%!PS-Adobe-2.0 %%Creator: dvipsk 5.58f Copyright 1986, 1994 Radical Eye Software %%Title: SS01Ub9V2.dvi %%Pages: 2 %%PageOrder: Ascend %%BoundingBox: 0 0 596 842 %%EndComments %DVIPSCommandLine: dvips SS01Ub9V2.dvi %DVIPSParameters: dpi=300, compressed, comments removed %DVIPSSource: TeX output 2001.07.04:0928 %%BeginProcSet: texc.pro /TeXDict 250 dict def TeXDict begin /N{def}def /B{bind def}N /S{exch}N /X{S N}B /TR{translate}N /isls false N /vsize 11 72 mul N /hsize 8.5 72 mul N /landplus90{false}def /@rigin{isls{[0 landplus90{1 -1}{-1 1} ifelse 0 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[matrix currentmatrix{dup dup round sub abs 0.00001 lt{round}if} forall round exch round exch]setmatrix}N /@landscape{/isls true N}B /@manualfeed{statusdict /manualfeed true put}B /@copies{/#copies X}B /FMat[1 0 0 -1 0 0]N /FBB[0 0 0 0]N /nn 0 N /IE 0 N /ctr 0 N /df-tail{ /nn 8 dict N nn begin /FontType 3 N /FontMatrix fntrx N /FontBBox FBB N string /base X array /BitMaps X /BuildChar{CharBuilder}N /Encoding IE N end dup{/foo setfont}2 array copy cvx N load 0 nn put /ctr 0 N[}B /df{ /sf 1 N /fntrx FMat N df-tail}B /dfs{div /sf X /fntrx[sf 0 0 sf neg 0 0] N df-tail}B /E{pop nn dup definefont setfont}B /ch-width{ch-data dup length 5 sub get}B /ch-height{ch-data dup length 4 sub get}B /ch-xoff{ 128 ch-data dup length 3 sub get sub}B /ch-yoff{ch-data dup length 2 sub get 127 sub}B /ch-dx{ch-data dup length 1 sub get}B /ch-image{ch-data dup type /stringtype ne{ctr get /ctr ctr 1 add N}if}B /id 0 N /rw 0 N /rc 0 N /gp 0 N /cp 0 N /G 0 N /sf 0 N /CharBuilder{save 3 1 roll S dup /base get 2 index get S /BitMaps get S get /ch-data X pop /ctr 0 N ch-dx 0 ch-xoff ch-yoff ch-height sub ch-xoff ch-width add ch-yoff setcachedevice ch-width ch-height true[1 0 0 -1 -.1 ch-xoff sub ch-yoff .1 sub]/id ch-image N /rw ch-width 7 add 8 idiv string N /rc 0 N /gp 0 N /cp 0 N{rc 0 ne{rc 1 sub /rc X rw}{G}ifelse}imagemask restore}B /G{{id gp get /gp gp 1 add N dup 18 mod S 18 idiv pl S get exec}loop}B /adv{cp add /cp X}B /chg{rw cp id gp 4 index getinterval putinterval dup gp add /gp X adv}B /nd{/cp 0 N rw exit}B /lsh{rw cp 2 copy get dup 0 eq{pop 1}{ dup 255 eq{pop 254}{dup dup add 255 and S 1 and or}ifelse}ifelse put 1 adv}B /rsh{rw cp 2 copy get dup 0 eq{pop 128}{dup 255 eq{pop 127}{dup 2 idiv S 128 and or}ifelse}ifelse put 1 adv}B /clr{rw cp 2 index string putinterval adv}B /set{rw cp fillstr 0 4 index getinterval putinterval adv}B /fillstr 18 string 0 1 17{2 copy 255 put pop}for N /pl[{adv 1 chg} {adv 1 chg nd}{1 add chg}{1 add chg nd}{adv lsh}{adv lsh nd}{adv rsh}{ adv rsh nd}{1 add adv}{/rc X nd}{1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]dup{bind pop}forall N /D{/cc X dup type /stringtype ne{] }if nn /base get cc ctr put nn /BitMaps get S ctr S sf 1 ne{dup dup length 1 sub dup 2 index S get sf div put}if put /ctr ctr 1 add N}B /I{ cc 1 add D}B /bop{userdict /bop-hook known{bop-hook}if /SI save N @rigin 0 0 moveto /V matrix currentmatrix dup 1 get dup mul exch 0 get dup mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N /eop{SI restore userdict /eop-hook known{eop-hook}if showpage}N /@start{userdict /start-hook known{start-hook}if pop /VResolution X /Resolution X 1000 div /DVImag X /IE 256 array N 0 1 255{IE S 1 string dup 0 3 index put cvn put}for 65781.76 div /vsize X 65781.76 div /hsize X}N /p{show}N /RMat[1 0 0 -1 0 0]N /BDot 260 string N /rulex 0 N /ruley 0 N /v{/ruley X /rulex X V}B /V {}B /RV statusdict begin /product where{pop product dup length 7 ge{0 7 getinterval dup(Display)eq exch 0 4 getinterval(NeXT)eq or}{pop false} ifelse}{false}ifelse end{{gsave TR -.1 .1 TR 1 1 scale rulex ruley false RMat{BDot}imagemask grestore}}{{gsave TR -.1 .1 TR rulex ruley scale 1 1 false RMat{BDot}imagemask grestore}}ifelse B /QV{gsave newpath transform round exch round exch itransform moveto rulex 0 rlineto 0 ruley neg rlineto rulex neg 0 rlineto fill grestore}B /a{moveto}B /delta 0 N /tail {dup /delta X 0 rmoveto}B /M{S p delta add tail}B /b{S p tail}B /c{-4 M} B /d{-3 M}B /e{-2 M}B /f{-1 M}B /g{0 M}B /h{1 M}B /i{2 M}B /j{3 M}B /k{ 4 M}B /w{0 rmoveto}B /l{p -4 w}B /m{p -3 w}B /n{p -2 w}B /o{p -1 w}B /q{ p 1 w}B /r{p 2 w}B /s{p 3 w}B /t{p 4 w}B /x{0 S rmoveto}B /y{3 2 roll p a}B /bos{/SS save N}B /eos{SS restore}B end %%EndProcSet TeXDict begin 39158280 55380996 1000 300 300 (SS01Ub9V2.dvi) @start /Fa 3 56 df14 D<4B7EA46F7EA2166082A2161C8282 B812E0A2C9EA0700160E5E1630A25E5EA24B5AA42B1A7D9832>33 D<12C0A812E0A212C0A803127D9400>55 D E /Fb 5 111 df97 D<133E130CA41318A4EA0730EA18F0EA30701260136012C0A3EA80C013C4A212C1EA46C8 EA38700F177E9612>100 D<13E2EA031EEA060E120C130C1218A3EA1018A3EA1838EA08 F0EA07301200A2EA606012E0EAC1C0EA7F000F14808D11>103 D<38383C1E3844C66338 47028138460301388E0703EA0C06A338180C061520140C154039301804C0EC07001B0E7F 8D1F>109 DI E /Fc 1 91 df<001FB512F05A3933C0306039360060C0123C48EBC1 801270903801830038600306A23800060CA2495A495AA2495AA2495AEBC180A24848C7FC D80303130801061318EA060CA248481338485A1570484813F014013960C003B039C1800E 30B612F0A21D227EA12F>90 D E /Fd 1 49 df<1206120FA2120E121EA2121C123C1238 A212301270A2126012E012C0124008117F910A>48 D E /Fe 10 121 df<127012F812FCA212741204A41208A21210A212201240060F7C840E>59 D<9039FFF801FF010FC71278166016C0011EEB010015025D5D4913205D5D0202C7FC495A 5C141C147CEBF0BEEBF11E13F2EBF80FEA01F001E07F1407A248486C7EA36E7EEA078081 1400A2000F497E39FFF80FFF28227DA129>75 D86 D<141EEC638014C71301ECC3001480 1303A449C7FCA4EBFFF8010EC7FCA65BA55BA55BA4136013E0A25BA21271EAF18090C8FC 1262123C192D7EA218>102 DI<13F0EA0FE01200A3485AA4485AA448C7FC1478 EB0184EB021C380E0C3C1310EB2018EB4000485A001FC7FC13E0EA1C38487EA27F140838 701C10A3EB0C20EAE006386003C016237EA219>107 DI<393C07E01F 3A46183061803A47201880C03A87401D00E0EB801E141C1300000E90383801C0A4489038 700380A2ED070016044801E01308150EA2ED0610267001C01320D83000EB03C026157E94 2B>I<383C07C038461860384720303887403813801300A2000E1370A44813E0A2EB01C0 14C1003813C2EB03821484130100701388383000F018157E941D>I<3801E0F03806310C 38081A1C0010133CEA201C14181400C65AA45BA314083860E01012F0142038E170403842 3080383C1F0016157E941C>120 D E /Ff 64 128 df12 D22 D<137CEA018738030380000713C0EA0601000E13E0A514C0EB 0380A2EB0E00EAFE38EA0E06EB0380EB01C0A2EB00E014F0A214701478A61470A2EB70E0 14C0EB718038FE1F0015237FA218>25 D<132013401380EA01005A12061204120CA25AA2 5AA312701260A312E0AE1260A312701230A37EA27EA2120412067E7EEA0080134013200B 327CA413>40 D<7E12407E7E12187E12041206A27EA2EA0180A313C01200A313E0AE13C0 A312011380A3EA0300A21206A21204120C5A12105A5A5A0B327DA413>I<127012F812FC A212741204A41208A21210A212201240060F7C840E>44 DI<12 7012F8A3127005057C840E>I<14801301A2EB0300A31306A35BA35BA35BA35BA35BA348 5AA448C7FCA31206A35AA35AA35AA35AA35AA311317DA418>II<13801203120F12F31203B3A9EA07C0EAFFFE0F217CA018> III<1303A25BA25B1317 A21327136713471387120113071202120612041208A212101220A2124012C0B512F83800 0700A7EB0F80EB7FF015217FA018>I<00101380381E0700EA1FFF5B13F8EA17E00010C7 FCA6EA11F8EA120CEA1C07381803801210380001C0A214E0A4127012F0A200E013C01280 EA4003148038200700EA1006EA0C1CEA03F013227EA018>I<12401260387FFFE014C0A2 3840008038C0010012801302A2485A5BA25B5BA21360134013C0A21201A25B1203A41207 A76CC7FC13237DA118>55 D57 D<127012F8A312701200AB127012F8A31270 05157C940E>I61 D<497EA3497EA3EB05E0A2 EB09F01308A2EB1078A3497EA3497EA2EBC01F497EA248B51280EB0007A20002EB03C0A3 48EB01E0A348EB00F0121C003EEB01F839FF800FFF20237EA225>65 DI68 D I<903807F00890383C0C18EBE0023901C001B839038000F848C71278481438121E15185A A2007C14081278A200F81400A7EC1FFF0078EB00F81578127C123CA27EA27E7E6C6C13B8 6C7E3900E0031890383C0C08903807F00020247DA226>71 D<39FFFC3FFF390FC003F039 078001E0AE90B5FCEB8001AF390FC003F039FFFC3FFF20227EA125>II75 D77 D79 DI<3803F020380C0C60EA 1802383001E0EA70000060136012E0A21420A36C1300A21278127FEA3FF0EA1FFE6C7E00 03138038003FC0EB07E01301EB00F0A214707EA46C1360A26C13C07E38C8018038C60700 EA81FC14247DA21B>83 D<007FB512F839780780780060141800401408A300C0140C0080 1404A400001400B3A3497E3801FFFE1E227EA123>I<39FFFC07FF390FC000F86C481370 1520B3A5000314407FA2000114806C7E9038600100EB3006EB1C08EB03F020237EA125> II<3BFFF03FFC03FE3B1F8007E000F86C486C48137017206E7ED8 07801540A24A7E2603C0021480A39039E004780100011600A2EC083CD800F01402A2EC10 1E01785CA2EC200F013C5CA20260138890391E400790A216D090391F8003F0010F5CA2EC 00016D5CA20106130001025C2F237FA132>I<387FFFFE387E003E0078133C0070137812 60004013F012C0EB01E0388003C0A2EB07801200EB0F005B131E5BA25BA25B1201EBE001 EA03C0A2EA07801403EA0F00001E1302A2481306140E48131E00F8137EB512FE18227DA1 1E>90 D<12FEA212C0B3B3A912FEA207317BA40E>I<12FEA21206B3B3A912FEA207317F A40E>93 D97 D<120E12FE121E120EAB13 1FEB61C0EB8060380F0030000E1338143C141C141EA7141C143C1438000F1370380C8060 EB41C038083F0017237FA21B>II<14E0130F13 011300ABEA01F8EA0704EA0C02EA1C01EA38001278127012F0A7127012781238EA1801EA 0C0238070CF03801F0FE17237EA21B>II<133E13E33801C780EA0387130748C7FCA9EAFFF80007C7FCB27FEA7FF01123 80A20F>I<14703803F198380E1E18EA1C0E38380700A200781380A400381300A2EA1C0E EA1E1CEA33F00020C7FCA212301238EA3FFE381FFFC06C13E0383000F0481330481318A4 00601330A2003813E0380E03803803FE0015217F9518>I<120E12FE121E120EABEB1F80 EB60C0EB80E0380F0070A2120EAF38FFE7FF18237FA21B>I<121C123EA3121CC7FCA812 0E127E121E120EB1EAFFC00A227FA10E>I<13E0EA01F0A3EA00E01300A81370EA07F012 001370B3A51260EAF0E013C0EA6180EA3F000C2C83A10F>I<120E12FE121E120EABEB03 FCEB01F014C01480EB02005B5B5B133813F8EA0F1CEA0E1E130E7F1480EB03C0130114E0 EB00F014F838FFE3FE17237FA21A>I<120E12FE121E120EB3ADEAFFE00B237FA20E>I<39 0E1FC07F3AFE60E183803A1E807201C03A0F003C00E0A2000E1338AF3AFFE3FF8FFE2715 7F942A>I<380E1F8038FE60C0381E80E0380F0070A2120EAF38FFE7FF18157F941B>III<3801F82038070460EA0E02EA1C01003813E0EA7800A25AA71278 A2EA3801121CEA0C02EA070CEA01F0C7FCA9EB0FFE171F7E941A>III<1202A41206A3120E121E123EEAFFFCEA0E00AB1304A6EA070812 03EA01F00E1F7F9E13>I<000E137038FE07F0EA1E00000E1370AD14F0A2380601703803 82783800FC7F18157F941B>I<38FF80FE381E00781430000E1320A26C1340A2EB80C000 031380A23801C100A2EA00E2A31374A21338A3131017157F941A>I<39FF8FF87F393E01 E03C001CEBC01814E0000E1410EB0260147000071420EB04301438D803841340EB881814 1CD801C81380EBD00C140E3900F00F00497EA2EB6006EB400220157F9423>I<38FF80FE 381E00781430000E1320A26C1340A2EB80C000031380A23801C100A2EA00E2A31374A213 38A31310A25BA35B12F05B12F10043C7FC123C171F7F941A>121 D<383FFFC038380380EA300700201300EA600EEA401C133C1338C65A5B12015B38038040 EA07005A000E13C04813805AEA7801EA7007B5FC12157F9416>I127 D E /Fg 21 122 df65 D<91387FE003903907FFFC07011FEBFF0F90397FF00F9F9039FF00 01FFD801FC7F484880484880484880485A82485A82127FA290CAFC5AA892B512F87E7F03 001300123FA26C7EA26C7E6C7E6C7E6C7E6CB45B90387FF007011FB5129F0107EBFE0F90 39007FF0032D297CA835>71 D73 D76 D<3803FF80000F13F0381F01FC383F80FE147F801580EA1F00C7 FCA4EB3FFF3801FC3FEA0FE0EA1F80EA3F00127E5AA4145F007E13DF393F839FFC381FFE 0F3803FC031E1B7E9A21>97 DIIII<9038FF80F00003EBE3F8 390FC1FE1C391F007C7C48137E003EEB3E10007EEB3F00A6003E133E003F137E6C137C38 0FC1F8380BFFE00018138090C8FC1238A2123C383FFFF814FF6C14C06C14E06C14F0121F 383C0007007CEB01F8481300A4007CEB01F0A2003FEB07E0390FC01F806CB5120038007F F01E287E9A22>103 DI<1207EA0F80EA1FC0EA3FE0A3EA 1FC0EA0F80EA0700C7FCA7EAFFE0A3120FB3A3EAFFFEA30F2B7EAA12>I108 D<26FFC07FEB1FC0903AC1FFC07FF0903AC307E0C1F8 D80FC49038F101FC9039C803F20001D801FE7F01D05BA201E05BB03CFFFE3FFF8FFFE0A3 331B7D9A38>I<38FFC07E9038C1FF809038C30FC0D80FC413E0EBC80701D813F013D0A2 13E0B039FFFE3FFFA3201B7D9A25>II<38FFC1F0EBC7FCEBC63E380FCC7F 13D813D0A2EBF03EEBE000B0B5FCA3181B7F9A1B>114 D<3803FE30380FFFF0EA3E03EA 7800127000F01370A27E00FE1300EAFFE06CB4FC14C06C13E06C13F0000713F8C6FCEB07 FC130000E0137C143C7E14387E6C137038FF01E038E7FFC000C11300161B7E9A1B>I<13 E0A41201A31203A21207120F381FFFE0B5FCA2380FE000AD1470A73807F0E0000313C038 01FF8038007F0014267FA51A>I<39FFE07FF0A3000F1307B2140FA2000713173903F067 FF3801FFC738007F87201B7D9A25>I<39FFFC03FFA3390FF000F0000714E07F0003EB01 C0A2EBFC0300011480EBFE070000140013FFEB7F0EA2149EEB3F9C14FC6D5AA26D5AA36D 5AA26D5AA25CA21307003890C7FCEA7C0FEAFE0E131E131C5BEA74F0EA3FE0EA0F802027 7F9A23>121 D E /Fh 30 128 df<1238127C12FEA3127C123807077C8610>46 D<13FE3807FFC0380F83E0381F01F0383E00F8A248137CA312FC147EAD007C137CA36C13 F8A2381F01F0380F83E03807FFC03800FE0017207E9F1C>48 D<13181378EA01F812FFA2 1201B3A7387FFFE0A213207C9F1C>II57 D66 D68 D73 D77 D80 D<3801FE023807FF8638 1F01FE383C007E007C131E0078130EA200F81306A27E1400B4FC13E06CB4FC14C06C13F0 6C13F86C13FC000313FEEA003F1303EB007F143FA200C0131FA36C131EA26C133C12FCB4 13F838C7FFE00080138018227DA11F>83 D85 D97 D99 DI<13FE3807FF80380F87C0381E01E0003E13F0EA7C0014F812FCA2B5FCA200FCC7FC A3127CA2127E003E13186C1330380FC0703803FFC0C6130015167E951A>II<3801FE0F3907FFBF80380F87C7381F03E7391E01E000003E7FA5001E5BEA1F03380F 87C0EBFF80D809FEC7FC0018C8FCA2121C381FFFE06C13F86C13FE001F7F383C003F48EB 0F80481307A40078EB0F006C131E001F137C6CB45A000113C019217F951C>II<121C 123E127FA3123E121CC7FCA7B4FCA2121FB2EAFFE0A20B247EA310>I108 D<3AFF07F007F090391FFC1FFC3A1F303E303E0140134049 6C487EA201001300AE3BFFE0FFE0FFE0A22B167E9530>I<38FF07E0EB1FF8381F307CEB 403CEB803EA21300AE39FFE1FFC0A21A167E951F>I<13FE3807FFC0380F83E0381E00F0 003E13F848137CA300FC137EA7007C137CA26C13F8381F01F0380F83E03807FFC03800FE 0017167E951C>I114 DI<487EA41203A21207A2120F123FB5FCA2EA0F80ABEB8180A5EB8300EA07C3EA03FE EA00F811207F9F16>I<38FF01FEA2381F003EAF147E14FE380F81BE3907FF3FC0EA01FC 1A167E951F>I<39FFE01FE0A2391F800700000F1306EBC00E0007130C13E000035BA26C 6C5AA26C6C5AA2EB7CC0A2137F6D5AA26DC7FCA2130EA21B167F951E>I127 D E end %%EndProlog %%BeginSetup %%Feature: *Resolution 300dpi TeXDict begin %%PaperSize: a4 %%EndSetup %%Page: 1 1 1 0 bop 162 274 a Fh(Mathematisc)n(hes)17 b(Institut)826 b(SS)19 b(2001)162 334 y(der)f(Univ)n(ersit)487 336 y(\177)487 334 y(at)g(M)609 336 y(\177)607 334 y(unc)n(hen)828 b(Blatt)18 b(9)162 394 y(Prof.)g(Dr.)h(B.)f(P)n(areigis)293 644 y Fg(Lineare)23 b(Algebra)g(und)h(analytisc)n(he)f(Geometrie)g(I)r(I) 222 746 y Ff(1.)h(Seien)17 b Fe(m)g Ff(und)h Fe(n)g Ff(ganze)f(Zahlen)h (und)g Fe(g)h Ff(der)f(gr)1187 748 y(\177)1187 746 y(o\031te)g (gemeinsame)d(T)l(eiler)h(v)o(on)284 806 y Fe(m)h Ff(und)h Fe(n)p Ff(.)f(Wir)g(k)629 808 y(\177)629 806 y(onnen)h(also)g(ganze)f (Zahlen)h Fe(m)1214 788 y Fd(0)1242 806 y Ff(und)g Fe(n)1370 788 y Fd(0)1399 806 y Ff(mit)e Fe(m)g Ff(=)g Fe(g)r(m)1671 788 y Fd(0)1700 806 y Ff(und)284 867 y Fe(n)e Ff(=)g Fe(g)r(n)433 849 y Fd(0)461 867 y Ff(\014nden.)i(Zeigen)f(Sie,)g (da\031)646 967 y Fc(Z)682 974 y Fb(g)713 967 y Fa(!)f Ff(Hom)n(\()p Fc(Z)934 974 y Fb(m)964 967 y Fe(;)8 b Fc(Z)1022 974 y Fb(n)1042 967 y Ff(\))p Fe(;)1101 954 y Ff(\026)1100 967 y Fe(k)15 b Fa(7!)f Ff(\()1223 954 y(\026)1223 967 y Fe(l)g Fa(7!)p 1316 926 84 2 v 14 w Fe(k)r(l)q(n)1388 952 y Fd(0)1400 967 y Ff(\))284 1067 y(ein)h(Grupp)q(enisomorphism)o(us)g(ist.)284 1146 y(\(Hin)o(w)o(eis:) 504 1136 y(\177)498 1146 y(Ub)q(erlegen)h(Sie)g(sic)o(h,)g(da\031)i Fe(n)1041 1128 y Fd(0)1070 1146 y Ff(und)g Fe(m)1212 1128 y Fd(0)1240 1146 y Ff(teilerfremd)c(sind,)j(und)g(da\031)284 1206 y(daraus)j(folgt,)f(da\031)h(sic)o(h,)d(wie)i(in)f(Aufgab)q(e)i (40)f(auf)h(Blatt)e(10)i(im)d(WS)i(00/01,)284 1267 y(1)d(durc)o(h)g Fe(n)490 1249 y Fd(0)518 1267 y Ff(und)h Fe(m)659 1249 y Fd(0)686 1267 y Ff(ausdr)803 1269 y(\177)802 1267 y(uc)o(k)o(en)f(l) 954 1269 y(\177)954 1267 y(a\031t.\))664 b(\(5\))222 1365 y(2.)24 b(Sei)15 b Fe(f)20 b Ff(ein)15 b(Endomorphism)o(us)f(des)h (endlic)o(hdimensionalen)d(V)l(ektorraumes)i Fe(V)d Ff(.)284 1426 y(Dann)22 b(k)m(ann)h Fe(V)33 b Ff(mit)20 b(Hilfe)g(v)o(on)h Fe(f)27 b Ff(zu)22 b(einem)d(Mo)q(dul)1349 1428 y(\177)1348 1426 y(ub)q(er)j(dem)e(P)o(olynom-)284 1486 y(ring)14 b Fe(K)t Ff([)p Fe(x)p Ff(])f(gemac)o(h)o(t)f(w)o(erden.)h(Zeigen)h (Sie,)f(da\031)i Fe(f)k Ff(genau)c(dann)g(diagonalisier-)284 1546 y(bar)i(ist,)g(w)o(enn)g Fe(V)28 b Ff(als)18 b Fe(K)t Ff([)p Fe(x)p Ff(]-Mo)q(dul)e(direkte)g(Summe)e(v)o(on)j(Un)o(termo)q (duln)f(ist,)284 1606 y(die)f(gleic)o(hzeitig)f(eindimensionale)g(Un)o (terr)1108 1608 y(\177)1108 1606 y(aume)g(sind.)380 b(\(5\))222 1705 y(3.)24 b(Seien)18 b Fe(f)25 b Ff(und)19 b Fe(g)j Ff(zw)o(ei)c(diagonalisierbare)h(Endomorphismen)e(des)j(endlic)o(hdi-) 284 1765 y(mensionalen)13 b(V)l(ektorraumes)g Fe(V)e Ff(.)k(Zeigen)f(Sie,)f(da\031)j(folgende)e(Aussagen)1674 1767 y(\177)1674 1765 y(aqui-)284 1825 y(v)m(alen)o(t)h(sind:)304 1924 y(\(a\))25 b Fe(f)d Ff(und)16 b Fe(g)j Ff(k)o(omm)n(utiere)o(n,)13 b(d.)j(h.)g Fe(f)g Fa(\016)11 b Fe(g)16 b Ff(=)e Fe(g)f Fa(\016)e Fe(f)5 b Ff(.)302 2002 y(\(b\))24 b Fe(f)e Ff(und)17 b Fe(g)h Ff(sind)f(gleic)o(hzeitig)d(diagonalisierbar,)i(d.)g (h.)g(es)h(gibt)f(eine)g(Basis)391 2063 y(v)o(on)g Fe(V)c Ff(,)j(die)h(aus)h(Eigen)o(v)o(ektoren)e(v)o(on)h(so)o(w)o(ohl)g Fe(f)22 b Ff(als)16 b(auc)o(h)g Fe(g)j Ff(b)q(esteh)o(t.)1718 2161 y(\(5\))222 2260 y(4.)24 b(Sei)10 b Fe(V)23 b Ff(ein)11 b(endlic)o(hdim)o(ensionaler)d(unit)1023 2262 y(\177)1023 2260 y(arer)j(V)l(ektorraum.)f(Ein)h(Endomorphis-)284 2320 y(m)o(us)20 b(v)o(on)i Fe(V)32 b Ff(hei\031t)22 b(normal,)e(falls)h(er)g(mit)f(seiner)h(adjungierten)g(Abbildung)284 2381 y(k)o(omm)o(uti)o(ert,)14 b(d.)j(h.)h(falls)f Fe(f)g Fa(\016)12 b Fe(f)890 2363 y Fb(ad)946 2381 y Ff(=)k Fe(f)1029 2363 y Fb(ad)1080 2381 y Fa(\016)c Fe(f)23 b Ff(gilt.)17 b(Zeigen)g(Sie,)g(da\031)h Fe(f)23 b Ff(genau)284 2441 y(dann)h(normal)f(ist,)g(w)o(enn)h(es)f(eine)g(Orthonormalbasis)h (aus)g(Eigen)o(v)o(ektoren)284 2501 y(v)o(on)16 b Fe(f)22 b Ff(gibt.)p eop %%Page: 2 2 2 1 bop 284 274 a Ff(\(Hin)o(w)o(eis:)17 b(Zeigen)h(Sie)g(zun)814 276 y(\177)814 274 y(ac)o(hst,)g(da\031)i Fe(f)25 b Ff(und)19 b Fe(f)1229 256 y Fb(ad)1287 274 y Ff(denselb)q(en)g(Kern)g(hab)q(en,) 284 334 y(und)387 336 y(\177)386 334 y(ub)q(erlegen)h(Sie)h(dann,)g(w)o (as)g(das)h(f)1041 336 y(\177)1040 334 y(ur)f(die)f(Eigenr)1329 336 y(\177)1329 334 y(aume)f(v)o(on)i Fe(f)26 b Ff(und)21 b Fe(f)1741 316 y Fb(ad)284 394 y Ff(b)q(edeutet.\))1215 b(\(5\))162 509 y(Abgab)q(e:)17 b(Mitt)o(w)o(o)q(c)o(h,)f(11.7.2001,)i (9.00)g(Uhr,)1039 498 y(\177)1033 509 y(Ubungsk)1220 511 y(\177)1220 509 y(asten)g(im)d(1.)i(Sto)q(c)o(k)g(des)g(Ma-)162 569 y(thematisc)o(hen)d(Instituts.)p eop %%Trailer end userdict /end-hook known{end-hook}if %%EOF