Department Mathematik
print


Navigationspfad


Inhaltsbereich

Prof. D. Kotschick:

Seminar on Manifolds: Hodge-de Rham Theory

The following talks are all based on the book Foundations of Differentiable Manifolds and Lie Groups by F. Warner.

Sheaves, Cohomology, and the de Rham Theorem

 
31 Oct / 7 Nov S. Eberle: Sheaves and Presheaves:    5.1 - 5.15 
Definitions, tensor products, fine sheaves
7 / 14 Nov J. Wehrheim:  Sheaf cohomology:     5.16 - 5.25 
Cochain complexes, axioms for sheaf cohomology
21 Nov J. Kedra: Classical Cohomology theories:     5.26 - 5.33
Alexander-Spanier Cohom., de Rham Cohom., Singular Cohom., Cech Cohom.
28 Nov M. Hamilton:  The de Rham theorem:     5.34 - 5.46 
Proof


The Hodge Theorem

5 Dec M. Hamilton:  The Laplace-Beltrami operator:     6.1 -6.14 
Definitions, formulation of the regularity theorem, the Hodge Theorem, the Poincaré Theorem
12 Dec E. Volkov Analytic preparations:     6.15 - 6.27
Fourier transform, Sobolev spaces, inequalities 
19 Dec V. Strazdin Proof of the  regularity theorems:     6.28 - 6.36 
elliptic operators, reduction to the periodic case


Harmonic Forms on Kähler Manifolds

The following talks are all based on the book Differential Analysis on Complex Manifolds by R. Wells.
9 / 17 Jan S. Eberle: Hermitian Differential Geometry:    III.1 and V.1 
17 Jan S. Eberle: Harmonic Theory on Compact Manifolds:    V.2 
24 Jan no seminar
31 Jan J. Kedra: Differential Operators on a Kähler Manifold:    V.3 
6 Feb J. Kedra: The Hodge Decomposition Theorem for Kähler Manifolds:    V.4 

[ Mathematischen Instituts| Arbeitsgruppe Differentialgeometrie und Topologie]