%!PS-Adobe-2.0 %%Creator: dvipsk 5.58f Copyright 1986, 1994 Radical Eye Software %%Title: SS01Ub2.dvi %%Pages: 2 %%PageOrder: Ascend %%BoundingBox: 0 0 596 842 %%EndComments %DVIPSCommandLine: dvips SS01Ub2.dvi %DVIPSParameters: dpi=300, compressed, comments removed %DVIPSSource: TeX output 2001.05.02:0941 %%BeginProcSet: texc.pro /TeXDict 250 dict def TeXDict begin /N{def}def /B{bind def}N /S{exch}N /X{S N}B /TR{translate}N /isls false N /vsize 11 72 mul N /hsize 8.5 72 mul N /landplus90{false}def /@rigin{isls{[0 landplus90{1 -1}{-1 1} ifelse 0 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[matrix currentmatrix{dup dup round sub abs 0.00001 lt{round}if} forall round exch round exch]setmatrix}N /@landscape{/isls true N}B /@manualfeed{statusdict /manualfeed true put}B /@copies{/#copies X}B /FMat[1 0 0 -1 0 0]N /FBB[0 0 0 0]N /nn 0 N /IE 0 N /ctr 0 N /df-tail{ /nn 8 dict N nn begin /FontType 3 N /FontMatrix fntrx N /FontBBox FBB N string /base X array /BitMaps X /BuildChar{CharBuilder}N /Encoding IE N end dup{/foo setfont}2 array copy cvx N load 0 nn put /ctr 0 N[}B /df{ /sf 1 N /fntrx FMat N df-tail}B /dfs{div /sf X /fntrx[sf 0 0 sf neg 0 0] N df-tail}B /E{pop nn dup definefont setfont}B /ch-width{ch-data dup length 5 sub get}B /ch-height{ch-data dup length 4 sub get}B /ch-xoff{ 128 ch-data dup length 3 sub get sub}B /ch-yoff{ch-data dup length 2 sub get 127 sub}B /ch-dx{ch-data dup length 1 sub get}B /ch-image{ch-data dup type /stringtype ne{ctr get /ctr ctr 1 add N}if}B /id 0 N /rw 0 N /rc 0 N /gp 0 N /cp 0 N /G 0 N /sf 0 N /CharBuilder{save 3 1 roll S dup /base get 2 index get S /BitMaps get S get /ch-data X pop /ctr 0 N ch-dx 0 ch-xoff ch-yoff ch-height sub ch-xoff ch-width add ch-yoff setcachedevice ch-width ch-height true[1 0 0 -1 -.1 ch-xoff sub ch-yoff .1 sub]/id ch-image N /rw ch-width 7 add 8 idiv string N /rc 0 N /gp 0 N /cp 0 N{rc 0 ne{rc 1 sub /rc X rw}{G}ifelse}imagemask restore}B /G{{id gp get /gp gp 1 add N dup 18 mod S 18 idiv pl S get exec}loop}B /adv{cp add /cp X}B /chg{rw cp id gp 4 index getinterval putinterval dup gp add /gp X adv}B /nd{/cp 0 N rw exit}B /lsh{rw cp 2 copy get dup 0 eq{pop 1}{ dup 255 eq{pop 254}{dup dup add 255 and S 1 and or}ifelse}ifelse put 1 adv}B /rsh{rw cp 2 copy get dup 0 eq{pop 128}{dup 255 eq{pop 127}{dup 2 idiv S 128 and or}ifelse}ifelse put 1 adv}B /clr{rw cp 2 index string putinterval adv}B /set{rw cp fillstr 0 4 index getinterval putinterval adv}B /fillstr 18 string 0 1 17{2 copy 255 put pop}for N /pl[{adv 1 chg} {adv 1 chg nd}{1 add chg}{1 add chg nd}{adv lsh}{adv lsh nd}{adv rsh}{ adv rsh nd}{1 add adv}{/rc X nd}{1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]dup{bind pop}forall N /D{/cc X dup type /stringtype ne{] }if nn /base get cc ctr put nn /BitMaps get S ctr S sf 1 ne{dup dup length 1 sub dup 2 index S get sf div put}if put /ctr ctr 1 add N}B /I{ cc 1 add D}B /bop{userdict /bop-hook known{bop-hook}if /SI save N @rigin 0 0 moveto /V matrix currentmatrix dup 1 get dup mul exch 0 get dup mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N /eop{SI restore userdict /eop-hook known{eop-hook}if showpage}N /@start{userdict /start-hook known{start-hook}if pop /VResolution X /Resolution X 1000 div /DVImag X /IE 256 array N 0 1 255{IE S 1 string dup 0 3 index put cvn put}for 65781.76 div /vsize X 65781.76 div /hsize X}N /p{show}N /RMat[1 0 0 -1 0 0]N /BDot 260 string N /rulex 0 N /ruley 0 N /v{/ruley X /rulex X V}B /V {}B /RV statusdict begin /product where{pop product dup length 7 ge{0 7 getinterval dup(Display)eq exch 0 4 getinterval(NeXT)eq or}{pop false} ifelse}{false}ifelse end{{gsave TR -.1 .1 TR 1 1 scale rulex ruley false RMat{BDot}imagemask grestore}}{{gsave TR -.1 .1 TR rulex ruley scale 1 1 false RMat{BDot}imagemask grestore}}ifelse B /QV{gsave newpath transform round exch round exch itransform moveto rulex 0 rlineto 0 ruley neg rlineto rulex neg 0 rlineto fill grestore}B /a{moveto}B /delta 0 N /tail {dup /delta X 0 rmoveto}B /M{S p delta add tail}B /b{S p tail}B /c{-4 M} B /d{-3 M}B /e{-2 M}B /f{-1 M}B /g{0 M}B /h{1 M}B /i{2 M}B /j{3 M}B /k{ 4 M}B /w{0 rmoveto}B /l{p -4 w}B /m{p -3 w}B /n{p -2 w}B /o{p -1 w}B /q{ p 1 w}B /r{p 2 w}B /s{p 3 w}B /t{p 4 w}B /x{0 S rmoveto}B /y{3 2 roll p a}B /bos{/SS save N}B /eos{SS restore}B end %%EndProcSet TeXDict begin 39158280 55380996 1000 300 300 (SS01Ub2.dvi) @start /Fa 1 15 df14 D E /Fb 7 120 df<126012F0A212701210A21220A21240A2 040A7D830A>59 D<130E13131337133613301360A4EA03FCEA00C0A5EA0180A5EA0300A4 1202126612E65A1278101D7E9611>102 D<13E2EA031EEA060E120C130C1218A3EA1018 A3EA1838EA08F0EA07301200A2EA606012E0EAC1C0EA7F000F14808D11>I<1203138013 00C7FCA6121C12241246A25A120C5AA31231A21232A2121C09177F960C>105 D110 D118 D<381C0204382606061246A238860C04120CA338181808A214101208380C 2C203803C7C0170E7F8D19>I E /Fc 6 51 df<120112021204120C1218A21230A21270 1260A312E0AA1260A312701230A21218A2120C12041202120108227D980E>40 D<12801240122012301218A2120CA2120E1206A31207AA1206A3120E120CA21218A21230 12201240128008227E980E>I<1330ABB512FCA238003000AB16187E931B>43 D48 D<1206120E12FE120EB1EAFFE00B157D9412>II E /Fd 12 104 df0 D<6C13026C13060060130C6C13186C13306C13606C13C03803018038018300EA00C6136C 1338A2136C13C6EA018338030180380600C048136048133048131848130C481306481302 1718789727>2 D8 D14 D24 D<90380FFFFC137FD801F0C7FCEA03800006C8 FC5A5A5AA25AA25AA81260A27EA27E7E7E6C7EEA01E039007FFFFC131F1E1E7C9A27>26 D<4B7EA46F7EA2166082A2161C8282B812E0A2C9EA0700160E5E1630A25E5EA24B5AA42B 1A7D9832>33 D50 D<12C0A812E0A212C0A803127D9400>55 D92 D 102 D<12F8120FEA03806C7E6C7EB113707F131EEB03C0EB1E0013385B5BB1485A485A00 0FC7FC12F812317DA419>I E /Fe 19 120 df<127012F8A3127005057C840E>58 D<127012F812FCA212741204A41208A21210A212201240060F7C840E>I<14801301A2EB 0300A31306A35BA35BA35BA35BA35BA3485AA448C7FCA31206A35AA35AA35AA35AA35AA3 11317DA418>61 D<8114018114031407A2140BA2141314331423EC43E0A21481EB0101A2 1302A213041308A201107FEB1FFFEB20005BA25BA248C7FC120281481478120C001E14F8 3AFF800FFF8021237EA225>65 D<90B512F090380F001E81ED0780011E1303A216C0A249 14801507A2ED0F0049131E5D5DEC03E090B55A9038F000F0157881485A151C151EA24848 5BA35D485A5D4A5AEC0380000F010FC7FCB512F822227DA125>I<027F1340903903C0C0 8090380E00214913130170130F49EB0700485A485A48C7FC481402120E121E5A5D4891C7 FCA35AA4EC3FFF48EB00F0A34A5A7EA212704A5A7E001813076C13096CEB1180380380E0 D8007FC8FC22247DA226>71 D76 D<3A3FFE01FF803A03C0003C001530151048485BA448C75AA4001E5CA44849C7FCA44813 02A400705B12F05C12705C5C6C5B5C6C48C8FCEA0606EA01F821237DA121>85 DI<3BFFF03FFC03FF3B1F0003E000786C4A137017601740A217800207EB0100A2020B13 0214135E14236F5A02415BA202815B1381000701015B13825E018413E193C7FC018813E2 A2019013E413A015E801C013F86E5A495BA290C75A120600025C30237DA12E>I<141EEC 638014C71301ECC30014801303A449C7FCA4EBFFF8010EC7FCA65BA55BA55BA4136013E0 A25BA21271EAF18090C8FC1262123C192D7EA218>102 DI<13E0A21201EA00C0 1300A9121E1223EA4380A21283EA8700A21207120EA35AA3EA38201340127013801230EA 3100121E0B227EA111>105 D<383C07C038461860384720303887403813801300A2000E 1370A44813E0A2EB01C014C1003813C2EB03821484130100701388383000F018157E941D >110 D<3803C0F03804631CEB740EEA0878EB7007A2140FEA00E0A43801C01EA3143C38 038038A2EBC07014E038072180EB1E0090C7FCA2120EA45AA3B47E181F819418>112 DI<001E13 1800231338EA438014701283A2EA8700000713E0120EA3381C01C0A314C2EB0384A21307 380C0988EA0E113803E0F017157E941C>117 D<001E13E0EA2301384381F01380008313 701430EA870000071320120EA3481340A21480A2EB0100A21302EA0C04EA0618EA03E014 157E9418>I<001EEB181C0023EB383CD84380133EEC701E0083140E1506EA87000007EB E004120EA3391C01C008A31510A2152001031340EA0C0439070861803901F03E001F157E 9423>I E /Ff 62 128 df12 D<90380FC07F90397031C080 9039E00B00402601801E13E00003EB3E013807003C91381C00C01600A7B712E03907001C 011500B23A7FF1FFCFFE272380A229>14 D22 D<137CEA018738030380000713C0EA0601000E13E0A514C0EB0380A2EB0E00EAFE38EA0E 06EB0380EB01C0A2EB00E014F0A214701478A61470A2EB70E014C0EB718038FE1F001523 7FA218>25 D<132013401380EA01005A12061204120CA25AA25AA312701260A312E0AE12 60A312701230A37EA27EA2120412067E7EEA0080134013200B327CA413>40 D<7E12407E7E12187E12041206A27EA2EA0180A313C01200A313E0AE13C0A312011380A3 EA0300A21206A21204120C5A12105A5A5A0B327DA413>I<497EB0B612FEA23900018000 B01F227D9C26>43 D<127012F812FCA212741204A41208A21210A212201240060F7C840E >II<127012F8A3127005057C840E>I48 D<13801203120F12F31203B3A9EA07C0EAFFFE0F217CA0 18>III<1303A25BA25B 1317A21327136713471387120113071202120612041208A212101220A2124012C0B512F8 38000700A7EB0F80EB7FF015217FA018>I<00101380381E0700EA1FFF5B13F8EA17E000 10C7FCA6EA11F8EA120CEA1C07381803801210380001C0A214E0A4127012F0A200E013C0 1280EA4003148038200700EA1006EA0C1CEA03F013227EA018>I<137EEA01C138030080 380601C0EA0C03121C381801800038C7FCA212781270A2EAF0F8EAF30CEAF4067F00F813 80EB01C012F014E0A51270A3003813C0A238180380001C1300EA0C06EA070CEA01F01322 7EA018>I57 D<127012F8A312701200AB127012F8A3127005157C940E>I< B612FEA2C9FCA8B612FEA21F0C7D9126>61 D<497EA3497EA3EB05E0A2EB09F01308A2EB 1078A3497EA3497EA2EBC01F497EA248B51280EB0007A20002EB03C0A348EB01E0A348EB 00F0121C003EEB01F839FF800FFF20237EA225>65 DI69 DI<903807F00890383C0C18EBE0023901C001B839038000F848C712 78481438121E15185AA2007C14081278A200F81400A7EC1FFF0078EB00F81578127C123C A27EA27E7E6C6C13B86C7E3900E0031890383C0C08903807F00020247DA226>I<39FFFC 3FFF390FC003F039078001E0AE90B5FCEB8001AF390FC003F039FFFC3FFF20227EA125> II77 D80 D82 D<3803F020380C0C60EA1802383001E0EA70 000060136012E0A21420A36C1300A21278127FEA3FF0EA1FFE6C7E0003138038003FC0EB 07E01301EB00F0A214707EA46C1360A26C13C07E38C8018038C60700EA81FC14247DA21B >I<007FB512F839780780780060141800401408A300C0140C00801404A400001400B3A3 497E3801FFFE1E227EA123>I<39FFFC07FF390FC000F86C4813701520B3A5000314407F A2000114806C7E9038600100EB3006EB1C08EB03F020237EA125>II<387FFFFE387E003E0078133C007013781260004013F012C0EB01E0388003C0A2EB07 801200EB0F005B131E5BA25BA25B1201EBE001EA03C0A2EA07801403EA0F00001E1302A2 481306140E48131E00F8137EB512FE18227DA11E>90 D97 D<120E12FE121E120EAB131FEB61C0EB8060380F0030000E1338143C14 1C141EA7141C143C1438000F1370380C8060EB41C038083F0017237FA21B>II<14E0130F13011300ABEA01F8EA0704EA0C02EA1C01EA38 001278127012F0A7127012781238EA1801EA0C0238070CF03801F0FE17237EA21B>II<133E13E33801C780EA03871307 48C7FCA9EAFFF80007C7FCB27FEA7FF0112380A20F>I<14703803F198380E1E18EA1C0E 38380700A200781380A400381300A2EA1C0EEA1E1CEA33F00020C7FCA212301238EA3FFE 381FFFC06C13E0383000F0481330481318A400601330A2003813E0380E03803803FE0015 217F9518>I<120E12FE121E120EABEB1F80EB60C0EB80E0380F0070A2120EAF38FFE7FF 18237FA21B>I<121C123EA3121CC7FCA8120E127E121E120EB1EAFFC00A227FA10E>I<13 E0EA01F0A3EA00E01300A81370EA07F012001370B3A51260EAF0E013C0EA6180EA3F000C 2C83A10F>I<120E12FE121E120EABEB03FCEB01F014C01480EB02005B5B5B133813F8EA 0F1CEA0E1E130E7F1480EB03C0130114E0EB00F014F838FFE3FE17237FA21A>I<120E12 FE121E120EB3ADEAFFE00B237FA20E>I<390E1FC07F3AFE60E183803A1E807201C03A0F 003C00E0A2000E1338AF3AFFE3FF8FFE27157F942A>I<380E1F8038FE60C0381E80E038 0F0070A2120EAF38FFE7FF18157F941B>III<3801F820380704 60EA0E02EA1C01003813E0EA7800A25AA71278A2EA3801121CEA0C02EA070CEA01F0C7FC A9EB0FFE171F7E941A>III<1202A41206A312 0E121E123EEAFFFCEA0E00AB1304A6EA07081203EA01F00E1F7F9E13>I<000E137038FE 07F0EA1E00000E1370AD14F0A238060170380382783800FC7F18157F941B>I<38FF80FE 381E00781430000E1320A26C1340A2EB80C000031380A23801C100A2EA00E2A31374A213 38A3131017157F941A>I<39FF8FF87F393E01E03C001CEBC01814E0000E1410EB026014 7000071420EB04301438D803841340EB8818141CD801C81380EBD00C140E3900F00F0049 7EA2EB6006EB400220157F9423>I<38FF83FE381F00F0000E13C06C1380EB8100EA0383 EA01C2EA00E41378A21338133C134E138FEA0187EB0380380201C0000413E0EA0C00383E 01F038FF03FE17157F941A>I<38FF80FE381E00781430000E1320A26C1340A2EB80C000 031380A23801C100A2EA00E2A31374A21338A31310A25BA35B12F05B12F10043C7FC123C 171F7F941A>I<383FFFC038380380EA300700201300EA600EEA401C133C1338C65A5B12 015B38038040EA07005A000E13C04813805AEA7801EA7007B5FC12157F9416>I127 D E /Fg 21 122 df65 D<91387FE003903907FFFC07 011FEBFF0F90397FF00F9F9039FF0001FFD801FC7F484880484880484880485A82485A82 127FA290CAFC5AA892B512F87E7F03001300123FA26C7EA26C7E6C7E6C7E6C7E6CB45B90 387FF007011FB5129F0107EBFE0F9039007FF0032D297CA835>71 D73 D76 D<3803FF80000F13F0381F01FC383F80FE147F801580EA1F00C7FCA4EB3FFF3801FC3FEA 0FE0EA1F80EA3F00127E5AA4145F007E13DF393F839FFC381FFE0F3803FC031E1B7E9A21 >97 DIIII<9038FF80F00003EBE3F8390FC1FE1C391F007C7C 48137E003EEB3E10007EEB3F00A6003E133E003F137E6C137C380FC1F8380BFFE0001813 8090C8FC1238A2123C383FFFF814FF6C14C06C14E06C14F0121F383C0007007CEB01F848 1300A4007CEB01F0A2003FEB07E0390FC01F806CB5120038007FF01E287E9A22>103 DI<1207EA0F80EA1FC0EA3FE0A3EA1FC0EA0F80EA0700C7 FCA7EAFFE0A3120FB3A3EAFFFEA30F2B7EAA12>I108 D<26FFC07FEB1FC0903AC1FFC07FF0903AC307E0C1F8D80FC49038F101FC90 39C803F20001D801FE7F01D05BA201E05BB03CFFFE3FFF8FFFE0A3331B7D9A38>I<38FF C07E9038C1FF809038C30FC0D80FC413E0EBC80701D813F013D0A213E0B039FFFE3FFFA3 201B7D9A25>II<38FFC1F0EBC7FCEBC63E380FCC7F13D813D0A2EBF03EEB E000B0B5FCA3181B7F9A1B>114 D<3803FE30380FFFF0EA3E03EA7800127000F01370A2 7E00FE1300EAFFE06CB4FC14C06C13E06C13F0000713F8C6FCEB07FC130000E0137C143C 7E14387E6C137038FF01E038E7FFC000C11300161B7E9A1B>I<13E0A41201A31203A212 07120F381FFFE0B5FCA2380FE000AD1470A73807F0E0000313C03801FF8038007F001426 7FA51A>I<39FFE07FF0A3000F1307B2140FA2000713173903F067FF3801FFC738007F87 201B7D9A25>I<39FFFC03FFA3390FF000F0000714E07F0003EB01C0A2EBFC0300011480 EBFE070000140013FFEB7F0EA2149EEB3F9C14FC6D5AA26D5AA36D5AA26D5AA25CA21307 003890C7FCEA7C0FEAFE0E131E131C5BEA74F0EA3FE0EA0F8020277F9A23>121 D E /Fh 29 128 df<1238127C12FEA3127C123807077C8610>46 D<13FE3807FFC0380F83E0381F01F0383E00F8A248137CA312FC147EAD007C137CA36C13 F8A2381F01F0380F83E03807FFC03800FE0017207E9F1C>48 D<13181378EA01F812FFA2 1201B3A7387FFFE0A213207C9F1C>II66 D68 D73 D77 D80 D<3801FE023807FF86381F01FE383C007E007C13 1E0078130EA200F81306A27E1400B4FC13E06CB4FC14C06C13F06C13F86C13FC000313FE EA003F1303EB007F143FA200C0131FA36C131EA26C133C12FCB413F838C7FFE000801380 18227DA11F>83 D85 D97 D 99 DI<13FE3807FF8038 0F87C0381E01E0003E13F0EA7C0014F812FCA2B5FCA200FCC7FCA3127CA2127E003E1318 6C1330380FC0703803FFC0C6130015167E951A>II<3801FE0F3907FFBF 80380F87C7381F03E7391E01E000003E7FA5001E5BEA1F03380F87C0EBFF80D809FEC7FC 0018C8FCA2121C381FFFE06C13F86C13FE001F7F383C003F48EB0F80481307A40078EB0F 006C131E001F137C6CB45A000113C019217F951C>II<121C123E127FA3123E121CC7 FCA7B4FCA2121FB2EAFFE0A20B247EA310>I 108 D<3AFF07F007F090391FFC1FFC3A1F303E303E01401340496C487EA201001300AE3B FFE0FFE0FFE0A22B167E9530>I<38FF07E0EB1FF8381F307CEB403CEB803EA21300AE39 FFE1FFC0A21A167E951F>I<13FE3807FFC0380F83E0381E00F0003E13F848137CA300FC 137EA7007C137CA26C13F8381F01F0380F83E03807FFC03800FE0017167E951C>I114 DI<487EA412 03A21207A2120F123FB5FCA2EA0F80ABEB8180A5EB8300EA07C3EA03FEEA00F811207F9F 16>I<38FF01FEA2381F003EAF147E14FE380F81BE3907FF3FC0EA01FC1A167E951F>I<39 FFE01FE0A2391F800700000F1306EBC00E0007130C13E000035BA26C6C5AA26C6C5AA2EB 7CC0A2137F6D5AA26DC7FCA2130EA21B167F951E>I127 D E end %%EndProlog %%BeginSetup %%Feature: *Resolution 300dpi TeXDict begin %%PaperSize: a4 %%EndSetup %%Page: 1 1 1 0 bop 162 274 a Fh(Mathematisc)n(hes)17 b(Institut)826 b(SS)19 b(2001)162 334 y(der)f(Univ)n(ersit)487 336 y(\177)487 334 y(at)g(M)609 336 y(\177)607 334 y(unc)n(hen)828 b(Blatt)18 b(2)162 394 y(Prof.)g(Dr.)h(B.)f(P)n(areigis)293 644 y Fg(Lineare)23 b(Algebra)g(und)h(analytisc)n(he)f(Geometrie)g(I)r(I) 222 751 y Ff(1.)h(Seien)19 b Fe(U)26 b Ff(und)21 b Fe(W)27 b Ff(Un)o(terr)791 753 y(\177)791 751 y(aume)19 b(des)h(V)l (ektorraumes)f Fe(V)11 b Ff(.)20 b(Es)h(gelte)f Fe(W)28 b Fd(\032)21 b Fe(U)5 b Ff(.)284 812 y(Zeigen)11 b(Sie,)h(da\031)h Fe(U)r(=W)20 b Ff(ein)12 b(Un)o(terraum)e(des)j(F)l(aktorraumes)e Fe(V)5 b(=W)21 b Ff(ist.)12 b(Zeigen)284 872 y(Sie)j(den)i(2.)f (Isomorphiesatz)789 976 y(\()p Fe(V)5 b(=W)i Ff(\))p Fe(=)p Ff(\()p Fe(U)r(=W)g Ff(\))1127 963 y Fd(\030)1127 978 y Ff(=)1179 976 y Fe(V)e(=U)284 1081 y Ff(indem)19 b(Sie)h(den)h(Homomorphiesatz)d(auf)k(eine)e(k)m(anonisc)o(he)g (Abbildung)h(v)o(on)284 1141 y Fe(V)5 b(=W)24 b Ff(nac)o(h)16 b Fe(V)5 b(=U)23 b Ff(an)o(w)o(enden.)856 b(\(6\))222 1241 y(2.)24 b(Sei)17 b(\()p Fe(V)s(;)8 b(A)p Ff(\))18 b(ein)f(a\016ner)h(Raum.)f Fe(GL)p Ff(\()p Fe(V)12 b Ff(\))18 b(sei)g(die)f(Grupp)q(e)i(der)f(Automorphis-)284 1302 y(men)e(v)o(on)h Fe(V)11 b Ff(.)17 b(Ist)g Fe(p)651 1309 y Fc(0)687 1302 y Fd(2)f Fe(A)h Ff(fest)g(gegeb)q(en,)g(so)h(sei)f (f)1231 1304 y(\177)1230 1302 y(ur)g Fe(v)g Fd(2)f Fe(V)28 b Ff(und)18 b Fe(f)j Fd(2)16 b Fe(GL)p Ff(\()p Fe(V)c Ff(\))284 1362 y(die)j(Abbildung)h Fe(A)639 1369 y Fb(v)q(;f)706 1362 y Ff(de\014niert)f(durc)o(h)638 1466 y Fe(A)675 1473 y Fb(v)q(;f)739 1466 y Ff(:)e Fe(A)h Fd(!)f Fe(A;)8 b(p)14 b Fd(7!)g Fe(v)e Ff(+)f Fe(f)5 b Ff(\()p Fe(p)12 b Fd(\000)f Fe(p)1284 1473 y Fc(0)1304 1466 y Ff(\))g(+)g Fe(p)1407 1473 y Fc(0)304 1571 y Ff(\(a\))25 b(Zeigen)12 b(Sie,)g(da\031)i(jede)e(A\016nit)956 1573 y(\177)956 1571 y(at)g(v)o(on)g(der)h(F)l(orm)f Fe(A)1342 1578 y Fb(v)q(;f)1405 1571 y Ff(ist,)g(und)h(da\031)h(dab)q(ei)391 1631 y Fe(v)k Ff(und)e Fe(f)22 b Ff(eindeutig)15 b(b)q(estimm)o(t)e (sind.)j(Zeigen)g(Sie)f(w)o(eiter:)827 1736 y Fe(A)864 1743 y Fb(v)q(;f)926 1736 y Fd(\016)c Fe(A)999 1743 y Fb(w)q(;g)1068 1736 y Ff(=)j Fe(A)1157 1743 y Fb(v)q Fc(+)p Fb(f)t Fc(\()p Fb(w)q Fc(\))p Fb(;f)t Fa(\016)p Fb(g)302 1850 y Ff(\(b\))24 b(Zeigen)16 b(Sie,)f(da\031)i(durc)o(h)f (die)f(V)l(erkn)1073 1852 y(\177)1072 1850 y(upfung)605 1954 y(\()p Fe(V)23 b Fd(\002)10 b Fe(GL)p Ff(\()p Fe(V)i Ff(\)\))f Fd(\002)g Ff(\()p Fe(V)22 b Fd(\002)11 b Fe(GL)p Ff(\()p Fe(V)h Ff(\)\))i Fd(!)g Fe(V)22 b Fd(\002)11 b Fe(GL)p Ff(\()p Fe(V)h Ff(\))696 2027 y(\(\()p Fe(v)r(;)c(f)d Ff(\))p Fe(;)j Ff(\()p Fe(w)q(;)g(g)r Ff(\))o(\))14 b Fd(7!)g Ff(\()p Fe(v)e Ff(+)f Fe(f)5 b Ff(\()p Fe(w)q Ff(\))p Fe(;)j(f)17 b Fd(\016)11 b Fe(g)r Ff(\)\))391 2132 y(auf)16 b Fe(V)k Fd(\002)9 b Fe(GL)p Ff(\()p Fe(V)j Ff(\))j(eine)f(Grupp)q(enstruktur)i(eingef)1336 2134 y(\177)1335 2132 y(uhrt)e(wird.)h(Zeigen)f(Sie)391 2192 y(w)o(eiter,)h(da\031)i(die)e(Abbildung)703 2296 y Fe(V)23 b Fd(\002)10 b Fe(GL)p Ff(\()p Fe(V)i Ff(\))i Fd(!)g Ff(Bij)o(\()p Fe(A)p Ff(\))p Fe(;)8 b Ff(\()p Fe(v)r(;)g(f)d Ff(\))13 b Fd(7!)g Fe(A)1418 2303 y Fb(v)q(;f)391 2401 y Ff(ein)j(injektiv)o(er)d(Grupp)q(enhomomorphism)o(us)i(ist.)1718 2501 y(\(6\))p eop %%Page: 2 2 2 1 bop 222 274 a Ff(3.)24 b(Sei)f(\()p Fe(V)s(;)8 b(A)p Ff(\))23 b(ein)f(a\016ner)i(Raum)e(mit)g Fe(n)p Ff(-dimensionalem)e(T)l (ranslationsraum.)284 334 y(Zeigen)j(Sie,)f(da\031)j(f)661 336 y(\177)660 334 y(ur)f(Punkte)f Fe(p)931 341 y Fc(0)951 334 y Fe(;)8 b(:)g(:)g(:)16 b(;)8 b(p)1093 341 y Fb(n)1141 334 y Ff(folgende)23 b(Aussagen)1563 336 y(\177)1563 334 y(aquiv)m(alen)o(t)284 394 y(sind:)304 496 y(\(a\))i Fe(p)415 503 y Fc(0)435 496 y Fe(;)8 b(:)g(:)g(:)16 b(;)8 b(p)577 503 y Fb(n)617 496 y Ff(bilden)15 b(ein)h(a\016nes)g (Bezugssystem)f(v)o(on)h Fe(A)p Ff(.)302 577 y(\(b\))24 b(F)424 579 y(\177)423 577 y(ur)12 b(jeden)g(a\016nen)h(Raum)e(\()p Fe(W)o(;)d(B)s Ff(\))k(und)h(je)f Fe(n)s Ff(+)s(1)h(Punkte)f Fe(q)1498 584 y Fc(0)1518 577 y Fe(;)c(:)g(:)g(:)15 b(;)8 b(q)1657 584 y Fb(n)1694 577 y Fd(2)14 b Fe(B)391 637 y Ff(existiert)j(genau)i(eine)f(a\016ne)h(Abbildung)f Fe(g)i Ff(:)d Fe(A)h Fd(!)f Fe(B)s Ff(,)h(so)i(da\031)f(f)1644 639 y(\177)1643 637 y(ur)g(alle)391 697 y Fe(i)14 b Ff(=)f(0)p Fe(;)8 b(:)g(:)g(:)16 b(;)8 b(n)17 b Ff(die)e(Gleic)o(h)o(ung)g Fe(g)r Ff(\()p Fe(p)1035 704 y Fb(i)1050 697 y Ff(\))f(=)f Fe(q)1156 704 y Fb(i)1186 697 y Ff(gilt.)1718 799 y(\(4\))222 901 y(4.)44 b(\(a\))25 b(Sind)17 b Fe(U)536 908 y Fc(1)573 901 y Ff(und)g Fe(U)704 908 y Fc(2)741 901 y Ff(Un)o(terr)883 903 y(\177)883 901 y(aume)e(des)i(V)l(ektorraumes)e Fe(V)c Ff(,)17 b(so)h(hei\031t)e Fe(V)28 b Ff(die)391 961 y(innere)14 b(direkte)f(Summe)f(v)o(on)j Fe(U)994 968 y Fc(1)1028 961 y Ff(und)g Fe(U)1157 968 y Fc(2)1177 961 y Ff(,)g(falls)f (einerseits)f Fe(V)25 b Ff(=)14 b Fe(U)1654 968 y Fc(1)1682 961 y Ff(+)8 b Fe(U)1761 968 y Fc(2)391 1021 y Ff(ist)18 b(und)g(andererseits)f Fe(U)863 1028 y Fc(1)895 1021 y Fd(\\)12 b Fe(U)973 1028 y Fc(2)1009 1021 y Ff(=)17 b Fd(f)p Ff(0)p Fd(g)g Ff(gilt.)g(Zeigen)g(Sie,)g(da\031)h(in)g(dieser) 391 1081 y(Situation)e(die)g(Abbildung)853 1191 y Fe(f)j Ff(:)13 b Fe(U)956 1198 y Fc(1)990 1191 y Fd(!)g Fe(V)5 b(=U)1143 1198 y Fc(2)1165 1191 y Fe(;)j(u)13 b Fd(7!)k Ff(\026)-27 b Fe(u)391 1301 y Ff(ein)16 b(Isomorphism)o(us)e(v)o(on)i (V)l(ektorr)1058 1303 y(\177)1058 1301 y(aumen)e(ist.)302 1382 y(\(b\))24 b(Sei)15 b Fe(U)22 b Ff(ein)15 b(Un)o(terraum)f(des)i (V)l(ektorraumes)e Fe(V)e Ff(.)j(Zeigen)g(Sie,)g(da\031)i Fe(V)27 b Ff(iso-)391 1443 y(morph)16 b(zur)630 1445 y(\177)630 1443 y(au\031eren)g(direkten)f(Summe)f Fe(U)i Fd(\010)11 b Fe(V)5 b(=U)23 b Ff(ist.)264 b(\(4\))162 1557 y(Abgab)q(e:)20 b(Mitt)o(w)o(o)q(c)o(h,)e(9.5.2001,)i(9.00)g(Uhr,) 1027 1546 y(\177)1021 1557 y(Ubungsk)1208 1559 y(\177)1208 1557 y(asten)g(im)e(1.)h(Sto)q(c)o(k)h(des)f(Ma-)162 1617 y(thematisc)o(hen)14 b(Instituts.)p eop %%Trailer end userdict /end-hook known{end-hook}if %%EOF