%!PS-Adobe-2.0 %%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software %%Title: Anosov.dvi %%Pages: 7 %%PageOrder: Ascend %%BoundingBox: 0 0 596 842 %%DocumentFonts: Times-Bold Times-Roman Times-Italic Courier %%EndComments %DVIPSWebPage: (www.radicaleye.com) %DVIPSCommandLine: dvips -o Anosov.ps Anosov.dvi %DVIPSParameters: dpi=406, compressed %DVIPSSource: TeX output 2003.11.10:1849 %%BeginProcSet: texc.pro %! /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[ matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{ statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0] N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin /FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array /BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2 array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get }B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub} B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr 1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3 1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx 0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{ rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B /chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{ /cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{ A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse} ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17 {2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{ 1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop} forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn /BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put }if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{ bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{ SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{ userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X 1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4 index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N /p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{ /Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT) (LaserWriter 16/600)]{A length product length le{A length product exch 0 exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot} imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M} B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{ p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end %%EndProcSet %%BeginProcSet: 8r.enc % @@psencodingfile@{ % author = "S. Rahtz, P. MacKay, Alan Jeffrey, B. Horn, K. Berry", % version = "0.6", % date = "1 July 1998", % filename = "8r.enc", % email = "tex-fonts@@tug.org", % docstring = "Encoding for TrueType or Type 1 fonts % to be used with TeX." % @} % % Idea is to have all the characters normally included in Type 1 fonts % available for typesetting. This is effectively the characters in Adobe % Standard Encoding + ISO Latin 1 + extra characters from Lucida. % % Character code assignments were made as follows: % % (1) the Windows ANSI characters are almost all in their Windows ANSI % positions, because some Windows users cannot easily reencode the % fonts, and it makes no difference on other systems. The only Windows % ANSI characters not available are those that make no sense for % typesetting -- rubout (127 decimal), nobreakspace (160), softhyphen % (173). quotesingle and grave are moved just because it's such an % irritation not having them in TeX positions. % % (2) Remaining characters are assigned arbitrarily to the lower part % of the range, avoiding 0, 10 and 13 in case we meet dumb software. % % (3) Y&Y Lucida Bright includes some extra text characters; in the % hopes that other PostScript fonts, perhaps created for public % consumption, will include them, they are included starting at 0x12. % % (4) Remaining positions left undefined are for use in (hopefully) % upward-compatible revisions, if someday more characters are generally % available. % % (5) hyphen appears twice for compatibility with both % ASCII and Windows. % /TeXBase1Encoding [ % 0x00 (encoded characters from Adobe Standard not in Windows 3.1) /.notdef /dotaccent /fi /fl /fraction /hungarumlaut /Lslash /lslash /ogonek /ring /.notdef /breve /minus /.notdef % These are the only two remaining unencoded characters, so may as % well include them. /Zcaron /zcaron % 0x10 /caron /dotlessi % (unusual TeX characters available in, e.g., Lucida Bright) /dotlessj /ff /ffi /ffl /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef % very contentious; it's so painful not having quoteleft and quoteright % at 96 and 145 that we move the things normally found there to here. /grave /quotesingle % 0x20 (ASCII begins) /space /exclam /quotedbl /numbersign /dollar /percent /ampersand /quoteright /parenleft /parenright /asterisk /plus /comma /hyphen /period /slash % 0x30 /zero /one /two /three /four /five /six /seven /eight /nine /colon /semicolon /less /equal /greater /question % 0x40 /at /A /B /C /D /E /F /G /H /I /J /K /L /M /N /O % 0x50 /P /Q /R /S /T /U /V /W /X /Y /Z /bracketleft /backslash /bracketright /asciicircum /underscore % 0x60 /quoteleft /a /b /c /d /e /f /g /h /i /j /k /l /m /n /o % 0x70 /p /q /r /s /t /u /v /w /x /y /z /braceleft /bar /braceright /asciitilde /.notdef % rubout; ASCII ends % 0x80 /.notdef /.notdef /quotesinglbase /florin /quotedblbase /ellipsis /dagger /daggerdbl /circumflex /perthousand /Scaron /guilsinglleft /OE /.notdef /.notdef /.notdef % 0x90 /.notdef /.notdef /.notdef /quotedblleft /quotedblright /bullet /endash /emdash /tilde /trademark /scaron /guilsinglright /oe /.notdef /.notdef /Ydieresis % 0xA0 /.notdef % nobreakspace /exclamdown /cent /sterling /currency /yen /brokenbar /section /dieresis /copyright /ordfeminine /guillemotleft /logicalnot /hyphen % Y&Y (also at 45); Windows' softhyphen /registered /macron % 0xD0 /degree /plusminus /twosuperior /threesuperior /acute /mu /paragraph /periodcentered /cedilla /onesuperior /ordmasculine /guillemotright /onequarter /onehalf /threequarters /questiondown % 0xC0 /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE /Ccedilla /Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute /Icircumflex /Idieresis % 0xD0 /Eth /Ntilde /Ograve /Oacute /Ocircumflex /Otilde /Odieresis /multiply /Oslash /Ugrave /Uacute /Ucircumflex /Udieresis /Yacute /Thorn /germandbls % 0xE0 /agrave /aacute /acircumflex /atilde /adieresis /aring /ae /ccedilla /egrave /eacute /ecircumflex /edieresis /igrave /iacute /icircumflex /idieresis % 0xF0 /eth /ntilde /ograve /oacute /ocircumflex /otilde /odieresis /divide /oslash /ugrave /uacute /ucircumflex /udieresis /yacute /thorn /ydieresis ] def %%EndProcSet %%BeginProcSet: texps.pro %! TeXDict begin/rf{findfont dup length 1 add dict begin{1 index/FID ne 2 index/UniqueID ne and{def}{pop pop}ifelse}forall[1 index 0 6 -1 roll exec 0 exch 5 -1 roll VResolution Resolution div mul neg 0 0]/Metrics exch def dict begin Encoding{exch dup type/integertype ne{pop pop 1 sub dup 0 le{pop}{[}ifelse}{FontMatrix 0 get div Metrics 0 get div def} ifelse}forall Metrics/Metrics currentdict end def[2 index currentdict end definefont 3 -1 roll makefont/setfont cvx]cvx def}def/ObliqueSlant{ dup sin S cos div neg}B/SlantFont{4 index mul add}def/ExtendFont{3 -1 roll mul exch}def/ReEncodeFont{CharStrings rcheck{/Encoding false def dup[exch{dup CharStrings exch known not{pop/.notdef/Encoding true def} if}forall Encoding{]exch pop}{cleartomark}ifelse}if/Encoding exch def} def end %%EndProcSet TeXDict begin 39158280 55380996 1000 406 406 (Anosov.dvi) @start /Fa 139[34 34 34 2[34 1[34 3[34 1[34 1[34 34 1[34 34 32[34 17[34 46[{TeXBase1Encoding ReEncodeFont}13 56.1782 /Courier rf /Fb 75[19 58[25 2[25 28 16 22 22 1[28 28 28 41 16 2[16 28 28 16 25 28 25 28 28 13[28 12[34 34 41 2[34 19[19 5[19 8[19 27[28 2[{TeXBase1Encoding ReEncodeFont}30 56.1782 /Times-Italic rf /Fc 198[28 1[28 1[28 1[28 1[28 28 48[{TeXBase1Encoding ReEncodeFont}6 56.1782 /Times-Bold rf /Fd 136[41 28 28 16 22 19 1[28 28 28 44 16 2[16 28 28 19 25 28 25 28 25 14[37 10[41 1[34 65[31 3[{ .167 SlantFont TeXBase1Encoding ReEncodeFont}24 56.1782 /Times-Roman rf /Fe 166[32 32 42 32 32 27 25 30 3[32 40 27 2[15 32 32 1[27 32 30 1[32 13[22 22 22 49[{ TeXBase1Encoding ReEncodeFont}21 44.9426 /Times-Roman rf %DVIPSBitmapFont: Ff eufm10 12 1 /Ff 1 104 df<903803C010903807F87090381FFFF05B90B512E0EA01E33803E03F1401 3807C003AFEBE0079038F01FF0EBF83BEBFCF33903FFC1F814816C1301EA00FC01F813FC 017013F89038E000F0EA03C0000714E0486C13C0391FF00180D87FFC130038EFFF060007 13FC00015B6C6C5AEB1FE0EB01801E2D7F9E22>103 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fg msam10 12 1 /Fg 1 4 df3 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fh cmex10 12 2 /Fh 2 20 df18 D<12E012707E7E7E7E7F6C7E6C7E6C7E137013787F7FA27F8013076D7E8013018013 00801478147CA280A280A36E7EA2811407A2811403A2811401A381A21400A281A3157CA2 157EA4153EA2153FA8811680B3A716005DA8153EA2157EA4157CA215FCA35DA21401A25D A314035DA214075DA2140F5DA24AC7FCA3143EA25CA2147814F85C13015C13035C495A13 0F91C8FC131EA25B5B137013F0485A485A485A90C9FC120E5A5A5A5A21A17E8232>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fi msbm10 12 2 /Fi 2 91 df82 D<001FB612FEA23A183E00700C01F0EB 601CD819C0EBE0183A1F8001C038D83E00495A02031360003CEC00E00038495BEC0E0100 3090380C0380021C90C7FCEC1807C7EA3806EC700EEC601CECE018ECC038010113309038 0380704A5A495BEB0601010E5BEB1C03D91807C8FCEB3806EB300ED9700CEB0180EBE01C 495A000101301303EB8070000301601400260700E05B260601C05B000E5BD80C035C001C 90C7123B48481473D8300E5CD8700CEB03C6D8601CEB1F06B712FEA2292E7EAD37>90 D E %EndDVIPSBitmapFont /Fj 166[37 2[37 37 31 28 34 2[37 37 45 1[37 1[17 37 37 28 31 37 34 1[37 6[14 2[25 25 25 25 25 25 25 2[13 46[{ TeXBase1Encoding ReEncodeFont}27 50.5604 /Times-Roman rf %DVIPSBitmapFont: Fk cmr8 8 2 /Fk 2 51 df<13C01201120F12FF12F31203B3A5B5FCA2101E7C9D18>49 DI E %EndDVIPSBitmapFont /Fl 134[30 1[45 30 34 19 26 26 34 34 34 34 49 19 30 19 19 34 34 19 30 34 30 34 34 12[37 1[41 1[41 3[37 2[22 7[41 5[22 22 11[17 22 17 40[34 34 2[{TeXBase1Encoding ReEncodeFont}37 67.4139 /Times-Italic rf %DVIPSBitmapFont: Fm cmsy8 8 3 /Fm 3 50 df0 D3 D49 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fn cmmi8 8 9 /Fn 9 118 df<48B512E015FC39001E003E8181491480A449EB1F00A2153E153C495BEC 03E090B5128001F0C8FC485AA4485AA4485AA4EAFFF85B211F7E9E1E>80 D<14FF90380783C090381E00E0013813704913384848133C485A151E485A48C7FC5AA212 3E153E5AA448147CA2157815F815F01401007814E090380E03C09038300780393C408700 001C138E001E13FC000F13F03903C1C020EA00FF010013601540ECE1C0ECFF80A2150014 7E143C1F297E9F26>I<9039FFF00FFE16FC90390F8003C001071400ECC00601035B6E5A 01015B6E5A01005BECF980027BC7FC147F143E143C143E147E14FFEB01CF9038038F80EB 0707010E7FEB1C0301187FEB300101607FEBC000D803807F120F3AFFE007FF80A2271F7F 9E27>88 D98 D<14F8EB01CEEB039E1307148C1480EB0F00A5131E3801FFF84813F038001E00A25BA55B A65BA4485AA35B1231EA7B8012F30063C7FC123C17287E9E17>102 D<380F03F03811CC383831D83C3861F01CEBE03CEAC3C0A21203A248485AA3ECF040D80F 0013C0EB01E0ECE18001001300001E13E2000C137C1A137F921D>110 D<137CEA018338030380EA0707A2000F1300138013F8EA07FE6C7E7E38001F80EA200700 70130012F0EAE006485AEA7038EA1FE011137E9216>115 D<136013F0EA01E0A4EA03C0 A3EA7FFEEAFFFCEA0780A3EA0F00A4121EA31304EA3C0CA213181330EA1C60EA07800F1C 809B11>I<000F131C3819C03C12311261126300C31378A2EA0780A2380F00F0A314F1EB 01E3120E120FEB03E6EA070C3801F03818137F921C>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fo cmsy10 12 15 /Fo 15 107 df0 D<1238127C12FEA3127C123807077A9313>I< 1406140EB3A2B812E0A3C7000EC8FCB2B812E0A32B2D7CAB34>6 D8 D20 D<12E012F812FEEA3F80EA0FE0EA03F8EA00 FEEB3F80EB0FE0EB03F8EB00FEEC3F80EC0FE0EC03F8EC00FEED3F80ED0FE0ED03F8ED00 FEEE3F80160F163FEEFE00ED03F8ED0FE0ED3F8003FEC7FCEC03F8EC0FE0EC3F8002FEC8 FCEB03F8EB0FE0EB3F8001FEC9FCEA03F8EA0FE0EA3F80007ECAFC12F812E0CBFCAB007F B7FCB81280A229377BAA34>I<91B612801307131FD97F80C8FC01FCC9FCEA01F0EA03C0 485A48CAFC121E121C123C123812781270A212F05AA77E1270A212781238123C121C121E 7E6C7E6C7EEA01F0EA00FCEB7F80011FB612801307130029297BA434>26 D<177083A483A283A28384717E1701EF00F0187884007FB9FCBA12C06C1800CB123C6060 EF01C017034D5A95C7FC170EA25FA25FA45F3A237CA143>33 D49 D<49B5FC130F133F01FFC7FCEA01F8EA03E0EA078048 C8FC121E121C123C123812781270A212F05AA3B7FCA300E0C8FCA37E1270A21278123812 3C121C121E7E6C7EEA03E0EA01F86CB4FC013FB5FC130F130120297AA42D>I54 D<0060151800E015386C157800701570A2007815F0003815E0A2 003C1401001C15C0001E1403000E1580A2000F14076C1500A290B6FC6C5CA23901C0001C A26D133C00001438A26D137801701370017813F001385BA2EB3C01011C5BEB1E03010E5B A2EB0F07010790C7FCA2148FEB038E14DEEB01DCA214FC6D5AA31470A2253080AE26>56 D<1406140EA2141EEB3F9CEBFFFCEA01E03807803C1300000E137E001E137F001C137700 3C148014F714E7007C14C0387801E314C3A3D8F80313E01483A213071403A2130F130EA3 131E131CA2133C1338A213781370007814C0A213F0387CE007003C1480123D13C0001FEB 0F00A2000F131E138000075BEBE0F8EBFFE0EB3F8048C8FC120EA31B397DB322>59 D92 D<12E0B3B3B3AE034478B213>106 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fp cmr12 12 18 /Fp 18 115 df0 D<90387FFFFEA2010090C7FC147EA6903803FF80011F 13F09038FE7EFED801F0131FD807C0EB07C0D80F80EB03E0D81F00EB01F0003EEC00F8A2 007E15FC007C157C00FC157EA6007C157C007E15FC003E15F8A26CEC01F0D80F80EB03E0 D807C0EB07C0D801F0EB1F00D800FE13FE90381FFFF001031380D9007EC7FCA614FF017F 13FEA2272E7CAD30>8 D<1306130C13181330137013E013C01201EA0380A2EA0700A25A 120E121EA2121C123CA312381278A512F8A25AAD7EA21278A51238123CA3121C121EA212 0E120F7EA2EA0380A2EA01C0120013E0137013301318130C13060F457AB21A>40 D<12C012607E7E121C7E12061207EA0380A2EA01C0A213E0120013F0A213701378A31338 133CA5133EA2131EAD133EA2133CA513381378A3137013F0A213E0120113C0A2EA0380A2 EA07001206120E5A12185A5A5A0F457CB21A>I<140EB3A3B812C0A3C7000EC8FCB3A32A 2D7CA633>43 D<133F3801FFE03803C0F03807807848487E001E7F001C130E003C130FA3 48EB0780A400F814C0B100781480A3007C130F003C1400A36C131EA26C5B6C6C5A3803E1 F06CB45AD8003FC7FC1A2D7DAB21>48 D<1318133813F8120312FF12FC1200B3B1487EB5 12F8A2152C7AAB21>I<137F3803FFE0380703F8380C00FC48133E48133F487FEC0F8012 7800FC14C07E1407A3007C130FC7FC1580A2141F1500141E143E5C14785C495A495A495A 91C7FC130E5B5B4913C05B485A3903800180EA0700120E000C1303001FB5FC5A481400B6 FCA21A2C7DAB21>II<141CA2143C147CA214FC1301A2EB037C13071306130C131C 131813381370136013E013C0EA0180120313001206120E120C5A123812305A12E0B612F0 A2C7EA7C00A914FE90381FFFF0A21C2C7EAB21>I<1238127C12FEA3127C12381200AF12 38127C12FEA3127C1238071D7B9C12>58 D<1238127C12FEA3127C12381200AF1238127C 12FC12FEA2127E123E1206A4120CA3121C12181238123012601220072A7B9C12>I61 D91 D93 D<133F3801FFE03803C1F038 078078380E003C001E131C48131EA2007C130F1278A2B6FCA200F8C7FCA51278127CA200 3C1303123E001E13066C130E3807C01C3803F0383800FFE0EB3F80181D7E9C1D>101 D107 D<3807C1F038FFC7FCEBCE3C380FD87EEA07D013 F0EBE03C1400A25BB1487EB5FCA2171D7F9C1A>114 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fq cmmi12 12 44 /Fq 44 122 df11 D<013F14C0EBFFC000039038E001804813F048EC0300381F00F8001CEB3806 48131C1230486D5A1406485CC7FCEC07301403A25DA35DA35DA392C7FCA35CA21406140E A45CA45CA31430222B7F9C22>13 D<486C14300003157848C812F8000615FC000E157C12 0C001C1538121812380030131814384801781330A400E00170136014F016E04A13C01501 01011480903803F003D8F007EB070039781F781F397FFE7FFE496C5AD83FF85B6C486C5A 3907C007C0261D7F9C29>33 D<0003143E0006ECFF8048010313C05C4890380F83E0EC1E 0048011C13604A13704813305C1660485BA2495A16E091C712C05BED01801503D8E006EB 070000F0140E00785CD83C0E1378003F495A391FEC0FE06CB55A000391C7FCC613FCEB1F E00138C8FCA413781370A213F0A3485AA35B242B7C9C2B>39 D<1238127C12FEA3127C12 3807077B8612>58 D<1238127C12FEA212FF127F123B1203A41206A3120CA21218123012 70122008147B8612>I<14031407A2140F140EA2141E141CA2143C1438A214781470A214 F014E0A2130114C0A213031480A213071400A25B130EA2131E131CA2133C1338A3137813 70A213F05BA212015BA212035BA2120790C7FCA25A120EA2121E121CA2123C1238A21278 1270A212F05AA318447CB221>61 D<12E012F812FEEA3F80EA0FE0EA03F8EA00FEEB3F80 EB0FE0EB03FCEB00FFEC3FC0EC07F0EC01FCEC007FED1FC0ED07F0ED01FCED007F161F16 7FED01FCED07F0ED1FC0ED7F00EC01FCEC07F0EC3FC002FFC7FCEB03FCEB0FE0EB3F8001 FEC8FCEA03F8EA0FE0EA3F8000FEC9FC12F812E028277BA333>I<16E0A21501A2150315 07A24B7EA21519153915311561A215C114011581EC030182EC0600140E140C5CA25CA25C 5C82495A91B5FC5B0106C7127CA25BA25B5BA249147E163E5B12011203D80FE0147ED8FF FC90380FFFF05B2C2F7EAE31>65 D<03FF130C0207EBE01891381F807091397C001838D9 01F0EB0C784948EB06F0D90F80130349C7FC133E49EC01E05B485A12034915C0485A120F 5B001F168090C8FC4892C7FCA2127EA45AA5160CA35EA2007C5DA25E6C5D4B5A6C14036C 4AC7FC6D130C6C6C5BD801F013703900FC03C0D93FFFC8FCEB07F82E307CAE2F>67 D<011FB512FCEEFF80903A00FC000FC0027CEB03F04A6D7E1600177C83495A171E171FA2 495AA31880495AA21800A249485CA449C8123E177EA2177C013E15FC5FA24C5A5B4C5A4C 5AA2494A5A4CC7FC163E5E48485CED03E0ED0FC00003023FC8FCB612FC15E0312E7DAD37 >I<011FB612FCA2903900FC0001027CEB007C4A143C171CA3495A1718A3495A16C0A217 004948485AA21503A290260F800FC7FC91B5FCA2EC801F90381F000E1506A3013E5B1760 A292C712C05BEE0180A2EE03005B5E160EA248485C167C5E00031407B7FC5E2E2E7DAD31 >I<92387F8006913907FFE00C91381FC07891397E000C1CD901F0EB063C4948EB0378D9 0F8014F849C71201133E49EC00F05B485A12034915E0485A120F5B001F16C0A248CAFCA2 123E127EA35AA392383FFFF0A29238007E00163EA25EA2127CA25E7EA26C14016C6C5C6C 6C13036C6C13066C6CEB1C70D800FEEBF06090393FFFC020D907FEC8FC2F307CAE34>71 D<903B1FFFF80FFFFC03F014F8D900FCC7EA7E00027C143E4A5CA449485CA44948495AA4 4948495AA44948495A91B6FCA2913880000749C7485AA4013E4AC7FCA449143EA4495CA4 48485CA300031401B539C07FFFE002805C362E7DAD37>I<90381FFFFCA2D900FEC7FC14 7C5CA4495AA4495AA4495AA4495AA449C8FCA4133E160CA216185BA21630A249146016E0 A2ED01C0484813031507ED1F80000314FFB71200A2262E7DAD2D>76 DII<011FB512FC16FF90 3A00FC000FC0027CEB03E04AEB01F017F81600A2494814FCA44948EB01F8A3EE03F0495A EE07E017C0EE0F804948EB1F00167EED01F891B512E04991C7FC91C9FCA3133EA45BA45B A4485AA31203B512C05C2E2E7DAD2B>80 D<4AB4FC020F13E091383F03F09138F8007CD9 03E07F49487F49487F49C71380013EEC07C05B5B4848EC03E012035B485A120F4915F012 1F90C8FC4816E01607127EA448ED0FC0A3EE1F80A217005E163E167E167C5E007C140102 F85B496C485A3A3E030607C0903906020F80D81F0C49C7FC390F8C033ED807CC13F8D803 EC5B3901FE0FC03A007FFF0008EB0FF3D900031318161016301580020713E015C1EDFFC0 6E5BA293C7FC6E5AEC00F82C3C7CAE34>I<011FB512F016FE903A00FC001F80027CEB07 E04AEB03F01601EE00F8A2494814FCA44948EB01F8A217F01603494814E0EE07C0EE0F80 EE1F004948137CED03F091B512C093C7FC90391F0007C0ED01E06F7E82013E1478A2167C A2495CA4491301A317044848150CA2171800031400B500C0EBFC704AEB3FE0C9EA0F802E 2F7DAD32>I<91380FF00691383FFC0CECF01F903901C0039C9039030001FC0106EB00F8 5B011C14785B013014701370A301F01460A216007F1378137C137FEB3FF06DB4FC6D13E0 6D7F01007FEC1FFC1401EC007E153E151E150E150F150E1218A400385CA25D1530007C14 705D007E495A397380078026E1F01EC7FC38C0FFFC38801FE027307CAE29>I<000FB712 F8A29039C003E001D81F00EC0078001C495A17305A12304A5A1270126017604AC7FC5AA2 C71500143EA45CA45CA4495AA4495AA4495AA4495AA3131F003FB57EA22D2E7FAD27>I< 3B3FFFF003FFF802E014F0D801F8C7EA3F000000151C485A1618A348485CA448485CA448 485CA448C7485AA4003E4AC7FCA4481406A4485CA25DA25D12785D5D6C495A4AC8FC6C13 066C131C3807C0F83801FFE06C6CC9FC2D2F7CAD2D>II<902607FFF8EBFFFC5B9026003FC0EB3FC092C7EA1E 006E141C6F5B020F5C6F5B4C5A02075C6F48C7FC020313066F5A5E02015B6F5A020013E0 EDFDC0ED7F8093C8FC157E153E153FA24B7E15DFEC018F02037FEC0707020E7F141C4A6C 7E1430EC600102C07F903801800049C77E130649147C011C147E49143E49143FEA01F0D8 07F84A7ED87FFE903803FFFC12FF362E7FAD37>88 DI97 D<13F8EA1FF0A212011200485AA4485AA4485AA448C7FCEB0FC0EB3FE0EB70 70381EC038381F803CEB001C001E131E123E123CA348133EA448137CA3147814F814F0EB 01E0A2387003C0EB078038380F00EA1C3EEA0FF8EA07E0172F7DAE1C>II<153EEC07FCA2EC007C153C1578A415F0A4EC01E0A4EC03C0EB0FC3EB3FE3EB787339 01E01F80EA03C03807800FA2D80F0013005A121E123E003C131E127CA3485BA4EC7818A2 5A0078EBF81001011330EB0378D83C061360391E1C38E0390FF81FC03903E00F001F2F7D AE22>II<15F8EC03FCEC071EEC0E3FA2EC 1E7EEC1C3EEC3C3C1500A35CA55CA290383FFFE0A2903800F000495AA5495AA5495AA549 C7FCA6131EA4131C133CA3133813781238EA7C7012FC5B485A12F1EA7F80001EC8FC203C 7CAE21>I<14FC903803FE18903807873C90381E01F8133CEB7800A24913F012015B1203 9038C001E01207A3390F8003C0A4EC0780A213003807800FEC1F005C3803C06F3801E1CF 3800FF9EEB3E1E1300A25CA400385B007C5B12FCEB03C038F80F80D87FFEC7FCEA3FF81E 2A7F9C20>I<130F5B1480EB3F007F131E90C7FCAAEA03C0EA07F0EA1C78121812301260 A21240EAC0F0A21200485AA2485AA3485AA3EA0F03A3EA1E06A25BA2EA0E38EA07F0EA03 C0112D7EAC17>105 D<131FEA03FEA2EA003E131E5BA45BA45BA4485AEC01E0EC07F0EC 1C383903C03078EC60F814C1EBC18139078301F090388600E0018C130013B8EA0FE013F8 13FEEB1F80381E07C06D7E1301A2003C1430A315601278A215C0903800F18048EB7F0000 60133E1D2F7DAE22>107 D<3907800FC0390FE07FF03918F0E078393071803839207B00 3CEA607E137C485AA25B120048485BA35D485AA24A5AA2D807801460EC03C0A216C0D80F 001380ED81801583EDC700001EEB01FE000CEB00F8231D7E9C27>110 D<90380FC04090383FE0C0EB78713901E01B803803C01F3807800FA2D80F0013005A121E 123E003C131E127CA3485BA45CA25A007813F8495A1303EA3C06EA1E1C380FF9E0EA03E1 EA0001A2495AA4495AA4130F3801FFF8A21A2A7D9C1D>113 D<3807803E390FE0FF8038 18F1C139307303C038207E0738607C0FA2D8C0F81380EC070049C7FC1200485AA4485AA4 485AA448C8FCA4121E120C1A1D7E9C1E>I<130C131EA25BA45BA45BB512E0A23800F000 485AA4485AA4485AA448C7FCA4001E13C0A2EB0180A2EB0300A2130EEA0E1CEA0FF8EA03 E013297FA818>116 DIII<90387E01F09038FF 07F83903838E1C390701D81E000EEBF83E000CEBF07E1218ECE07C003014381500120049 5AA4495AA490380F0018123C127C007E1430484813701560D8783713C03970E38380393F C1FF00380F00FC1F1D7E9C26>II E %EndDVIPSBitmapFont /Fr 166[39 3[39 33 30 36 2[39 39 48 3[18 2[30 33 39 36 67[{TeXBase1Encoding ReEncodeFont}13 53.931 /Times-Roman rf /Fs 87[22 17[34 1[30 30 24[30 34 34 49 34 34 19 26 22 34 34 34 34 52 19 34 19 19 34 34 22 30 34 30 34 30 3[22 1[22 3[64 1[49 41 37 45 1[37 49 49 60 41 49 1[22 49 49 37 41 49 45 45 49 6[19 34 1[34 34 34 34 34 34 34 34 1[17 22 17 2[22 22 22 35[37 37 2[{TeXBase1Encoding ReEncodeFont}70 67.4139 /Times-Roman rf /Ft 87[19 17[28 27[25 28 28 41 28 28 16 22 19 1[28 28 28 44 16 28 16 16 28 28 19 25 28 25 28 25 7[41 1[53 41 41 34 31 37 1[31 41 41 50 34 41 22 19 41 41 31 34 41 37 37 41 6[16 28 28 28 28 28 28 28 28 28 28 1[14 19 14 2[19 19 40[{TeXBase1Encoding ReEncodeFont}66 56.1782 /Times-Roman rf /Fu 134[34 34 3[22 1[30 1[37 34 37 56 19 2[19 37 2[30 3[34 7[49 2[49 49 45 37 49 2[52 49 64 45 2[26 1[52 41 45 49 49 1[49 6[22 6[34 34 34 2[17 43[37 2[{TeXBase1Encoding ReEncodeFont}36 67.4139 /Times-Bold rf end %%EndProlog %%BeginSetup %%Feature: *Resolution 406dpi TeXDict begin %%PaperSize: A4 %%EndSetup %%Page: 1 1 1 0 bop 390 227 a Fu(GEOMETR)n(Y)22 b(OF)g(ANOSO)m(V)g(SYSTEMS:)h(AN)e (INTR)n(ODUCTION)1126 395 y Ft(D.)14 b(K)n(O)n(TSCHICK)1053 690 y Fs(1.)35 b(I)t Fr(N)t(T)t(R)r(O)t(D)s(U)t(C)s(T)s(I)t(O)s(N)67 808 y Fs(At)19 b(the)f(be)o(ginning)e(of)j(the)g(1960s,)f(D.)g(Anoso)o (v)g(be)o(gan)f(to)i(study)f(certain)g(dynamical)f(systems)j (satisfying)0 887 y(a)h(technical)e(condition)f(that)i(is)g(no)n(w)g (referred)i(to)e(by)g(saying)g(that)f(the)h(system)h(is)g(e)n(v)o (erywhere)f(hyperbolic.)0 966 y(Anoso)o(v')l(s)j(label)g(for)h(this)f (technical)f(condition)g(is)h(often)h(translated)e(into)h(English)g(as) g(\223condition)f(U\224,)h(as)0 1044 y(in)18 b([A],)i(or)f (\223condition)e(C\224,)h(as)i(in)e([AA].)27 b(This)19 b(gi)n(v)o(es)f(rise)i(to)e(names)h(lik)o(e)g(\223U-systems\224)g(and)f (\223C-systems\224)0 1123 y(for)e(what)e(we)h(shall)g(simply)g(call)g (Anoso)o(v)f(systems,)i(follo)n(wing)e(the)g(no)n(w)h(standard)g (terminology)f(introduced)0 1202 y(by)i(Smale)i([S)q(].)67 1280 y(Anoso)o(v)c(systems)i(are)f(a)g(v)o(ery)g(rich)g(class)g(of)g (dynamical)f(systems)i(with)e(remarkable)h(dynamical)f(and)g(geo-)0 1359 y(metric)21 b(properties.)33 b(On)20 b(the)g(dynamical)g(side,)h (Anoso)o(v)f(systems)h(illustrate)f(concepts)g(lik)o(e)g(hyperbolicity) l(,)0 1438 y(structural)d(stability)l(,)f(and)h(v)n(arious)h(er)o (godic)e(properties.)23 b(On)17 b(the)h(geometric)f(side,)g(there)h (are)g(interesting)e(re-)0 1516 y(lations)h(with)h(Riemannian)f (geometry)l(,)h(with)g(the)g(theory)g(of)h(foliations,)e(and)h(with)g (contact)f(and)h(symplectic)0 1595 y(geometry)l(.)i(These)d(will)f(be)h (the)f(main)h(topic)f(of)h(the)f(seminar)l(.)22 b(In)17 b(this)g(talk)f(we)g(shall)h(start)g(with)e(basic)i(de\002ni-)0 1674 y(tions)f(and)f(e)o(xamples.)20 b(Later)d(talks)f(will)f(discuss)h (some)h(foundational)d(results)j(concerning)e(the)g(inte)o(grability)0 1752 y(of)h(the)g(e)o(xpanding)e(and)i(contracting)e(distrib)o(utions)g (and)i(structural)f(stability)l(,)g(and)g(then)g(e)o(xplore)h(the)f (contact)0 1831 y(and)h(symplectic)g(geometry)h(of)g(Anoso)o(v)e (systems.)908 1995 y(2.)35 b(D)t Fr(I)t(S)t(C)t(R)t(E)s(T)t(E)16 b(T)t(I)t(M)t(E)i(S)t(Y)t(S)t(T)t(E)t(M)s(S)67 2112 y Fs(Throughout)e Fq(M)23 b Fs(will)16 b(denote)g(a)g(closed)h(smooth)f (manifold.)k(Here)d(is)g(the)f(basic)g(de\002nition:)0 2210 y Fu(De\002nition)j(2.1.)28 b Fs(A)19 b(dif)n(feomorphism)g Fq(f)14 b Fp(:)24 b Fq(M)k Fo(!)23 b Fq(M)i Fs(is)19 b(Anoso)o(v)e(if)i(there)f(is)g(a)h(continuous)d(splitting)h(of)i(the)0 2289 y(tangent)c(b)o(undle)g(into)h(in)m(v)n(ariant)g(subb)o(undles)f (of)i(positi)n(v)o(e)f(rank)g Fq(T)9 b(M)26 b Fp(=)19 b Fq(E)1805 2264 y Fn(s)1845 2289 y Fo(\010)c Fq(E)1965 2264 y Fn(u)2012 2289 y Fs(such)i(that)f(for)h(all)f Fq(n)j(>)g Fp(0)798 2406 y Fo(jj)p Fq(D)r(f)933 2378 y Fn(n)964 2406 y Fp(\()p Fq(v)r Fp(\))p Fo(jj)f(\024)h Fq(a)c Fo(\001)f Fq(e)1291 2378 y Fm(\000)p Fn(bn)1380 2406 y Fo(jj)p Fq(v)r Fo(jj)84 b(8)p Fq(v)20 b Fo(2)f Fq(E)1781 2378 y Fn(s)1822 2406 y Fq(;)814 2536 y Fo(jj)p Fq(D)r(f)949 2508 y Fn(n)980 2536 y Fp(\()p Fq(v)r Fp(\))p Fo(jj)f(\025)h Fq(a)14 b Fo(\001)h Fq(e)1307 2508 y Fn(bn)1359 2536 y Fo(jj)p Fq(v)r Fo(jj)83 b(8)p Fq(v)21 b Fo(2)d Fq(E)1759 2508 y Fn(u)1807 2536 y Fq(;)0 2639 y Fs(for)f(some)h(positi) n(v)o(e)d(constants)h Fq(a)h Fs(and)f Fq(b)p Fs(.)67 2737 y(Here)25 b(the)f(norms)i(are)f(tak)o(en)f(with)f(respect)i(to)f (some)h(arbitrary)g(Riemannian)f(metric)h Fq(g)r Fs(.)44 b(There)25 b(is)g(the)0 2815 y(related)f(concept)f(of)i(an)f(e)o (xpanding)f(dif)n(feomorphism,)k(for)e(which)f(the)g(second)f (inequality)g(holds)g(for)j(all)0 2894 y(tangent)15 b(v)o(ectors.)21 b(This)16 b(is)h(e)o(xcluded)e(here)i(by)g(the)f(assumption)g(that)g (both)g Fq(E)1853 2870 y Fn(s)1894 2894 y Fs(and)g Fq(E)2061 2870 y Fn(u)2108 2894 y Fs(ha)o(v)o(e)g(positi)n(v)o(e)g(rank.)0 2982 y Fl(Remark)26 b Fs(2.1)p Fl(.)31 b Fs(While)24 b(the)h(precise)f(v)n(alues)h(of)g(the)f(constants)g Fq(a)h Fs(and)f Fq(b)h Fs(depend)f(on)g(the)h(choice)f(of)h Fq(g)r Fs(,)i(the)0 3061 y(property)16 b(of)h(being)f(Anoso)o(v)f(does) h(not.)k(If)e(the)e(de\002ning)g(inequalities)e(hold)i(for)h(some)g Fq(g)r Fs(,)g(then)f(the)o(y)g(hold)f(for)0 3139 y(e)n(v)o(ery)21 b Fq(g)j Fs(\(with)d(dif)n(ferent)g(constants\).)34 b(One)21 b(could)f(also)h(write)g(the)g(de\002nitions)f(using)g(dif)n(ferent)i (constants)0 3218 y(in)16 b(the)h(tw)o(o)f(inequalities,)f(b)o(ut)g (this)h(seemingly)h(more)g(general)f(de\002nition)g(is)g(actually)g (equi)n(v)n(alent)f(to)h(the)h(one)0 3297 y(abo)o(v)o(e.)0 3385 y Fl(Remark)j Fs(2.2)p Fl(.)29 b Fs(If)20 b Fq(f)27 b Fs(is)19 b(Anoso)o(v)l(,)g(so)g(is)h Fq(f)975 3360 y Fm(\000)p Fk(1)1038 3385 y Fs(,)g(with)e(the)h(roles)h(of)g Fq(E)1596 3360 y Fn(s)1640 3385 y Fs(and)f Fq(E)1810 3360 y Fn(u)1860 3385 y Fs(interchanged.)26 b(\(This)20 b(e)o(xplains)0 3464 y(ho)n(w)c(to)h(re)n(write)g(the)f(de\002ning)g (inequalities)e(for)k(ne)o(gati)n(v)o(e)d Fq(n)p Fs(.\))p 0 3541 338 3 v 67 3604 a Ft(Informal)e(notes)h(of)f(my)h(seminar)f (talk)h(on)g(October)f(29,)h(2003.)1307 3672 y Fj(1)p eop %%Page: 2 2 2 1 bop 0 -89 a Fj(2)1121 b(D.)12 b(K)n(O)n(TSCHICK)0 47 y Fl(Remark)20 b Fs(2.3)p Fl(.)28 b Fs(The)19 b(de\002ning)e (property)i(of)g(an)f(Anoso)o(v)g(dif)n(feomorphism)h(is)g(sometimes)g (referred)h(to)f(as)g(the)0 126 y(e)o(xistence)k(of)h(an)f(Anoso)o(v)g (splitting)e Fq(T)9 b(M)39 b Fp(=)32 b Fq(E)1205 101 y Fn(s)1249 126 y Fo(\010)21 b Fq(E)1375 101 y Fn(u)1429 126 y Fs(into)i(stable)g(\(or)h(contracting\))f(and)g(unstable)f(\(or)0 204 y(dilating\))15 b(subb)o(undles)g Fq(E)617 180 y Fn(s)659 204 y Fs(and)h Fq(E)826 180 y Fn(u)873 204 y Fs(respecti)n(v)o(ely)l(.)j(This)e(means)g(that)f Fq(f)24 b Fs(is)17 b(hyperbolic)e(e)n(v)o(erywhere.)0 298 y Fl(Remark)j Fs(2.4)p Fl(.)28 b Fs(It)18 b(is)f(easy)h(to)f(see)g(that)g(when)f(an)i (Anoso)o(v)e(splitting)f(e)o(xists,)j(it)f(is)g(uniquely)f(determined)g (by)h Fq(f)7 b Fs(,)0 377 y(as)17 b(the)f(contracting)f(and)i(dilating) d(subspaces)j(ha)o(v)o(e)f(to)g(be)g(maximal)h(with)f(these)g (properties.)67 471 y(W)-5 b(e)16 b(will)e(see)i(in)g(later)f(talks)h (that)f(the)g(distrib)o(utions)f Fq(E)1362 446 y Fn(s)1403 471 y Fs(and)h Fq(E)1569 446 y Fn(u)1615 471 y Fs(are)h(actually)f (tangent)f(to)h(foliations)g(of)h Fq(M)0 549 y Fs(with)j(smooth)g(lea)o (v)o(es,)h(although)e(the)h(distrib)o(utions)f(are)i(only)f(assumed)h (continuous.)27 b(The)20 b(resulting)f(folia-)0 628 y(tions)d(are)h (called)f(the)g(stable)g(and)h(unstable)e(foliations)h(of)h Fq(f)7 b Fs(.)20 b(In)d(general)g(the)o(y)f(are)h(not)f(smooth)g (transv)o(ersely)0 707 y(to)f(the)h(lea)o(v)o(es,)f(b)o(ut)f(the)o(y)h (are)i(H)6 b(\250)-28 b(older)15 b(continuous.)j(There)e(are)g(se)n(v)o (eral)g(interesting)f(\223rigidity\224)f(results)i(which)0 785 y(sho)n(w)23 b(that)g(Anoso)o(v)f(dif)n(feomorphisms)i(with)e (smooth)h(Anoso)o(v)f(splitting)g(are)h(quite)g(special,)h(and)e(can)h (be)0 864 y(described)16 b(f)o(airly)h(e)o(xplicitly)l(.)h(W)-5 b(e)16 b(shall)h(return)f(to)h(this)f(re)o(gularity)g(discussion)g (belo)n(w)l(.)67 943 y(Here)h(are)g(the)g(most)g(ob)o(vious,)e (classical,)h(e)o(xamples)g(of)h(Anoso)o(v)f(dif)n(feomorphisms.)0 1052 y Fu(Example)25 b(2.1.)31 b Fs(Let)25 b Fq(f)41 b Fo(2)33 b Fq(S)t(L)p Fp(\(2)p Fq(;)11 b Fi(Z)-6 b Fp(\))20 b Fs(be)25 b(a)g(hyperbolic)e(element,)j(i.)f(e.)f(assume)i(that)e Fo(j)p Fq(tr)r Fp(\()p Fq(f)7 b Fp(\))p Fo(j)31 b Fq(>)j Fp(2)p Fs(.)45 b(F)o(or)0 1172 y(e)o(xample,)23 b Fq(f)30 b Fs(could)21 b(be)589 1077 y Fh(\022)639 1131 y Fp(2)56 b(1)639 1210 y(1)g(1)761 1077 y Fh(\023)811 1172 y Fs(.)37 b(W)-5 b(e)22 b(can)g(think)g(of)g Fq(f)30 b Fs(as)22 b(a)h(linear)f(dif)n(feomorphism)h(of)g Fq(T)2284 1147 y Fk(2)2310 1172 y Fs(.)38 b(This)23 b(is)f(an)0 1288 y(Anoso)o(v)i(dif)n(feomorphism)i(because)e Fq(f)32 b Fs(has)25 b(tw)o(o)g(distinct)e(real)i(eigen)m(v)n(alues)f(which)g(are) i(in)m(v)o(erse)f(to)f(each)0 1367 y(other)l(.)c(Neither)c(of)h(them)f (is)g Fo(\006)p Fp(1)p Fs(,)h(so)g(the)e(absolute)h(v)n(alue)f(of)i (one)f(is)g(in)g Fp(\(0)p Fq(;)11 b Fp(1\))p Fs(,)16 b(and)g(the)g(absolute)f(v)n(alue)h(of)h(the)0 1446 y(other)f(is)h(in)g Fp(\(1)p Fq(;)11 b Fo(1)p Fp(\))p Fs(.)21 b(The)16 b(eigenspaces)g(of)h (these)f(eigen)m(v)n(alues)g(de\002ne)h(the)f(Anoso)o(v)g(splitting)f (for)i Fq(f)7 b Fs(.)67 1555 y(Hyperbolic)21 b(toral)h(automorphisms)g (are)h(sometimes)g(called)e(\223cat)h(maps\224,)i(because)e(Arnold)f (illustrated)0 1633 y(their)16 b(beha)o(viour)f(by)h(dra)o(wing)g(a)g (stylized)f(cat)i(on)f(a)g(square,)h(and)f(checking)f(ho)n(w)h(it)g (beha)o(v)o(es)f(under)h(iteration)0 1712 y(of)h Fq(f)7 b Fs(.)67 1790 y(These)13 b(e)o(xamples)g(illustrate)e(some)i(of)g(the) g(typical)e(features)i(of)g(Anoso)o(v)f(systems.)20 b(First)13 b(of)g(all,)g(Anoso)o(v)e([A])0 1869 y(pro)o(v)o(ed)18 b(that)h(for)h(a)f(v)o(olume-preserving)f(Anoso)o(v)g(dif)n (feomeorphism)i(the)e(periodic)g(points)g(are)i(dense.)27 b(The)0 1948 y(hyperbolic)16 b(toral)h(automorphism)h(abo)o(v)o(e)f (are)h(v)o(olume-preserving)f(because)g(we)h(assumed)g Fq(det)p Fp(\()p Fq(f)7 b Fp(\))20 b(=)h(1)p Fs(.)j(In)0 2026 y(this)19 b(case)h(we)f(can)h(\002nd)f(all)g(the)h(periodic)e (points)h(e)o(xplicitly)l(,)f(and)h(so)g(see)h(their)g(density)e (without)g(using)h(an)o(y)0 2105 y(general)d(theorems.)0 2214 y Fu(Lemma)h(2.1.)28 b Fl(Let)17 b Fq(f)26 b Fo(2)19 b Fq(S)t(L)p Fp(\(2)p Fq(;)11 b Fi(Z)-6 b Fp(\))p Fl(.)17 b(Then)g(a)g(point)f Fp(\()p Fq(x;)11 b(y)r Fp(\))19 b Fo(2)h Fq(T)1525 2190 y Fk(2)1571 2214 y Fp(=)f Fi(R)1688 2190 y Fk(2)1717 2214 y Fq(=)p Fi(Z)1799 2190 y Fk(2)1838 2214 y Fl(is)f(periodic)d(for)i Fq(f)24 b Fl(if)17 b(and)f(only)h(if)0 2293 y Fq(x)f Fl(and)g Fq(y)k Fl(ar)n(e)c(r)o(ational.)0 2446 y(Pr)m(oof)o(.)27 b Fs(If)17 b Fq(x)e Fs(and)g Fq(y)k Fs(are)d(rational,)e(then)h(the)g(coordinates)g(of)g Fq(f)1476 2421 y Fn(n)1508 2446 y Fp(\()p Fq(x;)c(y)r Fp(\))16 b Fs(are)g(also)f(rational)g(for)h(all)f Fq(n)p Fs(,)h(because)f Fq(f)0 2524 y Fs(is)h(an)g(inte)o(ger)g(matrix.)21 b(Moreo)o(v)o(er)m(,)16 b(if)h Fq(x)f Fs(and)f Fq(y)k Fs(can)d(be)g(written)g(with)f(common)h(denominator)g Fq(q)r Fs(,)h(then)e(so)h(can)0 2603 y(the)f(coordinates)f(of)i Fq(f)536 2578 y Fn(n)567 2603 y Fp(\()p Fq(x;)11 b(y)r Fp(\))p Fs(.)20 b(As)c(there)f(are)h(only)e(\002nitely)g(man)o(y)i (\(in)f(f)o(act)h Fq(q)1839 2578 y Fk(2)1866 2603 y Fs(\))g(points)e (whose)h(denominators)0 2682 y(can)h(be)g(tak)o(en)g(to)f(be)h Fq(q)r Fs(,)h(it)f(follo)n(ws)g(that)f(the)h(sequence)f(of)i(points)e Fq(f)1609 2657 y Fn(n)1641 2682 y Fp(\()p Fq(x;)c(y)r Fp(\))16 b Fs(is)g(e)n(v)o(entually)f(periodic.)k(But)d Fq(f)23 b Fs(is)0 2760 y(in)m(v)o(ertible,)15 b(so)i Fp(\()p Fq(x;)11 b(y)r Fp(\))17 b Fs(is)g(periodic.)67 2839 y(Con)m(v)o(ersely)l(,)j(assume)g Fp(\()p Fq(x;)11 b(y)r Fp(\))19 b Fs(is)h(periodic)f(with)f(period)h Fq(n)24 b Fo(\025)h Fp(1)p Fs(.)k(Then)19 b(the)g(equation)f Fq(f)2202 2814 y Fn(n)2234 2839 y Fp(\()p Fq(x;)11 b(y)r Fp(\))24 b(=)g(\()p Fq(x;)11 b(y)r Fp(\))0 2918 y Fs(is)21 b(a)g(system)h(of)f(linear)g(equations)e(for)j Fq(x)f Fs(and)f Fq(y)k Fs(with)c(inte)o(gral)g(coef)n(\002cients.)34 b(It)22 b(follo)n(ws)e(that)h Fq(x)f Fs(and)h Fq(y)j Fs(are)0 2996 y(rational.)2363 b Fg(\003)67 3149 y Fs(Anoso)o(v)14 b([A])h(also)f(pro)o(v)o(ed)g(that)g(v)o(olume-preserving)f(Anoso)o(v)h (dif)n(feomorphisms)h(are)g(er)o(godic.)k(A)c(related)0 3228 y(property)h(is)h(that)f(of)h(topological)d(transiti)n(vity)l(.)0 3337 y Fu(De\002nition)26 b(2.2.)31 b Fs(A)25 b(dif)n(feomorphism)h Fq(f)14 b Fp(:)26 b Fq(M)40 b Fo(!)35 b Fq(M)d Fs(is)24 b(topologically)e(transiti)n(v)o(e)i(if)i(for)f(an)o(y)g(tw)o(o)f(open) 0 3415 y(subsets)17 b Fq(U;)11 b(V)34 b Fo(\032)19 b Fq(M)24 b Fs(there)16 b(is)h(an)f Fq(n)k Fo(2)e Fi(Z)7 b Fs(such)16 b(that)g Fq(f)1292 3391 y Fn(n)1324 3415 y Fp(\()p Fq(U)7 b Fp(\))14 b Fo(\\)h Fq(V)34 b Fo(6)p Fp(=)19 b Fo(;)p Fs(.)0 3524 y Fu(Lemma)24 b(2.2.)31 b Fl(Let)24 b Fq(f)38 b Fo(2)32 b Fq(S)t(L)p Fp(\(2)p Fq(;)11 b Fi(Z)-6 b Fp(\))19 b Fl(be)24 b(suc)o(h)f(that)g Fo(j)p Fq(tr)r Fp(\()p Fq(f)7 b Fp(\))p Fo(j)30 b Fq(>)i Fp(2)p Fl(.)42 b(Then)23 b Fq(f)15 b Fp(:)25 b Fq(T)1959 3500 y Fk(2)2017 3524 y Fo(!)33 b Fq(T)2165 3500 y Fk(2)2215 3524 y Fl(is)24 b(topolo)o(gically)0 3603 y(tr)o(ansitive)o(.)p eop %%Page: 3 3 3 2 bop 656 -89 a Fj(GEOMETR)m(Y)14 b(OF)i(ANOSO)m(V)f(SYSTEMS:)h(AN)f (INTR)n(ODUCTION)627 b(3)0 47 y Fl(Pr)m(oof)o(.)27 b Fs(First)15 b(note)f(that)f(the)h(eigen)m(v)n(alues)f(of)i Fq(f)21 b Fs(are)14 b(irrational.)19 b(\(The)o(y)c(are)f(rational)g(if) g(and)g(only)f(if)h Fp(\()p Fq(tr)r Fp(\()p Fq(f)7 b Fp(\)\))2556 23 y Fk(2)2587 47 y Fo(\000)0 126 y Fp(4)26 b Fs(is)g(a)g(perfect)h(square,)h(which)d(is)h(seen)g(to)f(be)h (impossible)g(using)f(elementary)g(di)n(visibility)f(properties.\))0 204 y(Therefore)18 b(each)e(leaf)h(of)g(the)f(stable)g(or)h(the)f (unstable)g(foliation)f(is)i(dense.)67 283 y(Consider)j(tw)o(o)f(open)g (sets)g Fq(U;)11 b(V)40 b Fo(\032)24 b Fq(T)998 259 y Fk(2)1025 283 y Fs(.)29 b(If)21 b(the)o(y)e(intersect,)g(there)h(is)f (nothing)f(to)h(pro)o(v)o(e.)29 b(So)20 b(we)g(assume)0 362 y(the)o(y)k(are)g(disjoint.)42 b(T)-5 b(ak)o(e)24 b(points)g(with)f(rational)g(coordinates)h Fq(P)41 b Fo(2)33 b Fq(U)e Fs(and)24 b Fq(Q)33 b Fo(2)g Fq(V)15 b Fs(.)44 b(By)24 b(the)g(pre)n(vious)0 440 y(lemma,)17 b Fq(P)26 b Fs(and)17 b Fq(Q)g Fs(are)g(periodic,)f(so)h(by)g (replacing)f Fq(f)23 b Fs(by)17 b(a)g(suitable)f(po)n(wer)m(,)h(we)f (may)i(assume)f(without)e(loss)0 519 y(of)i(generality)e(that)h Fq(P)26 b Fs(and)16 b Fq(Q)h Fs(are)g(\002x)o(ed)g(points.)67 598 y(Let)22 b Fq(L)224 573 y Fn(u)224 615 y(P)285 598 y Fs(be)f(the)g(leaf)h(of)g(the)f(unstable)f(foliation)g(through)g Fq(P)9 b Fs(,)23 b(and)e Fq(L)1762 573 y Fn(s)1762 615 y(Q)1823 598 y Fs(the)g(leaf)h(of)g(the)f(stable)g(foliation)0 676 y(through)15 b Fq(Q)p Fs(.)20 b(As)c(both)f(of)h(these)f(lea)o(v)o (es)g(are)h(dense,)f(the)o(y)g(certainly)g(intersect.)20 b(Let)c Fq(R)g Fs(be)g(a)f(point)g(of)h(intersec-)0 755 y(tion.)j(The)13 b(stable)g(and)g(unstable)g(foliations)f(are)i(in)m(v) n(ariant)f(under)h Fq(f)7 b Fs(,)14 b(and)f(because)g Fq(P)22 b Fs(and)14 b Fq(Q)g Fs(are)g(\002x)o(ed)f(points,)0 834 y(the)j(lea)o(v)o(es)f Fq(L)326 809 y Fn(u)326 851 y(P)382 834 y Fs(and)h Fq(L)541 809 y Fn(s)541 851 y(Q)598 834 y Fs(are)h(preserv)o(ed.)j(Under)c(forw)o(ard)h(iteration)f(of)g Fq(f)7 b Fs(,)16 b(the)g(images)h(of)f Fq(R)h Fs(con)m(v)o(er)o(ge)f (to)g Fq(Q)p Fs(,)0 912 y(whereas)j(under)f(backw)o(ard)g(iteration)f (the)h(images)h(of)g Fq(R)h Fs(con)m(v)o(er)o(ge)e(to)g Fq(P)9 b Fs(.)26 b(Thus)18 b(a)h(suitable)f(po)n(wer)g Fq(f)2474 888 y Fn(n)2524 912 y Fs(of)h Fq(f)0 991 y Fs(satis\002es)e Fq(f)270 966 y Fn(n)302 991 y Fp(\()p Fq(U)7 b Fp(\))14 b Fo(\\)h Fq(V)34 b Fo(6)p Fp(=)19 b Fo(;)p Fs(.)1914 b Fg(\003)67 1114 y Fs(The)17 b(follo)n(wing)e (generalization)g(of)i(Example)g(2.1)f(is)h(due)f(to)g(Smale)i([S,)f (AA].)0 1211 y Fu(Example)k(2.2.)29 b Fs(Let)21 b Fq(G)g Fs(be)g(a)g(simply)g(connected)e(nilpontent)f(Lie)j(group.)33 b(Denote)20 b(by)g Fq(Aut)p Fp(\()p Fq(G)p Fp(\))g Fs(the)h(group)0 1289 y(of)j(continuous)e(group)h(automorphisms,)i(and)e(by)g Fq(Af)7 b(f)g Fp(\()p Fq(G)p Fp(\))23 b Fs(the)g(semidirect)h(product)f (of)h Fq(Aut)p Fp(\()p Fq(G)p Fp(\))f Fs(and)g Fq(G)0 1368 y Fs(gi)n(v)o(en)17 b(by)g(the)g(action)f(of)i Fq(Aut)p Fp(\()p Fq(G)p Fp(\))f Fs(on)g Fq(G)p Fs(.)22 b(Sometimes)d(there)e (are)h(elements)f Fp(\010)j Fo(2)g Fq(Aut)p Fp(\()p Fq(G)p Fp(\))d Fs(which)f(commute)0 1447 y(with)21 b(some)h(lattice)e Fp(\000)28 b Fo(\032)h Fq(Af)7 b(f)g Fp(\()p Fq(G)p Fp(\))p Fs(.)35 b(Whene)n(v)o(er)21 b(this)g(happens,)h Fp(\010)f Fs(descends)g(to)h(a)f(dif)n(feomorphism)i Fq(')f Fs(of)0 1525 y(the)e(infranil)g(manifold)g Fq(G=)p Fp(\000)p Fs(.)32 b(A)20 b(suf)n(\002cient)h(condition)d(for)j Fq(')g Fs(to)f(be)g(Anoso)o(v)f(is)h(that)g(the)g(deri)n(v)n(ati)n(v)o (e)g(of)g Fp(\010)p Fs(,)0 1604 y(considered)c(as)h(an)f(automorphism)h (of)g(the)f(Lie)h(algebra)f Ff(g)h Fs(of)g Fq(G)p Fs(,)g(is)f(a)h (hyperbolic)e(linear)h(map.)67 1701 y(It)j(follo)n(ws)e(from)i(the)e (theory)g(of)h(Lie)g(algebras)g(that)f(the)g(e)o(xistence)g(of)h(a)g (hyperbolic)e(automorphism)h(of)h Ff(g)0 1779 y Fs(implies)h(that)g Ff(g)h Fs(is)f(nilpotent,)f(see)i([S)q(])g(p.)f(761.)28 b(The)20 b(case)f(of)h(an)f(Abelian)f(Lie)i(algebra)f(is)h(the)f (multidimen-)0 1858 y(sional)d(analog)f(of)i(Example)g(2.1.)67 1936 y(Let)g(us)f(no)n(w)g(consider)g(a)h(relationship)d(between)i (Anoso)o(v)f(dif)n(feomorphisms)i(and)f(symplectic)g(geometry)l(.)0 2033 y Fu(Lemma)21 b(2.3.)29 b Fl(Let)21 b Fp(\()p Fq(V)t(;)11 b(!)r Fp(\))21 b Fl(be)g(a)f(closed)g(symplectic)f(manifold,)h(and)f Fq(f)c Fp(:)24 b Fq(V)41 b Fo(!)26 b Fq(V)36 b Fl(an)20 b(Anoso)o(v)h(symplecto-)0 2112 y(morphism.)e(Then)e Fq(E)512 2087 y Fn(s)554 2112 y Fl(and)f Fq(E)725 2087 y Fn(u)772 2112 y Fl(ar)n(e)g(La)o(gr)o(angian)g(with)g(r)n(espect)g (to)g Fq(!)r Fl(.)0 2235 y(Pr)m(oof)o(.)27 b Fs(Suppose)17 b Fq(v)r(;)11 b(w)21 b Fo(2)e Fq(E)688 2210 y Fn(s)713 2235 y Fs(.)i(Then)284 2350 y Fq(!)r Fp(\()p Fq(v)r(;)11 b(w)r Fp(\))19 b(=)h(\()p Fq(f)647 2322 y Fm(\003)673 2350 y Fq(!)r Fp(\)\()p Fq(v)r(;)11 b(w)r Fp(\))19 b(=)g Fq(!)r Fp(\()p Fq(D)r(f)7 b Fp(\()p Fq(v)r Fp(\))p Fq(;)k(D)r(f)c Fp(\()p Fq(w)r Fp(\)\))17 b(=)i Fq(:)11 b(:)g(:)20 b Fp(=)f Fq(!)r Fp(\()p Fq(D)r(f)1919 2322 y Fn(n)1950 2350 y Fp(\()p Fq(v)r Fp(\))p Fq(;)11 b(D)r(f)2162 2322 y Fn(n)2194 2350 y Fp(\()p Fq(w)r Fp(\)\))16 b Fq(:)0 2465 y Fs(Using)g(the)g(auxiliary)g(metric)h Fq(g)r Fs(,)f(we)h(\002nd) g(that)f(there)g(is)h(a)g(constant)e Fq(c)j Fs(such)e(that)233 2580 y Fo(j)p Fq(!)r Fp(\()p Fq(v)r(;)11 b(w)r Fp(\))p Fo(j)19 b(\024)g Fq(c)c Fo(\001)g(jj)p Fq(!)r Fo(jj)f(\001)h(jj)p Fq(D)r(f)947 2552 y Fn(n)978 2580 y Fp(\()p Fq(v)r Fp(\))p Fo(jj)f(\001)g(jj)p Fq(D)r(f)1284 2552 y Fn(n)1315 2580 y Fp(\()p Fq(w)r Fp(\))p Fo(jj)j(\024)j Fq(c)15 b Fo(\001)g(jj)p Fq(!)r Fo(jj)f(\001)h Fq(a)1822 2552 y Fk(2)1863 2580 y Fo(\001)g Fq(e)1928 2552 y Fm(\000)p Fk(2)p Fn(bn)2056 2580 y Fo(\001)f(jj)p Fq(v)r Fo(jj)h(\001)f(jj)p Fq(w)r Fo(jj)i Fq(:)0 2695 y Fs(Letting)22 b Fq(n)i Fs(go)f(to)g(in\002nity)l (,)h(the)f(right-hand-side)f(becomes)h(arbitrarily)h(small.)41 b(Therefore)24 b Fq(!)r Fp(\()p Fq(v)r(;)11 b(w)r Fp(\))32 b(=)f(0)p Fs(,)0 2773 y(and)21 b Fq(E)172 2749 y Fn(s)217 2773 y Fs(is)h Fq(!)r Fs(-isotropic.)33 b(By)21 b(the)g(same)h(ar)o (gument)e(with)g Fq(f)1455 2749 y Fm(\000)p Fk(1)1540 2773 y Fs(replacing)g Fq(f)28 b Fs(we)21 b(conclude)e(that)i Fq(E)2413 2749 y Fn(u)2464 2773 y Fs(is)g(also)0 2852 y Fq(!)r Fs(-isotropic.)33 b(As)21 b(the)g(tw)o(o)f(distrib)o(utions)f (are)i(complementary)l(,)g(the)o(y)f(must)i(be)e(equidimensional)f(and) h(La-)0 2931 y(grangian.)2333 b Fg(\003)67 3054 y Fs(This)15 b(Lemma)h(sho)n(ws)f(that)g(the)f(stable)g(and)h(unstable)f(foliations) f(of)j(an)e(Anoso)o(v)g(symplectomorphism)h(de-)0 3132 y(\002ne)f(a)g(K)6 b(\250)-28 b(unneth)12 b(structure,)j(as)f(studied)e (by)i(M.)g(Hamilton,)f(among)g(others.)20 b(F)o(or)15 b(K)6 b(\250)-28 b(unneth)12 b(structures)i(one)f(has)0 3211 y(an)j(intrinsically)f(de\002ned)h(torsion-free)i(af)n(\002ne)f (connection,)e(called)g(the)h(K)6 b(\250)-28 b(unneth)15 b(connection,)g(for)i(which)e Fq(!)0 3290 y Fs(and)h(the)h(tw)o(o)f (Lagrangian)g(foliations)g(are)h(parallel.)j(In)d(the)g(case)g(of)g(an) f(Anoso)o(v)g(dif)n(feomorphism)i Fq(f)7 b Fs(,)16 b(which)0 3368 y(does)h(not)f(necessarily)h(preserv)o(e)h(a)f(symplectic)f(form,) i(there)f(is)h(a)f(distinguished)e(connection)g(for)j(which)e(the)0 3447 y(stable)j(and)f(unstable)g(foliations)g(are)i(parallel.)27 b(This)19 b(is)g(called)g(the)f(Kanai)h(connection,)e(and)i(we)g(shall) f(con-)0 3526 y(sider)g(it)f(in)g(one)g(of)h(the)f(later)h(talks)f(in)g (this)g(seminar)l(.)25 b(In)18 b(the)f(case)g(of)h(an)g(Anoso)o(v)e (symplectomorphism,)i(the)0 3604 y(K)6 b(\250)-28 b(unneth)15 b(and)h(Kanai)g(connections)f(agree.)p eop %%Page: 4 4 4 3 bop 0 -89 a Fj(4)1121 b(D.)12 b(K)n(O)n(TSCHICK)67 47 y Fs(While)17 b(it)h(is)g(not)g(clear)g(whether)f(the)h(K)6 b(\250)-28 b(unneth)16 b(connection)g(of)j(an)f(arbitrary)g(K)6 b(\250)-28 b(unneth)16 b(structure)j(has)f(an)o(y)0 126 y(good)k(completeness)h(properties,)i(for)f(the)f(Kanai)g(connection)e (of)j(an)f(Anoso)o(v)f(dif)n(feomorphism)j(one)d(can)0 204 y(sho)n(w)l(,)d(by)g(an)g(ar)o(gument)g(lik)o(e)f(the)h(one)g(in)g (the)f(proof)i(of)f(Lemma)i(2.3,)e(that)f(it)h(is)g(complete)g(when)f (restricted)0 283 y(to)e(the)h(lea)o(v)o(es)e(of)j(the)e(stable)g(and)g (unstable)g(foliations.)67 362 y(It)22 b(is)g(no)n(w)f(kno)n(wn)f(that) h(there)g(are)h(so-called)f(e)o(xotic)g(Anoso)o(v)f(dif)n (feomorphisms,)k(which)c(are)i(not)f(topo-)0 440 y(logically)h (transiti)n(v)o(e,)k(and)d(also)h(ha)o(v)o(e)g(other)g(unusual)f (properties.)43 b(Ne)n(v)o(ertheless,)26 b(already)d(in)h(the)g(1960s)0 519 y(conjectures)19 b(be)o(gan)g(to)h(appear)g(which)f(suggested)g (that)g(if)i(one)e(assumes)i(that)f(the)f(stable)h(and)f(unstable)g (fo-)0 598 y(liations)j(are)h(smooth)g(\(plus)g(perhaps)f(some)i (technical)d(conditions\),)i(then)f(an)o(y)g(Anoso)o(v)g(dif)n (feomorphism)0 676 y(satisfying)i(this)g(re)o(gularity)g(property)g (should)f(be)i(an)f(infranil)g(automorphism)g(as)h(in)f(Example)h(2.2.) 43 b(The)0 755 y(most)17 b(comprehensi)n(v)o(e)f(result)h(in)f(this)g (direction)g(is)h(the)f(follo)n(wing:)0 850 y Fu(Theor)o(em)h(2.1)f Fs(\(Benoist\226Labourie)f([BL)q(]\))p Fu(.)29 b Fl(Let)17 b Fq(f)d Fp(:)23 b Fq(M)i Fo(!)19 b Fq(M)24 b Fl(be)17 b(an)f(Anoso)o(v)h(dif)o(feomorphism)d(suc)o(h)i(that)105 944 y Fs(\(a\))29 b Fq(f)23 b Fl(pr)n(eserves)17 b(an)f(af)o(\002ne)g (connection)e(on)j Fq(M)7 b Fl(,)101 1023 y Fs(\(b\))29 b Fq(f)23 b Fl(is)17 b(topolo)o(gically)d(tr)o(ansitive)o(,)i(and)105 1101 y Fs(\(c\))29 b Fl(the)16 b(Anoso)o(v)h(splitting)e(is)h(smooth)g (of)g(class)h Fq(C)1306 1077 y Fm(1)1357 1101 y Fl(.)0 1196 y(Then)g Fq(f)23 b Fl(is)17 b Fq(C)322 1172 y Fm(1)373 1196 y Fl(-conjugate)e(to)h(a)h(hyperbolic)e(infr)o(anil)g (automorphism)1713 1169 y Fe(1)1733 1196 y Fl(.)67 1291 y Fs(This)20 b(is)g(one)g(of)g(the)f(main)h(theorems)g(on)g(Anoso)o(v)f (systems)h(which)f(we)h(will)f Fl(not)g Fs(co)o(v)o(er)g(in)h(this)f (seminar)l(.)0 1369 y(The)24 b(proof)h(in)e([BL)q(])i(relies)f(on)g (the)g(proof)g(of)h(a)f(related)g(theorem)g(for)h(\003o)n(ws)g(in)f ([BFL)q(],)j(which)c(we)h(shall)0 1448 y(discuss)17 b(belo)n(w)l(.)67 1527 y(The)g(follo)n(wing)e(consequence)h(of)h(Theorem)g(2.1)f(is)h (stated)f(without)f(proof)i(in)f([BL)q(].)0 1621 y Fu(Cor)o(ollary)h (2.1.)28 b Fl(Let)19 b Fq(f)c Fp(:)23 b Fq(V)38 b Fo(!)23 b Fq(V)35 b Fl(be)18 b(an)h(Anoso)o(v)g(symplectomorphism)d(of)i Fp(\()p Fq(V)t(;)11 b(!)r Fp(\))20 b Fl(for)f(whic)o(h)f(the)g(Anoso)o (v)0 1700 y(splitting)d(is)i(smooth.)i(Then)e Fq(f)23 b Fl(is)17 b Fq(C)854 1675 y Fm(1)905 1700 y Fl(-conjugate)e(to)h(a)h (hyperbolic)e(infr)o(anil)g(automorphism.)0 1818 y(Pr)m(oof)o(.)27 b Fs(As)14 b Fq(f)21 b Fs(preserv)o(es)15 b Fq(!)h Fs(and)e(the)f (Lagrangian)g(foliations)g(gi)n(v)o(en)g(by)g(the)h(stable)f(and)g (unstable)g(subb)o(undles,)0 1896 y(see)k(Lemma)i(2.3,)d(we)h(conclude) f(that)g(it)h(preserv)o(es)g(the)g(K)6 b(\250)-28 b(unneth)16 b(connection,)f(so)i(we)g(ha)o(v)o(e)f(assumption)g(\(a\))0 1975 y(in)g(Theorem)i(2.1.)67 2054 y(T)-5 b(o)19 b(check)g(condition)e (\(b\),)k(note)e(that)f Fq(f)26 b Fs(is)20 b(v)o(olume-preserving.)27 b(It)20 b(is)g(a)f(theorem)g(of)h(Anoso)o(v)e([A])i(that)f(a)0 2132 y(v)o(olume-preserving)d(Anoso)o(v)g(dif)n(feomorphism)i(is)g(er)o (godic)e(with)g(respect)i(to)e(the)h(in)m(v)n(ariant)g(measure)h(gi)n (v)o(en)0 2211 y(by)e(the)g(v)o(olume)g(form.)22 b(This)17 b(implies)f(topological)e(transiti)n(vity)l(.)1040 b Fg(\003)67 2329 y Fs(It)19 b(w)o(as)g(pointed)e(out)h(in)g([BL])h(that) f(for)h(e)n(v)o(ery)g(hyperbolic)d(infranil)i(automorphism)h Fq(')f Fs(of)h Fq(G=)p Fp(\000)g Fs(there)g(is)f(a)0 2407 y(left-in)m(v)n(ariant)e Fp(\010)p Fs(-in)m(v)n(ariant)g (connection)e(on)i Fq(G)h Fs(which)e(is)h(\003at,)h(torsion-free,)g (and)f(complete.)j(This)e(descends)0 2486 y(to)23 b Fq(G=)p Fp(\000)p Fs(,)j(so)e(that,)g Fl(a)g(posteriori)p Fs(,)g(all)g (topologically)c(transiti)n(v)o(e)j(Anoso)o(v)g(dif)n(feomorphisms)i (with)d(smooth)0 2565 y(Anoso)o(v)15 b(splitting)g(preserving)h(some)h (af)n(\002ne)g(connection)e(actually)g(preserv)o(e)i(a)f(\003at,)h (torsion-free,)g(complete)0 2643 y(connection.)859 2790 y(3.)35 b(C)t Fr(O)t(N)t(T)t(I)t(N)s(U)s(O)t(U)s(S)16 b(T)t(I)t(M)t(E)i(S)t(Y)t(S)t(T)t(E)t(M)t(S)67 2908 y Fs(W)-5 b(e)17 b(no)n(w)g(consider)f(the)h(case)g(of)h(a)f(\003o)n(w)g Fq(')1082 2918 y Fn(t)1120 2908 y Fs(de\002ned)g(by)f(a)h (time-independent)f(smooth)g(v)o(ector)h(\002eld)g Fq(X)23 b Fs(on)0 2986 y(a)17 b(smooth)f(closed)g(manifold)h Fq(M)7 b Fs(.)20 b(Here)d(is)g(the)f(basic)g(de\002nition:)0 3081 y Fu(De\002nition)k(3.1.)29 b Fs(A)19 b(v)o(ector)g(\002eld)g Fq(X)25 b Fs(on)19 b Fq(M)26 b Fs(is)19 b(Anoso)o(v)g(if)g(there)g(is)h (a)f(continuous)f(splitting)f(of)j(the)f(tangent)0 3160 y(b)o(undle)c(into)h(in)m(v)n(ariant)g(subb)o(undles)f(of)i(positi)n(v) o(e)e(rank)i Fq(T)9 b(M)26 b Fp(=)19 b Fi(R)p Fq(X)i Fo(\010)16 b Fq(E)1781 3135 y Fn(s)1820 3160 y Fo(\010)g Fq(E)1941 3135 y Fn(u)1988 3160 y Fs(such)g(that)g(for)i(all)e Fq(t)j(>)g Fp(0)808 3271 y Fo(jj)p Fq(D)r(')946 3281 y Fn(t)966 3271 y Fp(\()p Fq(v)r Fp(\))p Fo(jj)e(\024)j Fq(a)14 b Fo(\001)h Fq(e)1293 3243 y Fm(\000)p Fn(bt)1370 3271 y Fo(jj)p Fq(v)r Fo(jj)84 b(8)p Fq(v)20 b Fo(2)f Fq(E)1771 3243 y Fn(s)1812 3271 y Fq(;)824 3389 y Fo(jj)p Fq(D)r(')962 3399 y Fn(t)981 3389 y Fp(\()p Fq(v)r Fp(\))p Fo(jj)f(\025)h Fq(a)c Fo(\001)g Fq(e)1309 3361 y Fn(bt)1349 3389 y Fo(jj)p Fq(v)r Fo(jj)83 b(8)p Fq(v)21 b Fo(2)e Fq(E)1750 3361 y Fn(u)1797 3389 y Fq(;)0 3486 y Fs(for)e(some)h(positi) n(v)o(e)d(constants)h Fq(a)h Fs(and)f Fq(b)p Fs(.)p 0 3535 338 3 v 67 3582 a Fe(1)90 3604 y Ft(cf.)e(Example)f(2.2)p eop %%Page: 5 5 5 4 bop 656 -89 a Fj(GEOMETR)m(Y)14 b(OF)i(ANOSO)m(V)f(SYSTEMS:)h(AN)f (INTR)n(ODUCTION)627 b(5)67 47 y Fs(Here)17 b(again)f(the)g(norms)h (are)h(tak)o(en)e(with)f(respect)i(to)g(some)g(arbitrary)g(Riemannian)e (metric)i Fq(g)r Fs(.)0 133 y Fl(Remark)26 b Fs(3.1)p Fl(.)31 b Fs(While)24 b(the)h(precise)f(v)n(alues)h(of)g(the)f (constants)g Fq(a)h Fs(and)f Fq(b)h Fs(depend)f(on)g(the)h(choice)f(of) h Fq(g)r Fs(,)i(the)0 212 y(property)16 b(of)h(being)f(Anoso)o(v)f (does)h(not.)k(If)e(the)e(de\002ning)g(inequalities)e(hold)i(for)h (some)g Fq(g)r Fs(,)g(then)f(the)o(y)g(hold)f(for)0 290 y(e)n(v)o(ery)21 b Fq(g)j Fs(\(with)d(dif)n(ferent)g(constants\).)34 b(One)21 b(could)f(also)h(write)g(the)g(de\002nitions)f(using)g(dif)n (ferent)i(constants)0 369 y(in)16 b(the)h(tw)o(o)f(inequalities,)f(b)o (ut)g(this)h(seemingly)h(more)g(general)f(de\002nition)g(is)g(actually) g(equi)n(v)n(alent)f(to)h(the)h(one)0 448 y(abo)o(v)o(e.)0 534 y Fl(Remark)i Fs(3.2)p Fl(.)28 b Fs(If)19 b Fq(X)k Fs(is)18 b(Anoso)o(v)l(,)e(so)i(is)g Fo(\000)p Fq(X)5 b Fs(,)19 b(with)e(the)h(roles)g(of)g Fq(E)1606 509 y Fn(s)1649 534 y Fs(and)f Fq(E)1817 509 y Fn(u)1865 534 y Fs(interchanged.)23 b(\(This)18 b(e)o(xplains)0 612 y(ho)n(w)e(to)h(re)n(write)g(the)f(de\002ning)g(inequalities)e(for)k (ne)o(gati)n(v)o(e)d Fq(t)p Fs(.\))0 699 y Fl(Remark)21 b Fs(3.3)p Fl(.)29 b Fs(The)19 b(de\002ning)g(property)g(of)h(an)g (Anoso)o(v)e(v)o(ector)i(\002eld)f(or)h(\003o)n(w)g(is)g(sometimes)g (referred)i(to)d(as)0 777 y(the)i(e)o(xistence)g(of)h(an)g(Anoso)o(v)e (splitting)g Fq(T)9 b(M)35 b Fp(=)28 b Fi(R)p Fq(X)e Fo(\010)19 b Fq(E)1491 753 y Fn(s)1534 777 y Fo(\010)h Fq(E)1659 753 y Fn(u)1711 777 y Fs(which)g(splits)i(the)f(normal)h(b)o (undle)e(of)0 856 y(the)14 b(orbits)h(into)f(stable)h(\(or)g (contracting\))f(and)h(unstable)e(\(or)j(dilating\))e(subb)o(undles)f Fq(E)2053 831 y Fn(s)2093 856 y Fs(and)h Fq(E)2258 831 y Fn(u)2303 856 y Fs(respecti)n(v)o(ely)l(.)0 935 y(This)j(means)g (that)f Fq(')487 945 y Fn(t)524 935 y Fs(is)h(e)n(v)o(erywhere)f (hyperbolic)f(normally)h(to)h(the)f(\003o)n(w)l(.)0 1021 y Fl(Remark)h Fs(3.4)p Fl(.)27 b Fs(It)16 b(is)h(easy)f(to)g(see)g (that)g(when)f(an)h(Anoso)o(v)g(splitting)e(e)o(xists,)i(it)g(is)g (uniquely)f(determined)g(by)h Fq(X)5 b Fs(,)0 1099 y(as)17 b(the)f(contracting)f(and)i(dilating)d(subspaces)j(ha)o(v)o(e)f(to)g (be)g(maximal)h(with)f(these)g(properties.)67 1185 y(The)i(abo)o(v)o(e) e(remarks)i(are)g(all)f(in)g(parallel)f(with)g(the)h(corresponding)f (remarks)j(for)e(discrete)g(time)h(systems.)0 1264 y(The)f(follo)n (wing)e(remark)j(does)e(not)g(ha)o(v)o(e)g(such)g(a)h(parallel:)0 1350 y Fl(Remark)24 b Fs(3.5)p Fl(.)31 b Fs(Because)23 b Fq(M)30 b Fs(is)24 b(compact,)g(e)n(v)o(ery)f(rescaling)g(of)g(an)g (Anoso)o(v)f(v)o(ector)h(\002eld)h(is)f(also)g(Anoso)o(v)l(.)0 1429 y(Thus)17 b(the)f(Anoso)o(v)f(property)i(is)g(a)f(property)h(of)g (the)f(underlying)f Fp(1)p Fs(-dimensional)h(foliation.)67 1515 y(If)26 b Fq(f)31 b Fs(is)24 b(an)h(Anoso)o(v)e(dif)n (feomorphism,)k(so)d(is)g Fq(f)1261 1490 y Fn(n)1317 1515 y Fs(for)i(all)d Fq(n)34 b Fo(6)p Fp(=)f(0)p Fs(,)26 b(and)e(one)g(could)f(think)g(of)i(this)e(as)i(a)0 1593 y(reparametrization)19 b(of)h(time.)29 b(Ho)n(we)n(v)o(er)m(,)20 b(this)f(really)h(corresponds)f(to)g(the)g(tri)n(vial)g(case)h(of)g (constant)e(rescal-)0 1672 y(ings,)e(whereas)h(the)f(interesting)f (instances)h(of)h(the)g(abo)o(v)o(e)f(remark)h(are)g(non-constant)f (rescalings.)67 1751 y(W)-5 b(e)20 b(will)f(see)h(in)g(later)g(talks)g (that)f(the)h(distrib)o(utions)e Fq(E)1401 1726 y Fn(s)1446 1751 y Fs(and)h Fq(E)1616 1726 y Fn(u)1647 1751 y Fs(,)h(and)g(also)g Fi(R)p Fq(X)k Fo(\010)18 b Fq(E)2180 1726 y Fn(s)2225 1751 y Fs(and)i Fi(R)p Fq(X)k Fo(\010)18 b Fq(E)2592 1726 y Fn(u)2622 1751 y Fs(,)0 1829 y(are)25 b(actually)f(tangent)f(to) i(foliations)f(of)h Fq(M)32 b Fs(with)24 b(smooth)g(lea)o(v)o(es,)i (although)d(the)i(distrib)o(utions)e(are)i(only)0 1908 y(assumed)14 b(continuous.)j(The)d(resulting)e(foliations)g(are)i (called)e(the)h(strongly)l(,)g(respecti)n(v)o(ely)g(the)f(weakly)l(,)h (stable)0 1987 y(and)20 b(unstable)f(foliations)g(of)h Fq(X)25 b Fs(or)c Fq(')914 1997 y Fn(t)934 1987 y Fs(.)31 b(In)21 b(general)e(these)h(foliations)f(are)i(not)e(smooth)h(transv)o (ersely)g(to)g(the)0 2065 y(lea)o(v)o(es,)c(b)o(ut)f(the)o(y)h(are)h(H) 6 b(\250)-28 b(older)16 b(continuous.)j(There)e(are)g(se)n(v)o(eral)g (interesting)e(\223rigidity\224)g(results)i(which)e(sho)n(w)0 2144 y(that)24 b(Anoso)o(v)h(\003o)n(ws)g(with)g(smooth)f(Anoso)o(v)h (splitting)e(are)j(quite)e(special,)i(and)f(can)g(be)g(described)g(f)o (airly)0 2223 y(e)o(xplicitly)l(.)18 b(W)-5 b(e)16 b(shall)g(return)h (to)f(this)h(re)o(gularity)f(issue)g(after)i(mentioning)d(the)h (standard)g(e)o(xamples.)0 2316 y Fu(Example)21 b(3.1.)30 b Fs(If)22 b Fq(f)29 b Fs(is)21 b(an)o(y)g(Anoso)o(v)f(dif)n (feomorphism)i(of)g Fq(M)7 b Fs(,)22 b(then)f(its)g(suspension)g (de\002nes)g(an)g(Anoso)o(v)0 2395 y(\003o)n(w)d Fq(')179 2405 y Fn(t)218 2395 y Fs(on)g(the)f(mapping)h(torus)g Fq(M)876 2405 y Fn(f)906 2395 y Fs(.)26 b(In)18 b(this)g(case)g(the)g (strongly)f(stable)h(and)f(unstable)g(distrib)o(utions)f(of)j Fq(')2619 2405 y Fn(t)0 2473 y Fs(restrict)e(to)f(each)h(\002ber)g(of)g (the)f(mapping)g(torus)h(as)g(the)f(stable)g(and)g(unstable)g(distrib)o (utions)f(for)i Fq(f)7 b Fs(.)0 2567 y Fu(Example)19 b(3.2.)28 b Fs(Let)19 b Fq(N)27 b Fs(be)18 b(a)h(closed)g(Riemannian)f (manifold)h(of)g(ne)o(gati)n(v)o(e)e(sectional)h(curv)n(ature.)28 b(Then)19 b(the)0 2646 y(geodesic)h(spray)g(on)h(the)f(unit)g(tangent)f (b)o(undle)g Fq(M)33 b Fp(=)26 b Fq(S)t Fp(\()p Fq(N)7 b Fp(\))19 b Fs(de\002nes)i(an)g(Anoso)o(v)e(v)o(ector)h(\002eld)h Fq(X)5 b Fs(,)22 b(whose)0 2724 y(strongly)16 b(stable)g(and)g (unstable)g(foliations)f(are)i(the)g(so-called)f(horoc)o(ycle)g (foliations.)67 2818 y(This)h(w)o(as)g(one)e(of)i(the)f(moti)n(v)n (ating)f(e)o(xamples)i(for)g(Anoso)o(v')l(s)f(original)f(w)o(ork)i ([A].)k(W)-5 b(e)16 b(shall)g(consider)g(the)0 2896 y(e)o(xamples)g(of) h(geodesic)f(\003o)n(ws)h(in)g(some)g(detail)f(in)g(the)g(ne)o(xt)g (talk.)67 2975 y(Whene)n(v)o(er)23 b(we)g(are)h(gi)n(v)o(en)e(an)h (Anoso)o(v)f(v)o(ector)h(\002eld)g(on)g Fq(M)7 b Fs(,)25 b(we)e(can)g(associate)g(with)f(it)h(a)g(continuous)0 3054 y Fp(1)p Fs(-form)c Fq(\015)j Fs(de\002ned)c(by)f Fq(\015)t Fp(\()p Fq(X)5 b Fp(\))20 b(=)h(1)d Fs(and)g Fp(k)n(er\()p Fq(\015)t Fp(\))i(=)h Fq(E)1294 3029 y Fn(s)1334 3054 y Fo(\010)16 b Fq(E)1455 3029 y Fn(u)1486 3054 y Fs(.)24 b(The)17 b(form)i Fq(\015)j Fs(is)c(not)f(smooth)h(in)f (general,)h(and)0 3132 y(e)n(v)o(en)d(when)f(it)h(is,)h(there)f(is)g (no)g(reason)g(why)g(it)f(should)h(be)g(of)g(constant)f(class.)21 b(Ho)n(we)n(v)o(er)m(,)15 b(when)f(this)h(happens,)0 3211 y(then)j(one)g(obtains)f(more)i(information.)25 b(This)19 b(is)f(well-kno)n(wn)f(in)h(the)g(tw)o(o)g(e)o(xtreme)h (cases,)g(when)f Fq(\015)k Fs(de\002nes)0 3290 y(a)17 b(foliation)e(or)i(a)g(contact)e(structure.)67 3368 y(In)k(the)e(case)i (when)e(the)g(k)o(ernel)h(of)h Fq(\015)j Fs(de\002nes)c(a)g(foliation,) f(the)h(Anoso)o(v)e(\003o)n(w)j(tends)e(to)h(be,)g(up)g(to)f(suitable)0 3447 y(rescaling,)d(the)g(suspension)g(of)h(an)f(Anoso)o(v)g(dif)n (feomorphism.)20 b(Results)15 b(in)f(this)g(direction)f(ha)o(v)o(e)h (been)g(pro)o(v)o(ed)0 3526 y(by)i(Plante,)h(and)f(we)g(shall)g (discuss)h(his)f(w)o(ork)h(later)g(in)f(this)g(seminar)l(.)67 3604 y(In)h(the)g(other)f(e)o(xtreme)h(case)g(one)f(mak)o(es)i(the)e (follo)n(wing)f(de\002nition:)p eop %%Page: 6 6 6 5 bop 0 -89 a Fj(6)1121 b(D.)12 b(K)n(O)n(TSCHICK)0 47 y Fu(De\002nition)17 b(3.2.)26 b Fs(A)16 b(v)o(ector)f(\002eld)h Fq(X)21 b Fs(is)16 b(said)g(to)f(be)h(Anoso)o(v-contact)e(if)i(it)g(is) g(Anoso)o(v)e(and)i(the)f(one-form)i Fq(\015)j Fs(is)0 126 y(a)d(smooth)f(contact)g(form.)67 219 y(W)-5 b(e)16 b(ha)o(v)o(e)g(the)g(follo)n(wing)g(elementary)g(observ)n(ation)1321 192 y Fe(2)1342 219 y Fs(:)0 313 y Fu(Lemma)24 b(3.1.)32 b Fl(If)25 b Fq(X)k Fl(is)c(Anoso)o(v-contact,)g(then)e(it)h(is)h(the)e (Reeb)i(vector)f(\002eld)f(of)h Fq(\015)t Fl(,)i(and)e Fq(E)2269 288 y Fn(s)2318 313 y Fl(and)g Fq(E)2497 288 y Fn(u)2552 313 y Fl(ar)n(e)0 392 y(La)o(gr)o(angian)16 b(for)g(the)g(symplectic)g(structur)n(e)g(de\002ned)f(on)h Fq(k)r(er)r Fp(\()p Fq(\015)t Fp(\))g Fl(by)h Fq(d\015)t Fl(.)0 507 y(Pr)m(oof)o(.)27 b Fs(By)22 b(the)e(de\002nition)g(of)i (the)f(stable)g(and)f(unstable)h(subb)o(undles,)f(the)o(y)h(are)g(in)m (v)n(ariant)g(under)g(the)g(\003o)n(w)0 586 y(of)h Fq(X)5 b Fs(.)37 b(Thus)22 b(this)f(\003o)n(w)h(preserv)o(es)h(the)f(k)o (ernel)f(of)i Fq(\015)t Fs(.)36 b(It)22 b(also)g(preserv)o(es)h Fq(X)k Fs(tautologically)l(,)19 b(and)j(thus)f(we)0 664 y(conclude)15 b Fq(L)305 674 y Fn(X)350 664 y Fq(\015)23 b Fp(=)c(0)p Fs(.)i(This,)16 b(together)f(with)h Fq(\015)t Fp(\()p Fq(X)5 b Fp(\))18 b(=)h(1)p Fs(,)d(implies)g Fq(i)1617 674 y Fn(X)1662 664 y Fq(d\015)23 b Fp(=)c(0)p Fs(,)e(and)e(so)i Fq(X)k Fs(is)c(the)f(Reeb)g(v)o(ector)0 743 y(\002eld)h(of)g Fq(\015)t Fs(.)67 821 y(The)i(second)e(claim)i(is) f(pro)o(v)o(ed)g(by)g(the)g(same)h(ar)o(gument)e(as)i(in)f(the)g(proof) g(of)h(Lemma)g(2.3.)25 b(Let)19 b Fq(')2436 831 y Fn(t)2474 821 y Fs(be)g(the)0 900 y(\003o)n(w)e(of)g Fq(X)5 b Fs(.)21 b(Suppose)16 b Fq(v)r(;)11 b(w)22 b Fo(2)c Fq(E)799 876 y Fn(s)824 900 y Fs(.)j(Then,)16 b(using)g Fq(L)1242 910 y Fn(X)1288 900 y Fq(\015)22 b Fp(=)d(0)p Fs(,)e(we)f(\002nd)627 1009 y Fq(d\015)t Fp(\()p Fq(v)r(;)11 b(w)r Fp(\))19 b(=)g(\()p Fq(')1021 981 y Fm(\003)1021 1025 y Fn(t)1047 1009 y Fq(d\015)t Fp(\)\()p Fq(v)r(;)11 b(w)r Fp(\))19 b(=)g Fq(d\015)t Fp(\()p Fq(D)r(')1596 1019 y Fn(t)1616 1009 y Fp(\()p Fq(v)r Fp(\))p Fq(;)11 b(D)r(')1831 1019 y Fn(t)1851 1009 y Fp(\()p Fq(w)r Fp(\)\))16 b Fq(:)0 1117 y Fs(Using)g(the)g(auxiliary)g(metric)h Fq(g)r Fs(,)f(we)h(\002nd) g(that)f(there)g(is)h(a)g(constant)e Fq(c)j Fs(such)e(that)204 1226 y Fo(j)p Fq(d\015)t Fp(\()p Fq(v)r(;)11 b(w)r Fp(\))p Fo(j)18 b(\024)h Fq(c)d Fo(\001)f(jj)p Fq(d\015)t Fo(jj)f(\001)g(jj)p Fq(D)r(')978 1236 y Fn(t)998 1226 y Fp(\()p Fq(v)r Fp(\))p Fo(jj)g(\001)h(jj)p Fq(D)r(')1308 1236 y Fn(t)1327 1226 y Fp(\()p Fq(w)r Fp(\))p Fo(jj)i(\024)j Fq(c)15 b Fo(\001)g(jj)p Fq(d\015)t Fo(jj)f(\001)h Fq(a)1863 1199 y Fk(2)1904 1226 y Fo(\001)g Fq(e)1969 1199 y Fm(\000)p Fk(2)p Fn(bt)2085 1226 y Fo(\001)f(jj)p Fq(v)r Fo(jj)h(\001)f(jj)p Fq(w)r Fo(jj)i Fq(:)0 1335 y Fs(Letting)e Fq(t)i Fs(go)f(to)g(in\002nity)l(,)f (the)h(right-hand-side)f(becomes)i(arbitrarily)f(small.)20 b(Therefore)d Fq(d\015)t Fp(\()p Fq(v)r(;)11 b(w)r Fp(\))19 b(=)g(0)p Fs(,)d(and)0 1414 y Fq(E)53 1389 y Fn(s)95 1414 y Fs(is)h(isotropic)f(for)h Fq(d\015)t Fs(.)22 b(By)17 b(the)f(same)i(ar)o(gument,)e(b)o(ut)g(letting)f Fq(t)i Fs(go)g(to)f Fo(\0001)p Fs(,)i(we)e(conclude)g(that)g Fq(E)2421 1389 y Fn(u)2468 1414 y Fs(is)h(also)0 1492 y(isotropic.)35 b(As)22 b(the)f(tw)o(o)g(distrib)o(utions)f(are)i (complementary)f(in)h Fq(k)r(er)r Fp(\()p Fq(\015)t Fp(\))p Fs(,)g(the)o(y)f(must)h(be)f(equidimensional)0 1571 y(and)16 b(Lagrangian.)2148 b Fg(\003)67 1686 y Fs(Here)17 b(is)g(the)f(theorem) h(characterizing)f(Anoso)o(v-contact)e(\003o)n(ws)k(in)e(terms)i(of)f (standard)f(e)o(xamples:)0 1780 y Fu(Theor)o(em)23 b(3.1)f Fs(\(Benoist\226F)o(oulon\226Labourie)e([BFL)q(]\))p Fu(.)32 b Fl(Let)23 b Fq(X)28 b Fl(be)23 b(an)f(Anoso)o(v-contact)g (vector)g(\002eld)g(with)0 1858 y Fq(C)52 1834 y Fm(1)120 1858 y Fl(smooth)17 b(Anoso)o(v)h(splitting)d(on)j Fq(V)926 1834 y Fk(2)p Fn(n)p Fm(\000)p Fk(1)1043 1858 y Fl(.)23 b(Then)18 b(ther)n(e)f(is)g(a)h(unique)e(cohomolo)o(gy)g(class)i Fp([)p Fq(\013)p Fp(])j Fo(2)g Fq(H)2430 1834 y Fk(1)2456 1858 y Fp(\()p Fq(V)15 b Fp(;)c Fi(R)p Fp(\))0 1937 y Fl(and)16 b(a)g(r)n(epr)n(esenting)e(closed)i Fp(1)p Fl(-form)g Fq(\013)h Fl(suc)o(h)g(that)e Fp(1)f(+)g Fq(\013)p Fp(\()p Fq(X)5 b Fp(\))19 b Fq(>)g Fp(0)p Fl(,)d(and)g(de\002ning)f Fq(Y)34 b Fp(=)19 b Fq(X=)p Fp(\(1)13 b(+)h Fq(\013)p Fp(\()p Fq(X)5 b Fp(\)\))16 b Fl(we)0 2016 y(have:)116 2109 y Fs(\(i\))29 b Fl(if)17 b Fq(n)22 b Fo(\025)f Fp(3)p Fl(,)d(then)f(ther)n(e)g(is)h(a)g(\002nite)f(co)o(vering)g(of)h Fq(V)33 b Fl(on)17 b(whic)o(h)g(the)h(lift)f(of)g Fq(Y)33 b Fl(is)18 b Fq(C)2129 2085 y Fm(1)2180 2109 y Fl(-conjugate)e(to)i (the)208 2188 y(g)o(eodesic)e(\003ow)g(of)g(a)h(locally)e(symmetric)h (space)h(with)f(ne)m(gative)f(sectional)g(curvatur)n(e;)97 2267 y Fs(\(ii\))29 b Fl(if)17 b Fq(n)22 b Fp(=)f(2)p Fl(,)d(then)f(ther)n(e)h(is)g(a)f(\002nite)g(co)o(vering)h(of)f Fq(V)33 b Fl(on)18 b(whic)o(h)f(the)g(lift)g(of)h Fq(Y)33 b Fl(is)18 b Fq(C)2129 2242 y Fm(1)2180 2267 y Fl(-conjugate)e(to)i (the)208 2345 y(lift)e(to)g(a)g(\002nite)g(co)o(vering)g(of)h(the)f(g)o (eodesic)g(\003ow)g(of)g(a)h(hyperbolic)e(surface)1997 2319 y Fe(3)2019 2345 y Fl(.)67 2439 y Fs(This)j(is)g(the)g(second)f (main)h(theorem)g(about)f(Anoso)o(v)f(systems)j(which)e(we)g(do)h Fl(not)f Fs(co)o(v)o(er)h(in)f(this)g(seminar)l(.)0 2518 y(The)i(proof)h(uses)f(a)g(v)o(ersion)g(of)h(the)e(Kanai)h(connection)e (for)j(Anoso)o(v)e(\003o)n(ws)i(\(which)e(we)h(will)g(discuss)g (later\))0 2596 y(in)i(order)h(to)f(set)h(up)f(a)h(situation)e(in)h (which)g(one)g(can)g(appeal)g(to)g(Gromo)o(v')l(s)i(\223open)d(orbit)h (theorem\224.)36 b(After)0 2675 y(that,)15 b(the)h(b)o(ulk)f(of)i(the)e (proof)i(goes)f(through)f(the)g(theory)h(of)h(algebraic)e(groups)h(to)g (\002nd)g(that)f Fp(\()p Fq(V)t(;)c(X)5 b Fp(\))17 b Fs(is)f(indeed)0 2754 y(dif)n(feomorphic)j(to)g(one)f(of)i(the)e (standard)h(homogeneous)f(e)o(xamples.)27 b(The)19 b(proof)g(of)g (Theorem)h(2.1)e(follo)n(ws)0 2832 y(the)e(same)i(approach,)d(and)i(in) f(f)o(act)h(essentially)f(appeals)g(to)g(the)g(proof)h(of)g(Theorem)g (3.1.)1131 2973 y(R)t Fr(E)t(F)t(E)t(R)t(E)s(N)t(C)s(E)s(S)0 3079 y Ft(A.)71 b(D.)13 b(V)-7 b(.)13 b(Anoso)o(v)l(,)g Fd(Geodesic)f(\003o)o(ws)h(on)g(closed)g(Riemann)g(manifolds)f(with)g (ne)o(gati)o(v)o(e)g(curv)o(ature)p Ft(.)g(Proceedings)g(of)h(the)g (Steklo)o(v)126 3147 y(Institute)g(of)g(Mathematics,)g(No.)g Fc(90)i Ft(\(1967\).)f(Amer)m(.)e(Math.)i(Soc.)h(T)n(ranslations,)d (Pro)o(vidence,)i(R.I.)h(1969.)0 3214 y(AA.)30 b(V)-7 b(.)17 b(I.)g(Arnold,)g(A.)f(A)l(v)o(ez,)i Fd(Er)o(godic)f(problems)f (of)h(classical)e(mechanics)p Ft(.)h(W)-5 b(.)17 b(A.)g(Benjamin,)g (Inc.,)h(Ne)o(w)e(Y)-6 b(ork-Amsterdam)126 3282 y(1968.)0 3349 y(BFL.)29 b(Y)-7 b(.)34 b(Benoist,)40 b(P)-6 b(.)34 b(F)o(oulon,)40 b(F)l(.)35 b(Labourie,)k Fb(Flots)34 b(d'Anoso)o(v)40 b(\036)-23 b(a)34 b(distrib)o(utions)f(stable)h(et)g (instable)f(dif)o(f)s(\264)-22 b(er)n(entiables)p Ft(,)126 3416 y(Journ.)14 b(Amer)m(.)f(Math.)h(Soc.)g Fc(5)g Ft(\(1992\),)g (33\22674.)p 0 3461 338 3 v 67 3508 a Fe(2)90 3531 y Ft(which)f(I)h(missed)f(during)h(the)g(seminar)e(talk)67 3582 y Fe(3)90 3604 y Ft(This)i(second)g(part)f(had)h(been)h(pro)o(v)o (ed)f(earlier)e(by)j(Ghys.)p eop %%Page: 7 7 7 6 bop 656 -89 a Fj(GEOMETR)m(Y)14 b(OF)i(ANOSO)m(V)f(SYSTEMS:)h(AN)f (INTR)n(ODUCTION)627 b(7)0 47 y Ft(BL.)41 b(Y)-7 b(.)10 b(Benoist,)i(F)l(.)e(Labourie,)h Fb(Sur)g(les)f(dif)o(f)s(\264)-22 b(eomorphismes)8 b(d'Anoso)o(v)k(af)o(\002nes)j(\036)-24 b(a)11 b(feuilleta)o(g)o(es)f(stable)g(et)g(instable)f(dif)o(f)s(\264) -22 b(er)n(entiables)p Ft(,)126 114 y(In)n(v)o(ent.)14 b(math.)f Fc(111)i Ft(\(1993\),)f(285\226308.)0 182 y(S.)81 b(S.)15 b(Smale,)e Fb(Dif)o(fer)n(entiable)e(dynamical)j(systems)p Ft(.)e(Bull.)i(Amer)m(.)f(Math.)h(Soc.)g Fc(73)g Ft(\(1967\),)g (747\226817.)68 308 y(M)r Fe(A)m(T)r(H)s(E)s(M)s(A)n(T)t(I)r(S)s(C)s(H) s(E)s(S)j Ft(I)r Fe(N)r(S)r(T)s(I)r(T)s(U)t(T)o Ft(,)h(L)r Fe(U)r(D)q(W)s(I)s(G)s Ft(-)r(M)s Fe(A)s(X)t(I)r(M)s(I)s(L)s(I)s(A)s(N) s(S)s Ft(-)s(U)r Fe(N)s(I)s(V)s(E)s(R)s(S)s(I)s(T)1654 303 y Ft(\250)1647 308 y Fe(A)s(T)f Ft(M)1785 303 y(\250)1778 308 y Fe(U)r(N)r(C)s(H)s(E)s(N)t Ft(,)g(T)r Fe(H)r(E)r(R)s(E)s(S)s(I)s (E)s(N)s(S)s(T)s(R)s Ft(.)g(3)r(9)r(,)f(8)r(0)r(3)r(3)r(3)1 376 y(M)60 371 y(\250)53 376 y Fe(U)r(N)r(C)r(H)t(E)s(N)s Ft(,)21 b(G)r Fe(E)r(R)r(M)r(A)r(N)s(Y)67 443 y Fb(E-mail)13 b(addr)n(ess)p Ft(:)k Fa(dieter@member.am)o(s.or)o(g)p eop %%Trailer end userdict /end-hook known{end-hook}if %%EOF