Inhaltsbereich
K. Cieliebak: Symplectic geometry
(Symplektische Geometrie, in englischer Sprache)
-
Zeit und Ort: Di, Fr 11-13, HS E 47
-
Übungen : Di 16-18, HS E 47
-
Inhalt:
Symplectic geometry has its roots in classical mechanics: symplectic
manifolds are phase spaces of mechanical systems. Over the last 30 years,
symplectic geometry has evolved into an active research field with
applications to such diverse areas as algebraic geometry, Lie group
theory, 4-manifold topology, and combinatorics.
This is the first half of a full-year introduction to modern symplectic
geometry. Topics for this semester are: symplectic vector spaces,
symplectic manifolds, Hamiltonian systems, group actions, moment maps,
Atiyah-Guillemin-Sternberg convexity, toric varieties.
-
für:
Student/innen der Mathematik und Physik ab 5. Semester
-
Vorkenntnisse: Grundvorlesungen
-
Schein: Gilt für Diplomhauptprüfung (RM), Hauptprüfung für das Lehramt
an Gymnasien gemäß LPO 77(1)1, Master of science.
-
Literatur:
-
D. McDuff and D. Salamon, Introduction to Symplectic
Topology, Second Edition, Oxford University Press, New York (1998).
-
K. Cieliebak, Lectures on Symplectic Geometry, Parts A and B,
http://math.Stanford.EDU/~kai/classes/257spr01/