 w Fy(A)33 b(cone)g(o)m(v)m(er)h Fs(A)e Fy(and)h(1)f(has)h(to)f(ha)m (v)m(e)i(this)g(form,)e(where)i Fs(f)k Fy(:)28 b Fs(B)33 b Ft(\000)-60 b(!)28 b Fs(A)k Fy(is)h(an)m(y)h(arro)m(w.)1432 746 y(1)427 b Fs(A)p 1510 714 369 4 v 1510 712 a Fo(\033)1656 806 y Ft(hi)2395 746 y Fs(A)p 2009 714 357 4 v 2283 712 a Fo(-)2135 795 y Fy(1)2184 810 y Fp(A)1909 258 y Fs(T)p 1942 643 4 351 v 1944 643 a Fo(?)1846 493 y Fs(f)-332 b Ft(hi)1793 375 y Fo(\000)1710 458 y(\000)1627 541 y(\000)1544 624 y(\000)1525 643 y(\000)-83 b(\011)2248 493 y Fs(f)2012 375 y Fo(@)2095 458 y(@)2178 541 y(@)2261 624 y(@)2280 643 y(@)g(R)0 971 y Fy(Clearly)34 b(the)f(only)g(p)s(ossible)h(arro)m (w)e(in)h(the)g(middle)h(is)f Fs(f)11 b Fy(.)1676 b Fg(\003)p Black 0 1158 a Fy(2.7.13.)30 b Fv(De\014nition)36 b(and)g(Remark.)p Black 41 w Fy(Our)30 b(notation)g Fs(A)19 b Ft(\002)f Fs(B)36 b Fy(means)c(that)e Fs(A)18 b Ft(\002)h Fs(B)36 b Fy(is)31 b(the)g(v)m(ertex)h(of)e(a)0 1274 y(pro)s(duct)h(cone)h (with)g(base)g(the)f(discrete)i(diagram)e Fs(D)i Fy(with)f Fs(D)s Fy(\(1\))27 b(=)h Fs(A)j Fy(and)g Fs(D)s Fy(\(2\))c(=)h Fs(B)5 b Fy(.)43 b(Then)32 b Fs(B)24 b Ft(\002)c Fs(A)0 1391 y Fy(denotes)34 b(the)f(pro)s(duct)g(giv)m(en)g(b)m(y)h(the)f (diagram)1522 1600 y Fs(B)218 b(B)28 b Ft(\002)22 b Fs(A)p 1630 1572 156 4 v 1630 1570 a Fo(\033)1664 1532 y Fs(p)1713 1547 y Fr(1)2305 1600 y Fs(A)p 2117 1572 159 4 v 2193 1570 a Fo(-)2152 1532 y Fs(p)2201 1547 y Fr(2)0 1749 y Fy(where)44 b(w)m(e)g(use)g Fs(p)674 1764 y Fr(1)756 1749 y Fy(and)f Fs(p)1005 1764 y Fr(2)1087 1749 y Fy(to)g(a)m(v)m(oid)h (confusing)g(them)f(with)h(the)f(arro)m(ws)g(pro)5 b(j)3096 1773 y Fr(1)3178 1749 y Fy(and)43 b Fs(pr)s(oj)3561 1764 y Fr(2)3643 1749 y Fy(of)g(the)0 1865 y(pro)s(duct)k(diagram.)88 b(\(Of)46 b(course,)52 b(this)c(is)g(an)f(ad)g(ho)s(c)g(solution.)88 b(If)47 b(one)h(had)f(to)g(deal)g(with)h(this)0 1991 y(situation)42 b(a)g(lot)f(it)h(w)m(ould)h(b)s(e)f(necessary)i(to)e(in) m(tro)s(duce)h(notation)e(suc)m(h)j(as)e(pro)5 b(j)3152 1944 y Fp(A;B)3152 2015 y Fr(1)3327 1991 y Fy(and)42 b(pro)5 b(j)3702 1944 y Fp(B)s(;A)3702 2015 y Fr(1)3835 1991 y Fy(.\))0 2107 y(Then)34 b(this)f(is)g(a)f(pro)s(duct)h(diagram:) 1522 2316 y Fs(A)217 b(B)27 b Ft(\002)22 b Fs(A)p 1624 2289 V 1624 2287 a Fo(\033)1659 2249 y Fs(p)1708 2264 y Fr(2)2299 2316 y Fs(B)p 2114 2289 156 4 v 2187 2287 a Fo(-)2148 2249 y Fs(p)2197 2264 y Fr(1)0 2471 y Fy(It)30 b(follo)m(ws)g(from)f(Theorem)i(2.7.6)e(that)h(there)g(is)g(an)f (isomorphism)j([)p Fs(p)2612 2486 y Fr(2)2651 2471 y Fs(;)17 b(p)2744 2486 y Fr(1)2783 2471 y Fy(])28 b(:)g Fs(B)21 b Ft(\002)16 b Fs(A)28 b Ft(\000)-59 b(!)27 b Fs(A)16 b Ft(\002)g Fs(B)35 b Fy(\(called)0 2587 y(the)26 b Fu(switch)h(morphism)p Fy(\))d(that)h(comm)m(utes)i(with)f(the)g(pro) 5 b(jections.)42 b(Its)26 b(in)m(v)m(erse)i(is)d([pro)5 b(j)3248 2610 y Fr(2)3287 2587 y Fs(;)17 b Fy(pro)5 b(j)3507 2610 y Fr(1)3546 2587 y Fy(])28 b(:)g Fs(A)7 b Ft(\002)g Fs(B)0 2703 y Ft(\000)-60 b(!)28 b Fs(B)f Ft(\002)c Fs(A:)0 2890 y Fy(2.8.)49 b Fv(Equalizers.)0 3006 y Fy(If)38 b Fs(A)g Fy(and)g Fs(B)43 b Fy(are)38 b(sets)h(and)f Fs(f)5 b(;)17 b(g)40 b Fy(:)d Fs(A)g Ft(\000)-60 b(!)37 b Fs(B)43 b Fy(are)38 b(functions,)i(it)e(is)g(an)g(imp)s(ortan)m(t)g (task)h(to)e(collect)i(all)0 3123 y(solutions)34 b Fs(a)27 b Ft(2)i Fs(A)j Fy(of)g(the)h(equation)1689 3261 y Fs(f)11 b Fy(\()p Fs(a)p Fy(\))28 b(=)f Fs(g)t Fy(\()p Fs(a)p Fy(\))p Fs(:)0 3420 y Fy(This)33 b(is)f(more)g(general)g(that)f (solving)h(an)g(equation)g Fs(f)11 b Fy(\()p Fs(a)p Fy(\))28 b(=)f(0)k(since)i Fs(B)k Fy(do)s(es)32 b(not)f(necessarily)j(con)m (tain)0 3536 y(some)f(elemen)m(t)i(0.)0 3652 y(Again)d(w)m(e)i(w)m(an)m (t)g(to)e(apply)h(the)g(extension)h(principle)g(in)f(this)h(case.)p Black 0 3840 a(2.8.1.)27 b Fv(De\014nition.)p Black 38 w Fy(If)g Fs(A)h Fy(and)f Fs(B)32 b Fy(are)c(sets)g(and)f Fs(f)5 b(;)17 b(g)31 b Fy(:)d Fs(A)g Ft(\000)-60 b(!)28 b Fs(B)k Fy(are)27 b(functions,)j(the)d Fu(e)-5 b(qualizer)27 b Fy(Eq)q(\()p Fs(f)5 b(;)17 b(g)t Fy(\))0 3956 y(is)33 b(the)g(subset)h(Eq)q(\()p Fs(f)5 b(;)17 b(g)t Fy(\))27 b Ft(\022)h Fs(A)33 b Fy(consisting)h(of)e(all)g(elemen)m(ts)j Fs(a)28 b Ft(2)g Fs(A)33 b Fy(for)f(whic)m(h)i Fs(f)11 b Fy(\()p Fs(a)p Fy(\))27 b(=)h Fs(g)t Fy(\()p Fs(a)p Fy(\);)k(in)h(short,)1266 4135 y(Eq)q(\()p Fs(f)5 b(;)17 b(g)t Fy(\))27 b(=)h Ft(f)p Fs(a)f Ft(2)h Fs(A)p Ft(j)p Fs(f)11 b Fy(\()p Fs(a)p Fy(\))28 b(=)f Fs(g)t Fy(\()p Fs(a)p Fy(\))p Ft(g)p Fs(:)0 4314 y Fy(T)-8 b(ogether)33 b(with)g(the)g(set)h(Eq)q(\()p Fs(f)5 b(;)17 b(g)t Fy(\))31 b(there)i(is)h(the)f Fu(inclusion)e Fy(function)i Fs(j)h Fy(:)28 b(Eq\()p Fs(f)5 b(;)17 b(g)t Fy(\))27 b Ft(\000)-59 b(!)27 b Fs(A)p Fy(.)0 4501 y(T)-8 b(o)36 b(mak)m(e)g(this)g(in)m(to)g (a)f(categorical)h(concept)h(and)e(apply)h(the)g(extension)i (principle,)g(w)m(e)e(\014rst)g(observ)m(e)0 4618 y(that)j(Eq)q(\()p Fs(f)5 b(;)17 b(g)t Fy(\))39 b(is)h(a)f(subset)i(of)e Fs(A)p Fy(.)64 b(So)40 b(it)f(has)h(a)f(prop)s(ert)m(y)h(that)g(cannot) f(directly)i(b)s(e)f(transfered)g(to)0 4734 y(isomorphic)34 b(sets.)47 b(But)33 b(there)h(is)g(a)f(univ)m(ersal)i(prop)s(ert)m(y)f (connected)g(with)g(this)g(notion)f(that)g(will)h(giv)m(e)0 4850 y(us)f(the)g(correct)g(concept.)p Black 0 5037 a(2.8.2.)41 b Fv(Prop)s(osition.)p Black 46 w Fu(L)-5 b(et)43 b Fs(A)h Fu(and)e Fs(B)48 b Fu(b)-5 b(e)43 b(sets)f(and)h Fs(f)5 b(;)17 b(g)46 b Fy(:)c Fs(A)h Ft(\000)-57 b(!)42 b Fs(B)48 b Fu(b)-5 b(e)43 b(functions.)68 b(The)43 b(e)-5 b(qualizer)0 5153 y Fy(Eq)q(\()p Fs(f)5 b(;)17 b(g)t Fy(\))38 b Fu(to)-5 b(gether)39 b(with)g(the)g(inclusion)g(map)f Fs(j)k Fy(:)35 b(Eq)q(\()p Fs(f)5 b(;)17 b(g)t Fy(\))35 b Ft(\000)-57 b(!)35 b Fs(A)k Fu(satis\014es)g(the)g(fol)5 b(lowing)38 b(universal)0 5270 y(pr)-5 b(op)g(erty:)p Black 223 5417 a Ft(\017)p Black 42 w Fs(f)32 b Ft(\016)22 b Fs(j)34 b Fy(=)28 b Fs(g)d Ft(\016)d Fs(j)6 b Fu(;)p Black Black eop end %%Page: 62 62 TeXDict begin 62 61 bop Black 0 -99 a Fw(62)1077 b(Represen)n(table)25 b(functors)h(and)g(the)f(Y)-6 b(oneda)25 b(Lemma)p Black Black 223 100 a Ft(\017)p Black 42 w Fu(for)34 b(every)g(set)h Fs(T)48 b Fu(and)34 b(every)h(map)f Fs(h)28 b Fy(:)f Fs(T)42 b Ft(\000)-57 b(!)27 b Fs(A)p Fu(,)35 b(such)f(that)h Fs(f)d Ft(\016)22 b Fs(h)27 b Fy(=)h Fs(g)d Ft(\016)c Fs(h)p Fu(,)35 b(ther)-5 b(e)34 b(is)h(a)f(unique)315 217 y(map)g Fs(k)d Fy(:)c Fs(B)33 b Ft(\000)-57 b(!)27 b Fy(Eq)q(\()p Fs(f)5 b(;)17 b(g)t Fy(\))34 b Fu(such)h(that)g(the)g (diagr)-5 b(am)1357 952 y Fy(Eq)q(\()p Fs(f)5 b(;)17 b(g)t Fy(\))280 b Fs(A)p 1727 929 224 4 v 1868 927 a Fo(-)1815 888 y Fs(j)2463 952 y(B)p 2081 899 354 4 v 2352 897 a Fo(-)2228 859 y Fs(f)p 2081 958 V 2352 956 a Fo(-)2232 1018 y Fs(g)1980 473 y(T)1657 718 y(k)1864 591 y Fo(\000)1781 674 y(\000)1698 757 y(\000)1615 840 y(\000)1596 859 y(\000)-83 b(\011)p 2014 859 4 351 v 336 w(?)2054 718 y Fs(h)315 1270 y Fu(c)-5 b(ommutes,)34 b(i.e.)44 b Fs(j)28 b Ft(\016)22 b Fs(k)31 b Fy(=)c Fs(h)p Fu(.)p Black 0 1510 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(W)d(e)31 b(\014rst)h(sho)m(w)g(the)f(uniqueness)i(of)e(the)g(map)g Fs(k)g Fy(:)c Fs(T)42 b Ft(\000)-60 b(!)28 b Fy(Eq\()p Fs(f)5 b(;)17 b(g)t Fy(\):)42 b(Supp)s(ose)32 b(that)f Fs(j)i Fy(:)28 b(Eq)q(\()p Fs(f)5 b(;)17 b(g)t Fy(\))0 1627 y Ft(\000)-60 b(!)36 b Fs(A)i Fy(is)g(the)h(inclusion)g(function:) 54 b Fs(j)6 b Fy(\()p Fs(a)p Fy(\))37 b(=)f Fs(a)i Fy(for)f Fs(a)f Ft(2)h Fy(Eq)q(\()p Fs(f)5 b(;)17 b(g)t Fy(\).)58 b(Giv)m(en)39 b Fs(T)51 b Fy(and)38 b Fs(h)p Fy(.)59 b(If)38 b Fs(k)s(;)17 b(k)3553 1590 y Fq(0)3612 1627 y Fy(:)37 b Fs(T)50 b Ft(\000)-60 b(!)0 1743 y Fy(Eq)q(\()p Fs(f)5 b(;)17 b(g)t Fy(\))26 b(are)h(maps)h(suc)m(h)h(that)e Fs(j)17 b Ft(\016)11 b Fs(k)31 b Fy(=)d Fs(h)g Fy(=)f Fs(j)17 b Ft(\016)11 b Fs(k)1859 1707 y Fq(0)1910 1743 y Fy(then)28 b(for)f(an)m(y)h Fs(t)g Ft(2)g Fs(T)41 b Fy(w)m(e)28 b(ha)m(v)m(e)h Fs(k)s Fy(\()p Fs(t)p Fy(\))e(=:)h Fs(a)g Ft(2)g Fy(Eq)q(\()p Fs(f)5 b(;)17 b(g)t Fy(\))0 1859 y(and)27 b Fs(k)238 1823 y Fq(0)262 1859 y Fy(\()p Fs(t)p Fy(\))g(=:)h Fs(a)582 1823 y Fq(0)633 1859 y Ft(2)g Fy(Eq)q(\()p Fs(f)5 b(;)17 b(g)t Fy(\).)41 b(Then)28 b(w)m(e)h(get)e Fs(a)h Fy(=)f Fs(j)6 b Fy(\()p Fs(a)p Fy(\))28 b(=)f(\()p Fs(j)17 b Ft(\016)11 b Fs(k)s Fy(\)\()p Fs(t)p Fy(\))28 b(=)g Fs(h)p Fy(\()p Fs(t)p Fy(\))g(=)f(\()p Fs(j)17 b Ft(\016)11 b Fs(k)3167 1823 y Fq(0)3191 1859 y Fy(\)\()p Fs(t)p Fy(\))27 b(=)h Fs(j)6 b Fy(\()p Fs(a)3606 1823 y Fq(0)3629 1859 y Fy(\))28 b(=)f Fs(a)3849 1823 y Fq(0)3873 1859 y Fy(,)0 1975 y(hence)34 b Fs(k)s Fy(\()p Fs(t)p Fy(\))28 b(=)f Fs(a)h Fy(=)g Fs(h)p Fy(\()p Fs(t)p Fy(\))g(=)f Fs(a)1099 1939 y Fq(0)1150 1975 y Fy(=)h Fs(k)1308 1939 y Fq(0)1331 1975 y Fy(\()p Fs(t)p Fy(\))33 b(and)g Fs(k)d Fy(=)e Fs(k)1904 1939 y Fq(0)1927 1975 y Fy(.)44 b(This)34 b(sho)m(ws)g(the)f(uniqueness)i(of)d(the)h(map)g Fs(k)s Fy(.)0 2092 y(Existence:)49 b(F)-8 b(rom)34 b(the)h(uniqueness)i (pro)s(of)c(w)m(e)i(obtain)f(a)g(reasonable)h(de\014nition)g(of)f Fs(k)s Fy(.)48 b(F)-8 b(or)34 b Fs(t)c Ft(2)h Fs(T)48 b Fy(w)m(e)0 2208 y(de\014ne)27 b Fs(k)s Fy(\()p Fs(t)p Fy(\))g(:=)h Fs(h)p Fy(\()p Fs(t)p Fy(\).)41 b(This)27 b(is)f(a)f(map)g(from)g Fs(T)39 b Fy(to)25 b(Eq)q(\()p Fs(f)5 b(;)17 b(g)t Fy(\))25 b(since)h Fs(h)p Fy(\()p Fs(t)p Fy(\))g(satis\014es)h Fs(f)11 b Fy(\()p Fs(h)p Fy(\()p Fs(t)p Fy(\)\))28 b(=)f(\()p Fs(f)18 b Ft(\016)7 b Fs(h)p Fy(\)\()p Fs(t)p Fy(\))28 b(=)0 2324 y(\()p Fs(g)d Ft(\016)d Fs(h)p Fy(\)\()p Fs(t)p Fy(\))28 b(=)g Fs(g)t Fy(\()p Fs(h)p Fy(\()p Fs(t)p Fy(\)\).)43 b(Then)33 b(w)m(e)h(get)e Fs(j)d Ft(\016)22 b Fs(k)30 b Fy(=)e Fs(h)p Fy(.)1971 b Fg(\003)0 2632 y Fy(Ob)m(viously)41 b(an)m(y)f(pair)f(\()p Fs(E)6 b(;)17 b(\023)p Fy(\))39 b(isomorphic)h(to)f(\(Eq\()p Fs(f)5 b(;)17 b(g)t Fy(\))p Fs(;)g(j)6 b Fy(\))38 b(satis\014es)j(the)e(same)h(univ)m(ersal)h(prop) s(ert)m(y)-8 b(.)0 2748 y(In)33 b(fact)f(giv)m(en)i(an)e(isomorphism)j Fs(i)28 b Fy(:)f Fs(E)34 b Ft(\000)-60 b(!)28 b Fy(Eq)q(\()p Fs(f)5 b(;)17 b(g)t Fy(\))31 b(suc)m(h)j(that)1584 3483 y(Eq)q(\()p Fs(f)5 b(;)17 b(g)t Fy(\))279 b Fs(A)p 1953 3460 224 4 v 2094 3458 a Fo(-)2042 3420 y Fs(j)2203 3005 y(E)1905 3247 y(i)2091 3122 y Fo(\000)2008 3205 y(\000)1925 3288 y(\000)1842 3371 y(\000)1823 3390 y(\000)-83 b(\011)p 2240 3390 4 351 v 336 w(?)2281 3236 y Fs(\023)0 3742 y Fy(comm)m(utes.)65 b(Let)39 b Fs(T)53 b Fy(b)s(e)39 b(a)f(set)i(and)f Fs(h)g Fy(:)g Fs(T)52 b Ft(\000)-60 b(!)39 b Fs(A)g Fy(b)s(e)g(a)g(map)g(suc)m(h)h(that)f Fs(f)e Ft(\016)27 b Fs(h)38 b Fy(=)h Fs(g)30 b Ft(\016)c Fs(h)p Fy(.)63 b(Let)39 b Fs(k)j Fy(:)c Fs(T)0 3858 y Ft(\000)-60 b(!)40 b Fy(Eq)q(\()p Fs(f)5 b(;)17 b(g)t Fy(\))39 b(b)s(e)i(the)f(unique)i(map)e(that)g(satis\014es)h Fs(j)33 b Ft(\016)27 b Fs(k)44 b Fy(=)c Fs(h)p Fy(.)66 b(Then)41 b(the)g(map)f Fs(i)3193 3822 y Fq(\000)p Fr(1)3315 3858 y Ft(\016)27 b Fs(k)43 b Fy(:)d Fs(T)55 b Ft(\000)-60 b(!)40 b Fs(E)0 3974 y Fy(satis\014es)30 b Fs(\023)13 b Ft(\016)g Fy(\()p Fs(i)536 3938 y Fq(\000)p Fr(1)644 3974 y Ft(\016)g Fs(k)s Fy(\))28 b(=)g Fs(j)19 b Ft(\016)13 b Fs(i)g Ft(\016)g Fs(i)1195 3938 y Fq(\000)p Fr(1)1303 3974 y Ft(\016)g Fs(k)31 b Fy(=)c Fs(j)20 b Ft(\016)13 b Fs(k)30 b Fy(=)e Fs(h)p Fy(.)42 b(It)28 b(is)h(an)f(easy)h(exercise)i (to)d(sho)m(w)h(that)f(this)h(map)f(is)0 4091 y(unique)35 b(with)f(this)h(prop)s(ert)m(y)-8 b(.)47 b(So)33 b(the)h(univ)m(ersal)i (prop)s(ert)m(y)e(giv)m(en)h(in)f(the)g(theorem)g(satis\014es)h(the)f (\014rst)0 4207 y(prop)s(ert)m(y)41 b(of)f(the)h(extension)i (principle.)68 b(T)-8 b(o)41 b(de\014ne)h(the)e(extension)j(of)d(the)h (prop)s(ert)m(y)g(for)f(arbitrary)0 4323 y(categories)33 b(w)m(e)h(use)g(again)e(the)h(sp)s(ecial)g(description)h(of)e (equalizers)j(in)e(sets)h(as)e(a)h(subsets)h(of)e Fs(A)p Fy(.)0 4439 y(In)38 b(arbitrary)g(categories)h(w)m(e)g(cannot)f (construct)g(an)g(equalizer)i(of)d(t)m(w)m(o)i(morphisms)g(since)g (there)g(are)0 4555 y(no)32 b(elemen)m(ts)j(and)d(w)m(e)h(th)m(us)g (cannot)g(construct)g(the)g(set)g(of)e(those)i(elemen)m(ts)i(on)d(whic) m(h)i(the)e(t)m(w)m(o)h(maps)0 4672 y(coincide.)45 b(But)33 b(the)g(extension)h(principle)g(2.3.1)e(\(2\))g(pro)m(vides)j(the)e (follo)m(wing)f(de\014nition.)p Black 0 4912 a(2.8.3.)d Fv(De\014nition.)p Black 40 w Fy(Let)h Fs(A)g Fy(and)f Fs(B)35 b Fy(b)s(e)30 b(ob)5 b(jects)31 b(in)f(a)f(category)h Ft(C)36 b Fy(and)29 b Fs(f)5 b(;)17 b(g)31 b Fy(:)d Fs(A)g Ft(\000)-60 b(!)28 b Fs(B)34 b Fy(b)s(e)c(morphisms.)0 5028 y(An)43 b(ob)5 b(ject)43 b(Eq)q(\()p Fs(f)5 b(;)17 b(g)t Fy(\))41 b(together)i(with)g(a)f(morphisms)i Fs(\023)h Fy(:)g(Eq\()p Fs(f)5 b(;)17 b(g)t Fy(\))44 b Ft(\000)-60 b(!)44 b Fs(A)f Fy(is)g(called)g(a)f Fu(\(c)-5 b(ate)g(goric)g(al\))0 5145 y(e)g(qualizer)32 b Fy(of)g Fs(f)43 b Fy(and)33 b Fs(g)t Fy(,)f(if)g(for)g(all)h(ob)5 b(jects)34 b Fs(T)46 b Fy(in)33 b Ft(C)38 b Fy(there)c(is)f(an)f(isomorphism)i(of)f(sets)873 5417 y Fs(i)28 b Fy(:)g(Mor)1165 5432 y Fq(C)1210 5417 y Fy(\()p Fs(T)8 b(;)17 b Fy(Eq)q(\()p Fs(f)5 b(;)17 b(g)t Fy(\)\))1763 5390 y Ft(\030)1764 5421 y Fy(=)1869 5417 y(Eq\(Mor)2200 5432 y Fq(C)2246 5417 y Fy(\()p Fs(T)8 b(;)17 b(f)11 b Fy(\))p Fs(;)17 b Fy(Mor)2709 5432 y Fq(C)2754 5417 y Fy(\()p Fs(T)8 b(;)17 b(g)t Fy(\)\))p Black Black eop end %%Page: 63 63 TeXDict begin 63 62 bop Black 1777 -99 a Fw(Equalizers)1702 b(63)p Black 0 100 a Fy(\(where)42 b(Eq)q(\(Mor)660 115 y Fq(C)705 100 y Fy(\()p Fs(T)8 b(;)17 b(f)11 b Fy(\))p Fs(;)17 b Fy(Mor)1169 115 y Fq(C)1214 100 y Fy(\()p Fs(T)8 b(;)17 b(g)t Fy(\)\))40 b(is)i(the)g(set-theoretic)g(equalizer)h(from)e (2.8.1\))g(suc)m(h)h(that)g(the)0 217 y(diagram)933 821 y(Eq)q(\(Mor)1265 836 y Fq(C)1310 821 y Fy(\()p Fs(T)8 b(;)17 b(f)11 b Fy(\))p Fs(;)17 b Fy(Mor)1774 836 y Fq(C)1819 821 y Fy(\()p Fs(T)8 b(;)17 b(g)t Fy(\)\))163 b(Mor)2432 836 y Fq(C)2478 821 y Fy(\()p Fs(T)8 b(;)17 b(A)p Fy(\))p 2121 798 99 4 v 2137 796 a Fo(-)2147 880 y Fs(j)2114 333 y Fy(Mor)2290 348 y Fq(C)2335 333 y Fy(\()p Fs(T)8 b(;)17 b Fy(Eq)q(\()p Fs(f)5 b(;)17 b(g)t Fy(\)\))p 2486 728 4 351 v 2488 728 a Fo(?)2527 577 y Fy(Mor)2703 592 y Fq(C)2748 577 y Fy(\()p Fs(T)8 b(;)17 b(\023)p Fy(\))1905 585 y Fs(i)2268 418 y Fo(\010)2185 460 y(\010)2102 501 y(\010)2019 543 y(\010)1936 584 y(\010)1853 626 y(\010)1770 667 y(\010)1687 709 y(\010)1649 728 y(\010)-83 b(\031)0 1003 y Fy(comm)m(utes.)0 1186 y(F)-8 b(requen)m(tly)g(,)37 b(Eq\()p Fs(f)5 b(;)17 b(g)t Fy(\))34 b(is)h(referred)g(to)f(as)h(an)f (equalizer)i(of)e Fs(f)45 b Fy(and)35 b Fs(g)i Fy(without)e(referring)g (to)f Fs(j)6 b Fy(.)49 b(Nev)m(er-)0 1302 y(theless,)35 b Fs(j)j Fy(is)33 b(a)f(crucial)i(part)e(of)g(the)h(data.)2369 b(18.06.04)p Black 0 1485 a(2.8.4.)27 b Fv(Prop)s(osition)32 b Fy(\()p Fv(Characterization)g(of)g(equalizers)h(b)m(y)e(the)h(univ)m (ersal)h(mapping)g(prop-)0 1601 y(ert)m(y\).)p Black 45 w Fu(Given)43 b(obje)-5 b(cts)42 b Fs(A)h Fu(and)f Fs(B)48 b Fu(and)42 b(morphisms)f Fs(f)5 b(;)17 b(g)46 b Fy(:)c Fs(A)h Ft(\000)-57 b(!)42 b Fs(B)47 b Fu(in)c(a)g(c)-5 b(ate)g(gory)42 b Ft(C)6 b Fu(.)69 b(A)n(n)42 b(obje)-5 b(ct)0 1717 y Fs(E)44 b Fu(to)-5 b(gether)39 b(with)f(a)g(morphism)f Fs(\023)e Fy(:)f Fs(E)41 b Ft(\000)-57 b(!)33 b Fs(A)39 b Fu(is)f(a)g(\(c)-5 b(ate)g(goric)g(al\))38 b(e)-5 b(qualizer,)38 b(if)g(and)g(only)g(if)g(for)h(e)-5 b(ach)0 1833 y(obje)g(ct)39 b Fs(T)50 b Ft(2)36 b(C)45 b Fu(and)39 b(e)-5 b(ach)39 b(morphism)f Fs(h)e Fy(:)g Fs(T)50 b Ft(\000)-58 b(!)36 b Fs(A)j Fu(such)h(that)f(such)g(that)h Fs(f)c Ft(\016)26 b Fs(h)36 b Fy(=)f Fs(g)29 b Ft(\016)c Fs(h)p Fu(,)41 b(ther)-5 b(e)39 b(is)g(a)0 1950 y(unique)c(map)f Fs(k)d Fy(:)d Fs(B)k Ft(\000)-57 b(!)28 b Fs(E)41 b Fu(such)34 b(that)h(the)g(diagr)-5 b(am)1424 2587 y Fs(E)417 b(A)p 1531 2555 354 4 v 1802 2553 a Fo(-)1690 2535 y Fs(\023)2398 2587 y(B)p 2015 2525 V 2286 2523 a Fo(-)2162 2485 y Fs(f)p 2015 2584 V 2286 2582 a Fo(-)2167 2644 y Fs(g)1915 2100 y(T)1592 2344 y(k)1799 2217 y Fo(\000)1716 2300 y(\000)1633 2383 y(\000)1550 2466 y(\000)1531 2485 y(\000)-83 b(\011)p 1948 2485 4 351 v 336 w(?)1989 2344 y Fs(h)0 2795 y Fu(c)-5 b(ommutes,)34 b(i.e.)45 b Fs(\023)22 b Ft(\016)g Fs(k)31 b Fy(=)c Fs(h)p Fu(.)p Black 0 2977 a(Pr)-5 b(o)g(of.)p Black 41 w Ft(\()-17 b Fy(=:)43 b(Let)g(\()p Fs(E)6 b(;)17 b(\023)p Fy(\))42 b(b)s(e)h(an)g(equalizer)h(of)e Fs(f)53 b Fy(and)43 b Fs(g)t Fy(.)73 b(Let)43 b Fs(T)56 b Fy(b)s(e)43 b(an)g(ob)5 b(ject)43 b(in)g Ft(C)49 b Fy(and)43 b(let)g Fs(k)48 b Ft(2)0 3094 y Fy(Mor)176 3109 y Fq(C)221 3094 y Fy(\()p Fs(T)8 b(;)17 b(E)6 b Fy(\).)80 b(De\014ne)45 b Fs(h)j Fy(:=)g Fs(\023)31 b Ft(\016)f Fs(k)51 b Fy(:)e Fs(T)62 b Ft(\000)-60 b(!)48 b Fs(A)p Fy(.)79 b(Then)46 b Fs(f)41 b Ft(\016)30 b Fs(h)49 b Fy(=)f Fs(f)41 b Ft(\016)30 b Fs(\023)h Ft(\016)f Fs(k)51 b Fy(=)d Fs(g)34 b Ft(\016)c Fs(\023)h Ft(\016)f Fs(k)51 b Fy(=)d Fs(g)34 b Ft(\016)c Fs(h)0 3210 y Fy(and)37 b(th)m(us)i(Mor)590 3225 y Fq(C)635 3210 y Fy(\()p Fs(T)8 b(;)17 b(f)11 b Fy(\)\()p Fs(h)p Fy(\))35 b(=)h(Mor)1334 3225 y Fq(C)1379 3210 y Fy(\()p Fs(T)8 b(;)17 b(g)t Fy(\)\()p Fs(h)p Fy(\))37 b(so)g(that)g Fs(h)f Ft(2)h Fy(Eq)q(\(Mor)2651 3225 y Fq(C)2696 3210 y Fy(\()p Fs(T)8 b(;)17 b(f)11 b Fy(\))p Fs(;)17 b Fy(Mor)3159 3225 y Fq(C)3204 3210 y Fy(\()p Fs(T)8 b(;)17 b(g)t Fy(\)\).)57 b(No)m(w)38 b(w)m(e)0 3326 y(can)43 b(de\014ne)i Fs(i)p Fy(\()p Fs(k)s Fy(\))h(:=)g Fs(h)g Ft(2)g Fy(Eq)q(\(Mor)1386 3341 y Fq(C)1431 3326 y Fy(\()p Fs(T)8 b(;)17 b(f)11 b Fy(\))p Fs(;)17 b Fy(Mor)1894 3341 y Fq(C)1939 3326 y Fy(\()p Fs(T)8 b(;)17 b(g)t Fy(\)\))43 b(and)g(get)g(Mor)2805 3341 y Fq(C)2850 3326 y Fy(\()p Fs(T)8 b(;)17 b(\023)p Fy(\)\()p Fs(k)s Fy(\))46 b(=)g Fs(\023)30 b Ft(\016)f Fs(k)49 b Fy(=)d Fs(h)g Ft(2)0 3442 y Fy(Eq)q(\(Mor)332 3457 y Fq(C)377 3442 y Fy(\()p Fs(T)8 b(;)17 b(f)11 b Fy(\))p Fs(;)17 b Fy(Mor)840 3457 y Fq(C)885 3442 y Fy(\()p Fs(T)8 b(;)17 b(g)t Fy(\)\).)0 3559 y(It)33 b(remains)g(to)g(sho)m(w)g (that)g Fs(i)f Fy(is)h(bijectiv)m(e.)46 b(W)-8 b(e)33 b(construct)h(the)f(in)m(v)m(erse)i(map)676 3730 y Fs(u)27 b Fy(:)h(Eq)q(\(Mor)1146 3745 y Fq(C)1191 3730 y Fy(\()p Fs(T)8 b(;)17 b(f)11 b Fy(\))p Fs(;)17 b Fy(Mor)1654 3745 y Fq(C)1699 3730 y Fy(\()p Fs(T)8 b(;)17 b(g)t Fy(\)\))27 b Ft(\000)-59 b(!)27 b Fy(Mor)2321 3745 y Fq(C)2366 3730 y Fy(\()p Fs(T)8 b(;)17 b(E)6 b Fy(\))195 b Fs(u)p Fy(\()p Fs(h)p Fy(\))27 b(:=)h Fs(k)0 3901 y Fy(where)36 b Fs(h)c Ft(2)g Fy(Eq)q(\(Mor)802 3916 y Fq(C)847 3901 y Fy(\()p Fs(T)8 b(;)17 b(f)11 b Fy(\))p Fs(;)17 b Fy(Mor)1310 3916 y Fq(C)1355 3901 y Fy(\()p Fs(T)8 b(;)17 b(g)t Fy(\)\))34 b(implies)i(Mor)2173 3916 y Fq(C)2218 3901 y Fy(\()p Fs(T)8 b(;)17 b(f)11 b Fy(\)\()p Fs(h)p Fy(\))31 b(=)g(Mor)2908 3916 y Fq(C)2953 3901 y Fy(\()p Fs(T)8 b(;)17 b(f)11 b Fy(\)\()p Fs(h)p Fy(\).)50 b(By)36 b(the)f(uni-)0 4017 y(v)m(ersal)c(prop)s(ert)m(y)f(of)g(the)g(equalizer)h(there)f(is)g(a)g (unique)h Fs(k)g Fy(:)c Fs(T)42 b Ft(\000)-60 b(!)28 b Fs(L)i Fy(suc)m(h)h(that)e Fs(\023)16 b Ft(\016)g Fs(k)31 b Fy(=)d Fs(h)p Fy(.)43 b(W)-8 b(e)30 b(use)g(this)0 4134 y Fs(k)36 b Fy(for)c(the)h(de\014nition)g(of)f(the)h(map)g Fs(u)p Fy(.)0 4250 y(Let)41 b Fs(h)g Ft(2)h Fy(Eq)q(\(Mor)720 4265 y Fq(C)765 4250 y Fy(\()p Fs(T)8 b(;)17 b(f)11 b Fy(\))p Fs(;)17 b Fy(Mor)1228 4265 y Fq(C)1273 4250 y Fy(\()p Fs(T)8 b(;)17 b(g)t Fy(\)\).)67 b(Then)42 b(\()p Fs(i)27 b Ft(\016)h Fs(u)p Fy(\)\()p Fs(h)p Fy(\))41 b(=)g Fs(i)p Fy(\()p Fs(k)s Fy(\))g(=)g Fs(\023)29 b Ft(\016)e Fs(k)44 b Fy(=)e Fs(h)e Fy(hence)i(\()p Fs(i)28 b Ft(\016)f Fs(u)p Fy(\))41 b(=)0 4366 y(1)49 4382 y Fr(Eq\(Mor)289 4393 y Fl(C)329 4382 y Fr(\()p Fp(T)6 b(;f)h Fr(\))p Fp(;)p Fr(Mor)639 4393 y Fl(C)679 4382 y Fr(\()p Fp(T)f(;g)r Fr(\)\))868 4366 y Fy(.)0 4482 y(Let)33 b Fs(k)e Ft(2)d Fy(Mor)527 4497 y Fq(C)572 4482 y Fy(\()p Fs(T)8 b(;)17 b(E)6 b Fy(\).)43 b(Then)34 b(\()p Fs(u)22 b Ft(\016)g Fs(i)p Fy(\)\()p Fs(k)s Fy(\))27 b(=)h Fs(u)p Fy(\()p Fs(h)p Fy(\))f(=)h Fs(u)p Fy(\()p Fs(\023)22 b Ft(\016)g Fs(k)s Fy(\))27 b(=)h Fs(k)2498 4446 y Fq(0)2554 4482 y Fy(where)34 b Fs(k)2890 4446 y Fq(0)2941 4482 y Fy(:)28 b Fs(T)41 b Ft(\000)-60 b(!)28 b Fs(E)38 b Fy(is)33 b(the)g(unique)0 4599 y(morphism)h(suc)m(h)g(that) e Fs(\023)23 b Ft(\016)f Fs(k)1070 4562 y Fq(0)1121 4599 y Fy(=)27 b Fs(\023)c Ft(\016)f Fs(k)35 b Fy(hence)f Fs(k)d Fy(=)d Fs(k)1950 4562 y Fq(0)2006 4599 y Fy(and)k(\()p Fs(u)22 b Ft(\016)g Fs(i)p Fy(\))28 b(=)f(1)2634 4614 y Fr(Mor)2761 4625 y Fl(C)2802 4614 y Fr(\()p Fp(T)6 b(;E)t Fr(\))2983 4599 y Fy(.)0 4715 y(=)-17 b Ft(\))p Fy(:)63 b(If)42 b Fs(h)i Fy(:)g Fs(T)58 b Ft(\000)-59 b(!)43 b Fs(A)g Fy(is)f(a)g(morphism)i(in)e Ft(C)49 b Fy(suc)m(h)43 b(that)f Fs(f)e Ft(\016)28 b Fs(h)44 b Fy(=)g Fs(g)32 b Ft(\016)d Fs(h)p Fy(.)73 b(Then)43 b Fs(h)f Fy(is)h(an)f(elemen)m(t)0 4831 y(of)d(Eq)q(\(Mor)450 4846 y Fq(C)495 4831 y Fy(\()p Fs(T)8 b(;)17 b(f)11 b Fy(\))p Fs(;)17 b Fy(Mor)959 4846 y Fq(C)1004 4831 y Fy(\()p Fs(T)8 b(;)17 b(g)t Fy(\)\),)40 b(since)h(Mor)1767 4846 y Fq(C)1812 4831 y Fy(\()p Fs(T)8 b(;)17 b(f)11 b Fy(\)\()p Fs(h)p Fy(\))40 b(=)f(Mor)2519 4846 y Fq(C)2564 4831 y Fy(\()p Fs(T)8 b(;)17 b(g)t Fy(\)\()p Fs(h)p Fy(\).)64 b(So)40 b(there)g(is)g(a)f(unique)0 4947 y(morphism)31 b Fs(k)g Fy(:=)d Fs(i)699 4911 y Fq(\000)p Fr(1)793 4947 y Fy(\()p Fs(h)p Fy(\))i(satisfying)h(\()p Fs(j)23 b Ft(\016)17 b Fs(i)p Fy(\)\()p Fs(k)s Fy(\))28 b(=)f Fs(h)j Fy(or)g(Mor)2266 4962 y Fq(C)2311 4947 y Fy(\()p Fs(T)8 b(;)17 b(\023)p Fy(\)\()p Fs(k)s Fy(\))28 b(=)g Fs(h)i Fy(or)f Fs(\023)18 b Ft(\016)e Fs(k)31 b Fy(=)d Fs(h)p Fy(.)42 b(Th)m(us)32 b(\()p Fs(E)6 b(;)17 b(\023)p Fy(\))0 5063 y(is)33 b(an)g(equalizer)h(of)e Fs(f)43 b Fy(and)33 b Fs(g)t Fy(.)2710 b Fg(\003)p Black 0 5246 a Fy(2.8.5.)32 b Fv(Prop)s(osition.)p Black 42 w Fu(The)i(family)h(of)f(isomorphisms) 824 5417 y Fs(i)857 5432 y Fp(T)940 5417 y Fy(:)28 b(Mor)1171 5432 y Fq(C)1216 5417 y Fy(\()p Fs(T)8 b(;)17 b Fy(Eq)q(\()p Fs(f)5 b(;)17 b(g)t Fy(\)\))27 b Ft(\000)-57 b(!)27 b Fy(Eq)q(\(Mor)2249 5432 y Fq(C)2294 5417 y Fy(\()p Fs(T)8 b(;)17 b(f)11 b Fy(\))p Fs(;)17 b Fy(Mor)2757 5432 y Fq(C)2803 5417 y Fy(\()p Fs(T)8 b(;)17 b(g)t Fy(\)\))p Black Black eop end %%Page: 64 64 TeXDict begin 64 63 bop Black 0 -99 a Fw(64)1077 b(Represen)n(table)25 b(functors)h(and)g(the)f(Y)-6 b(oneda)25 b(Lemma)p Black 0 100 a Fu(such)35 b(that)933 692 y Fy(Eq)q(\(Mor)1265 707 y Fq(C)1310 692 y Fy(\()p Fs(T)8 b(;)17 b(f)11 b Fy(\))p Fs(;)17 b Fy(Mor)1774 707 y Fq(C)1819 692 y Fy(\()p Fs(T)8 b(;)17 b(g)t Fy(\)\))163 b(Mor)2432 707 y Fq(C)2478 692 y Fy(\()p Fs(T)8 b(;)17 b(A)p Fy(\))p 2121 669 99 4 v 2137 667 a Fo(-)2147 752 y Fs(j)2114 205 y Fy(Mor)2290 220 y Fq(C)2335 205 y Fy(\()p Fs(T)8 b(;)17 b Fy(Eq)q(\()p Fs(f)5 b(;)17 b(g)t Fy(\)\))p 2486 599 4 351 v 2488 599 a Fo(?)2527 449 y Fy(Mor)2703 464 y Fq(C)2748 449 y Fy(\()p Fs(T)8 b(;)17 b(\023)p Fy(\))1905 456 y Fs(i)2268 290 y Fo(\010)2185 331 y(\010)2102 373 y(\010)2019 414 y(\010)1936 456 y(\010)1853 497 y(\010)1770 539 y(\010)1687 580 y(\010)1649 599 y(\010)-83 b(\031)0 896 y Fu(c)-5 b(ommute)34 b(for)h(al)5 b(l)35 b(obje)-5 b(cts)34 b Fs(T)49 b Fu(in)34 b Ft(C)6 b Fu(,)35 b(is)g(a)f(natur)-5 b(al)35 b(isomorphism)e(in)i Fs(T)49 b Fu(and)34 b(morphisms)f(of)i Fy(\()p Fs(f)5 b(;)17 b(g)t Fy(\))p Fu(.)p Black 0 1082 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(is)33 b(similar)h(to)e(the)h(pro)s(of)e(of)i(Prop)s (osition)f(2.7.5.)1701 b Fg(\003)p Black 0 1269 a Fy(2.8.6.)27 b Fv(Examples.)p Black 38 w Fy(\(1\))g(In)h Fv(Set)o Fy(,)h(an)e(equalizer)h Fs(E)33 b Fy(of)27 b(the)h(functions)g(\()p Fs(x;)17 b(y)t Fy(\))26 b Ft(7!)i Fs(x)3031 1233 y Fr(2)3082 1269 y Fy(+)11 b Fs(y)3221 1233 y Fr(2)3286 1269 y Fy(and)27 b(\()p Fs(x;)17 b(y)t Fy(\))27 b Ft(7!)g Fy(1)0 1385 y(from)32 b Fm(R)22 b Ft(\002)h Fm(R)33 b Fy(to)f Fm(R)g Fy(is)h(the)g(circle)h Fs(x)1328 1349 y Fr(2)1390 1385 y Fy(+)22 b Fs(y)1540 1349 y Fr(2)1606 1385 y Fy(=)28 b(1.)43 b(The)34 b(arro)m(w)e Fs(j)i Fy(:)28 b Fs(E)33 b Ft(\000)-59 b(!)27 b Fm(R)22 b Ft(\002)h Fm(R)32 b Fy(is)h(the)g(inclusion.)0 1502 y(\(2\))38 b(Giv)m(en)h(a)f(graph)g Fs(G)g Fy(,)i(the)f(inclusion)h(of)e(the)g(set)h(of)f(lo)s(ops)g(in)h (the)g(graph)f(is)h(an)f(equalizer)i(of)e(the)0 1618 y(source)c(and)e(target)h(functions.)44 b(This)34 b(equalizer)g(will)f (b)s(e)g(empt)m(y)h(if)e(the)h(graph)g(has)g(no)f(lo)s(ops.)0 1805 y(A)h(theorem)g(lik)m(e)h(2.7.6)e(is)h(true)g(of)f(equalizers)j (as)d(w)m(ell.)p Black 0 1991 a(2.8.7.)38 b Fv(Prop)s(osition.)p Black 45 w Fu(If)h Fs(j)k Fy(:)38 b Fs(E)43 b Ft(\000)-57 b(!)37 b Fs(A)j Fu(and)g Fs(j)1791 1955 y Fq(0)1851 1991 y Fy(:)e Fs(E)1994 1955 y Fq(0)2055 1991 y Ft(\000)-58 b(!)37 b Fs(A)k Fu(ar)-5 b(e)39 b(b)-5 b(oth)40 b(e)-5 b(qualizers)40 b(of)g Fs(f)5 b(;)17 b(g)40 b Fy(:)e Fs(A)f Ft(\000)-57 b(!)37 b Fs(B)5 b Fu(,)0 2108 y(then)35 b(ther)-5 b(e)35 b(is)f(a)h(unique)g(isomorphism)e Fs(i)28 b Fy(:)f Fs(E)34 b Ft(\000)-57 b(!)27 b Fs(E)1983 2071 y Fq(0)2042 2108 y Fu(for)34 b(which)g Fs(j)2517 2071 y Fq(0)2563 2108 y Ft(\016)22 b Fs(i)28 b Fy(=)f Fs(j)6 b Fu(.)p Black 0 2294 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(W)d(e)40 b(giv)m(e)g(t)m(w)m(o)g(pro)s(ofs.)63 b(The)41 b(\014rst)f(uses)g(the)g (concept)g(of)f(univ)m(ersal)i(elemen)m(t.)66 b(Let)39 b Ft(C)46 b Fy(b)s(e)40 b(the)0 2410 y(category)46 b(con)m(taining)g (the)g(equalizers)i(giv)m(en.)83 b(Let)46 b Ft(F)59 b Fy(:)50 b Ft(C)2320 2374 y Fp(op)2444 2410 y Ft(\000)-60 b(!)50 b Fv(Set)45 b Fy(b)s(e)h(the)g(functor)f(for)g(whic)m(h)0 2527 y Ft(F)10 b Fy(\()p Fs(C)d Fy(\))27 b(=)h Ft(f)p Fs(u)f Fy(:)g Fs(C)35 b Ft(\000)-60 b(!)28 b Fs(A)p Ft(j)p Fs(f)22 b Ft(\016)11 b Fs(u)27 b Fy(=)g Fs(g)15 b Ft(\016)c Fs(u)p Ft(g)p Fy(,)28 b(the)g(set)g(of)e(arro)m(ws)i(from)f Fs(C)34 b Fy(whic)m(h)29 b(equalize)g Fs(f)38 b Fy(and)28 b Fs(g)t Fy(.)40 b(If)28 b Fs(h)g Fy(:)f Fs(D)0 2643 y Ft(\000)-60 b(!)28 b Fs(C)38 b Fy(let)31 b Ft(F)10 b Fy(\()p Fs(h)p Fy(\)\()p Fs(u)p Fy(\))27 b(=)g Fs(u)18 b Ft(\016)h Fs(h)p Fy(.)43 b(This)32 b(mak)m(es)h(sense,)g(b)s(ecause)f (if)f Fs(u)d Ft(2)g Fs(F)14 b Fy(\()p Fs(C)7 b Fy(\),)30 b(then)i Fs(f)e Ft(\016)18 b Fs(u)h Ft(\016)f Fs(h)28 b Fy(=)g Fs(g)22 b Ft(\016)d Fs(u)f Ft(\016)h Fs(h)p Fy(,)0 2759 y(so)33 b Fs(u)21 b Ft(\016)h Fs(h)28 b Ft(2)g Fs(F)14 b Fy(\()p Fs(D)s Fy(\).)0 2875 y(Note)33 b(that)f(this)h(mak)m (es)h Ft(F)42 b Fy(a)33 b(subfunctor)g(of)f(the)h(con)m(tra)m(v)-5 b(arian)m(t)34 b(hom)e(functor)h(Mor\(-)p Fs(;)17 b(A)p Fy(\).)0 2992 y(The)40 b(de\014nition)g(of)e(an)h(equalizer)h(of)f Fs(f)49 b Fy(and)39 b Fs(g)j Fy(can)d(b)s(e)g(restated)h(this)f(w)m(a)m (y:)58 b(an)39 b(equalizer)h(of)e Fs(f)50 b Fy(and)0 3108 y Fs(g)39 b Fy(is)d(an)f(elemen)m(t)j Fs(j)g Ft(2)c(F)10 b Fy(\()p Fs(E)c Fy(\))34 b(for)i(some)g(ob)5 b(ject)36 b Fs(E)42 b Fy(suc)m(h)37 b(that)e(for)g(an)m(y)h Fs(u)d Ft(2)g Fs(F)14 b Fy(\()p Fs(C)7 b Fy(\))35 b(there)h(is)g(a)f(unique)0 3224 y(arro)m(w)h Fs(k)f Fy(:)e Fs(C)40 b Ft(\000)-60 b(!)33 b Fs(E)41 b Fy(suc)m(h)c(that)e Ft(F)10 b Fy(\()p Fs(k)s Fy(\)\()p Fs(j)c Fy(\))32 b(=)h Fs(u)p Fy(.)52 b(This)36 b(means)h Fs(j)k Fy(is)c(a)e(univ)m(ersal)i(elemen)m(t)g(of)f Ft(F)10 b Fy(,)35 b(so)h(b)m(y)0 3340 y(Prop)s(osition)f(2.9.3,)g(an)m (y)h(t)m(w)m(o)f(equalizers)i Fs(j)h Ft(2)32 b Fs(F)14 b Fy(\()p Fs(E)6 b Fy(\))34 b(and)h Fs(j)2292 3304 y Fq(0)2347 3340 y Ft(2)d Fs(F)14 b Fy(\()p Fs(E)2638 3304 y Fq(0)2661 3340 y Fy(\))34 b(are)h(isomorphic)h(b)m(y)g(a)e(unique)0 3457 y(arro)m(w)f Fs(i)28 b Fy(:)f Fs(E)34 b Ft(\000)-59 b(!)27 b Fs(E)718 3420 y Fq(0)774 3457 y Fy(suc)m(h)34 b(that)e Fs(F)14 b Fy(\()p Fs(i)p Fy(\)\()p Fs(j)1475 3420 y Fq(0)1498 3457 y Fy(\))28 b(=)f Fs(j)6 b Fy(.)44 b(That)33 b(is,)g Fs(j)g Fy(=)28 b Fs(j)2376 3420 y Fq(0)2421 3457 y Ft(\016)22 b Fs(i)p Fy(,)33 b(as)g(required.)0 3573 y(Here)i(is)h(a)e(direct)h(pro)s(of)f(not)h(using)g(univ)m(ersal)h (elemen)m(ts:)50 b(the)35 b(fact)g(that)f Fs(f)g Ft(\016)24 b Fs(j)3019 3537 y Fq(0)3073 3573 y Fy(=)31 b Fs(g)c Ft(\016)c Fs(j)3373 3537 y Fq(0)3431 3573 y Fy(implies)37 b(the)0 3689 y(existence)28 b(of)d(a)g(unique)i(arro)m(w)f Fs(h)h Fy(:)h Fs(E)1379 3653 y Fq(0)1430 3689 y Ft(\000)-59 b(!)27 b Fs(E)k Fy(suc)m(h)c(that)e Fs(j)2141 3653 y Fq(0)2192 3689 y Fy(=)j Fs(j)13 b Ft(\016)8 b Fs(h)p Fy(.)41 b(The)26 b(fact)g(that)f Fs(f)18 b Ft(\016)8 b Fs(j)33 b Fy(=)28 b Fs(g)11 b Ft(\016)d Fs(j)30 b Fy(implies)0 3805 y(the)i(existence)h(of)e(a)g(unique)i(arro)m(w)e Fs(h)1414 3769 y Fq(0)1465 3805 y Fy(:)d Fs(E)34 b Ft(\000)-60 b(!)27 b Fs(E)1848 3769 y Fq(0)1903 3805 y Fy(suc)m(h)33 b(that)e Fs(j)i Fy(=)28 b Fs(j)2555 3769 y Fq(0)2597 3805 y Ft(\016)20 b Fs(h)2723 3769 y Fq(0)2746 3805 y Fy(.)43 b(Then)32 b Fs(j)26 b Ft(\016)19 b Fs(h)g Ft(\016)h Fs(h)3405 3769 y Fq(0)3456 3805 y Fy(=)27 b Fs(j)3605 3769 y Fq(0)3648 3805 y Ft(\016)19 b Fs(h)3773 3769 y Fq(0)3824 3805 y Fy(=)0 3921 y Fs(j)34 b Fy(=)27 b Fs(j)c Ft(\016)16 b Fy(1)355 3936 y Fp(E)445 3921 y Fy(and)30 b(the)g(uniqueness)j(part)d(of)f(the)h(de\014nition)h(of)f(equalizer)h (implies)h(that)d Fs(h)17 b Ft(\016)g Fs(h)3447 3885 y Fq(0)3498 3921 y Fy(=)27 b(1)3650 3936 y Fp(E)3710 3921 y Fy(.)42 b(By)0 4038 y(symmetry)-8 b(,)35 b Fs(h)531 4002 y Fq(0)576 4038 y Ft(\016)22 b Fs(h)28 b Fy(=)g(1)885 4053 y Fp(E)941 4034 y Fl(0)966 4038 y Fy(.)2830 b Fg(\003)0 4230 y Fy(W)-8 b(e)33 b(add)g(some)g(more)g(prop)s(erties)g(of)g (monomorphisms)h(and)e(equalizers.)p Black 0 4417 a(2.8.8.)40 b Fv(Prop)s(osition.)p Black 45 w Fu(L)-5 b(et)43 b Fs(j)j Fy(:)41 b Fs(E)47 b Ft(\000)-57 b(!)40 b Fs(A)i Fu(b)-5 b(e)42 b(an)f(e)-5 b(qualizer)41 b(of)h(the)g(p)-5 b(air)41 b(of)h(arr)-5 b(ows)41 b Fs(f)5 b(;)17 b(g)44 b Fy(:)d Fs(A)g Ft(\000)-57 b(!)40 b Fs(B)5 b Fu(.)0 4533 y(Then)40 b Fs(j)47 b Fu(is)40 b(a)h(monomorphism.)60 b(Mor)-5 b(e)g(over,)42 b(any)f(two)g(e)-5 b(qualizers)40 b(of)g Fs(f)52 b Fu(and)40 b Fs(g)k Fu(b)-5 b(elong)40 b(to)h(the)g(same)0 4649 y(sub)-5 b(obje)g(ct)34 b(of)h Fs(A)p Fu(.)p Black 0 4836 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(T)d(o)30 b(see)h(that)f Fs(j)36 b Fy(is)31 b(a)e(monomorphism,)j(supp)s(ose)g Fs(h;)17 b(k)30 b Fy(:)e Fs(C)35 b Ft(\000)-60 b(!)27 b Fs(E)36 b Fy(with)31 b Fs(j)23 b Ft(\016)17 b Fs(h)27 b Fy(=)h Fs(j)23 b Ft(\016)17 b Fs(k)30 b Fy(=)e Fs(l)r Fy(.)43 b(Then)0 4952 y Fs(f)33 b Ft(\016)21 b Fs(l)30 b Fy(=)e Fs(f)33 b Ft(\016)21 b Fs(j)28 b Ft(\016)22 b Fs(k)31 b Fy(=)c Fs(g)e Ft(\016)d Fs(j)28 b Ft(\016)22 b Fs(k)35 b Fy(so)e(there)g(is)g(a)f(unique)i(arro)m(w)f Fs(m)28 b Fy(:)g Fs(C)34 b Ft(\000)-59 b(!)27 b Fs(E)39 b Fy(with)33 b Fs(j)28 b Ft(\016)21 b Fs(m)28 b Fy(=)g Fs(l)r Fy(.)44 b(But)32 b(b)s(oth)0 5069 y Fs(h)h Fy(and)f Fs(k)k Fy(are)d(suc)m(h)h(arro)m(ws)f(and)f(so)h Fs(h)28 b Fy(=)g Fs(k)s Fy(.)0 5185 y(No)m(w)34 b(supp)s(ose)h Fs(j)k Fy(and)34 b Fs(j)907 5149 y Fq(0)964 5185 y Fy(are)f(equalizers) j(of)d Fs(f)44 b Fy(and)34 b Fs(g)t Fy(.)45 b(In)34 b(the)g(notation)f (of)g(Prop)s(osition)h(8.1.4,)f Fs(i)h Fy(and)0 5301 y Fs(i)33 5265 y Fq(\000)p Fr(1)170 5301 y Fy(are)43 b(the)h(arro)m(ws)f(required)i(b)m(y)f(the)f(de\014nition)h(of)e(sub)s (ob)5 b(ject)44 b(in)g(3.3.12,)g(since)h Fs(j)3323 5265 y Fq(0)3375 5301 y Ft(\016)29 b Fs(i)46 b Fy(=)f Fs(j)k Fy(and)0 5417 y Fs(j)28 b Ft(\016)22 b Fs(i)173 5381 y Fq(\000)p Fr(1)295 5417 y Fy(=)28 b Fs(j)445 5381 y Fq(0)468 5417 y Fy(.)3328 b Fg(\003)p Black Black eop end %%Page: 65 65 TeXDict begin 65 64 bop Black 1777 -99 a Fw(Equalizers)1702 b(65)p Black 0 100 a Fy(8.1.6)27 b(More)h(generally)-8 b(,)29 b(if)f Fs(f)1037 115 y Fr(1)1076 100 y Fs(;)17 b(:)g(:)g(:)f(;)h(f)1343 115 y Fp(n)1417 100 y Fy(are)28 b(arro)m(ws)g(from)f Fs(A)h Fy(to)f Fs(B)5 b Fy(,)29 b(then)f(an)f(ob)5 b(ject)29 b Fs(E)k Fy(together)28 b(with)g(an)0 217 y(arro)m(w)34 b Fs(j)j Fy(:)30 b Fs(E)36 b Ft(\000)-59 b(!)30 b Fs(A)k Fy(is)g(an)h Fu(e)-5 b(qualizer)33 b Fy(of)h Fs(f)1571 232 y Fr(1)1610 217 y Fs(;)17 b(:)g(:)g(:)f(;)h(f) 1877 232 y Fp(n)1958 217 y Fy(if)34 b(it)g(has)g(the)h(prop)s(ert)m(y)g (that)f(an)g(arbitrary)g(arro)m(w)0 333 y Fs(h)28 b Fy(:)g Fs(C)34 b Ft(\000)-59 b(!)27 b Fs(A)33 b Fy(factors)f(uniquely)j (through)d Fs(j)39 b Fy(if)32 b(and)h(only)g(if)f Fs(f)2284 348 y Fr(1)2346 333 y Ft(\016)22 b Fs(h)28 b Fy(=)f Fs(:)17 b(:)g(:)28 b Fy(=)f Fs(f)2899 348 y Fp(n)2968 333 y Ft(\016)22 b Fs(h)p Fy(.)0 449 y(Ha)m(ving)33 b(equalizers)i(of)d(parallel)h (pairs)g(implies)h(ha)m(ving)f(equalizers)i(of)d(all)h(\014nite)g (lists.)p Black 0 608 a(2.8.9.)h Fv(De\014nition.)p Black 43 w Fy(A)g(monomorphism)i Fs(e)30 b Fy(:)h Fs(S)36 b Ft(\000)-59 b(!)30 b Fs(T)47 b Fy(in)35 b(a)f(category)g(is)h Fu(r)-5 b(e)g(gular)34 b Fy(if)g Fs(e)h Fy(is)f(an)g(equalizer)0 725 y(of)e(a)g(pair)h(of)f(arro)m(ws.)p Black 0 884 a(2.8.10.)43 b Fv(Prop)s(osition.)p Black 47 w Fu(A)n(n)i(arr)-5 b(ow)45 b(in)f(a)h(c)-5 b(ate)g(gory)45 b(that)g(is)g(b)-5 b(oth)45 b(an)g(epimorphism)e(and)h(a)h(r)-5 b(e)g(gular)0 1000 y(monomorphism)33 b(is)h(an)h(isomorphism.)p Black 0 1159 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(Let)39 b Fs(f)48 b Fy(:)37 b Fs(A)g Ft(\000)-59 b(!)37 b Fs(B)43 b Fy(b)s(e)c(b)s(oth)f (an)g(epimorphism)i(and)e(an)g(equalizer)i(of)e Fs(g)t(;)17 b(h)36 b Fy(:)i Fs(B)k Ft(\000)-59 b(!)36 b Fs(C)7 b Fy(.)61 b(Since)0 1276 y Fs(g)27 b Ft(\016)c Fs(f)42 b Fy(=)31 b Fs(h)24 b Ft(\016)f Fs(f)46 b Fy(and)34 b Fs(f)46 b Fy(is)35 b(epi,)h Fs(g)e Fy(=)d Fs(h)p Fy(.)50 b(Then)36 b Fs(g)26 b Ft(\016)e Fy(1)1937 1291 y Fp(B)2028 1276 y Fy(=)31 b Fs(h)24 b Ft(\016)g Fy(1)2338 1291 y Fp(B)2433 1276 y Fy(so)34 b(there)i(is)f(a)f Fs(k)h Fy(:)c Fs(B)36 b Ft(\000)-59 b(!)30 b Fs(A)35 b Fy(suc)m(h)h(that)0 1392 y Fs(f)30 b Ft(\016)20 b Fs(k)31 b Fy(=)c(1)382 1407 y Fp(B)443 1392 y Fy(.)43 b(But)31 b(then)h Fs(f)f Ft(\016)19 b Fs(k)k Ft(\016)c Fs(f)39 b Fy(=)27 b Fs(f)39 b Fy(=)27 b Fs(f)k Ft(\016)19 b Fy(1)1794 1407 y Fp(A)1851 1392 y Fy(.)43 b(But)32 b Fs(f)42 b Fy(b)s(eing)31 b(a)g(monomorphism)i (can)f(b)s(e)f(canceled)0 1508 y(from)h(the)h(left)g(to)f(conclude)i (that)f Fs(k)25 b Ft(\016)d Fs(f)38 b Fy(=)28 b(1)1688 1523 y Fp(A)1745 1508 y Fy(.)2051 b Fg(\003)p Black 0 1667 a Fy(2.8.11.)32 b Fv(Prop)s(osition.)p Black 42 w Fu(Every)j(monomorphism)d(in)j Fv(Set)g Fu(is)f(r)-5 b(e)g(gular.)p Black 0 1827 a(Pr)g(o)g(of.)p Black 41 w Fy(A)40 b(monomorphism)h(in)f Fv(Set)g Fy(is)g(an)g(injectiv)m(e)i (function)e(\(see)h(Theorem)g(3.3.3\),)g(so)f(let)g Fs(f)51 b Fy(:)40 b Fs(A)0 1943 y Ft(\000)-60 b(!)28 b Fs(B)j Fy(b)s(e)c(an)g(injectiv)m(e)h(function.)42 b(Let)27 b Fs(C)33 b Fy(b)s(e)27 b(the)g(set)g(of)f(all)h(pairs)g Ft(f)p Fy(\()p Fs(b;)17 b(i)p Fy(\))p Ft(j)p Fs(b)27 b Ft(2)i Fs(B)5 b(;)17 b(i)27 b Fy(=)h(0)p Fs(;)17 b Fy(1)p Ft(g)25 b Fy(and)i(imp)s(ose)0 2059 y(an)35 b(equiv)-5 b(alence)37 b(relation)e(on)g(these)h(pairs)f(forcing)g(\()p Fs(b;)17 b Fy(0\))31 b(=)h(\()p Fs(b;)17 b Fy(1\))34 b(if)h(and)g(only)h(if)e(there)i(is)f(an)g Fs(a)d Ft(2)g Fs(A)0 2175 y Fy(with)40 b Fs(f)11 b Fy(\()p Fs(a)p Fy(\))38 b(=)g Fs(b)i Fy(\(and)f(not)g(forcing)g(\()p Fs(b;)17 b(i)p Fy(\))39 b(=)f(\()p Fs(c;)17 b(j)6 b Fy(\))38 b(if)h Fs(b)h Fy(and)f Fs(c)g Fy(are)g(distinct\).)64 b(Since)40 b Fs(f)49 b Fy(is)40 b(injectiv)m(e,)0 2292 y(if)d(suc)m(h)i(an)e Fs(a)g Fy(exists,)j(there)e(is)g(only)g(one.)58 b(Let)37 b Fs(g)i Fy(:)d Fs(B)k Ft(\000)-59 b(!)35 b Fs(C)44 b Fy(b)m(y)38 b Fs(g)t Fy(\()p Fs(b)p Fy(\))d(=)h(\()p Fs(b;)17 b Fy(0\))37 b(and)g Fs(h)f Fy(:)g Fs(B)k Ft(\000)-59 b(!)35 b Fs(C)44 b Fy(b)m(y)0 2408 y Fs(h)p Fy(\()p Fs(b)p Fy(\))31 b(=)g(\()p Fs(b;)17 b Fy(1\).)49 b(Then)36 b(clearly)f Fs(g)t Fy(\()p Fs(b)p Fy(\))30 b(=)h Fs(h)p Fy(\()p Fs(b)p Fy(\))k(if)f(and)h(only)g(if)f(there)h(is)g(an)g Fs(a)c Ft(2)g Fs(A)j Fy(with)h Fs(f)11 b Fy(\()p Fs(a)p Fy(\))31 b(=)g Fs(b)p Fy(.)49 b(No)m(w)0 2524 y(let)32 b Fs(k)e Fy(:)e Fs(D)j Ft(\000)-60 b(!)27 b Fs(B)37 b Fy(with)32 b Fs(g)23 b Ft(\016)c Fs(k)31 b Fy(=)c Fs(h)20 b Ft(\016)g Fs(k)s Fy(.)43 b(It)31 b(m)m(ust)i(b)s(e)e(that)g(for)g(all)g Fs(x)e Ft(2)f Fs(D)s Fy(,)j(there)h(is)g(an)f Fs(a)d Ft(2)g Fs(A)p Fy(,)k(and)f(only)0 2640 y(one,)40 b(suc)m(h)f(that)e Fs(k)s Fy(\()p Fs(x)p Fy(\))h(=)e Fs(f)11 b Fy(\()p Fs(a)p Fy(\).)59 b(If)38 b(w)m(e)h(let)f Fs(l)r Fy(\()p Fs(x)p Fy(\))f(=)g Fs(a)p Fy(,)i(then)g Fs(l)g Fy(:)d Fs(D)k Ft(\000)-60 b(!)36 b Fs(A)i Fy(is)h(the)f(unique)h(arro)m(w)f(with)0 2757 y Fs(f)33 b Ft(\016)22 b Fs(l)30 b Fy(=)d Fs(k)s Fy(.)3427 b Fg(\003)p Black 0 2916 a Fy(2.8.12.)32 b Fv(Prop)s(osition.)p Black 42 w Fu(\(1\))i(Every)h(split)g (monomorphism)e(in)h Ft(C)41 b Fu(is)35 b(a)g(r)-5 b(e)g(gular)34 b(monomorphism.)0 3032 y(\(2\))g(Every)h(r)-5 b(e)g(gular)35 b(monomorphism)e(in)h Ft(C)42 b Fu(is)34 b(a)h(monomorphism.)p Black 0 3191 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(\(1\))33 b(Let)h Fs(f)41 b Fy(:)29 b Fs(A)h Ft(\000)-59 b(!)29 b Fs(B)39 b Fy(b)s(e)34 b(s)g(split)g(monomorphism)h(with)g(left)e(in)m (v)m(erse)k Fs(g)c Fy(:)c Fs(B)35 b Ft(\000)-59 b(!)29 b Fs(A)p Fy(,)34 b(suc)m(h)h(that)0 3308 y Fs(g)28 b Ft(\016)c Fs(f)44 b Fy(=)34 b(1)400 3323 y Fp(A)457 3308 y Fy(.)54 b(W)-8 b(e)36 b(claim)h(that)e(\()p Fs(A;)17 b(f)11 b Fy(\))36 b(is)g(an)g(equalizer)i(of)e(\()p Fs(f)f Ft(\016)24 b Fs(g)t(;)17 b Fy(1)2582 3323 y Fp(B)2642 3308 y Fy(\).)53 b(W)-8 b(e)37 b(ha)m(v)m(e)g(\()p Fs(f)11 b(g)t Fy(\))p Fs(f)43 b Fy(=)34 b Fs(f)11 b Fy(\()p Fs(g)t(f)g Fy(\))32 b(=)0 3424 y Fs(f)11 b Fy(1)108 3439 y Fp(A)197 3424 y Fy(=)32 b(1)354 3439 y Fp(B)414 3424 y Fs(f)11 b Fy(.)51 b(No)m(w)36 b(let)g Fs(h)c Fy(:)g Fs(T)46 b Ft(\000)-59 b(!)32 b Fs(B)40 b Fy(b)s(e)35 b(a)g(morphism)i(with)f Fs(f)11 b(g)t(h)31 b Fy(=)h(1)2691 3439 y Fp(B)2752 3424 y Fs(h)g Fy(=)g Fs(h)p Fy(.)52 b(Then)36 b Fs(h)c Fy(=)h Fs(f)11 b Fy(\()p Fs(g)t(h)p Fy(\))34 b(so)0 3540 y(that)h(w)m(e)h(ha)m (v)m(e)g(a)f(factorization)g Fs(g)t(h)f Fy(of)h Fs(h)g Fy(through)g Fs(f)11 b Fy(.)51 b(T)-8 b(o)35 b(sho)m(w)h(uniqueness)i (let)e Fs(u)31 b Fy(:)h Fs(T)46 b Ft(\000)-60 b(!)32 b Fs(A)j Fy(satisfy)0 3656 y Fs(h)28 b Fy(=)f Fs(f)11 b(u)p Fy(.)43 b(Then)34 b Fs(g)t(h)27 b Fy(=)g Fs(g)t(f)11 b(u)27 b Fy(=)g(1)1209 3671 y Fp(A)1266 3656 y Fs(u)g Fy(=)h Fs(u)p Fy(.)43 b(\(2\))32 b(holds)h(b)m(y)h(Prop)s(osition)e (2.8.8.)944 b Fg(\003)p Black 0 3816 a Fy(2.8.13.)34 b Fv(Remark.)p Black 44 w Fy(F)-8 b(unctors)35 b(preserv)m(e)j(split)e (monomorphisms.)53 b(In)35 b(general)h(they)g(do)f(not)g(preserv)m(e)0 3932 y(regular)e(monomorphisms)h(or)e(monomorphisms.)0 4048 y(The)40 b(next)f(de\014nition)h(can)f(again)f(b)s(e)h(view)m(ed)h (as)f(a)f(generalization)i(of)e(a)g(set)i(theoretic)f(notion.)62 b(W)-8 b(e)0 4164 y(only)33 b(giv)m(e)h(a)e(direct)h(de\014nition.)p Black 0 4324 a(2.8.14.)38 b Fv(De\014nition.)p Black 45 w Fy(Let)h Fs(f)48 b Fy(:)38 b Fs(A)g Ft(\000)-60 b(!)38 b Fs(B)43 b Fy(b)s(e)c(a)f(morphism)i(in)f Ft(C)6 b Fy(.)61 b(A)38 b(triple)i(\()p Fs(K)r(;)17 b(g)40 b Fy(:)e Fs(K)45 b Ft(\000)-60 b(!)37 b Fs(A;)17 b(h)38 b Fy(:)g Fs(K)0 4440 y Ft(\000)-60 b(!)28 b Fs(A)p Fy(\))k(is)h(a)g Fu(kernel)h(p)-5 b(air)32 b Fy(of)g Fs(f)43 b Fy(if)p Black 148 4576 a(\(1\))p Black 42 w Fs(f)32 b Ft(\016)22 b Fs(g)31 b Fy(=)d Fs(f)33 b Ft(\016)22 b Fs(h)p Fy(,)p Black 148 4693 a(\(2\))p Black 42 w(for)34 b(eac)m(h)i(triple)f(\()p Fs(T)8 b(;)17 b(u)32 b Fy(:)f Fs(T)46 b Ft(\000)-60 b(!)32 b Fs(A;)17 b(v)35 b Fy(:)d Fs(T)45 b Ft(\000)-59 b(!)31 b Fs(A)p Fy(\))k(satisfying)h Fs(f)f Ft(\016)23 b Fs(u)31 b Fy(=)h Fs(f)i Ft(\016)24 b Fs(v)39 b Fy(there)c(is)h(a)e(unique)315 4809 y Fs(k)c Fy(:)e Fs(T)41 b Ft(\000)-59 b(!)27 b Fs(K)40 b Fy(suc)m(h)34 b(that)e Fs(g)26 b Ft(\016)c Fs(k)30 b Fy(=)e Fs(u)k Fy(and)h Fs(h)22 b Ft(\016)g Fs(k)31 b Fy(=)c Fs(v)t Fy(,)33 b(i.e.)44 b(the)33 b(follo)m(wing)f(diagram)h (comm)m(utes:)1518 5334 y Fs(K)315 b(A)p 1637 5273 251 4 v 1805 5271 a Fo(-)1737 5233 y Fs(g)p 1637 5331 V 1805 5329 a Fo(-)1734 5418 y Fs(h)p 1922 5232 4 254 v 1924 5232 a Fo(?)1829 5127 y Fs(u)p 1981 5232 V 1982 5232 a Fo(?)2021 5127 y Fs(v)1918 4944 y(T)1643 5140 y(k)1802 5062 y Fo(\000)1719 5145 y(\000)1636 5228 y(\000)1631 5232 y(\000)-83 b(\011)2303 5334 y Fs(B)p 2018 5302 257 4 v 2192 5300 a Fo(-)2117 5262 y Fs(f)p Black Black eop end %%Page: 66 66 TeXDict begin 66 65 bop Black 0 -99 a Fw(66)1077 b(Represen)n(table)25 b(functors)h(and)g(the)f(Y)-6 b(oneda)25 b(Lemma)p Black Black 0 100 a Fy(2.8.15.)32 b Fv(Prop)s(osition.)p Black Black 190 w Fy(\(1\))p Black 41 w Fu(L)-5 b(et)45 b Fs(f)56 b Fy(:)45 b Fs(B)51 b Ft(\000)-57 b(!)45 b Fs(C)51 b Fu(b)-5 b(e)44 b(a)g(morphism)f(in)h Ft(C)51 b Fu(that)45 b(has)f(a)g(kernel)f(p)-5 b(air)315 217 y Fs(g)t(;)17 b(h)26 b Fy(:)i Fs(A)g Ft(\000)-57 b(!)27 b Fs(B)5 b Fu(.)45 b(If)34 b Fs(f)46 b Fu(is)35 b(a)f(c)-5 b(o)g(e)g(qualizer)34 b(then)h Fs(f)45 b Fu(is)35 b(a)g(c)-5 b(o)g(e)g(qualizer)34 b(of)g Fs(g)k Fu(and)d Fs(h)p Fu(.)p Black 148 333 a Fy(\(2\))p Black 42 w Fu(L)-5 b(et)43 b Fs(g)t(;)17 b(h)43 b Fy(:)h Fs(A)g Ft(\000)-57 b(!)43 b Fs(B)49 b Fu(b)-5 b(e)43 b(a)g(p)-5 b(air)44 b(of)f(morphisms)f(that)i(has)f(a)g(c)-5 b(o)g(e)g(qualizer)43 b Fs(f)54 b Fy(:)44 b Fs(B)49 b Ft(\000)-57 b(!)43 b Fs(C)7 b Fu(.)71 b(If)315 449 y Fy(\()p Fs(A;)17 b(g)t(;)g(h)p Fy(\))33 b Fu(is)i(a)g(kernel)f(p)-5 b(air)34 b(then)h(it)g(is)g(a)f(kernel)h(p)-5 b(air)34 b(of)h Fs(f)11 b Fu(.)p Black 0 624 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(\(1\))32 b(In)h(the)g(diagram)1522 1115 y Fs(A)314 b(B)p 1624 1053 257 4 v 1798 1051 a Fo(-)1724 1033 y Fs(h)p 1624 1112 V 1798 1110 a Fo(-)1727 1172 y Fs(g)2301 1115 y(C)p 2014 1083 258 4 v 2189 1081 a Fo(-)2114 1043 y Fs(f)1905 725 y(X)1638 908 y(x)1798 842 y Fo(\000)1715 925 y(\000)1632 1008 y(\000)1627 1013 y(\000)-83 b(\011)p 1918 1013 4 254 v 210 w(?)1825 908 y Fs(u)p 1977 1013 V 1978 1013 a Fo(?)2017 908 y Fs(v)1910 1505 y(Y)p 1947 1403 V 1949 1403 a Fo(?)1856 1311 y Fs(k)2301 1115 y(C)2204 1288 y(y)2188 1232 y Fo(\000)2105 1315 y(\000)2022 1398 y(\000)2017 1403 y(\000)g(\011)0 1608 y Fy(let)38 b(\()p Fs(C)r(;)17 b(f)11 b Fy(\))37 b(b)s(e)i(the)f(co)s (equalizer)i(of)d(\()p Fs(u;)17 b(v)t Fy(\).)59 b(Let)38 b(\()p Fs(A;)17 b(g)t(;)g(h)p Fy(\))37 b(b)s(e)i(a)e(k)m(ernel)j(pair)e (of)g Fs(f)11 b Fy(.)60 b(Then)39 b(there)g(is)f(a)0 1725 y(unique)c(morphism)g Fs(x)f Fy(suc)m(h)h(that)e Fs(g)t(x)c Fy(=)f Fs(u)32 b Fy(and)h Fs(hx)28 b Fy(=)g Fs(v)t Fy(.)0 1841 y(Giv)m(en)39 b Fs(k)h Fy(:)e Fs(B)k Ft(\000)-60 b(!)37 b Fs(Y)60 b Fy(with)38 b Fs(k)s(g)j Fy(=)c Fs(k)s(h)p Fy(.)60 b(Then)40 b Fs(k)s(u)c Fy(=)h Fs(k)s(g)t(x)g Fy(=)g Fs(k)s(hx)h Fy(=)f Fs(k)s(v)t Fy(,)j(so)e(that)g (there)h(is)g(a)e(unique)0 1957 y Fs(y)31 b Fy(:)d Fs(C)34 b Ft(\000)-59 b(!)27 b Fs(Y)54 b Fy(suc)m(h)34 b(that)e Fs(y)t(f)38 b Fy(=)27 b Fs(k)s Fy(.)44 b(Th)m(us)34 b Fs(f)43 b Fy(is)33 b(a)f(co)s(equalizer)i(of)f Fs(g)i Fy(and)e Fs(h)p Fy(.)0 2073 y(\(2\))e(Let)h(\()p Fs(A;)17 b(g)t(;)g(h)p Fy(\))31 b(b)s(e)h(a)f(k)m(ernel)j(pair)d(of)h Fs(k)i Fy(and)e(let)g(\()p Fs(C)r(;)17 b(f)11 b Fy(\))31 b(b)s(e)h(a)f(co)s(equalizer)j(of)d(\()p Fs(g)t(;)17 b(h)p Fy(\).)42 b(Then)33 b(there)f(is)0 2190 y(a)g(unique)i(morphism)g Fs(y)i Fy(suc)m(h)e(that)e Fs(y)t(f)38 b Fy(=)27 b Fs(k)s Fy(.)0 2306 y(Giv)m(en)36 b Fs(u;)17 b(v)34 b Fy(:)d Fs(X)39 b Ft(\000)-59 b(!)31 b Fs(B)40 b Fy(with)35 b Fs(f)11 b(u)30 b Fy(=)i Fs(f)11 b(v)t Fy(.)49 b(Then)36 b Fs(k)s(u)31 b Fy(=)g Fs(y)t(f)11 b(u)30 b Fy(=)h Fs(y)t(f)11 b(v)34 b Fy(=)d Fs(k)s(v)t Fy(,)k(so)g(that)f(there)i(is)f(a)f(unique)0 2422 y Fs(x)28 b Fy(:)g Fs(X)35 b Ft(\000)-59 b(!)27 b Fs(A)33 b Fy(suc)m(h)h(that)e Fs(g)t(x)c Fy(=)f Fs(u)32 b Fy(and)h Fs(hx)28 b Fy(=)g Fs(v)t Fy(.)43 b(Th)m(us)34 b(\()p Fs(A;)17 b(g)t(;)g(h)p Fy(\))31 b(is)i(a)g(k)m(ernel)h(pair)e (of)g Fs(f)11 b Fy(.)522 b Fg(\003)-438 2498 y Fy(24.06.04)p Black 0 2648 a(2.8.16.)35 b Fv(Lemma.)p Black 45 w Fs(f)44 b Fy(:)33 b Fs(A)g Ft(\000)-58 b(!)33 b Fs(B)43 b Fu(is)37 b(a)h(monomorphism)d(if)j(and)f(only)g(if)h Fy(\()p Fs(A;)17 b Fy(1)2965 2663 y Fp(A)3021 2648 y Fs(;)g Fy(1)3114 2663 y Fp(A)3171 2648 y Fy(\))37 b Fu(is)h(a)f(kernel)g(p)-5 b(air)0 2764 y(for)35 b Fs(f)11 b Fu(.)p Black 0 2939 a(Pr)-5 b(o)g(of.)p Black 42 3048 a Fs(f)43 b Fy(monomorphism)69 3164 y Ft(\()-17 b(\))55 b(8)p Fs(u;)17 b(v)31 b Fy(:)d Fs(T)41 b Ft(\000)-59 b(!)27 b Fs(A)h Fy(:)g Fs(f)11 b(u)27 b Fy(=)g Fs(f)11 b(v)31 b Fy(=)-17 b Ft(\))28 b Fs(u)f Fy(=)h Fs(v)69 3280 y Ft(\()-17 b(\))55 b(8)p Fs(u;)17 b(v)31 b Fy(:)d Fs(T)41 b Ft(\000)-59 b(!)27 b Fs(A)h Fy(:)g Fs(f)11 b(u)27 b Fy(=)g Fs(f)11 b(v)31 b Fy(=)-17 b Ft(\))28 b(9)1618 3295 y Fr(1)1658 3280 y Fs(k)i Fy(:)e Fs(T)41 b Ft(\000)-59 b(!)27 b Fs(A)h Fy(:)g(1)2242 3295 y Fp(A)2299 3280 y Fs(k)i Fy(=)e Fs(u;)17 b Fy(1)2633 3295 y Fp(A)2689 3280 y Fs(k)31 b Fy(=)c Fs(v)69 3397 y Ft(\()-17 b(\))55 b Fy(\()p Fs(A;)17 b Fy(1)511 3412 y Fp(A)568 3397 y Fs(;)g Fy(1)661 3412 y Fp(A)717 3397 y Fy(\))33 b(k)m(ernel)h(pair)e(of)h Fs(f)11 b Fy(.)3823 3507 y Fg(\003)p Black 0 3682 a Fy(2.8.17.)32 b Fv(Corollary)-9 b(.)p Black 42 w Fu(If)34 b(a)h(functor)g(pr)-5 b(eserves)34 b(kernel)g(p)-5 b(airs,)34 b(the)h(it)g(pr)-5 b(eserves)34 b(monomorphisms.)p Black 0 3857 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(Let)39 b Fs(f)48 b Fy(:)38 b Fs(A)g Ft(\000)-59 b(!)37 b Fs(B)44 b Fy(b)s(e)38 b(a)h (monomorphism.)62 b(Then)40 b(\()p Fs(A;)2393 3872 y Fp(A)2467 3857 y Fs(;)17 b Fy(1)2560 3872 y Fp(A)2616 3857 y Fy(\))38 b(is)i(a)e(k)m(ernel)i(pair)e(for)g Fs(f)11 b Fy(.)61 b(Th)m(us)0 3973 y(\()p Fs(F)14 b Fy(\()p Fs(A)p Fy(\))p Fs(;)j Fy(1)357 3988 y Fp(F)10 b Fr(\()p Fp(A)p Fr(\))522 3973 y Fs(;)17 b Fy(1)615 3988 y Fp(F)10 b Fr(\()p Fp(A)p Fr(\))781 3973 y Fy(\))33 b(is)g(a)f(k)m(ernel)i(pair)f (of)f Fs(F)14 b Fy(\()p Fs(f)d Fy(\),)32 b(hence)i Fs(F)14 b Fy(\()p Fs(f)d Fy(\))32 b(is)h(a)f(monomorphism.)546 b Fg(\003)0 4149 y Fy(2.9.)49 b Fv(Univ)m(ersal)38 b(elemen)m(ts.)0 4265 y Fy(There)28 b(is)f(a)f(second)h(imp)s(ortan)m(t)g(w)m(a)m(y)g (of)f(de\014ning)i(a)e(represen)m(table)j(functor.)41 b(W)-8 b(e)27 b(will)g(sho)m(w)h(its)e(impact)0 4382 y(with)33 b(a)f(n)m(um)m(b)s(er)i(of)f(examples.)p Black 0 4556 a(2.9.1.)h Fv(De\014nition.)p Black 44 w Fy(Let)h Ft(F)41 b Fy(:)31 b Ft(C)38 b(\000)-59 b(!)31 b Fv(Set)j Fy(b)s(e)h(a)g(co)m(v)-5 b(arian)m(t)35 b(functor.)50 b(A)35 b(pair)g(\()p Fs(A;)17 b(x)p Fy(\))35 b(with)g Fs(A)d Ft(2)g(C)6 b Fs(;)17 b(x)32 b Ft(2)0 4673 y(F)10 b Fy(\()p Fs(A)p Fy(\))34 b(is)i(called)g(a)f Fu(universal)h(\(or)h (generic\))f(obje)-5 b(ct)35 b Fy(for)f Ft(F)10 b Fy(,)35 b(if)g(for)g(eac)m(h)h Fs(B)h Ft(2)32 b(C)41 b Fy(and)35 b Fs(y)g Ft(2)e(F)10 b Fy(\()p Fs(B)5 b Fy(\))34 b(there)0 4789 y(exists)g(a)f(unique)h Fs(f)k Ft(2)28 b Fy(Mor)1024 4804 y Fq(C)1069 4789 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\))33 b(suc)m(h)h(that)e Ft(F)10 b Fy(\()p Fs(f)h Fy(\)\()p Fs(x)p Fy(\))27 b(=)h Fs(y)t Fy(:)1534 4947 y Fs(A)1531 5435 y(B)p 1569 5333 4 351 v 1571 5333 a Fo(?)1491 5174 y Fp(f)1943 4938 y Ft(F)10 b Fy(\()p Fs(A)p Fy(\))1940 5426 y Ft(F)g Fy(\()p Fs(B)5 b Fy(\))p 2057 5333 V 2058 5333 a Fo(?)1866 5174 y Fq(F)i Fr(\()p Fp(f)g Fr(\))2194 4938 y Ft(3)28 b Fs(x)2196 5418 y Ft(3)g Fs(y)p 2300 5333 V 2302 5333 a Fo(?)p 2300 5007 4 26 v 2302 5007 a(?)p Black Black eop end %%Page: 67 67 TeXDict begin 67 66 bop Black 1636 -99 a Fw(Univ)n(ersal)26 b(elemen)n(ts)1559 b(67)p Black 0 100 a Fy(Let)32 b Ft(F)37 b Fy(:)27 b Ft(C)34 b(\000)-59 b(!)27 b Fv(Set)k Fy(b)s(e)h(a)f(con)m (tra)m(v)-5 b(arian)m(t)32 b(functor.)43 b(A)32 b(pair)f(\()p Fs(A;)17 b(x)p Fy(\))31 b(with)h Fs(A)c Ft(2)g(C)6 b Fs(;)17 b(x)28 b Ft(2)g(F)10 b Fy(\()p Fs(A)p Fy(\))31 b(is)h(called)g(a)0 217 y Fu(\(c)-5 b(o-\)universal)34 b(\(or)h(\(c)-5 b(o-\)generic\))34 b(obje)-5 b(ct)33 b Fy(for)g Ft(F)10 b Fy(,)33 b(if)g(for)g(eac)m(h)h Fs(B)g Ft(2)c(C)39 b Fy(and)34 b Fs(y)e Ft(2)d(F)10 b Fy(\()p Fs(B)5 b Fy(\))33 b(there)h(exists)h(a)0 333 y(unique)f Fs(f)k Ft(2)29 b Fy(Mor)674 348 y Fq(C)719 333 y Fy(\()p Fs(B)5 b(;)17 b(A)p Fy(\))32 b(suc)m(h)i(that)e Ft(F)10 b Fy(\()p Fs(f)h Fy(\)\()p Fs(x)p Fy(\))28 b(=)f Fs(y)t Fy(:)1534 621 y Fs(A)1531 1109 y(B)p 1569 1006 4 351 v 1571 739 a Fo(6)1491 848 y Fp(f)1943 612 y Ft(F)10 b Fy(\()p Fs(A)p Fy(\))1940 1100 y Ft(F)g Fy(\()p Fs(B)5 b Fy(\))p 2057 1006 V 2058 1006 a Fo(?)1866 848 y Fq(F)i Fr(\()p Fp(f)g Fr(\))2194 612 y Ft(3)28 b Fs(x)2196 1092 y Ft(3)g Fs(y)p 2300 1006 V 2302 1006 a Fo(?)p 2300 681 4 26 v 2302 681 a(?)0 1335 y Fy(The)k(follo)m(wing)f(prop)s(osition)g (is)g(a)f(v)m(ersion)j(of)d(the)h(Y)-8 b(oneda)31 b(Lemma)h(and)e (could)i(also)f(b)s(e)g(deriv)m(ed)h(from)0 1451 y(it.)p Black 0 1700 a(2.9.2.)h Fv(Prop)s(osition.)p Black 42 w Ft(F)45 b Fu(has)35 b(a)g(universal)g(element)f Fy(\()p Fs(A;)17 b(a)p Fy(\))36 b Fu(if)f(and)g(only)g(if)g Ft(F)45 b Fu(is)35 b(r)-5 b(epr)g(esentable,)35 b(i.e.)0 1816 y(ther)-5 b(e)35 b(is)f(a)h(natur)-5 b(al)35 b(isomorphism)e Fs(')28 b Fy(:)g Ft(F)1597 1789 y(\030)1598 1821 y Fy(=)1702 1816 y(Mor)1878 1831 y Fq(C)1923 1816 y Fy(\()p Fs(A;)17 b Ft(\000)p Fy(\))35 b(\()p Fu(with)g Fs(a)28 b Fy(=)f Fs(')p Fy(\()p Fs(A)p Fy(\))2873 1780 y Fq(\000)p Fr(1)2967 1816 y Fy(\(1)3054 1831 y Fp(A)3111 1816 y Fy(\)\))p Fu(.)p Black 0 2066 a(Pr)-5 b(o)g(of.)p Black 74 w Fy(=)-17 b Ft(\))60 b Fy(:)32 b(The)i(map)790 2353 y Fs(')p Fy(\()p Fs(B)5 b Fy(\))28 b(:)g Ft(F)10 b Fy(\()p Fs(B)5 b Fy(\))27 b Ft(3)h Fs(y)j Ft(7!)c Fs(f)38 b Ft(2)28 b Fy(Mor)2013 2368 y Fq(C)2058 2353 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\))32 b(with)h Ft(F)10 b Fy(\()p Fs(f)h Fy(\)\()p Fs(a)p Fy(\))27 b(=)h Fs(y)0 2641 y Fy(is)33 b(bijectiv)m(e)i(with)e(the)g(in)m(v)m (erse)i(map)1019 2929 y Fs( )t Fy(\()p Fs(B)5 b Fy(\))28 b(:)g(Mor)1500 2944 y Fq(C)1545 2929 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\))27 b Ft(3)h Fs(f)39 b Ft(7!)27 b(F)10 b Fy(\()p Fs(f)h Fy(\)\()p Fs(a)p Fy(\))27 b Ft(2)h(F)10 b Fy(\()p Fs(B)5 b Fy(\))p Fs(:)0 3217 y Fy(In)36 b(fact)f(w)m(e)i(ha)m (v)m(e)g Fs(y)e Ft(7!)e Fs(f)43 b Ft(7!)33 b(F)10 b Fy(\()p Fs(f)h Fy(\)\()p Fs(a)p Fy(\))31 b(=)i Fs(y)39 b Fy(and)c Fs(f)44 b Ft(7!)32 b Fs(y)k Fy(:=)d Ft(F)10 b Fy(\()p Fs(f)h Fy(\)\()p Fs(a)p Fy(\))31 b Ft(7!)i Fs(g)39 b Fy(suc)m(h)e(that)e Ft(F)10 b Fy(\()p Fs(g)t Fy(\)\()p Fs(a)p Fy(\))31 b(=)i Fs(y)0 3333 y Fy(but)e(then)h Ft(F)10 b Fy(\()p Fs(g)t Fy(\)\()p Fs(a)p Fy(\))26 b(=)h Fs(y)k Fy(=)d Ft(F)10 b Fy(\()p Fs(f)h Fy(\)\()p Fs(a)p Fy(\).)42 b(By)31 b(uniqueness)j(w)m(e)e(get)f Fs(f)38 b Fy(=)28 b Fs(g)t Fy(.)42 b(Hence)32 b(all)f Fs(')p Fy(\()p Fs(B)5 b Fy(\))30 b(are)h(bijectiv)m(e)0 3449 y(with)i(in)m(v)m(erse)i(map)e Fs( )t Fy(\()p Fs(B)5 b Fy(\).)43 b(It)33 b(is)g(su\016cien)m(t)i(to)d (sho)m(w)i(that)e Fs( )37 b Fy(is)c(a)f(natural)g(transformation.)0 3565 y(Giv)m(en)h Fs(g)e Fy(:)d Fs(B)33 b Ft(\000)-60 b(!)28 b Fs(C)7 b Fy(.)43 b(Then)34 b(the)f(follo)m(wing)g(diagram)f (comm)m(utes)1309 4363 y(Mor)1485 4378 y Fq(C)1530 4363 y Fy(\()p Fs(A;)17 b(C)7 b Fy(\))612 b Ft(F)10 b Fy(\()p Fs(C)d Fy(\))p 1828 4340 555 4 v 2300 4338 a Fo(-)2026 4407 y Fp( )r Fr(\()p Fp(C)e Fr(\))1308 3875 y Fy(Mor)1484 3890 y Fq(C)1529 3875 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\))610 b Ft(F)10 b Fy(\()p Fs(B)5 b Fy(\))p 1829 3852 553 4 v 2299 3850 a Fo(-)2025 3814 y Fp( )r Fr(\()p Fp(B)s Fr(\))p 1553 4270 4 351 v 1554 4270 a Fo(?)1184 4111 y Fr(Mor)1312 4122 y Fl(C)1352 4111 y Fr(\()p Fp(A;g)r Fr(\))p 2527 4270 V 2529 4270 a Fo(?)2568 4111 y Fq(F)i Fr(\()p Fp(g)r Fr(\))0 4678 y Fy(since)34 b Fs( )t Fy(\()p Fs(C)7 b Fy(\))17 b(Mor)652 4693 y Fq(C)697 4678 y Fy(\()p Fs(A;)g(g)t Fy(\)\()p Fs(f)11 b Fy(\))26 b(=)h Fs( )t Fy(\()p Fs(C)7 b Fy(\)\()p Fs(g)t(f)k Fy(\))27 b(=)g Ft(F)10 b Fy(\()p Fs(g)t(f)h Fy(\)\()p Fs(a)p Fy(\))26 b(=)i Ft(F)10 b Fy(\()p Fs(g)t Fy(\))p Ft(F)g Fy(\()p Fs(f)h Fy(\)\()p Fs(a)p Fy(\))25 b(=)j Ft(F)10 b Fy(\()p Fs(g)t Fy(\))p Fs( )t Fy(\()p Fs(B)5 b Fy(\)\()p Fs(f)11 b Fy(\))p Fs(:)0 4795 y Ft(\()p Fy(:)48 b(Let)h Fs(A)g Fy(b)s(e)g(giv)m(en.)93 b(Let)49 b Fs(a)55 b Fy(:=)h Fs(')p Fy(\()p Fs(A)p Fy(\))1647 4758 y Fq(\000)p Fr(1)1741 4795 y Fy(\(1)1828 4810 y Fp(A)1884 4795 y Fy(\).)92 b(F)-8 b(or)48 b Fs(y)59 b Ft(2)c(F)10 b Fy(\()p Fs(B)5 b Fy(\))48 b(w)m(e)i(get)f Fs(y)58 b Fy(=)d Fs(')p Fy(\()p Fs(B)5 b Fy(\))3540 4758 y Fq(\000)p Fr(1)3634 4795 y Fy(\()p Fs(f)11 b Fy(\))55 b(=)0 4911 y Fs(')p Fy(\()p Fs(B)5 b Fy(\))219 4875 y Fq(\000)p Fr(1)313 4911 y Fy(\()p Fs(f)11 b Fy(1)459 4926 y Fp(A)516 4911 y Fy(\))29 b(=)g Fs(')p Fy(\()p Fs(B)5 b Fy(\))907 4875 y Fq(\000)p Fr(1)1018 4911 y Fy(Mor)1194 4926 y Fq(C)1239 4911 y Fy(\()p Fs(A;)17 b(f)11 b Fy(\)\(1)1578 4926 y Fp(A)1634 4911 y Fy(\))29 b(=)g Ft(F)10 b Fy(\()p Fs(f)h Fy(\))p Fs(')p Fy(\()p Fs(A)p Fy(\))2236 4875 y Fq(\000)p Fr(1)2330 4911 y Fy(\(1)2417 4926 y Fp(A)2473 4911 y Fy(\))29 b(=)g Ft(F)10 b Fy(\()p Fs(f)h Fy(\)\()p Fs(a)p Fy(\))33 b(for)g(a)g(uniquely)j(deter-)0 5027 y(mined)e Fs(f)k Ft(2)28 b Fy(Mor)649 5042 y Fq(C)694 5027 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\).)2830 b Fg(\003)p Black 0 5276 a Fy(2.9.3.)33 b Fv(Prop)s(osition.)p Black 42 w Fu(L)-5 b(et)36 b Fy(\()p Fs(A;)17 b(x)p Fy(\))36 b Fu(and)f Fy(\()p Fs(B)5 b(;)17 b(y)t Fy(\))34 b Fu(b)-5 b(e)35 b(universal)g(elements)g(for)g Ft(F)10 b Fu(.)47 b(Then)34 b(ther)-5 b(e)36 b(exists)f(a)0 5392 y(unique)g(isomorphism)e Fs(h)28 b Fy(:)g Fs(A)f Ft(\000)-57 b(!)28 b Fs(B)40 b Fu(such)34 b(that)h Ft(F)10 b Fy(\()p Fs(h)p Fy(\)\()p Fs(x)p Fy(\))28 b(=)g Fs(y)t Fu(.)p Black Black eop end %%Page: 68 68 TeXDict begin 68 67 bop Black 0 -99 a Fw(68)1077 b(Represen)n(table)25 b(functors)h(and)g(the)f(Y)-6 b(oneda)25 b(Lemma)p Black Black 0 100 a Fu(Pr)-5 b(o)g(of.)p Black 41 w Fy(The)27 b(pro)s(of)d(follo)m(ws)i(from)g(the)f(follo)m(wing)h(comm)m(utativ)m (e)i(diagram)d(as)h(in)f(the)h(pro)s(of)f(of)g(Theorem)0 217 y(2.7.6:)1523 313 y Fs(A)1520 801 y(B)p 1558 698 4 351 v 1560 698 a Fo(?)1599 546 y Fp(h)1523 1288 y Fs(A)p 1558 1186 V 1560 1186 a Fo(?)1599 1033 y Fp(k)1520 1776 y Fs(B)p 1558 1673 V 1560 1673 a Fo(?)1599 1521 y Fp(h)1403 435 y Fo(\000)1365 474 y(\000)1240 782 y Fr(1)1275 793 y Fk(A)p 1363 1069 4 595 v 1365 1152 a Fo(@)1399 1186 y(@)-83 b(R)1355 923 y(\000)1316 961 y(\000)1191 1270 y Fr(1)1226 1281 y Fk(A)p 1314 1556 V 1316 1639 a Fo(@)1350 1673 y(@)g(R)1932 304 y Ft(F)10 b Fy(\()p Fs(A)p Fy(\))1929 791 y Ft(F)g Fy(\()p Fs(B)5 b Fy(\))p 2045 698 4 351 v 2047 698 a Fo(?)1855 539 y Fq(F)i Fr(\()p Fp(h)p Fr(\))1932 1279 y Ft(F)j Fy(\()p Fs(A)p Fy(\))p 2045 1186 V 2047 1186 a Fo(?)1858 1027 y Fq(F)d Fr(\()p Fp(k)r Fr(\))1929 1766 y Ft(F)j Fy(\()p Fs(B)5 b Fy(\))p 2045 1673 V 2047 1673 a Fo(?)1855 1514 y Fq(F)i Fr(\()p Fp(h)p Fr(\))2120 435 y Fo(@)2159 474 y(@)2281 775 y Fr(1)2316 789 y Fl(F)e Fj(\()p Fk(A)p Fj(\))p 2240 1069 4 595 v 2159 1152 a Fo(\000)2125 1186 y(\000)-83 b(\011)2169 923 y(@)2208 961 y(@)2330 1262 y Fr(1)2365 1276 y Fl(F)5 b Fj(\()p Fk(B)r Fj(\))p 2289 1556 V 2208 1639 a Fo(\000)2174 1673 y(\000)-83 b(\011)2653 301 y Fs(x)2655 778 y(y)p 2679 698 4 351 v 2681 698 a Fo(?)p 2679 373 4 26 v 2681 373 a(?)p 2679 1186 4 351 v 2681 1186 a(?)p 2679 860 4 26 v 2681 860 a(?)2653 1275 y Fs(x)2655 1754 y(y)p 2679 1673 4 351 v 2681 1673 a Fo(?)p 2679 1348 4 26 v 2681 1348 a(?)3823 1892 y Fg(\003)p Black 0 2069 a Fy(2.9.4.)47 b Fv(Examples.)p Black 50 w Fy(\(1\))g(Let)g Fs(R)h Fy(b)s(e)f(a)g (ring.)87 b(Let)47 b Fs(X)60 b Ft(2)53 b Fv(Set)47 b Fy(b)s(e)g(a)g(set.)88 b Ft(F)62 b Fy(:)52 b Fs(R)q Fy(-)16 b(Mo)s(d)53 b Ft(\000)-60 b(!)52 b Fv(Set)p Fy(,)0 2185 y Ft(F)10 b Fy(\()p Fs(M)g Fy(\))28 b(:=)f(Map)q(\()p Fs(X)r(;)17 b(M)10 b Fy(\))29 b(is)g(a)f(co)m(v)-5 b(arian)m(t)29 b(functor.)42 b(A)29 b(represen)m(ting)h(ob)5 b(ject)30 b(for)e Ft(F)38 b Fy(is)29 b(giv)m(en)g(b)m(y)h(the)f(free)0 2301 y Fs(R)q Fy(-mo)s(dule)34 b(\()p Fs(R)q(X)r(;)17 b(x)31 b Fy(:)f Fs(X)38 b Ft(\000)-60 b(!)30 b Fs(R)q(X)8 b Fy(\))34 b(with)g(the)h(prop)s(ert)m(y)-8 b(,)35 b(that)f(for)f(all)h (\()p Fs(M)5 b(;)17 b(y)33 b Fy(:)e Fs(X)38 b Ft(\000)-60 b(!)30 b Fs(M)10 b Fy(\))34 b(there)h(exists)0 2417 y(a)d(unique)i Fs(f)39 b Ft(2)28 b Fy(Mor)755 2432 y Fp(R)813 2417 y Fy(\()p Fs(R)q(X)r(;)17 b(M)10 b Fy(\))33 b(suc)m(h)h(that)e Ft(F)10 b Fy(\()p Fs(f)h Fy(\)\()p Fs(x)p Fy(\))27 b(=)h(Map\()p Fs(X)r(;)17 b(f)11 b Fy(\)\()p Fs(x)p Fy(\))28 b(=)f Fs(f)11 b(x)28 b Fy(=)g Fs(y)1643 2577 y(X)369 b(R)q(X)p 1760 2544 304 4 v 1981 2542 a Fo(-)1892 2524 y Fp(x)1833 2794 y(y)1755 2694 y Fo(@)1839 2777 y(@)1922 2860 y(@)2005 2943 y(@)2023 2962 y(@)-83 b(R)2111 3064 y Fs(M)5 b(:)p 2173 2962 4 351 v 2175 2962 a Fo(?)2214 2803 y Fp(f)0 3191 y Fy(\(2\))41 b(Giv)m(en)i(mo)s(dules)g Fs(M)944 3206 y Fp(R)1044 3191 y Fy(and)1243 3206 y Fp(R)1301 3191 y Fs(N)52 b Fy(\(or)42 b(v)m(ector)g(spaces)i Fs(M)2302 3206 y Fp(K)2412 3191 y Fy(and)2611 3206 y Fp(K)2680 3191 y Fs(N)10 b Fy(\).)72 b(De\014ne)42 b Ft(F)53 b Fy(:)44 b(Ab)f Ft(\000)-59 b(!)43 b Fv(Set)0 3308 y Fy(b)m(y)f Ft(F)10 b Fy(\()p Fs(A)p Fy(\))43 b(:=)g(Bil)687 3323 y Fp(R)745 3308 y Fy(\()p Fs(M)5 b(;)17 b(N)10 b Fy(;)17 b Fs(A)p Fy(\).)70 b(Then)43 b Ft(F)51 b Fy(is)42 b(a)f(co)m(v)-5 b(arian)m(t)42 b(functor.)70 b(A)42 b(represen)m(ting)h(ob)5 b(ject)43 b(for)e Ft(F)0 3424 y Fy(is)48 b(giv)m(en)g(b)m(y)g(the)f (tensor)h(pro)s(duct)f(\()p Fs(M)c Ft(\012)1654 3439 y Fp(R)1744 3424 y Fs(N)5 b(;)17 b Ft(\012)53 b Fy(:)g Fs(M)42 b Ft(\002)33 b Fs(N)63 b Ft(\000)-60 b(!)52 b Fs(M)43 b Ft(\012)2851 3439 y Fp(R)2941 3424 y Fs(N)10 b Fy(\))48 b(with)g(the)f(prop)s(ert)m(y)0 3540 y(that)42 b(for)g(all)g(\()p Fs(A;)17 b(f)54 b Fy(:)44 b Fs(M)c Ft(\002)29 b Fs(N)55 b Ft(\000)-60 b(!)44 b Fs(A)p Fy(\))e(there)h (exists)h(a)e(unique)h Fs(g)48 b Ft(2)c Fy(Mor\()p Fs(M)c Ft(\012)3125 3555 y Fp(R)3212 3540 y Fs(N)5 b(;)17 b(A)p Fy(\))42 b(suc)m(h)h(that)0 3656 y Ft(F)10 b Fy(\()p Fs(g)t Fy(\)\()p Ft(\012)p Fy(\))27 b(=)g(Bil)616 3671 y Fp(R)673 3656 y Fy(\()p Fs(M)5 b(;)17 b(N)10 b Fy(;)17 b Fs(g)t Fy(\)\()p Ft(\012)p Fy(\))28 b(=)f Fs(g)t Ft(\012)h Fy(=)f Fs(f)1534 3828 y(M)33 b Ft(\002)23 b Fs(N)154 b(M)33 b Ft(\012)2197 3843 y Fp(R)2277 3828 y Fs(N)p 1878 3803 86 4 v 1881 3801 a Fo(-)1893 3775 y Fq(\012)1834 4061 y Fp(f)1760 3952 y Fo(@)1843 4035 y(@)1926 4118 y(@)2009 4201 y(@)2028 4220 y(@)-83 b(R)2129 4323 y Fs(A:)p 2177 4220 4 351 v 2179 4220 a Fo(?)2218 4053 y Fp(g)0 4450 y Fy(\(3\))41 b(Giv)m(en)g(a)g Ft(K)q Fy(-mo)s(dule)g Fs(V)22 b Fy(.)69 b(De\014ne)41 b Ft(F)51 b Fy(:)42 b Ft(K)q Fy(-)17 b(Alg)43 b Ft(\000)-59 b(!)41 b Fv(Set)g Fy(b)m(y)h Ft(F)10 b Fy(\()p Fs(A)p Fy(\))41 b(:=)h(Mor\()p Fs(V)5 b(;)17 b(A)p Fy(\).)69 b(Then)42 b Ft(F)50 b Fy(is)0 4566 y(a)39 b(co)m(v)-5 b(arian)m(t)40 b(functor.)64 b(A)39 b(represen)m(ting)j(ob)5 b(ject)40 b(for)f Ft(F)49 b Fy(is)40 b(giv)m(en)g(b)m(y)g(the)g(tensor)g(algebra)f(\()p Fs(T)14 b Fy(\()p Fs(V)22 b Fy(\))p Fs(;)17 b(\023)39 b Fy(:)0 4682 y Fs(V)72 b Ft(\000)-60 b(!)50 b Fs(T)14 b Fy(\()p Fs(V)21 b Fy(\)\))46 b(with)g(the)h(prop)s(ert)m(y)f(that)g (for)f(all)h(\()p Fs(A;)17 b(f)61 b Fy(:)50 b Fs(V)72 b Ft(\000)-60 b(!)50 b Fs(A)p Fy(\))c(there)h(exists)g(a)f(unique)h Fs(g)54 b Ft(2)0 4799 y Fy(Mor)176 4814 y Fr(Alg)289 4799 y Fy(\()p Fs(T)14 b Fy(\()p Fs(V)21 b Fy(\))p Fs(;)c(A)p Fy(\))32 b(suc)m(h)i(that)f Ft(F)10 b Fy(\()p Fs(g)t Fy(\)\()p Fs(\023)p Fy(\))26 b(=)i(Mor\()p Fs(V)5 b(;)17 b(g)t Fy(\)\()p Fs(\023)p Fy(\))27 b(=)h Fs(g)t(\023)f Fy(=)h Fs(f)1630 4955 y(V)358 b(T)14 b Fy(\()p Fs(V)21 b Fy(\))p 1738 4931 278 4 v 1933 4929 a Fo(-)1864 4911 y Fp(\023)1812 5190 y(f)1738 5081 y Fo(@)1821 5164 y(@)1904 5247 y(@)1987 5330 y(@)2006 5349 y(@)-83 b(R)2107 5451 y Fs(A:)p 2156 5349 4 351 v 2157 5349 a Fo(?)2196 5181 y Fp(g)p Black Black eop end %%Page: 69 69 TeXDict begin 69 68 bop Black 1636 -99 a Fw(Univ)n(ersal)26 b(elemen)n(ts)1559 b(69)p Black 0 100 a Fy(\(4\))35 b(Giv)m(en)i(a)f Ft(K)q Fy(-mo)s(dule)g Fs(V)22 b Fy(.)53 b(De\014ne)36 b Ft(F)43 b Fy(:)34 b Ft(K)q Fy(-)16 b(cAlg)35 b Ft(\000)-59 b(!)32 b Fv(Set)k Fy(b)m(y)h Ft(F)10 b Fy(\()p Fs(A)p Fy(\))33 b(:=)g(Mor\()p Fs(V)5 b(;)17 b(A)p Fy(\).)54 b(Then)37 b Ft(F)45 b Fy(is)36 b(a)0 217 y(co)m(v)-5 b(arian)m(t)35 b(functor.)48 b(A)34 b(represen)m(ting)i(ob)5 b(ject)35 b(for)e Ft(F)44 b Fy(is)34 b(giv)m(en)i(b)m(y)f(the)f (symmetric)i(algebra)e(\()p Fs(S)6 b Fy(\()p Fs(V)22 b Fy(\))p Fs(;)17 b(\023)30 b Fy(:)0 333 y Fs(V)72 b Ft(\000)-59 b(!)50 b Fs(S)6 b Fy(\()p Fs(V)21 b Fy(\)\))46 b(with)h(the)f(prop)s(ert)m(y)h(that)f(for)f(all)h(\()p Fs(A;)17 b(f)61 b Fy(:)51 b Fs(V)72 b Ft(\000)-59 b(!)50 b Fs(A)p Fy(\))c(there)h(exists)g(a)f(unique)i Fs(g)54 b Ft(2)0 449 y Fy(Mor)176 464 y Fr(cAlg)320 449 y Fy(\()p Fs(S)6 b Fy(\()p Fs(V)22 b Fy(\))p Fs(;)17 b(A)p Fy(\))32 b(suc)m(h)i(that)e Ft(F)10 b Fy(\()p Fs(g)t Fy(\)\()p Fs(\023)p Fy(\))27 b(=)g(Mor\()p Fs(V)5 b(;)17 b(g)t Fy(\)\()p Fs(\023)p Fy(\))28 b(=)f Fs(g)t(\023)h Fy(=)f Fs(f)1632 610 y(V)360 b(S)6 b Fy(\()p Fs(V)21 b Fy(\))p 1739 586 281 4 v 1937 584 a Fo(-)1867 566 y Fp(\023)1813 845 y(f)1739 736 y Fo(@)1822 819 y(@)1905 902 y(@)1988 985 y(@)2007 1004 y(@)-83 b(R)2109 1106 y Fs(A:)p 2157 1004 4 351 v 2159 1004 a Fo(?)2198 836 y Fp(g)0 1238 y Fy(\(5\))32 b(Giv)m(en)i(a)e Ft(K)q Fy(-mo)s(dule)h Fs(V)21 b Fy(.)44 b(De\014ne)33 b Ft(F)k Fy(:)28 b Ft(K)q Fy(-)16 b(Alg)29 b Ft(\000)-59 b(!)27 b Fv(Set)33 b Fy(b)m(y)660 1405 y Ft(F)10 b Fy(\()p Fs(A)p Fy(\))27 b(:=)h Ft(f)p Fs(f)38 b Ft(2)28 b Fy(Mor\()p Fs(V)5 b(;)17 b(A)p Fy(\))p Ft(j8)p Fs(v)t(;)g(v)1939 1363 y Fq(0)1989 1405 y Ft(2)28 b Fs(V)49 b Fy(:)28 b Fs(f)11 b Fy(\()p Fs(v)t Fy(\))p Fs(f)g Fy(\()p Fs(v)2578 1363 y Fq(0)2600 1405 y Fy(\))28 b(=)f Fs(f)11 b Fy(\()p Fs(v)2917 1363 y Fq(0)2940 1405 y Fy(\))p Fs(f)g Fy(\()p Fs(v)t Fy(\))p Ft(g)p Fs(:)0 1571 y Fy(Then)48 b Ft(F)56 b Fy(is)48 b(a)e(co)m(v)-5 b(arian)m(t)47 b(functor.)87 b(A)47 b(represen)m(ting)h(ob)5 b(ject)48 b(for)e Ft(F)57 b Fy(is)47 b(giv)m(en)h(b)m(y)g(the)f (symmetric)0 1687 y(algebra)42 b(\()p Fs(S)6 b Fy(\()p Fs(V)21 b Fy(\))p Fs(;)c(\023)44 b Fy(:)g Fs(V)65 b Ft(\000)-59 b(!)43 b Fs(S)6 b Fy(\()p Fs(V)22 b Fy(\)\))42 b(with)g(the)h(prop)s (ert)m(y)g(that)e(for)h(all)g(\()p Fs(A;)17 b(f)54 b Fy(:)44 b Fs(V)66 b Ft(\000)-60 b(!)44 b Fs(A)p Fy(\))e(suc)m(h)h(that) 0 1803 y Fs(f)11 b Fy(\()p Fs(v)t Fy(\))p Fs(f)g Fy(\()p Fs(v)334 1767 y Fq(0)356 1803 y Fy(\))31 b(=)g Fs(f)11 b Fy(\()p Fs(v)680 1767 y Fq(0)703 1803 y Fy(\))p Fs(f)g Fy(\()p Fs(v)t Fy(\))33 b(for)h(all)h Fs(v)t(;)17 b(v)1395 1767 y Fq(0)1448 1803 y Ft(2)32 b Fs(V)56 b Fy(there)35 b(exists)i(a)d(unique)i Fs(g)e Ft(2)e Fy(Mor)2939 1818 y Fr(Alg)3052 1803 y Fy(\()p Fs(S)6 b Fy(\()p Fs(V)21 b Fy(\))p Fs(;)c(A)p Fy(\))34 b(suc)m(h)i(that)0 1919 y Ft(F)10 b Fy(\()p Fs(g)t Fy(\)\()p Fs(\023)p Fy(\))27 b(=)g(Mor\()p Fs(V)5 b(;)17 b(g)t Fy(\)\()p Fs(\023)p Fy(\))27 b(=)h Fs(g)t(\023)f Fy(=)h Fs(f)1632 2037 y(V)360 b(S)6 b Fy(\()p Fs(V)21 b Fy(\))p 1739 2013 281 4 v 1937 2011 a Fo(-)1867 1993 y Fp(\023)1813 2272 y(f)1739 2163 y Fo(@)1822 2246 y(@)1905 2329 y(@)1988 2412 y(@)2007 2431 y(@)-83 b(R)2109 2533 y Fs(A:)p 2157 2431 4 351 v 2159 2431 a Fo(?)2198 2263 y Fp(g)0 2645 y Fy(\(6\))32 b(Giv)m(en)i(a)e Ft(K)q Fy(-mo)s(dule)h Fs(V)21 b Fy(.)44 b(De\014ne)33 b Ft(F)k Fy(:)28 b Ft(K)q Fy(-)16 b(Alg)29 b Ft(\000)-59 b(!)27 b Fv(Set)33 b Fy(b)m(y)976 2812 y Ft(F)10 b Fy(\()p Fs(A)p Fy(\))27 b(:=)h Ft(f)p Fs(f)38 b Ft(2)28 b Fy(Mor\()p Fs(V)5 b(;)17 b(A)p Fy(\))p Ft(j8)p Fs(v)31 b Ft(2)e Fs(V)49 b Fy(:)28 b Fs(f)11 b Fy(\()p Fs(v)t Fy(\))2629 2771 y Fr(2)2695 2812 y Fy(=)28 b(0)p Ft(g)p Fs(:)0 2978 y Fy(Then)35 b Ft(F)42 b Fy(is)34 b(a)f(co)m(v)-5 b(arian)m(t)34 b(functor.)46 b(A)34 b(represen)m(ting)h (ob)5 b(ject)35 b(for)d Ft(F)43 b Fy(is)34 b(giv)m(en)h(b)m(y)f(the)g (exterior)g(algebra)0 3094 y(\()p Fs(E)6 b Fy(\()p Fs(V)21 b Fy(\))p Fs(;)c(\023)35 b Fy(:)f Fs(V)56 b Ft(\000)-60 b(!)34 b Fs(E)6 b Fy(\()p Fs(V)22 b Fy(\)\))36 b(with)h(the)g(prop)s (ert)m(y)g(that)f(for)g(all)g(\()p Fs(A;)17 b(f)45 b Fy(:)35 b Fs(V)55 b Ft(\000)-59 b(!)34 b Fs(A)p Fy(\))i(suc)m(h)i(that) e Fs(f)11 b Fy(\()p Fs(v)t Fy(\))3668 3058 y Fr(2)3741 3094 y Fy(=)34 b(0)0 3211 y(for)d(all)h Fs(v)g Ft(2)c Fs(V)53 b Fy(there)33 b(exists)g(a)f(unique)h Fs(g)e Ft(2)e Fy(Mor)1829 3226 y Fr(Alg)1942 3211 y Fy(\()p Fs(E)6 b Fy(\()p Fs(V)21 b Fy(\))p Fs(;)c(A)p Fy(\))32 b(suc)m(h)h(that)f Ft(F)10 b Fy(\()p Fs(g)t Fy(\)\()p Fs(\023)p Fy(\))26 b(=)i(Mor\()p Fs(V)5 b(;)17 b(g)t Fy(\)\()p Fs(\023)p Fy(\))27 b(=)0 3327 y Fs(g)t(\023)g Fy(=)h Fs(f)1628 3438 y(V)354 b(E)6 b Fy(\()p Fs(V)22 b Fy(\))p 1736 3415 274 4 v 1927 3413 a Fo(-)1860 3395 y Fp(\023)1810 3674 y(f)1736 3565 y Fo(@)1819 3648 y(@)1902 3731 y(@)1985 3814 y(@)2004 3833 y(@)-83 b(R)2105 3935 y Fs(A:)p 2154 3833 4 351 v 2155 3833 a Fo(?)2194 3665 y Fp(g)0 4047 y Fy(\(7\))39 b(Let)h Ft(K)h Fy(b)s(e)f(a)g(comm)m (utativ)m(e)i(ring.)65 b(Let)40 b Fs(X)47 b Ft(2)41 b Fv(Set)e Fy(b)s(e)h(a)g(set.)66 b Ft(F)49 b Fy(:)40 b Ft(K)q Fy(-)16 b(cAlg)42 b Ft(\000)-60 b(!)40 b Fv(Set)p Fy(,)i Ft(F)10 b Fy(\()p Fs(A)p Fy(\))39 b(:=)0 4163 y(Map\()p Fs(X)r(;)17 b(A)p Fy(\))38 b(is)g(a)f(co)m(v)-5 b(arian)m(t)38 b(functor.)59 b(A)38 b(represen)m(ting)i(ob)5 b(ject)38 b(for)f Ft(F)47 b Fy(is)38 b(giv)m(en)h(b)m(y)f(the)h(p)s (olynomial)0 4279 y(ring)g(\()p Ft(K)q Fy([)p Fs(X)8 b Fy(])p Fs(;)17 b(\023)39 b Fy(:)f Fs(X)46 b Ft(\000)-59 b(!)38 b(K)q Fy([)p Fs(X)8 b Fy(]\))39 b(with)h(the)f(prop)s(ert)m(y)-8 b(,)41 b(that)e(for)f(all)h(\()p Fs(A;)17 b(f)49 b Fy(:)38 b Fs(X)47 b Ft(\000)-60 b(!)38 b Fs(A)p Fy(\))h(there)h(exists)g(a)0 4395 y(unique)34 b Fs(g)d Ft(2)d Fy(Mor)665 4410 y Fr(cAlg)809 4395 y Fy(\()p Ft(K)q Fy([)p Fs(X)8 b Fy(])p Fs(;)17 b(A)p Fy(\))33 b(suc)m(h)h(that)e Ft(F)10 b Fy(\()p Fs(g)t Fy(\)\()p Fs(\023)p Fy(\))27 b(=)h(Map\()p Fs(X)r(;)17 b(g)t Fy(\)\()p Fs(x)p Fy(\))27 b(=)h Fs(g)t(\023)f Fy(=)h Fs(f)1629 4556 y(X)341 b Ft(K)q Fy([)p Fs(X)8 b Fy(])p 1747 4533 276 4 v 1940 4531 a Fo(-)1872 4512 y Fp(\023)1816 4792 y(f)1742 4682 y Fo(@)1825 4765 y(@)1908 4849 y(@)1991 4932 y(@)2010 4950 y(@)-83 b(R)2111 5053 y Fs(A:)p 2159 4950 4 351 v 2161 4950 a Fo(?)2200 4783 y Fp(g)0 5185 y Fy(\(8\))41 b(Let)g Ft(K)i Fy(b)s(e)e(a)g(comm)m(utativ)m(e)j(ring.) 69 b(Let)41 b Fs(X)51 b Ft(2)43 b Fv(Set)e Fy(b)s(e)g(a)g(set.)70 b Ft(F)52 b Fy(:)43 b Ft(K)q Fy(-)16 b(Alg)44 b Ft(\000)-59 b(!)42 b Fv(Set)p Fy(,)h Ft(F)10 b Fy(\()p Fs(A)p Fy(\))42 b(:=)0 5301 y(Map\()p Fs(X)r(;)17 b(A)p Fy(\))31 b(is)f(a)g(co)m(v)-5 b(arian)m(t)31 b(functor.)43 b(A)30 b(represen)m(ting)j(ob)5 b(ject)31 b(for)f Ft(F)39 b Fy(is)31 b(giv)m(en)h(b)m(y)f(the)f (noncomm)m(uta-)0 5417 y(tiv)m(e)k(p)s(olynomial)g(ring)f(\()p Ft(K)q(h)p Fs(X)8 b Ft(i)p Fs(;)17 b(\023)29 b Fy(:)g Fs(X)37 b Ft(\000)-60 b(!)28 b(K)q(h)p Fs(X)8 b Ft(i)p Fy(\))33 b(with)h(the)g(prop)s(ert)m(y)-8 b(,)34 b(that)f(for)g(all)g (\()p Fs(A;)17 b(f)39 b Fy(:)29 b Fs(X)37 b Ft(\000)-60 b(!)29 b Fs(A)p Fy(\))p Black Black eop end %%Page: 70 70 TeXDict begin 70 69 bop Black 0 -99 a Fw(70)1077 b(Represen)n(table)25 b(functors)h(and)g(the)f(Y)-6 b(oneda)25 b(Lemma)p Black 0 100 a Fy(there)33 b(exists)i(a)d(unique)i Fs(g)d Ft(2)d Fy(Mor)1265 115 y Fr(Alg)1378 100 y Fy(\()p Ft(K)q(h)p Fs(X)8 b Ft(i)p Fs(;)17 b(A)p Fy(\))32 b(suc)m(h)i(that)e Ft(F)10 b Fy(\()p Fs(g)t Fy(\)\()p Fs(\023)p Fy(\))27 b(=)g(Map)q(\()p Fs(X)r(;)17 b(g)t Fy(\)\()p Fs(x)p Fy(\))27 b(=)h Fs(g)t(\023)f Fy(=)h Fs(f)1623 258 y(X)329 b Ft(K)q(h)p Fs(X)8 b Ft(i)p 1741 235 265 4 v 1923 233 a Fo(-)1860 215 y Fp(\023)1810 494 y(f)1736 385 y Fo(@)1819 468 y(@)1902 551 y(@)1985 634 y(@)2004 653 y(@)-83 b(R)2105 755 y Fs(A:)p 2154 653 4 351 v 2155 653 a Fo(?)2194 485 y Fp(g)0 885 y Fy(\(9\))34 b(Let)h Fs(S)40 b Fy(b)s(e)35 b(a)f(set.)51 b(A)34 b(function)h Fs(f)42 b Fy(:)31 b Fm(R)h Ft(\000)-60 b(!)31 b Fs(S)40 b Fy(is)35 b(called)h Fu(of)g(p)-5 b(erio)g(d)36 b Fy(2)p Fs(\031)i Fy(if)d Fs(f)11 b Fy(\()p Fs(x)23 b Fy(+)h(2)p Fs(\031)t Fy(\))30 b(=)h Fs(f)11 b Fy(\()p Fs(x)p Fy(\))35 b(for)f(all)0 1001 y Fs(x)40 b Ft(2)f Fm(R)p Fy(.)64 b(De\014ne)40 b Ft(F)48 b Fy(:)39 b Fv(Set)h Ft(\000)-60 b(!)39 b Fv(Set)g Fy(b)m(y)h Ft(F)10 b Fy(\()p Fs(S)c Fy(\))39 b(=)g Ft(f)p Fs(f)49 b Fy(:)39 b Fm(R)h Ft(\000)-60 b(!)39 b Fs(S)6 b Ft(j)p Fs(f)42 b Fy(is)34 b(of)e(p)s(erio)s(d)g(2)p Fs(\031)t Ft(g)p Fy(.)63 b(Ob)m(viously)42 b Ft(F)0 1117 y Fy(is)37 b(a)e(functor.)54 b(W)-8 b(e)37 b(w)m(an)m(t)g(a)e("`univ)m(ersal)j(function)f(of)e(p)s(erio)s(d)h(2)p Fs(\031)t Fy("'.)54 b(Let)36 b Fs(S)2879 1081 y Fr(1)2952 1117 y Fy(:=)d Fm(R)p Fs(=)p Fy(2)p Fs(\031)t Fm(Z)j Fy(b)s(e)g(the)h(unit)0 1233 y(circle)32 b(and)f Fs(w)f Fy(:)e Fm(R)f Ft(\000)-59 b(!)27 b Fs(S)906 1197 y Fr(1)976 1233 y Fy(b)s(e)k(the)g("`wrapping"')g(of)f Fm(R)h Fy(on)m(to)g Fs(S)2347 1197 y Fr(1)2386 1233 y Fy(.)43 b(Eac)m(h)31 b(p)s(erio)s(dic)g(function)h Fs(f)38 b Fy(:)28 b Fm(R)f Ft(\000)-59 b(!)27 b Fs(S)0 1393 y Fy(can)36 b(b)s(e)h(written)g (uniquely)h(as)f Fm(R)1325 1336 y Fp(w)1293 1393 y Ft(\000)-60 b(!)33 b Fs(S)1509 1356 y Fr(1)p 1621 1277 42 3 v 1621 1332 a Fp(f)1583 1393 y Ft(\000)-60 b(!)34 b Fs(S)6 b Fy(.)54 b(This)37 b(means)g Fs(w)g Ft(2)d(F)10 b Fy(\()p Fs(S)2802 1356 y Fr(1)2841 1393 y Fy(\))36 b(and)g(for)g(eac)m(h)h Fs(f)45 b Ft(2)34 b(F)10 b Fy(\()p Fs(S)c Fy(\))0 1515 y(there)32 b(is)g(a)g(unique)h(map)p 957 1434 59 4 v 31 w Fs(f)39 b Fy(:)28 b Fs(S)1165 1479 y Fr(1)1231 1515 y Ft(\000)-59 b(!)27 b Fs(S)37 b Fy(suc)m(h)d(that)d Ft(F)10 b Fy(\()p 2023 1434 V Fs(f)g Fy(\)\()p Fs(w)s Fy(\))27 b(=)p 2398 1434 V 27 w Fs(f)k Ft(\016)20 b Fs(w)30 b Fy(=)e Fs(f)11 b Fy(.)43 b(So)31 b(\()p Fs(S)3118 1479 y Fr(1)3157 1515 y Fs(;)17 b(w)s Fy(\))31 b(is)h(a)f(univ)m(ersal)0 1631 y(elemen)m(t)j(for)e Ft(F)10 b Fy(:)1648 1732 y Fm(R)399 b Fs(S)2185 1696 y Fr(1)p 1748 1694 343 4 v 2007 1692 a Fo(-)1893 1674 y Fp(w)1826 1953 y(f)1752 1844 y Fo(@)1835 1927 y(@)1918 2010 y(@)2001 2093 y(@)2020 2112 y(@)-83 b(R)2128 2214 y Fs(S:)p 2170 2112 4 351 v 2171 2112 a Fo(?)p 2210 1906 42 3 v 2210 1961 a Fp(f)0 2324 y Fy(\(10\))44 b(Let)h Ft(F)54 b Fy(b)s(e)44 b(as)h(in)g(\(9\).)79 b(Let)45 b Fs(J)57 b Fy(:=)48 b Ft(f)p Fs(x)g Ft(2)h Fm(R)p Ft(j)p Fy(0)e Ft(\024)i Fs(x)g(<)f Fy(2)p Fs(\031)t Ft(g)c Fy(and)g Fs(t)49 b Fy(:)f Fm(R)g Ft(\000)-60 b(!)48 b Fs(J)54 b Fy(b)s(e)44 b(giv)m(en)i(b)m(y)0 2440 y Fs(t)p Fy(\()p Fs(y)t Fy(\))30 b(:=)g Fs(x)62 b Ft(\()-17 b(\))60 b Fs(y)27 b Ft(\000)c Fs(x)31 b Fy(=)g(2)p Fs(\031)t(n)j Fy(for)f(some)i Fs(n)c Ft(2)g Fm(Z)p Fy(.)49 b(Ob)m(viously)36 b Fs(t)e Fy(is)h(a)f(function)h(of)f(p)s(erio)s(d)g(2)p Fs(\031)t Fy(.)48 b(F)-8 b(or)33 b(a)0 2571 y(function)28 b Fs(f)38 b Fy(:)28 b Fm(R)g Ft(\000)-60 b(!)27 b Fs(S)34 b Fy(of)27 b(p)s(erio)s(d)g(2)p Fs(\031)k Fy(there)d(is)g(a)f(unique) 2138 2545 y Fh(e)2120 2571 y Fs(f)38 b Fy(:)28 b Fs(J)37 b Ft(\000)-60 b(!)28 b Fs(S)33 b Fy(suc)m(h)c(that)e Ft(F)10 b Fy(\()3148 2545 y Fh(e)3131 2571 y Fs(f)g Fy(\)\()p Fs(t)p Fy(\))28 b(=)f Fs(f)39 b Ft(2)28 b(F)10 b Fy(\()p Fs(S)c Fy(\).)0 2687 y(Th)m(us)34 b(\()p Fs(J)n(;)17 b(t)p Fy(\))33 b(is)g(a)f(univ)m(ersal)j(elemen)m(t)f(for)e Ft(F)10 b Fy(:)1648 2861 y Fm(R)420 b Fs(J)p 1748 2828 363 4 v 2028 2826 a Fo(-)1917 2808 y Fp(t)1826 3087 y(f)1752 2978 y Fo(@)1835 3061 y(@)1918 3144 y(@)2001 3227 y(@)2020 3246 y(@)-83 b(R)2128 3348 y Fs(S:)p 2170 3246 4 351 v 2171 3246 a Fo(?)2223 3079 y Ff(e)2210 3097 y Fp(f)0 3482 y Fy(By)33 b(Prop)s(osition)g(2.9.3)f(w)m(e)i(get)e(\()p Fs(S)1321 3446 y Fr(1)1360 3482 y Fs(;)17 b(w)s Fy(\))1542 3454 y Ft(\030)1543 3486 y Fy(=)1647 3482 y(\()p Fs(J)n(;)g(t)p Fy(\).)-438 3569 y(25.06.04)p Black 0 3722 a(2.9.5.)42 b Fv(Prop)s(osition.)p Black 47 w Fu(L)-5 b(et)45 b Ft(D)i Fu(b)-5 b(e)44 b(a)g(c)-5 b(ate)g(gory.)73 b(Given)44 b(a)g(r)-5 b(epr)g(esentable)43 b(functor)i Ft(F)3291 3737 y Fp(X)3403 3722 y Fy(:)g Ft(C)51 b(\000)-57 b(!)45 b Fv(Set)0 3838 y Fu(for)e(e)-5 b(ach)43 b Fs(X)52 b Ft(2)44 b(D)s Fu(.)71 b(Given)43 b(a)g(natur)-5 b(al)44 b(tr)-5 b(ansformation)43 b Ft(F)2292 3853 y Fp(g)2375 3838 y Fy(:)h Ft(F)2518 3853 y Fp(Y)2622 3838 y Ft(\000)-57 b(!)44 b(F)2858 3853 y Fp(X)2968 3838 y Fu(for)g(e)-5 b(ach)43 b Fs(g)k Fy(:)d Fs(X)51 b Ft(\000)-57 b(!)44 b Fs(Y)0 3954 y Fu(\(c)-5 b(ontr)g(avariant!\))43 b(such)31 b(that)h Ft(F)41 b Fu(dep)-5 b(ends)31 b(functorial)5 b(ly)31 b(on)g Fs(X)8 b Fu(,)32 b(i.e.)43 b Ft(F)2662 3969 y Fr(1)2697 3980 y Fk(X)2787 3954 y Fy(=)28 b(1)2940 3969 y Fq(F)2990 3980 y Fk(X)3052 3954 y Fs(;)17 b Ft(F)3168 3969 y Fp(hg)3276 3954 y Fy(=)27 b Ft(F)3451 3969 y Fp(g)3491 3954 y Ft(F)3563 3969 y Fp(h)3607 3954 y Fu(.)44 b(Then)0 4071 y(the)32 b(r)-5 b(epr)g(esenting)31 b(obje)-5 b(cts)31 b Fy(\()p Fs(A)1128 4086 y Fp(X)1196 4071 y Fs(;)17 b(a)1291 4086 y Fp(X)1358 4071 y Fy(\))32 b Fu(for)f Ft(F)1652 4086 y Fp(X)1751 4071 y Fu(dep)-5 b(end)31 b(functorial)5 b(ly)32 b(on)f Fs(X)8 b Fu(,)32 b(i.e.)44 b(for)31 b(e)-5 b(ach)31 b Fs(g)g Fy(:)d Fs(X)35 b Ft(\000)-57 b(!)28 b Fs(Y)0 4187 y Fu(ther)-5 b(e)46 b(is)f(a)h(unique)f(morphism)g Fs(A)1328 4202 y Fp(g)1416 4187 y Fy(:)i Fs(A)1563 4202 y Fp(X)1679 4187 y Ft(\000)-57 b(!)47 b Fs(A)1919 4202 y Fp(Y)2026 4187 y Fy(\()p Fu(with)e Ft(F)2358 4202 y Fp(X)2425 4187 y Fy(\()p Fs(A)2536 4202 y Fp(g)2576 4187 y Fy(\)\()p Fs(a)2703 4202 y Fp(X)2771 4187 y Fy(\))i(=)h Ft(F)3052 4202 y Fp(g)3092 4187 y Fy(\()p Fs(A)3203 4202 y Fp(Y)3263 4187 y Fy(\)\()p Fs(a)3390 4202 y Fp(Y)3451 4187 y Fy(\)\))e Fu(and)f(the)0 4303 y(fol)5 b(lowing)41 b(identities)h(hold)f Fs(A)1141 4318 y Fr(1)1176 4329 y Fk(X)1280 4303 y Fy(=)g(1)1446 4318 y Fp(A)1499 4329 y Fk(X)1561 4303 y Fs(;)17 b(A)1678 4318 y Fp(hg)1800 4303 y Fy(=)41 b Fs(A)1990 4318 y Fp(h)2035 4303 y Fs(A)2108 4318 y Fp(g)2148 4303 y Fu(.)67 b(So)42 b(we)g(get)g(a)g(c)-5 b(ovariant)42 b(functor)g Ft(D)i(3)e Fs(X)0 4419 y Ft(\000)-57 b(!)27 b Fs(A)220 4434 y Fp(X)315 4419 y Ft(2)h(C)6 b Fu(.)p Black 0 4597 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(Cho)s(ose)46 b(a)e(represen)m(ting)j(ob)5 b(ject)46 b(\()p Fs(A)1725 4612 y Fp(X)1792 4597 y Fs(;)17 b(a)1887 4612 y Fp(X)1955 4597 y Fy(\))45 b(for)f Ft(F)2271 4612 y Fp(X)2383 4597 y Fy(for)g(eac)m(h)i Fs(X)56 b Ft(2)50 b(D)d Fy(\(b)m(y)f(the)f(axiom)g (of)0 4714 y(c)m(hoice\).)g(Then)34 b(there)f(is)g(a)f(unique)i (morphism)g Fs(A)1895 4729 y Fp(g)1963 4714 y Fy(:)28 b Fs(A)2091 4729 y Fp(X)2186 4714 y Ft(\000)-60 b(!)28 b Fs(A)2404 4729 y Fp(Y)2497 4714 y Fy(with)1120 4877 y Ft(F)1192 4892 y Fp(X)1259 4877 y Fy(\()p Fs(A)1370 4892 y Fp(g)1410 4877 y Fy(\)\()p Fs(a)1537 4892 y Fp(X)1604 4877 y Fy(\))g(=)f Ft(F)1845 4892 y Fp(g)1885 4877 y Fy(\()p Fs(A)1996 4892 y Fp(Y)2057 4877 y Fy(\)\()p Fs(a)2184 4892 y Fp(Y)2245 4877 y Fy(\))g Ft(2)h(F)2476 4892 y Fp(X)2543 4877 y Fy(\()p Fs(A)2654 4892 y Fp(Y)2715 4877 y Fy(\))p Fs(;)0 5041 y Fy(for)f(eac)m(h)h Fs(g)j Fy(:)d Fs(X)35 b Ft(\000)-59 b(!)27 b Fs(Y)49 b Fy(b)s(ecause)29 b Ft(F)1286 5056 y Fp(g)1325 5041 y Fy(\()p Fs(A)1436 5056 y Fp(Y)1497 5041 y Fy(\))f(:)g Ft(F)1690 5056 y Fp(Y)1750 5041 y Fy(\()p Fs(A)1861 5056 y Fp(Y)1922 5041 y Fy(\))f Ft(\000)-59 b(!)27 b(F)2204 5056 y Fp(X)2271 5041 y Fy(\()p Fs(A)2382 5056 y Fp(Y)2443 5041 y Fy(\))g(is)h(giv)m (en.)43 b(W)-8 b(e)28 b(ha)m(v)m(e)h Ft(F)3347 5056 y Fp(X)3414 5041 y Fy(\()p Fs(A)3525 5056 y Fr(1)3564 5041 y Fy(\)\()p Fs(a)3691 5056 y Fp(X)3759 5041 y Fy(\))e(=)0 5157 y Ft(F)72 5172 y Fr(1)111 5157 y Fy(\()p Fs(A)222 5172 y Fp(X)289 5157 y Fy(\)\()p Fs(a)416 5172 y Fp(X)484 5157 y Fy(\))58 b(=)h Fs(a)766 5172 y Fp(X)892 5157 y Fy(=)f Ft(F)1098 5172 y Fp(X)1165 5157 y Fy(\(1\)\()p Fs(a)1379 5172 y Fp(X)1446 5157 y Fy(\))51 b(hence)h Fs(A)1897 5172 y Fr(1)1995 5157 y Fy(=)58 b(1,)d(and)c Ft(F)2540 5172 y Fp(X)2607 5157 y Fy(\()p Fs(A)2718 5172 y Fp(hg)2799 5157 y Fy(\)\()p Fs(a)2926 5172 y Fp(X)2993 5157 y Fy(\))59 b(=)f Ft(F)3296 5172 y Fp(hg)3376 5157 y Fy(\()p Fs(A)3487 5172 y Fp(Z)3544 5157 y Fy(\)\()p Fs(a)3671 5172 y Fp(Z)3728 5157 y Fy(\))g(=)0 5273 y Ft(F)72 5288 y Fp(g)112 5273 y Fy(\()p Fs(A)223 5288 y Fp(Z)279 5273 y Fy(\))p Ft(F)389 5288 y Fp(h)434 5273 y Fy(\()p Fs(A)545 5288 y Fp(Z)602 5273 y Fy(\)\()p Fs(a)729 5288 y Fp(Z)785 5273 y Fy(\))35 b(=)g Ft(F)1041 5288 y Fp(g)1081 5273 y Fy(\()p Fs(A)1192 5288 y Fp(Z)1248 5273 y Fy(\))p Ft(F)1358 5288 y Fp(Y)1419 5273 y Fy(\()p Fs(A)1530 5288 y Fp(h)1575 5273 y Fy(\)\()p Fs(a)1702 5288 y Fp(Y)1762 5273 y Fy(\))g(=)g Ft(F)2018 5288 y Fp(X)2085 5273 y Fy(\()p Fs(A)2196 5288 y Fp(h)2241 5273 y Fy(\))p Ft(F)2351 5288 y Fp(g)2391 5273 y Fy(\()p Fs(A)2502 5288 y Fp(Y)2562 5273 y Fy(\)\()p Fs(a)2689 5288 y Fp(Y)2750 5273 y Fy(\))g(=)g Ft(F)3006 5288 y Fp(X)3073 5273 y Fy(\()p Fs(A)3184 5288 y Fp(h)3229 5273 y Fy(\))p Ft(F)3339 5288 y Fp(X)3406 5273 y Fy(\()p Fs(A)3517 5288 y Fp(g)3557 5273 y Fy(\)\()p Fs(a)3684 5288 y Fp(X)3751 5273 y Fy(\))g(=)0 5389 y Ft(F)72 5404 y Fp(X)139 5389 y Fy(\()p Fs(A)250 5404 y Fp(h)295 5389 y Fs(A)368 5404 y Fp(g)408 5389 y Fy(\)\()p Fs(a)535 5404 y Fp(X)603 5389 y Fy(\))d(hence)i Fs(A)1017 5404 y Fp(h)1062 5389 y Fs(A)1135 5404 y Fp(g)1203 5389 y Fy(=)27 b Fs(A)1379 5404 y Fp(hg)1493 5389 y Fy(for)32 b Fs(g)f Fy(:)d Fs(X)35 b Ft(\000)-60 b(!)28 b Fs(Y)54 b Fy(and)32 b Fs(h)c Fy(:)g Fs(Y)49 b Ft(\000)-60 b(!)28 b Fs(Z)39 b Fy(in)33 b Ft(D)s Fy(.)770 b Fg(\003)p Black Black eop end %%Page: 71 71 TeXDict begin 71 70 bop Black 1610 -99 a Fw(The)26 b(Y)-6 b(oneda)25 b(Lemma)1534 b(71)p Black Black 0 100 a Fy(2.9.6.)35 b Fv(Corollary)-9 b(.)p Black 43 w Fy(\(1\))36 b(Map)q(\()p Fs(X)r(;)17 b(M)10 b Fy(\))1481 73 y Ft(\030)1482 104 y Fy(=)1590 100 y(Mor)1766 115 y Fp(R)1824 100 y Fy(\()p Fs(R)q(X)r(;)17 b(M)10 b Fy(\))38 b Fu(is)f(a)g(natur)-5 b(al)37 b(tr)-5 b(ansformation)36 b(in)h Fs(M)48 b Fu(\(and)0 217 y(in)35 b Fs(X)8 b Fu(!\).)44 b(In)34 b(p)-5 b(articular)35 b Fv(Set)28 b Ft(3)g Fs(X)35 b Ft(7!)27 b Fs(R)q(X)36 b Ft(2)28 b Fs(R)q Fu(-)17 b Fy(Mo)s(d)34 b Fu(is)h(a)g(functor.)0 333 y Fy(\(2\))j(Bil)287 348 y Fp(R)344 333 y Fy(\()p Fs(M)5 b(;)17 b(N)10 b Fy(;)17 b Fs(A)p Fy(\))803 305 y Ft(\030)804 337 y Fy(=)915 333 y(Mor\()p Fs(M)36 b Ft(\012)1336 348 y Fp(R)1419 333 y Fs(N)5 b(;)17 b(A)p Fy(\))39 b Fu(is)f(a)h(natur)-5 b(al)38 b(tr)-5 b(ansformation)38 b(in)g Fs(A)h Fu(\(and)f(in)g Fy(\()p Fs(M)5 b(;)17 b(N)10 b Fy(\))36 b Ft(2)0 449 y Fy(Mo)s(d)17 b Fu(-)p Fs(R)23 b Ft(\002)f Fs(R)q Fu(-)17 b Fy(Mo)s(d\))p Fu(.)45 b(In)34 b(p)-5 b(articular)35 b Fy(Mo)s(d)16 b Fu(-)p Fs(R)23 b Ft(\002)g Fs(R)q Fu(-)17 b Fy(Mo)s(d)27 b Ft(3)h Fs(M)5 b(;)17 b(N)39 b Ft(7!)27 b Fs(M)33 b Ft(\012)2928 464 y Fp(r)2988 449 y Fs(N)39 b Ft(2)28 b Fy(Ab)35 b Fu(is)g(a)f(functor.)0 565 y Fy(\(3\))h Fs(R)q Fu(-)16 b Fy(Mo)s(d)h Fu(-)p Fs(S)28 b Ft(\002)22 b Fs(S)6 b Fu(-)16 b Fy(Mo)s(d)h Fu(-)p Fs(T)41 b Ft(3)28 b Fy(\()p Fs(M)5 b(;)17 b(N)10 b Fy(\))29 b Ft(7!)e Fs(M)33 b Ft(\012)1943 580 y Fp(S)2016 565 y Fs(N)38 b Ft(2)28 b Fs(R)q Fu(-)17 b Fy(Mo)s(d)g Fu(-)p Fs(T)48 b Fu(is)35 b(a)f(functor.)0 728 y Fy(2.10.)48 b Fv(The)38 b(Y)-9 b(oneda)38 b(Lemma.)0 845 y Fy(If)30 b Fs(F)42 b Fy(:)28 b Ft(C)34 b(\000)-60 b(!)27 b(D)33 b Fy(and)e Fs(G)d Fy(:)f Ft(C)34 b(\000)-59 b(!)27 b(D)33 b Fy(are)e(functors)g(then)g(w)m(e)h(denote)f(with)g(Nat\()p Fs(F)s(;)17 b(G)p Fy(\))30 b(the)h(set)g(of)f(natural)0 961 y(transformations)40 b(from)g Fs(F)54 b Fy(to)40 b Fs(G)p Fy(.)65 b(Actually)41 b(this)g(is)g(an)f(illegal)g(set,)j(it)d (ma)m(y)g(b)s(e)h(to)s(o)e(large.)66 b(In)40 b(our)0 1077 y(applications,)c(ho)m(w)m(ev)m(er,)i(it)d(will)h(b)s(e)f (isomorphic)g(to)g(a)f(set)i(so)f(that)g(w)m(e)g(don't)g(run)g(in)m(to) h(problems.)51 b(If)0 1193 y Ft(C)36 b Fy(is)31 b(a)e(small)i(category) f(then)h(there)f(are)g(no)g(problems)h(either,)h(since)f(eac)m(h)g (natural)f(transformation)f(is)0 1310 y(a)j(family)h(of)f(morphisms)j (indexed)f(b)m(y)g(a)e(set.)p Black 0 1473 a(2.10.1.)k Fv(Theorem.)p Black 44 w Fu(\(Y)-7 b(one)i(da)38 b(L)-5 b(emma\))37 b(L)-5 b(et)39 b Ft(C)45 b Fu(b)-5 b(e)39 b(a)f(c)-5 b(ate)g(gory.)56 b(Given)38 b(a)g(c)-5 b(ovariant)38 b(functor)h Ft(F)44 b Fy(:)35 b Ft(C)0 1589 y(\000)-57 b(!)27 b Fv(Set)35 b Fu(and)f(an)h(obje)-5 b(ct)34 b Fs(A)28 b Ft(2)g(C)6 b Fu(.)45 b(Then)34 b(the)h(map)937 1746 y Fs(\031)d Fy(:)27 b(Nat\(Mor)1452 1761 y Fq(C)1497 1746 y Fy(\()p Fs(A;)17 b Fu(-)p Fy(\))p Fs(;)g Ft(F)10 b Fy(\))27 b Ft(3)h Fs(\036)f Ft(7!)g Fs(\036)p Fy(\()p Fs(A)p Fy(\)\(1)2516 1761 y Fp(A)2573 1746 y Fy(\))g Ft(2)i(F)10 b Fy(\()p Fs(A)p Fy(\))0 1903 y Fu(is)35 b(bije)-5 b(ctive)34 b(with)g(the)h(inverse)f(map)1025 2060 y Fs(\031)1084 2019 y Fq(\000)p Fr(1)1206 2060 y Fy(:)27 b Ft(F)10 b Fy(\()p Fs(A)p Fy(\))28 b Ft(3)g Fs(a)g Ft(7!)f Fs(h)1875 2019 y Fp(a)1944 2060 y Ft(2)h Fy(Nat\(Mor)2412 2075 y Fq(C)2457 2060 y Fy(\()p Fs(A;)17 b Fu(-)p Fy(\))p Fs(;)g Ft(F)10 b Fy(\))p Fs(;)0 2217 y Fu(wher)-5 b(e)34 b Fs(h)331 2181 y Fp(a)373 2217 y Fy(\()p Fs(B)5 b Fy(\)\()p Fs(f)11 b Fy(\))27 b(=)h Ft(F)10 b Fy(\()p Fs(f)h Fy(\)\()p Fs(a)p Fy(\))p Fu(.)p Black 0 2380 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(F)d(or)41 b Fs(\036)j Ft(2)g Fy(Nat)o(\(Mor)1067 2395 y Fq(C)1113 2380 y Fy(\()p Fs(A;)17 b Fy(-)o(\))p Fs(;)g Ft(F)10 b Fy(\))41 b(w)m(e)i(ha)m(v)m(e)g(a)f(map)g Fs(\036)p Fy(\()p Fs(A)p Fy(\))h(:)h(Mor)2744 2395 y Fq(C)2789 2380 y Fy(\()p Fs(A;)17 b(A)p Fy(\))43 b Ft(\000)-59 b(!)43 b(F)10 b Fy(\()p Fs(A)p Fy(\),)44 b(hence)f Fs(\031)0 2496 y Fy(with)33 b Fs(\031)t Fy(\()p Fs(\036)p Fy(\))27 b(:=)h Fs(\036)p Fy(\()p Fs(A)p Fy(\)\(1)867 2511 y Fp(A)923 2496 y Fy(\))33 b(is)f(a)h(w)m(ell)g(de\014ned)h(map.)44 b(F)-8 b(or)31 b Fs(\031)2194 2460 y Fq(\000)p Fr(1)2321 2496 y Fy(w)m(e)i(ha)m(v)m(e)h(to)e(c)m(hec)m(k)j(that)d Fs(h)3338 2460 y Fp(a)3412 2496 y Fy(is)h(a)f(natural)0 2612 y(transformation.)43 b(Giv)m(en)34 b Fs(f)k Fy(:)28 b Fs(B)33 b Ft(\000)-60 b(!)28 b Fs(C)39 b Fy(in)33 b Ft(C)6 b Fy(.)44 b(Then)33 b(the)g(diagram)1340 3279 y Ft(F)10 b Fy(\()p Fs(B)5 b Fy(\))739 b Ft(F)10 b Fy(\()p Fs(C)d Fy(\))p 1606 3256 682 4 v 2205 3254 a Fo(-)1870 3323 y Fq(F)g Fr(\()p Fp(f)g Fr(\))1212 2792 y Fy(Mor)1388 2807 y Fq(C)1433 2792 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\))491 b(Mor)2373 2807 y Fq(C)2418 2792 y Fy(\()p Fs(A;)17 b(C)7 b Fy(\))p 1734 2768 427 4 v 2078 2766 a Fo(-)1798 2731 y Fr(Mor\()p Fp(A;f)g Fr(\))p 1457 3186 4 351 v 1459 3186 a Fo(?)1230 3027 y Fp(h)1271 3004 y Fk(a)1308 3027 y Fr(\()p Fp(B)s Fr(\))p 2432 3186 V 2434 3186 a Fo(?)2473 3027 y Fp(h)2514 3004 y Fk(a)2551 3027 y Fr(\()p Fp(C)e Fr(\))0 3464 y Fy(is)51 b(comm)m(utativ)m(e.)101 b(In)51 b(fact)g(if)g Fs(g)62 b Ft(2)e Fy(Mor)1662 3479 y Fq(C)1707 3464 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\))50 b(then)i Fs(h)2326 3427 y Fp(a)2368 3464 y Fy(\()p Fs(C)7 b Fy(\))17 b(Mor)2713 3479 y Fq(C)2758 3464 y Fy(\()p Fs(A;)g(f)11 b Fy(\)\()p Fs(g)t Fy(\))58 b(=)h Fs(h)3386 3427 y Fp(a)3427 3464 y Fy(\()p Fs(C)7 b Fy(\)\()p Fs(f)k(g)t Fy(\))58 b(=)0 3580 y Ft(F)10 b Fy(\()p Fs(f)h(g)t Fy(\)\()p Fs(a)p Fy(\))26 b(=)i Ft(F)10 b Fy(\()p Fs(f)h Fy(\))p Ft(F)f Fy(\()p Fs(g)t Fy(\)\()p Fs(a)p Fy(\))25 b(=)j Ft(F)10 b Fy(\()p Fs(f)h Fy(\))p Fs(h)1480 3544 y Fp(a)1521 3580 y Fy(\()p Fs(B)5 b Fy(\)\()p Fs(g)t Fy(\).)42 b(Th)m(us)34 b Fs(\031)2178 3544 y Fq(\000)p Fr(1)2305 3580 y Fy(is)f(w)m(ell)h (de\014ned.)0 3696 y(Let)j Fs(\031)238 3660 y Fq(\000)p Fr(1)332 3696 y Fy(\()p Fs(a)p Fy(\))e(=)f Fs(h)660 3660 y Fp(a)702 3696 y Fy(.)56 b(Then)38 b Fs(\031)t(\031)1162 3660 y Fq(\000)p Fr(1)1256 3696 y Fy(\()p Fs(a)p Fy(\))d(=)f Fs(h)1584 3660 y Fp(a)1626 3696 y Fy(\()p Fs(A)p Fy(\)\(1)1862 3711 y Fp(A)1919 3696 y Fy(\))g(=)h Ft(F)10 b Fy(\(1)2271 3711 y Fp(A)2327 3696 y Fy(\)\()p Fs(a)p Fy(\))35 b(=)f Fs(a)p Fy(.)56 b(Let)37 b Fs(\031)t Fy(\()p Fs(\036)p Fy(\))e(=)f Fs(\036)p Fy(\()p Fs(A)p Fy(\)\(1)3582 3711 y Fp(A)3639 3696 y Fy(\))g(=)h Fs(a)p Fy(.)0 3812 y(Then)i Fs(\031)317 3776 y Fq(\000)p Fr(1)411 3812 y Fs(\031)t Fy(\()p Fs(\036)p Fy(\))32 b(=)h Fs(h)801 3776 y Fp(a)879 3812 y Fy(and)i Fs(h)1127 3776 y Fp(a)1169 3812 y Fy(\()p Fs(B)5 b Fy(\)\()p Fs(f)11 b Fy(\))33 b(=)g Ft(F)10 b Fy(\()p Fs(f)h Fy(\)\()p Fs(a)p Fy(\))32 b(=)h Ft(F)10 b Fy(\()p Fs(f)h Fy(\)\()p Fs(\036)p Fy(\()p Fs(A)p Fy(\)\(1)2635 3827 y Fp(A)2690 3812 y Fy(\)\))33 b(=)g Fs(\036)p Fy(\()p Fs(B)5 b Fy(\))17 b(Mor)3313 3827 y Fq(C)3358 3812 y Fy(\()p Fs(A;)g(f)11 b Fy(\)\(1)3697 3827 y Fp(A)3753 3812 y Fy(\))33 b(=)0 3929 y Fs(\036)p Fy(\()p Fs(B)5 b Fy(\)\()p Fs(f)11 b Fy(\),)32 b(hence)i Fs(h)734 3892 y Fp(a)803 3929 y Fy(=)28 b Fs(\036)p Fy(.)2831 b Fg(\003)p Black 0 4092 a Fy(2.10.2.)32 b Fv(Corollary)-9 b(.)p Black 42 w Fu(Given)34 b Fs(A;)17 b(B)33 b Ft(2)28 b(C)6 b Fu(.)45 b(Then)34 b(the)h(fol)5 b(lowing)33 b(hold)0 4208 y Fy(\(1\))i(Mor)336 4223 y Fq(C)381 4208 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\))27 b Ft(3)h Fs(f)39 b Ft(7!)27 b Fy(Mor)1164 4223 y Fq(C)1209 4208 y Fy(\()p Fs(f)5 b(;)17 b Fu(-)p Fy(\))28 b Ft(2)g Fy(Nat)o(\(Mor)1913 4223 y Fq(C)1958 4208 y Fy(\()p Fs(B)5 b(;)17 b Fu(-)o Fy(\))p Fs(;)g Fy(Mor)2411 4223 y Fq(C)2456 4208 y Fy(\()p Fs(A;)g Fu(-)p Fy(\)\))34 b Fu(is)h(a)g(bije)-5 b(ctive)34 b(map.)0 4324 y Fy(\(2\))e Fu(Under)h(the)f(bije)-5 b(ctive)32 b(map)g(fr)-5 b(om)32 b(\(1\))g(the)g(isomorphisms)f(in)h Fy(Mor)2652 4339 y Fq(C)2697 4324 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\))33 b Fu(c)-5 b(orr)g(esp)g(ond)31 b(to)i(natur)-5 b(al)0 4440 y(isomorphisms)33 b(in)i Fy(Nat)o(\(Mor)1107 4455 y Fq(C)1152 4440 y Fy(\()p Fs(B)5 b(;)17 b Fu(-)p Fy(\))p Fs(;)g Fy(Mor)1606 4455 y Fq(C)1651 4440 y Fy(\()p Fs(A;)g Fu(-)p Fy(\)\))p Fu(.)0 4557 y Fy(\(3\))35 b Fu(F)-7 b(or)33 b(c)-5 b(ontr)g(avariant)35 b(functors)g Ft(F)i Fy(:)27 b Ft(C)34 b(\000)-57 b(!)28 b Fv(Set)34 b Fu(we)h(have)f Fy(Nat\(Mor)2653 4572 y Fq(C)2698 4557 y Fy(\()p Fu(-)p Fs(;)17 b(A)p Fy(\))p Fs(;)g Ft(F)10 b Fy(\))3116 4529 y Ft(\030)3117 4561 y Fy(=)3222 4557 y Ft(F)g Fy(\()p Fs(A)p Fy(\))p Fu(.)0 4673 y Fy(\(4\))46 b(Mor)347 4688 y Fq(C)392 4673 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\))49 b Ft(3)g Fs(f)59 b Ft(7!)48 b Fy(Mor)1259 4688 y Fq(C)1305 4673 y Fy(\()p Fu(-)o Fs(;)17 b(f)11 b Fy(\))48 b Ft(2)i Fy(Nat)o(\(Mor)2055 4688 y Fq(C)2100 4673 y Fy(\()p Fu(-)p Fs(;)17 b(A)p Fy(\))p Fs(;)g Fy(Mor)2548 4688 y Fq(C)2593 4673 y Fy(\()p Fu(-)p Fs(;)g(B)5 b Fy(\)\))46 b Fu(is)g(a)g(bije)-5 b(ctive)45 b(map)h(that)0 4789 y(de\014nes)25 b(a)h(one-to-one)f(c)-5 b(orr)g(esp)g(ondenc)g(e)25 b(b)-5 b(etwe)g(en)25 b(the)h(isomorphisms)f(in)h Fy(Mor)2923 4804 y Fq(C)2968 4789 y Fy(\()p Fs(A;)17 b(B)5 b Fy(\))26 b Fu(and)g(the)g(natur)-5 b(al)0 4905 y(isomorphisms)33 b(in)i Fy(Nat)o(\(Mor)1107 4920 y Fq(C)1152 4905 y Fy(\()p Fu(-)p Fs(;)17 b(A)p Fy(\))p Fs(;)g Fy(Mor)1600 4920 y Fq(C)1645 4905 y Fy(\()p Fu(-)p Fs(;)g(B)5 b Fy(\)\))p Fu(.)p Black 0 5069 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(\(1\))32 b(follo)m(ws)i(from)e(the)h(Y)-8 b(oneda)33 b(Lemma)g(with)g Ft(F)k Fy(=)28 b(Mor)2480 5084 y Fq(C)2525 5069 y Fy(\()p Fs(A;)17 b Fy(-)o(\).)0 5185 y(\(2\))37 b(Observ)m(e)i(that)e Fs(h)813 5149 y Fp(f)859 5185 y Fy(\()p Fs(C)7 b Fy(\)\()p Fs(g)t Fy(\))34 b(=)i(Mor)1461 5200 y Fq(C)1506 5185 y Fy(\()p Fs(A;)17 b(g)t Fy(\)\()p Fs(f)11 b Fy(\))34 b(=)i Fs(g)t(f)46 b Fy(=)35 b(Mor)2464 5200 y Fq(C)2509 5185 y Fy(\()p Fs(f)5 b(;)17 b(C)7 b Fy(\)\()p Fs(g)t Fy(\))36 b(hence)i Fs(h)3253 5149 y Fp(f)3335 5185 y Fy(=)d(Mor)3622 5200 y Fq(C)3668 5185 y Fy(\()p Fs(f)5 b(;)17 b Fy(-)o(\).)0 5301 y(Since)35 b(w)m(e)h(ha)m(v)m(e)f(Mor)804 5316 y Fq(C)849 5301 y Fy(\()p Fs(f)5 b(;)17 b Fy(-\))g(Mor)1248 5316 y Fq(C)1293 5301 y Fy(\()p Fs(g)t(;)g Fy(-)n(\))31 b(=)f(Mor)1808 5316 y Fq(C)1853 5301 y Fy(\()p Fs(g)t(f)5 b(;)17 b Fy(-)o(\))34 b(and)g(Mor)2510 5316 y Fq(C)2555 5301 y Fy(\()p Fs(f)5 b(;)17 b Fy(-\))30 b(=)h(id)2979 5317 y Fr(Mor)3106 5328 y Fl(C)3147 5317 y Fr(\()p Fp(A;)p Fy(-)o Fr(\))3345 5301 y Fy(if)j(and)g(only)h(if)0 5417 y Fs(f)j Fy(=)28 b(1)239 5432 y Fp(A)328 5417 y Fy(w)m(e)34 b(get)e(the)h(one-to-one)f(corresp)s(ondence)j(b)s(et)m(w)m(een)g(the)e (isomorphisms)h(from)f(\(1\).)p Black Black eop end %%Page: 72 72 TeXDict begin 72 71 bop Black 0 -99 a Fw(72)1077 b(Represen)n(table)25 b(functors)h(and)g(the)f(Y)-6 b(oneda)25 b(Lemma)p Black 0 100 a Fy(\(3\))32 b(and)h(\(4\))f(follo)m(w)h(b)m(y)g(dualizing.)2491 b Fg(\003)p Black 0 296 a Fy(2.10.3.)33 b Fv(Remark.)p Black 42 w Fy(The)i(map)e Fs(\031)38 b Fy(is)33 b(a)h(natural)f (transformation)g(in)h(the)g(argumen)m(ts)g Fs(A)g Fy(and)f Ft(F)10 b Fy(.)46 b(More)0 413 y(precisely:)g(if)32 b Fs(f)39 b Fy(:)27 b Fs(A)h Ft(\000)-59 b(!)27 b Fs(B)38 b Fy(and)32 b Fs(\036)c Fy(:)f Ft(F)38 b(\000)-60 b(!)27 b(G)39 b Fy(are)33 b(giv)m(en)g(then)h(the)f(follo)m(wing)f(diagrams)h (comm)m(ute)1349 1081 y(Nat\(Mor)1723 1096 y Fq(C)1768 1081 y Fy(\()p Fs(A;)17 b Fy(-\))p Fs(;)g Ft(G)6 b Fy(\))277 b Ft(G)6 b Fy(\()p Fs(A)p Fy(\))p 2169 1058 221 4 v 2307 1056 a Fo(-)2258 1103 y Fp(\031)1341 593 y Fy(Nat\(Mor)1715 608 y Fq(C)1760 593 y Fy(\()p Fs(A;)17 b Fy(-)o(\))p Fs(;)g Ft(F)10 b Fy(\))260 b Ft(F)10 b Fy(\()p Fs(A)p Fy(\))p 2178 570 203 4 v 2298 568 a Fo(-)2258 550 y Fp(\031)p 1743 988 4 351 v 1745 988 a Fo(?)1186 829 y Fr(Nat)q(\(Mor\()p Fp(A;)p Fy(-)o Fr(\))p Fp(;\036)p Fr(\))p 2523 988 V 2525 988 a Fo(?)2564 829 y Fp(\036)p Fr(\()p Fp(A)p Fr(\))1336 1792 y Fy(Nat\(Mor)1710 1807 y Fq(C)1755 1792 y Fy(\()p Fs(B)5 b(;)17 b Fy(-)o(\))p Fs(;)g Ft(F)10 b Fy(\))241 b Ft(F)10 b Fy(\()p Fs(B)5 b Fy(\))p Fs(:)p 2179 1769 184 4 v 2280 1767 a Fo(-)2249 1815 y Fp(\031)1339 1305 y Fy(Nat\(Mor)1713 1320 y Fq(C)1758 1305 y Fy(\()p Fs(A;)17 b Fy(-)o(\))p Fs(;)g Ft(F)10 b Fy(\))261 b Ft(F)10 b Fy(\()p Fs(A)p Fy(\))p 2176 1282 203 4 v 2296 1280 a Fo(-)2256 1261 y Fp(\031)p 1741 1699 4 351 v 1743 1699 a Fo(?)1185 1540 y Fr(Nat)q(\(Mor)o(\()p Fp(f)s(;)p Fy(-)p Fr(\))p Fp(;)p Fq(F)d Fr(\))p 2521 1699 V 2523 1699 a Fo(?)2562 1540 y Fq(F)g Fr(\()p Fp(f)g Fr(\))0 1958 y Fy(This)34 b(can)f(b)s(e)f(easily)i(c)m(hec)m(k)m(ed.)47 b(Indeed)34 b(w)m(e)f(ha)m(v)m(e)h(for)e Fs( )g Fy(:)c(Mor)2359 1973 y Fq(C)2404 1958 y Fy(\()p Fs(A;)17 b Fy(-)o(\))28 b Ft(\000)-60 b(!)28 b(F)285 2153 y Fs(\031)20 b Fy(Nat\(Mor)734 2168 y Fq(C)779 2153 y Fy(\()p Fs(A;)d Fy(-\))p Fs(;)g(\036)p Fy(\)\()p Fs( )t Fy(\))26 b(=)i Fs(\031)t Fy(\()p Fs(\036 )t Fy(\))f(=)h(\()p Fs(\036 )t Fy(\)\()p Fs(A)p Fy(\)\(1)2246 2168 y Fp(A)2302 2153 y Fy(\))g(=)f Fs(\036)p Fy(\()p Fs(A)p Fy(\))p Fs( )t Fy(\()p Fs(A)p Fy(\)\(1)2981 2168 y Fp(A)3038 2153 y Fy(\))g(=)h Fs(\036)p Fy(\()p Fs(A)p Fy(\))p Fs(\031)t Fy(\()p Fs( )t Fy(\))0 2348 y(and)286 2516 y Fs(\031)21 b Fy(Nat\(Mor)736 2531 y Fq(C)781 2516 y Fy(\()p Fs(f)5 b(;)17 b Fy(-)o(\))p Fs(;)g Ft(F)10 b Fy(\)\()p Fs( )t Fy(\))27 b(=)g Fs(\031)t Fy(\()p Fs( )21 b Fy(Mor)1780 2531 y Fq(C)1825 2516 y Fy(\()p Fs(f)5 b(;)17 b Fy(-)o(\)\))28 b(=)g(\()p Fs( )20 b Fy(Mor)2497 2531 y Fq(C)2542 2516 y Fy(\()p Fs(f)5 b(;)17 b Fy(-\)\)\()p Fs(B)5 b Fy(\)\(1)3028 2531 y Fp(B)3088 2516 y Fy(\))28 b(=)f Fs( )t Fy(\()p Fs(B)5 b Fy(\)\()p Fs(f)11 b Fy(\))286 2632 y(=)28 b Fs( )t Fy(\()p Fs(B)5 b Fy(\))17 b(Mor)805 2647 y Fq(C)850 2632 y Fy(\()p Fs(A;)g(f)11 b Fy(\)\(1)1189 2647 y Fp(A)1245 2632 y Fy(\))27 b(=)h Ft(F)10 b Fy(\()p Fs(f)h Fy(\))p Fs( )t Fy(\()p Fs(A)p Fy(\)\(1)1934 2647 y Fp(A)1990 2632 y Fy(\))27 b(=)h Ft(F)10 b Fy(\()p Fs(f)h Fy(\))p Fs(\031)t Fy(\()p Fs( )t Fy(\))p Fs(:)p Black 0 2824 a Fy(2.10.4.)26 b Fv(Remark.)p Black 37 w Fy(By)h(the)g (previous)h(corollary)f(the)f(represen)m(ting)j(ob)5 b(ject)27 b Fs(A)g Fy(is)g(uniquely)h(determined)0 2941 y(up)33 b(to)f(isomorphism)i(b)m(y)g(the)f(isomorphism)h(class)g(of)e (the)h(functor)f(Mor)2726 2956 y Fq(C)2772 2941 y Fy(\()p Fs(A;)17 b Fy(-)o(\).)p Black 0 3136 a(2.10.5.)36 b Fv(Prop)s(osition.) p Black 44 w Fu(L)-5 b(et)39 b Ft(G)i Fy(:)35 b Ft(C)c(\002)25 b(D)38 b(\000)-58 b(!)35 b Fv(Set)j Fu(b)-5 b(e)39 b(a)f(c)-5 b(ovariant)38 b(bifunctor)h(such)f(that)h(the)g(functor)0 3253 y Ft(G)6 b Fy(\()p Fs(C)r(;)17 b Fu(-)o Fy(\))29 b(:)f Ft(D)k(\000)-57 b(!)28 b Fv(Set)35 b Fu(is)g(r)-5 b(epr)g(esentable)35 b(for)g(al)5 b(l)35 b Fs(C)g Ft(2)29 b(C)6 b Fu(.)47 b(Then)35 b(ther)-5 b(e)35 b(exists)g(a)g(c)-5 b(ontr)g(avariant)35 b(functor)0 3369 y Ft(F)43 b Fy(:)33 b Ft(C)40 b(\000)-57 b(!)33 b(D)40 b Fu(such)e(that)g Ft(G)1063 3341 y(\030)1064 3373 y Fy(=)1174 3369 y(Mor)1350 3384 y Fq(D)1411 3369 y Fy(\()p Ft(F)10 b Fu(-)o Fs(;)17 b Fu(-)o Fy(\))38 b Fu(holds.)53 b(F)-7 b(urthermor)i(e)38 b Ft(F)47 b Fu(is)38 b(uniquely)g(determine)-5 b(d)37 b(by)h Ft(G)0 3485 y Fu(up)d(to)g(isomorphism.)p Black 0 3681 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(F)d(or)43 b(eac)m(h)h Fs(C)53 b Ft(2)46 b(C)k Fy(c)m(ho)s(ose)44 b(an)f(ob)5 b(ject)45 b Ft(F)10 b Fy(\()p Fs(C)d Fy(\))45 b Ft(2)h(D)g Fy(and)e(an)f(isomorphism)i Fs(\030)3310 3696 y Fp(C)3415 3681 y Fy(:)h Ft(G)6 b Fy(\()p Fs(C)r(;)17 b Fy(-)o(\))3823 3653 y Ft(\030)3823 3685 y Fy(=)0 3797 y(Mor)176 3812 y Fq(D)237 3797 y Fy(\()p Ft(F)10 b Fy(\()p Fs(C)d Fy(\))p Fs(;)17 b Fy(-)n(\).)64 b(Giv)m(en)40 b Fs(f)50 b Fy(:)39 b Fs(C)47 b Ft(\000)-60 b(!)39 b Fs(C)1517 3761 y Fq(0)1579 3797 y Fy(in)h Ft(C)46 b Fy(then)40 b(let)f Ft(F)10 b Fy(\()p Fs(f)h Fy(\))39 b(:)g Ft(F)10 b Fy(\()p Fs(C)2693 3761 y Fq(0)2716 3797 y Fy(\))39 b Ft(\000)-60 b(!)39 b(F)10 b Fy(\()p Fs(C)d Fy(\))39 b(b)s(e)g(the)h(uniquely)0 3914 y(determined)34 b(morphism)g(\(b)m(y)g(the)f(Y)-8 b(oneda)32 b(Lemma\))i(in)e Ft(D)j Fy(suc)m(h)g(that)d(the)h(diagram) 1302 4616 y Ft(G)6 b Fy(\()p Fs(C)1482 4580 y Fq(0)1506 4616 y Fs(;)17 b Fy(-)o(\))306 b(Mor)2102 4631 y Fq(D)2163 4616 y Fy(\()p Ft(F)10 b Fy(\()p Fs(C)2398 4580 y Fq(0)2420 4616 y Fy(\))p Fs(;)17 b Fy(-\))p 1648 4593 241 4 v 1806 4591 a Fo(-)1716 4656 y Fp(\030)1747 4675 y Fk(C)1794 4661 y Fl(0)1317 4128 y Ft(G)6 b Fy(\()p Fs(C)r(;)17 b Fy(-)o(\))332 b(Mor)2114 4143 y Fq(D)2175 4128 y Fy(\()p Ft(F)10 b Fy(\()p Fs(C)d Fy(\))p Fs(;)17 b Fy(-)n(\))p 1635 4105 267 4 v 1819 4103 a Fo(-)1726 4071 y Fp(\030)1757 4082 y Fk(C)p 1459 4523 4 351 v 1461 4523 a Fo(?)1232 4364 y Fq(G)t Fr(\()p Fp(f)s(;)p Fy(-)p Fr(\))p 2239 4523 V 2241 4523 a Fo(?)2280 4364 y Fr(Mor)o(\()p Fq(F)7 b Fr(\()p Fp(f)g Fr(\))p Fp(;)p Fy(-)q Fr(\))0 4836 y Fy(comm)m(utes.)71 b(Because)42 b(of)f(the)g(uniqueness)j(of)d Ft(F)10 b Fy(\()p Fs(f)h Fy(\))40 b(and)h(b)s(ecause)h(of)f(the)g (functorialit)m(y)h(of)e Ft(G)47 b Fy(it)41 b(is)0 4952 y(easy)35 b(to)f(see)h(that)f Ft(F)10 b Fy(\()p Fs(f)h(g)t Fy(\))29 b(=)h Ft(F)10 b Fy(\()p Fs(g)t Fy(\))p Ft(F)g Fy(\()p Fs(f)h Fy(\))31 b(and)k Ft(F)10 b Fy(\(1)1930 4967 y Fp(C)1988 4952 y Fy(\))30 b(=)g(1)2211 4968 y Fq(F)7 b Fr(\()p Fp(C)e Fr(\))2416 4952 y Fy(hold)34 b(and)h(that)e Ft(F)44 b Fy(is)35 b(a)e(con)m(tra)m(v)-5 b(arian)m(t)0 5069 y(functor.)0 5185 y(If)36 b Ft(F)183 5149 y Fq(0)239 5185 y Fy(:)d Ft(C)40 b(\000)-60 b(!)33 b(D)38 b Fy(is)f(giv)m(en)g(with)f Ft(G)1340 5157 y(\030)1341 5189 y Fy(=)1450 5185 y(Mor)1627 5200 y Fq(D)1687 5185 y Fy(\()p Ft(F)1807 5149 y Fq(0)1830 5185 y Fy(-)o Fs(;)17 b Fy(-\))35 b(then)i Fs(\036)c Fy(:)g(Mor)2565 5200 y Fq(D)2626 5185 y Fy(\()p Ft(F)10 b Fy(-)o Fs(;)17 b Fy(-)o(\))2925 5157 y Ft(\030)2926 5189 y Fy(=)3036 5185 y(Mor)3212 5200 y Fq(D)3273 5185 y Fy(\()p Ft(F)3393 5149 y Fq(0)3416 5185 y Fy(-)o Fs(;)g Fy(-)o(\).)54 b(Hence)0 5301 y(b)m(y)36 b(the)f(Y)-8 b(oneda)35 b(Lemma)h Fs( )t Fy(\()p Fs(C)7 b Fy(\))31 b(:)h Ft(F)10 b Fy(\()p Fs(C)d Fy(\))1584 5273 y Ft(\030)1585 5305 y Fy(=)1693 5301 y Ft(F)1775 5265 y Fq(0)1798 5301 y Fy(\()p Fs(C)g Fy(\))35 b(is)g(an)g (isomorphism)i(for)d(all)h Fs(C)j Ft(2)33 b(C)6 b Fy(.)50 b(With)36 b(these)0 5417 y(isomorphisms)f(induced)f(b)m(y)f Fs(\036)f Fy(the)h(diagram)p Black Black eop end %%Page: 73 73 TeXDict begin 73 72 bop Black 1610 -99 a Fw(The)26 b(Y)-6 b(oneda)25 b(Lemma)1534 b(73)p Black 846 707 a Fy(Mor)1022 722 y Fq(D)1083 707 y Fy(\()p Ft(F)1203 671 y Fq(0)1226 707 y Fy(\()p Fs(C)1341 671 y Fq(0)1364 707 y Fy(\))p Fs(;)17 b Fy(-)o(\))910 b(Mor)2602 722 y Fq(D)2663 707 y Fy(\()p Ft(F)10 b Fy(\()p Fs(C)2898 671 y Fq(0)2921 707 y Fy(\))p Fs(;)17 b Fy(-)o(\))p 1545 684 845 4 v 2307 682 a Fo(-)1759 752 y Fr(Mor\()p Fp( )r Fr(\()p Fp(C)2044 728 y Fl(0)2068 752 y Fr(\))p Fp(;)p Fy(-)o Fr(\))858 219 y Fy(Mor)1034 234 y Fq(D)1095 219 y Fy(\()p Ft(F)1215 183 y Fq(0)1238 219 y Fy(\()p Fs(C)7 b Fy(\))p Fs(;)17 b Fy(-)o(\))933 b(Mor)2614 234 y Fq(D)2675 219 y Fy(\()p Ft(F)10 b Fy(\()p Fs(C)d Fy(\))p Fs(;)17 b Fy(-)n(\))p 1533 196 868 4 v 2318 194 a Fo(-)1771 158 y Fr(Mor)o(\()p Fp( )r Fr(\()p Fp(C)5 b Fr(\))p Fp(;)p Fy(-)q Fr(\))p 1180 614 4 351 v 1181 614 a Fo(?)732 455 y Fr(Mor\()p Fq(F)944 432 y Fl(0)967 455 y Fr(\()p Fp(f)i Fr(\))p Fp(;)p Fy(-)p Fr(\))p 2740 614 V 2741 614 a Fo(?)2780 455 y Fr(Mor\()p Fq(F)g Fr(\()p Fp(f)g Fr(\))p Fp(;)p Fy(-)p Fr(\))0 866 y Fy(comm)m(utes.)45 b(Hence)34 b(the)f(diagram)1552 1532 y Ft(F)10 b Fy(\()p Fs(C)d Fy(\))338 b Ft(F)2207 1496 y Fq(0)2230 1532 y Fy(\()p Fs(C)7 b Fy(\))p 1815 1509 281 4 v 2013 1507 a Fo(-)1876 1576 y Fp( )r Fr(\()p Fp(C)e Fr(\))1540 1045 y Ft(F)10 b Fy(\()p Fs(C)1737 1008 y Fq(0)1760 1045 y Fy(\))315 b Ft(F)2195 1008 y Fq(0)2218 1045 y Fy(\()p Fs(C)2333 1008 y Fq(0)2356 1045 y Fy(\))p 1827 1021 258 4 v 2002 1019 a Fo(-)1865 984 y Fp( )r Fr(\()p Fp(C)1995 961 y Fl(0)2018 984 y Fr(\))p 1667 1439 4 351 v 1669 1439 a Fo(?)1454 1281 y Fq(F)1511 1257 y Fl(0)1534 1281 y Fr(\()p Fp(f)7 b Fr(\))p 2252 1439 V 2254 1439 a Fo(?)2293 1280 y Fq(F)g Fr(\()p Fp(f)g Fr(\))0 1715 y Fy(comm)m(utes.)45 b(Th)m(us)35 b Fs( )c Fy(:)d Ft(F)37 b(\000)-59 b(!)27 b(F)1229 1679 y Fq(0)1284 1715 y Fy(is)33 b(a)g(natural)f(isomorphism.)1455 b Fg(\003)p Black 0 1880 a Fy(2.10.6.)36 b Fv(Remark.)p Black 44 w Fy(The)h(Y)-8 b(oneda)37 b(Lemma)g(sa)m(ys)g(in)g(principle)h(that)e (w)m(e)h(can)g(reco)m(v)m(er)h(\(all)e(prop)s(erties)0 1996 y(of)7 b(\))27 b(an)h(ob)5 b(ject)29 b Fs(A)e Fy(from)h(the)g(con) m(tra)m(v)-5 b(arian)m(t)29 b(functor)f(Mor)2164 2011 y Fq(C)2209 1996 y Fy(\(-)o Fs(;)17 b(A)p Fy(\).)42 b(Corollary)28 b(2.10.2)f(sa)m(ys)i(that)f(w)m(e)h(can)0 2112 y(also)39 b(reco)m(v)m(er)h(a)e(morphism)i Fs(f)49 b Fy(from)38 b(the)h(natural)g(transformation)f(Mor)2791 2127 y Fq(C)2836 2112 y Fy(\(-)p Fs(;)17 b(f)11 b Fy(\).)60 b(More)39 b(imp)s(ortan)m(tly)0 2229 y(an)m(y)e(natural)g(transformation)f Fs(')e Fy(:)h(Mor)1538 2244 y Fq(C)1583 2229 y Fy(\(-)o Fs(;)17 b(A)p Fy(\))35 b Ft(\000)-60 b(!)34 b Fy(Mor)2170 2244 y Fq(C)2215 2229 y Fy(\(-)p Fs(;)17 b(B)5 b Fy(\))36 b(is)h(of)f(the)h(form)f Fs(')f Fy(=)f(Mor)3491 2244 y Fq(C)3536 2229 y Fy(\(-)p Fs(;)17 b(f)11 b Fy(\))35 b(for)0 2345 y(some)e Fs(f)39 b Fy(:)28 b Fs(A)f Ft(\000)-59 b(!)27 b Fs(B)5 b Fy(.)44 b(So)32 b(w)m(e)i(get)e(the)h(follo)m(wing)g (Theorem.)p Black 0 2510 a(2.10.7.)45 b Fv(Theorem)53 b Fy(\()p Fv(The)g(Y)-9 b(oneda)53 b(Em)m(b)s(edding\).)p Black 50 w Fu(L)-5 b(et)47 b Ft(C)53 b Fu(b)-5 b(e)47 b(a)g(\(smal)5 b(l\))46 b(c)-5 b(ate)g(gory.)81 b(Then)46 b(the)0 2626 y(functor)38 b Fs(h)33 b Fy(:)g Ft(C)40 b(\000)-58 b(!)33 b Fv(F)-9 b(unc)q Fy(\()p Ft(C)1068 2590 y Fp(op)1142 2626 y Fs(;)17 b Fv(Set)o Fy(\))38 b Fu(with)g Fs(h)p Fy(\()p Fs(A)p Fy(\))33 b(=)g(Mor)2156 2641 y Fq(C)2201 2626 y Fy(\()p Fu(-)p Fs(;)17 b(A)p Fy(\))37 b Fu(and)g Fs(h)p Fy(\()p Fs(f)11 b Fy(\))33 b(=)g(Mor)3167 2641 y Fq(C)3212 2626 y Fy(\()p Fu(-)p Fs(;)17 b(f)11 b Fy(\))37 b Fu(is)h(ful)5 b(l)38 b(and)0 2742 y(faithful.)45 b(In)34 b(p)-5 b(articular)35 b Ft(C)41 b Fu(is)34 b(e)-5 b(quivalent)35 b(to)g(a)f(ful)5 b(l)35 b(sub)-5 b(c)g(ate)g(gory)35 b(of)g Fv(F)-9 b(unc)p Fy(\()p Ft(C)2929 2706 y Fp(op)3003 2742 y Fs(;)17 b Fv(Set)p Fy(\))p Fu(.)p Black 0 2907 a Fy(2.10.8.)32 b Fv(Theorem)38 b Fy(\(Ca)m(yley\))p Fv(.)p Black 43 w Fu(Every)d(gr)-5 b(oup)35 b Fs(G)g Fu(is)g(isomorphic)e(to)i(a)g(gr)-5 b(oup)35 b(of)f(p)-5 b(ermutations.)p Black 0 3072 a(Sketch)34 b(of)h(Pr)-5 b(o)g(of.)p Black 0 3188 a Fy(1.)42 b(First,)31 b(de\014ne)h(the)e(Ca)m(yley)i(represen)m(tation)p 1781 3108 77 4 v 32 w Fs(G)e Fy(of)g Fs(G)g Fy(to)g(b)s(e)g(the)h(follo)m (wing)f(group)g(of)g(p)s(erm)m(utations:)0 3304 y(the)36 b(underlying)i(set)e(of)p 930 3224 V 36 w Fs(G)g Fy(is)g(just)h Fs(G)p Fy(,)f(and)g(for)g(eac)m(h)h Fs(g)f Ft(2)e Fs(G)p Fy(,)j(w)m(e)g(ha)m(v)m(e)g(the)g(p)s(erm)m(utation)p 3482 3250 51 4 v 36 w Fs(g)t Fy(,)g(de\014ned)0 3421 y(for)32 b(all)h Fs(h)27 b Ft(2)h Fs(G)33 b Fy(b)m(y:)p 745 3366 V 44 w Fs(g)t Fy(\()p Fs(h)p Fy(\))27 b(=)h Fs(g)d Ft(\001)d Fs(h:)33 b Fy(No)m(w)g(c)m(hec)m(k)i(that)p 1993 3366 V 32 w Fs(g)c Fy(=)p 2175 3340 57 4 v 28 w Fs(h)h Fy(implies)j Fs(g)30 b Fy(=)e Fs(h)p Fy(.)0 3542 y(2.)43 b(Next)34 b(de\014ne)f(homomorphisms)i Fs(i)28 b Fy(:)f Fs(G)h Ft(\000)-59 b(!)p 1732 3462 77 4 v 27 w Fs(G)32 b Fy(b)m(y)i Fs(i)p Fy(\()p Fs(g)t Fy(\))27 b(=)p 2267 3488 51 4 v 27 w Fs(g)t Fy(,)32 b(and)h Fs(j)h Fy(:)p 2695 3462 77 4 v 27 w Fs(G)28 b Ft(\000)-60 b(!)28 b Fs(G)k Fy(b)m(y)i Fs(j)6 b Fy(\()p 3274 3488 51 4 v Fs(g)s Fy(\))28 b(=)f Fs(g)t Fy(.)0 3659 y(3.)43 b(Finally)33 b(sho)m(w)h(that)e Fs(i)23 b Ft(\016)f Fs(j)33 b Fy(=)28 b(1)p 1258 3630 60 3 v 26 x Fp(G)1349 3659 y Fy(and)33 b Fs(j)28 b Ft(\016)22 b Fs(i)28 b Fy(=)f(1)1892 3674 y Fp(G)1951 3659 y Fy(.)1845 b Fg(\003)p Black 0 3823 a Fy(2.10.9.)33 b Fv(Remark.)p Black 43 w Fy(W)-8 b(arning:)47 b(Note)34 b(the)h(t)m(w)m(o)g(di\013eren)m(t)g(lev)m(els)h(of)e (isomorphisms)i(that)e(o)s(ccur)g(in)h(the)0 3940 y(pro)s(of)i(of)g(Ca) m(yley's)j(theorem.)60 b(There)39 b(are)f(p)s(erm)m(utations)h(of)e (the)h(set)h(of)e(elemen)m(ts)j(of)e Fs(G)p Fy(,)h(whic)m(h)g(are)0 4056 y(isomorphisms)25 b(in)f Fv(Set)p Fy(,)h(and)e(there)h(is)g(the)f (isomorphism)i(b)s(et)m(w)m(een)h Fs(G)d Fy(and)p 2789 3976 77 4 v 23 w Fs(G)p Fy(,)i(whic)m(h)g(is)f(in)f(the)h(category)0 4172 y Fv(Groups)33 b Fy(of)f(groups)h(and)g(group)f(homomorphisms.)0 4288 y(Ca)m(yley's)37 b(theorem)f(sa)m(ys)g(that)e(an)m(y)i(abstract)f (group)f(can)h(b)s(e)g(represen)m(ted)i(as)e(a)f(\\concrete")i(one,)f (i.e.)0 4405 y(a)28 b(group)h(of)f(p)s(erm)m(utations)i(of)e(a)g(set.) 43 b(The)30 b(theorem)f(can)g(b)s(e)g(generalized)h(to)e(sho)m(w)i (that)e(an)m(y)i(category)0 4521 y(can)j(b)s(e)g(represen)m(ted)i(as)d (one)h(that)g(is)g(\\concrete",)g(i.e.)44 b(a)32 b(category)h(of)g (sets)g(and)g(functions.)p Black 0 4686 a(2.10.10.)e Fv(Theorem.)p Black 42 w Fu(Every)j(c)-5 b(ate)g(gory)35 b Ft(C)40 b Fu(is)34 b(isomorphic)f(to)h(one)g(in)g(which)f(the)i(obje) -5 b(cts)33 b(ar)-5 b(e)34 b(sets)h(and)0 4802 y(the)g(arr)-5 b(ows)34 b(ar)-5 b(e)35 b(functions.)44 b(\(One)34 b(should)h(r)-5 b(e)g(al)5 b(ly)34 b(r)-5 b(e)g(quir)g(e)35 b(her)-5 b(e)35 b(that)g Ft(C)41 b Fu(is)35 b(smal)5 b(l.\))p Black 0 4967 a(Sketch)34 b(of)h(Pr)-5 b(o)g(of.)p Black 66 w Fy(De\014ne)26 b(the)g(Ca)m(yley)h(represen)m(tation)g(of)e Ft(C)31 b Fy(to)25 b(b)s(e)h(the)f(follo)m(wing)h(concrete)h(category:) p Black 223 5103 a Ft(\017)p Black 42 w Fy(ob)5 b(jects)33 b(are)g(sets)h(of)e(the)h(form:)p 1409 5180 V 1409 5260 a Fs(C)h Fy(=)28 b Ft(f)p Fs(f)38 b Ft(2)28 b(C)6 b(j)17 b Fy(co)s(d\()p Fs(f)11 b Fy(\))27 b(=)h Fs(C)7 b Ft(g)315 5417 y Fy(for)32 b(all)g Fs(C)j Ft(2)28 b(C)6 b Fy(,)p Black Black eop end %%Page: 74 74 TeXDict begin 74 73 bop Black 0 -99 a Fw(74)1077 b(Represen)n(table)25 b(functors)h(and)g(the)f(Y)-6 b(oneda)25 b(Lemma)p Black Black 223 100 a Ft(\017)p Black 42 w Fy(arro)m(ws)33 b(are)f(functions)p 1704 173 51 4 v 1704 228 a Fs(g)f Fy(:)p 1836 148 77 4 v 27 w Fs(C)k Ft(\000)-60 b(!)p 2086 148 84 4 v 28 w Fs(D)r(;)315 375 y Fy(for)32 b Fs(g)f Fy(:)c Fs(C)35 b Ft(\000)-60 b(!)28 b Fs(D)35 b Fy(in)e Ft(C)6 b Fy(,)33 b(de\014ned)h(b)m(y)p 1665 321 51 4 v 33 w Fs(g)s Fy(\()p Fs(f)11 b Fy(\))28 b(=)f Fs(g)f Ft(\016)c Fs(f)11 b Fy(.)3823 518 y Fg(\003)0 714 y Fy(2.11.)48 b Fv(Algebraic)38 b(Structures.)0 947 y Fy(Algebraic)f(structures)h (are)f(de\014ned)g(b)m(y)h(op)s(erations,)f(i.e.)56 b(b)m(y)37 b(comp)s(osition)g(maps)g(from)f(pro)s(ducts)h(of)0 1063 y(a)d(set)h(to)f(the)h(set)g(itself,)h(together)f(with)g(additional)f (equations.)50 b(These)37 b(op)s(erations)d(lead)h(to)f(natural)0 1179 y(transformations.)44 b(Again)32 b(monoids)i(are)e(the)h(\014rst)g (in)m(teresting)h(example.)0 1295 y(W)-8 b(e)39 b(consider)i(the)e (category)h Fv(Mon)f Fy(of)g(monoids)h(and)f(the)h(underlying)g (functor)f Fs(U)50 b Fy(:)39 b Fv(Mon)g Ft(\000)-59 b(!)38 b Fv(Set)p Fy(.)0 1412 y(First)33 b(w)m(e)g(translate)g(the)g (de\014nition)h(of)e(a)g(monoid)h(in)m(to)g(a)f(category)h(theoretical) g(v)m(ersion.)p Black 0 1592 a(2.11.1.)42 b Fv(De\014nition.)p Black 48 w Fy(Let)h Ft(C)50 b Fy(b)s(e)43 b(a)f(category)i(with)f (\014nite)h(pro)s(ducts.)76 b(A)43 b Fu(monoid)f Fy(in)h Ft(C)49 b Fy(is)44 b(a)e(triple)0 1709 y(\()p Fs(M)5 b(;)17 b Fy(m)m(ult)q Fs(;)g(e)468 1724 y Fp(M)547 1709 y Fy(\))32 b(where)p Black 148 1851 a(\(1\))p Black 42 w Fs(M)43 b Fy(is)33 b(an)f(ob)5 b(ject)34 b(in)f Ft(C)6 b Fy(,)p Black 148 1967 a(\(2\))p Black 42 w(m)m(ult)28 b(:)g Fs(M)33 b Ft(\002)22 b Fs(M)39 b Ft(\000)-60 b(!)28 b Fs(M)43 b Fy(is)33 b(a)f(morphism)i(in)f Ft(C)6 b Fy(,)p Black 148 2083 a(\(3\))p Black 42 w Fs(e)360 2098 y Fp(M)466 2083 y Fy(:)28 b(1)g Ft(\000)-60 b(!)27 b Fs(M)44 b Fy(is)33 b(a)f(morphism)i(in)f Ft(C)38 b Fy(with)c(1)e(a)g(terminal)h(ob)5 b(ject.)0 2225 y(suc)m(h)34 b(that)e(the)h(follo)m(wing)g(diagrams)g (comm)m(ute:)1332 2430 y Fs(M)g Ft(\002)22 b Fs(M)33 b Ft(\002)23 b Fs(M)444 b(M)32 b Ft(\002)23 b Fs(M)p 1919 2402 376 4 v 2212 2400 a Fo(-)1894 2373 y Fs(M)33 b Ft(\002)22 b Fy(m)m(ult)1445 2820 y Fs(M)33 b Ft(\002)23 b Fs(M)670 b(M)p 1805 2792 603 4 v 2325 2790 a Fo(-)2007 2771 y Fy(m)m(ult)p 1609 2722 4 254 v 1611 2722 a Fo(?)1175 2626 y Fy(m)m(ult)17 b Ft(\002)p Fs(M)p 2487 2722 V 2488 2722 a Fo(?)2527 2630 y Fy(m)m(ult)0 2958 y(and)1485 3077 y Ft(\030)1486 3109 y Fy(=)1591 3105 y Fs(M)1723 3077 y Ft(\030)1724 3109 y Fy(=)1828 3105 y Fs(M)33 b Ft(\002)23 b Fy(1)500 b Fs(M)33 b Ft(\002)22 b Fs(M)p 2132 3077 444 4 v 2493 3075 a Fo(-)2166 3041 y Fy(1)2215 3056 y Fp(M)2316 3041 y Ft(\002)h Fs(e)2461 3056 y Fp(M)1141 3495 y Fs(M)33 b Ft(\002)23 b Fs(M)1255 b(M)p 1501 3467 1188 4 v 2606 3465 a Fo(-)1996 3446 y Fy(m)m(ult)1169 3105 y(1)22 b Ft(\002)h Fs(M)p 1305 3397 4 254 v 1307 3397 a Fo(?)894 3295 y Fs(e)939 3310 y Fp(M)1041 3295 y Ft(\002)f Fy(1)1189 3310 y Fp(M)p 2768 3397 V 2769 3397 a Fo(?)2808 3305 y Fy(m)m(ult)1990 3295 y(1)2039 3310 y Fp(M)1678 3164 y Fo(X)1761 3185 y(X)1844 3206 y(X)1927 3227 y(X)2010 3247 y(X)2093 3268 y(X)2176 3289 y(X)2259 3310 y(X)2342 3330 y(X)2425 3351 y(X)2508 3372 y(X)2591 3393 y(X)2608 3397 y(X)-83 b(z)0 3646 y Fy(W)-8 b(e)28 b(note)f(that)g(the)g(unit)h(elemen)m(t)h(is)e(replaced)i(b)m(y) f(a)f(v)-5 b(ariable)27 b(elemen)m(t)i Fs(e)2736 3661 y Fp(M)2843 3646 y Fy(:)f(1)f Ft(\000)-59 b(!)27 b Fs(A)p Fy(.)42 b(In)27 b(the)h(category)0 3762 y Fv(Set)i Fy(of)g(sets)i(a)e (terminal)g(ob)5 b(ject)31 b(is)g(a)f(one-p)s(oin)m(t)h(set)g(\(or)e (singleton\).)44 b(An)31 b(elemen)m(t)h(in)e Fs(m)e Ft(2)g Fs(M)41 b Fy(de\014nes)0 3878 y(a)36 b(unique)i(map)e Fs(m)711 3893 y Fp(M)824 3878 y Fy(:)e(1)g Ft(\000)-60 b(!)34 b Fs(M)10 b Fy(,)38 b(in)e(fact)g Fs(M)47 b Fy(and)37 b Fs(M)10 b Fy(\(1\))36 b(are)g(isomorphic)i(sets.)55 b(In)37 b(case)g(of)f(the)h(unit)0 3995 y(elemen)m(t)d Fs(m)28 b Fy(=)g Fs(e)k Fy(this)h(leads)g(to)f Fs(e)1252 4010 y Fp(M)1359 3995 y Fy(:)c Ft(f\003g)f(\000)-59 b(!)27 b Fs(M)43 b Fy(with)33 b Fs(e)2140 4010 y Fp(M)2219 3995 y Fy(\()p Ft(\003)p Fy(\))27 b(=)h Fs(e)g Ft(2)g Fs(M)10 b Fy(.)44 b(So)32 b(in)h(the)g(case)g(of)f(sets)h(this)0 4111 y(map)g(mak)m(es)h(the)f(last)g(diagram)f(comm)m(utativ)m(e.)-2255 b(01.07.04)0 4227 y(The)39 b(conditions)g(for)f(a)g(\(homo-\)morphism)g (of)g(monoids)h Fs(f)48 b Fy(:)37 b Fs(M)48 b Ft(\000)-60 b(!)37 b Fs(N)49 b Fy(translate)38 b(to)g(comm)m(utativ)m(e)0 4343 y(diagrams)0 4901 y(\(15\))854 4540 y Fs(M)33 b Ft(\002)23 b Fs(M)377 b(M)p 1214 4512 311 4 v 1442 4510 a Fo(-)1270 4492 y Fy(m)m(ult)870 4930 y Fs(N)33 b Ft(\002)23 b Fs(N)402 b(N)p 1198 4903 334 4 v 1449 4901 a Fo(-)1266 4882 y Fy(m)m(ult)p 1018 4832 4 254 v 1020 4832 a Fo(?)742 4730 y Fs(f)32 b Ft(\002)23 b Fs(f)p 1603 4832 V 1605 4832 a Fo(?)1644 4730 y Fs(f)1930 4901 y Fy(and)2646 4545 y(1)313 b Fs(M)p 2724 4512 256 4 v 2897 4510 a Fo(-)2790 4477 y Fs(e)2835 4492 y Fp(M)2646 4935 y Fy(1)321 b Fs(N)p 2724 4903 264 4 v 2905 4901 a Fo(-)2800 4867 y Fs(e)2845 4882 y Fp(N)p 2669 4832 4 254 v 2671 4832 a Fo(?)2314 4735 y Fy(1)2363 4750 y Fr(1)2430 4735 y Fy(=)27 b Fs(f)2592 4699 y Fr(0)p 3059 4832 V 3061 4832 a Fo(?)3100 4730 y Fs(f)0 5069 y Fy(It)45 b(is)h(easy)h(to)e(see)h(that)f(the)h(comp)s (osition)g(of)f(morphisms)i(of)e(monoids)h(is)g(again)f(a)g(morphism)h (of)0 5185 y(monoids.)d(One)31 b(also)f(has)g(that)g(the)g(iden)m(tit)m (y)i(morphism)f(1)2224 5200 y Fp(M)2333 5185 y Fy(in)f Ft(C)36 b Fy(is)31 b(a)e(morphism)i(of)f(monoids)h(for)e(all)0 5301 y(monoids)k(\()p Fs(M)5 b(;)17 b Fy(m)m(ult)q Fs(;)g(e)853 5316 y Fp(M)932 5301 y Fy(\))32 b(in)h Ft(C)6 b Fy(.)0 5417 y(So)32 b(w)m(e)i(can)f(de\014ne)h(the)f Fu(c)-5 b(ate)g(gory)35 b(of)f(monoids)d Fv(Mon)2013 5432 y Fq(C)2091 5417 y Fy(in)h(an)h(arbitrary)f(category)h Ft(C)6 b Fy(.)p Black Black eop end %%Page: 75 75 TeXDict begin 75 74 bop Black 1605 -99 a Fw(Algebraic)27 b(Structures)1527 b(75)p Black 0 100 a Fy(All)29 b(other)h(algebraic)f (structures)i(as)e(long)g(as)h(they)g(are)f(de\014ned)h(b)m(y)g(op)s (erations)g(and)f(equations)h(\()p Fu(e)-5 b(qua-)0 217 y(tional)5 b(ly)44 b(de\014ne)-5 b(d)43 b(algebr)-5 b(aic)43 b(structur)-5 b(es)p Fy(\))43 b(can)g(b)s(e)g(treated)g(in)f(the)h (same)h(w)m(a)m(y)-8 b(.)74 b(Examples)45 b(ab)s(ound:)0 333 y(semigroups,)f(groups,)f(ab)s(elian)d(groups,)j(rings,)g(v)m (ector)f(spaces)g(o)m(v)m(er)f(a)f(\(set-theoretic\))i(\014eld)f Fm(K)p Fy(,)i Fm(K)p Fy(-)0 449 y(algebras,)33 b Fs(R)q Fy(-mo)s(dules,)g(Lie)g(algebras,)g(Jordan)g(algebras,)g(semirings,)h (etc.)0 565 y(An)41 b(easy)h(example)g(of)e(an)g(algebraic)h(structure) h(is)f(the)h(case)f(of)f(unary)h(op)s(erations)g Fs(u)g Fy(:)h Fs(S)47 b Ft(\000)-60 b(!)41 b Fs(S)47 b Fy(as)0 681 y(discussed)32 b(in)e(1.7.21.)42 b(These)31 b(op)s(erations)f(pla)m (y)h(an)e(imp)s(ortan)m(t)h(role)g(in)g(the)g(study)h(of)e (endomorphisms)0 798 y(of)j(v)m(ector)i(spaces,)g(i.e.)44 b(of)32 b(square)i(matrices.)p Black 0 985 a(2.11.2.)e Fv(Remark)38 b Fy(\(V)-8 b(ector)33 b(spaces\))p Fv(.)p Black 0 1102 a Fy(The)41 b(case)h(of)d Fm(K)p Fy(-v)m(ector)j(spaces)g (and)e Fs(R)q Fy(-mo)s(dules)h(con)m(tains)h(an)e(in)m(teresting)i(v)-5 b(arian)m(t.)67 b(Since)41 b Fm(K)g Fy(will)0 1218 y(not)33 b(b)s(e)g(an)f(ob)5 b(ject)34 b(in)f Ft(C)39 b Fy(in)33 b(general)g(the)g(question)i(arises)f(ho)m(w)f(to)f(de\014ne)j(the)e (action)g(of)f Fm(K)h Fy(on)g(v)m(ector)0 1334 y(spaces.)45 b(This)34 b(is)f(done)g(b)m(y)h(considering)g(eac)m(h)f(elemen)m(t)i Fs(\013)28 b Ft(2)g Fm(K)33 b Fy(as)g(an)f(endomorphism)j(for)d(the)h (v)m(ector)0 1450 y(space)i(ob)5 b(ject)35 b Fs(V)55 b Fy(in)34 b Ft(C)6 b Fy(,)35 b(so)f(eac)m(h)h Fs(\013)c Ft(2)f Fm(K)35 b Fy(induces)g Fs(\013)q Ft(\001)30 b Fy(:)g Fs(V)51 b Ft(\000)-59 b(!)29 b Fs(V)56 b Fy(in)34 b Ft(C)6 b Fy(.)48 b(The)35 b(relev)-5 b(an)m(t)35 b(equations)g(for)e (a)0 1567 y(v)m(ector)g(space)h(are)e(then)h(written)g(as)g(equations)h (of)e(morphisms.)45 b(F)-8 b(or)31 b(this)i(purp)s(ose)g(w)m(e)h (\014rst)f(consider)0 1683 y(the)g(structure)h(of)e(an)g(ab)s(elian)h (group)g(on)f Fs(V)22 b Fy(.)p Black 0 1870 a(2.11.3.)35 b Fv(De\014nition.)p Black 44 w Fy(Let)g Ft(C)42 b Fy(b)s(e)36 b(a)f(category)h(with)g(\014nite)g(pro)s(ducts.)53 b(A)36 b Fu(gr)-5 b(oup)37 b(in)h(a)f(c)-5 b(ate)g(gory)35 b Ft(C)42 b Fy(is)36 b(a)0 1987 y(quadruple)e(\()p Fs(V)5 b(;)17 b Fy(+)p Fs(;)g Fy(0)p Fs(;)g Ft(\000)p Fy(\))32 b(where)p Black 148 2135 a(\(1\))p Black 42 w Fs(V)54 b Fy(is)33 b(an)f(ob)5 b(ject)34 b(in)e Ft(C)6 b Fy(,)p Black 148 2251 a(\(2\))p Black 42 w(+)27 b(:)h Fs(V)44 b Ft(\002)22 b Fs(V)49 b Ft(\000)-59 b(!)27 b Fs(V)54 b Fy(is)33 b(a)g(morphism,)g(the)g Fu(addition)p Fy(,)p Black 148 2367 a(\(3\))p Black 42 w(0)27 b(:)h(1)f Ft(\000)-59 b(!)27 b Fs(V)54 b Fy(is)33 b(a)f(morphism,)i(the)f Fu(neutr)-5 b(al)35 b(elements)p Fy(,)p Black 148 2484 a(\(4\))p Black 42 w Ft(\000)28 b Fy(:)f Fs(V)50 b Ft(\000)-60 b(!)27 b Fs(V)55 b Fy(is)33 b(a)f(morphism,)i(the)f Fu(inverse)p Fy(,)0 2632 y(suc)m(h)h(that)1408 2789 y Fs(V)44 b Ft(\002)22 b Fs(V)44 b Ft(\002)23 b Fs(V)422 b(V)44 b Ft(\002)23 b Fs(V)p 1916 2761 344 4 v 2177 2759 a Fo(-)1949 2731 y Fs(V)44 b Ft(\002)23 b Fy(+)1508 3179 y Fs(V)44 b Ft(\002)23 b Fs(V)622 b(V)p 1816 3151 544 4 v 2277 3149 a Fo(-)2050 3226 y Fy(+)p 1646 3081 4 254 v 1648 3081 a Fo(?)1333 2984 y Fy(+)22 b Ft(\002)g Fs(V)p 2426 3081 V 2428 3081 a Fo(?)2467 2979 y Fy(+)1485 3408 y Ft(\030)1486 3440 y Fy(=)1591 3435 y Fs(V)1697 3408 y Ft(\030)1698 3440 y Fy(=)1802 3435 y Fs(V)44 b Ft(\002)22 b Fy(1)553 b Fs(V)43 b Ft(\002)23 b Fs(V)p 2080 3407 495 4 v 2492 3405 a Fo(-)2187 3372 y Fy(1)2236 3387 y Fp(V)2319 3372 y Ft(\002)f Fy(0)1141 3825 y Fs(V)44 b Ft(\002)23 b Fs(V)1305 b(V)p 1449 3798 1226 4 v 2592 3796 a Fo(-)2024 3769 y Fy(+)1156 3435 y(1)22 b Ft(\002)h Fs(V)p 1279 3727 4 254 v 1281 3727 a Fo(?)961 3625 y Fy(0)f Ft(\002)h Fy(1)1181 3640 y Fp(V)p 2741 3727 V 2743 3727 a Fo(?)2782 3625 y Fy(+)-876 b(1)2031 3640 y Fp(V)1651 3495 y Fo(X)1734 3515 y(X)1817 3536 y(X)1900 3557 y(X)1983 3578 y(X)2066 3598 y(X)2149 3619 y(X)2232 3640 y(X)2315 3661 y(X)2398 3681 y(X)2481 3702 y(X)2564 3723 y(X)2582 3727 y(X)-83 b(z)685 4062 y Fs(V)348 b Fy(1)p 793 4029 269 4 v 979 4027 a Fo(-)888 3984 y Ft(hi)1090 4062 y Fy(1)326 b Fs(V)p 1168 4029 V 1354 4027 a Fo(-)1277 4009 y Fy(0)585 4448 y Fs(V)44 b Ft(\002)22 b Fs(V)523 b(V)44 b Ft(\002)22 b Fs(V)p 893 4420 443 4 v 1253 4418 a Fo(-)960 4501 y Fy(1)1009 4516 y Fp(V)1092 4501 y Ft(\002)g(\000)p 723 4350 4 254 v 724 4350 a Fo(?)368 4248 y Fy([1)444 4263 y Fp(V)505 4248 y Fs(;)17 b Fy(1)598 4263 y Fp(V)658 4248 y Fy(])p 1503 4350 V 1504 4179 a Fo(6)1543 4248 y Fy(+)1871 4418 y(and)2573 4062 y Fs(V)348 b Fy(1)p 2680 4029 269 4 v 2866 4027 a Fo(-)2775 3984 y Ft(hi)2978 4062 y Fy(1)326 b Fs(V)p 3056 4029 V 3242 4027 a Fo(-)3165 4009 y Fy(0)2473 4448 y Fs(V)43 b Ft(\002)23 b Fs(V)523 b(V)43 b Ft(\002)23 b Fs(V)p 2781 4420 443 4 v 3141 4418 a Fo(-)2848 4501 y Ft(\000)f(\002)h Fy(1)3096 4516 y Fp(V)p 2610 4350 4 254 v 2612 4350 a Fo(?)2256 4248 y Fy([1)2332 4263 y Fp(V)2393 4248 y Fs(;)17 b Fy(1)2486 4263 y Fp(V)2546 4248 y Fy(])p 3390 4350 V 3392 4179 a Fo(6)3431 4248 y Fy(+)0 4636 y(A)33 b(group)f(is)h(called)h Fu(ab)-5 b(elian)31 b Fy(or)h Fu(c)-5 b(ommutative)32 b Fy(if)h(in)f(addition)h(the)g(follo)m(wing)g(diagram)f(comm)m(utes) 1421 4877 y Fs(V)43 b Ft(\002)23 b Fs(V)523 b(V)43 b Ft(\002)23 b Fs(V)p 1729 4849 443 4 v 2089 4847 a Fo(-)1813 4803 y Fy([)p Fs(p)1889 4818 y Fr(2)1928 4803 y Fs(;)17 b(p)2021 4818 y Fr(1)2060 4803 y Fy(])1911 5271 y Fs(V)1619 5067 y Fy(+)1628 4998 y Fo(@)1711 5081 y(@)1794 5164 y(@)1799 5169 y(@)-83 b(R)2205 5067 y Fy(+)2189 4998 y Fo(\000)2106 5081 y(\000)2023 5164 y(\000)2018 5169 y(\000)g(\011)0 5417 y Fy(where)34 b([)p Fs(p)358 5432 y Fr(2)397 5417 y Fs(;)17 b(p)490 5432 y Fr(1)529 5417 y Fy(])33 b(is)g(the)g(switc)m(h)h(morphism)g(of)e(2.7.13.)p Black Black eop end %%Page: 76 76 TeXDict begin 76 75 bop Black 0 -99 a Fw(76)1077 b(Represen)n(table)25 b(functors)h(and)g(the)f(Y)-6 b(oneda)25 b(Lemma)p Black 0 100 a Fy(This)35 b(de\014nition)f(allo)m(ws)h(us)f(to)g(de\014ne)g (groups)g(in)g(man)m(y)h(categories.)47 b(Examples)36 b(are)e(groups)g(in)g(T)-8 b(op,)0 217 y(called)44 b Fu(top)-5 b(olo)g(gic)g(al)44 b(gr)-5 b(oups)p Fy(,)46 b(groups)d(in)h(the)g(category)g(of)f(analytical)g(manifolds,)k(called) e Fu(analytic)-5 b(al)0 333 y(gr)g(oups)p Fy(,)31 b(groups)g(in)g(the)g (dual)g(category)g(of)f(the)h(category)g(of)f(comm)m(utativ)m(e)j (algebras,)e(called)h Fu(c)-5 b(ommu-)0 449 y(tative)36 b(Hopf)f(algebr)-5 b(as)p Fy(.)45 b(W)-8 b(e)34 b(denote)g(the)g (category)f(of)g(groups)h(resp.)47 b(ab)s(elian)33 b(groups)h(in)f Ft(C)40 b Fy(b)m(y)34 b(Gr)16 b Ft(\000C)0 565 y Fy(resp.)44 b(Ab)17 b Ft(\000C)6 b Fy(.)p Black 0 743 a(2.11.4.)36 b Fv(Lemma.)p Black 45 w Fu(L)-5 b(et)39 b Fs(V)55 b Fy(=)34 b(\()p Fs(V)5 b(;)17 b Fy(+)p Fs(;)g Fy(0)p Fs(;)g Ft(\000)p Fy(\))38 b Fu(b)-5 b(e)38 b(an)f(A)n(b)-5 b(elian)38 b(gr)-5 b(oup)38 b(in)g Ft(C)6 b Fu(.)55 b(Then)38 b Fy(Mor)3240 758 y Fr(Ab)12 b Fq(\000C)3443 743 y Fy(\()p Fs(V)5 b(;)17 b(V)22 b Fy(\))38 b Fu(is)g(a)0 859 y(ring)c(with)h (unit.)p Black 0 1036 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(The)34 b(addition)e(is)i(giv)m(en)f(b)m(y)986 1234 y Fs(f)g Fy(+)22 b Fs(g)31 b Fy(:=)c(\()p Fs(V)1517 1169 y Fr([1)1572 1180 y Fk(V)1626 1169 y Fp(;)p Fr(1)1681 1180 y Fk(V)1734 1169 y Fr(])1555 1234 y Ft(\000)-16 b(!)65 b Fs(V)44 b Ft(\002)23 b Fs(V)2102 1173 y Fp(f)7 b Fq(\002)p Fp(g)2088 1234 y Ft(\000)-16 b(!)27 b Fs(V)44 b Ft(\002)22 b Fs(V)2635 1177 y Fr(+)2582 1234 y Ft(\000)-16 b(!)28 b Fs(V)21 b Fy(\))p Fs(:)0 1396 y Fy(The)39 b(morphism)g([1)743 1411 y Fp(V)803 1396 y Fs(;)17 b Fy(1)896 1411 y Fp(V)957 1396 y Fy(])37 b(is)i(usually)g(abbreviated)g(b)m(y)f(\001.)59 b(It)38 b(mak)m(es)h(the)g(follo)m(wing)f(diagram)f(com-)0 1512 y(m)m(utativ)m(e:)1415 1641 y Fs(V)623 b(V)43 b Ft(\002)23 b Fs(V)p 1522 1613 544 4 v 1983 1611 a Fo(-)1753 1592 y Fy(\001)1315 2031 y Fs(V)43 b Ft(\002)23 b Fs(V)423 b(V)43 b Ft(\002)23 b Fs(V)44 b Ft(\002)22 b Fs(V)p 1623 2003 344 4 v 1884 2001 a Fo(-)1638 2088 y Fy(1)1687 2103 y Fp(V)1770 2088 y Ft(\002)h Fy(\001)p 1453 1933 4 254 v 1454 1933 a Fo(?)1334 1840 y Fy(\001)p 2233 1933 V 2234 1933 a Fo(?)2273 1833 y Fy(\001)g Ft(\002)f Fy(1)2525 1848 y Fp(V)0 2205 y Fy(i.e.)44 b(it)33 b(is)g Fu(c)-5 b(o)g(asso)g(ciative)p Fy(.)42 b(Then)721 2341 y(\()p Fs(f)33 b Fy(+)22 b Fs(g)t Fy(\))f(+)h Fs(h)83 b Fy(=)28 b(+)22 b Ft(\016)g Fy(\(\()p Fs(f)33 b Fy(+)22 b Fs(g)t Fy(\))f Ft(\002)i Fs(h)p Fy(\))f Ft(\016)g Fy(\001)1285 2457 y(=)28 b(+)22 b Ft(\016)g Fy(\(\(+)g Ft(\016)g Fy(\()p Fs(f)33 b Ft(\002)22 b Fs(g)t Fy(\))g Ft(\016)g Fy(\001\))g Ft(\002)h Fs(h)p Fy(\))f Ft(\016)g Fy(\001)1285 2573 y(=)28 b(+)22 b Ft(\016)g Fy(\(+)g Ft(\002)h Fy(1)1844 2588 y Fp(V)1904 2573 y Fy(\))f Ft(\016)g Fy(\()p Fs(f)33 b Ft(\002)23 b Fs(g)i Ft(\002)e Fs(h)p Fy(\))f Ft(\016)g Fy(\(\001)g Ft(\002)h Fy(1)2905 2588 y Fp(V)2966 2573 y Fy(\))f Ft(\016)g Fy(\001)1285 2690 y(=)28 b(+)22 b Ft(\016)g Fy(\(1)1646 2705 y Fp(V)1729 2690 y Ft(\002)g Fy(+\))g Ft(\016)g Fy(\()p Fs(f)33 b Ft(\002)23 b Fs(g)i Ft(\002)e Fs(h)p Fy(\))f Ft(\016)g Fy(\(1)2702 2705 y Fp(V)2785 2690 y Ft(\002)g Fy(\001\))h Ft(\016)f Fy(\001)1285 2806 y(=)28 b Fs(f)33 b Fy(+)22 b(\()p Fs(g)j Fy(+)d Fs(h)p Fy(\))p Fs(:)0 3019 y Fy(Since)28 b(w)m(e)g(will)g(pro)m(v)m(e)g (a)f(more)g(general)h(result)g(in)f(???)42 b(w)m(e)28 b(lea)m(v)m(e)h(it)e(to)f(the)i(reader)f(to)g(c)m(hec)m(k)i(that)e Fs(V)3792 2955 y Fq(hi)3739 3019 y Ft(\000)-16 b(!)0 3163 y Fy(1)139 3107 y Fr(0)76 3163 y Ft(\000)g(!)28 b Fs(V)52 b Fy(is)32 b(the)g(neutral)f(elemen)m(t)i(for)e(the)g (addition)h(on)f(Mor)2339 3178 y Fr(Ab)12 b Fq(\000C)2543 3163 y Fy(\()p Fs(V)5 b(;)17 b(V)k Fy(\))31 b(and)h(that)f Fs(V)3399 3103 y Fp(f)3339 3163 y Ft(\000)-16 b(!)27 b Fs(V)3686 3107 y Fq(\000)3633 3163 y Ft(\000)-16 b(!)27 b Fs(V)0 3279 y Fy(is)33 b(the)g(additiv)m(e)h(in)m(v)m(erse)h(of)d Fs(f)11 b Fy(.)0 3396 y(The)37 b(m)m(ultiplication)h(on)e(Mor)1149 3411 y Fr(Ab)12 b Fq(\000C)1353 3396 y Fy(\()p Fs(V)5 b(;)17 b(V)k Fy(\))36 b(is)h(de\014ned)h(to)e(b)s(e)g(the)h(comp)s (osition)g(of)f(morphisms,)j(so)d(it)0 3512 y(is)d(asso)s(ciativ)m(e)h (with)f(unit)g(elemen)m(t.)0 3628 y(The)h(m)m(ultiplication)f(is)h (distributiv)m(e)g(since)1076 3783 y Fs(f)f Ft(\016)21 b Fy(\()p Fs(g)26 b Fy(+)c Fs(h)p Fy(\))83 b(=)28 b Fs(f)k Ft(\016)22 b Fy(+)g Ft(\016)g Fy(\()p Fs(g)k Ft(\002)c Fs(h)p Fy(\))h Ft(\016)e Fy(\001)1614 3899 y(=)28 b(+)22 b Ft(\016)f Fy(\()p Fs(f)33 b Ft(\002)23 b Fs(f)11 b Fy(\))22 b Ft(\016)g Fy(\()p Fs(g)j Ft(\002)e Fs(h)p Fy(\))f Ft(\016)g Fy(\001)1614 4015 y(=)28 b(+)22 b Ft(\016)f Fy(\(\()p Fs(f)33 b Ft(\016)22 b Fs(g)t Fy(\))g Ft(\002)g Fy(\()p Fs(f)33 b Ft(\016)22 b Fs(h)p Fy(\)\))g Ft(\016)g Fy(\001)1614 4132 y(=)28 b(\()p Fs(f)k Ft(\016)22 b Fs(g)t Fy(\))g(+)g(\()p Fs(f)32 b Ft(\016)22 b Fs(h)p Fy(\))p Fs(;)0 4290 y Fy(b)m(y)33 b(the)g(fact)g(that)f Fs(f)43 b Fy(is)34 b(a)e(morphism)i(of)e(ab)s(elian)g(groups,)h(and)1058 4445 y(\()p Fs(f)g Fy(+)22 b Fs(g)t Fy(\))f Ft(\016)h Fs(h)p Fy(\))83 b(=)28 b(+)22 b Ft(\016)g Fy(\()p Fs(f)33 b Ft(\002)22 b Fs(g)t Fy(\))g Ft(\016)f Fy(\001)i Ft(\016)f Fs(h)1634 4561 y Fy(=)28 b(+)22 b Ft(\016)g Fy(\()p Fs(f)33 b Ft(\002)22 b Fs(g)t Fy(\))g Ft(\016)f Fy(\()p Fs(h)i Ft(\002)f Fs(h)p Fy(\))h Ft(\016)f Fy(\001)1634 4677 y(=)28 b(+)22 b Ft(\016)g Fy(\(\()p Fs(f)32 b Ft(\016)22 b Fs(h)p Fy(\))h Ft(\002)f Fy(\()p Fs(g)k Ft(\016)c Fs(h)p Fy(\)\))g Ft(\016)g Fy(\001)1634 4793 y(=)28 b(\()p Fs(f)33 b Ft(\016)22 b Fs(h)p Fy(\))g(+)g(\()p Fs(g)j Ft(\016)d Fs(h)p Fy(\))p Fs(;)0 4951 y Fy(b)m(y)33 b(an)g(easy)h(prop)s(ert)m(y)f (of)f(\001.)2720 b Fg(\003)0 5124 y Fy(So)32 b(a)h Fm(K)p Fy(-v)m(ector)g(space)h(in)f Ft(C)39 b Fy(can)33 b(b)s(e)f(de\014ned)i (as)f(follo)m(ws:)p Black 0 5301 a(2.11.5.)26 b Fv(De\014nition.)p Black 38 w Fy(Let)h Fm(K)g Fy(b)s(e)g(a)f(\014eld.)43 b(A)26 b Fu(ve)-5 b(ctor)30 b(sp)-5 b(ac)g(e)26 b Fy(in)h(a)f(category) h Ft(C)33 b Fy(with)27 b(\014nite)h(pro)s(ducts)f(con-)0 5417 y(sists)h(of)d(an)h(ab)s(elian)h(group)f Fs(V)49 b Ft(2)28 b(C)k Fy(together)27 b(with)f(a)g(ring)g(homomorphism)i Ft(\001)f Fy(:)h Fm(K)g Ft(\000)-60 b(!)28 b Fy(Mor)3409 5432 y Fr(Ab)12 b Fq(\000C)3612 5417 y Fy(\()p Fs(V)5 b(;)17 b(V)22 b Fy(\).)p Black Black eop end %%Page: 77 77 TeXDict begin 77 76 bop Black 1605 -99 a Fw(Algebraic)27 b(Structures)1527 b(77)p Black 0 100 a Fy(So)36 b(w)m(e)i(get)e(a)g (unary)h(op)s(eration)f(for)f(eac)m(h)j(elemen)m(t)g Fs(\013)c Ft(2)h Fm(K)p Fy(.)55 b(This)37 b(example)h(sho)m(ws)g(that)e (there)h(ma)m(y)0 217 y(b)s(e)c(in\014nitely)h(man)m(y)f(di\013eren)m (t)h(op)s(erations)f(on)g(an)f(algebraic)h(structure)h(in)f Ft(C)6 b Fy(.)0 449 y(There)36 b(is)g(another)f(p)s(oin)m(t)h(of)e (view)j(that)e(pro)s(duces)h(man)m(y)g(natural)f(transformations.)52 b(Again)35 b(w)m(e)h(use)0 565 y(the)g(example)h(of)e(monoids.)53 b(Observ)m(e)38 b(\014rst)e(that)f(there)i(is)f(an)f(underlying)i (functor)f Fs(U)44 b Fy(:)32 b Fv(Mon)3614 580 y Fq(C)3692 565 y Ft(\000)-60 b(!)33 b(C)0 681 y Fy(lik)m(e)h(in)f(the)g(case)g(of) f(sets)i(and)f(ordinary)g(monoids.)44 b(Then)34 b(the)f(diagrams)f(15)g (can)h(b)s(e)g(rewritten)h(as)605 883 y Fs(U)10 b Fy(\()p Fs(M)g Fy(\))23 b Ft(\002)g Fs(U)10 b Fy(\()p Fs(M)g Fy(\))334 b Fs(U)10 b Fy(\()p Fs(M)g Fy(\))p 1270 860 276 4 v 1463 858 a Fo(-)1308 839 y Fy(m)m(ult)621 1273 y Fs(U)g Fy(\()p Fs(N)g Fy(\))23 b Ft(\002)g Fs(U)10 b Fy(\()p Fs(N)g Fy(\))358 b Fs(U)10 b Fy(\()p Fs(N)g Fy(\))p 1253 1250 301 4 v 1471 1248 a Fo(-)1305 1229 y Fy(m)m(ult)p 921 1180 4 254 v 923 1180 a Fo(?)340 1078 y Fs(U)g Fy(\()p Fs(f)h Fy(\))22 b Ft(\002)h Fs(U)10 b Fy(\()p Fs(f)h Fy(\))p 1701 1180 V 1703 1180 a Fo(?)1742 1078 y Fs(U)f Fy(\()p Fs(f)h Fy(\))2180 1248 y(and)2896 883 y(1)237 b Fs(U)10 b Fy(\()p Fs(M)g Fy(\))p 2974 860 180 4 v 3071 858 a Fo(-)3002 825 y Fs(e)3047 840 y Fp(M)2896 1273 y Fy(1)245 b Fs(U)10 b Fy(\()p Fs(N)g Fy(\))p 2974 1250 188 4 v 3079 1248 a Fo(-)3012 1215 y Fs(e)3057 1230 y Fp(N)p 2919 1180 4 254 v 2921 1180 a Fo(?)2564 1083 y Fy(1)2613 1098 y Fr(1)2680 1083 y Fy(=)27 b Fs(f)2842 1047 y Fr(0)p 3309 1180 V 3311 1180 a Fo(?)3350 1078 y Fs(U)10 b Fy(\()p Fs(f)h Fy(\))0 1437 y(These)34 b(diagrams)e(comm)m (ute)h(for)f(an)m(y)g(c)m(hoice)i(of)d(monoid)h(morphism)i Fs(f)k Fy(:)28 b Fs(M)38 b Ft(\000)-59 b(!)27 b Fs(N)10 b Fy(.)44 b(They)33 b(sho)m(w)g(that)0 1554 y(m)m(ult)j(and)f Fs(e)g Fy(are)g(natural)g(transformations.)51 b(m)m(ult)36 b(is)g(a)f(natural)g(transformation)f(from)h(the)h(functor)0 1670 y Fs(U)15 b Ft(\002)5 b Fs(U)39 b Fy(:)28 b Fv(Mon)547 1685 y Fq(C)620 1670 y Ft(\000)-60 b(!)28 b(C)i Fy(to)24 b(the)g(underlying)h(functor)g Fs(U)38 b Fy(:)28 b Fv(Mon)2307 1685 y Fq(C)2380 1670 y Ft(\000)-59 b(!)27 b(C)6 b Fy(.)41 b(It)24 b(is)g(easy)h(the)g(c)m(hec)m(k)h(that)e Fs(U)15 b Ft(\002)5 b Fs(U)0 1786 y Fy(is)35 b(a)f(functor)g(in)h Fu(one)e Fy(v)-5 b(ariable.)49 b(The)35 b(in)m(terpretation)h(of)d(the) i(second)h(diagram)e(is)h(a)f(bit)g(more)h(subtle.)0 1902 y(As)g(\014rst)f(functor)g(w)m(e)h(use)g(the)g(one)f(p)s(oin)m(t)g (functor)g Fs(E)j Fy(:)30 b Fv(Mon)2340 1917 y Fq(C)2415 1902 y Ft(\000)-60 b(!)30 b(C)40 b Fy(with)35 b Fs(E)6 b Fy(\(\()p Fs(M)f(;)17 b Fy(m)m(ult)q Fs(;)g(e)p Fy(\)\))30 b(:=)g(1)j(for)0 2018 y(an)m(y)h(monoid)h(in)f Ft(C)40 b Fy(and)33 b Fs(E)6 b Fy(\()p Fs(f)11 b Fy(\))30 b(:=)g(1)1356 2033 y Fr(1)1395 2018 y Fy(,)k(the)g(iden)m(tit)m(y)-8 b(.)49 b(Then)35 b(it)f(is)g(clear)g(that)g Fs(e)c Fy(:)g(1)f Ft(\000)-60 b(!)30 b Fs(M)44 b Fy(de\014nes)36 b(also)0 2135 y(a)c(natural)h(transformation)f Fs(e)c Fy(:)g Fs(E)34 b Ft(\000)-60 b(!)27 b Fs(U)10 b Fy(.)0 2251 y(Again)34 b(an)m(y)h(op)s(eration)f(of)g(an)m(y)h(equationally)h(de\014ned)g (algebraic)f(structure)g(can)g(b)s(e)f(considered)j(as)d(a)0 2367 y(natural)e(transformation.)0 2483 y(W)-8 b(e)33 b(close)h(this)f(section)g(with)h(a)e(theorem)h(that)g(leads)g(us)g (bac)m(k)h(to)e(the)h(extension)i(principle.)p Black 0 2670 a(2.11.6.)42 b Fv(Theorem.)p Black 47 w Fu(L)-5 b(et)44 b Ft(C)50 b Fu(b)-5 b(e)43 b(a)h(c)-5 b(ate)g(gory)43 b(with)h(\014nite)f(pr)-5 b(o)g(ducts.)71 b(A)n(n)44 b(obje)-5 b(ct)43 b Fs(G)h Fu(in)f Ft(C)50 b Fu(is)44 b(a)f(gr)-5 b(oup)0 2786 y(if)40 b(and)g(only)g(if)g(the)g(c)-5 b(ontr)g(avariant)40 b(functor)g Fy(Mor)1906 2801 y Fq(C)1951 2786 y Fy(\()p Fu(-)p Fs(;)17 b(G)p Fy(\))37 b(:)h Ft(C)44 b(\000)-57 b(!)37 b Fv(Set)j Fu(c)-5 b(an)40 b(b)-5 b(e)40 b(factor)-5 b(e)g(d)40 b(thr)-5 b(ough)40 b(the)0 2902 y(c)-5 b(ate)g(gory)36 b(of)h(gr)-5 b(oups,)36 b(i.e.)49 b(ther)-5 b(e)37 b(is)f(a)h(c)-5 b(ontr)g(avariant)35 b(functor)i Ft(G)g Fy(:)31 b Ft(C)37 b(\000)-57 b(!)30 b Fy(Gr)36 b Fu(fr)-5 b(om)36 b Ft(C)43 b Fu(to)37 b(the)f(c)-5 b(ate)g(gory)0 3018 y Fy(Gr)34 b Fu(of)h(gr)-5 b(oups)35 b(such)f(that)h Fy(Mor)1169 3033 y Fq(C)1214 3018 y Fy(\()p Fu(-)o Fs(;)17 b(G)p Fy(\))28 b(=)f Fs(U)33 b Ft(\016)22 b(G)6 b Fu(,)35 b(wher)-5 b(e)34 b Fs(U)k Fy(:)28 b(Gr)f Ft(\000)-57 b(!)28 b Fv(Set)34 b Fu(is)h(the)g(underlying)f(functor.)0 3205 y Fy(The)27 b(construction)f(giv)m(en)h(in)f(the)g(follo)m(wing)g (pro)s(of)e(will)i(sho)m(w)h(more,)h(namely)e(that)g(there)g(is)g(a)f (bijection)0 3321 y(b)s(et)m(w)m(een)35 b(the)e(group)f(structures)i (on)f Fs(G)f Fy(and)h(the)g(di\013eren)m(t)h(p)s(ossible)g (factorizations)e Ft(G)6 b Fy(.)0 3437 y(The)31 b(statemen)m(t)h(of)e (the)h(Theorem)h(also)e(holds)h(for)f(an)m(y)h(other)g(equationally)g (de\014ned)h(algebraic)f(struc-)0 3553 y(tures.)0 3670 y(A)26 b(giv)m(en)h(factorization)f Ft(G)33 b Fy(of)25 b(Mor)1279 3685 y Fq(C)1324 3670 y Fy(\(-)p Fs(;)17 b(G)p Fy(\))26 b(can)g(also)g(b)s(e)g(view)m(ed)j(as)d(a)g(group)g(structure) h(for)f Fs(G)p Fy(,)h(so)g(w)m(e)g(see)0 3786 y(another)h(example)i(of) d(the)i(extension)h(principle.)43 b(This)29 b(v)-5 b(arian)m(t)28 b(of)g(a)g(de\014nition)h(for)e(a)h(group)g(structure)0 3902 y(can)41 b(also)f(b)s(e)h(giv)m(en)g(without)g(an)m(y)g(\014nite)g (pro)s(ducts,)i(so)e(that)f(it)g(is)h(in)g(fact)f(more)g(general)h (than)g(the)0 4018 y(de\014nition,)34 b(w)m(e)f(ha)m(v)m(e)h(giv)m(en)g (for)e(a)g(group)h(in)f(a)h(category)-8 b(.)p Black 0 4210 a Fu(Pr)j(o)g(of.)p Black 41 w Fy(The)28 b(Y)-8 b(oneda)27 b(Lemma)h(de\014nes)h(a)e(bijection)g(b)s(et)m(w)m(een)j (the)d(set)h(of)e(morphisms)j Fs(f)39 b Fy(:)27 b Fs(X)36 b Ft(\000)-60 b(!)28 b Fs(Y)48 b Fy(and)0 4326 y(the)35 b(set)f(of)g(natural)g(transformations)h Fs(f)11 b Fy(\(-)o(\))30 b(:)g Fs(X)8 b Fy(\(-\))30 b Ft(\000)-60 b(!)30 b Fs(Y)22 b Fy(\(-)o(\))34 b(b)m(y)h Fs(f)11 b Fy(\()p Fs(Z)c Fy(\))30 b(=)g(Mor)2992 4341 y Fq(C)3037 4326 y Fy(\()p Fs(Z)r(;)17 b(f)11 b Fy(\).)47 b(In)35 b(particular)0 4442 y(w)m(e)f(ha)m(v)m(e)g Fs(m)454 4457 y Fp(X)549 4442 y Fy(=)27 b(Mor)829 4457 y Fq(C)874 4442 y Fy(\()p Fs(X)r(;)17 b(m)p Fy(\))28 b(=)f Fs(m)p Fy(\()p Fs(X)8 b Fy(\).)44 b(The)33 b(diagram)1189 4644 y Fs(G)p Fy(\(-)o(\))22 b Ft(\002)h Fs(G)p Fy(\(-)o(\))f Ft(\002)h Fs(G)p Fy(\(-)o(\))232 b Fs(G)p Fy(\(-)o(\))22 b Ft(\002)h Fs(G)p Fy(\(-)o(\))p 2017 4621 174 4 v 2108 4619 a Fo(-)2009 4580 y Fp(m)2071 4600 y Fy(-)2108 4580 y Fq(\002)p Fr(1)1342 5132 y Fs(G)p Fy(\(-)o(\))g Ft(\002)f Fs(G)p Fy(\(-\))538 b Fs(G)p Fy(\(-)o(\))p 1863 5109 481 4 v 2261 5107 a Fo(-)2054 5068 y Fp(m)2116 5088 y Fy(-)p 1587 5038 4 351 v 1588 5038 a Fo(?)1360 4874 y Fr(1)p Fq(\002)p Fp(m)1512 4894 y Fy(-)p 2464 5038 V 2466 5038 a Fo(?)2505 4867 y Fp(m)2567 4887 y Fy(-)0 5301 y(comm)m(utes)37 b(if)e(and)h(only)g(if)f(Mor)1231 5316 y Fq(C)1276 5301 y Fy(\(-)p Fs(;)17 b(m)p Fy(\()p Fs(m)24 b Ft(\002)g Fy(1\)\))32 b(=)h(Mor)2166 5316 y Fq(C)2211 5301 y Fy(\(-)o Fs(;)17 b(m)p Fy(\)\(Mor)2662 5316 y Fq(C)2707 5301 y Fy(\(-)p Fs(;)g(m)p Fy(\))24 b Ft(\002)g Fy(1\))32 b(=)h Fs(m)3383 5316 y Fy(-)3420 5301 y(\()p Fs(m)3543 5316 y Fy(-)3604 5301 y Ft(\002)24 b Fy(1\))32 b(=)0 5417 y Fs(m)85 5432 y Fy(-)122 5417 y(\(1)24 b Ft(\002)h Fs(m)420 5432 y Fy(-)457 5417 y(\))32 b(=)h(Mor)812 5432 y Fq(C)857 5417 y Fy(\(-)p Fs(;)17 b(m)p Fy(\)\(1)24 b Ft(\002)g Fy(Mor)1483 5432 y Fq(C)1528 5417 y Fy(\(-)p Fs(;)17 b(m)p Fy(\)\))33 b(=)f(Mor)2121 5432 y Fq(C)2167 5417 y Fy(\(-)o Fs(;)17 b(m)p Fy(\(1)24 b Ft(\002)h Fs(m)p Fy(\)\))35 b(if)h(and)g(only)g(if)f Fs(m)p Fy(\()p Fs(m)25 b Ft(\002)g Fy(1\))32 b(=)p Black Black eop end %%Page: 78 78 TeXDict begin 78 77 bop Black 0 -99 a Fw(78)1077 b(Represen)n(table)25 b(functors)h(and)g(the)f(Y)-6 b(oneda)25 b(Lemma)p Black 0 100 a Fs(m)p Fy(\(1)d Ft(\002)h Fs(m)p Fy(\))33 b(if)f(and)h(only)g (if)f(the)h(diagram)1470 272 y Fs(G)22 b Ft(\002)h Fs(G)f Ft(\002)g Fs(G)210 b(G)22 b Ft(\002)h Fs(G)p 1973 244 153 4 v 2043 242 a Fo(-)1973 217 y Fp(m)p Fq(\002)p Fr(1)1569 760 y Fs(G)f Ft(\002)h Fs(G)409 b(G)p 1874 732 351 4 v 2142 730 a Fo(-)2018 711 y Fp(m)p 1706 662 4 351 v 1707 662 a Fo(?)1516 504 y Fr(1)p Fq(\002)p Fp(m)p 2291 662 V 2292 662 a Fo(?)2331 500 y Fp(m)0 892 y Fy(comm)m(utes.)45 b(In)33 b(a)g(similar)g(w)m(a)m(y)h(one)f(sho)m(ws)h(the)f(equiv)-5 b(alence)35 b(of)d(the)h(other)f(diagram\(s\).)442 b Fg(\003)-438 966 y Fy(02.07.04)p Black 0 1103 a(2.11.7.)31 b Fv(Remark.)p Black 42 w Fy(Let)h Ft(C)38 b Fy(b)s(e)32 b(a)g(category)g(with)g(\014nite)h(pro)s(ducts.)44 b(A)32 b(morphism)h Fs(f)38 b Fy(:)28 b Fs(G)g Ft(\000)-60 b(!)27 b Fs(G)3576 1067 y Fq(0)3631 1103 y Fy(in)32 b Ft(C)38 b Fy(is)0 1219 y(a)32 b(homomorphism)i(of)e(groups)h(if)f(and)h(only)g (if)1616 1364 y Fs(G)22 b Ft(\002)h Fs(G)311 b(G)p 1921 1336 254 4 v 2092 1334 a Fo(-)2016 1316 y Fp(m)1593 1854 y Fs(G)1670 1818 y Fq(0)1715 1854 y Ft(\002)23 b Fs(G)1892 1818 y Fq(0)2191 1854 y Fs(G)2268 1818 y Fq(0)p 1944 1824 219 4 v 2080 1822 a Fo(-)2011 1803 y Fp(m)2073 1779 y Fl(0)p 1752 1754 4 351 v 1754 1754 a Fo(?)1578 1595 y Fp(f)7 b Fq(\002)p Fp(f)p 2240 1754 V 2242 1754 a Fo(?)2281 1595 y Fp(f)0 1979 y Fy(comm)m(utes.)p Black 0 2140 a(2.11.8.)32 b Fv(De\014nition.)p Black 42 w Fy(A)h Fu(c)-5 b(o)g(gr)g(oup)32 b Fy(\()p Fu(c)-5 b(omonoid)p Fy(\))31 b Fs(G)i Fy(in)f Ft(C)39 b Fy(is)33 b(a)g(group)f(\(monoid\))h(in)g Ft(C)3200 2104 y Fp(op)3274 2140 y Fy(,)f(i.e.)45 b(an)32 b(ob)5 b(ject)0 2257 y Fs(G)28 b Ft(2)h Fy(Ob)17 b Ft(C)34 b Fy(=)29 b(Ob)16 b Ft(C)742 2220 y Fp(op)849 2257 y Fy(together)33 b(with)h(a)f(natural)f(transformation)h Fs(m)p Fy(\()p Fs(X)8 b Fy(\))29 b(:)f Fs(G)p Fy(\()p Fs(X)8 b Fy(\))22 b Ft(\002)h Fs(G)p Fy(\()p Fs(X)8 b Fy(\))28 b Ft(\000)-60 b(!)28 b Fs(G)p Fy(\()p Fs(X)8 b Fy(\))0 2373 y(where)38 b Fs(G)p Fy(\()p Fs(X)8 b Fy(\))34 b(=)g(Mor)848 2388 y Fq(C)889 2369 y Fk(op)960 2373 y Fy(\()p Fs(X)r(;)17 b(G)p Fy(\))34 b(=)g(Mor)1560 2388 y Fq(C)1605 2373 y Fy(\()p Fs(G;)17 b(X)8 b Fy(\),)37 b(suc)m(h)h(that)f(\()p Fs(G)p Fy(\()p Fs(X)8 b Fy(\))p Fs(;)17 b(m)p Fy(\()p Fs(X)8 b Fy(\)\))35 b(is)i(a)f(group)h(\(monoid\))0 2489 y(for)32 b(eac)m(h)i Fs(X)h Ft(2)28 b(C)6 b Fy(.)p Black 0 2651 a(2.11.9.)35 b Fv(Remark.)p Black 43 w Fy(Let)h Ft(C)41 b Fy(b)s(e)36 b(a)f(category)h(with)g(\014nite)g (\(categorical\))f(copro)s(ducts.)53 b(An)35 b(ob)5 b(ject)36 b Fs(G)g Fy(in)0 2767 y Ft(C)45 b Fy(carries)39 b(the)g(structure)h Fs(m)e Fy(:)f Fs(G)p Fy(\(-\))26 b Ft(\002)g Fs(G)p Fy(\(-\))37 b Ft(\000)-59 b(!)37 b Fs(G)p Fy(\(-\))h(of)g(a)g(cogroup)g(in)h Ft(C)45 b Fy(if)38 b(and)h(only)f(if)h(there)g(are)0 2883 y(morphisms)34 b(\001)28 b(:)g Fs(G)g Ft(\000)-60 b(!)27 b Fs(G)22 b Ft(q)g Fs(G)p Fy(,)33 b Fs(")27 b Fy(:)h Fs(G)g Ft(\000)-60 b(!)27 b Fs(I)8 b Fy(,)33 b(and)f Fs(S)i Fy(:)28 b Fs(G)f Ft(\000)-59 b(!)27 b Fs(G)33 b Fy(suc)m(h)h(that)e(the)h(diagrams)608 3537 y Fs(G)22 b Ft(q)f Fs(G)215 b(G)22 b Ft(q)f Fs(G)i Ft(q)e Fs(G)p 909 3505 157 4 v 983 3503 a Fo(-)913 3484 y Fr(\001)p Fq(q)p Fr(1)706 3050 y Fs(G)410 b(G)22 b Ft(q)f Fs(G)p 811 3017 353 4 v 1081 3015 a Fo(-)958 2997 y Fr(\001)p 1327 3435 4 351 v 1329 3435 a Fo(?)1368 3282 y Fr(1)p Fq(q)p Fr(\001)p 742 3435 V 744 3435 a Fo(?)646 3282 y Fr(\001)1972 3535 y Fs(G)i Ft(q)e Fs(G)177 b(I)30 b Ft(q)22 b Fs(G)2696 3508 y Ft(\030)2697 3539 y Fy(=)2802 3535 y Fs(G)2906 3508 y Ft(\030)2907 3539 y Fy(=)3011 3535 y Fs(G)h Ft(q)e Fs(I)p 2274 3505 120 4 v 2311 3503 a Fo(-)2273 3484 y Fp(")p Fq(q)p Fr(1)2070 3050 y Fs(G)849 b(G)22 b Ft(q)g Fs(G)p 2176 3017 792 4 v 2885 3015 a Fo(-)2543 2997 y Fr(\001)p 3131 3435 4 351 v 3133 3435 a Fo(?)3172 3282 y Fr(1)p Fq(q)p Fp(")p 2107 3435 V 2109 3435 a Fo(?)2011 3282 y Fr(\001)2536 3281 y(1)2211 3139 y Fo(Q)2294 3195 y(Q)2377 3250 y(Q)2460 3305 y(Q)2543 3361 y(Q)2626 3416 y(Q)2655 3435 y(Q)-83 b(s)1522 3669 y Fs(G)326 b(I)p 1627 3637 269 4 v 1813 3635 a Fo(-)2302 3669 y Fs(G)p 2005 3637 V 2191 3635 a Fo(-)2122 3616 y Fp(")1424 4157 y Fs(G)22 b Ft(q)g Fs(G)507 b(G)22 b Ft(q)f Fs(G)p 1725 4125 451 4 v 2093 4123 a Fo(-)1883 4103 y Fr(1)p Fq(q)p Fp(S)1883 4187 y(S)t Fq(q)p Fr(1)p 1558 4054 4 351 v 1560 4054 a Fo(?)1462 3902 y Fr(\001)p 2338 4054 V 2340 3786 a Fo(6)2379 3902 y Fq(r)0 4290 y Fy(comm)m(ute)43 b(where)f Ft(r)g Fy(is)g(dual)f(to)g(the)h(morphism) h(\001)f(de\014ned)g(in)g([)p Fv(?)p Fy(])g Fv(??)o Fy(.)70 b(The)43 b(m)m(ultiplications)g(are)0 4407 y(related)33 b(b)m(y)h(\001)542 4422 y Fp(X)637 4407 y Fy(=)28 b(Mor)917 4422 y Fq(C)962 4407 y Fy(\(\001)p Fs(;)17 b(X)8 b Fy(\))27 b(=)h(\001\()p Fs(X)8 b Fy(\).)0 4523 y(Let)43 b Ft(C)50 b Fy(b)s(e)43 b(a)g(category)g(with)h(\014nite)g(copro)s(ducts)g(and)f (let)h Fs(G)f Fy(and)g Fs(G)2674 4487 y Fq(0)2740 4523 y Fy(b)s(e)h(cogroups)f(in)h Ft(C)6 b Fy(.)75 b(Then)44 b(a)0 4639 y(homomorphism)30 b(of)f(groups)g Fs(f)38 b Fy(:)28 b Fs(G)1322 4603 y Fq(0)1373 4639 y Ft(\000)-60 b(!)28 b Fs(G)g Fy(is)i(a)f(morphism)h Fs(f)38 b Fy(:)28 b Fs(G)g Ft(\000)-60 b(!)27 b Fs(G)2715 4603 y Fq(0)2767 4639 y Fy(in)j Ft(C)35 b Fy(suc)m(h)30 b(that)f(the)g(diagram)1620 4802 y Fs(G)311 b(G)22 b Ft(\002)h Fs(G)p 1726 4773 254 4 v 1897 4771 a Fo(-)1823 4752 y Fr(\001)1608 5292 y Fs(G)1685 5255 y Fq(0)1985 5292 y Fs(G)2062 5255 y Fq(0)2107 5292 y Ft(\002)g Fs(G)2284 5255 y Fq(0)p 1737 5261 219 4 v 1873 5259 a Fo(-)1806 5240 y Fr(\001)1865 5216 y Fl(0)p 2144 5191 4 351 v 2146 5191 a Fo(?)2185 5032 y Fp(f)7 b Fq(\002)p Fp(f)p 1657 5191 V 1658 5191 a Fo(?)1578 5032 y Fp(f)0 5417 y Fy(comm)m(utes.)45 b(An)33 b(analogous)g(result)g (holds)g(for)f(comonoids.)p Black Black eop end %%Page: 79 79 TeXDict begin 79 78 bop Black 1843 -99 a Fw(Limits)1766 b(79)p Black Black 0 100 a Fy(2.11.10.)43 b Fv(Remark.)p Black 48 w Fy(Ob)m(viously)k(similar)e(observ)-5 b(ations)45 b(and)f(statemen)m(ts)i(can)f(b)s(e)f(made)h(for)f(other)0 217 y(algebraic)28 b(structures)h(in)e(a)h(category)f Ft(C)6 b Fy(.)42 b(So)28 b(one)f(can)h(in)m(tro)s(duce)g(v)m(ector)h (spaces)g(and)e(co)m(v)m(ector)i(spaces,)0 333 y(monoids)j(and)e (comonoids,)j(rings)e(and)g(corings)g(in)g(a)g(category)g Ft(C)6 b Fy(.)43 b(The)32 b(structures)g(can)f(b)s(e)g(describ)s(ed)0 449 y(b)m(y)i(morphisms)i(in)e Ft(C)38 b Fy(if)33 b Ft(C)39 b Fy(is)33 b(a)f(category)h(with)g(\014nite)g(\(co-\)pro)s(ducts.)p Black 0 624 a(2.11.11.)k Fv(Prop)s(osition.)p Black 44 w Fu(L)-5 b(et)40 b Fs(G)d Ft(2)g(C)46 b Fu(b)-5 b(e)39 b(a)g(gr)-5 b(oup)40 b(with)f(multiplic)-5 b(ation)39 b Fs(a)26 b Ft(\003)g Fs(b)p Fu(,)41 b(unit)f Fs(e)p Fu(,)h(and)e(inverse)0 740 y Fs(a)51 704 y Fq(\000)p Fr(1)180 740 y Fu(in)34 b Fs(G)p Fy(\()p Fs(X)8 b Fy(\))p Fu(.)44 b(Then)34 b(the)h(morphisms)e Fs(m)28 b Fy(:)f Fs(G)22 b Ft(\002)g Fs(G)27 b Ft(\000)-57 b(!)27 b Fs(G)p Fu(,)35 b Fs(u)27 b Fy(:)h Fs(E)33 b Ft(\000)-57 b(!)28 b Fs(G)p Fu(,)34 b(and)g Fs(S)f Fy(:)28 b Fs(G)g Ft(\000)-57 b(!)27 b Fs(G)35 b Fu(ar)-5 b(e)34 b(given)0 856 y(by)1118 973 y Fs(m)28 b Fy(=)f Fs(p)1383 988 y Fr(1)1445 973 y Ft(\003)22 b Fs(p)1566 988 y Fr(2)1605 973 y Fs(;)216 b(u)27 b Fy(=)h Fs(e)2080 988 y Fp(E)2140 973 y Fs(;)216 b(S)33 b Fy(=)28 b(id)2661 930 y Fq(\000)p Fr(1)2661 998 y Fp(G)2755 973 y Fs(:)p Black 0 1148 a Fu(Pr)-5 b(o)g(of.)p Black 41 w Fy(By)34 b(the)h(Y)-8 b(oneda)34 b(Lemma)g(2.10.1)f(these)i(morphisms)h(can)e(b)s(e)g(constructed)h (from)f(the)g(natural)0 1264 y(transformation)27 b(as)g(follo)m(ws.)43 b(Under)28 b(Mor)1596 1279 y Fq(C)1641 1264 y Fy(\()p Fs(G)11 b Ft(\002)g Fs(G;)17 b(G)11 b Ft(\002)g Fs(G)p Fy(\))28 b(=)f Fs(G)11 b Ft(\002)g Fs(G)p Fy(\()p Fs(G)g Ft(\002)g Fs(G)p Fy(\))3009 1236 y Ft(\030)3010 1268 y Fy(=)3114 1264 y Fs(G)p Fy(\()p Fs(G)g Ft(\002)g Fs(G)p Fy(\))g Ft(\002)g Fs(G)p Fy(\()p Fs(G)g Ft(\002)0 1394 y Fs(G)p Fy(\))205 1338 y Fq(\003)143 1394 y Ft(\000)-17 b(!)28 b Fs(G)p Fy(\()p Fs(G)16 b Ft(\002)g Fs(G)p Fy(\))28 b(=)f(Mor)1054 1409 y Fq(C)1099 1394 y Fy(\()p Fs(G)16 b Ft(\002)g Fs(G;)h(G)p Fy(\))30 b(the)g(iden)m(tit)m(y)h(id)2192 1409 y Fp(G)p Fq(\002)p Fp(G)2389 1394 y Fy(=)c(\()p Fs(p)2579 1409 y Fr(1)2619 1394 y Fs(;)17 b(p)2712 1409 y Fr(2)2751 1394 y Fy(\))29 b(is)h(mapp)s(ed)h(to)e Fs(m)f Fy(=)f Fs(p)3663 1409 y Fr(1)3719 1394 y Ft(\003)16 b Fs(p)3834 1409 y Fr(2)3873 1394 y Fy(.)0 1511 y(Under)44 b(Mor)482 1526 y Fq(C)527 1511 y Fy(\()p Fs(E)6 b(;)17 b(E)6 b Fy(\))46 b(=)g Fs(E)6 b Fy(\()p Fs(E)g Fy(\))46 b Ft(\000)-59 b(!)45 b Fs(G)p Fy(\()p Fs(E)6 b Fy(\))46 b(=)g(Mor)1987 1526 y Fq(C)2032 1511 y Fy(\()p Fs(E)6 b(;)17 b(G)p Fy(\))43 b(the)h(iden)m(tit)m(y)h(of)e Fs(E)50 b Fy(is)43 b(mapp)s(ed)h(to)g(the)0 1627 y(neutral)35 b(elemen)m(t)h Fs(u)30 b Fy(=)g Fs(e)937 1642 y Fp(E)997 1627 y Fy(.)48 b(Under)35 b(Mor)1545 1642 y Fq(C)1590 1627 y Fy(\()p Fs(G;)17 b(G)p Fy(\))30 b(=)g Fs(G)p Fy(\()p Fs(G)p Fy(\))g Ft(\000)-59 b(!)30 b Fs(G)p Fy(\()p Fs(G)p Fy(\))g(=)g(Mor)2950 1642 y Fq(C)2995 1627 y Fy(\()p Fs(G;)17 b(G)p Fy(\))34 b(the)g(iden)m(tit)m(y)i(is)0 1746 y(mapp)s(ed)d(to)f(its)h Ft(\003)p Fy(-in)m(v)m(erse)i Fs(S)e Fy(=)28 b(id)1310 1703 y Fq(\000)p Fr(1)1310 1771 y Fp(G)1404 1746 y Fy(.)2392 b Fg(\003)p Black 0 1920 a Fy(2.11.12.)28 b Fv(Corollary)-9 b(.)p Black 39 w Fu(L)k(et)32 b Fs(G)27 b Ft(2)i(C)37 b Fu(b)-5 b(e)31 b(a)h(c)-5 b(o)g(gr)g(oup)31 b(with)g(multiplic)-5 b(ation)31 b Fs(a)15 b Ft(\003)g Fs(b)p Fu(,)32 b(unit)g Fs(e)p Fu(,)g(and)f(inverse)f Fs(a)3805 1884 y Fq(\000)p Fr(1)0 2037 y Fu(in)35 b Fs(G)p Fy(\()p Fs(X)8 b Fy(\))p Fu(.)44 b(Then)34 b(the)h(morphisms)e Fy(\001)28 b(:)g Fs(G)g Ft(\000)-57 b(!)27 b Fs(G)22 b Ft(q)g Fs(G)p Fu(,)34 b Fs(")28 b Fy(:)g Fs(G)f Ft(\000)-57 b(!)27 b Fs(I)8 b Fu(,)35 b(and)f Fs(S)g Fy(:)28 b Fs(G)f Ft(\000)-57 b(!)27 b Fs(G)35 b Fu(ar)-5 b(e)35 b(given)f(by)1149 2197 y Fy(\001)28 b(=)f Fs(\023)1395 2212 y Fr(1)1458 2197 y Ft(\003)21 b Fs(\023)1563 2212 y Fr(2)1603 2197 y Fs(;)216 b(")28 b Fy(=)f Fs(e)2068 2212 y Fp(I)2108 2197 y Fs(;)216 b(S)34 b Fy(=)27 b(id)2630 2154 y Fq(\000)p Fr(1)2630 2222 y Fp(G)2724 2197 y Fs(:)0 2371 y Fy(2.12.)48 b Fv(Limits.)0 2488 y Fy(Equalizers)27 b(and)d(pro)s(ducts)h(are)g(sp)s (ecial)g(cases)h(of)e(the)h(general)g(notion)f(of)g(a)g (\(categorical\))h(limit.)41 b(Limits)0 2604 y(can)36 b(also)f(b)s(e)g(describ)s(ed)j(as)d(a)g(generalization)h(of)f(a)g(set) h(theoretic)g(construction)g(with)g(the)g(extension)0 2720 y(principle.)69 b(W)-8 b(e)40 b(will,)k(ho)m(w)m(ev)m(er,)h(use)c (the)g(short)g(w)m(a)m(y)g(and)g(giv)m(e)g(a)f(direct)i(de\014nition)f (and)g(co)m(v)m(er)h(the)0 2836 y(relation)33 b(to)f(limits)h(on)g (sets)h(b)m(y)f(an)g(extra)g(prop)s(osition.)p Black 0 3011 a(2.12.1.)f Fv(De\014nition.)p Black 43 w Fy(\(1\))g(Let)h Ft(D)i Fy(b)s(e)e(a)f(\(shap)s(e\))i(graph)e(and)h Fs(F)42 b Fy(:)28 b Ft(D)i(\000)-59 b(!)27 b(C)39 b Fy(b)s(e)33 b(a)f(diagram.)44 b(A)33 b Fu(limit)f Fy(or)0 3127 y Fu(pr)-5 b(oje)g(ctive)34 b(limit)e Fy(of)g Fs(F)47 b Fy(consists)34 b(of)p Black 223 3264 a Ft(\017)p Black 42 w Fy(an)e(ob)5 b(ject)33 b(lim)745 3314 y Ft( )-42 b(\000)897 3264 y Fs(F)47 b Fy(in)33 b Ft(C)38 b Fy(together)33 b(with)p Black 223 3388 a Ft(\017)p Black 42 w Fy(a)23 b(family)g(of)g(morphisms)i(\()p Fs(p)1349 3403 y Fp(A)1434 3388 y Fy(:)j(lim)1489 3439 y Ft( )-42 b(\000)1641 3388 y Fs(F)41 b Ft(\000)-59 b(!)27 b Fs(F)14 b Fy(\()p Fs(A)p Fy(\))p Ft(j)32 b Fy(for)g(all)g(v)m(ertices)j Fs(A)28 b Ft(2)g(D)s Fy(\))23 b(called)h Fu(pr)-5 b(oje)g(ctions)p Fy(,)315 3507 y(with)33 b(comm)m(uting)g(triangles)1446 4045 y Fs(F)14 b Fy(\()p Fs(A)p Fy(\))551 b Fs(F)14 b Fy(\()p Fs(B)5 b Fy(\))p 1700 4022 495 4 v 2112 4020 a Fo(-)1841 4114 y Fs(F)14 b Fy(\()p Fs(f)d Fy(\))1834 3644 y(lim)1834 3695 y Ft( )-42 b(\000)1986 3644 y Fs(F)1587 3837 y(p)1636 3852 y Fp(A)1797 3782 y Fo(\000)1714 3865 y(\000)1631 3948 y(\000)1627 3952 y(\000)-83 b(\011)2204 3837 y Fs(p)2253 3852 y Fp(B)2017 3782 y Fo(@)2100 3865 y(@)2183 3948 y(@)2187 3952 y(@)g(R)315 4258 y Fy(for)32 b(all)g(edges)i Fs(f)k Fy(:)28 b Fs(A)g Ft(\000)-60 b(!)27 b Fs(B)38 b Fy(in)33 b Ft(D)s Fy(,)0 4395 y(if)f(the)h(follo)m(wing)g (univ)m(ersal)i(prop)s(ert)m(y)e(is)g(satis\014ed:)p Black 148 4532 a(\(*\))p Black 42 w(for)f(eac)m(h)p Black 416 4648 a Fv({)p Black 41 w Fy(ob)5 b(ject)34 b Fs(T)46 b Fy(in)33 b Ft(C)38 b Fy(and)33 b(eac)m(h)p Black 416 4764 a Fv({)p Black 41 w Fy(family)i(of)e(morphisms)j(\()p Fs(f)1507 4779 y Fp(A)1594 4764 y Fy(:)31 b Fs(T)44 b Ft(\000)-60 b(!)30 b Fs(F)14 b Fy(\()p Fs(A)p Fy(\))p Ft(j)32 b Fy(for)g(all)g(v)m(ertices)j Fs(A)30 b Ft(2)h(D)s Fy(\),)j(with)h(comm)m(uting)513 4880 y(triangles)1446 5356 y Fs(F)14 b Fy(\()p Fs(A)p Fy(\))551 b Fs(F)14 b Fy(\()p Fs(B)5 b Fy(\))p 1700 5334 V 2112 5332 a Fo(-)1841 5426 y Fs(F)14 b Fy(\()p Fs(f)d Fy(\))1913 4976 y Fs(T)1588 5161 y(f)1636 5176 y Fp(A)1797 5093 y Fo(\000)1714 5176 y(\000)1631 5259 y(\000)1627 5263 y(\000)-83 b(\011)2204 5161 y Fs(f)2252 5176 y Fp(B)2017 5093 y Fo(@)2100 5176 y(@)2183 5259 y(@)2187 5263 y(@)g(R)p Black Black eop end %%Page: 80 80 TeXDict begin 80 79 bop Black 0 -99 a Fw(80)1077 b(Represen)n(table)25 b(functors)h(and)g(the)f(Y)-6 b(oneda)25 b(Lemma)p Black 513 100 a Fy(for)32 b(all)h(edges)g Fs(f)39 b Fy(:)28 b Fs(A)f Ft(\000)-59 b(!)27 b Fs(B)38 b Fy(in)33 b Ft(D)s Fy(,)315 217 y(there)g(is)g(a)f(unique)i(morphism)g Fs(g)d Fy(:)d Fs(T)41 b Ft(\000)-59 b(!)27 b Fy(lim)1892 267 y Ft( )-42 b(\000)2044 217 y Fs(F)46 b Fy(suc)m(h)34 b(that)f(the)g(triangles)1481 402 y Fs(T)653 b Fy(lim)2191 452 y Ft( )-42 b(\000)2343 402 y Fs(F)p 1581 390 573 4 v 2071 388 a Fo(-)1841 350 y Fs(g)1794 803 y(F)14 b Fy(\()p Fs(A)p Fy(\))1546 608 y Fs(f)1594 623 y Fp(A)1585 539 y Fo(@)1668 622 y(@)1751 705 y(@)1755 710 y(@)-83 b(R)2162 595 y Fs(p)2211 610 y Fp(A)2145 539 y Fo(\000)2062 622 y(\000)1979 705 y(\000)1975 710 y(\000)g(\011)315 947 y Fy(comm)m(ute)34 b(for)e(all)g(v)m(ertices)j Fs(A)28 b Ft(2)g(D)s Fy(.)0 1084 y(\(2\))34 b(If)g(there)h(is)g(a)f(limit)h (for)f(eac)m(h)h(diagram)f Fs(F)44 b Fy(:)31 b Ft(D)i(\000)-59 b(!)30 b(C)40 b Fy(of)34 b(shap)s(e)h Ft(D)i Fy(then)e Ft(C)40 b Fy(is)35 b(called)g Ft(D)s Fu(-c)-5 b(omplete)p Fy(.)0 1200 y(W)d(e)33 b(also)g(sa)m(y)g(that)g Ft(C)41 b Fu(has)34 b(limits)g(of)h(shap)-5 b(e)34 b Ft(D)s Fy(.)0 1317 y(\(3\))e(If)g(there)h(is)g(a)f(limit)h(for)e(all)i(diagrams)f Fs(F)41 b Fy(:)28 b Ft(D)i(\000)-59 b(!)27 b(C)39 b Fy(in)32 b Ft(C)39 b Fy(\(for)31 b(all)i Ft(D)s Fy(\),)f(then)g Ft(C)39 b Fy(is)33 b(called)g Fu(c)-5 b(omplete)p Fy(.)p Black 0 1492 a(2.12.2.)46 b Fv(Remark.)p Black 50 w Fy(Limits)h(are)g (unique)h(up)f(to)g(isomorphism.)87 b(This)48 b(can)f(b)s(e)g(pro)m(v)m (ed)h(essen)m(tially)0 1608 y(the)38 b(same)h(w)m(a)m(y)h(as)e(the)g (uniqueness)j(of)d(pro)s(ducts)h(up)f(to)g(isomorphism)h(\(Prop)s (osition)f(2.7.6\))g(or)g(the)0 1724 y(uniqueness)32 b(of)c(equalizers)j(up)f(to)e(isomorphism)j(\(Prop)s(osition)e (2.8.7\).)41 b(It)29 b(is)h(indeed)g(a)f(sp)s(ecial)h(case)f(of)0 1840 y(the)35 b(uniqueness)j(of)c(a)h(univ)m(ersal)i(elemen)m(t)f (\(Prop)s(osition)f(2.9.3\).)50 b(The)36 b(connection)g(with)g(a)e (univ)m(ersal)0 1957 y(elemen)m(t)g(will)g(b)s(e)e(giv)m(en)i(b)m(y)g (the)f(next)g(theorem.)p Black 0 2132 a(2.12.3.)f Fv(Examples.)p Black 44 w Fy(\(1\))g(Let)i Ft(D)h Fy(b)s(e)f(an)f(empt)m(y)h(graph.)45 b(Then)35 b(a)e(limit)g(of)g(a)g(diagram)g(consists)h(of)f(an)0 2248 y(ob)5 b(ject)37 b Fs(E)6 b Fy(,)37 b(suc)m(h)g(that)f(for)g(eac)m (h)g(ob)5 b(ject)37 b Fs(T)50 b Fy(there)37 b(is)f(a)g(unique)h (morphism)h Fs(g)e Fy(:)e Fs(T)47 b Ft(\000)-59 b(!)33 b Fs(E)6 b Fy(.)54 b(This)37 b(is)g(the)0 2364 y(de\014nition)d(of)e(a) g(terminal)h(ob)5 b(ject)34 b Fs(E)6 b Fy(.)0 2480 y(\(2\))28 b(Let)g Ft(D)j Fy(b)s(e)d(a)g(set)h(of)f(t)m(w)m(o)h(v)m(ertices)h (without)f(an)m(y)g(edges.)43 b(Then)29 b(a)f(diagram)g(consists)i(of)e (t)m(w)m(o)h(ob)5 b(jects)0 2597 y Fs(A)38 b Fy(and)g Fs(B)5 b Fy(.)60 b(A)38 b(limit)g(consists)i(of)d(an)h(ob)5 b(ject)39 b Fs(A)26 b Ft(\002)g Fs(B)43 b Fy(and)38 b(t)m(w)m(o)h (morphisms)g Fs(p)2996 2612 y Fp(A)3090 2597 y Fy(:)e Fs(A)26 b Ft(\002)g Fs(B)42 b Ft(\000)-60 b(!)37 b Fs(B)43 b Fy(and)0 2713 y Fs(p)49 2728 y Fp(B)137 2713 y Fy(:)28 b Fs(A)9 b Ft(\002)g Fs(B)34 b Ft(\000)-60 b(!)27 b Fs(B)5 b Fy(.)42 b(The)27 b(univ)m(ersal)h(prop)s(ert)m(y)f(sa)m(ys)h(that)e (for)f(eac)m(h)i(ob)5 b(ject)27 b Fs(T)40 b Fy(and)27 b(an)m(y)f(t)m(w)m(o)h(morphisms)0 2829 y Fs(f)48 2844 y Fp(A)133 2829 y Fy(:)h Fs(T)41 b Ft(\000)-60 b(!)28 b Fs(A)j Fy(and)h Fs(f)772 2844 y Fp(B)860 2829 y Fy(:)c Fs(T)41 b Ft(\000)-59 b(!)27 b Fs(A)20 b Ft(\002)g Fs(B)36 b Fy(there)c(is)g(a)f(unique)i(morphism)f(\()p Fs(f)5 b(;)17 b(g)t Fy(\))27 b(:)h Fs(T)41 b Ft(\000)-59 b(!)27 b Fs(A)20 b Ft(\002)g Fs(B)36 b Fy(suc)m(h)d(that)0 2945 y Fs(p)49 2960 y Fp(A)130 2945 y Ft(\016)24 b Fy(\()p Fs(f)290 2960 y Fp(A)347 2945 y Fs(;)17 b(f)439 2960 y Fp(B)500 2945 y Fy(\))33 b(=)g Fs(f)728 2960 y Fp(A)820 2945 y Fy(and)j Fs(p)1062 2960 y Fp(B)1147 2945 y Ft(\016)24 b Fy(\()p Fs(f)1307 2960 y Fp(A)1364 2945 y Fs(;)17 b(f)1456 2960 y Fp(B)1516 2945 y Fy(\))33 b(=)g Fs(f)1744 2960 y Fp(B)1805 2945 y Fy(.)53 b(So)35 b(this)i(giv)m(es)g(the)f (de\014nition)h(of)e(a)g(pro)s(duct)h(of)f(t)m(w)m(o)0 3062 y(ob)5 b(jects.)0 3178 y(If)33 b Ft(D)j Fy(has)d(an)h(arbitra)m(y) f(set)h Fs(I)41 b Fy(of)33 b(v)m(ertices)i(and)e(an)h(empt)m(y)g(set)g (of)f(edges,)h(then)g(a)f(limit)h(of)e Fs(F)43 b Fy(:)29 b Ft(D)i(\000)-60 b(!)29 b(C)0 3294 y Fy(is)k(the)g(pro)s(duct)632 3219 y Fh(Q)726 3323 y Fp(i)p Fq(2)p Fp(I)854 3294 y Fs(A)927 3309 y Fp(i)987 3294 y Fy(with)h Fs(A)1283 3309 y Fp(i)1339 3294 y Fy(:=)27 b Fs(F)14 b Fy(\()p Fs(i)p Fy(\).)-2120 b(08.07.04)0 3410 y(\(3\))32 b(Let)h Ft(D)i Fy(consist)f(of)e(t)m(w)m(o)h(v)m(ertices)i(1)d(and)h(t)m(w)m(o)g(and)g (t)m(w)m(o)g(edges)1724 3631 y(1)328 b(2)p Fs(:)p 1802 3571 271 4 v 1990 3569 a Fo(-)1920 3550 y Fs(i)p 1802 3629 V 1990 3627 a Fo(-)1914 3712 y Fs(j)0 3850 y Fy(Then)34 b(a)e(limit)h(of)f(a)g(diagram)1717 4050 y Fs(A)314 b(B)p 1819 3988 257 4 v 1993 3986 a Fo(-)1917 3948 y Fs(f)p 1819 4047 V 1993 4045 a Fo(-)1921 4107 y Fs(g)0 4224 y Fy(consists)39 b(of)e(an)g(ob)5 b(ject)39 b Fs(K)k Fy(:=)36 b(lim)1186 4275 y Ft( )-42 b(\000)1338 4224 y Fs(F)51 b Fy(and)37 b(t)m(w)m(o)h(morphisms)h Fs(\023)e Fy(:)f Fs(K)43 b Ft(\000)-60 b(!)36 b Fs(A)h Fy(and)h Fs(\025)e Fy(:)g Fs(K)7 b(toB)42 b Fy(suc)m(h)d(that)0 4343 y Fs(f)i Ft(\016)30 b Fs(\023)48 b Fy(=)f Fs(\025)h Fy(=)g Fs(g)33 b Ft(\016)d Fs(\023)45 b Fy(whic)m(h)g(is)g(univ)m (ersal.)81 b(Ob)m(viously)46 b Fs(\025)e Fy(is)h(uniquely)h(determined) h(b)m(y)e Fs(\023)p Fy(,)j(so)c(it)g(is)0 4459 y(sup)s(er\015uous)34 b(and)f(w)m(e)h(ha)m(v)m(e)f(the)g(additional)g(equation)1688 4617 y Fs(f)g Ft(\016)22 b Fs(\023)28 b Fy(=)f Fs(g)f Ft(\016)c Fs(\023:)0 4775 y Fy(So)32 b(in)h(this)h(case)f(w)m(e)h (obtain)e(the)h(notion)g(of)f(an)g(equalizer.)0 4892 y(\(4\))g(Let)1512 5152 y Ft(D)127 b Fy(=)1902 5379 y(2)341 b(3)p Fs(:)p 1980 5349 V 2154 5347 a Fo(-)2085 5432 y Fs(j)2292 4989 y Fy(1)p 2315 5279 4 254 v 2316 5279 a Fo(?)2355 5185 y Fs(i)p Black Black eop end %%Page: 81 81 TeXDict begin 81 80 bop Black 1843 -99 a Fw(Limits)1766 b(81)p Black 0 100 a Fy(A)33 b(limit)g(of)f(the)h(diagram)1686 590 y Fs(B)317 b(C)p 1794 558 255 4 v 1966 556 a Fo(-)1896 617 y Fs(g)2079 200 y(A)p 2114 488 4 254 v 2116 488 a Fo(?)2155 386 y Fs(f)0 738 y Fy(consists)28 b(of)e(an)g(ob)5 b(ject)28 b Fs(A)10 b Ft(\002)1037 753 y Fp(C)1105 738 y Fs(B)33 b Fy(:=)28 b(lim)1343 789 y Ft( )-42 b(\000)1495 738 y Fs(F)40 b Fy(and)26 b(t)m(w)m(o)h(morphisms)h Fe(p)2497 753 y Fp(A)2582 738 y Fy(:)g Fs(A)10 b Ft(\002)2797 753 y Fp(C)2866 738 y Fs(B)32 b Ft(\000)-59 b(!)27 b Fs(A)g Fy(and)f Fs(p)3449 753 y Fp(B)3537 738 y Fy(:)i Fs(A)10 b Ft(\002)3752 753 y Fp(C)3821 738 y Fs(B)0 857 y Ft(\000)-60 b(!)28 b Fs(B)37 b Fy(suc)m(h)d(that)f(the)g(diagram)1750 1393 y Fs(B)317 b(C)p 1857 1361 255 4 v 2029 1359 a Fo(-)1959 1421 y Fs(g)p 2177 1291 4 254 v 2179 1291 a Fo(?)2218 1189 y Fs(f)1623 996 y(A)22 b Ft(\002)1795 1011 y Fp(C)1877 996 y Fs(B)192 b(A)p 1984 971 130 4 v 2031 969 a Fo(-)1995 931 y Fs(p)2044 946 y Fp(A)p 1787 1291 4 254 v 1789 1291 a Fo(?)1641 1176 y Fs(p)1690 1191 y Fp(B)0 1542 y Fy(The)42 b(third)g(morphism)g Fs(p)975 1557 y Fp(C)1076 1542 y Fy(:)h Fs(A)28 b Ft(\002)1324 1557 y Fp(C)1411 1542 y Fs(B)48 b Ft(\000)-60 b(!)42 b Fs(C)48 b Fy(is)42 b(giv)m(en)g(b)m(y)g (the)g(prop)s(ert)m(y)g Fs(p)2957 1557 y Fp(C)3058 1542 y Fy(=)g Fs(f)d Ft(\016)28 b Fs(p)3390 1557 y Fp(A)3489 1542 y Fy(=)42 b Fs(g)31 b Ft(\016)d Fs(p)3812 1557 y Fp(B)3873 1542 y Fy(,)0 1658 y(so)33 b(it)g(is)h(uniquely)h (determined.)46 b(The)34 b(triple)g(\()p Fs(A)22 b Ft(\002)1933 1673 y Fp(C)2016 1658 y Fs(B)5 b(;)17 b(p)2188 1673 y Fp(A)2244 1658 y Fs(;)g(p)2337 1673 y Fp(B)2398 1658 y Fy(\))33 b(satis\014es)h(the)g(fo)m(wwlo)m(wing)g(univ)m(ersal)0 1774 y(prop)s(ert)m(y)-8 b(.)58 b(Giv)m(en)38 b(an)f(ob)5 b(ject)38 b Fs(T)51 b Fy(in)38 b Ft(C)43 b Fy(and)37 b(t)m(w)m(o)h(morphisms)h Fs(q)2416 1789 y Fp(A)2509 1774 y Fy(:)d Fs(T)49 b Ft(\000)-60 b(!)36 b Fs(A)h Fy(and)g Fs(q)3178 1789 y Fp(B)3275 1774 y Fy(:)e Fs(T)50 b Ft(\000)-60 b(!)35 b Fs(B)42 b Fy(suc)m(h)0 1891 y(that)32 b Fs(f)g Ft(\016)21 b Fs(q)405 1906 y Fp(A)490 1891 y Fy(=)27 b Fs(g)e Ft(\016)20 b Fs(q)778 1906 y Fp(B)871 1891 y Fy(\(again)32 b(w)m(e)h(need)g(not)f(giv)m(e)h(the)g(third)f(morphism)h Fs(q)2821 1906 y Fp(C)2908 1891 y Fy(=)28 b Fs(f)k Ft(\016)21 b Fs(q)3206 1906 y Fp(A)3291 1891 y Fy(=)27 b Fs(g)e Ft(\016)20 b Fs(q)3579 1906 y Fp(B)3640 1891 y Fy(\))32 b(then)0 2007 y(there)h(is)g(a)g(unique)h(morphism)f Fs(q)f Fy(:)c Fs(T)41 b Ft(\000)-59 b(!)27 b Fs(A)22 b Ft(\002)1746 2022 y Fp(C)1828 2007 y Fs(B)38 b Fy(suc)m(h)c(that)1879 2927 y Fs(B)317 b(C)p 1987 2895 255 4 v 2159 2893 a Fo(-)2089 2955 y Fs(g)p 2307 2825 4 254 v 2309 2825 a Fo(?)2348 2723 y Fs(f)1752 2530 y(A)22 b Ft(\002)1924 2545 y Fp(C)2006 2530 y Fs(B)192 b(A)p 2114 2505 130 4 v 2161 2503 a Fo(-)2125 2565 y Fs(p)2174 2580 y Fp(A)p 1917 2825 4 254 v 1919 2825 a Fo(?)1958 2710 y Fs(p)2007 2725 y Fp(B)1493 2147 y Fs(T)1784 2320 y(q)1597 2264 y Fo(@)1680 2347 y(@)1763 2430 y(@)1768 2435 y(@)-83 b(R)1981 2320 y Fs(q)2024 2335 y Fp(A)1665 2223 y Fo(H)1748 2264 y(H)1831 2306 y(H)1914 2347 y(H)1997 2389 y(H)2080 2430 y(H)2089 2435 y(H)g(j)1560 2515 y Fs(q)1603 2530 y Fp(B)1563 2264 y Fo(A)1604 2347 y(A)1646 2430 y(A)1687 2513 y(A)1729 2597 y(A)1771 2680 y(A)1812 2763 y(A)1843 2825 y(A)-42 b(U)0 3102 y Fy(comm)m(utes.)45 b(This)34 b(limit)f(\()p Fs(A)22 b Ft(\002)1162 3117 y Fp(C)1244 3102 y Fs(B)5 b(;)17 b(p)1416 3117 y Fp(A)1473 3102 y Fs(;)g(p)1566 3117 y Fp(B)1626 3102 y Fy(\))33 b(is)g(called)g(a)g Fu(\014br)-5 b(e)34 b(pr)-5 b(o)g(duct)33 b Fy(or)f(a)g Fu(pul)5 b(lb)-5 b(ack)p Fy(.)0 3218 y(\(5\))39 b(The)i(limit)f Fs(F)53 b Fy(:)39 b Ft(D)k(\000)-60 b(!)39 b Fv(Set)h Fy(of)f(a)g(shap)s(e)h (graph)g Ft(D)i Fy(with)e(v)m(ertex)h(set)f Fs(V)61 b Fy(=)40 b Fs(V)21 b Fy(\()p Ft(D)s Fy(\))39 b(and)h(edge)g(set)0 3334 y Fs(E)34 b Fy(=)27 b Fs(E)6 b Fy(\()p Ft(D)s Fy(\))32 b(can)h(b)s(e)g(describ)s(ed)h(as)f(follo)m(ws.)44 b(The)34 b(set)f(lim)2049 3384 y Ft( )-42 b(\000)2201 3334 y Fs(F)46 b Fy(is)138 3504 y(lim)138 3554 y Ft( )-42 b(\000)290 3504 y Fs(F)41 b Fy(=)28 b Ft(f)k Fy(\()p Fs(a)669 3519 y Fp(i)698 3504 y Fy(\))g Ft(j)65 b Fy(for)32 b(all)g Fs(i)c Ft(2)g Fs(V)50 b Fy(:)27 b Fs(a)1512 3519 y Fp(i)1568 3504 y Ft(2)i Fs(F)14 b Fy(\()p Fs(i)p Fy(\))32 b(and)h(for)f(all)g(\() p Fs(u)27 b Fy(:)h Fs(i)g Ft(\000)-60 b(!)28 b Fs(j)6 b Fy(\))27 b Ft(2)h Fs(E)34 b Fy(:)28 b Fs(F)14 b Fy(\()p Fs(u)p Fy(\)\()p Fs(a)3401 3519 y Fp(i)3428 3504 y Fy(\))28 b(=)f Fs(a)3648 3519 y Fp(j)3685 3504 y Ft(g)p Fs(:)0 3673 y Fy(The)34 b(pro)5 b(jections)33 b Fs(p)751 3688 y Fp(i)807 3673 y Fy(:)28 b(lim)862 3724 y Ft( )-42 b(\000)1014 3673 y Fs(F)41 b Ft(\000)-59 b(!)27 b Fs(F)14 b Fy(\()p Fs(i)p Fy(\))32 b(are)h(de\014ned)h(b)m(y)g Fs(p)2165 3688 y Fp(i)2193 3673 y Fy(\(\()p Fs(a)2320 3688 y Fp(j)2356 3673 y Fy(\)\))28 b(:=)f Fs(a)2641 3688 y Fp(i)2670 3673 y Fy(.)p Black 0 3858 a(2.12.4.)41 b Fv(Prop)s(osition)47 b Fy(\()p Fv(Characterization)h(of)f(limits\).)p Black 47 w Fu(L)-5 b(et)43 b Fs(F)56 b Fy(:)42 b Ft(D)j(\000)-57 b(!)42 b(C)49 b Fu(b)-5 b(e)42 b(a)h(diagr)-5 b(am.)67 b(A)n(n)0 3975 y(obje)-5 b(ct)38 b Fs(L)g Fu(to)-5 b(gether)38 b(with)f(a)h(family)g(of)f(morphisms)g Fy(\()p Fs(p)2061 3990 y Fp(A)2151 3975 y Fy(:)c Fs(L)h Ft(\000)-57 b(!)33 b Fs(F)14 b Fy(\()p Fs(A)p Fy(\)\))37 b Fu(for)h(al)5 b(l)38 b Fs(A)33 b Ft(2)h(D)40 b Fu(is)e(a)g(limit)f(of)0 4091 y Fs(F)k Fy(:)28 b Ft(D)i(\000)-57 b(!)28 b(C)41 b Fu(if)34 b(and)h(only)f(if)p Black 223 4230 a Ft(\017)p Black 42 w Fu(for)g(al)5 b(l)35 b(obje)-5 b(cts)34 b Fs(T)49 b Fu(in)34 b Ft(C)41 b Fu(ther)-5 b(e)35 b(is)g(an)f (isomorphism)f(of)i(sets)995 4391 y Fs(i)28 b Fy(:)g(Mor)1287 4406 y Fq(C)1332 4391 y Fy(\()p Fs(T)8 b(;)17 b(L)p Fy(\))1611 4364 y Ft(\030)1612 4396 y Fy(=)1716 4391 y(lim)1716 4442 y Ft( )-42 b(\000)1852 4391 y Fy(\(Mor)2066 4406 y Fq(C)2111 4391 y Fy(\()p Fs(T)8 b(;)17 b(F)d Fy(\))27 b(:)h Ft(D)i(\000)-57 b(!)28 b Fv(Set)p Fy(\))315 4555 y Fu(such)34 b(that)h(the)g(tringles)1013 5183 y Fy(lim)1013 5233 y Ft( )-42 b(\000)1149 5183 y Fy(\(Mor)1363 5198 y Fq(C)1408 5183 y Fy(\()p Fs(T)8 b(;)17 b(F)d Fy(\)\))396 b(Mor)2280 5198 y Fq(C)2325 5183 y Fy(\()p Fs(T)8 b(;)17 b(A)p Fy(\))p 1736 5168 332 4 v 1985 5166 a Fo(-)1853 5256 y Fh(e)-60 b Fs(p)1897 5271 y Fp(A)2099 4703 y Fy(Mor)2275 4718 y Fq(C)2320 4703 y Fy(\()p Fs(T)8 b(;)17 b(L)p Fy(\))p 2333 5098 4 351 v 2335 5098 a Fo(?)2374 4947 y Fy(Mor)2550 4962 y Fq(C)2595 4947 y Fy(\()p Fs(T)8 b(;)17 b(p)2791 4962 y Fp(A)2848 4947 y Fy(\))1752 4955 y Fs(i)2116 4788 y Fo(\010)2033 4830 y(\010)1950 4871 y(\010)1867 4913 y(\010)1783 4954 y(\010)1700 4996 y(\010)1617 5037 y(\010)1534 5079 y(\010)1497 5098 y(\010)-83 b(\031)315 5398 y Fu(c)-5 b(ommute)34 b(for)h(al)5 b(l)34 b Fs(A)28 b Ft(2)g(D)s Fu(.)p Black Black eop end %%Page: 82 82 TeXDict begin 82 81 bop Black 0 -99 a Fw(82)1077 b(Represen)n(table)25 b(functors)h(and)g(the)f(Y)-6 b(oneda)25 b(Lemma)p Black 0 100 a Fy(F)-8 b(requen)m(tly)g(,)32 b(lim)503 151 y Ft( )-42 b(\000)655 100 y Fs(F)44 b Fy(is)31 b(referred)f(to)g(as)g(a)g (limit)h(of)e Fs(F)41 b Fy(:)28 b Ft(D)i(\000)-59 b(!)27 b(C)36 b Fy(without)31 b(referring)f(to)g(\()p Fs(p)3321 115 y Fp(A)3378 100 y Fy(\).)42 b(Nev)m(erthe-)0 225 y(less,)34 b(\()p Fs(p)294 240 y Fp(A)351 225 y Fy(\))e(is)h(a)g (crucial)g(part)f(of)h(the)g(data.)p Black 0 410 a Fu(Pr)-5 b(o)g(of.)p Black 41 w Fy(=)-17 b Ft(\))p Fy(:)39 b(Let)h(\()p Fs(L;)17 b Fy(\()p Fs(p)940 425 y Fp(A)996 410 y Fy(\)\))39 b(b)s(e)h(a)f(limit)g(of)g Fs(F)52 b Fy(:)39 b Ft(D)j(\000)-60 b(!)39 b(C)6 b Fy(.)63 b(Let)39 b Fs(T)53 b Fy(b)s(e)40 b(an)f(ob)5 b(ject)40 b(in)f Ft(C)45 b Fy(and)40 b(let)f Fs(f)50 b Ft(2)0 526 y Fy(Mor)176 541 y Fq(C)221 526 y Fy(\()p Fs(T)8 b(;)17 b(L)p Fy(\).)51 b(De\014ne)35 b Fs(f)902 541 y Fp(A)990 526 y Fy(:=)d Fs(p)1174 541 y Fp(A)1254 526 y Ft(\016)24 b Fs(f)42 b Fy(:)32 b Fs(T)45 b Ft(\000)-60 b(!)31 b Fs(A)p Fy(.)51 b(Then)36 b(Mor)2311 541 y Fq(C)2356 526 y Fy(\()p Fs(T)8 b(;)17 b(F)d Fy(\)\()p Fs(u)p Fy(\)\()p Fs(f)2836 541 y Fp(A)2892 526 y Fy(\))31 b(=)g(Mor)3245 541 y Fq(C)3290 526 y Fy(\()p Fs(T)8 b(;)17 b(F)d Fy(\()p Fs(u)p Fy(\)\)\()p Fs(p)3771 541 y Fp(A)3850 526 y Ft(\016)0 642 y Fs(f)d Fy(\))31 b(=)g Fs(F)14 b Fy(\()p Fs(u)p Fy(\))23 b Ft(\016)g Fs(p)589 657 y Fp(A)670 642 y Ft(\016)g Fs(f)42 b Fy(=)31 b Fs(p)989 657 y Fp(B)1073 642 y Ft(\016)24 b Fs(f)42 b Fy(=)31 b Fs(f)1392 657 y Fp(B)1487 642 y Fy(for)j(all)h(\()p Fs(u)30 b Fy(:)i Fs(A)f Ft(\000)-59 b(!)30 b Fs(B)5 b Fy(\))32 b Ft(2)f(D)38 b Fy(so)c(that)h(\()p Fs(f)2993 657 y Fp(A)3050 642 y Fy(\))c Ft(2)h Fy(lim)3217 693 y Ft( )-42 b(\000)3352 642 y Fy(\(Mor)3566 657 y Fq(C)3611 642 y Fy(\()p Fs(T)8 b(;)17 b(F)d Fy(\).)0 766 y(No)m(w)34 b(w)m(e)h(can)f(de\014ne)h Fs(i)p Fy(\()p Fs(f)11 b Fy(\))30 b(:=)f(\()p Fs(f)1247 781 y Fp(A)1304 766 y Fy(\))h Ft(2)g Fy(lim)1468 817 y Ft( )-42 b(\000)1603 766 y Fy(\(Mor)1817 781 y Fq(C)1862 766 y Fy(\()p Fs(T)8 b(;)17 b(F)d Fy(\))34 b(and)f(get)h(Mor)2688 781 y Fq(C)2733 766 y Fy(\()p Fs(T)8 b(;)17 b(p)2929 781 y Fp(A)2986 766 y Fy(\)\()p Fs(f)11 b Fy(\))29 b(=)h Fs(p)3343 781 y Fp(A)3423 766 y Ft(\016)23 b Fs(f)40 b Fy(=)29 b Fs(f)3737 781 y Fp(A)3824 766 y Fy(=)5 891 y Fh(e)-60 b Fs(p)49 906 y Fp(A)128 891 y Ft(\016)22 b Fs(i)p Fy(\()p Fs(f)11 b Fy(\).)0 1123 y(It)33 b(remains)g(to)g(sho)m (w)g(that)g Fs(i)f Fy(is)h(bijectiv)m(e.)46 b(W)-8 b(e)33 b(construct)h(the)f(in)m(v)m(erse)i(map)d(as)849 1295 y Fs(u)c Fy(:)f(lim)987 1346 y Ft( )-42 b(\000)1123 1295 y Fy(\(Mor)1337 1310 y Fq(C)1382 1295 y Fy(\()p Fs(T)8 b(;)17 b(F)d Fy(\)\))27 b Ft(\000)-60 b(!)28 b Fy(Mor)2030 1310 y Fq(C)2075 1295 y Fy(\()p Fs(T)8 b(;)17 b(L)p Fy(\))195 b Fs(u)p Fy(\(\()p Fs(f)2701 1310 y Fp(A)2758 1295 y Fy(\)\))27 b(:=)h Fs(f)0 1476 y Fy(where)39 b(\()p Fs(f)373 1491 y Fp(A)430 1476 y Fy(\))f Ft(2)f Fy(lim)609 1526 y Ft( )-42 b(\000)745 1476 y Fy(\(Mor)959 1491 y Fq(C)1004 1476 y Fy(\()p Fs(T)8 b(;)17 b(F)d Fy(\)\))38 b(implies)h(Mor)1854 1491 y Fq(C)1900 1476 y Fy(\()p Fs(T)8 b(;)17 b(F)d Fy(\)\()p Fs(u)p Fy(\)\()p Fs(f)2380 1491 y Fp(A)2436 1476 y Fy(\))37 b(=)g Fs(f)2672 1491 y Fp(B)2770 1476 y Fy(=)g Fs(F)14 b Fy(\()p Fs(u)p Fy(\))25 b Ft(\016)h Fs(f)3241 1491 y Fp(A)3336 1476 y Fy(for)38 b(all)g(\()p Fs(u)f Fy(:)g Fs(A)0 1600 y Ft(\000)-60 b(!)34 b Fs(B)5 b Fy(\))33 b Ft(2)h(D)s Fy(.)53 b(By)37 b(the)f(univ)m(ersal)i(prop)s(ert)m(y)f (of)e(the)h(limit)h(there)f(is)h(a)f(unique)h Fs(f)44 b Fy(:)34 b Fs(T)47 b Ft(\000)-60 b(!)33 b Fs(L)k Fy(suc)m(h)g(that)0 1716 y Fs(p)49 1731 y Fp(A)128 1716 y Ft(\016)22 b Fs(f)38 b Fy(=)28 b Fs(f)438 1731 y Fp(A)495 1716 y Fy(.)44 b(W)-8 b(e)33 b(use)g(this)g Fs(f)44 b Fy(for)32 b(the)h(de\014nition)g(of)f (the)h(map)g Fs(u)p Fy(.)0 1949 y(Let)38 b(\()p Fs(f)266 1964 y Fp(A)323 1949 y Fy(\))f Ft(2)h Fy(lim)502 1999 y Ft( )-42 b(\000)637 1949 y Fy(\(Mor)851 1964 y Fq(C)896 1949 y Fy(\()p Fs(T)8 b(;)17 b(F)d Fy(\)\).)60 b(Then)39 b(\()p Fs(i)26 b Ft(\016)g Fs(u)p Fy(\)\(\()p Fs(f)1934 1964 y Fp(A)1990 1949 y Fy(\)\))37 b(=)g Fs(i)p Fy(\()p Fs(f)11 b Fy(\))37 b(=)f(\()p Fs(p)2620 1964 y Fp(A)2703 1949 y Ft(\016)26 b Fs(f)11 b Fy(\))37 b(=)f(\()p Fs(f)3111 1964 y Fp(A)3169 1949 y Fy(\))h(hence)j(\()p Fs(i)26 b Ft(\016)g Fs(u)p Fy(\))36 b(=)0 2065 y(1)50 2081 y Fr(lim)49 2131 y Ft( )-77 b(\000)148 2081 y Fr(\(Mor)303 2092 y Fl(C)343 2081 y Fr(\()p Fp(T)6 b(;F)k Fr(\)\))551 2065 y Fy(.)0 2298 y(Let)34 b Fs(f)41 b Ft(2)30 b Fy(Mor)538 2313 y Fq(C)583 2298 y Fy(\()p Fs(T)8 b(;)17 b(L)p Fy(\).)48 b(Then)35 b(\()p Fs(u)22 b Ft(\016)h Fs(i)p Fy(\)\()p Fs(f)11 b Fy(\))30 b(=)g Fs(u)p Fy(\(\()p Fs(f)1876 2313 y Fp(A)1932 2298 y Fy(\)\))g(=)g Fs(u)p Fy(\(\()p Fs(p)2325 2313 y Fp(A)2382 2298 y Fy(\))23 b Ft(\016)g Fs(f)11 b Fy(\))29 b(=)h Fs(f)2807 2261 y Fq(0)2864 2298 y Fy(where)36 b Fs(f)3207 2261 y Fq(0)3260 2298 y Fy(:)30 b Fs(T)44 b Ft(\000)-60 b(!)30 b Fs(L)k Fy(is)h(the)0 2414 y(unique)27 b(morphism)f(suc)m(h)h(that)e Fs(p)1224 2429 y Fp(A)1287 2414 y Ft(\016)7 b Fs(f)1403 2378 y Fq(0)1454 2414 y Fy(=)28 b Fs(p)1607 2429 y Fp(A)1670 2414 y Ft(\016)7 b Fs(f)36 b Fy(for)25 b(all)g Fs(A)j Ft(2)g(D)f Fy(hence)g Fs(f)38 b Fy(=)28 b Fs(f)2893 2378 y Fq(0)2941 2414 y Fy(and)d(\()p Fs(u)7 b Ft(\016)g Fs(i)p Fy(\))27 b(=)h(1)3532 2429 y Fr(Mor)3659 2440 y Fl(C)3699 2429 y Fr(\()p Fp(T)6 b(;L)p Fr(\))3873 2414 y Fy(.)0 2646 y Ft(\()-17 b Fy(=:)43 b(If)32 b(\()p Fs(f)412 2661 y Fp(A)497 2646 y Fy(:)c Fs(T)41 b Ft(\000)-59 b(!)27 b Fs(F)14 b Fy(\()p Fs(A)p Fy(\))32 b Ft(j)g Fs(A)c Ft(2)g(D)s Fy(\))k(is)g(a)g(family)h(of)f (morphisms)i(suc)m(h)g(that)e Fs(F)14 b Fy(\()p Fs(u)p Fy(\))21 b Ft(\016)g Fs(f)3319 2661 y Fp(A)3404 2646 y Fy(=)27 b Fs(f)3555 2661 y Fp(B)3648 2646 y Fy(for)32 b(all)0 2762 y(\()p Fs(u)e Fy(:)h Fs(A)g Ft(\000)-60 b(!)30 b Fs(B)5 b Fy(\))31 b Ft(2)g(D)s Fy(.)48 b(Then)36 b(\()p Fs(f)1176 2777 y Fp(A)1233 2762 y Fy(\))e(is)h(an)f(elemen)m(t)i (of)e(lim)2017 2813 y Ft( )-42 b(\000)2153 2762 y Fy(\(Mor)2367 2777 y Fq(C)2412 2762 y Fy(\()p Fs(T)8 b(;)17 b(F)d Fy(\)\),)34 b(since)i(Mor)3190 2777 y Fq(C)3235 2762 y Fy(\()p Fs(T)8 b(;)17 b(F)d Fy(\)\()p Fs(u)p Fy(\)\()p Fs(f)3715 2777 y Fp(a)3756 2762 y Fy(\))30 b(=)0 2887 y Fs(F)14 b Fy(\()p Fs(u)p Fy(\))j Ft(\016)h Fs(f)342 2902 y Fp(A)427 2887 y Fy(=)28 b Fs(f)579 2902 y Fp(B)670 2887 y Fy(for)i(all)h(\()p Fs(u)c Fy(:)h Fs(A)f Ft(\000)-59 b(!)27 b Fs(B)5 b Fy(\))28 b Ft(2)g(D)s Fy(.)42 b(It)31 b(is)g(the)g(unique)h(elemen)m(t)h(with)j Fh(e)-60 b Fs(p)3069 2902 y Fp(A)3126 2887 y Fy(\(\()p Fs(f)3250 2902 y Fp(A)3307 2887 y Fy(\)\))28 b(=)f Fs(f)3562 2902 y Fp(A)3650 2887 y Fy(for)j(all)0 3003 y Fs(A)e Ft(2)g(D)s Fy(.)0 3119 y(So)22 b(there)h(is)g(a)f(unique)i(morphism)f Fs(f)39 b Fy(:=)27 b Fs(i)1525 3083 y Fq(\000)p Fr(1)1620 3119 y Fy(\(\()p Fs(f)1744 3134 y Fp(A)1801 3119 y Fy(\)\))22 b(satisfying)28 b Fh(e)-59 b Fs(p)2373 3134 y Fp(A)2431 3119 y Ft(\016)q Fs(i)p Fy(\()p Fs(f)11 b Fy(\))27 b(=)h Fs(f)2829 3134 y Fp(A)2908 3119 y Fy(or)22 b(Mor)3193 3134 y Fq(C)3238 3119 y Fy(\()p Fs(T)8 b(;)17 b(p)3434 3134 y Fp(A)3491 3119 y Fy(\)\()p Fs(f)11 b Fy(\))27 b(=)h Fs(f)3843 3134 y Fp(A)0 3235 y Fy(or)k Fs(p)168 3250 y Fp(A)247 3235 y Ft(\016)22 b Fs(f)39 b Fy(=)27 b Fs(f)557 3250 y Fp(A)647 3235 y Fy(for)32 b(all)g Fs(A)c Ft(2)g(D)s Fy(.)43 b(Th)m(us)34 b(\()p Fs(L;)17 b Fy(\()p Fs(p)1758 3250 y Fp(A)1815 3235 y Fy(\)\))33 b(is)g(a)f(limit)h(of)f Fs(F)14 b Fy(.)1272 b Fg(\003)p Black 0 3419 a Fy(2.12.5.)32 b Fv(Prop)s(osition.)p Black 42 w Fu(The)i(family)g(of)h(isomorphisms) 1132 3591 y Fs(i)1165 3606 y Fp(T)1248 3591 y Fy(:)27 b(Mor)1479 3606 y Fq(C)1524 3591 y Fy(\()p Fs(T)8 b(;)17 b Fy(lim)1671 3641 y Ft( )-42 b(\000)1823 3591 y Fs(F)14 b Fy(\))27 b Ft(\000)-57 b(!)27 b Fy(lim)2112 3641 y Ft( )-42 b(\000)2248 3591 y Fy(\(Mor)2462 3606 y Fq(C)2507 3591 y Fy(\()p Fs(T)8 b(;)17 b(F)d Fy(\))0 3766 y Fu(such)35 b(that)g(the)g(tringles)1013 4412 y Fy(lim)1013 4462 y Ft( )-42 b(\000)1149 4412 y Fy(\(Mor)1363 4427 y Fq(C)1408 4412 y Fy(\()p Fs(T)8 b(;)17 b(F)d Fy(\)\))396 b(Mor)2280 4427 y Fq(C)2325 4412 y Fy(\()p Fs(T)8 b(;)17 b(A)p Fy(\))p 1736 4397 332 4 v 1985 4395 a Fo(-)1853 4486 y Fh(e)-60 b Fs(p)1897 4501 y Fp(A)2018 3924 y Fy(Mor)2194 3939 y Fq(C)2239 3924 y Fy(\()p Fs(T)8 b(;)17 b Fy(lim)2386 3975 y Ft( )-42 b(\000)2538 3924 y Fs(F)14 b Fy(\))p 2333 4327 4 351 v 2335 4327 a Fo(?)2374 4176 y Fy(Mor)2550 4191 y Fq(C)2595 4176 y Fy(\()p Fs(T)8 b(;)17 b(p)2791 4191 y Fp(A)2848 4176 y Fy(\))1752 4184 y Fs(i)2116 4017 y Fo(\010)2033 4059 y(\010)1950 4100 y(\010)1867 4142 y(\010)1783 4183 y(\010)1700 4225 y(\010)1617 4266 y(\010)1534 4308 y(\010)1497 4327 y(\010)-83 b(\031)0 4638 y Fu(c)-5 b(ommute)36 b(for)g(al)5 b(l)36 b(obje)-5 b(cts)36 b Fs(T)50 b Fu(in)36 b Ft(C)6 b Fu(,)37 b(is)g(a)f(natur)-5 b(al)36 b(isomorphism)f(in)h Fs(T)50 b Fu(and)36 b(morphisms)f(of)h (diagr)-5 b(ams)0 4754 y Fs(F)14 b Fu(.)p Black 0 4937 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(is)33 b(similar)h(to)e(the)h(pro)s (of)e(of)i(Prop)s(osition)f(2.7.5.)1701 b Fg(\003)p Black 0 5121 a Fy(2.12.6.)42 b Fv(Remark.)p Black 47 w Fy(Th)m(us)i(the)f (most)f(imp)s(ortan)m(t)h(prop)s(erties)g(of)f(the)h(extension)h (principle)g(are)e(no)m(w)0 5237 y(v)m(eri\014ed.)j(Observ)m(e)35 b(that)d(Prop)s(osition)h(2.12.4)f(implies)1235 5409 y(Mor)1411 5424 y Fq(C)1456 5409 y Fy(\()p Fs(T)8 b(;)17 b Fy(lim)1603 5460 y Ft( )-42 b(\000)1755 5409 y Fs(F)14 b Fy(\))1898 5382 y Ft(\030)1899 5413 y Fy(=)2003 5409 y(lim)2003 5460 y Ft( )-42 b(\000)2155 5409 y Fy(Mor)2331 5424 y Fq(C)2376 5409 y Fy(\()p Fs(T)8 b(;)17 b(F)d Fy(\))p Fs(:)p Black Black eop end %%Page: 83 83 TeXDict begin 83 82 bop Black 1843 -99 a Fw(Limits)1766 b(83)p Black 0 100 a Fy(The)37 b(dual)f(notion)g(of)f(a)h(limit)g(is)g (a)g Fu(c)-5 b(olimit)35 b Fy(or)h Fu(dir)-5 b(e)g(ct)38 b(limit)p Fy(.)53 b(Y)-8 b(ou)36 b(can)g(de\014ne)h(it)f(as)g(the)g (limit)g(in)h(the)0 217 y(dual)c(category)g Ft(C)668 180 y Fp(op)774 217 y Fy(of)f Ft(C)6 b Fy(.)44 b(Then)34 b(for)e(colimits)h(the)g(follo)m(wing)g(isomorphism)h(holds:)1241 373 y(Mor)1417 388 y Fq(C)1462 373 y Fy(\(lim)1500 424 y Ft(\000)-41 b(!)1652 373 y Fs(F)s(;)17 b(T)d Fy(\))1898 346 y Ft(\030)1899 378 y Fy(=)2003 373 y(lim)2003 424 y Ft( )-42 b(\000)2155 373 y Fy(Mor)2331 388 y Fq(C)2376 373 y Fy(\()p Fs(F)s(;)17 b(T)d Fy(\))p Fs(:)0 533 y Fy(These)34 b(isomorphisms)h(can)e(b)s(e)g(in)m(terpreted)h(as)p Black 223 669 a Ft(\017)p Black 42 w Fy(a)e(co)m(v)-5 b(arian)m(t)33 b(represen)m(table)i(functor)e(preserv)m(es)i(limits;)p Black 223 786 a Ft(\017)p Black 42 w Fy(a)d(con)m(tra)m(v)-5 b(arian)m(t)33 b(represen)m(table)i(functor)e(maps)g(colimits)h(to)e (limits.)p Black 0 960 a(2.12.7.)g Fv(Example.)p Black 43 w Fy(Let)g(\()p Fs(V)1076 975 y Fp(i)1104 960 y Ft(j)p Fs(i)c Ft(2)g Fs(I)8 b Fy(\))32 b(b)s(e)h(a)g(family)g(of)f(v)m(ector)h (spaces.)45 b(Then)1187 1138 y(Hom)1390 1153 y Fd(K)1446 1138 y Fy(\()p Fs(W)m(;)1617 1044 y Fh(Y)1627 1255 y Fp(i)p Fq(2)p Fp(I)1761 1138 y Fs(V)1818 1153 y Fp(i)1846 1138 y Fy(\))1911 1111 y Ft(\030)1912 1143 y Fy(=)2016 1044 y Fh(Y)2027 1255 y Fp(i)p Fq(2)p Fp(I)2160 1138 y Fy(Hom)2364 1153 y Fd(K)2419 1138 y Fy(\()p Fs(W)m(;)17 b(V)2647 1153 y Fp(i)2675 1138 y Fy(\))0 1388 y(and)1159 1504 y(Hom)1362 1519 y Fd(K)1418 1504 y Fy(\()1456 1409 y Fh(M)1478 1621 y Fp(i)p Fq(2)p Fp(I)1623 1504 y Fs(V)1680 1519 y Fp(i)1708 1504 y Fs(;)g(W)d Fy(\))1923 1476 y Ft(\030)1924 1508 y Fy(=)2028 1409 y Fh(Y)2038 1621 y Fp(i)p Fq(2)p Fp(I)2172 1504 y Fy(Hom)2375 1519 y Fd(K)2431 1504 y Fy(\()p Fs(V)2526 1519 y Fp(i)2554 1504 y Fs(;)j(W)d Fy(\))p Black 0 1776 a(2.12.8.)33 b Fv(Theorem.)p Black 43 w Fu(L)-5 b(et)36 b Fs(F)44 b Fy(:)29 b Ft(D)k(\000)-58 b(!)30 b(C)42 b Fu(b)-5 b(e)36 b(a)f(diagr)-5 b(am)35 b(in)h(a)f(c)-5 b(ate)g(gory)36 b Ft(C)6 b Fu(.)49 b(If)35 b Fy(\()p Fs(L;)17 b Fy(\()p Fs(p)3150 1791 y Fp(A)3207 1776 y Fy(\)\))36 b Fu(and)f Fy(\()p Fs(L)3613 1740 y Fq(0)3637 1776 y Fs(;)17 b Fy(\()p Fs(p)3768 1740 y Fq(0)3768 1801 y Fp(A)3824 1776 y Fy(\)\))0 1892 y Fu(ar)-5 b(e)32 b(limits)h(of)f Fs(F)14 b Fu(,)32 b(then)h(ther)-5 b(e)32 b(is)h(a)f(unique)h(isomorphism)e Fs(h)c Fy(:)h Fs(L)g Ft(\000)-57 b(!)27 b Fs(L)2653 1856 y Fq(0)2710 1892 y Fu(such)32 b(that)h Fs(p)3175 1856 y Fq(0)3175 1917 y Fp(A)3249 1892 y Ft(\016)17 b Fs(h)28 b Fy(=)f Fs(p)3552 1907 y Fp(A)3642 1892 y Fu(for)32 b(al)5 b(l)0 2008 y Fs(A)28 b Ft(2)g(D)s Fu(.)p Black 0 2183 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(Since)33 b(\()p Fs(L)656 2147 y Fq(0)680 2183 y Fs(;)17 b Fy(\()p Fs(p)811 2147 y Fq(0)811 2208 y Fp(A)867 2183 y Fy(\)\))32 b(satis\014es)i(the)e(univ)m(ersal)i(prop) s(ert)m(y)e(of)g(a)f(limit)i(there)f(is)h(a)e(unique)j(morphism)0 2299 y Fs(h)28 b Fy(:)g Fs(L)g Ft(\000)-60 b(!)27 b Fs(L)443 2263 y Fq(0)500 2299 y Fy(suc)m(h)34 b(that)e Fs(p)980 2263 y Fq(0)980 2324 y Fp(A)1059 2299 y Ft(\016)22 b Fs(h)28 b Fy(=)f Fs(p)1367 2314 y Fp(A)1457 2299 y Fy(for)32 b(all)g Fs(A)c Ft(2)g(D)s Fy(.)43 b(Symmetrically)35 b(there)e(is)g(a)g(unique)h(morphism)0 2415 y Fs(k)48 b Fy(:)e Fs(L)238 2379 y Fq(0)307 2415 y Ft(\000)-60 b(!)45 b Fs(L)f Fy(suc)m(h)g(that)f Fs(p)1080 2430 y Fp(A)1166 2415 y Ft(\016)29 b Fs(k)49 b Fy(=)c Fs(p)1515 2379 y Fq(0)1515 2440 y Fp(A)1615 2415 y Fy(for)d(all)h Fs(A)j Ft(2)g(D)s Fy(.)74 b(Consider)44 b(the)g(follo)m(wing)f(comm)m (utativ)m(e)0 2531 y(diagram:)2128 2626 y Fs(L)1540 3211 y(A)1703 2896 y(p)1752 2911 y Fp(A)2010 2743 y Fo(\000)1927 2826 y(\000)1844 2909 y(\000)1761 2993 y(\000)1678 3076 y(\000)1645 3109 y(\000)-83 b(\011)2117 3019 y Fs(L)2183 2983 y Fq(0)1699 3104 y Fs(p)1748 3067 y Fq(0)1748 3129 y Fp(A)1874 3078 y Fo(\020)1791 3106 y(\020)1781 3109 y(\020)g(\))2128 3406 y Fs(L)1699 3286 y(p)1748 3301 y Fp(A)1874 3304 y Fo(P)1791 3276 y(P)1781 3273 y(P)g(i)2117 3799 y Fs(L)2183 3762 y Fq(0)1703 3494 y Fs(p)1752 3457 y Fq(0)1752 3519 y Fp(A)2010 3694 y Fo(@)1927 3611 y(@)1844 3528 y(@)1761 3445 y(@)1678 3362 y(@)1645 3328 y(@)g(I)p 2160 2914 4 254 v 2162 2914 a(?)2066 2822 y Fs(h)p 2160 3304 V 2162 3304 a Fo(?)2135 3212 y Fs(k)p 2160 3694 V 2162 3694 a Fo(?)2201 3602 y Fs(h)p 2218 3304 4 644 v 2220 3304 a Fo(?)2259 3007 y Fy(1)2308 3022 y Fp(L)p 2101 3694 V 2103 3694 a Fo(?)1941 3397 y Fy(1)1990 3412 y Fp(L)2038 3393 y Fl(0)0 3899 y Fy(Since)30 b Fs(p)300 3914 y Fp(A)370 3899 y Ft(\016)14 b Fs(k)j Ft(\016)d Fs(h)27 b Fy(=)h Fs(p)802 3914 y Fp(A)886 3899 y Fy(=)g Fs(p)1039 3914 y Fp(A)1110 3899 y Ft(\016)14 b Fy(1)1223 3914 y Fp(L)1303 3899 y Fy(for)28 b(all)g Fs(A)g Ft(2)g(D)j Fy(w)m(e)e(get)g(b)m(y)g(uniqueness)j Fs(k)17 b Ft(\016)d Fs(h)27 b Fy(=)h(1)3167 3914 y Fp(L)3219 3899 y Fy(.)42 b(Symmetrically)0 4015 y(w)m(e)34 b(get)e Fs(h)22 b Ft(\016)g Fs(k)31 b Fy(=)d(1)691 4030 y Fp(L)739 4011 y Fl(0)765 4015 y Fy(,)33 b(th)m(us)g Fs(h)g Fy(is)g(an)g(isomorphism)h(with)f (the)g(required)h(prop)s(erties.)667 b Fg(\003)3991 4084 y Fy(09.07.04)p Black Black eop end %%Page: 84 84 TeXDict begin 84 83 bop Black 0 -99 a Fw(84)1077 b(Represen)n(table)25 b(functors)h(and)g(the)f(Y)-6 b(oneda)25 b(Lemma)p Black 1125 100 a Fy(3.)48 b Fx(Adjoint)39 b(functors)f(and)g(monads)0 275 y Fy(3.1.)49 b Fv(Adjoin)m(t)37 b(functors.)p Black 0 536 a Fy(3.1.1.)32 b Fv(De\014nition.)p Black 43 w Fy(Let)h Ft(C)39 b Fy(and)32 b Ft(D)k Fy(b)s(e)d(categories.)44 b(Let)33 b Fs(F)42 b Fy(:)28 b Ft(C)34 b(\000)-59 b(!)27 b(D)35 b Fy(and)e Fs(G)28 b Fy(:)g Ft(D)j(\000)-60 b(!)28 b(C)39 b Fy(b)s(e)33 b(co)m(v)-5 b(arian)m(t)0 652 y(functors.)44 b Fs(F)i Fy(is)32 b(called)h Fu(left)h(adjoint)g(to)e Fs(G)g Fy(and)g Fs(G)g Fy(is)g(called)h Fu(right)h(adjoint)d Fy(to)h Fs(F)46 b Fy(if)31 b(there)i(is)f(a)g(natural)0 769 y(isomorphism)i(\(natural)e(in)h Fs(C)i Ft(2)28 b(C)39 b Fy(and)32 b Fs(D)f Ft(2)d(D)s Fy(\))1092 1078 y Fs(')p Fy(\()p Fs(C)r(;)17 b(D)s Fy(\))27 b(:)h(Mor)1690 1093 y Fq(D)1750 1078 y Fy(\()p Fs(F)14 b(C)r(;)j(D)s Fy(\))2130 1050 y Ft(\030)2130 1082 y Fy(=)2235 1078 y(Mor)2411 1093 y Fq(C)2456 1078 y Fy(\()p Fs(C)r(;)g(GD)s Fy(\))0 1388 y(or)32 b(simply)999 1656 y(Mor)1175 1671 y Fq(D)1235 1656 y Fy(\()p Fs(F)14 b Fy(-)p Fs(;)j Fy(-)o(\))1524 1629 y Ft(\030)1525 1660 y Fy(=)1630 1656 y(Mor)1806 1671 y Fq(C)1851 1656 y Fy(\(-)o Fs(;)g(G)p Fy(-)o(\))28 b(:)g Ft(C)2253 1615 y Fp(op)2349 1656 y Ft(\002)23 b(D)30 b(\000)-60 b(!)28 b Fv(Set)16 b Fs(:)p Black 0 1918 a Fy(3.1.2.)36 b Fv(Prop)s(osition.)p Black 44 w Fu(L)-5 b(et)39 b Fs(F)48 b Fy(:)34 b Ft(C)41 b(\000)-57 b(!)34 b(D)41 b Fu(b)-5 b(e)38 b(left)h(adjoint)e(to)i Fs(G)34 b Fy(:)h Ft(D)i(\000)-57 b(!)34 b(C)6 b Fu(.)56 b(Then)37 b Fs(G)i Fu(determines)e Fs(F)0 2034 y Fu(uniquely)e(up)g(to)g(a)g (natur)-5 b(al)35 b(isomorphism.)p Black 0 2296 a(Pr)-5 b(o)g(of.)p Black 41 w Fy(Assume)27 b(that)d(also)h Fs(F)1120 2259 y Fq(0)1170 2296 y Fy(:)j Ft(C)34 b(\000)-60 b(!)28 b(D)f Fy(is)e(left)g(adjoin)m(t)f(to)g Fs(G)p Fy(.)41 b(Then)26 b(w)m(e)g(ha)m(v)m(e)f(natural)g(isomorphisms)1053 2605 y(Mor)1229 2620 y Fq(D)1289 2605 y Fy(\()p Fs(F)14 b Fy(-)o Fs(;)j Fy(-\))1578 2577 y Ft(\030)1579 2609 y Fy(=)1683 2605 y(Mor)1860 2620 y Fq(C)1905 2605 y Fy(\(-)o Fs(;)g(G)p Fy(-)o(\))2194 2577 y Ft(\030)2195 2609 y Fy(=)2299 2605 y(Mor)2475 2620 y Fq(D)2536 2605 y Fy(\()p Fs(F)2651 2564 y Fq(0)2674 2605 y Fy(-)o Fs(;)g Fy(-)o(\))p Fs(:)0 2914 y Fy(By)33 b(the)g(Y)-8 b(oneda)33 b(Lemma)g(and)g(Prop)s (osition)g(2.10.5)e(w)m(e)j(get)f Fs(F)2423 2887 y Ft(\030)2424 2919 y Fy(=)2528 2914 y Fs(F)2605 2878 y Fq(0)2628 2914 y Fy(.)1168 b Fg(\003)p Black 0 3176 a Fy(3.1.3.)38 b Fv(Corollary)-9 b(.)p Black 45 w Fu(L)k(et)40 b Fs(F)1029 3191 y Fp(i)1095 3176 y Fy(:)e Ft(C)43 b(\000)-57 b(!)37 b(D)43 b Fu(b)-5 b(e)40 b(left)g(adjoint)g(to)g Fs(G)2365 3191 y Fp(i)2431 3176 y Fy(:)e Ft(D)i(\000)-57 b(!)37 b(C)46 b Fu(for)40 b Fs(i)e Fy(=)f(1)p Fs(;)17 b Fy(2)p Fu(.)60 b(L)-5 b(et)41 b Fs(\013)d Fy(:)g Fs(G)3861 3191 y Fr(1)0 3292 y Ft(\000)-57 b(!)38 b Fs(G)235 3307 y Fr(2)315 3292 y Fu(b)-5 b(e)40 b(a)g(natur)-5 b(al)41 b(tr)-5 b(ansformation.)61 b(Then)40 b(ther)-5 b(e)40 b(is)h(a)f(unique)h(natur)-5 b(al)40 b(tr)-5 b(ansformation)40 b Fs(\014)k Fy(:)38 b Fs(F)3860 3307 y Fr(2)0 3408 y Ft(\000)-57 b(!)27 b Fs(F)210 3423 y Fr(1)285 3408 y Fu(such)34 b(that)i(the)e(diagr)-5 b(am)1108 3773 y Fy(Mor)1284 3788 y Fq(D)1344 3773 y Fy(\()p Fs(F)1445 3788 y Fr(1)1485 3773 y Fu(-)p Fs(;)17 b Fu(-)o Fy(\))651 b(Mor)2463 3788 y Fq(C)2508 3773 y Fy(\()p Fu(-)p Fs(;)17 b(G)2702 3788 y Fr(1)2741 3773 y Fu(-)p Fy(\))p 1665 3750 584 4 v 2166 3748 a Fo(-)1810 3704 y Fs(')1874 3719 y Fr(1)1914 3704 y Fy(\()p Fu(-)p Fs(;)g Fu(-)o Fy(\))1108 4163 y(Mor)1284 4178 y Fq(D)1344 4163 y Fy(\()p Fs(F)1445 4178 y Fr(2)1485 4163 y Fu(-)p Fs(;)g Fu(-)o Fy(\))651 b(Mor)2463 4178 y Fq(C)2508 4163 y Fy(\()p Fu(-)p Fs(;)17 b(G)2702 4178 y Fr(2)2741 4163 y Fu(-)p Fy(\))p 1665 4140 V 2166 4138 a Fo(-)1810 4232 y Fs(')1874 4247 y Fr(2)1914 4232 y Fy(\()p Fu(-)p Fs(;)g Fu(-)o Fy(\))p 1370 4070 4 254 v 1372 4070 a Fo(?)846 3968 y Fy(Mor)1022 3983 y Fq(D)1083 3968 y Fy(\()p Fs(\014)6 b Fu(-)o Fs(;)17 b Fu(-)p Fy(\))p 2540 4070 V 2542 4070 a Fo(?)2581 3968 y Fy(Mor)2757 3983 y Fq(C)2802 3968 y Fy(\()p Fu(-)p Fs(;)g(\013)q Fu(-)o Fy(\))p Black 0 4486 a Fu(Pr)-5 b(o)g(of.)p Black 41 w Fy(Giv)m(en)32 b Fs(A;)17 b(B)32 b Ft(2)c(D)s Fy(.)43 b(Then)32 b(there)f(is)g(a)g(unique)h(morphism)g Fs(\014)6 b Fy(\()p Fs(A)p Fy(\))27 b(:)h Fs(F)2846 4501 y Fr(2)2885 4486 y Fs(A)g Ft(\000)-60 b(!)28 b Fs(F)3194 4501 y Fr(1)3233 4486 y Fs(A)j Fy(suc)m(h)h(that)f(the)0 4602 y(follo)m(wing)i(diagram)f (comm)m(utes)1127 4966 y(Mor)1303 4981 y Fq(D)1364 4966 y Fy(\()p Fs(F)1465 4981 y Fr(1)1504 4966 y Fs(A;)17 b Fy(-\))614 b(Mor)2482 4981 y Fq(C)2527 4966 y Fy(\()p Fs(A;)17 b(G)2759 4981 y Fr(1)2799 4966 y Fy(-)o(\))p 1720 4943 549 4 v 2186 4941 a Fo(-)1830 4897 y Fs(')1894 4912 y Fr(1)1933 4897 y Fy(\()p Fs(A;)g Fy(-\))1127 5356 y(Mor)1303 5371 y Fq(D)1364 5356 y Fy(\()p Fs(F)1465 5371 y Fr(2)1504 5356 y Fs(A;)g Fy(-\))614 b(Mor)2482 5371 y Fq(C)2527 5356 y Fy(\()p Fs(A;)17 b(G)2759 5371 y Fr(2)2799 5356 y Fy(-)o(\))p 1720 5334 V 2186 5332 a Fo(-)1830 5426 y Fs(')1894 5441 y Fr(2)1933 5426 y Fy(\()p Fs(A;)g Fy(-\))p 1408 5263 4 254 v 1409 5263 a Fo(?)772 5161 y Fy(Mor)948 5176 y Fq(D)1009 5161 y Fy(\()p Fs(\014)6 b Fy(\()p Fs(A)p Fy(\))p Fs(;)17 b Fy(-)n(\))p 2578 5263 V 2579 5263 a Fo(?)2618 5161 y Fy(Mor)2794 5176 y Fq(C)2839 5161 y Fy(\()p Fs(A;)g(\013)q Fy(-)o(\))p Black Black eop end %%Page: 85 85 TeXDict begin 85 84 bop Black 1675 -99 a Fw(Adjoin)n(t)25 b(functors)1598 b(85)p Black 0 100 a Fy(W)-8 b(e)44 b(ha)m(v)m(e)g(to)f (sho)m(w)h(that)f Fs(\014)52 b Fy(:)45 b Fs(F)1260 115 y Fr(2)1346 100 y Ft(\000)-60 b(!)46 b Fs(F)1572 115 y Fr(1)1654 100 y Fy(is)e(a)f(natural)g(transformation.)75 b(Let)44 b Fs(f)56 b Fy(:)46 b Fs(A)g Ft(\000)-60 b(!)46 b Fs(B)i Fy(b)s(e)43 b(a)0 217 y(morphism)34 b(in)f Ft(D)s Fy(.)43 b(Then)640 461 y(Mor)816 476 y Fq(D)877 461 y Fy(\()p Fs(F)978 476 y Fr(1)1017 461 y Fs(B)5 b(;)17 b Fy(-\))998 b(Mor)2385 476 y Fq(C)2430 461 y Fy(\()p Fs(B)5 b(;)17 b(G)2668 476 y Fr(1)2707 461 y Fy(-\))p 1239 438 934 4 v 2090 436 a Fo(-)1538 392 y Fs(')1602 407 y Fr(1)1641 392 y Fy(\()p Fs(B)5 b(;)17 b Fy(-\))640 1241 y(Mor)816 1256 y Fq(D)877 1241 y Fy(\()p Fs(F)978 1256 y Fr(2)1017 1241 y Fs(B)5 b(;)17 b Fy(-\))998 b(Mor)2385 1256 y Fq(C)2430 1241 y Fy(\()p Fs(B)5 b(;)17 b(G)2668 1256 y Fr(2)2707 1241 y Fy(-\))p 1239 1218 V 2090 1216 a Fo(-)1538 1310 y Fs(')1602 1325 y Fr(2)1641 1310 y Fy(\()p Fs(B)5 b(;)17 b Fy(-\))p 924 1148 4 644 v 925 1148 a Fo(?)282 851 y Fy(Mor)458 866 y Fq(D)519 851 y Fy(\()p Fs(\014)6 b Fy(\()p Fs(B)f Fy(\))p Fs(;)17 b Fy(-)n(\))p 2484 1148 V 2485 1148 a Fo(?)2524 1046 y Fy(Mor)2700 1061 y Fq(C)2745 1046 y Fy(\()p Fs(B)5 b(;)17 b(\013)q Fy(-)o(\))1228 851 y(Mor)1404 866 y Fq(D)1465 851 y Fy(\()p Fs(F)1566 866 y Fr(1)1605 851 y Fs(A;)g Fy(-\))1004 b(Mor)2973 866 y Fq(C)3018 851 y Fy(\()p Fs(A;)17 b(G)3250 866 y Fr(1)3289 851 y Fy(-\))p 1821 828 939 4 v 2677 826 a Fo(-)2126 782 y Fs(')2190 797 y Fr(1)2229 782 y Fy(\()p Fs(A;)g Fy(-\))1228 1631 y(Mor)1404 1646 y Fq(D)1465 1631 y Fy(\()p Fs(F)1566 1646 y Fr(2)1605 1631 y Fs(A;)g Fy(-\))1004 b(Mor)2973 1646 y Fq(C)3018 1631 y Fy(\()p Fs(A;)17 b(G)3250 1646 y Fr(2)3289 1631 y Fy(-\))p 1821 1608 V 2677 1606 a Fo(-)2126 1700 y Fs(')2190 1715 y Fr(2)2229 1700 y Fy(\()p Fs(A;)g Fy(-\))p 1509 1538 4 644 v 1510 1538 a Fo(?)p 1509 1148 4 254 v 1510 1148 a(?)873 1046 y Fy(Mor)1049 1061 y Fq(D)1110 1046 y Fy(\()p Fs(\014)6 b Fy(\()p Fs(A)p Fy(\))p Fs(;)17 b Fy(-)n(\))p 3069 1538 4 644 v 3070 1538 a Fo(?)3109 1241 y Fy(Mor)3285 1256 y Fq(C)3330 1241 y Fy(\()p Fs(A;)g(\013)q Fy(-)o(\))1279 656 y(Mor)1455 671 y Fq(D)1516 656 y Fy(\()p Fs(F)1617 671 y Fr(1)1657 656 y Fs(f)5 b(;)17 b Fy(-)o(\))1028 560 y Fo(Q)1111 615 y(Q)1194 670 y(Q)1277 726 y(Q)1325 758 y(Q)-83 b(s)2839 656 y Fy(Mor)3015 671 y Fq(C)3060 656 y Fy(\()p Fs(f)5 b(;)17 b(G)3272 671 y Fr(1)3312 656 y Fy(-)o(\))2588 560 y Fo(Q)2671 615 y(Q)2754 670 y(Q)2837 726 y(Q)2885 758 y(Q)-83 b(s)612 1436 y Fy(Mor)788 1451 y Fq(D)848 1436 y Fy(\()p Fs(F)949 1451 y Fr(2)989 1436 y Fs(f)5 b(;)17 b Fy(-)o(\))1028 1340 y Fo(Q)1111 1395 y(Q)1194 1450 y(Q)1277 1506 y(Q)1325 1538 y(Q)-83 b(s)2173 1436 y Fy(Mor)2349 1451 y Fq(C)2395 1436 y Fy(\()p Fs(f)5 b(;)17 b(G)2607 1451 y Fr(2)2646 1436 y Fy(-)o(\))2588 1340 y Fo(Q)2671 1395 y(Q)2754 1450 y(Q)2837 1506 y(Q)2885 1538 y(Q)-83 b(s)3823 1873 y Fg(\003)0 2079 y Fy(There)30 b(is)f(an)f(equiv)-5 b(alen)m(t)31 b(de\014nition)e(of)f(adjoin)m(t)h (functors)g(that)f(w)m(e)i(w)m(an)m(t)f(to)f(giv)m(e)i(no)m(w.)43 b(First)28 b(w)m(e)i(need)0 2195 y(some)j(preparation.)p Black 0 2388 a(3.1.4.)f Fv(Lemma.)p Black 44 w Fu(L)-5 b(et)35 b Fs(F)41 b Fy(:)28 b Ft(C)34 b(\000)-57 b(!)27 b(D)38 b Fu(and)c Fs(G)27 b Fy(:)h Ft(D)j(\000)-58 b(!)28 b(C)41 b Fu(b)-5 b(e)34 b(functors.)45 b(Then)34 b(the)h(map)641 2577 y Fy(Nat\(Id)928 2592 y Fq(C)974 2577 y Fs(;)17 b(GF)d Fy(\))27 b Ft(3)h Fy(\010)g Ft(7!)f Fs(G)p Fu(-)22 b Ft(\016)g Fy(\010)p Fu(-)28 b Ft(2)g Fy(Nat\(Mor)2363 2592 y Fq(D)2424 2577 y Fy(\()p Fs(F)14 b Fu(-)o Fs(;)j Fu(-)p Fy(\))p Fs(;)g Fy(Mor)2909 2592 y Fq(C)2954 2577 y Fy(\()p Fu(-)p Fs(;)g(G)p Fu(-)p Fy(\)\))0 2766 y Fu(is)35 b(bije)-5 b(ctive)34 b(with)g(inverse)g(map)513 2955 y Fy(Nat)o(\(Mor)887 2970 y Fq(D)947 2955 y Fy(\()p Fs(F)14 b Fu(-)p Fs(;)j Fu(-)o Fy(\))p Fs(;)g Fy(Mor)1433 2970 y Fq(C)1478 2955 y Fy(\()p Fu(-)p Fs(;)g(G)p Fu(-)o Fy(\)\))28 b Ft(3)g Fs(')g Ft(7!)f Fs(')p Fy(\()p Fu(-)p Fs(;)17 b(F)d Fu(-)o Fy(\)\(1)2540 2970 y Fp(F)c Fu(-)2633 2955 y Fy(\))28 b Ft(2)g Fy(Nat\(Id)3080 2970 y Fq(C)3125 2955 y Fs(;)17 b(GF)d Fy(\))p Fs(:)0 3148 y Fy(Giv)m(en)34 b Fs(')28 b Fy(:)g(Mor)606 3163 y Fq(D)667 3148 y Fy(\()p Fs(F)14 b Fy(-)o Fs(;)j Fy(-)o(\))28 b Ft(\000)-60 b(!)28 b Fy(Mor)1277 3163 y Fq(C)1322 3148 y Fy(\(-)p Fs(;)17 b(G)p Fy(-)o(\))33 b(as)g(a)f(family)i Fs(')p Fy(\()p Fs(C)r(;)17 b(D)s Fy(\))26 b(:)i(Mor)2715 3163 y Fq(D)2775 3148 y Fy(\()p Fs(F)14 b(C)r(;)j(D)s Fy(\))27 b Ft(\000)-60 b(!)28 b Fy(Mor)3476 3163 y Fq(C)3521 3148 y Fy(\()p Fs(C)r(;)17 b(GD)s Fy(\).)0 3264 y(T)-8 b(ak)m(e)36 b Fs(D)e Fy(:=)e Fs(F)14 b(C)7 b Fy(.)50 b(Then)35 b(w)m(e)h(get)f (\010\()p Fs(C)7 b Fy(\))32 b(:=)f Fs(')p Fy(\()p Fs(C)r(;)17 b(F)d(C)7 b Fy(\)\(1)2172 3279 y Fp(F)j(C)2284 3264 y Fy(\))32 b(:)f Fs(C)39 b Ft(\000)-60 b(!)31 b Fs(GF)14 b(C)7 b Fy(.)50 b(W)-8 b(e)35 b(sho)m(w)h(that)f(\010)d(:)g(Id)3855 3279 y Fq(C)0 3381 y Ft(\000)-60 b(!)28 b Fs(GF)46 b Fy(is)33 b(a)f(natural)h(transformation.)0 3497 y(F)-8 b(or)32 b Fs(f)38 b Fy(:)28 b Fs(C)35 b Ft(\000)-60 b(!)27 b Fs(C)642 3461 y Fq(0)698 3497 y Fy(the)33 b(diagram)f(comm)m(utes:) 230 3741 y(Mor)406 3756 y Fq(D)467 3741 y Fy(\()p Fs(F)14 b(C)r(;)j(F)d(C)7 b Fy(\))702 b(Mor)1768 3756 y Fq(D)1828 3741 y Fy(\()p Fs(F)14 b(C)r(;)j(F)d(C)2213 3705 y Fq(0)2235 3741 y Fy(\))p 917 3718 638 4 v 1472 3716 a Fo(-)916 3672 y Fy(Mor)1092 3687 y Fq(D)1153 3672 y Fy(\()p Fs(F)g(C)r(;)j(F)d (f)d Fy(\))2942 3741 y(Mor)3118 3756 y Fq(D)3179 3741 y Fy(\()p Fs(F)j(C)3371 3705 y Fq(0)3394 3741 y Fs(;)j(F)d(C)3592 3705 y Fq(0)3615 3741 y Fy(\))p 2294 3718 612 4 v 2294 3716 a Fo(\033)2267 3672 y Fy(Mor)2443 3687 y Fq(D)2504 3672 y Fy(\()p Fs(F)g(f)5 b(;)17 b(F)d(C)2870 3636 y Fq(0)2893 3672 y Fy(\))238 4131 y(Mor)414 4146 y Fq(C)459 4131 y Fy(\()p Fs(C)r(;)j(GF)d(C)7 b Fy(\))717 b(Mor)1775 4146 y Fq(C)1821 4131 y Fy(\()p Fs(C)r(;)17 b(GF)d(C)2206 4095 y Fq(0)2228 4131 y Fy(\))p 909 4108 654 4 v 1480 4106 a Fo(-)924 4062 y Fy(Mor)1100 4077 y Fq(C)1145 4062 y Fy(\()p Fs(C)r(;)j(GF)d(f)d Fy(\))2950 4131 y(Mor)3126 4146 y Fq(C)3171 4131 y Fy(\()p Fs(C)3286 4095 y Fq(0)3309 4131 y Fs(;)17 b(GF)d(C)3584 4095 y Fq(0)3607 4131 y Fy(\))p 2286 4108 627 4 v 2286 4106 a Fo(\033)2275 4062 y Fy(Mor)2451 4077 y Fq(C)2496 4062 y Fy(\()p Fs(f)5 b(;)17 b(GF)d(C)2862 4026 y Fq(0)2885 4062 y Fy(\))p 558 4038 4 254 v 559 4038 a Fo(?)112 3936 y Fs(')p Fy(\()p Fs(C)r(;)j(F)d(C)7 b Fy(\))p 1923 4038 V 1924 4038 a Fo(?)1453 3936 y Fs(')p Fy(\()p Fs(C)r(;)17 b(F)d(C)1825 3900 y Fq(0)1847 3936 y Fy(\))p 3287 4038 V 3289 4038 a Fo(?)3328 3936 y Fs(')p Fy(\()p Fs(C)3507 3900 y Fq(0)3530 3936 y Fs(;)j(F)d(C)3728 3900 y Fq(0)3751 3936 y Fy(\))0 4305 y(Hence)34 b(w)m(e)g(get)887 4447 y(\010\()p Fs(C)1072 4410 y Fq(0)1096 4447 y Fy(\))22 b Ft(\016)g Fs(f)94 b Fy(=)27 b(\(Mor)1687 4462 y Fq(C)1732 4447 y Fy(\()p Fs(f)5 b(;)17 b(GF)d(C)2098 4410 y Fq(0)2121 4447 y Fy(\))22 b Ft(\016)g Fs(')p Fy(\()p Fs(C)2432 4410 y Fq(0)2455 4447 y Fs(;)17 b(F)d(C)2653 4410 y Fq(0)2676 4447 y Fy(\)\)\(1)2839 4462 y Fp(F)c(C)2949 4443 y Fl(0)2975 4447 y Fy(\))1370 4563 y(=)27 b(\()p Fs(')p Fy(\()p Fs(C)r(;)17 b(F)d(C)1883 4527 y Fq(0)1905 4563 y Fy(\))22 b Ft(\016)g Fy(Mor)2213 4578 y Fq(D)2274 4563 y Fy(\()p Fs(F)14 b(f)5 b(;)17 b(F)d(C)2640 4527 y Fq(0)2663 4563 y Fy(\)\)\(1)2826 4578 y Fp(F)c(C)2936 4559 y Fl(0)2961 4563 y Fy(\))1370 4679 y(=)27 b Fs(')p Fy(\()p Fs(C)r(;)17 b(F)d(C)1845 4643 y Fq(0)1867 4679 y Fy(\)\()p Fs(F)g(f)d Fy(\))1370 4795 y(=)27 b(\()p Fs(')p Fy(\()p Fs(C)r(;)17 b(F)d(C)1883 4759 y Fq(0)1905 4795 y Fy(\))22 b Ft(\016)g Fy(Mor)2213 4810 y Fq(D)2274 4795 y Fy(\()p Fs(F)14 b(C)r(;)j(F)d(f)d Fy(\)\)\(1)2804 4810 y Fp(F)f(C)2916 4795 y Fy(\))1370 4912 y(=)27 b(\(Mor)1687 4927 y Fq(C)1732 4912 y Fy(\()p Fs(C)r(;)17 b(GF)d(f)d Fy(\))21 b Ft(\016)h Fs(')p Fy(\()p Fs(C)r(;)17 b(F)d(C)7 b Fy(\)\)\(1)2765 4927 y Fp(F)j(C)2877 4912 y Fy(\))1370 5028 y(=)27 b Fs(GF)14 b(f)33 b Ft(\016)22 b Fy(\010\()p Fs(C)7 b Fy(\))p Fs(:)0 5193 y Fy(Con)m(v)m(ersely)36 b(let)d(\010)28 b(:)g(Id)877 5208 y Fq(C)950 5193 y Ft(\000)-60 b(!)27 b Fs(GF)47 b Fy(b)s(e)32 b(a)h(natural)f(transformation)g(and)h (let)319 5417 y Fs(')p Fy(\()p Fs(C)r(;)17 b(D)s Fy(\)\()p Fs(f)11 b Fy(\))26 b(:=)i Fs(Gf)33 b Ft(\016)22 b Fy(\010\()p Fs(C)7 b Fy(\))28 b(=)f(\(Mor)1749 5432 y Fq(C)1794 5417 y Fy(\(\010\()p Fs(C)7 b Fy(\))p Fs(;)17 b(GD)s Fy(\))22 b Ft(\016)g Fs(G)p Fy(\)\()p Fs(f)11 b Fy(\))27 b(:)h Fs(C)2828 5353 y Fr(\010\()p Fp(C)5 b Fr(\))2850 5417 y Ft(\000)-59 b(!)49 b Fs(GF)14 b(C)3286 5357 y Fp(Gf)3275 5417 y Ft(\000)-59 b(!)27 b Fs(GD)p Black Black eop end %%Page: 86 86 TeXDict begin 86 85 bop Black 0 -99 a Fw(86)1668 b(F)-6 b(oundations)p Black 0 100 a Fy(for)34 b Fs(f)41 b Fy(:)30 b Fs(F)14 b(C)38 b Ft(\000)-60 b(!)30 b Fs(D)s Fy(.)48 b(W)-8 b(e)35 b(sho)m(w)g(that)f Fs(')c Fy(:)h(Mor)1742 115 y Fq(D)1803 100 y Fy(\()p Fs(F)14 b Fy(-)o(-)o(\))31 b Ft(\000)-60 b(!)30 b Fy(Mor)2374 115 y Fq(C)2420 100 y Fy(\(-)o Fs(;)17 b(G)p Fy(-)o(\))34 b(is)h(a)f(natural)g (transformation.)0 217 y(Giv)m(en)f Fs(g)e Fy(:)d Fs(C)35 b Ft(\000)-60 b(!)28 b Fs(C)742 180 y Fq(0)797 217 y Fy(then)973 430 y(Mor)1149 445 y Fq(D)1210 430 y Fy(\()p Fs(F)14 b(C)1402 394 y Fq(0)1425 430 y Fs(;)j(D)s Fy(\))770 b(Mor)2537 445 y Fq(D)2598 430 y Fy(\()p Fs(F)14 b(C)r(;)j(D)s Fy(\))p 1619 407 705 4 v 2241 405 a Fo(-)1687 361 y Fy(Mor)1864 376 y Fq(D)1924 361 y Fy(\()p Fs(F)d(g)t(;)j(D)s Fy(\))981 820 y(Mor)1157 835 y Fq(C)1202 820 y Fy(\()p Fs(C)1317 784 y Fq(0)1340 820 y Fs(;)g(GD)s Fy(\))785 b(Mor)2545 835 y Fq(C)2590 820 y Fy(\()p Fs(C)r(;)17 b(GD)s Fy(\))p 1611 797 721 4 v 2249 795 a Fo(-)1695 751 y Fy(Mor)1871 766 y Fq(C)1916 751 y Fy(\()p Fs(g)t(;)g(GD)s Fy(\))p 1280 727 4 254 v 1282 727 a Fo(?)875 625 y Fs(')p Fy(\()p Fs(C)1054 589 y Fq(0)1077 625 y Fs(;)g(D)s Fy(\))p 2645 727 V 2647 727 a Fo(?)2686 625 y Fs(')p Fy(\()p Fs(C)r(;)g(D)s Fy(\))0 961 y(comm)m(utes)34 b(since)626 1093 y(\()p Fs(')p Fy(\()p Fs(C)r(;)17 b(D)s Fy(\))k Ft(\016)h Fy(Mor)1273 1108 y Fq(D)1334 1093 y Fy(\()p Fs(F)14 b(g)t(;)j(D)s Fy(\)\)\()p Fs(f)11 b Fy(\))81 b(=)27 b Fs(')p Fy(\()p Fs(C)r(;)17 b(D)s Fy(\)\()p Fs(f)32 b Ft(\016)22 b Fs(F)14 b(g)t Fy(\))1920 1209 y(=)27 b Fs(G)p Fy(\()p Fs(f)33 b Ft(\016)22 b Fs(F)14 b(g)t Fy(\))21 b Ft(\016)h Fy(\010\()p Fs(C)7 b Fy(\))1920 1325 y(=)27 b Fs(Gf)33 b Ft(\016)22 b Fs(GF)14 b(g)25 b Ft(\016)d Fy(\010\()p Fs(C)7 b Fy(\))1920 1442 y(=)27 b Fs(Gf)33 b Ft(\016)22 b Fy(\010\()p Fs(C)2438 1405 y Fq(0)2461 1442 y Fy(\))h Ft(\016)e Fs(g)1920 1558 y Fy(=)27 b(Mor)2199 1573 y Fq(C)2244 1558 y Fy(\()p Fs(g)t(;)17 b(GD)s Fy(\)\()p Fs(Gf)31 b Ft(\016)22 b Fy(\010\()p Fs(C)3027 1522 y Fq(0)3051 1558 y Fy(\))1920 1674 y(=)27 b(\(Mor)2237 1689 y Fq(C)2282 1674 y Fy(\()p Fs(g)t(;)17 b(GD)s Fy(\))k Ft(\016)h Fs(')p Fy(\()p Fs(C)2886 1638 y Fq(0)2909 1674 y Fs(;)17 b(D)s Fy(\)\)\()p Fs(f)11 b Fy(\))p Fs(:)0 1832 y Fy(No)m(w)33 b(let)g Fs(g)e Fy(:)d Fs(D)i Ft(\000)-59 b(!)27 b Fs(D)836 1796 y Fq(0)891 1832 y Fy(b)s(e)33 b(giv)m(en.)45 b(The)33 b(the)g(diagram)962 2046 y(Mor)1138 2061 y Fq(D)1198 2046 y Fy(\()p Fs(F)14 b(C)r(;)j(D)s Fy(\))772 b(Mor)2499 2061 y Fq(D)2560 2046 y Fy(\()p Fs(F)14 b(C)r(;)j(D)2875 2010 y Fq(0)2897 2046 y Fy(\))p 1579 2023 708 4 v 2204 2021 a Fo(-)1655 1977 y Fy(Mor)1831 1992 y Fq(D)1892 1977 y Fy(\()p Fs(F)d(C)r(;)j(g)t Fy(\))969 2436 y(Mor)1145 2451 y Fq(C)1191 2436 y Fy(\()p Fs(C)r(;)g(GD)s Fy(\))787 b(Mor)2507 2451 y Fq(C)2552 2436 y Fy(\()p Fs(C)r(;)17 b(GD)2867 2400 y Fq(0)2889 2436 y Fy(\))p 1571 2413 724 4 v 2212 2411 a Fo(-)1663 2367 y Fy(Mor)1839 2382 y Fq(C)1884 2367 y Fy(\()p Fs(C)r(;)g(Gg)t Fy(\))p 1254 2343 4 254 v 1256 2343 a Fo(?)878 2241 y Fs(')p Fy(\()p Fs(C)r(;)g(D)s Fy(\))p 2619 2343 V 2621 2343 a Fo(?)2660 2241 y Fs(')p Fy(\()p Fs(C)r(;)g(D)2962 2205 y Fq(0)2984 2241 y Fy(\))0 2577 y(comm)m(utes)34 b(since)0 2754 y(3.2.)49 b Fv(Monads)38 b(or)g(T)-9 b(riples.)0 2870 y Fy(W)h(e)30 b(no)m(w)h(describ)s(e)h(a)d(structure)i(based)g(on) f(an)g(endofunctor)h(whic)m(h)g(has)f(turned)h(out)f(to)f(b)s(e)i(an)e (imp)s(or-)0 2986 y(tan)m(t)f(tec)m(hnical)i(to)s(ol)e(in)g(studying)i (top)s(oses)f(and)f(related)h(topics.)43 b(It)28 b(is)h(an)f (abstraction)g(of)g(the)h(concept)0 3103 y(of)g(adjoin)m(t)h(and)g(in)g (a)f(sense)j(an)d(abstraction)h(of)g(univ)m(ersal)h(algebra)f(\(see)h (the)f(remarks)h(in)f(\014ne)g(prin)m(t)g(at)0 3219 y(the)j(end)g(of)f (10.2.3)g(b)s(elo)m(w\).)p Black 0 3394 a(3.2.1.)j Fv(De\014nition.)p Black 44 w Fy(Let)h Ft(A)f Fy(b)s(e)h(a)f(category)i(and)e Fs(R)f Fy(:)f Ft(A)g(\000)-60 b(!)33 b(A)i Fy(b)s(e)h(an)g (endofunctor.)53 b(An)36 b Fs(R)q Fu(-algebr)-5 b(a)0 3510 y Fy(is)34 b(a)e(pair)h(\()p Fs(A;)17 b(a)p Fy(\))33 b(where)h Fs(a)29 b Fy(:)g Fs(R)q(A)f Ft(\000)-59 b(!)28 b Fs(A)33 b Fy(is)g(an)g(arro)m(w)g(of)g Ft(A)f Fy(.)45 b(A)33 b Fu(homomorphism)g(b)-5 b(etwe)g(en)35 b Fs(R)q Fu(-algebr)-5 b(as)0 3626 y Fy(\()p Fs(A;)17 b(a)p Fy(\))32 b(and)h(\()p Fs(B)5 b(;)17 b(b)p Fy(\))33 b(is)g(an)f(arro)m(w)h Fs(f)38 b Fy(:)28 b Fs(A)g Ft(\000)-60 b(!)28 b Fs(B)37 b Fy(of)c Ft(A)f Fy(suc)m(h)i(that)1718 3796 y Fs(R)q(A)280 b(A)p 1896 3764 222 4 v 2035 3762 a Fo(-)1980 3744 y Fs(a)1715 4186 y(R)q(B)f(B)p 1899 4154 216 4 v 2032 4152 a Fo(-)1985 4240 y Fs(b)p 1791 4084 4 254 v 1793 4084 a Fo(?)1620 3982 y Fs(R)q(f)p 2181 4084 V 2183 4084 a Fo(?)2222 3982 y Fs(f)0 4365 y Fy(comm)m(utes.)45 b(This)34 b(construction)g(giv)m(es)g(a)e(category)h(\()p Fs(R)c Fy(:)f Ft(A)p Fy(\))k(of)g Fs(R)q Fy(-algebras.)p Black 0 4540 a(3.2.2.)d Fv(De\014nition.)p Black 41 w Fy(A)h Fu(monad)f Fm(T)f Fy(=)f(\()p Fs(T)8 b(;)17 b(\021)t(;)g(\026)p Fy(\))29 b(on)h(a)g(category)g Ft(A)f Fy(consists)j(of)d(a)h(functor)g Fs(T)42 b Fy(:)27 b Ft(A)h(\000)-60 b(!)27 b(A)p Fy(,)0 4656 y(together)45 b(with)h(t)m(w)m(o)f(natural)g(transformations)h Fs(\021)52 b Fy(:)d(id)g Ft(\000)-59 b(!)48 b Fs(T)59 b Fy(and)45 b Fs(\026)j Fy(:)h Fs(T)2942 4620 y Fr(2)3030 4656 y Ft(\000)-60 b(!)49 b Fs(T)59 b Fy(for)44 b(whic)m(h)j(the)0 4772 y(follo)m(wing)33 b(diagrams)g(comm)m(ute)1100 4987 y Fs(T)313 b(T)1541 4951 y Fr(2)p 1199 4949 242 4 v 1358 4947 a Fo(-)1259 4909 y Fs(\021)t(T)1879 4987 y(T)p 1609 4949 V 1609 4947 a Fo(\033)1668 4909 y Fs(T)14 b(\021)1490 5371 y(T)1194 5160 y Fy(=)1203 5099 y Fo(@)1286 5182 y(@)1369 5265 y(@)1374 5269 y(@)-83 b(R)1780 5160 y Fy(=)1764 5099 y Fo(\000)1681 5182 y(\000)1598 5265 y(\000)1593 5269 y(\000)g(\011)p 1523 5269 4 254 v -151 w(?)1427 5154 y Fs(\026)2258 4987 y(T)2329 4951 y Fr(3)2648 4987 y Fs(T)2719 4951 y Fr(2)p 2397 4949 223 4 v 2536 4947 a Fo(-)2443 4909 y Fs(T)14 b(\026)2258 5377 y(T)2329 5341 y Fr(2)2667 5377 y Fs(T)p 2397 5339 242 4 v 2556 5337 a Fo(-)2488 5399 y Fs(\026)p 2311 5269 4 254 v 2313 5269 a Fo(?)2144 5167 y Fs(\026T)p 2701 5269 V 2703 5269 a Fo(?)2742 5154 y Fs(\026)p Black Black eop end %%Page: 87 87 TeXDict begin 87 86 bop Black 1513 -99 a Fw(F)-6 b(actorizations)27 b(of)g(a)f(monad)1436 b(87)p Black 0 100 a Fy(Here,)36 b Fs(\021)t(T)48 b Fy(and)34 b Fs(T)14 b(\021)38 b Fy(are)d(de\014ned)h (as)e(in)h(1.7.56and)f(1.7.57.The)h(transformation)f Fs(\021)39 b Fy(is)c(the)g Fu(unit)f Fy(of)h(the)0 217 y(monad)h(and)g Fs(\026)f Fy(is)h(the)h Fu(multiplic)-5 b(ation)p Fy(.)52 b(The)37 b(left)f(diagram)f(constitutes)j(the)e (\(left)g(and)g(righ)m(t\))f(unary)0 333 y(iden)m(tities)e(and)e(the)g (righ)m(t)g(one)g(the)g(asso)s(ciativ)m(e)h(iden)m(tit)m(y)-8 b(.)45 b(The)31 b(reason)g(for)g(these)h(names)f(comes)h(from)0 449 y(the)g(analogy)g(b)s(et)m(w)m(een)j(monads)d(and)g(monoids.)44 b(This)34 b(will)e(b)s(e)h(made)f(clear)h(in)f(3.2.4.Another)g(widely)0 565 y(used)i(name)f(for)f(monad)h(is)g(`triple'.)0 681 y(An)g(adjoin)m(t)f(pair)h(giv)m(es)h(rise)f(to)g(a)f(monad)h(on)f(the) h(domain)g(of)f(the)h(left)g(adjoin)m(t.)p Black 0 868 a(3.2.3.)24 b Fv(Prop)s(osition.)p Black 35 w Fu(L)-5 b(et)27 b Fs(U)39 b Fy(:)27 b Ft(B)32 b(\000)-58 b(!)28 b(A)e Fu(and)h Fs(F)41 b Fy(:)28 b Ft(A)f(\000)-57 b(!)27 b(B)k Fu(b)-5 b(e)27 b(functors)g(such)f(that)i Fs(F)41 b Fu(is)26 b(left)h(adjoint)g(to)0 984 y Fs(U)45 b Fu(with)34 b Fs(\021)d Fy(:)d Fs(id)f Ft(\000)-57 b(!)28 b Fs(U)10 b(F)48 b Fu(and)34 b Fs(")27 b Fy(:)h Fs(F)14 b(U)38 b Ft(\000)-57 b(!)27 b Fs(id)34 b Fu(the)g(unit)h(and)e(c)-5 b(ounit,)34 b(r)-5 b(esp)g(e)g(ctively.)44 b(Then)33 b Fy(\()p Fs(U)10 b(F)s(;)17 b(\021)t(;)g(U)10 b("F)k Fy(\))0 1100 y Fu(is)35 b(a)f(monad)g(on)h Ft(A)p Fu(.)0 1286 y Fy(Note)d(that)g Fs(U)10 b("F)42 b Fy(:)28 b Fs(U)10 b(F)k(U)c(F)42 b Ft(\000)-60 b(!)28 b Fs(U)10 b(F)k Fy(,)32 b(as)g(required)i(for)e(the)g(m)m(ultiplication)h(of)f(a)g(monad)g (with)h(functor)0 1403 y Fs(U)10 b(F)k Fy(.)0 1519 y(Con)m(v)m(ersely) -8 b(,)38 b(ev)m(ery)e(monad)e(arises)h(in)g(that)f(w)m(a)m(y)h(out)f (of)g(some)h(\(generally)g(man)m(y\))g(adjoin)m(t)f(pair.)48 b(See)0 1635 y(Section)33 b(3.3)g(for)f(t)m(w)m(o)h(w)m(a)m(ys)h(of)e (constructing)i(suc)m(h)g(adjoin)m(ts.)p Black 0 1821 a(3.2.4.)46 b Fv(Example.)p Black 50 w Fy(Let)h Fs(M)57 b Fy(b)s(e)47 b(a)f(monoid.)85 b(The)48 b Fu(r)-5 b(epr)g(esentation)47 b(monad)e Fs(T)65 b Fy(=)52 b(\()p Fs(T)8 b(;)17 b(\021)t(;)g(\026)p Fy(\))45 b(on)i(the)0 1938 y(category)38 b(of)f(sets)h(is)g(giv)m(en)h (b)m(y)f(letting)g Fs(T)14 b Fy(\()p Fs(S)6 b Fy(\))35 b(=)h Fs(M)g Ft(\002)26 b Fs(S)43 b Fy(for)37 b(a)g(set)h Fs(S)6 b Fy(.)58 b Fs(\021)t(S)41 b Fy(:)36 b Fs(S)42 b Ft(\000)-60 b(!)36 b Fs(T)14 b Fy(\()p Fs(S)6 b Fy(\))35 b(=)h Fs(M)g Ft(\002)26 b Fs(S)0 2054 y Fy(tak)m(es)32 b(an)f(elemen)m(t)i Fs(s)28 b Ft(2)g Fs(S)37 b Fy(to)31 b(the)g(pair)g(\(1)p Fs(;)17 b(s)p Fy(\).)42 b(W)-8 b(e)32 b(de\014ne)g Fs(\026S)37 b Fy(b)m(y)32 b(\()p Fs(\026S)6 b Fy(\)\()p Fs(m)p Fy(1)p Fs(;)17 b(m)p Fy(2)p Fs(;)g(s)p Fy(\))26 b(=)i(\()p Fs(m)p Fy(1)p Fs(m)p Fy(2)p Fs(;)17 b(s)p Fy(\))30 b(for)0 2170 y Fs(s)e Ft(2)g Fs(S)6 b Fy(,)30 b Fs(m)p Fy(1)p Fs(;)17 b(m)p Fy(2)28 b Ft(2)g Fs(M)10 b Fy(.)43 b(Th)m(us)32 b(the)e(unit)h(and)f(m)m(ultiplication)i (of)d(the)i(monad)f(arise)h(directly)g(from)f(that)0 2286 y(of)k(the)h(monoid.)49 b(The)36 b(unitary)f(and)f(asso)s (ciativit)m(y)j(equations)e(can)g(easily)h(b)s(e)f(sho)m(wn)g(to)f (follo)m(w)h(from)0 2402 y(the)e(corresp)s(onding)g(equations)h(for)e (the)h(monoid.)0 2519 y(The)d(standard)g(w)m(a)m(y)g(of)f(getting)g (this)h(monad)g(from)f(an)g(adjoin)m(t)g(pair)h(is)f(b)m(y)h(using)g (the)g(underlying)h(and)0 2635 y(free)h(functors)h(on)f Fs(M)10 b Fy(-sets)33 b(\(see)g(4.2.1???\).)43 b(If)31 b Fs(S)38 b Fy(and)32 b Fs(T)46 b Fy(are)31 b Fs(M)10 b Fy(-sets,)34 b(then)f(a)e(function)i Fs(f)38 b Fy(:)28 b Fs(S)33 b Ft(\000)-59 b(!)27 b Fs(T)45 b Fy(is)0 2751 y(said)35 b(to)g(b)s(e)g Fs(M)10 b Fu(-e)-5 b(quivariant)34 b Fy(if)h Fs(f)11 b Fy(\()p Fs(ms)p Fy(\))31 b(=)g Fs(mf)11 b Fy(\()p Fs(s)p Fy(\))35 b(for)f Fs(m)e Ft(2)f Fs(M)10 b Fy(,)36 b Fs(s)c Ft(2)g Fs(S)6 b Fy(.)49 b(F)-8 b(or)34 b(a)h(\014xed)g(monoid)g Fs(M)10 b Fy(,)37 b(the)0 2867 y Fs(M)10 b Fy(-sets)34 b(and)f(the)g Fs(M)10 b Fy(-equiv)-5 b(arian)m(t)34 b(functions)f(form)g(a)f(category)-8 b(,)33 b(called)g(the)g Fu(c)-5 b(ate)g(gory)35 b(of)g Fs(M)10 b Fu(-sets)p Fy(.)0 2984 y(The)39 b(free)g Fs(M)10 b Fy(-set)40 b(generated)f(b)m(y)h(the)f(set)g Fs(S)44 b Fy(is)39 b(the)g(set)g Fs(M)e Ft(\002)27 b Fs(S)44 b Fy(with)39 b(action)g(giv)m(en)g(b)m(y)h Fs(m)3512 2947 y Fq(0)3536 2984 y Fy(\()p Fs(m;)17 b(s)p Fy(\))37 b(=)0 3100 y(\()p Fs(m)123 3064 y Fq(0)147 3100 y Fs(m;)17 b(s)p Fy(\).)41 b(Using)29 b(Theorem)g(9.3.5???,)g(one)f(can)g(sho)m(w) h(immediately)h(that)e(this)g(determines)i(a)e(functor)0 3216 y(left)33 b(adjoin)m(t)h(to)e(the)i(underlying)h(set)f(functor)f (on)g(the)h(category)f(of)g Fs(M)10 b Fy(-sets.)47 b(The)34 b(monad)f(asso)s(ciated)0 3332 y(to)f(this)h(adjoin)m(t)g(pair)g(is)g (the)g(one)f(describ)s(ed)j(ab)s(o)m(v)m(e.)p Black 0 3519 a(3.2.5.)25 b Fv(Example.)p Black 36 w Fy(Let)h Fs(T)41 b Fy(:)28 b Fv(Set)f Ft(\000)-59 b(!)27 b Fv(Set)e Fy(b)s(e)g(the)h(functor)f(whic)m(h)h(tak)m(es)g(a)f(set)h Fs(A)f Fy(to)f(the)i(Kleene)g(closure)0 3635 y Fs(A)73 3599 y Fq(\003)143 3635 y Fy(and)31 b(a)f(function)h Fs(f)38 b Fy(:)28 b Fs(A)g Ft(\000)-60 b(!)28 b Fs(B)35 b Fy(to)30 b(the)h(function)h Fs(f)2009 3599 y Fq(\003)2075 3635 y Fy(:)c Fs(A)2203 3599 y Fq(\003)2270 3635 y Ft(\000)-59 b(!)27 b Fs(B)2494 3599 y Fq(\003)2564 3635 y Fy(de\014ned)32 b(in)f(Section)g(2.5.7???.)43 b(Let)0 3751 y Fs(\021)t(A)37 b Fy(:)g Fs(A)h Ft(\000)-60 b(!)37 b Fs(A)h Fy(tak)m(e)h(an)f(elemen)m (t)i Fs(a)e Fy(to)g(the)h(one-elemen)m(t)h(string)e(\()p Fs(a)p Fy(\),)i(and)e(let)h Fs(\026A)e Fy(:)g Fs(A)3383 3715 y Fq(\003\003)3495 3751 y Ft(\000)-60 b(!)37 b Fs(A)3722 3715 y Fq(\003)3800 3751 y Fy(b)s(e)0 3867 y(the)e Fu(\015attening)j (op)-5 b(er)g(ation)34 b Fy(taking)h(a)g(string)g(\()p Fs(s)1786 3882 y Fr(1)1825 3867 y Fs(;)17 b(s)1915 3882 y Fr(2)1955 3867 y Fs(;)g(:)g(:)g(:)e(;)i(s)2219 3882 y Fp(n)2266 3867 y Fy(\))35 b(of)f(strings)i(to)f(the)g(concatenated)i (string)0 3983 y Fs(s)46 3998 y Fr(1)85 3983 y Fs(s)131 3998 y Fr(2)187 3983 y Fs(:)17 b(:)g(:)f(s)364 3998 y Fp(n)449 3983 y Fy(in)37 b Fs(A)640 3947 y Fq(\003)717 3983 y Fy(obtained)g(in)h(e\013ect)g(b)m(y)g(erasing)g(inner)g(brac)m (k)m(ets:)55 b(th)m(us)38 b(\(\()p Fs(a;)17 b(b)p Fy(\))p Fs(;)g Fy(\()p Fs(c;)g(d;)g(e)p Fy(\))p Fs(;)g Fy(\(\))p Fs(;)g Fy(\()p Fs(a;)g(a)p Fy(\)\))0 4100 y(go)s(es)33 b(to)f(\()p Fs(a;)17 b(b)p Fy(\)\()p Fs(c;)g(d;)g(e)p Fy(\)\(\)\()p Fs(a;)g(a)p Fy(\))27 b(=)g(\()p Fs(a;)17 b(b;)g(c;)g(d;)g(e;)g(a;)g(a)p Fy(\).)0 4216 y(In)47 b(particular,)k Fs(\026A)p Fy(\(\()p Fs(a;)17 b(b)p Fy(\)\))51 b(=)h(\()p Fs(a;)17 b(b)p Fy(\).)86 b(Then)48 b Fs(\021)56 b Fy(:)51 b Fs(id)h Ft(\000)-59 b(!)51 b Fs(T)60 b Fy(and)47 b Fs(\026)52 b Fy(:)g Fs(T)45 b Ft(\016)32 b Fs(T)65 b Ft(\000)-59 b(!)51 b Fs(T)60 b Fy(are)47 b(natural)0 4332 y(transformations,)33 b(and)g(\()p Fs(T)8 b(;)17 b(\021)t(;)g(\026)p Fy(\))31 b(is)i(a)g(monad.)p Black 0 4518 a(3.2.6.)h Fv(De\014nition.)p Black 43 w Fy(A)h(comonad)f Fs(G)d Fy(=)g(\()p Fs(G;)17 b(";)g(\016)t Fy(\))33 b(in)i(a)f(category) g Ft(A)g Fy(is)h(a)f(monad)h(in)f Fs(A)3324 4482 y Fp(op)3398 4518 y Fy(.)49 b(Th)m(us)36 b Fs(G)e Fy(is)0 4635 y(an)d(endofunctor)h (of)f Ft(A)g Fy(and)h Fs(")27 b Fy(:)h Fs(G)f Ft(\000)-59 b(!)27 b Fs(id)32 b Fy(and)f Fs(\016)h Fy(:)27 b Fs(G)h Ft(\000)-60 b(!)28 b Fs(G)p Fy(2)j(are)g(natural)h(transformations)f (suc)m(h)i(that)1105 5222 y Fs(G)293 b(G)1552 5185 y Fr(2)p 1210 5184 236 4 v 1210 5182 a Fo(\033)1267 5269 y Fs("G)1885 5222 y(G)p 1620 5184 V 1773 5182 a Fo(-)1677 5269 y Fs(G")1495 4826 y(G)1789 5005 y Fy(=)1601 4943 y Fo(@)1684 5026 y(@)1767 5109 y(@)1772 5114 y(@)-83 b(R)1202 5005 y Fy(=)1382 4943 y Fo(\000)1299 5026 y(\000)1216 5109 y(\000)1211 5114 y(\000)g(\011)p 1531 5114 4 254 v 239 w(?)1447 5022 y Fs(\016)2204 4832 y(G)293 b(G)2651 4795 y Fr(2)p 2309 4794 236 4 v 2462 4792 a Fo(-)2404 4773 y Fs(\016)2184 5222 y(G)2261 5185 y Fr(2)2574 5222 y Fs(G)2651 5185 y Fr(3)p 2329 5184 217 4 v 2462 5182 a Fo(-)2375 5270 y Fs(G\016)p 2240 5114 4 254 v 2242 5114 a Fo(?)2156 5022 y Fs(\016)p 2630 5114 V 2632 5114 a Fo(?)2671 5022 y Fs(\016)t(G)0 5417 y Fy(3.3.)49 b Fv(F)-9 b(actorizations)37 b(of)h(a)g(monad.)p Black Black eop end %%Page: 88 88 TeXDict begin 88 87 bop Black 0 -99 a Fw(88)1668 b(F)-6 b(oundations)p Black Black 0 100 a Fy(3.3.1.)29 b Fv(Remark.)p Black 41 w Fy(Let)h Fm(T)e Fy(=)f(\()p Fs(T)8 b(;)17 b(\021)t(;)g(\026)p Fy(\))29 b(b)s(e)h(a)g(monad)g(on)g Ft(C)36 b Fy(.)42 b(W)-8 b(e)31 b(describ)s(e)g(here)g(a)e (construction)i(whic)m(h)0 217 y(exhibits)41 b(the)e(monad)g(as)g (coming)g(from)f(an)h(adjoin)m(t.)62 b(This)40 b(construction,)i(whic)m (h)e(is)f(due)h(to)e(Kleisli)0 333 y([1965],)32 b(has)h(pro)m(v)m(en)h (to)e(b)s(e)h(quite)g(useful)h(in)f(theoretical)g(computer)h(science.)0 449 y(W)-8 b(e)32 b(de\014ne)h(a)f(category)g Ft(K)d Fy(=)f Ft(K)q Fy(\()p Fm(T)p Fy(\))k(whic)m(h)i(has)e(the)g(same)h(ob)5 b(jects)33 b(as)f Ft(C)6 b Fy(.)44 b(If)31 b Fs(A)h Fy(and)g Fs(B)37 b Fy(are)32 b(ob)5 b(jects)33 b(of)0 565 y Ft(C)6 b Fy(,)34 b(then)f(an)g(arro)m(w)g(in)h Ft(K)g Fy(from)f Fs(A)g Fy(to)g Fs(B)38 b Fy(is)c(an)f(arro)m(w)g Fs(A)c Ft(\000)-60 b(!)28 b Fs(T)14 b(B)38 b Fy(in)c Ft(C)39 b Fy(.)45 b(The)34 b(comp)s(osition)g(of)e(arro)m(ws)0 681 y(is)i(as)g(follo)m(ws.)47 b(If)33 b Fs(f)40 b Fy(:)29 b Fs(A)h Ft(\000)-60 b(!)29 b Fs(T)14 b(B)38 b Fy(and)c Fs(g)f Fy(:)c Fs(B)34 b Ft(\000)-59 b(!)29 b Fs(T)14 b(C)40 b Fy(are)33 b(arro)m(ws)h(in)g Ft(C)6 b Fy(,)34 b(w)m(e)h(let)f(their)g(comp)s(osite)g(in)g Ft(K)0 798 y Fy(b)s(e)f(the)g(follo)m(wing)g(comp)s(osite)g(in)g Ft(C)39 b Fy(:)1402 1001 y Fs(A)1540 941 y Fp(f)1502 1001 y Ft(\000)-59 b(!)27 b Fs(T)14 b(B)1840 941 y Fp(T)c(g)1825 1001 y Ft(\000)-60 b(!)27 b Fs(T)2040 960 y Fr(2)2080 1001 y Fs(C)2194 941 y Fp(\026C)2184 1001 y Ft(\000)-59 b(!)27 b Fs(T)14 b(C)r(:)0 1177 y Fy(The)36 b(iden)m(tit)m(y)g(of)e (the)h(ob)5 b(ject)35 b Fs(A)g Fy(is)g(the)g(arro)m(w)g Fs(\021)t(A)c Fy(:)g Fs(A)g Ft(\000)-60 b(!)31 b Fs(T)14 b(A)p Fy(.)49 b(It)35 b(can)g(b)s(e)g(sho)m(wn)h(that)e(this)h (de\014nes)0 1293 y(a)42 b(category)-8 b(.)71 b(Moreo)m(v)m(er,)46 b(there)c(are)g(functors)h Fs(U)54 b Fy(:)43 b Ft(K)q Fy(\()p Fm(T)p Fy(\))h Ft(\000)-59 b(!)43 b(C)48 b Fy(and)42 b Fs(F)57 b Fy(:)43 b Ft(C)50 b(\000)-60 b(!)43 b(K)q Fy(\()p Fm(T)p Fy(\))g(de\014ned)g(b)m(y)0 1409 y Fs(U)10 b(A)32 b Fy(=)e Fs(T)14 b(A)35 b Fy(and)f Fs(U)10 b(f)42 b Fy(=)31 b Fs(\026B)d Ft(\016)c Fs(\026T)14 b(f)d Fy(,)34 b(where)h Fs(B)40 b Fy(is)35 b(the)g(co)s(domain)f(of)g Fs(f)11 b Fy(,)35 b(and)f Fs(F)14 b(A)31 b Fy(=)g Fs(A)j Fy(and)h(for)f Fs(g)g Fy(:)d Fs(A)0 1526 y Ft(\000)-60 b(!)28 b Fs(B)5 b Fy(,)32 b Fs(F)14 b(g)31 b Fy(=)d Fs(T)14 b(g)25 b Ft(\016)d Fs(\021)t(A)p Fy(.)43 b(Then)34 b Fs(F)46 b Fy(is)33 b(left)g(adjoin)m(t)f(to)h Fs(U)43 b Fy(and)32 b Fs(T)42 b Fy(=)27 b Fs(U)33 b Ft(\016)22 b Fs(F)14 b Fy(.)0 1711 y(Here)41 b(is)g(a)f(second)h(w)m(a)m(y)-8 b(,)44 b(due)d(to)f(Eilen)m(b)s(erg)h(and)g(Mo)s(ore)f([1965])f(of)h (factoring)g(ev)m(ery)i(monad)f(as)f(an)0 1827 y(adjoin)m(t)34 b(pair)f(of)g(functors.)47 b(In)34 b(mathematics,)h(this)f (construction)h(has)f(b)s(een)g(m)m(uc)m(h)i(more)d(in)m(teresting)0 1943 y(than)g(the)g(Kleisli)g(construction,)h(but)f(in)g(computer)g (science)i(it)d(has)h(b)s(een)h(quite)f(the)g(opp)s(osite.)p Black 0 2128 a(3.3.2.)47 b Fv(De\014nition.)p Black 50 w Fy(Let)g Fm(T)54 b Fy(=)e(\()p Fs(T)8 b(;)17 b(\021)t(;)g(\026)p Fy(\))47 b(b)s(e)g(a)g(monad)h(on)f Ft(A)p Fy(.)87 b(A)48 b Fs(T)14 b Fu(-algebr)-5 b(a)46 b Fy(\()p Fs(A;)17 b(a)p Fy(\))47 b(is)h(called)g(a)0 2244 y Fm(T)p Fy(-algebra)32 b(if)h(the)g(follo)m(wing)g(t)m(w)m(o)g(diagrams)g(comm)m(ute:)1344 2476 y Fs(T)1415 2440 y Fr(2)1454 2476 y Fs(A)226 b(T)14 b(A)p 1555 2439 170 4 v 1642 2437 a Fo(-)1574 2399 y Fs(\026A)1363 2861 y(T)g(A)282 b(A)p 1536 2829 225 4 v 1678 2827 a Fo(-)1622 2808 y Fs(a)p 1434 2759 4 254 v 1435 2759 a Fo(?)1274 2666 y Fs(T)14 b(a)p 1823 2759 V 1825 2759 a Fo(?)1864 2653 y Fs(a)2109 2471 y(A)282 b(T)14 b(A)p 2211 2439 225 4 v 2353 2437 a Fo(-)2261 2399 y Fs(\021)t(A)2205 2650 y Fy(=)2214 2588 y Fo(@)2297 2671 y(@)2380 2754 y(@)2385 2759 y(@)-83 b(R)2499 2861 y Fs(A)p 2534 2759 4 254 v 2536 2759 a Fo(?)2575 2653 y Fs(a)0 3002 y Fy(An)37 b Fu(arr)-5 b(ow)37 b(\(homomorphism\))f(b)-5 b(etwe)g(en)38 b Fm(T)p Fu(-algebr)-5 b(as)35 b Fy(is)i(the)g(same)g (as)f(an)h(arro)m(w)f(b)s(et)m(w)m(een)i(the)f(corre-)0 3119 y(sp)s(onding)j Fs(T)14 b Fy(-algebras.)63 b(With)40 b(these)h(de\014nitions,)h(the)e Fm(T)p Fy(-algebras)g(form)f(a)g (category)h(traditionally)0 3235 y(denoted)34 b Ft(A)449 3199 y Fd(T)529 3235 y Fy(and)f(called)g(the)g(category)g(of)f Fm(T)p Fy(-algebras.)0 3351 y(There)37 b(is)f(an)g(ob)m(vious)g (underlying)h(functor)f Fs(U)44 b Fy(:)33 b Ft(A)1960 3315 y Fd(T)2041 3351 y Ft(\000)-60 b(!)33 b(A)i Fy(with)h Fs(U)10 b Fy(\()p Fs(A;)17 b(a)p Fy(\))33 b(=)g Fs(A)j Fy(and)f Fs(U)10 b(f)45 b Fy(=)32 b Fs(f)11 b Fy(.)53 b(This)0 3467 y(latter)34 b(mak)m(es)i(sense)h(b)s(ecause)e(an)g(arro)m (w)f(of)g Ft(A)1783 3431 y Fd(T)1866 3467 y Fy(is)h(an)f(arro)m(w)g(of) g Ft(A)g Fy(with)h(sp)s(ecial)h(prop)s(erties.)50 b(There)0 3584 y(is)31 b(also)g(a)g(functor)g Fs(F)41 b Fy(:)28 b Ft(A)f(\000)-60 b(!)28 b(A)1198 3547 y Fd(T)1277 3584 y Fy(giv)m(en)j(b)m(y)h Fs(F)14 b(A)28 b Fy(=)f(\()p Fs(T)14 b(A;)j(\026A)p Fy(\))30 b(and)h Fs(F)14 b(f)38 b Fy(=)28 b Fs(T)14 b(f)d Fy(.)42 b(Some)31 b(details)h(ha)m(v)m(e)g (to)0 3700 y(b)s(e)h(c)m(hec)m(k)m(ed,)j(these)d(are)g(included)h(in)f (the)g(follo)m(wing.)p Black 0 3885 a(3.3.3.)g Fv(Prop)s(osition.)p Black 42 w Fu(The)i(function)h Fs(F)49 b Fu(ab)-5 b(ove)35 b(is)g(a)g(functor)h(left)g(adjoint)f(to)h Fs(U)10 b Fu(.)47 b(The)35 b(monad)g(asso-)0 4001 y(ciate)-5 b(d)34 b(to)i(the)e(adjoint)h(p)-5 b(air)34 b Fs(F)14 b(U)45 b Fu(is)35 b(pr)-5 b(e)g(cisely)34 b Fs(T)14 b Fu(.)p Black Black 315 4186 a Fy(By)28 b(a)g(theorem)h(of)f(Lin)m(ton's,)i(ev) m(ery)g(equationally)g(de\014ned)g(category)e(of)g(one-sorted)h (algebraic)315 4302 y(structures)k(is)f(in)h(fact)e(equiv)-5 b(alen)m(t)34 b(to)d(the)i(category)f(of)f(Eilen)m(b)s(erg-Mo)s(ore)i (algebras)f(for)f(some)315 4419 y(monad)24 b(in)h(Set)g(\([Barr)f(and)h (W)-8 b(ells,)27 b(1985],)f(Theorem)f(5)g(of)f(Section)h(4.3\).)41 b(In)24 b(fact,)j(the)d(con)m(v)m(erse)315 4535 y(is)40 b(true)g(if)g(in\014nitary)g(op)s(erations)g(are)g(allo)m(w)m(ed)h (\(but)f(then)g(a)g(h)m(yp)s(othesis)i(has)e(to)f(b)s(e)h(added)315 4651 y(on)34 b(the)g(direct)h(part)f(of)g(the)g(theorem)h(that)f(there) h(is)f(only)h(a)f(set)g(of)g(op)s(erations)g(of)g(an)m(y)h(giv)m(en)315 4767 y(arit)m(y\).)p Black 0 4952 a(3.3.4.)j Fv(Example.)p Black 46 w Fy(Let)h(\()p Fs(T)8 b(;)17 b(\021)t(;)g(u)p Fy(\))37 b(b)s(e)h(the)h(monad)g(in)g Fv(Set)f Fy(de\014ned)i(in)f (10.1.6.)60 b(An)39 b(algebra)f(for)g(this)0 5069 y(monad)f(is)g(a)f (monoid:)52 b(sp)s(eci\014cally)-8 b(,)40 b(if)d Fs(f)11 b(f)45 b Fy(:)35 b Fs(T)14 b Fy(\()p Fs(A)p Fy(\))34 b Ft(\000)-60 b(!)35 b Fs(A)h Fy(is)i(an)e(algebra,)i(then)f(the)g (de\014nition)h Fs(ab)d Fy(=)0 5185 y Fs(f)11 b(f)g Fy(\()p Fs(a;)17 b(b)p Fy(\))26 b(mak)m(es)h Fs(A)f Fy(a)g(monoid,)i(and)e(up)g (to)g(isomorphisms)i(ev)m(ery)g(monoid)e(arises)h(this)g(w)m(a)m(y)-8 b(.)42 b(Moreo)m(v)m(er,)0 5301 y(algebra)47 b(homomorphisms)h(are)f (monoid)g(homomorphisms,)52 b(and)47 b(ev)m(ery)i(monoid)e (homomorphism)0 5417 y(arises)34 b(this)f(w)m(a)m(y)-8 b(.)44 b(The)34 b(pro)s(of)e(requires)i(length)m(y)g(but)f(not)f (di\016cult)i(v)m(eri\014cations.)p Black Black eop end %%Page: 89 89 TeXDict begin 89 88 bop Black 1384 -99 a Fw(More)27 b(facts)f(ab)r(out) g(adjoin)n(t)g(functors)1308 b(89)p Black 0 100 a Fy(The)39 b(Kleisli)h(category)e(of)g(a)g(monad)g Fm(T)g Fy(=)f(\()p Fs(T)8 b(;)17 b(\021)t(;)g(\026)p Fy(\))38 b(is)g(equiv)-5 b(alen)m(t)40 b(to)e(the)h(full)g(sub)s(category)g(of)f(free)0 217 y Fm(T)p Fy(-algebras.)44 b(Its)33 b(de\014nition)g(mak)m(es)i(it)d (clear)h(that)g(the)g(arro)m(ws)g(are)f(substitutions.)p Black 0 373 a(3.3.5.)c Fv(Example.)p Black 40 w Fy(As)h(an)g(example,)i (consider)f(the)f(list)h(monad)e(of)h(10.1.6???.)41 b(An)29 b(arro)m(w)g Fs(f)39 b Fy(:)27 b Fs(A)h Ft(\000)-59 b(!)27 b Fs(B)0 489 y Fy(\(here)f Fs(A)f Fy(and)g Fs(B)31 b Fy(are)25 b(sets\))h(of)f(the)g(Kleisli)i(category)e(is)h(a)f(set)h (function)f Fs(A)j Ft(\000)-60 b(!)28 b Fs(T)14 b(B)5 b Fy(,)26 b(so)g(that)f(it)g(asso)s(ciates)0 605 y(a)35 b(string)g(of)g(elemen)m(ts)i(of)d Fs(B)40 b Fy(to)35 b(eac)m(h)h(elemen)m(t)h(of)d Fs(A)p Fy(.)51 b(Supp)s(ose)36 b Fs(A)c Fy(=)g Ft(f)p Fs(a;)17 b(b)p Ft(g)35 b Fy(and)g Fs(B)i Fy(=)31 b Ft(f)p Fs(c;)17 b(d;)g(e)p Ft(g)p Fy(,)35 b(and)0 722 y(that)d Fs(f)11 b Fy(\()p Fs(a)p Fy(\))28 b(=)f Fs(cddc)32 b Fy(and)g Fs(f)11 b Fy(\()p Fs(b)p Fy(\))28 b(=)g Fs(ec)p Fy(.)43 b(Then)34 b Fs(T)14 b(f)38 b Fy(:)27 b Fs(T)14 b(A)28 b Ft(\000)-60 b(!)28 b Fs(T)14 b(T)g(B)37 b Fy(tak)m(es,)c(for)f(example,)i(the)f(string)g Fs(abba)0 838 y Fy(to)38 b(\()p Fs(cddc)p Fy(\)\()p Fs(ec)p Fy(\)\()p Fs(ec)p Fy(\)\()p Fs(cddc)p Fy(\),)h(the)h(result)f(of)f (substituting)j Fs(cddc)d Fy(for)g Fs(a)h Fy(and)g Fs(ec)g Fy(for)f Fs(b)h Fy(in)g Fs(abba)p Fy(.)63 b(Then)40 b Fs(\026)0 954 y Fy(tak)m(es)33 b(that)e(string)g(to)g Fs(cddcececcddc)p Fy(.)43 b(It)31 b(is)h(instructiv)m(e)i(in)d(this)h (situation)g(to)f(think)h(of)f Fs(\026)g Fy(as)g(carrying)0 1070 y(out)42 b(a)h(computation.)73 b(In)43 b(this)g(case)h(the)e (computation)h(is)g(carried)g(out)g(using)g(the)g(\(only\))g(monoid)0 1187 y(op)s(eration,)h(since)f(in)f(fact)f(the)i(algebras)f(for)f(this) h(monad)g(are)g(monoids.)72 b(Th)m(us)43 b(one)f(can)g(think)g(of)0 1303 y(the)c(ob)5 b(jects)39 b(of)e(the)g(Kleisli)i(category)f(as)f (computations.)60 b(This)38 b(is)g(more)g(comp)s(elling)g(if)g(one)f (uses)i(a)0 1419 y(monad)d(arising)h(from)f(algebraic)g(structures)i (suc)m(h)g(as)e(rings)h(that)f(abstract)h(some)g(of)e(the)i(prop)s (erties)0 1535 y(of)28 b(n)m(umerical)i(addition)f(and)g(m)m (ultiplication,)h(then)g(the)f(ob)5 b(jects)29 b(of)g(the)g(free)g (algebra)f(are)h(p)s(olynomial)0 1651 y(expressions)35 b(and)e Fs(\026)f Fy(ev)-5 b(aluates)34 b(the)f(p)s(olynomial.)0 1808 y(3.4.)49 b Fv(Algebraic)37 b(Categories.)0 1982 y Fy(3.5.)49 b Fv(More)37 b(facts)h(ab)s(out)g(adjoin)m(t)g(functors.)p Black 0 2139 a Fy(3.5.1.)h Fv(Theorem.)p Black 45 w Fu(L)-5 b(et)41 b Fs(F)53 b Fy(:)39 b Fs(C)45 b Ft(\000)-57 b(!)39 b(D)k Fu(b)-5 b(e)41 b(a)f(c)-5 b(ovariant)40 b(functor)h(that)g(has)g (a)f(left)h(adjoint.)62 b(Then)40 b Fs(F)0 2255 y Fu(pr)-5 b(eserves)34 b(limits.)p Black 0 2411 a(Ide)-5 b(a)34 b(of)g(pr)-5 b(o)g(of.)p Black 41 w Fy(Let)33 b Fs(D)d Fy(:)e Fs(I)36 b Ft(\000)-60 b(!)27 b(C)39 b Fy(b)s(e)33 b(a)f(diagram.)44 b(Consider)34 b(the)f(isomorphisms)693 2561 y(Mor)869 2576 y Fq(D)930 2561 y Fy(\()p Fs(T)8 b(;)17 b(F)30 b Fy(lim)1170 2611 y Ft( )-42 b(\000)1322 2561 y Fs(D)s Fy(\))1471 2533 y Ft(\030)1472 2565 y Fy(=)1577 2561 y(Mor)1753 2576 y Fq(C)1798 2561 y Fy(\()p Fs(GT)8 b(;)17 b Fy(lim)2022 2611 y Ft( )-42 b(\000)2174 2561 y Fs(D)s Fy(\))2323 2533 y Ft(\030)2324 2565 y Fy(=)2428 2561 y(lim)2428 2611 y Ft( )g(\000)2580 2561 y Fy(Mor\()p Fs(GT)8 b(;)17 b(D)s Fy(\))3130 2533 y Ft(\030)3130 2565 y Fy(=)1158 2656 y Ft(\030)1158 2688 y Fy(=)1263 2683 y(lim)1263 2734 y Ft( )-42 b(\000)1415 2683 y Fy(Mor\()p Fs(T)8 b(;)17 b(F)d(D)s Fy(\))1964 2656 y Ft(\030)1965 2688 y Fy(=)2069 2683 y(Mor\()p Fs(T)8 b(;)17 b Fy(lim)2392 2734 y Ft( )-42 b(\000)2544 2683 y Fs(F)14 b(D)s Fy(\))0 2843 y(whic)m(h)34 b(implies)g Fs(F)d Fy(lim)704 2893 y Ft( )-42 b(\000)856 2843 y Fs(D)967 2815 y Ft(\030)968 2847 y Fy(=)1072 2843 y(lim)1072 2893 y Ft( )g(\000)1224 2843 y Fs(F)14 b(D)s Fy(.)2411 b Fg(\003)p Black 0 3002 a Fy(3.5.2.)37 b Fv(De\014nition.)p Black 45 w Fy(Let)h Fs(F)50 b Fy(:)36 b Ft(C)43 b(\000)-60 b(!)36 b(D)k Fy(b)s(e)e(a)g (functor.)59 b(Let)37 b Fs(D)i Ft(2)e(D)s Fy(.)58 b(A)38 b Fu(set)g Fe(L)3063 3017 y Fp(D)3165 3002 y Fy(of)f(ob)5 b(jects)39 b(in)f Ft(C)43 b Fy(is)0 3118 y(called)d(a)e Fu(solution)j(set)f(of)h Fs(D)g Fy(with)f(resp)s(ect)g(to)e Fs(F)14 b Fy(,)40 b(if)f(for)f(eac)m(h)i Fs(C)45 b Ft(2)39 b(C)45 b Fy(and)39 b(for)f(eac)m(h)i(morphism)g Fs(D)0 3234 y Ft(\000)-60 b(!)28 b Fs(F)14 b Fy(\()p Fs(C)7 b Fy(\))33 b(there)h(is)f(an)g(ob)5 b(ject)34 b Fs(C)1265 3198 y Fq(0)1316 3234 y Ft(2)29 b Fe(L)1477 3249 y Fp(D)1575 3234 y Fy(and)k(morphisms)h Fs(f)39 b Fy(:)29 b Ft(C)2460 3198 y Fq(0)2512 3234 y Ft(\000)-60 b(!)28 b Fs(C)40 b Fy(and)33 b Fs(D)e Ft(\000)-59 b(!)28 b Fs(F)14 b Fy(\()p Fs(C)3407 3198 y Fq(0)3430 3234 y Fy(\))33 b(suc)m(h)h(that)0 3350 y(the)f(triangle)1560 3453 y Fs(D)322 b(F)14 b Fy(\()p Fs(C)2155 3416 y Fq(0)2178 3453 y Fy(\))p 1672 3429 263 4 v 1852 3427 a Fo(-)1670 3579 y(@)1753 3662 y(@)1836 3745 y(@)1919 3828 y(@)1938 3847 y(@)-83 b(R)1975 3940 y Fs(F)14 b Fy(\()p Fs(C)7 b Fy(\))p 2088 3847 4 351 v 2089 3847 a Fo(?)2128 3696 y Fs(F)14 b Fy(\()p Fs(f)d Fy(\))0 4055 y(comm)m(utes.)p Black 0 4211 a(3.5.3.)47 b Fv(Theorem.)p Black 50 w Fu(L)-5 b(et)49 b Ft(C)55 b Fu(b)-5 b(e)49 b(a)f(c)-5 b(omplete,)52 b(lo)-5 b(c)g(al)5 b(ly)48 b(smal)5 b(l)48 b(c)-5 b(ate)g(gory)48 b(and)h(let)f Fs(F)67 b Fy(:)54 b Ft(C)60 b(\000)-58 b(!)53 b(D)f Fu(b)-5 b(e)48 b(a)0 4327 y(\(c)-5 b(ovariant\))34 b(functor.)45 b(Assume)35 b(that)g Ft(C)41 b Fu(has)34 b(a)h(c)-5 b(o)g(gener)g (ator.)0 4444 y Fs(F)49 b Fu(has)34 b(a)h(left)f(adjoint)h(if)f(and)h (only)f(if)p Black 223 4580 a Ft(\017)p Black 42 w Fs(F)48 b Fu(pr)-5 b(eserves)34 b(limits)h(and)p Black 223 4696 a Ft(\017)p Black 42 w Fs(F)48 b Fu(has)34 b(solutions)h(sets.)p Black 0 4853 a Fy(3.5.4.)27 b Fv(De\014nition.)p Black 38 w Fy(An)g(ob)5 b(ject)28 b Fs(C)34 b Ft(2)28 b(C)34 b Fy(is)27 b(called)h(a)f(cogenerator,)h(if)f(for)f(an)m(y)i(t)m(w)m(o) f(morphisms)i Fs(f)5 b(;)17 b(g)31 b Fy(:)d Fs(A)0 4969 y Ft(\000)-60 b(!)28 b Fs(B)37 b Fy(with)d Fs(f)k Ft(6)p Fy(=)28 b Fs(g)35 b Fy(there)f(is)f(a)f(morphism)i Fs(h)28 b Fy(:)f Fs(B)33 b Ft(\000)-59 b(!)27 b Fs(C)39 b Fy(suc)m(h)34 b(that)f Fs(h)22 b Ft(\016)g Fs(f)38 b Ft(6)p Fy(=)28 b Fs(h)22 b Ft(\016)g Fs(g)t Fy(.)p Black 0 5125 a(3.5.5.)47 b Fv(Theorem.)p Black 50 w Fu(L)-5 b(et)49 b Ft(C)55 b Fu(b)-5 b(e)49 b(a)f(c)-5 b(omplete,)52 b(lo)-5 b(c)g(al)5 b(ly)48 b(smal)5 b(l)48 b(c)-5 b(ate)g(gory)48 b(and)h(let)f Fs(F)67 b Fy(:)54 b Ft(C)60 b(\000)-58 b(!)53 b(D)f Fu(b)-5 b(e)48 b(a)0 5242 y(\(c)-5 b(ovariant\))34 b(functor.)45 b(Assume)35 b(that)g Ft(C)41 b Fu(has)34 b(a)h(c)-5 b(o)g(gener)g (ator.)0 5358 y Fs(F)49 b Fu(has)34 b(a)h(left)f(adjoint)h(if)f(and)h (only)f(if)h Fs(F)49 b Fu(pr)-5 b(eserves)34 b(limits.)p Black Black eop end %%Page: 90 90 TeXDict begin 90 89 bop Black 0 -99 a Fw(90)1668 b(F)-6 b(oundations)p Black 1660 100 a Fx(References)p Black 0 258 a Fc([Bac)n(kus,)26 b(1981a])p Black 40 w(Bac)n(kus,)f(J.:)36 b Fb(The)27 b(algebra)e(of)i(functional)g(programs:)34 b(F)-7 b(unction)27 b(lev)n(el)g(reasoning,)e(linear)h(equations,)171 358 y(and)j(extended)i(de\014nitions.)f Fc(In:)41 b(F)-7 b(ormalization)29 b(of)h(Programming)d(Concepts,)j(J.)g(Diaz)f(and)h (I.)g(Ramos,)g(editors,)171 457 y(v)n(olume)d(107)f(of)h(Lecture)h (Notes)f(in)h(Computer)f(Science.)h(Springer-V)-7 b(erlag)25 b Fa(1981)p Fc(.)p Black 0 557 a([Bac)n(kus,)h(1981b])p Black 40 w(Bac)n(kus,)i(J.:)40 b Fb(Is)29 b(computer)f(science)h(based) g(on)f(the)i(wrong)e(fundamen)n(tal)h(concept)g(of)g(program?)39 b Fc(In:)171 657 y(Algorithmic)27 b(Languages,)e(J.)j(W.)g(deBakk)n(er) e(and)h(J.)g(C.)h(v)-5 b(an)28 b(Vliet,)g(editors.)f(North-Holland)g Fa(1981)p Fc(.)p Black 0 756 a([Barr)f(and)i(W)-7 b(ells,)27 b(1999])p Black 40 w(Barr,)g(M.)h(and)g(W)-7 b(ells,)28 b(C.:)38 b Fb(Category)26 b(Theory)h(for)g(Computing)h(Science,)g Fc(third)g(edition.)g(Les)171 856 y(publications)f(Cen)n(tre)g(de)h (rec)n(herc)n(hes)d(math)n(\023)-39 b(ematiques)27 b Fa(1999)p Fc(.)p Black 0 955 a([Co)r(c)n(k)n(ett,)g(1989])p Black 40 w(Co)r(c)n(k)n(ett,)36 b(J.)f(R.)g(B.:)52 b Fb(On)35 b(the)g(decidabilit)n(y)g(of)g(ob)5 b(jects)35 b(in)g(a)g(lo)r(cos)p Fc(.)f(In:)52 b(Categories)33 b(in)i(Computer)171 1055 y(Science)j(and)g(Logic,)i(J.)e(W.)h(Gra)n(y)e(and)h(A.)g(Scedro)n (v,)i(editors,)g(v)n(olume)e(92)f(of)h(Con)n(temp)r(orary)e (Mathematics.)171 1155 y(American)27 b(Mathematical)g(So)r(ciet)n(y)g Fa(1989)p Fc(.)p Black 0 1254 a([Jacobson,)f(1974])p Black 40 w(Jacobson,)f(N.:)38 b Fb(Basic)26 b(Algebra.)h Fc(I.)h(W.)g(H.)g(F)-7 b(reeman)27 b Fa(1974)p Fc(.)p Black 0 1354 a([P)n(areigis,)e(1969])p Black 40 w(P)n(areigis,)g(B.:)37 b Fb(Kategorien)26 b(und)i(F)-7 b(unktoren.)27 b Fc(T)-7 b(eubner)27 b(V)-7 b(erlag)27 b Fa(1969)p Fc(.)p Black 0 1454 a([P)n(areigis,)e(2000])p Black 40 w(P)n(areigis,)g(B.:)37 b Fb(Lineare)27 b(Algebra)f(f)r(\177)-44 b(ur)28 b(Informatik)n(er.)e Fc(Springer)h(V)-7 b(erlag)26 b Fa(2000)p Fc(.)p Black 0 1553 a([Pitt,)i(1986])p Black 40 w(Pitt,)c(D.,)g(Abramsky)-7 b(,)23 b(S.,)h(P)n(oign)n(\023)-39 b(e,)21 b(A.,)j(and)f(Rydeheard,)g (D.,)h(editors.)e Fb(Category)f(Theory)h(and)g(Computer)171 1653 y(Programming)p Fc(,)j(v)n(olume)h(240)h(of)g(Lecture)g(Notes)h (in)g(Computer)f(Science.)h(Springer-V)-7 b(erlag)25 b Fa(1986)p Fc(.)p Black 0 1752 a([W)-7 b(agner,)27 b(1986])p Black 39 w(W)-7 b(agner,)35 b(E.)f(G.:)49 b Fb(Algebraic)33 b(theories,)i(data)e(t)n(yp)r(es)h(and)g(con)n(trol)f(constructs)p Fc(.)g(F)-7 b(undamen)n(ta)34 b(Infor-)171 1852 y(matica,)27 b(v)n(olume)g(9,)g(pages)g(343-370)d Fa(1986)p Fc(.)p Black 0 1952 a([Williams,)k(1982])p Black 39 w(Williams,)e(J.)f(H.:)36 b Fb(Notes)24 b(on)h(the)g(fp)h(st)n(yle)f(of)f(functional)i (programming.)c Fc(In:)36 b(F)-7 b(unctional)25 b(Program-)171 2051 y(ming)35 b(and)f(its)h(Applications,)i(P)-7 b(.)35 b(H.)g(Darlington,)h(J.)f(and)f(D.)i(T)-7 b(urner,)36 b(editors.)e(Cam)n(bridge)g(Univ)n(ersit)n(y)g(Press)171 2151 y Fa(1982)p Fc(.)p Black Black eop end %%Trailer userdict /end-hook known{end-hook}if %%EOF