\documentclass[a4paper,10pt]{article} \usepackage{german,amsmath,amsthm,amsfonts} \newcommand{\ra}{\rightarrow} \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Z}{\mathbb{Z}} \begin{document} \pagestyle{empty} \begin{Large} \noindent Mathematisches Institut \smallskip \noindent Universit"at M"unchen \newline \end{Large} \vspace*{0.2cm} \noindent Mark Hamilton \noindent Office hour: Mon 1-2 pm, Room 308 \hspace*{5cm} SS 04 \newline \vspace*{0.5cm} \begin{center} {\bf \large Geometry of Manifolds II (Prof. Kotschick) \\ \medskip Problem sheet 1} \end{center} \vspace{0.5cm} \noindent 1. Let $G$ be a Lie group. Show that the identity component, i.e. the connected component containing the identity element, is a normal subgroup of $G$. \\ \\ \medskip \noindent 2. The {\it special unitary group} is defined as \begin{equation*} SU(n)=\{A \in \mbox{Mat}(n\times n,\mathbb{C}) \mid A\cdot \bar{A}^T = I, \quad \mbox{det}A=1\}. \end{equation*} Show that $SU(n)$ is a compact Lie group of dimension $n^2-1$ and determine its Lie algebra $su(n)$. Prove that, as a manifold, $SU(2)$ is diffeomorphic to $S^3$. \\ \\ \medskip \noindent 3. a) Let $G$ be a Lie group and $X,Y \in \mathfrak{g}$. Show that the curve \begin{equation*} exp(tX)exp(tY), \quad t \in \mathbb{R} \end{equation*} has initial velocity vector $X+Y$. b) Find an explicit example where $exp(X)exp(Y) \neq exp(X+Y)$. \\ \\ \medskip \noindent 4. Consider the general linear group $GL(n,\mathbb{R})$ with Lie algebra $gl(n,\mathbb{R})$. Show that as a vector space, $gl(n,\mathbb{R})$ can be canonically identified with $\mbox{Mat}(n\times n,\mathbb{R})$. Prove that the (abstract) exponential mapping is given by \begin{equation*} exp(X) = \sum_{k=0}^\infty \frac{X^k}{k!} \quad \forall X \in gl(n,\mathbb{R}), \end{equation*} and that \begin{equation*} [X,Y]=XY-YX \quad \forall X,Y \in gl(n,\mathbb{R}). \end{equation*} \bigskip \noindent Please hand in your solutions on Thursday, the 29th of April, in the lecture. \end{document}