\documentclass[a4paper,10pt]{article} \usepackage{german,amsmath,amsthm,amsfonts} \newcommand{\ra}{\rightarrow} \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Z}{\mathbb{Z}} \begin{document} \pagestyle{empty} \begin{Large} \noindent Mathematisches Institut \smallskip \noindent Universit"at M"unchen \newline \end{Large} \vspace*{0.2cm} \noindent Mark Hamilton \noindent Office hour: Mon 1-2 pm, Room 308 \hspace*{5cm} SS 04 \newline \vspace*{0.5cm} \begin{center} {\bf \large Geometry of Manifolds II (Prof. Kotschick) \\ \medskip Problem sheet 6} \end{center} \vspace{0.5cm} \noindent 1. Let $(M,g)$ be an oriented Riemannian manifold and $X$ a vector field. Use a local orthonormal frame which is parallel in one point to show that \begin{equation*} L_X dvol_g=div(X)dvol_g. \end{equation*} \medskip \noindent 2. Let $(M,g)$ be a closed oriented Riemannian manifold and $X$ a Killing field. Show that: a) The flow of $X$ operates through isometries. b) The adjoint $L^*_X$ of the map $L_X:\Omega^k(M) \rightarrow \Omega^k(M)$ with respect to the $L^2$-norm is $-L_X$. c) If $\omega \in \Omega^k(M)$ is harmonic then $L_X \omega=0$. \\ \\ \medskip \noindent 3. Let $(M,g)$ be a closed connected oriented Riemannian manifold. a) Show that for smooth functions $f$ and $h$ \begin{equation*} \Delta(fh)=(\Delta f)h+f(\Delta h)+2g(grad\,f,grad\,h). \end{equation*} Suppose that $f$ is a smooth function with $\Delta f \geq 0$. Use Stokes' theorem to prove (without using Hodge theory) that: b) $\Delta f=0$. c) $f$ is constant. \\ \\ \medskip \noindent 4. Let $(M,g)$ be a closed oriented Riemannian manifold with $Ric \geq 0$. Suppose that $b_1(M)=k$. Show that the Riemannian universal covering $(\tilde{M},\tilde{g})$ is isometric to $(N,h) \times (\mathbb{R}^k,g_{stand})$ for some Riemannian manifold $(N,h)$. \bigskip \bigskip \noindent Please hand in your solutions on Monday, the 14th of June, in the lecture. \end{document}