\documentclass[a4paper,10pt]{article} \usepackage{german,amsmath,amsthm,amsfonts} \newcommand{\ra}{\rightarrow} \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Z}{\mathbb{Z}} \begin{document} \pagestyle{empty} \begin{Large} \noindent Mathematisches Institut \smallskip \noindent Universit"at M"unchen \newline \end{Large} \vspace*{0.2cm} \noindent Mark Hamilton \noindent Office hour: Mon 1-2 pm, Room 308 \hspace*{5cm} SS 04 \newline \vspace*{0.5cm} \begin{center} {\bf \large Geometry of Manifolds II (Prof. Kotschick) \\ \medskip Problem sheet 10} \end{center} \vspace{0.5cm} \noindent 1. Let $\pi:(\bar{M},\bar{g})\rightarrow (M,g)$ be a submersion between Riemannian manifolds. The tangent bundle $T\bar{M}$ splits into the vertical and horizontal bundle, $T\bar{M}=V\oplus H$, where $V=T\pi$ is the tangent bundle along the fibres and $H=V^\perp$. For a vector field $X$ on $M$ denote by $\bar{X}\in \mathfrak{X}(\bar{M})$ the {\it horizontal lift}, i.e. the unique horizontal vector field on $\bar{M}$ such that $D\pi(\bar{X})=X$. The submersion $\pi$ is called {\it Riemannian} if $D\pi:H \rightarrow TM$ is an isometry on each fibre. Let $\pi$ be a Riemannian submersion. Show that the Levi-Civita connections $\bar{\nabla},\nabla$ of $\bar{M}$ and $M$ are related by \begin{equation*} \bar{\nabla}_{\bar{X}}\bar{Y} = \overline{\nabla_X Y}+\frac{1}{2}[\bar{X},\bar{Y}]^v, \end{equation*} for all vector fields $X,Y$ on $M$, where $Z^v$ denotes the vertical component of $Z \in \mathfrak{X}(\bar{M})$. \\ \medskip \noindent 2. Let $\pi:(\bar{M},\bar{g})\rightarrow (M,g)$ be a Riemannian submersion. Denote the sectional curvatures of $\bar{M},M$ by $\bar{K}$ and $K$. Prove O'Neill's formula: \begin{equation*} K(X,Y) = \bar{K}(\bar{X},\bar{Y}) + \frac{3}{4}|[\bar{X},\bar{Y}]^v|^2, \end{equation*} for all orthonormal vector fields $X$ and $Y$ on $M$. \\ \\ \medskip \noindent 3. Let $G$ be a Lie group with Lie algebra $\mathfrak{g}$. A {\it bi-invariant metric} is a Riemannian metric on $G$ which is invariant under all left- and right-translations. (One can show that every compact Lie group admits a bi-invariant metric). Suppose $G$ admits a bi-invariant metric $g$. Denote the Levi-Civita connection of $g$ by $\nabla$. Prove the following formulas for $X,Y,Z,W \in \mathfrak{g}$: \begin{itemize} \item $g([Y,X],Z)+g(Y,[Z,X]) = 0$. \item $\nabla_X Y = \frac{1}{2}[X,Y]$. \item $g(R(X,Y)Z,W) = \frac{1}{4}g([X,Y],[Z,W])$. \end{itemize} \noindent Hint: Recall that $[X,Y]=\frac{d}{dt}|_{t=0}(Ad(exp(tX))Y)$, where $Ad(h)=D_e(L_hR_{h^{-1}})$. \medskip \noindent 4. Let $G$ be a Lie group. a) Show that if $G$ admits a bi-invariant metric and $\mathfrak{g}$ has trivial center, then $G$ is compact and $\pi_1(G)$ is finite. Prove that $SL(2,\mathbb{R})$ does not admit a bi-invariant metric. b) Show that if $G$ is compact and non-abelian and $M$ any compact manifold, then $M\times G$ admits a metric of positive scalar curvature. \bigskip \bigskip \noindent Please hand in your solutions on Monday, the 12th of July, in the lecture. \end{document}