\documentclass[a4paper,10pt]{article} \usepackage{german,amsmath,amsthm,amsfonts} \newcommand{\ra}{\rightarrow} \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Z}{\mathbb{Z}} \begin{document} \pagestyle{empty} \begin{Large} \noindent Mathematisches Institut \smallskip \noindent Universit"at M"unchen \newline \end{Large} \vspace*{0.2cm} \noindent Mark Hamilton \noindent Office hour: Mon 1-2 pm, Room 308 \hspace*{5cm} SS 04 \newline \vspace*{0.5cm} \begin{center} {\bf \large Geometry of Manifolds II (Prof. Kotschick) \\ \medskip Problem sheet 2} \end{center} \vspace{0.5cm} \noindent 1. a) Let $M, N$ be differentiable manifolds and $f:M\rightarrow N$ a smooth map of constant rank $k$. Show that the connected components of the preimages $f^{-1}(y)$, where $y$ runs over $f(M)$, form the leaves of a codimension $k$ foliation on $M$. b) Let $f:\mathbb{R}^3\rightarrow \mathbb{R}$ be the map \begin{equation*} f(x,y,z)=(1-x^2-y^2)e^z. \end{equation*} Check that this is a submersion. By a), the preimages form the leaves of a codimension 1 foliation $\mathcal{F}$ on $\mathbb{R}^3$. This foliation is called the {\it Reeb foliation}. Sketch a picture of $\mathcal{F}$. Denote the preimage of $s \in \mathbb{R}$ by $L_s$. Prove that $\mathcal{F}$ is invariant under translations in the $z$-direction and that $L_0 \cong S^1 \times \mathbb{R}$ and $L_s \cong \mathbb{R}^2$ for $s >0$. \\ \\ \medskip \noindent 2. Consider the 1-form $\alpha=dx+zdy$ on $\mathbb{R}^3$ with coordinates $(x,y,z)$. a) Prove that $\mbox{ker}\alpha=\{X \in T\mathbb{R}^3\mid i_X\alpha=0\}$ is a smooth rank 2 distribution $\mathcal{D}$ on $\mathbb{R}^3$. b) Show that $\mathcal{D}$ is nowhere integrable. \\ \\ \medskip \noindent 3. Consider the Lie group $SL(2,\mathbb{R})$ with Lie algebra $sl(2,\mathbb{R})$. a) Show that $sl(2,\mathbb{R})=\{A \in \mbox{Mat}(2\times 2, \mathbb{R}) \mid \mbox{Tr}A=0\}$. b) Prove that the exponential map of $SL(2,\mathbb{R})$ is not surjective. ({\it Hint}: You can consider $\mbox{Tr}\,\mbox{exp}A$ for $A \in sl(2,\mathbb{R})$.) \\ \\ \medskip \noindent 4. Let $\phi:H \rightarrow G$ be a smooth homomorphism between Lie groups. Prove that $\phi(H)$ is a Lie subgroup of $G$. \bigskip \noindent Please hand in your solutions on Thursday, the 6th of May, in the lecture. \end{document}