\documentclass[a4paper,10pt]{article} \usepackage{german,amsmath,amsthm,amsfonts} \newcommand{\ra}{\rightarrow} \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Z}{\mathbb{Z}} \begin{document} \pagestyle{empty} \begin{Large} \noindent Mathematisches Institut \smallskip \noindent Universit"at M"unchen \newline \end{Large} \vspace*{0.2cm} \noindent Mark Hamilton \noindent Office hour: Mon 1-2 pm, Room 308 \hspace*{5cm} SS 04 \newline \vspace*{0.5cm} \begin{center} {\bf \large Geometry of Manifolds II (Prof. Kotschick) \\ \medskip Problem sheet 11} \end{center} \vspace{0.5cm} \noindent 1. a) Let $(M,g)$ be a Riemannian manifold, $\gamma$ a geodesic and $J(t)$ a Jacobi field along $\gamma$ with $J(0)=0$. Prove that $J(t)$ is orthogonal to $\dot{\gamma}(t)$ for all $t$ if and only if $\dot{J}(0)\perp \dot{\gamma}(0)$. b) Suppose $(M,g)$ has constant curvature $K$. Let $w(t)$ be a parallel vector field along the geodesic $\gamma$ which is orthogonal to $\dot{\gamma}$ and has length $1$. Solve in each case $K>0,K=0,K<0$ the Jacobi equation for $J(t)$ with initial conditions $J(0)=0,\dot{J}(0)=w(0)$. \\ \\ \medskip \noindent 2. Let $(M,g)$ be a Riemannian manifold, $p\in M$ be a point and $v,w \in T_pM$. Consider a geodesic $\gamma(t)$ with $\gamma(0)=p$, $\dot{\gamma}(0)=v$. Show that the vector field $J$ along $\gamma$ given by $J(t)=(D_{tv}exp_p)(tw)$ solves the Jacobi equation \begin{equation*} \ddot{J}+R(\dot{\gamma}, J)\dot{\gamma}=0, \end{equation*} with initial values $J(0)=0, \dot{J}(0)=w$. \\ \\ \medskip \noindent 3. a) Let $M$ be a manifold which admits a complete Riemannian metric with $Ric\geq k >0$. Show that $M$ does not admit a metric of non-positive sectional curvature. b) Let $M,N$ be closed manifolds of positive dimension. Show that $M\times N$ does not admit a metric of negative sectional curvature. \\ \\ \medskip \noindent 4. Let $(M,g)$ be a closed Riemannian manifold of negative sectional curvature. Show that any two commuting elements of the fundamental group $\pi_1(M)$ belong to a common cyclic subgroup and that $\pi_1(M)$ is a uniquely determined union of infinite cyclic subgroups which intersect pairwise only in the identity element. \bigskip \bigskip \noindent Please hand in your solutions on Monday, the 19th of July, in the lecture. \end{document}