; TeX output 2001.01.08:1545x='N cmbx12MathematischesInstitutWS2000/2001'derUniversitatM`unchencBlatt9'Prof.Dr.B.Pareigis9-ۍI׻Nff cmbx12LineareffAlgebraundanalytischeGeometrieIs/|lXQ cmr1233.D_Sei~g cmmi12VeinVVektorraumundU{undW ]zwreiUntervektorryaumevonVp,soD_dasicrhjederVVektorvË!", cmsy102URVaufeindeutigeWeisealsSummeҿvË=URu+wD_mitۿuUR2U]undw2Wdarstellenlyat.SeiB2cmmi8U 7eineBasisvronU]undBWD_eineԬBasisvronWƹ.ZeigenSie,daBU \}BW =UR;istunddaBU[}BWD_eineBasisvronVist.(5)/|l34.D_Seivf:BV!VteinEndomorphismruseinesendlichdimensionalenVVek-D_torraums."U1<XVxseieinUnrtervektorraum"vonVp,dermitdemBildD_vron꨿f2nurdenNullvektorgemeinsamhat.ZeigenSie:dimӥ(Ke[W(fG))URdim(U@)|(6)/|l35.D_De nierePfQ:UR  msbm10R |{Ycmr82V!R 2;(x;yn9)UR7!(x=3+2y=3;x=3+2y=3)IU(a)^9qZeigenSie,daffQ=URf2ist.H(b)^9qBestimmenSieKernundBildvronfG.ZeichnenSieKe (fG)und^9qBii(fG)[ineinKoSordinatenkreuzeinundbescrhreibenSieanhand^9qdiesesBildesdieAbbildungfG.|(4)/|l36.D_Sei KeinKyorpSermitq%YElemenrten.ZeigenSie,dadieZahlderBasis-D_familienvronKܞ2n odurch(qn9 n11)(qn9 nqn9)(q n1q 2.=):::(q n1q nK cmsy81)D_gegebSenist.*<(5)t'AbgabSe:{Mittrwoch,{17.1.2001,12.00Uhr,pxUbungskyastenim1.StocrkdesMa-'thematiscrhenInstituts.*;x  msbm10K cmsy8!", cmsy102cmmi8g cmmi12|{Ycmr8Nff cmbx12N cmbx12XQ cmr12