\documentclass[a4paper,10pt]{article} \usepackage{german,amsmath,amsthm,amsfonts} \newcommand{\ra}{\rightarrow} \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Z}{\mathbb{Z}} \begin{document} \pagestyle{empty} \begin{Large} \noindent Mathematisches Institut \smallskip \noindent Universit"at M"unchen \newline \end{Large} \vspace*{0.2cm} \noindent Mark Hamilton \noindent Office hour: Mon 1-2 pm, Room 308 \hspace*{5cm} SS 04 \newline \vspace*{0.5cm} \begin{center} {\bf \large Geometry of Manifolds II (Prof. Kotschick) \\ \medskip Problem sheet 7} \end{center} \vspace{0.5cm} \noindent 1. a) Let $N$ be a closed manifold. Show that $N \times S^2$ admits a metric of positive scalar curvature. b) Find a closed 4-manifold $X$ which admits a metric with $scal >0$ but which does not admit a metric with $Ric \geq 0$. \\ \\ \medskip \noindent 2. Let $(M,g)$ be a Riemannian manifold and $\omega \in \Omega^*(M)$ a differential form. Fix a point $p \in M$, an orthonormal basis $\{X_i\}$ of $T_pM$ with dual basis $\{\theta_i\}$ and let $\lambda_\alpha$ be the eigenvalues of the curvature operator $\mathfrak{R}_p:\Lambda^2T_pM\rightarrow \Lambda^2T_pM$ with $\Theta_\alpha \in \Lambda^2T^*_pM$ the duals of the corresponding eigenvectors. Show that \begin{equation*} \sum_{i,j=1}^ng([\theta_i\cdot \theta_j,R(X_i,X_j)\omega],\omega)=-\sum_\alpha \lambda_\alpha|[\Theta_\alpha,\omega]|^2. \end{equation*} \\ \\ Hint: Prove first that the left hand side equals \begin{equation*} -\sum_{i