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Abstract 
The goal of this paper is to confirm that the unitary group ( )U   on an 
infinite dimensional complex Hilbert space   is a topological group in its 
strong topology, and to emphasize the importance of this property for 
applications in topology. In addition, it is shown that ( )U   in its strong 
topology is metrizable and contractible if   is separable. As an application 
Hilbert bundles are classified by homotopy. 
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1. Introduction 
The unitary group ( )U   plays an essential role in many areas of mathematics 
and physics, e.g. in representation theory, number theory, topology and in 
quantum mechanics. In some of the corresponding research articles complicated 
proofs and constructions have been introduced in order to circumvent the 
assumed fact that the unitary group is not a topological group when equipped 
with the strong topology (see Remark 1 below for details). However, in 
Proposition 1 it is proven that ( )U   is indeed a topological group with 
respect to the strong topology. Moreover, in this paper it is shown that the 
compact open topology and the strong topology agree on ( )U  , and that this 
topology is metrizable and contractible if   is separable (and infinite 
dimensional). To demonstrate the relevance of these topological considerations 
it is shown that these results lead to a straightforward classifications of Hilbert 
bundles. Furthermore, the possibility of finding a Lie structure on ( )U   with 
respect to the strong topology is discussed in a new line the following header. 

2. The Unitary Group as a Topological Group 
It is easy to show and well-known that the unitary group ( )U  —the group of 
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all unitary operators →   on a complex Hilbert space —is a topological 
group with respect to the norm topology on ( )U  . However, for many 
purposes in mathematics the norm topology is too strong. For example, for a 
compact topological group G with Haar measure μ the left regular 
representation on ( )2 ,L G µ=   

( ) ( ) ( )1: U , : ,g gL G g L L f x f g x−→ → =              (1) 

is continuous for the strong topology on ( )U  , but L is not continuous when 
( )U   is equipped with the norm topology, except for finite G. This fact makes 

the norm topology on ( )U   useless in representation theory and its 
applications as well as in many areas of physics or topology. The continuity 
property which is mostly used in case of a topological space W and a general 
Hilbert space   and which seems to be more natural is the continuity of a left 
action of W on    

: ,WΦ × →                            (2) 

in particular, in case of a left action of a topological group G on  : Note that 
the above left regular representation is continuous as a map: :L G× →  .  

Whenever Φ  is a unitary action (i.e. ( ) ( )ˆ : ,w f w fΦ Φ  is a unitary 
operator ( ) ( )ˆ UwΦ ∈   for all w W∈ ) the continuity of Φ  is equivalent to 
the continuity of the induced map  

( )ˆ : UWΦ →                            (3) 

with respect to the strong topology on ( )U  . In fact, if the action Φ  is 
continuous then Φ̂  is strongly continuous by definition of the strong topology. 
The converse holds since ( )U   is a uniformly bounded set of operators. The 
corresponding statement for the general linear group ( )GL   of bounded 
invertible operators holds for the compact open topology on ( )GL   instead of 
the strong topology. On ( )U   the two topologies coincide, see Proposition 2 
below. 

We come back to the continuity of unitary actions in a broader context at the 
end of this paper where we elucidate the significance of the fact that ( )U   is a 
topological group for the classification of Hilbert bundles over paracompact 
spaces X. 

Proposition 1: ( )U   is a topological group with respect to the strong 
topology. 

Proof. Indeed, the composition ( ),S T ST  is continuous: Given  
( ) ( ) ( )0 0, U US T ∈ ×   let   be a neighbourhood of 0 0S T  of the form  

( ) ( ){ }0 0U :R R S T f ε= ∈ − <   where f ∈  and 0ε > . Now,  

( ) ( ) ( ) ( ) ( )0 0 0
1 1: , U U : ,
2 2

S T S S T f T T fε ε = ∈ − < − <


× 


     

is a neighbourhood of ( ) ( ) ( )0 0, U US T ∈ ×   and for ( ),S T ∈  we have:  

( ) ( ) ( )0 0 0 0 0 0ST S T f S T T f ST S T f− ≤ − + −            (4) 

( ) ( )0 0 0
1 1 ,
2 2

T T f S S T f ε ε ε≤ − + − < + =             (5) 
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i.e. ( ){ }: ,ST S T ∈ ⊂  . To show that 1T T −
  is continuous in 0T  let 

( ) ( ){ }1
0U :S S T f ε−= ∈ − <   a typical neighbourhood of 1

0T −  in ( )U  . 
For 1

0:g T f−=  let ( )UT ∈   satisfy ( )0T T g ε− < . Then  

( )1 1 1
0 0 0 ,T T f T T g g T g Tg ε− − −− = − = − <              (6) 

i.e. ( ){ }1
0:T T T g ε− − < ⊂  .                                        

Remark 1. This result with its simple proof is only worthwhile to publish 
because in the literature at several places the contrary is stated and because 
therefore some extra but superfluous efforts have been made. For example, 
Simms [1] explicitly states that the unitary group is not a topological group in its 
strong topology and that therefore the proof of Bargmann’s theorem [2] has to 
be rather involved. But also recently in the paper of Atiyah and Segal [3] some 
proofs and considerations are overly complicated because they assume that the 
unitary group is not a topological group1. The assertion of proposition 1 has 
been mentioned in [4]. 

The misunderstanding that ( )U   is not a topological group in the strong 
topology might come from the fact that the composition map  

( ) ( ) ( ) ( )B B B , , ,S T ST× →                    (7) 

is not continuous in the strong topology (where ( )B   denotes the space of 
bounded linear operators) and consequently ( )GL   is not a topological group 
with respect to the strong topology (in the infinite dimensional case). But the 
restriction of the composition to ( ) ( )U U×   is continuous since all subsets 
of ( )U   are uniformly bounded and equicontinuous. 

Another assertion in [3] is that the compact open topology on ( )U   is 
strictly stronger than the strong topology2 and therefore some efforts are made 
in [3] to overcome this assumed difficulty. However, again because of the 
uniform boundedness of the operators in ( )U   one can show: 

Proposition 2: The compact open topology on ( )U   coincides with the 
strong topology. 

Proof. The compact open topology on ( )B   and hence on ( )U   is 
generated by the seminorms { }: sup :KT T Tf f K= ∈  where K ⊂  is 
compact. Let ( ){ }0U : KT T T ε= ∈ − <   be a typical neighbourhood of 

( )0 UT ∈   where K ⊂  is compact and 0ε > . We have to find a strong  

neighbourhood   of 0T  such that ⊂  . Let 1:
3

δ ε= . By compactness of  

K there is a finite subset F ⊂  such that ( ){ }, :K B f f Fδ⊂ ∈


 where 
( ) { }, :B f r g f g r= ∈ − <  is the usual open ball around f of radius r. 

Now, for k K∈  there exist f F∈  with ( ),k B f δ∈  and ( )0,g B δ∈  such 
that k f g= + . We conclude, for 0 FT T δ− <   

( ) ( ) ( )0 0 0 2 .T T k T T f T T g δ δ ε− ≤ − + − < + =           (8) 

 

 

1Explicitly stated in Appendix 1 of [3]. 
2In the beginning of Section 2 of [3] and in the Appendix 1. 
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As a consequence, the strongly open ( ){ }0U : FT T T δ= ∈ − <   is 
contained in  .                                                   

Corollary: The group ( )U   with the strong topology acts continuously by 
conjugation on the Banach space ( )   of compact operators. 

This follows from the corresponding result [3] (Appendix 1, A1.1) for the 
compact open topology or it can be shown as in the proof of Proposition 1 using 
equicontinuity.  

The proof of proposition 2 essentially shows that on an equicontinuous subset 
W of ( )B   the strong topology is the same as the compact open topology. 
Furthermore, both topologies coincide on W with the topology of pointwise 
convergence on a total subset D ⊂ .  

In particular, if   is separable with orthonormal basis ( )k k
e

∈
, the 

seminorms kT Te  generate the strong topology. A direct consequence is 
(in contrast to an assertion in Wikipedia3 which explicitly presents ( )U   with 
respect to the strong topology as an example of a non-metrizable space):  

Proposition 3: The strong topology on ( )U   is metrizable4 if   is 
separable. 

The remarkable result of Kuiper [5] that ( )U   is contractible in the norm 
topology if   is infinite dimensional and separable is true also with respect to 
the compact open topology (see e.g. [3]). By proposition 2 we thus have 

Corollary: ( )U   is contractible in the strong topology if   is infinite 
dimensional and separable. 

Remark 2. The first three results extend to the projective unitary group 
( ) ( ) ( ) ( )PU U U 1 U= ≅    : This group is again a topological group in the 

strong topology, the strong topology coincides with the compact open topology 
and it is metrizable for separable  . Moreover we have the following exact 
sequence of topological groups  

( ) ( ) ( )1 U 1 U PU 1→ → → →                    (9) 

exhibiting ( )U   as a central extension of ( )PU   by ( )U 1  in the context 
of topological groups and at the same time as a U(1)-bundle over ( )PU  . 

Using the homotopy sequence associated to (9), ( )PU   turns out to be 
simply connected (with respect to the strong topology). And ( )PU   is an 
Eilenberg-MacLane space ( ), 2K  . Hence, ( )PU   is not contractible. 
(Recall that for natural numbers n∈  an Eilenberg-MacLane space ( ),K n  
is a topological space X whose nth homotopy group ( )n Xπ  is isomorphic to   
whereas all other homotopy groups ( )k Xπ  are zero.) 

The above sequence (9) is not split as an exact sequence of topological groups 
or as an exact sequence of groups. Moreover, one can show that even a 
continuous section ( ) ( )PU U→   does not exist [4]: Every section is 

 

 

3See revision (07.11.13): 
https://en.wikipedia.org/w/index.php?title=Metrization_theorem&oldid=580602815  
4In an earlier version of this note we claimed that ( )U   is complete. We thank D. Buchholz for 

pointing out that this is false. 
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neither continuous nor a group homomorphism. 

3. Search for a Lie Group Structure 

In view of the result of proposition 1 it is natural to ask whether ( )U   has the 
structure of a Lie group with respect to the strong topology. Let us review what 
happens in the case of the norm topology: 

We know that ( )U   is a real Banach Lie group in the norm topology: Its 
local models are open subsets of the space ( )BL ⊂   of bounded 
skew-symmetric operators. L is a real Banach space and a real Lie algebra with 
respect to the commutator. The exponential map  

( ) ( )exp : U , exp
!

nBL B B
n

→ =∑                 (10) 

is locally invertible and thus provides the manifold structure on the unitary 
group. In this way, ( )U   is a Lie group with Lie algebra L. 

The same procedure does not work for the strong topology (in the infinite 
dimensional case). Although it can be shown that the above exponential map 

( )exp : UL →   is continuous with respect to the strong topologies, it is not a 
local homeomorphism. A way to see that ( )U   cannot be a Lie group with 
local models in L with respect to the strong topology was explained to me by 
K.-H. Neeb: Choose an orthonormal basis ( )j j J

e
∈

 in  . The diagonal 
operators with respect to ( )j j J

e
∈

 and contained in ( )U   form a subgroup 
which can be identified with the abelian group  

( ){ } ( ): 1 U 1 ,J
j jj J

K T λ λ
∈

= = = =                  (11) 

the product of infinitely many circles ( )U 1 . The topology on K induced from 
the strong topology is the product topology. Hence, K is compact. If ( )U   
would be a Lie group in the strong topology then K would be a Lie group as well 
with models in the space JD ≅   of diagonal operators in L (with the product 
topology). However, as a compact Lie group K would have to be a finite 
dimensional manifold. 

Note that if exp were locally invertible for the strong topologies then the same 
would be true for the restriction  

( )exp : , U 1 .JJD K→ →                     (12) 

But this restriction is not locally invertible, since for every strong 
neighbourhood K⊂  of 1 id=   the inverse image ( )1exp−   contains all 
but finitely many straight lines of the form  

( ){ }: : , 0 for , ,m j j mT D T j m iλ λ λ= ∈ = = ≠ ∈ ≅           (13) 

where m∈ , and exp is not injective on m .  
According to the importance of ( )U   in mathematics and physics one 

might be tempted to use all unitary, strongly continuous one parameter groups  

( ) ( )U , , ,t B t t→ ∈                     (14) 

https://doi.org/10.4236/apm.2018.85029


M. Schottenloher 
 

 

DOI: 10.4236/apm.2018.85029 513 Advances in Pure Mathematics 
 

as the basic geometric and analytic information to find a manifold structure on 
( )U  . Now, Stone’s theorem states that the strongly continuous one parameter 

groups are exactly the one parameter groups of the following form  

( )exp , ,t itA t∈                         (15) 

for self adjoint (not necessarily bounded) operators A on  . However, the set 
of all self adjoint operators is not a linear space. 

4. Application to Hilbert Bundles 

The result of proposition 1 that ( )U   with the strong topology is a 
topological group helps to find simpler and more transparent proofs (e.g. than 
those in [1] and [3]) and it gives a coherent picture when dealing with fiber 
bundles or with unitary representations of topological groups. In the following 
we exemplify the advantage of knowing that ( )U   is a topological group with 
respect to the strong topology by applying this result to the study of Hilbert 
bundles. For a given topological group G the homotopy classification of all 
equivalence classes of principal fiber bundles over a fixed paracompact space X 
can be described using the classifying space BG. (Recall that a classifying space 
BG of a topological group G is the quotient of a weakly contractible space EG 
(i.e. a topological space for which all its homotopy groups are trivial) by a proper 
free action of G. It has the property that any G-principal bundle over a 
paracompact space is isomorphic to a pullback of the principal bundle 
E BG G→ , and it is unique up to homotopy.) The significance of proposition 1 
is that this can be done for ( )UG =   or ( )PU   with the strong topology. 
Let us explain the consequences for the study of Hilbert bundles:  

A Hilbert bundle E over a (paracompact) space X is a locally trivial bundle 
: E Xπ →  over X with continuous projection π such that the fibers 

( )1 ,xE x x Xπ −= ∈  are isomorphic to a separable complex Hilbert space   or 
its projectivation ( ) . Here, “isomorphic” means unitarily isomorphic. In 
particular, this definition requires (in the case of xE≅  as the typical fiber) 
that there exists a cover of open subsets V X⊂  with bundle charts (i.e. 
homeomorphisms)  

: VE Vφ → ×                         (16) 

such that 1pr φ π=  and  

2: pr :
xx xE Eφ φ= →                       (17) 

is unitary for all x X∈ . Thus, for dim n= < ∞  the bundle E is an ordinary 
complex vector bundle with typical fiber n  and structural group ( )U n . 

The transition map for another bundle chart : VE Vφ ′
′ ′→ × , 

W V V ′= ≠ ∅ , is  
1 : ,W Wφ φ−′ × → ×                       (18) 

completely determined by the projection  
1

, 2: pr :V V Wψ ψ φ φ−
′ ′= = × →                     (19) 
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Now, as we have shown above in (3), ψ is continuous, if and only if the 
induced map 

( ) ( )( )ˆ : U , , ,W x f x fψ ψ→                 (20) 

is strongly continuous. ψ̂  will not be continuous with respect the norm topol-
ogy, in general. In the case of ( )   as the typical fiber of E we have analogous 
statements. 

As a consequence, the natural principal fiber bundle EP P X= →  associated 
to the Hilbert bundle E (the frame bundle with fibers ( )U ,x xP E=   if   is 
the typical fiber) will be a principal fiber bundle whose structural group is 
( )U   with its strong topology and, in general, not with respect to the norm 

topology. Note that PE will be, in addition, a principal fiber bundle with respect 
to the norm topology on ( )U   if and only if there exists an open cover of X 
with bundle charts such that all the induced transition maps ( )ˆ : UWψ →   
are norm continuous. Let us call such a bundle “norm-defined”. 

In the case that ( )   is the typical fiber of E (we call such bundles 
projective Hilbert bundles) we have analogous results for the associated 
principal bundle PE (with fibers ( )U ,x xP E=  : The structural group is 

( )PU   with the strong topology in general. Moreover, whenever E is 
norm-defined PE can also be viewed as to be a principal fiber bundle with 
structural group the projective unitary group ( )PU   in its norm topology.  

In order to classify the Hilbert bundles over X it is enough to classify the 
principal fiber bundles with structural groups ( )U   resp. ( )PU  . Let 

( ) ( )U
NPrinc X  the set of isomorphism classes of principal fiber bundles with 

( )U   in the norm topology and correspondingly ( ) ( )U
SPrinc X  the set of 

isomorphism classes of principal fiber bundles with ( )U   in the strong 
topology. Analogously, we define ( ) ( )PU

APrinc X  for { },A N S∈ . 
Unitary group (vector bundles): Since the unitary group is contractible in both 

topologies every principal bundle P over X is trivial: 

( ) ( ) ( ) ( ){ }U , BU UAAPrinc X X X ≅ ≅   ×                (21) 

for { },A N S∈ . (Here, [ ],X Y  denotes the set of homotopy classes of 
continuous maps between topological spaces X and Y, and [P] denotes the 
equivalence class of the principal bundle P over X.) For an arbitrary Hilbert 
bundle with typical fiber   this implies that it is already isomorphic to the 
trivial bundle X ×  For the norm-defined bundles E the associated principal 
bundle PE is in ( ) ( )U

APrinc X  and an isomorphism E X≅ ×  can be found 
which is locally given by transition functions which are induced by norm 
continuous ( )UW →  . Note, that the classifying spaces ( )BU A  are 
weakly contractible for { },A N S∈ .  

Projective unitary group (projective bundles): We know already that ( )PU   
is a ( ), 2K   for both topologies on the projective unitary group which we will 
indicate by a superscript A. From the homotopy sequence corresponding to the 
universal bundle 
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( ) ( ) ( )PU EPU BPUA A A→ →                  (22) 

one concludes that ( )BPU A  is an Eilenberg-MacLane space ( ),3K  . Now, 
the homotopy classification of principal fiber bundles asserts that there is a 
bijection between ( ) ( )PU

APrinc X  and ( ),BPU AX 
  , the set of homotopy 

classes of continuous ( )BPU AX →  . For a ( ),3K   this is cohomology: 
( ) ( )3,BPU ,AX H X  ≅   . We arrive at the following result which is 

essentially contained in a different form in [3]: 
Proposition 4: 

• The isomorphism classes of projective Hilbert bundles over X are in one-to-one 
correspondence to ( ) ( ) ( ) ( )3

PU, , BPU S SH X X Princ X ≅ ≅   . 
• The isomorphism classes of norm-defined projective Hilbert bundles over X 

are also in one-to-one correspondence to  
( ) ( ) ( ) ( )3

PU, , BPU N NH X X Princ X ≅ ≅    where the isomorphisms of 
the Hilbert bundles are given by norm continuous transition maps. 

Note, that the zero element of ( )3 ,H X   represents the class of all trivial 
bundles which also can be described as the class of projective Hilbert bundles E 
of the form F  where F is a true vector bundle with fibers xF ≅ . 

5. Conclusion 

The property of ( )U   being a topological group serves as a basis for further 
research in various areas in mathematics and physics where ( )U   is a 
symmetry group. Such a research will be supported by that fact, that ( )U   is, 
in addition, contractible and metrizable if   is infinite dimensional and 
separable. This has been exemplified in the last part of this paper by deducing 
the classification of Hilbert bundles from these results concerning the strong 
topology on ( )U  . 
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