; TeX output 2001.06.04:13307 VXl*N cmbx12ONٚLIEALGEBRASINTHECATEGORYٚOFY*YETTER-DRINFELDٚMODULESK`y cmr10BODOUUP*AREIGIS* #Z- cmcsc10Abstract.AEThecategoryofY*etter-DrinfeldmoGdules !", cmsy10Y}D^ 0ercmmi7KbK overa ZHopfalgebra b> cmmi10Kb6(withbijektiveantipGodeovera eldkP)isabraidedZmonoidalcategory*.ĞIfH뚲isaHopfalgebrainthiscategorythenZtheΈprimitiveelementsofHdonotformanordinaryLiealgebraZanymore.<0W*eintroGducethenotionofa(generalized)LiealgebrainZसY}D^GKbK csuchݓthatthesetofprimitiveelementsPc(H)isaLiealgebraZinqthissense.AlsotheY*etter-DrinfeldmoGduleofderivqationsofZanalgebraAinY}D^GKbK ϲisaLiealgebra.F*urthermoreforeachLie *ZalgebrainY}D^GKbK XthereisauniversalenvelopingalgebrawhichturnsZoutUUtobGeaHopfalgebrainY}D^KbKв. f': cmti10Keywor}'ds:Nbraidedcategory*,߅Yetter-DrinfeldmoGdule,߅Liealge-Zbra,UUuniversalenvelopingalgebra.f1991|MathematicsSubje}'ctClassi cation|16W30,17B70,16W55,Z16S30,UU16S40ãxBXQ cmr121.ɚ+- cmcsc10IntroductionBहTheconceptofHopfalgebrasinbraidedcategorieshasturnedout6toxKbSevreryimportanrtinthecontextofunderstandingthestructure6ofYquanrtumgroupsandnoncommutativenoncoScommutativeHopfal-6gebras.InparticularthewrorkofRadford[7],Majid[3],Lusztig[2],6andSommerh auser[8]shorwtheimpSortanceofthedecompositionof6quanrtum[groupsintoaproSductofordinaryHopfalgebrasandofHopf6algebrasinbraidedcategories.BSincejbrytheworkofYVetter[9]Hopfalgebrasinbraidedcategories6thatdarede nedonanunderlying( nite-dimensional)vrectorspacecan6bSeconsideredasHopfalgebrasinsomecategoryofYVetter-Drinfeld6moSdules,(wrewillrestrictourattentiontoHopfalgebras.g cmmi12H]inacategory6ofWYVetter-DrinfeldmoSdules1!", cmsy10YD2UV/2cmmi8KRAK aoorverWaHopfalgebraKwithbijectivre6anrtipSode.BThereO+aretrwoO+structurallyinrterestingandimpSortantconceptsthat6survivreK inthisgeneralizedsituation,jtheconceptofgroup-likeelements6टԉff< B Date[:UUMarch11,1996. u 1991MathematicsSubje}'ctClassi cation.Primary16W30,Z17B70,16W55, 16S30,UU16S40. 营Mo cmr9M1*7 6M2BODOTP:AREIGISV6ह((gn9)UR=gB xg,2"(g)=1)vandtheconceptofprimitivreelements((x)UR=6x 1+1 x,"(x)UR=0).BFVorordinaryHopfalgebrasHethesetofprimitivreelementsPƹ(HV)of6HRJformsdaLiealgebra.Thisresult(inasomewhatgeneralizedform)6stillholdsforHopfalgebrasinasymmetricmonoidalcategoryV.X This6is,horwever,nottrueforbraidedmonoidalcategories.BThereeiharvebSeenvXariousattemptstogeneralizethenotionofLie6algebrastobraidedmonoidalcategories.Themainobstructionforsucrh6ageneralizationistheassumptionthatthecategoryisonlybraidedand6notbYsymmetric.OneofthemostimpSortanrtexamplesofsuchbraided6categories,isgivrenbythecategoryofYVetter-DrinfeldmoSdulesYD2UVKRAK6हorver6aHopfalgebraKwithbijectivreantipSode6whichisalwayspropSerly6braided(exceptforK1=URkg,thebase eld)[6].BWVeUinrtroSduceaconceptofLiealgebrasinYD2UVKRAK ^mthatgeneralizesthe6conceptswofordinaryLiealgebras,LiesupSeralgebras,Liecoloralgebras,6and(G;)-Liealgebrasasgivrenin[5].BTheyLiealgebrasde nedonYVetter-DrinfeldmoSdulesharvey<@ cmti12pffartially6de neffdn-arysbracrketopSerationsforeveryn=e2J msbm10JNandevreryprimitive6n-thkroSotofunitryV.Theysatisfygeneralizationsofthe(anti-)symmetry6andJacabiidenrtities.BOur'qmainaimistoshorwthattheseLiealgebrashaveuniversalen-6vrelopingTalgebraswhichturnouttobSeHopfalgebrasinYD2UVKRAK.5Con-6vrerselythesetofprimitiveelementsofaHopfalgebrainYD2UVKRAK g.issuch6aAgeneralizedLiealgebra.WVealsogivreanexamplethatgeneralizesthe6conceptoforthogonalorsymplecticLiealgebras.׍I2.BraidSymmetriza32tionBहWVe2bSeginwithtrwo2simplemoduletheoreticobservXations.SThefol-6lorwingUiswellknown: 7ifA;BT[arealgebrasandM9isanA-B-bimoSdule,6thenHom5A$w(:PS;:M@)isarighrtB-moduleforevreryA-modulePƹ.WVe6needacomoSduleanalogueofthis.BLet?|AbSeanalgebra,ԱCbeacoalgebra,ԱandA `M@2CbeanA-Cܞ-6dimoSdule,i.e. aEleftA-moduleandarighrtCܞ-comodulesucrhthat6s2(am)UR=(a 1)(m).U6Prop`ositionLJ2.1.ZLffet֤Pxjbea nitelygeneratedleftA-module.PThen6हHomOZ-AV8(:PS;:M@)7isarightCܞ-cffomodule7withthecffanonical7comodulestruc-6turffe35suchthat)6टf`u cmex10<وHomUSA\0(PS;M@) +g UR !Hom2yA9Wl(P;M@) C1[!Hom.g8A5E(P;M@ Cܞ)f` N6=URHom۟A"(P;s2):)56Prffoof.ZLetpp,|{Ycmr81;:::ʚ;pnDbSeageneratingsetofP>6andletfQ2URHom۟A"(:P;:M@).6Letwmi:=@fG(pidڹ).MThenbrythestructuretheoremoncomoSdulesthemi 7 ;MON!LIEALGEBRASINTHECA:TEGORY!OFQYETTER-DRINFELDMODULEScS3V6हare4conrtainedina nitedimensionalsubScomodule4M0 7wMwhichis6evren acomoSduleovera nitedimensionalsubScoalgebraC0 {okCܞ,i.e.6thediagram>b:4yGM0:4G+M0j C0 l:2fdO line10-μ:t8MnM CG|32fd>ά-:UǠ@feƈLǠ? ZǠ@fe?Ǡ?-6हcommrutes.FVurthermore M1 :==AM0 ɳisaC0-comoSdulecontainedin6M@, esince MDisadimoSdule,andfȉ:P"P;!gMDobrviouslyfactorsthrough6M1.8SinceM+andM1aredimoSdulesthediagramE*T<*HomU A[闹(:PS;:M1)ՎHomOA,(:PS;:M1j C0)IL:2fd ά-TG2K cmsy8>QHomVCA]'(:PS;:M@)HomZA>(:PS;:M Cܞ)\32fd%ά-TV;1NHomI{ןAPY(:PS;:M1) C0o|:2fd`ά/mPϡ԰船=4HomM-AT (:PS;:M@) C|32fdf`άbǠ@feb,Ǡ?㰺Ǡ@feǠ?dzǠ@feeǠ?f6हcommrutes,Hsopeachfohasauniquelyde nedimage(fG)UR2Hom۟A"(:PS;:M@) 6Cܞ.Norw_itiseasytocheckthatthismapinducesacomoSdulestructure6onHomd1A#B(PS;M@).ѕG msam10GۍBहTheћsecondobservXationisthefollorwing. WVeconsiderkg-algebras6AandB. ͋Let w:B 4y!cAbSeanalgebrahomomorphism. pin-6ducesanunderlyingfunctorV b:mKA-MoSd ]!0]B-MoSdJwithrighrtadjoint6HomOZ-BVk(A;-):B-MoSd!q#!5A-MoSdi. yYIfU{ s:BYsu!2[Aissurjectivrethen6HomOZ-BVk(A;M@)!Hom.h*B5h(B;M)P԰q=*kM6isBRinjectivre,X=sothatwecaniden-6tifyHomd1B#o(A;M@)UR=fm2MjKer( )m=0g.BLetBn DQbSetheArtinbraidgroupwithgeneratorsidڹ,iUR=1;:::ʚ;n 16andrelationsi`ʍ^idjӹ=URjf iKifjijjUR2;oidi+1AViӹ=URi+1AVidi+1: (1)i`6Letͺ=S2URk4׹bSeinrvertible.ThenͺkgBn3i,7!i2kgBnv (forͺthegenerators6iL۹ofBnP)isanalgebraautomorphismdenotedagainbry=S:URkgBn -!lkBn.6ThisholdstruesincetherelationsforBn arehomogeneous.B(ObservrethatthisconstructioncanbSeperformedforevrerygroup6algebra ifthegroupisgivrenbygeneratorsandhomogeneousrelations.6Thegivrenconstructionofanautomorphismforevery=S2URU@(kg)de nes6agrouphomomorphismU@(kg)URn!1Aut((kBnP)URn!1Aut(kBnP- MoSd!).)BNorwconsiderthecanonicalquotienthomomorphismBn -!lSn Wfrom6thebraidgrouponrtothesymmetricgroup. z*Itinducesasurjective6homomorphism n:URkgBn -!lkSn withkrerneli`hKer{( )UR=h n9( W2ڍi1)'j'; Ë2BnP;i=1;:::ʚ;n1i:G7 6M4BODOTP:AREIGISVşBहThepcompSosition h:URkgBnKR!OkBnK;z R!kSnDde nespafunctorkgBnP- MoSd68/!HOkgSnP- MoSd$bry6ʍ;M@()UR:hE=URHom۟k6B0;cmmi6n,y(kgSnP;M@)hE=URfm2M@j'21 \|2W2RAi!'(m)=22m 8'2BnP;i=1;:::ʚ;n1g:hE=URfm2M@j2W2RAi!'(m)=22'(m) 8'2BnP;i=1;:::ʚ;n1g:<(2)6Thisholdssincethemap T:kgBn Uog!!kSn hasaskrernelthetwo-6sidedZidealgeneratedasakg-subspacebryf n9(2W2RAi * 1)'j ;'E2BnP;i=61;:::ʚ;n1g. SofQ2 Homxk6Bn/.(kgSnP;M@)withfG(1) =m2M,Li 621 D}( n9(2W2RAi1)')mUR=0יforall ;';i,ii י21 D}(2W2RAi1)'mUR=0forall';i,6i 2W2RAi!'mUR=22'mforall';i,i '21 \|2W2RAi!'(m)=22mforall';i.BIfRtheactionofBnonM76isgivrenbyanactionofSnandthecanonical6epimorphismBn ƅ !GSnP,:/thentheconstructionoftheM@()bSecomes6trivial,sinceZM@()Ƕ=fm2Mj2W2RAi!'(m)=22'(m)='(m)g=0Zif622 6=h1"oandM@(1)=M(1)=M.6Observre"othatthemoSduleM@()6depSendsonlyon22,butthattheactionofkgSn LonM@()dependson.BM@(1)givresasolutionofthefollowinguniversalproblem. 6Prop`osition2.2.For35everykgBnP-moffduleMtthesubspace6F$M@(1)UR:=fm2Mj' 1 \| W2ڍi!'(m)=m 8'2BnP;33i=1;:::ʚ;n1g6is akgSnP-moffduleandtheinclusionM@(1)L\!2OMLpisakBnP-moffduleho-6momorphism,suchthatforeverykgSnP-moffduleT4andeverykBnP-moffdule6homomorphismfW:nXTv!M therffeisauniquekgSnP-modulehomomor-6phism35gË:URT]!M@(1)suchthatthediagrffam= VmM@(1)L/MԞ32fdBά-ƍQ gATvrǠ@feǠ?,g냀&fd?`Hd?`Hd?`Hd?`Hd?`Hd?`H*H*jq퍑6cffommutes. 6De nition2.3.WVe callthefunctor- J()3:kgBnP- MoSd$ &ܕ!6kSnP- MoSd%2ythe6-symmetrization꨹ofkgBnP-moSdules.BThede nitiongivres6@ҪM@()UR=fm2Mj' 1 \| W2ڍi!'(m)= 2m 8'2BnP;i=1;:::ʚ;n1g:6हTheactionofSn onM@()isgivrenby/p5idڹ(m)UR= 1 D}i(m);(3)6whereizresp.uiarethecanonicalgeneratorsofSn Qresp.uBnP.Thrus6M@()isalsoakgBnP-submoSduleofM.qSincethefunctorM7!M()6isharighrtadjointhfunctor,itpreservreslimits. Likeforeigenspaceswe/B7 ;MON!LIEALGEBRASINTHECA:TEGORY!OFQYETTER-DRINFELDMODULEScS5V6हharve'thatthesumofthesubspacesM@()forallwithdi erenrt22 is6ajdirectsum.OnM@()wrehavetwodistinctkgSnP-structuresidڹ(m)/=621 D}idڹ(m)andi,=UR21idڹ(m),%1sinceԹandde nethesamesubspace6M@()UR=M()M.BThe-symmetrizationM@()ofM+canalsobSecalculatedbry6Lemma2.4.>16M@()UR=fm2Mj W1ڍi  W1ڍi+1AT:::  W1ڍjv1B W2ڍj!jv1B:::! "i+1AVidڹ(m)= 2m 81ij%n1g6whichFrffeducesthenumberofconditionstobeimposedonthema2M6in35orffdertobeinM@().s6Prffoof.ZGivreninAppSendix.bGBहOneƞoftheinrterestingkgBnP-structures,forwhichwewillapplythe6previouśconstruction,oSccursonn-foldtensorproductsM@2n :=վMP 6:::En @MLet`:::G` >`xk6;n V.WVe6often>suppressthesummationindexandsummationsignandsimply6writez+ ==z1p l:::]x lzn J2M@2n4()althoughM@2n()doSesnotdecompose6inrtoatensorproSduct.٤O3.^bSymmetricMul32tiplicationandJacobiIdentitiesBहFVor~therestofthepapSerletC^bethecategoryYD2UVKRAK moSdulePtogetherwithoperations6inYD2UVKRAKQ|߹[:;:]UR:PLn ::: Pƹ()=P nJ()n!1P 6हfor FallndT2JN Fandallprimitivren-throSotsofunityGiscalledaLie6algebrffa꨹ifthefollorwingidentitieshold:H(1)\$forSalln2JN, forSallprimitivren-throSotsofunity, forall\$Ë2URSnP,andforallz52PƟ2nJ()8S̲[z]UR=[n9(z)];H(2)\$forFallnUR2JN,forFallprimitivren-throSotsofunity,andforall\$z52URPƟ2n+1&()`)Zn+1 [X \:i=1jK[xid;[x1;:::ʚ;7^xi *;:::;xn+1̹]]UR=n+1 ӟX w i=1Z[:;[:;:]](1:::ʜi)(z)UR=0; O7 6M10BODOTP:AREIGISV\$wherewreusethenotation(4),H(3)\$forFallnUR2JN,forFallprimitivren-throSotsofunity,andforall\$z5=URx y1j ::: yn2PƟ2n+1&(1;)wrehaveV㍑}ٶ[x;[y1;:::ʚ;ynP]]UR=n X i=11;:::ʚ;[x;yidڹ];:::;ynP]ٯ\$wherewreusethenotation(8).򋍑6Corollary4.2.rLffet8AbeanalgebrainYD2UVKRAK. "rThenAcarriesthe6structurffe35ofaLiealgebraA2L { withthesymmetricmultiplications:qp6¹[{]UR:A nP()!A3EbyC+[z]:=X "%I{2Snnr nn9(z):\6for35allnUR2JN35andallrffoots35ofunity=S2URkg2'!.7⍍6Prffoof.ZThis+isarephrasingofthe\anrti"-symmetryidentity(5)andthe6Jacobiidenrtities(6)and(7)inTheorems3.4and3.5.JHGhA5.wTheLieAlgebraofPrimitiveElementsBहLetJYAbSeanalgebrainC=URYD2UVKRAK.qThenAc8 AJYisanalgebrawiththe6mrultiplication> AJ? A A AUR1 r 1g 35!!A A A AURr rg < c!qA A.^LetpUR:A68/!HOAI AbSethemapp(x)UR:=xI 1+1 x.8Thenp(=UR1 + 1)6isinCݹbutpisnotanalgebramorphism.tLetp2n :w]A2n 98!(AF A)2n bSe6then-foldtensorproSductofpwithitself.򋍑6Lemma45.1.%LffetH~beaHopfalgebrainC5. ~ThenPƹ(HV)w:=fx26HVj(x)UR=x 1+1 xg35isaYetter-DrinfeldsubmoffduleofH inC5.7⍍6Prffoof.ZPƹ(HV)UR=KerBm(p).BKGBहInparticularwrehaves2(x) 2Pƹ(HV)3 K`dandx 2P(HV)forall6xUR2Pƹ(HV)andallUR2Kܞ.6Lemma5.2.p2nP(A2n())UR(A A)2nP().6Prffoof.ZByTheorem2.5p:AȜ!wA4 Aȹinducesp2n Wa:A2nP()Ȝ!(A4 6A)2nP().90G6Theorem)5.3. Lffet beaprimitiven-throotofunityandletz52URA2nP().6Then[p nP(z)]UR=p([z]):6Prffoof.ZIf$z=kP:kxk6;1@ :::ˮ xk6;nU2kA2nP()thentheequationofthe6theoremreadsasʍ]#[`ƯPkTkpx|(xk6;1j 1+1 xk6;1 ) ::: (xk6;nR 1+1 xk6;n V)]o=c[[fPq-kxQQxk6;1j ::: xk6;n V]"w 1+1 [4P|okxk6;1j ::: xk6;n V]m{:#(10) 7 ;MON!LIEALGEBRASINTHECA:TEGORY!OFQYETTER-DRINFELDMODULESU11V6हWVewranttoevXaluate vʍ;[?$0PIkkN(xk6;1j 1+1 xk6;1 ) ::: (xk6;nR 1+1 xk6;n V)]S`=URP ㍟I{2Sn%|r2nPn9(P ;i (xk6;1j 1+1 xk6;1 ) ::: (xk6;nR 1+1 xk6;n V)) v6where02}_Sn opSeratesonp2nP(z)2(A A)2nP()0asdescribSedinsection62.BLetx;y(2AandW(x2 yn9)=P8*iui vidڹ.6Then(1 x)(y 1)=6(r r)(P ;i1 uiz vi 1)UR=P ㍟iHeui vi,=W(x yn9)=P ㍟iHg(uiz 1)(1 vidڹ).6Sowrehave( vʍ(x 1)(y 1)UR=(xy 1);(x 1)(1 yn9)UR=(x y);(1 x)(1 yn9)UR=(1 xy);(1 x)(y 1)UR=W(x yn9):$(11)+ vBWVeZexpandaproSduct(x1 1+1 x1):::(xn 1+1 xnP).It6proSducesKaftermrultiplication22nsummands,keachaproSductofnterms.6AtrypicalproSductis(x1_ [1)(1 x2)(x3 1):::ʜ,_someofthefactors6bSeingoftheformxj #z1,ztheothersoftheform1 xjf .M?TVoevXaluate6sucrh'aproSductweusetheruleofmultiplicationinAl A'givenby6rA A-=UR(r r)(1  1).BTVo^)explainthefollorwingcalculationweconsiderasanexamplethe6proSduct(x1Vr n1)(1 x2)(x3 1)(1 x4)(x5 1).5Itiscalculatedwith6thefollorwingbraiddiagram7;टfdfeBfdfe̟kfdfe;ޔfdfe@޼fdfeԟqfdfe jfdfe꽹0fdfe Vfdfe|jfdfedߡvfdferfdfez,fdfeh= ˄fdfeT0fdfe@TSfdfe*Du܄fdfefdfeΟ҄fdfefٖfdfeäfdfeańfdfeƟ9fdfegWfdfeF4v\fdfe#TEfdfe΄fdfe5Ąfdfe@fdfebBfdfe_d"ʄfdfe3۟=fdfeXfdfeؠrfdfeHfdfewofdfe߂Ÿwnfdfe߃xNfdfe߅%>fdfe߉+݄fdfeߎ&fdfeߔ證fdfeߜf膐fdfeߥ`fdfe߰Z:fdfe߼sfdfefdfefdfe^΄fdfe)/fdfen` fdfe#=_fdfe9"fdfePffdfei(fdfedfdfeŸfdfew5fdfe۠Wބfdfe9fdfe2fdfe@fdfedx,fdfe16fdfer奺fdfe剸fdfen0fdfe/Sfdfe\b8nfdfeƟSfdfevfdfe뵟닄fdfe߂Ÿfdfe߃Cfdfe߇lfdfeߍrޖ?fdfeߕŸ޿Єfdfeߠrafdfe߭fdfe߼<fdfeŸffdfeߏfdfe߹6fdferDŽfdfe-Ÿ XfdfeKr5fdfek_zfdfe fdfeŸಜfdfe-fdfefdfe/r/Ofdfe]ŸXfdferqfdfefdfeՓfdfe.Ÿ$fdfeh(fdfe⥂RFfdfer{ׄfdfe%Ÿhfdfeirfdfe㯂fdfe"fdfeBŸKfdfeu=fdfe߂΄fdfe1_fdfeटwnfdfetM݄fdfe$Lfdfefdfeͤ*fdfe觙fdfe~fdfetTwfdfeꔤ*fdfetUfdfeiĄfdfeP3fdfe5焢fdfe[fdfe1fdfetfdfe鰤^fdfeẗ́fdfe_<fdfe3afdfe8fdfefdfefdfeltgfdfe4քfdfethEfdfe>fdfe~#fdfe=뒄fdfefdfepfdfektn߄fdfe ENfdfetfdfe,fdfe1џțfdfe>wnfdfe=ПÄfdfe;ɞfdfe8fdfe3"fdfe,ASfdfe$hLfdfeƄfdfeƄfdfe՟LfdfeFXfdfeT#fdfeHfdfekfdfeڟ҄fdfe6}fdfe&ӾfdfepvfdfeWfdfe=H7xfdfe!W„fdfeCwfdfe娟fdfešۄfdfe>fdfe6'fdfe\Пfdfe7,fdfe֟I"fdfeDe$fdfeF퀬fdfe󑽟لfdfednfdfe6Љfdfeҟ*fdfeՓQfdfeटPfdfeZfdfe| fdfe Zfdfe2؄fdfet kfdfeHrfdfefdfe<fdfeUrrfdfe'Mffdfe6֟(ɄfdfeG@fdfeY fdfelPfdfeAfdfeyfdfe뮑WHfdfez6 fdfeFfdfefdfefdfe9fdfeYfdfe{xfdfeZfdfeZ=fdfe fdfeTfdfe7的fdfeafdfemfdfeDPfdfe訟|5fdfeXbfdfeIImfdfeटwnfdfeԟfdfedʐfdfeT!fdfefdfeTGCfdfe dpԄfdfeԟefdfe,fdfe@ԟ퇄fdfeWdfdfepT@fdfe다j:fdfeT˄fdfed\fdfeԟfdfe~fdfe7ԟ:fdfeadcfdfeT1fdfe커„fdfeTSfdfed fdfeTԟ3ufdfe팤]fdfeԟ톗fdfed(fdfeBTٹfdfeJfdfeT,ۄfdfe dVlfdfeUԟfdfefdfeԟfdfe=dfdfew&Afdfe>Pfdfe=Vfdfe9Ɵ.fdfe3֟Xfdfe+/ fdfe ֟{fdfeƟfdfeVYfdfeȄfdfeV_7fdfeƟ5fdfe֟ fdfe℄fdfeu֟fdfeUƟbfdfe3Veфfdfe<@fdfeVfdfeƟfdfe֟񿍄fdfecfdfe2֟lkfdfeƟBڄfdfeVIfdfe󒆟︄fdfeXV'fdfeƟ𜖄fdfe֟sfdfe򛆟ItfdfeW֟fdfeƟRfdfeVfdfe~0fdfe1VyfdfeƟPfdfe&}fdfehfdfeBfdfekfdfeޔfdfe޼fdfeqfdfeğ jfdfey}0fdfenПVfdfeb|jfdfeU(ߡvfdfeF6fdfe5̟,fdfe$ ˄fdfe0fdfeSfdfeu܄fdfe{fdfe҄fdfe*ٖfdfehfdfeb%ńfdfeC9fdfe#Wfdfev\fdfeEfdfe΄fdfeĄfdfem@fdfeE&Bfdfe("ʄfdfe=fdfeȟXfdfedrfdfedHfdfe3uofdfe>wnfdfe?fdfeD݄fdfeIfdfePV證fdfeX*膐fdfeaq`fdfel:fdfex7fdfeƟfdfefdfe"΄fdfe/fdfe2` fdfe֟=_fdfefdfe sffdfe%\(fdfe?ğdfdfe[fdfexɟw5fdfedWބfdfek9fdfefdfe֟fdfe <,fdfeE6fdfem6奺fdfeȟ剸fdfeƟn0fdfeOSfdfe&8nfdfeFSfdfev:fdfey닄fdfe>fdfe?CfdfeCFlfdfeI6ޖ?fdfeQ޿Єfdfe\6afdfeiFfdfex<fdfeffdfeߏfdfeF߹6fdfe6DŽfdfe醟 Xfdfe65fdfe'F_zfdfeI fdfenಜfdfe-fdfeFfdfe6/OfdfeXfdfeJ6qfdfe}FfdfeՓfdfeꆟ$fdfe$(fdfeaFRFfdfe6{ׄfdfeᆟhfdfe%6fdfekFfdfe"fdfeKfdfeKu=fdfeF΄fdfeY_fdfehwnfdfe8M݄fdfe$Lfdfefdfeh*fdfe~觙fdfeq~fdfeb8TwfdfePh*fdfe<8Ufdfe%Ąfdfe 3fdfeh焢fdfeӸ[fdfe1fdfe8fdfelh^fdfeE8̈́fdfe<fdfe︟afdfeh8fdfefdfe]fdfe(8gfdfehքfdfe8hEfdfey>fdfe:#fdfeh뒄fdfefdfeopfdfe'8n߄fdfehENfdfe8fdfe?,fdfe핟țfdfefei6 ]feOfeEfeӾzQfeff< lcircle10z>Qfeff$ufeĎ Qfeff6Qfeff>ufe]⎎꫍6हTheSsecondandfourthfactorsarepulledorverStotherighrtandthenall6factorsaremrultipliedaccordingto(11).Thuswehave(x1 K1)(1 6x2)(x3MA =1)(1 x4)(x5MA 1)UR=(r23 =r22)'(x1 x2 x3 x4 x5),zwhere6'UR=342asde nedbrythegivenbraiddiagram.BWVe"prorvenowbyinductiononnthatforeveryproSduct(x1 1)(1 6x2)(x3 ~1):::UwithifactorsoftheformxjM 1andnifactorsofthe6form1 xjPthereisanelemenrt'UR2Bn sucrhthatʍRn(x1j 1)(1 x2)(x3 1):::=UR(r i r ni))'(x1 ::: xnP): v6हFVurthermore UiftdenotesthenrumbSer Uofpairsoffactorsf1;f2 Yinthe6proSductrG(x1t ƹ1)(1 x2)(x3 1):::7ʍ;(x1j 1)h(1 x2)(x3j 1):::(1 xn+1̹)UR=h=URf(r2i r2ni))'(x1j ::: xnP)g(1 xn+1̹)h=URf(r2i r2ni))P 9k˹(uk6;1j ::: uk6;n V)g(1 xn+1̹)h=UR(P ;kuk6;1j:::uk6;i  uk6;i+1:::uk6;n V)(1 xn+1̹)h=URP ㍟k(uk6;1j 1):::(uk6;i  1)(1 uk6;i+1A\):::(1 uk6;n V)(1 xn+1̹)h=UR(r2i r2ni+1)P 9k˹(uk6;1j ::: uk6;nR xn+1̹)h=UR(r2i r2ni+1)(' 1)(x1j ::: xn+1̹)>76wheret,`thenrumbSeroffactorsinrevrerseposition,`doesnotcrhange,6neitherdoSesthenrumberofgeneratorsig~usedintherepresenrtationof6' 1.8ThesecondpSossibilitryis)7ʍ;(x1j 1)h(1 x2)(x3j 1):::(xn+1/t 1)h=URf(r2i r2ni))'(x1j ::: xnP)g(xn+1/t 1)h=UR(P ;kuk6;1j:::uk6;i  uk6;i+1:::uk6;n V)(xn+1/t 1)h=UR(P ;kuk6;1j:::uk6;i  uk6;i+1:::uk6;n1ҹ)(1 uk6;n V)(xn+1/t 1)!'㍍ʍEƇ=UR(P ;kuk6;1j:::uk6;i  uk6;i+1:::uk6;n1ҹ)(vk6;nR 1)(1 vk6;n+1)EƇ=UR(r2i+1 r2ni1)(P ;kuk6;1j ::: uk6;n1/z vk6;n V)(1 vk6;n+1ҹ)EƇ=UR(r2i+1 r2ni))( 1)(P ;kuk6;1j ::: uk6;n1/z vk6;nR vk6;n+1ҹ)EƇ=UR(r2i+1 r2ni))( 1)(12n1/t W)(' 1)(x1j ::: xn+1̹):*㍑6हwhereyW'(x18 4:::Q 4xnP)UR=P ㍟kuk6;1 > :::Q uk6;n V,W(uk6;nk xn+1̹)=Pvk6;nk 6vk6;n+1ҹ,MHand9(12n1e, `W)(' 1)(x1d :::` xn xn+1̹)۞=Piٟkiuk6;1j `::: 6uk6;n1 vk6;n-h vk6;n+1ҹ.GWVe+udeterminethenrumbSer+ut( n9)ofgenerators6ioSccurringin o=6(( 1)(12n1i W)(' 1).cWVeharvebyinduction6t(')=tn }the-nrumbSeroffactorsin(x1~ 1)(1 x2)(x3 1):::in6revrerseQpSosition.Alsowehavetn+1=URtn+r5(ni)QthenumbSeroffactors6inE(x1ʐ  1)(1 x2)(x3 1):::߸(xn+1X 1)EinrevrersepSosition.Then6t( n9)UR=t(( 1)(12n1m W)(' 1))UR=t( 1)+t(12n1 W)+t(' 1)UR=6(ni1)+1+tn=URtn+1̹.BIfwresumupweobtain;6(x1BE A1+1 x1):::"(xn* 1+1 xnP)UR=X iX '8:i"8(r i Ar ni))'idڹ(x1 :::" xnP);|t6हforcertain'i,2URBn whicrhariseintheevXaluationgivenabSove. 7 ;MON!LIEALGEBRASINTHECA:TEGORY!OFQYETTER-DRINFELDMODULESU13VBहNorw letz2A2nP().pWVeexpandtheproSductsinr2np2nz=֟Pk;(xk6;1 6ह1+1 xk6;1 ):::Bd(xk6;nd8 1+1 xk6;n V).EacrhoftheseproSductsinthe6sumistreatedinthesamewrayasdescribSedaborve.8Using(3)wreget*ޔȍLr2nPp2n(z)=URP ㍟k(xk6;1j 1+1 xk6;1 ):::(xk6;nR 1+1 xk6;n V)=URP ㍟kPXi$0P/k'8:i8׹(r2i r2ni))'idڹ(xk6;1j ::: xk6;n V)=URP ㍟iHeP֠'8:i' (r2i r2ni))'idڹ(z)=URP ㍟iHeP֠'8:i' (r2i r2ni))2t('8:i,r)i'idڹ(z)*ޔ6wherePi,2URSn farethecanonicalimagesofthe'i2URBn fandt('idڹ)isthe6nrumbSeroffactorsjPintherepresenrtationof'idڹ.BThisgivresus,3r[p2nP(z)]>=URP ㍟I{2Sn%|r2nPp2nn9(z)>=URP ㍟P şi%{P0 ؟'8:i;@B2t('8:i,r)i'(r2i r2ni))idn9(z)3;>=URP ㍟P şi%{f`-tP8'8:iC9$2t('8:i,r)i'f` b (r2i r2ni))n9(z)Ѝ>=URP ㍟iHecidڹ(r2i r2ni))P 936n9(z).9g6wherethefactorsci=!P"\'8:iX2t('8:i,r)H2!kg.jWVewranttoshorwthattheci6हarezeroforall0UR B::::O B:xnP)anditscorrespSonding'i.GThecrhosensummandis6completely6determinedbrygivingthepSositionsinf1;:::ʚ;ngoftheni6हfactorsBoftheform(1 xjf ).8TheB rstofthesefactorshas1 UFfactors6oftheform(xj? V51)toitsrighrtwith041 8i.,Soitcontributes61 HspairsooffactorsinrevrersepSosition.6Thesecondfactoroftheform6(15 xjf )conrtributes2̹(with0UR2V1i)pairsoffactorsinrevrerse6pSosition,Tand?soon.WVeobtaintUR=1+2+:::+nipairs?inrevrerse6pSosition.ɘIfp:wreknowtheiwith08nibO:::;21ip:then6theytalsodetermineuniquelythepSositionofthefactorsoftheform6(1s xjf ).EacrhJpartitionoftL=13+s2+:::+ni;inrtoJ(atmost)Ӎ6niȹpartseacrhURigivesoneterm2t inci,=URP ㍟'8:i2t('8:i,r)Pandwe nd=6p(i;ni;t)apartitionsoftinrtoatmostniapartseachURi.sSowegetci,=URX t0p(i;ni;t) t C:⍑6हByatheoremofSylvrester([1]Theorem3.1)wehaveZa8X ayt0qp(i;ni;t)qn9 tUU=ō(1qn92n)(1qn92n1):::ʜ(1qn92ni+1tW)Qmfe  F(1qn9i)(1qn9i1):::ʜ(1qn9) w6henceci,=UR0for0H+beaHopfalgebrainC5.Thenthesetofprimitive6elements35Pƹ(HV)formsaLiealgebrffainC5.6Prffoof.ZBy>Lemma5.1Pƹ(HV)isaYVetter-DrinfeldsubmoSduleofH.6Let6z2Pƹ(HV)2nP(). Thendp([z])=[p2n(z)]=[2n(z)]=([z])dsince6isanalgebrahomomorphism.#Hence[z]%2Pƹ(HV).SoP(HV)isaLie6subalgebraofHV2L5..CcG6De nition=-5.5.tLetAbSeanalgebrainCcandletend(A)betheinner6endomorphismobjectofAinC5,i.e.theYVetter-DrinfeldmoSduleend(A)6satisfyingɐC5(XX gA;A)PUR԰n9=C(XJg;endG(A))ɐforallXF2URC5.-ItcanbSeshorwn6that܍ʍ;endN'(A)UR:=ffQ2Hom(A;A)jʼ9P7f(0)$ f(1)2URHom(A;A) Kܞ8aUR2A:ʼPK&f(0) \|(a) f(1)ι=URPfG(a(0))(0)$ fG(a(0))(1)S׹(a(1))gK06हis theYVetter-DrinfeldmoSdulewiththerequiredunivrersalpropertryV.6endI'(A)opSeratesonAbryacanonicalmapev:pend-(A) Ap!A6हwithev(f a)UR=fG(a).BAȷderivationfromAtoAisalinearmap(dϬ:A7!A)2end(A)6sucrhthatwkd(ab)UR=d(a)b+(1 d)( 1)(d a b)6for|alla;b>2A.~]Observre|thatinthesymmetricsituationthismeans6d(ab)UR=d(a)b+ad(b).퍑BItQisclearthatallderivXationsfromAtoAformanobjectDeri.(A)in6CݹandthatthereisanopSerationDer(A) AUR !URA.6Corollary5.6.Der(A)35isaLiealgebrffa.Li6Prffoof.ZLetmdenotethemrultiplicationofA.PAnendomorphismx:6A|; є!|;Ainend(A)isaderivXationi m(x 1+1 x)=xmwhere6(xE yn9)(a b)UR=(ev D Eev)(1E 0 1)(x yL a b)forelemenrtsaand6b&inAandelemenrtsxandyh_inendA6(A).g\Soxo2end(A)&isaderivXation6i mp(x)UR=xm.BTVoӵshorwthatDer(A)isaLiealgebraitsucestoshowthatitis6closedlunderLiemrultiplicationsinceitisasubSobjectofend(A),which6istanalgebrainthecategoryC5.Let\bSeaprimitivren-throotofunitryV.6LetrUR:endb(A) end(A)URn!1end' A(A)bSethemrultiplicationofend1(A).7 ;MON!LIEALGEBRASINTHECA:TEGORY!OFQYETTER-DRINFELDMODULESU15VBहIfSsx1;x2Ƕ2Derˏ(A)thenmp(x1)p(x2)=x1mp(x2)=x1x2mSsormore6generallym(r2nPp2n)(x1 ::: xn)W=r2nP(x1 ::: xn)mforallx1 6:::GU xn2URDer/(A)2nP.8Thruswegetforz52URDer/(A)2nP()эʍoq mp([z])F=URm[p2nP(z)]=Pm(r2nn9(p2n(z)))F=URPm(r2nPp2nn9(z))UR=Pr2nPn9(z)m=[z]m6हhence[z]UR2Der/(A).eGK>ʹ6.MNTheUniversalEnvelopingAlgebraofaLieAlgebraBहAscin[5]wrecannowconstructtheuniversalenvelopingalgebraofa6Lie>algebraPinCsasU@(Pƹ)UR:=T(P)=Iwhere>T(P)isthetensoralgebra6orverPƹ,*whichlivesagaininC5,*andwhereIvistheidealgeneratedbythe6relations=[z]H.P gr2nPn9(z)=forallz52URPƟ2nJ(),_forallnandforallprimitivre6n-th_roSotsofunitry.ThenU@(Pƹ)clearlyisauniversalsolutionforthe6follorwinguniversalproblem@-P{>U@(Pƹ)m:2fdDά-ƍߤ7냀׵f?`H?`H?`H?`H?`H?`HtHtjAǠ@feE4Ǡ?,gэ6हwhereforeacrhmorphismofLie-algebrasf״thereisauniquemorphism6ofalgebrasgXsucrhthatthediagramcommutes.Kh6Theoremr6.1.kLffet_P%beaLiealgebrainC5.Thentheuniversalen-6veloping35algebrffaU@(Pƹ)isaHopfalgebrainC5.6Prffoof.ZItiseasilyseenthatȄ:URP!e(U@(Pƹ)ң U(Pƹ))2L ȾinM2k6GDgivrenby6s2(x)UR:=&feR]ڍx A7 >1+1 &feR]ڍx where&feR]ڍxιisthecanonicalimageofxUR2PWinU@(Pƹ)6and@wthecounit"a:U@(Pƹ)!Okgivren@wbythezeromorphism0a:P'!k6हde nethestructureofabialgebraonU@(Pƹ)inC5.BNorw>wewanttode neS:U@(Pƹ)=!U(Pƹ)2op+ybry>theLiehomomor-6phismS<:ePq+!ZU@(Pƹ)2op+,NS׹(x)=9xR.=HereA2op+H\isthealgebraob-ހ6tainedȤfromthealgebraAbrythemultiplicationAZH A g UR !A A uQrg UR !A.6Thenforz52URPƟ2nJ()wrehave&k +;S׹([z])cvA=URщfe M 3/[z]ڟ=P 936r2nPn9(&fe5]ڍz5)=P 9r2nPn921 ʵ(&fe5]ڍz5):cvA=URP 938(r2op)2nPn921 ʵn9(&fe5]ڍz5)(bry(3))3j=P 9(r2op)2nPx4n(n1)4LʉfeuF eO2C21 \|n9(&fe5]ڍz5)cvA=URx4n(n1)4LʉfeuF eO2C[&fe5]ڍz5]=(1)2nP[&fe5]ڍz]=[щfe՟ 3/Sןn['(z)]%\6whereË2URBn Glisthebraidmapgivrenbythetwistofallnstrandswith6sourcepf1;:::ʚ;nganddomainfn;:::ʚ;1g,HË=UR(1):::ʜ(n2:::"Oh21)(n1:::"Oh21)6andj6.h33n(n1)33LʉfeuF eO2"%Ë=UR2SnP.7 6M16BODOTP:AREIGISVBहHence^SisaLiehomomorphismandfactorizesthroughU@(Pƹ). :Since6U@(Pƹ)U@(Pƹ) U(Pƹ)@isamorphisminCAgeneralizationofthisconceptofLiealgebrasto6the=groupgradedcaseforanoncommrutative=grouprequirestheuseof6YVetter-DrinfeldmoSdulesorverkgG.Weshorwthat(G;)-Liealgebras6are4LiealgebrasonYVetter-DrinfeldmoSdulesinthesenseofthispaper.6WVeusethenotationof[5].BLetyGbSeanabeliangroupwithabicrharacterUR:G Kppmsbm8KZ4Gn!1kg2'!.&Let6PhbSe7akgG-comodule.-ThenPhisaYVetter-Drinfeldmoduleorver7kgG[4]6withUthemoSdulestructurexgx= [(h;gn9)xUforhomogeneouselemenrts6x㋹=xh I|2Mwithks2(x)=xX h. ThebraidmapisW(xh I yg)=6yg xhgË=UR(h;gn9)yg xhe,$hencelthebraidinggivrenin[5]afterExample62.3."{7 ;MON!LIEALGEBRASINTHECA:TEGORY!OFQYETTER-DRINFELDMODULESU17VBहLetp=S2URkg2ÑbSegivren.xLet(g1;:::ʚ;gnP)bea-familyV,Hi.e.x(gid;gjf )(gj;gidڹ)UR=622.8LetQUR:=P ㍟I{2Sn%|Pg7(1) ::: Pg7(n)..֍6Lemma7.1.Q35isarightSnP-moffdulebyEa0(x1j ::: xnP)Ë=UR(;(g1;:::ʚ;gn))xI{(1),# ::: xI{(n)6for35Ë2URSn ۅandx1j ::: xn2Pgq1 ` ::: Pgn .޴6Prffoof.ZWVejharvetoshowthecompatibilityofthisopSerationwiththe6compSositionLJofpermrutations.-+Let;o2URSnP.WVeuseLemma2.2of[5].6Then,EʍD-(x1 ]:::nh xnP)(n9W)UR=]=UR(n9;(g1;:::ʚ;gnP))xI{r(1)I ::: xI{r(n)]=UR(;(g1;:::ʚ;gnP))(;(gI{(1){;:::;gI{(n)iǹ))xI{r(1)I ::: xI{r(n)]=UR((;(g1;:::ʚ;gnP))xI{(1),# ::: xI{(n)iǹ)]=UR((x1j ::: xnP)n9):.ލLG޴BQpbSecomesaleftSnP-modulebryn9(x1 ::: ʠ xnP)UR=(21 ʵ;(g1;:::ʚ;gnP))xI{1 ;;(1)s; 6:::FJ #xI{1 ;;(n)[."ThrusALĵxf(gq1*;:::;gn7)qNK`y 3 cmr10N-family"ghPgq1 0 ::: Pgn QisAalsoaleftSnP-6moSdule.BThispactionisconnectedwiththeactionofBnDonL xf(gq1*;:::;gn7)qN-ffamily%0gk=Pgq1* 6:::GU Pgn bbry) 1 D}idڹ(x1j ::: xnP)UR=i(x1j ::: xnP)#(12)ύ6forthecanonicalgeneratorsiOofBn resp.8iofSnP,since)dg 21 D}it(x1j ::: xnP)UR=t=UR21 D}(gid;gi+1AV)x1j ::: xi+1 xi ::: xnRt=UR(n91ԍi ʵ;(g1;:::ʚ;gnP))xR|i@I{1hi ;;(1) ::: xR|i@I{1hi ;;(n)t=URidڹ(x1j ::: xnP):6हInparticularwrehave!zT_wW1ԍiqEW1ԍi+1AT::: W1ԍjv1B2W2RAj!jv1B:::! "i+1AVidڹ(x1j ::: xnP)UR=qE=UR22n91ԍi ʵn91ԍi+1AT::: n91ԍjv1B2n92RAj.=jv1B:::! "i+1AVidڹ(x1j ::: xnP)RvqE=UR22(x1j ::: xnP);"A=6हsothatx1j ::: xn2URPƟ2nJ()bryLemma2.4.8ThuswehaveIX͟MEX7f(gq1*;:::;gn7)qN-family"gؖ$Pgq1 ` ::: Pgn URPƟ nJ(): X6हConrverselynletPDx1 ?:::J ?xn2URPƟ2n h=LqƟf(gq1*;:::;gn7)g>Pgq1 % :::J Pgn `(with6homogeneous6summandsandassumethatoneofthesummandsisnon-6zeroinPgq1 e *;::: *;Pgn Uwhere(g1;:::ʚ;gnP)isnota-familyforexample6bryo(gid;gi+1AV)(gi+1;gidڹ)x6=22.5Theno(2W2RAi K422)(P 9x1 :::4 xnP)ohasa4!7 6M18BODOTP:AREIGISV6हnon-zeroEcompSonenrtinPgq1 ::: Pgn ,\hencePx1 ::: xn cannot6bSeinPƟ2nJ().8Thisprorves؍6Prop`osition7.2.Lffet35=S2URkg2 ZVbegiven.fiThen ,PƟ nJ()UR='|MEXf(gq1*;:::;gn7)35qN-family"g\Pgq1 ` ::: Pgn :#BहByƵLemma7.1and(12)thebracrketƵmultiplicationof[5]isaspSecial6caseofthebracrketmultiplicationofthispapSerand(G;)-Liealgebras6areLiealgebrasorverYVetter-DrinfeldmoSdules.6Example7.3.Asn9anewexampleofLiealgebraswregiveonefamilyof6examplesWof(G;)-Liealgebras.)LetG=C3=f0;1;2gWbSethecyclic6groupVCwith3elemenrts.{De nethestructureofarightkgG-moSduleon6aSkgG-comoSduleV_ù(i.e.+onaC3-gradedvrectorspaceV¹=URV0VZRV1V2)6usingF/thebicrharacterUR:C3 KZ0 C3PV԰.==C3V .!5kg2'!,g(1Z 1)UR=ڢaF/primitive63-rdroSotofunitryV,byv*/gË:=UR(degɻ(vn9) g)vË=UR(degɻ(v);g)v͹forg2URG6हandhomogeneouselemenrtsvË2URVp.ՈThenV]isaYVetter-DrinfeldmoSdule.BLetpAUR:=endb(V)bSetheinnerendomorphismobjectofV8inkgG-comod%.6By|Corollary4.2AisaLiealgebra.Onevreri eseasily(see[5])that6theonlynon-zerocompSonenrtsA2nP()forthepartialLiemultiplication6areQNkmA 2(1)UR=A0j (A1A2)(A0A1A2) A0Ā6हand A 3(s)UR=A1j A1 A1A2 A2 A2:BहNorwleth:;:iUR:VG V M!`kQŹbSeabilinearformonVinC5.8WVede ne76टO%n eufm10Og<(Vp)i,:=URffQ2Aidj8vn9;w2V;degɹ(vn9)=j%:hfG(v);wRi=(i;jӹ)hvn9;fG(wR)ig:6हThis#spaceisthehomogeneouscompSonenrtofOg /(Vp)}A#thatbecomes6aYVetter-DrinfeldmoSdule.BFVorfQ2UROg `(Vp)0andgË2UROg(Vp)idڹ,iUR2C3,vË2Vjf ,w2Vwrehave+ʍjh[f;gn9](v);wRiH=URh(fGggn9f)(v);wRiH=URhfGgn9(v);wRihgn9f(v);wRiH=UR(i;jӹ)hvn9;gfG(wR)i(i;jӹ)hv;fGg(wR)iH=UR(i;jӹ)hvn9;[f;g](wR)i;+76हhence[f;gn9]UR2Og `(Vp)idڹ.8Analogouslyoneshorws[gn9;fG]2Og `(Vp)idڹ.BFVorko=UR1;2;3letfkx2UROg `(Vp)iO(iUR=1ori=2).8Then$7ʍ;h[f1;f2;f3](vn9);wRiUR=P ㍟I{2Sq3"HhfI{(1){fI{(2)fI{(3)(vn9);wi=UR(1)P 9I{2Sq3#3(i;i+i+jӹ)(i;i+jӹ)(i;j)hvn9;fI{(3){fI{(2)fI{(1)(wR)i=URhvn9;[f1;f2;f3](wR)i;J7 ;MON!LIEALGEBRASINTHECA:TEGORY!OFQYETTER-DRINFELDMODULESU19V6हhence7[f1;f2;f3]ت2Og (Vp)0. _Thrus7wehaveaLiealgebraOg C0(Vp). _DepSend-6ing"onthecrhoiceofthebilinearformthisisageneralizationofthe6orthogonalorthesymplecticLiealgebra.%LJ8.֊Appendix6Prffoof.ZofLemma2.4:BDe neactionsi;j for1URikoURj;icommutewithall'UR2Bn6हiftheyactonN@.UMBWVeinrtroSducethevectorsubspaceM@()URщfe7 3/M()"vM+bry_ocщfe7 3/M@():=URfz52M@j81i*fdfeUhfdfeퟨ,fdfe+$vfdfe蟨D[fdfeaMcfdfeAFfdfefdfe۟ۄfdfeudfdfeZfdfe{քfdfeb韩1؄fdfe8럩M`fdfe bhfdfe"fdfe'=fdfewބfdfeQ8fdfe\Ifdfe\xfdfe_!OԄfdfeb'sfdfegfdfenfdfeuퟯ&fdfe4fdfe៯dfdfe?&fdfefdfe{}fdfe埮dfdfe԰ńfdfefdfegfdfeEfdfe*6#fdfeCfdfe]fdfeyIfdfe˄fdfe'tfdfe.cfdfeE4fdfe'Kfdfe= „fdfec̄fdfePfdfeNfdfe݉Ƅfdfe }fdfe5韬cfdfedMHfdfe/Hfdfe<!fdfe\ID"fdfe]ymfdfea DfdfefՄfdfeoIffdfeyfdfe =fdfeygfdfeIfdfey;fdfe ̄fdfe ]fdfeI6fdfe$`fdfeE fdfegyfdfeI2fdfeyÄfdfe 0TfdfeYfdfe7Ivfdfegfdfe ֘fdfey)fdfeI)fdfeBySKfdfe |܄fdfemfdfeIfdfeBfdfe # fdfeyLfdfeIvBfdfeiyӄfdfe dfdfe fdfe+fdfexsfdfekNfdfe{%Qfdfe+fdfe{/fdfekfdfe fdfen+U|fdfeY+fdfeCkZfdfe*{Ʉfdfe+8fdfe{fdfek\fdfe2fdfe+fdfebcfdfe9k҄fdfe {Afdfe+bfdfe{9fdfe{kfdfeEfdfe+lfdfeۄfdfekiJfdfeX{?fdfe+(fdfe{엄fdfekfdfeDufdfe+ofdfeFSfdfe]k„fdfe X1fdfeufdfeu9);fdfesRfdfeozwfdfej^fdfed˄fdfe\KĄfdfeS>fdfeHW=>fdfe<>bĄfdfe.ЄfdfemfdfeSІfdfe%fdfeCJfdfe՟9fdfeͿ\6fdfeͨ}fdfe͏,fdfetfdfeX:fdfe;fdfevfdfe >Sfdfe\fdfe̸zfdfe̔9(fdfenfdfeG?њfdfe휄fdfe $fdfe&$Qfdfe˜O>fdfemYfdfe>;rfdfe Ʉfdfe ]Ȅfdfeß4sfdfe fdfev7fdfe#qƻPfdfe)ݟƓfdfe1lfdfe:FpfdfeE pfdfeQfdfe_Mބfdfen?űAfdfe~ō(fdfeÐtifdfeãFdfdfeø]#fdfemxfdfefdfeľfdfeKĝfdfe5 }tfdfeRP]fdfep>8fdfeĐ[fdfeIJ}fdfe]fdfeßņfdfe|èfdfeFÌfdfeoOpfdfeřMTfdfe֟9]fdfeȄfdfe fdfeO fdfeƁfdfe fdfe=)wfdfe͟Sfdfe"|fdfe+ *fdfe5ϻfdfeB͟LfdfeR="݄fdfed Lnfdfex=ufdfeÎ͟fdfeç!fdfe fdfeཟCfdfe͟EԄfdfe#=oefdfeH fdfeo=‡fdfeĘ͟fdfeĽfdfe ?:fdfe#h˄fdfeV͟\fdfeŌ=fdfe ~fdfe=fdfe:͟8fdfeyb1fdfeƻ „fdfeSfdfeD͟fdfeǍ=ufdfe 2fdfe%=[fdfet͟(fdfefdfeu]Ȅfdfet47fdfeq/ fdfek?fdfebƷfdfeX?ƍfdfeK/dbfdfe;:фfdfe)@fdfe範fdfe/žfdfe?Ŕfdfejfdfeͭ?Akfdfe͍/ڄfdfejIfdfeEĸfdfeě'fdfe/qfdfe?Hfdfe̚tfdfej?fdfe7/Rfdfeáfdfex0fdfeˏNfdfeS/%fdfe?}fdfefdfeʏ?¨[fdfeI/~ʄfdfeU9fdfeɵ+fdfehfdfe/؆fdfefdfeџ]ȄfdfeLJfdfeǯfdfehYfdfem@fdfe'fdfeٺ-Nfdfeٰu fdfe٦9ț fdfeٚ fdfeٌ岄fdfe} Ofdfem5.hfdfe[jRfdfeH%u,fdfe3ɗׄfdfeqɺfdfeЄfdfefdfeғ҄fdfeضџ>fdfeؙ^fdfez}XfdfeZʜ5fdfe9aʺfdfe؁fdfe fdfebfdfeץ!/|fdfe|K~fdfeRgfdfe'˂3fdfe1˜Ȅfdfe͟˶fdfe֜Єfdfejޟ髄fdfeuһfdfevҒUfdfexǟizfdfe|XAfdfe΁S2fdfe·ńfdfeΏ̄fdfeΘڟѤRfdfeΣ~RfdfeίX̄fdfeν/3fdfe!#fdfe܋ fdfeVkfdfeФFfdfe?Ёfdfe,O_ZfdfeCܟ=fdfe\şdfdfew-fdfeϒVfdfeϰ2ϻqfdfe͟Ϝfdfeԟ}=fdfe_^ڄfdfe3?@fdfeW#hfdfe}^rfdfeФfdfe1fdfe/βlfdfe"Η?fdfeO|fdfe}bfdfeѭHfdfe/DŽfdfeu]ȄfdfewLJYfdfezǰfdfe΀{fdfeΈ fdfeΓ-fdfeΠW.fdfeΰȀfdfeȪPfdfefdfe쯟rfdfe'fdfe Pfdfe>z%fdfe^ɣfdfeρGfdfeϥ؄fdfe ifdfeIfdfe"sfdfePʝfdfeЁƭfdfeд>fdfeτfdfe!C`fdfe\lfdfeј˖fdfeןfdfe餄fdfe\5fdfeҢ<ƄfdfefWfdfe5̏fdfeӃ̹yfdfeү fdfe$Ÿ fdfeџһfdfeҡҒfdfehfdfe!>fdfeџffdfeٶ!Մfdfe٩Dfdfeٙјfdfeهџo"fdfesEfdfe]fdfeD!ofdfe(џބfdfe !ПMfdfeufdfeȡL+fdfeأџ"fdfe| fdfeSxfdfe'!ϥfdfeџ|Vfdfe!Rńfdfeו)4fdfe_fdfe'џfdfeάfdfeֱ΂fdfer!Y_fdfe0џ/΄fdfe!=fdfeէܬfdfe^ͳfdfeџ͉fdfeơ_fdfew6hfdfe$ ׄfdfeџһfdfefdfe ڄfdfeh6;fdfem^"fdfeӅfdfeٺ-Ӭfdfeٰfdfe٦9fdfeٚ fdfeٌCfdfe}h1fdfem5ԌJfdfe[jԯfdfeH%fdfe3fdfeqfdfe9fdfeZfdfeғ{fdfeضџ՛fdfeؙջfdfez:fdfeZfdfe9azfdfe6cfdfeSfdfebpfdfeץ!֍^fdfe|֩`fdfeRfdfe'fdfe1fdfe͟ńfdfe֜.ffdfejޟGfdfeufdfev7fdfexǟ\fdfe|Xݞfdfe΁Swfdfe·OfdfeΏ(fdfeΘڟ4fdfeΣ4fdfeίܶfdfeν/ܑfdfe!mfdfe܋HfdfeV%Mfdfe(fdfe?}fdfe,O۽<fdfeCܟۛfdfe\şzFfdfew-Yfdfeϒ98fdfeϰ2Sfdfe͟fdfeԟfdfe_ڼfdfe3?ڞӄfdfeWځJfdfe}^dTfdfeФG؄fdfe1+քfdfe/Nfdfe"!fdfeOڌfdfe}qfdfeѭ٦Єfdfeٍfdfeuһfdfew;fdfez̄fdfe΀8]fdfeΈafdfeΓӋfdfeΠӵfdfeΰޡfdfe2fdfe1Äfdfe쯟[TfdfeԄfdfe Ԯvfdfe>fdfe^fdfeρ+)fdfeϥTfdfe~Kfdfeէ܄fdfe"mfdfePfdfeЁ$fdfeдN fdfewfdfe!֡Bfdfe\ӄfdfeјdfdfeןfdfeGfdfe\qfdfeҢךfdfe9fdfe5ʄfdfeӃ[fdfeү@fdfe$Ÿj}fdfeџfdfeҡfdfejfdfe!ݜلfdfeџsHfdfeٶ!Ifdfe٩ &fdfeٙfdfeهџfdfesܣsfdfe]yfdfeD!PQfdfe(џ&fdfe !/fdfeӞfdfeȡ۪ fdfeأџۀ|fdfe|VfdfeS-Zfdfe'!Ʉfdfeџ8fdfe!ڰfdfeוڇfdfe_]fdfe'џ3fdfe cfdfeֱ҄fdfer!ٷAfdfe0џٍfdfe!dfdfeէ:fdfe^fdfeџlfdfeơؽۄfdfewؔJfdfe$jfdfeKY]ȄfdfeJLJfdfeHǯfdfeDYfdfe?@fdfe9'fdfe1Nfdfe(nu fdfeț fdfefdfe岄fdfe' Ofdfe佟.hfdfeRfdfeu,fdfe ɗׄfdfeɺfdfe}lЄfdfedfdfeJ҄fdfe.Y>fdfe^fdfe{}Xfdfetʜ5fdfeʺfdfe ؁fdfei fdfeCfdfe/|fdfeK~fdfegfdfe˂3fdfeq˜ȄfdfeCU˶fdfeЄfdfef髄fdfewһfdfe-ҒUfdfeOizfdfeAfdfe۟2fdfeGńfdfēfdfebѤRfdfe~Rfdfe'(X̄fdfe43fdfeC#fdfeT fdfeeޟkfdfey#ФFfdfeǟЁfdfeן_Zfdfed=fdfeMdfdfefdfe wVfdfe'ϻqfdfeFUϜfdfef\}=fdfe^ڄfdfeǟ@fdfe-#hfdferfdfe'fdfeDfdfenβlfdfe@Η?fdfe|fdfe{bfdfe%+HfdfeVj/DŽfdfew]ȄfdfeLJYfdfe7ǰfdfe'{fdfew fdfe '-fdfe7W.fdfe'Ȁfdfe9wȪPfdfeMfdfed7rfdfe}''fdfewPfdfe'z%fdfe7ɣfdfeGfdfew؄fdfeD ifdfen7Ifdfe'sfdfewʝfdfe'ƭfdfe,7>fdfeaτfdfewC`fdfeӧlfdfe7˖fdfeO'fdfew餄fdfe'5fdfe7<ƄfdfebfWfdfew̏fdfe̹yfdfeJ7 fdfeJ fdfeKYһfdfeJ)ҒfdfeFhfdfe@>fdfe8Yffdfe-Մfdfe Dfdfe)јfdfeYo"fdfe)EfdfeԙfdfeofdfeYބfdfeПMfdfebufdfe@)L+fdfeY"fdfe) fdfeʙxfdfeϥfdfepY|Vfdfe?Rńfdfe )4fdfe)fdfeYfdfee)άfdfe(΂fdfe驟Y_fdfeY/΄fdfed=fdfeܬfdfe)ͳfdfeY͉fdfe>)_fdfe6hfdfe ׄfdfeKYһfdfeJfdfeH ڄfdfeD6;fdfe?^"fdfe9Ӆfdfe1Ӭfdfe(nfdfefdfefdfeCfdfe'h1fdfe佟ԌJfdfeԯfdfefdfe fdfefdfe}l9fdfedZfdfeJ{fdfe.Y՛fdfeջfdfe{:fdfetfdfezfdfe 6cfdfeiSfdfeCpfdfe֍^fdfe֩`fdfefdfefdfeqfdfeCUńfdfe.ffdfefGfdfewfdfe-7fdfeO\fdfeݞfdfe۟wfdfeGOfdfe(fdfeb4fdfe4fdfe'(ܶfdfe4ܑfdfeCmfdfeTHfdfeeޟ%Mfdfey#(fdfeǟ}fdfeן۽<fdfedۛfdfeMzFfdfeYfdfe w98fdfe'SfdfeFUfdfef\fdfeڼfdfeǟڞӄfdfe-ځJfdfedTfdfe'G؄fdfeD+քfdfenNfdfe@!fdfeڌfdfe{qfdfe%+٦ЄfdfeVjٍfdfewһfdfe;fdfe7̄fdfe'8]fdfewafdfe 'Ӌfdfe7ӵfdfe'ޡfdfe9w2fdfeM1Äfdfed7[Tfdfe}'ԄfdfewԮvfdfe'fdfe7fdfe+)fdfewTfdfeD~Kfdfen7է܄fdfe'mfdfewfdfe'$fdfe,7N fdfeawfdfew֡Bfdfeӧӄfdfe7dfdfeO'fdfewGfdfe'qfdfe7ךfdfeb9fdfewʄfdfe[fdfeJ7@fdfeJj}fdfeKYfdfeJ)fdfeFjfdfe@ݜلfdfe8YsHfdfe-Ifdfe &fdfe)fdfeYfdfe)ܣsfdfeԙyfdfePQfdfeY&fdfe/fdfebӞfdfe@)۪ fdfeYۀ|fdfe)Vfdfeʙ-ZfdfeɄfdfepY8fdfe?ڰfdfe ڇfdfe)]fdfeY3fdfee) cfdfe(҄fdfe驟ٷAfdfeYٍfdfeddfdfe:fdfe)fdfeYlfdfe>)ؽۄfdfeؔJfdfejfdfe;fdfeBfdfeckfdfeҟޔfdfeן޼fdfekqfdfe jfdfeP0fdfe{Vfdfeo|jfdfeaߡvfdfeS fdfeB,fdfe0ԟ ˄fdfe0fdfeSfdfe۟u܄fdfeNfdfee҄fdfeٖfdfe;fdfenńfdfeP]9fdfe0VWfdfe˟v\fdfeEfdfeDž΄fdfe̟Ąfdfez@fdfeQBfdfe'"ʄfdfer=fdfeϛXfdfe7rfdfeqHfdfe@HofdfeKYwnfdfeLNfdfeN1%>fdfeQŸ݄fdfeVfdfe])證fdfed膐fdfenD`fdfex:fdfe fdfefdfefdfe΄fdfe/fdfe` fdfe멟=_fdfefdfeFffdfe2/(fdfeLdfdfehYfdfew5fdfe7Wބfdfe>9fdfeɟfdfe fdfe -,fdfe Rȟ6fdfe z 奺fdfe 剸fdfe ̙n0fdfe "Sfdfe $8nfdfe S]Sfdfe fdfe L닄fdfeKYfdfeLCfdfePlfdfeV ޖ?fdfe^Y޿Єfdfei afdfevfdfe<fdfeYffdfeߏfdfe߹6fdfe DŽfdfeY Xfdfe 5fdfe4_zfdfeV fdfe{Yಜfdfe-fdfefdfe /Ofdfe &YXfdfe W qfdfe fdfe Փfdfe Y$fdfe 1(fdfe nRFfdfe {ׄfdfe Yhfdfe 2 fdfe xfdfe "fdfe YKfdfe Xu=fdfe ΄fdfe ,_fdfe;wnfdfe M݄fdfe{$Lfdfefdfe;*fdfe觙fdfe~{~fdfeo Twfdfe];*fdfeI Ufdfe2{Ąfdfe3fdfe;焢fdfe[fdfe{1fdfe fdfey;^fdfeR ̈́fdfe({<fdfeafdfe;8fdfefdfej{fdfe5 gfdfe;քfdfe hEfdfe{>fdfeG#fdfe;뒄fdfe‹fdfe|{pfdfe4 n߄fdfe ;ENfdfe fdfe L{,fdfe hțfdfe)dPfdfe)dIfdfe)b''fdfe)^Ofdfe)YwȄfdfe)S/5fdfe)K[.fdfe)B쨄fdfe)7gfdfe)+N8.fdfe)]:fdfe)ׄ͟fdfe(cfdfe(옟ɏfdfe(S촄fdfe(į_fdfe(1fdfe(SXfdfe(~)tfdfe(cZfdfe(Gfdfe(*Չfdfe( !fdfe'fdfe'ʏ2 fdfe'P fdfe'Imfdfe']fdfe'6Ofdfe' fdfe&㿟ގfdfe&6fdfe&_Pfdfe&\.kfdfe&-KH fdfe% a3fdfe32fdfeӞ ݄fdfe fdfe fdfefdfeiMfdfe BTfdfe*ڄfdfe4ڄfdfe@ΟTfdfeN]Hfdfe]Ofdfembfdfe>fdfeɟ΄fdfem#fdfe}fdfe *fdfefdfe[s(fdfe$RބfdfeA`2fdfe_fdfeńfdfebfdfemyfdfeӟfdfe }fdfe 5͟a~fdfe ^_E|fdfe ])fdfe DŽfdfe ཟ2fdfe!!fdfe!>џvfdfe!pOfdfePfdfeMfdfe ݟ(rfdfe͟Rfdfe{fdfe$͟%fdfe1ݟζfdfeAMGfdfeS!؄fdfegMKifdfe}ݟtfdfe͟fdfefdfe͟fdfeݟ>fdfeMDτfdfe7n`fdfe^Mfdfeݟfdfe͟fdfefdfe ͟>5fdfe EݟgƄfdfe {MWfdfe fdfe Myfdfe!)ݟ fdfe!h͟7fdfe!a,fdfe!͟fdfe"3ݟNfdfe"|M߄fdfe"pfdfe#M1fdfe#cݟZfdfe##fdfe)d32fdfe)cϞ fdfe)`?fdfe)ZOfdfe)Qfdfe)GOc]fdfe):?9̄fdfe)*ϟ;fdfe)檄fdfe)ϟfdfe(?fdfe(Oifdfe(@ffdfe(OՄfdfe(|?Dfdfe(Yϟófdfe(4"fdfe( ϟpfdfe'?Gfdfe'Oofdfe'ބfdfe'YOMfdfe'&?fdfe&ϟw+fdfe&Mfdfe&~ϟ$ fdfe&B?xfdfe&Ofdfe%Vfdfe%~O}ńfdfe%8?T4fdfe$ϟ*fdfe$fdfe$Wϟׁfdfe$?fdfe#,_fdfe+Pfdfefdfek(rfdfe{Rfdfe+{fdfe{%fdfekζfdfeGfdfen+!؄fdfeYKifdfeCktfdfe*{fdfe+fdfe{fdfek>fdfeDτfdfe+n`fdfebfdfe9kfdfe {fdfe+fdfe{>5fdfe{kgƄfdfeEWfdfe+fdfeyfdfek fdfeX{7fdfe+a,fdfe{fdfekNfdfeD߄fdfe+pfdfe1fdfe]kZfdfe X#fdfe\I32fdfe]y fdfea fdfeffdfeoIfdfeyc]fdfe 9̄fdfey;fdfeI檄fdfeyfdfe fdfeifdfeI@ffdfe$ՄfdfeE DfdfegyófdfeI"fdfeypfdfe Gfdfeofdfe7IބfdfegMfdfe fdfeyw+fdfeIMfdfeBy$ fdfe xfdfefdfeIVfdfeB}ńfdfe T4fdfey*fdfeIfdfeiyׁfdfe fdfe _fdfe\IPfdfe\fdfe_!'fdfebOfdfegwȄfdfen5fdfeu.fdfe4쨄fdfefdfe8.fdfe]:fdfe{ׄfdfefdfe԰ɏfdfe촄fdfe_fdfe1fdfe*6SXfdfeCtfdfe]ZfdfeyIfdfeՉfdfe'fdfe.fdfe2 fdfeP fdfe=mfdfecfdfefdfefdfe݉ގfdfe fdfe5PfdfedM.kfdfeH fdfefdfe.΄fdfe۟#fdfe˟fdfe>*fdfeUfdfes(fdfe+Rބfdfe2fdfeaMfdfeAFńfdfebfdfe۟yfdfeufdfe}fdfe{a~fdfebE|fdfe8)fdfe bDŽfdfe2fdfe'fdfewvfdfeQ8OfdfeufdfetCfdfeq/lfdfek?ޖ?fdfeb޿ЄfdfeX?afdfeK/fdfe;<fdfe)ffdfeߏfdfe/߹6fdfe?DŽfdfe Xfdfeͭ?5fdfe͍/_zfdfej fdfeEಜfdfe-fdfe/fdfe?/Ofdfe̚Xfdfej?qfdfe7/fdfeՓfdfe$fdfeˏ(fdfeS/RFfdfe?{ׄfdfehfdfeʏ?fdfeI/fdfe"fdfeɵKfdfehu=fdfe/΄fdfe_fdfe wnfdfe=M݄fdfe͟$Lfdfe"fdfe+ *fdfe5觙fdfeB͟~fdfeR=Twfdfed *fdfex=UfdfeÎ͟Ąfdfeç3fdfe 焢fdfeཟ[fdfe͟1fdfe#=fdfeH ^fdfeo=̈́fdfeĘ͟<fdfeĽafdfe 8fdfe#fdfeV͟fdfeŌ=gfdfe քfdfe=hEfdfe:͟>fdfey#fdfeƻ 뒄fdfefdfeD͟pfdfeǍ=n߄fdfe ENfdfe%=fdfet͟,fdfețfdfe fdfeßBfdfekfdfevޔfdfe#q޼fdfe)ݟqfdfe1 jfdfe:0fdfeEVfdfeQ|jfdfe_Mߡvfdfen?fdfe~,fdfeÐt ˄fdfeã0fdfeø]Sfdfemu܄fdfefdfe҄fdfeKٖfdfe5 fdfeRPńfdfep9fdfeĐWfdfeIJ}v\fdfe]Efdfeß΄fdfe|ĄfdfeF@fdfeoOBfdfeřM"ʄfdfe֟=fdfeXfdfe rfdfeOHfdfeƁofdfeuwnfdfeu9Nfdfes%>fdfeo݄fdfejfdfed證fdfe\K膐fdfeS`fdfeHW:fdfe<>fdfe.fdfefdfeS΄fdfe/fdfeC` fdfe՟=_fdfeͿfdfeͨffdfe͏(fdfetdfdfeXfdfe;w5fdfeWބfdfe 9fdfefdfe̸fdfe̔9,fdfen6fdfeG?奺fdfe剸fdfen0fdfe&Sfdfe˜O8nfdfemSfdfe>;fdfe 닄fdfe;fdfe )wfdfe{Sfdfe|fdfe;*fdfeϻfdfe~{Lfdfeo "݄fdfe];LnfdfeI ufdfe2{fdfe!fdfe;fdfeCfdfe{EԄfdfe oefdfey;fdfeR ‡fdfe({fdfefdfe;?:fdfeh˄fdfej{\fdfe5 fdfe;~fdfe fdfe{8fdfeGb1fdfe;„fdfe‹Sfdfe|{fdfe4 ufdfe ;2fdfe [fdfe L{(fdfe hfdfeKY]ȄfdfeL47fdfeP fdfeV fdfe^YƷfdfei ƍfdfevdbfdfe:фfdfeY@fdfe範fdfežfdfe ŔfdfeYjfdfe Akfdfe4ڄfdfeVIfdfe{Yĸfdfeě'fdfeqfdfe Hfdfe &Ytfdfe W fdfe Rfdfe áfdfe Yx0fdfe 1Nfdfe n%fdfe }fdfe Yfdfe 2 ¨[fdfe x~ʄfdfe U9fdfe Y+fdfe Xfdfe ؆fdfe ,fdfeKYfdfeL);fdfeN1RfdfeQŸzwfdfeV^fdfe])˄fdfedĄfdfenD>fdfex=>fdfe bĄfdfeЄfdfemfdfeІfdfe%fdfeJfdfe멟9fdfe\6fdfeF}fdfe2/,fdfeLfdfehY:fdfefdfe7vfdfe>>Sfdfeɟ\fdfe zfdfe -(fdfe Rȟfdfe z њfdfe 휄fdfe ̙ $fdfe "$Qfdfe $>fdfe S]Yfdfe rfdfe LɄfdfe;]Ȅfdfe4sfdfec fdfeҟ7fdfeןƻPfdfekƓfdfelfdfePFpfdfe{ pfdfeofdfeaބfdfeS űAfdfeBō(fdfe0ԟifdfeFdfdfe#fdfe۟xfdfeNfdfeeľfdfeĝfdfe;}tfdfen]fdfeP]>8fdfe0V[fdfe˟fdfefdfeDžņfdfe̟èfdfezÌfdfeQpfdfe'Tfdfer9]fdfeϛȄfdfe7fdfeq fdfe@Hfdfe)dD"fdfe)cϟmfdfe)`?Dfdfe)ZOՄfdfe)Qffdfe)GOfdfe):?=fdfe)*ϟgfdfe)fdfe)ϟ;fdfe(?̄fdfe(O ]fdfe(6fdfe(O`fdfe(|?fdfe(Yϟfdfe(42fdfe( ϟÄfdfe'?0Tfdfe'OYfdfe'vfdfe'YOfdfe'&?֘fdfe&ϟ)fdfe&)fdfe&~ϟSKfdfe&B?|܄fdfe&Omfdfe%fdfe%~Ofdfe%8?# fdfe$ϟLfdfe$vBfdfe$Wϟӄfdfe$?dfdfe#,fdfefdfeMxsfdfe ݟNfdfe͟%Qfdfefdfe$͟/fdfe1ݟfdfeAM fdfeSU|fdfegM+fdfe}ݟZfdfe͟Ʉfdfe8fdfe͟fdfeݟ\fdfeM2fdfe7fdfe^Mcfdfeݟ҄fdfe͟Afdfebfdfe ͟9fdfe Eݟfdfe {Mfdfe lfdfe Mۄfdfe!)ݟiJfdfe!h͟?fdfe!(fdfe!͟엄fdfe"3ݟfdfe"|Mufdfe"ofdfe#MFSfdfe#cݟ„fdfe#1fdfeD"fdfeӟmwfdfe Rfdfe fdfe暄fdfeퟦfdfe 5fdfe*[zfdfe4zfdfe@ΟfdfeN] fdfe]Ofdfem„fdfe8afdfeɟ[fdfem~1fdfe}rfdfe *fdfehfdfe[,fdfe$$vfdfeA`D[fdfe_cfdfefdfefdfemۄfdfeӟdfdfe Zfdfe 5͟քfdfe ^_1؄fdfe ]M`fdfe 柩hfdfe ཟ"fdfe!!=fdfe!>џބfdfe!pfdfe)dfdfe)dIxfdfe)b'OԄfdfe)^'sfdfe)Yfdfe)S/fdfe)K[&fdfe)Bfdfe)7gdfdfe)+N?&fdfe)fdfe)͟}fdfe(cdfdfe(옟ńfdfe(Sfdfe(įgfdfe(Efdfe(#fdfe(~)fdfe(cfdfe(Gfdfe(*˄fdfe( !tfdfe'cfdfe'ʏE4fdfe''Kfdfe'I „fdfe']̄fdfe'6OPfdfe' Nfdfe&㿟Ƅfdfe&6}fdfe&_cfdfe&\Hfdfe&-K/Hfdfe% !fdfe)D3Lfe۟ZfeBfeB̴fe٠"fe٠*"feE"feE*"fe'fe'̴fev Zfe)1͟D3LfeU::::::y獒U:::y獒:::rN= fdfeݟAfdfeMfdfe ]lefdfe <*fdfe] lfdfeM(fdfeݟ^fdfe fdfe·ݟR/fdfe¡M$҄fdfeˆ]fdfem ˆfdfeO]fdfe/Mtfdfe ݟIfdfe fdfeݟfdfeMfdfek]لfdfe= y>fdfe ]QfdfeM)vfdfeݟIfdfel ~fdfe1ݟDfdfeMfdfe]j>fdfeu Erfdfe1]!fdfeM*fdfeݟ˄fdfeX fdfe ݟ{fdfeMrhfdfei:PfdfeiPfdfe)/wfdfeǖ fdfezcfdfe/%fdfefdfe fdfe]W\fdfe7fdfeqfdfe~쫄fdfefKkfdfe.xfdfexfdfeP݄fdfe?(fdfef쟴fdfe:fdfefwfdfe3ifdfe`Xfdfeퟳ-߄fdfeڟcfdfee'քfdfeIԟfdfe0៲},fdfehOɄfdfe6!fdfedfdfefdfefdfe.eӄfdfeܟ5fdfe꟱fdfeẌ́fdfe&"fdfe+Pfdfe[fdferfdfe۟Aτfdfe+fdfe۟քfdfe󲒄fdfe[Ȅfdfe+Uxfdfe['fdfe0<fdfeI۟Yfdfee+fdfe۟ufdfeI~fdfe[fdfe+fdfe[fdfe:jfdfef۟wCfdfe+Nfdfe۟&fdfefdfe.[׳fdfef+fdfe[fdfedfdfe۟?fdfe]+܄fdfe۟mfdfeҔfdfe/[5fdfez+Pfdfe[ifdfeG҄fdfeh&Zfdfei&_fdfefdfe fdfeW՟zfdfefdfez*fdfe1.VKfdfet1fdfe4 'fdfe'ۄfdfe1fdfekՄfdfeufdfe3Mfdfe F&Gfdfe< fdfekLfdfe?dfdfeҟfdfeXӄfdfe ؟.Kfdfe/KIfdfeO^̈́fdfemfdfeˆdfdfe¡WRfdfe·П%3fdfeVfdfeԟfdfeFKfdfeXkfdfe ;=fdfe \ fdfeNhfdfe7fdfewfdfePfdfefdfe]rfdfemAτfdfefdfemքfdfe]󲒄fdfeȄfdfeUxfdfe'fdfe]<fdfewmYfdfe\fdfe>mufdfe]I~fdfefdfefdfefdfe]jfdfeZmwCfdfe,Nfdfem&fdfe]fdfe׳fdfe[fdfe fdfe]dfdfem?fdfed܄fdfe mmfdfe]Ҕfdfe5fdfeGPfdfeifdfe]G҄fdfeXJ&ZfdfeX,&_fdfe9fdfefdfeiszfdfefdfe-z*fdfeVKfdfeLg1fdfe  'fdfe!ۄfdfefdfeU[ՄfdfeufdfeMfdfe&GfdfeO fdfeUfdfe* dfdfevfdfeCXӄfdfep.KfdfeIfdfeq̈́fdfeT7fdfe8fdfeRfdfe x%3fdfeFVfdfetfdfeKfdfekfdfe>;=fdfe fdfehfdfeh7fdfe6wfdfe;fdfekAfdfefdfe럻lefdfe;<*fdfe럻 lfdfe(fdfek^fdfe;fdfe kR/fdfe$҄fdfe8럹fdfeT;ˆfdfeq럹fdfetfdfekIfdfe;fdfekfdfe)fdfeU럸لfdfe;y>fdfe럸Qfdfe)vfdfekIfdfeU;~fdfekDfdfefdfe 럷j>fdfeL;Erfdfe럷!fdfe*fdfek˄fdfei;fdfek{fdferhfdfeXPfdfeX,Pfdfe/wfdfe fdfeF埵fdfe%fdfe+fdfe >fdfec\fdfeD7fdfe7qfdfe ʟ쫄fdfeZkfdfeПfdfeCxfdfeVP݄fdfe, (fdfeZ\fdfeOfdfe⟳wfdfeifdfe蟳Xfdfe[-߄fdfe>ncfdfe\!քfdfewtfdfeg},fdfeOɄfdfe!fdfe䟱fdfeVfdfehfdfeeӄfdfel5fdfe^fdfë́fdfe""fdfe꫍6implies3ix W1ڍ1:::~5 W1ڍi1AV W2ڍi!i1AT::: 1V=URid:::/v2 W2ڍ1 W1ڍ2::: W1ڍi#(16)덑6andcsimilarly1:::i1AV2W2RAi!W1ԍi1AT::: W11۹="BW1ԍi:::~5W12 2W2RA12:::iforcalli"B=61;:::ʚ;n.BLetBn3UR'7!99~']2Sn denotethecanonicalepimorphism.BFVoreacrhbraid'UR2Bn 6Bthereexistsabraid'(i) V2URBn+1suchthatthe6diagramg] BPLn ::: PƟ22 r ::: P UJPLn ::: P rfd}ά-*0я1 ::: f ::: 1$y16i$1@BPLn ::: PƟ22 r ::: PUJPLn ::: P tfd}ά-я1 ::: f ::: 1xmj@A}j `6fe}ל `?ѭf'(i)@At? `6fetrܟ `?qy%\'ʍ6हcommrutesAforallfQ:URPƟ22  Ч!%P㎹inC(wherej%=99~' ȹ(i)).Thebraid'(i) Ccan6bSeH*givrenexplicitlyV,_butweareonlyinterestedinthefollowingspSecial6formsMʍx$ljv(i)=URjv+1ifȖ^j%>URi;>i1(i)2=URidi1AV;x$ljv(i)=URjifȖ^j%<URi1;i(i)2=URidi+1q7 ;MON!LIEALGEBRASINTHECA:TEGORY!OFQYETTER-DRINFELDMODULESU21V6हwhicrhcanbSeeasilyveri ed.BBy(16)wrehaveforallz52URPƟ2n+1&(1;))k W2ڍi!i1AT::: 1(z)UR=i1AT:::1(z):#(17)*6Lemma8.1.For35z52URPƟ2n+1&(1;),'2Bn ۅandj%:=99~' ȹ(i)wehave01ʍ'(i) Ri1AT::: 1(z)=URjv1B:::! "1(1 ')(z);;'(i) Rid:::/v1(z)=URjf:::01(1 ')(z):6F6Prffoof.ZTVoӖprorvethiswe rstobservethatthesetworelationsarecom-vڍ6patible`xwiththegroupstructureofBnP. QFVorD_~'Wz ~*  $(i)ј=~' (jӹ)=kǕwre6harve-1ʍ;'(jv)  (i) Ri1AT::: 1(z)Gi=UR'(jv) jv1B:::! "1(1 n9)(z)=k61 :::!ʪ1(1 ' n9)(z);F '(jv)  (i) Rid:::/v1(z)Gi=UR'(jv) jf:::01(1 n9)(z)=k#:::.1(1 ' n9)(z)/腍6sowreonlyhavetoshowtheserelationsforthegenerators'1=jf ,6j%=UR1;:::ʚ;n1.8Inthesecaseswrehave腍ʍUt(jv(i) \i1AT::: 1(z)=URjv+1Bi1AT::: 1(z)=URi1AT::: 1jv+1B(z)=URi1AT::: 1(1 jf )(z)G &forYj%>URi;Ut(jv(i) \i1AT::: 1(z)=URjf i1AT::: 1(z)=URi1AT::: jf jv+1Bjf:::01(z)=URi1AT::: jv+1Bjf jv+1B:::! "1(z)=URi1AT::: 1jv+1B(z)=URi1AT::: 1(1 jf )(z)G &forYj%<URi1;Ki1(i)¨i1AT::: 1(z)=URidi1AVi1AT::: 1(z)=URidi2AT::: 1(z)=URi2AT::: 1idڹ(z)=URi2AT::: 1(1 i1AV)(z);VuXi(i) ,i1AT::: 1(z)=URidi+1AVi1AT::: 1(z)=URid:::/v1i+1AV(z)=URid:::/v1(1 idڹ)(z);"7 6M22BODOTP:AREIGISV2ʍejv(i) \id:::/v1(z)=URjv+1Bid:::/v1(z)=URid:::/v1jv+1B(z)=URid:::/v1(1 jf )(z)AforSjj%>URi;ejv(i) \id:::/v1(z)=URjf id:::/v1(z)=URid:::/vjf jv+1Bjf:::01(z)=URid:::/vjv+1Bjf jv+1B:::! "1(z)=URid:::/v1jv+1B(z)=URid:::/v1(1 jf )(z)AforSjj%<URi1;Qi1(i)¨i1AT::: 1(z)=URidi1AVii1i2AT::: 1(z)=URi1AVid2W2RAi1i2AT::: 1(z)=URi1AVidi2AT::: 1(z)=URi1AVi2AT::: 1idڹ(z)=URi1AT::: 1(1 i1AV)(z);fi(i) ,id:::/v1(z)=URidi+1AVid:::/v1(z)=URi+1AVidi+1AT::: 1(z)=URi+1AVid:::/v1i+1(z)=URi+1AT::: 1(1 idڹ)(z)M6wherewreused(17)inthe3.and7.equations.pmG6Lemma8.2.For35allz52URPƟ2n+1&(1;)andallfQ:URPƟ22  !rPwehaveύ#u(PƟ i1 f PƟ nih)i1AT::: 1(z)UR2PƟ nJ():6Prffoof.ZFVorall'UR2Bn andallko=UR1;:::ʚ;nwrehave0;Gl2W2RAk!'9(PƟ2i1 f PƟ2nih)i1AT::: 1(z)UR=9=UR2W2RAk!(PƟ2jv1 f PƟ2nj̘)'(i) Rjv1B:::! "1(z)9=UR(PƟ2jv1 f PƟ2nj̘)2W2k6(jv)jv1B:::! "1(1 ')(z) 9=UR(PƟ2jv1 f PƟ2nj̘)jv1B:::! "1(1 2W2RAk!')(z)9=UR'(PƟ2i1 f PƟ2nih)i1AT::: 1(z)16hence(PƟ2i1 f PƟ2nih)i1AT::: 1(z)UR2PƟ2nJ():rGBहNorwwecangivethe6Prffoof.ZofPropSosition3.1:BWVel rstshorwthatPƟ2n+1&()URPY ˹(PƟ2nJ())PƟ2n+1&.wLetlz5=P ㍟kzk6;1 w 6:::E 9Dzk6;n+1bSe5inPƟ2n+1&()withlinearlyindependenrtzk6;1 .Let';i,2URBn6हbSegivren.3De ne1~ 'UR2Bn+1_resp.1~ i,2URBn+1_brytheopSerationofE6'resp.Riֹonthefactorszk6;2  ::: zk6;n+1ҹ,e.g.1 ߍW(n)|i7=URߍW(n+1)|i+1xa.Then3ʍ;टPHnzk6;1j '21 \|2W2RAi!'(P 9zk6;2 ::: zk6;n+1ҹ)-=UR(1 '21 \|2W2RAi!')(z)-=URP ㍟kzk6;1j 22P6OPƟ22aʹ(1)AQtPLn PS:32fd2Bά-ƍH1ڟǠ*Ffee Ǡ?`1 [.,.]H#ڟǠ*FfeW Ǡ?` 1 [.,.]6Themorphism1 [:;:]UR:P) PƟ2nJ()n!1P PĹisinC5.ߨConsiderthebraid-6ing9J2H:+P 2PƟ2nJ()!PƟ2n()2 Pƹ.$Since9Jitisanaturaltransformation6thediagramKHHvgPLn PƟ2nJ()HagPƟ2nJ() PT{fdPά- u%-PLn (P ::: Pƹ)-(PLn ::: Pƹ) P&$32fd'uά-m|i'H7Ǡ*Ffek$Ǡ?H1"Ǡ*Ffe1V$Ǡ?Í6हcommruteswith'=nN:::r1 mù=(P cmmi10 0ercmmi7K`y cmr10< lcircle10O line10u cmex10i