\documentclass[a4paper,10pt]{article} \usepackage{german,amsmath,amsthm,amsfonts} \newcommand{\ra}{\rightarrow} \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Z}{\mathbb{Z}} \begin{document} \pagestyle{empty} \begin{Large} \noindent Mathematisches Institut \smallskip \noindent Universit"at M"unchen \newline \end{Large} \vspace*{0.2cm} \noindent Mark Hamilton \noindent Office hour: Mon 1-2 pm, Room 308 \hspace*{5cm} SS 04 \newline \vspace*{0.5cm} \begin{center} {\bf \large Geometry of Manifolds II (Prof. Kotschick) \\ \medskip Problem sheet 3} \end{center} \vspace{0.5cm} \noindent 1. Let $G\times M \rightarrow M$ be a smooth group action and $p,q \in M$ points on the same orbit. Show that the stabilizers $G_p$ and $G_q$ are conjugate as subgroups of $G$ (and hence isomorphic). Find an example where $G_p \neq G_q$. \\ \\ \medskip \noindent 2. a) Find an example of a smooth $S^1$-action whose orbits are not all diffeomorphic. b) Consider the unitary group $U(n) = \{A \in Mat(n\times n,\mathbb{C})\mid A\cdot \bar{A}^T=I\}$. Show that the standard linear action of $U(n)$ on $\mathbb{C}^n$ induces a transitive action on the unit sphere $S^{2n-1}\subset \mathbb{C}^n$ and determine the stabilizer of a point. c) Realise the Grassmannian \begin{equation*} Gr(k,n) = \{V \mid V \subset \mathbb{R}^n\,\mbox{$k$-dimensional linear subspace}\}, \end{equation*} where $0\leq k\leq n$, as a homogeneous space. \\ \\ \medskip \noindent 3. Let $\phi:G\times M \rightarrow M$ be a smooth (left) action of a Lie group $G$ on a manifold $M$. The action induces a map \begin{equation*} \phi_*:\mathfrak{g}\rightarrow \mathfrak{X}(M), \end{equation*} given by $(\phi_*X)(p)=\frac{d}{dt}|_{t=0}(exp(tX)\cdot p)$. Show that \begin{equation*} [\phi_*X,\phi_*Y]=-\phi_*[X,Y], \quad \forall X,Y\in \mathfrak{g}. \end{equation*} (The minus sign would not be there, if we considered actions from the right.) \\ \\ \medskip \noindent 4. Let $G\times M \rightarrow M$ be a smooth group action. If $G$ is compact, show that every orbit is an embedded submanifold of $M$. \bigskip \noindent Please hand in your solutions on Thursday, the 13th of May, in the lecture. \end{document}