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Abstract. The lowest bound state of a one-electron ion in a constant mag-

netic field B is calculated from the pseudorelativistic no-pair Brown-Ravenhall
operator. The variational wavefunction is chosen as the product of a Landau

function (in the transverse direction) and a hydrogenic state (in the longitu-
dinal direction). The dependence of the ground-state energy on the nuclear

charge Z as well as on the magnetic field strength is investigated, and a scaling

with B/Z2 is observed. Relativistic effects are shown to be important both
for large B and large Z. When B →∞, a decrease of the ground-state energy

with
√
B is found in contrast to the lnB behaviour of the Pauli operator.

PACS: 02.30.Xx, 03.65.-w, 03.65.Pm

1. Introduction

A relativistic atomic electron of mass m in a magnetic field B = ∇ × A
resulting from a vector potential A is described by the Dirac operator H,

H = DA + V, DA = α(p− eA) + βm, (1.1)

where α, β are Dirac matrices and V = −γx is the Coulomb field generated by a
point nucleus of charge Z fixed at the origin. The coordinate and momentum of the
electron are denoted, respectively, by x and p (with x = |x| =

√
x2

1 + x2
2 + x2

3 ),
and the field strength is γ = Ze2. Relativistic units (~ = c = 1) are used in the
formulae, with e2 ≈ 1/137.04 being the fine structure constant.

The unboundedness of H from below (which is due to the presence of the
positron states) is usually remedied by approximating H with semibounded pseu-
dorelativistic operators if pair creation plays no role. A widely used pseudorela-
tivistic operator which nevertheless accounts for the spin degrees of freedom is
the Brown-Ravenhall operator hBR. It can be obtained from a projection of H
onto the positive spectral subspace of the electron at V = 0 [1] (see also [2] for
its mathematical analysis). Equivalently, hBR is the first-order term (in γ) of the
Douglas-Kroll series which results from a unitary transformation scheme [3] ap-
plied to H in order to decouple the positive and negative spectral subspaces.

Our motivation to study the lowest bound state of the single-particle Brown-
Ravenhall operator is the fact that it provides the bottom of the essential spectrum
of the respective two-particle operator [4]. In the absence of magnetic fields the
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ground-state energy of hBR was first calculated by Hardekopf and Sucher [5] by
solving numerically the corresponding eigenvalue equation in momentum space.
These authors also showed that the difference from the exact Dirac eigenvalue,
EDg = m

√
1− γ2, is of the order of γ5 (which amounts to an error of 4% for

Z = 80).
The convergence of the Douglas-Kroll series was investigated numerically

(up to the 14th order in γ) by Hess and coworkers [6, 7] for the ground state of
one-electron and multi-electron ions and atoms. They performed linearly combined
atomic orbital (LCAO) calculations within a large Gaussian basis set (in coordinate
space), which they transformed into a basis that diagonalizes the kinetic energy
operator entering into all potential terms [8]. A rigorous mathematical proof of
the series convergence was given only recently [9].

There is also an early study on the transformed Dirac operator which allows
for a magnetic field [10]. In that work relativistic effects were estimated in pertur-
bation theory by making an expansion in 1/c rather than invoking the Douglas-
Kroll series. Such an expansion is, however, ill-defined [11], and it led to a serious
overprediction of the relativistic effects.

Indeed, investigations carried out for small nuclear charges (Z ≤ 20) on the
Dirac operator itself showed that relativistic effects on its ground-state energy
are very small in the considered range of magnetic field strengths [12, 13]. In
one method the wavefunction was expanded in terms of Landau levels and the
resulting coupled differential equations were solved in an approximate way [12].
Another method used a trial function in a variational calculation which consisted
of a superposition of products of a Landau function and a relativistic hydrogenic
function [13].

In the general case where the trial function is not closely related to the true
ground state, a minimax principle has to be used to obtain the lowest bound state
of the Dirac operator [14]. If, however, an operator is bounded from below, the
much simpler minimum principle in a variational calculation is sufficient. Then,
on one hand, a large basis of trial functions can be taken in order to obtain accu-
rate results. On the other hand, appropriately chosen simple variational functions
reduce the numerical effort considerably while retaining the important features.
Such an approach was used by Rau and coworkers [15] to describe atoms and one-
electron ions in intense magnetic fields. Neglecting relativistic and spin effects,
they employed the Schrödinger operator HS = 1

2m (p − eA)2 + V . If spin is con-
sidered (in a nonrelativistic way), the Schrödinger operator turns into the Pauli
operator HP = HS − 1

2meσB. Its ground state differs from that of HS by simply
a shift of − 1

2meB (see e.g. [16, 15]), so that spin effects can easily be included.
The variational ground-state wavefunction in [15] for a one-electron ion is

taken as a product state consisting of a hydrogenlike 1s function (to an effective
charge which serves as variational parameter) and a ground-state Landau function
(for the transverse degrees of freedom). The so determined ground-state energy has
the correct behaviour at B = 0 by construction. For B →∞, with eB

2m subtracted,
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it also shows the correct (lnB)2 behaviour. Note that it is rigorously proven that
the ground-state energy of the Pauli operator decreases according to (lnB)2 as
B →∞, the error being of the order of lnB · ln(lnB) [17].

It can be shown that for large magnetic fields where the magnetic length
1√
eB

is much smaller than the scaled Bohr radius a0/Z, the electron occupies the
lowest Landau band [18]. Then the ground-state function is no longer dominated
by a spherical hydrogenic state, but this state degenerates to a one-dimensional
function in the direction of B (while the transverse degrees of freedom are confined
by the magnetic field). In fact, this longitudinal function becomes an eigenstate to
a δ-type potential when B →∞ [19].

In the present work we extend the Rau et al method to the pseudorelativistic
operators. As a matter of fact, a magnetic field can easily be incorporated into
the Douglas-Kroll series [20, 21]. The Brown-Ravenhall operator is well-defined in
the form sense for γ < γc (the bound γc = 2

π , corresponding to Z = 87 and valid
for A ∈ L2,loc(R3) and B bounded or in L2(R3), is in a yet unpublished work
[24] increased to 2/(π2 + 2

π ) for locally bounded A). However, for the higher-order
terms of the Douglas-Kroll series, this bound on γ decreases with the magnetic
field strength and goes to zero as B → ∞ [21]. Therefore the higher-order terms
are inferior to the first-order term for very large magnetic fields (despite their
better approximation of EDg at B = 0).

In our variational ansatz a one-dimensional hydrogenic function (together
with the Landau function) is used for the ground state of the Brown-Ravenhall
operator, valid if B is sufficiently large. The model is described in section 2 and the
asymptotic B-dependence is extracted in section 3. Section 4 provides variational
results for the B = 0 case, including a comparison with the accurate ground-state
energy. The B-dependence of the ground-state energy (for B/Z2 . 1013 G) is
discussed in section 5 with particular emphasis on a scaling property, as well as
on the onset of relativistic effects. The conclusion is drawn in section 6.

2. The variational model

The Brown-Ravenhall operator in a magnetic field is given by [22, 21]

hBR = EA + V1 + V2 (2.1)

V1 = −γ AE
1
x
AE , V2 = −γ AE

σpA
EA +m

1
x

σpA
EA +m

AE ,

where EA = |DA| is the kinetic energy operator,

EA =
√
p2
A − eσB +m2, AE =

√
EA +m

2EA
(2.2)

and pA = p − eA. σ = (σ1, σ2, σ3) is the vector of Pauli spin matrices. In the
following we take B = Be3 to be a constant magnetic field along the e3-axis,
generated by

A(x) =
B

2
(−x2, x1, 0) (2.3)
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which obeys ∇ ·A = 0. hBR acts in the Hilbert space L2(R3)⊗C2 and extends to
a self-adjoint operator for γ < γc. Its form domain is H1/2(R3) ⊗ C2 where H1/2

denotes a Sobolev space.
Let us first switch off the scalar potentials V1 and V2. Then we can profit from

the fact that E2
A = 2mHP (V = 0) +m2 so that E2

A (and thus EA) is diagonalized
by the eigenstates of the Pauli operator.

The ground state is characterized by a spin-up state, ψ0↑ = ψ0k

(
1
0

)
, resulting

in −eσBψ0↑ = −eσ3B ψ0↑ = −eB ψ0↑. Taking the normalized lowest Landau
function [16, 15] and allowing for a free electronic motion in the x3-direction, we
have

ψ0k(%, x3) = N0 e
−eB%2/4 eikx3 , N0 =

√
eB

2π
,

and E2
A ψ0↑ =

[
(eB + k2)− eB +m2

]
ψ0↑ = (k2 +m2) ψ0↑, (2.4)

where % =
√
x2

1 + x2
2 is the radial coordinate perpendicular to B. Thus the corre-

sponding eigenvalue of EA is given, independently of B, by the energy
√
k2 +m2

of a free relativistic electron of momentum k, with its ground state at k = 0.
The presence of the Coulomb field restricts the motion in the x3-direction and

we choose for our variational wavefunction a superposition of momentum states,
ψg = ψ0

(
1
0

)
, normalized to unity, with

ψ0(x) = Ñ0 e
−eB%2/4

∫ ∞
−∞

dk f̃(k) eikx3 , (2.5)

f̃(k) =
aZ ′

π
√
Z ′2 + k2

K1(a
√
Z ′2 + k2), Ñ0 =

(
eB

4πaK1(2aZ ′)

) 1
2

,

where K1 is a modified Bessel function and

a = 1/
√
eB (2.6)

the magnetic length. The function f̃ is taken as the Fourier transform of a one-
dimensional hydrogenic ground-state function to a parameter Z ′ = Zeff/a0

(where Zeff is an effective charge — our variational parameter — and a0 =
~

2/(me2) the Bohr radius) [23, (3.914)],∫ ∞
−∞

dk f̃(k) eikx3 = e−Z
′
√
a2+x2

3 . (2.7)

The idea behind the choice (2.7) is the confinement of the electronic motion
in the (x1, x2)-direction by the magnetic length, valid if a� a0/Z or equivalently,
B � Z2m2e3 (in conventional units, 1m2e3c/~3 = 2.35 × 109 G). Its advan-
tage compared to the ansatz used in [15], where exp(−Z ′x) is taken instead of
exp(−Z ′

√
a2 + x2

3), is the exact diagonalization of the kinetic energy EA because
the Fourier transform (2.7) does not affect the transverse degrees of freedom. We
note in passing that in [15] the cyclotron radius rc =

√
2 a is taken as the magnetic

scale. This leads to the condition B � 2Z2m2e3.
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Let us now determine the expectation value of hBR−m (where the electron’s
rest energy mc2 is subtracted) with respect to the function ψg. For the kinetic
energy we get, using (2.7) for the inverse Fourier transformation,

(ψg, (EA −m)ψg) = Ñ0

∫ ∞
−∞
dk f̃(k)

∫
R3
dx ψg(x)

(√
k2 +m2 −m

)
e−eB%

2/4 eikx3

=
2aZ

′2

πK1(2aZ ′)

∫ ∞
0

dk
1

Z ′2 + k2
K2

1 (a
√
Z ′2 + k2)

(√
k2 +m2 −m

)
. (2.8)

In order to evaluate the potential terms, also ψg has to be taken in its mo-
mentum representation (2.5) because in V1 and V2, EA enters on both sides of
the Coulomb potential −γ/x. As f̃ and AE are even functions of k we get

(ψg, V1 ψg) = −4γÑ2
0

∫ ∞
−∞

dx3 F
2(x3) · 2π

∫ ∞
0

% d% e−eB%
2/2 1√

%2 + x2
3

F (x3) =
∫ ∞

0

dk f̃(k) AE cos kx3. (2.9)

We have [23, (3.468)]

2
∫ ∞

0

% d% e−eB%
2/2 1√

%2 + x2
3

=

√
2π
eB

eeBx
2
3/2

(
1 − φ(|x3|

√
eB

2
)

)
. (2.10)

For the numerical evaluation of the probability function φ we use an integral
representation (for 0 ≤ y . 50) and, respectively, the asymptotic expansion [23,
(8.254)] (for y > 50),

E(y) :=
√
π ey

2
(1− φ(y)) =

∫ ∞
0

dτ
e−τ√
τ + y2

=
1
y

(
1 − 1

2y2
+

3
4y4
− 15

8y6
...

)
.

(2.11)
Concerning the potential term V2 we have to evaluate σpA 1

x σpA on a spin-
up eigenstate of type (2.4). With the vector potential A from (2.3) and p = −i∇,
we get

(p− eA) ψ0k =


eB
2 (ix1 + x2)

eB
2 (ix2 − x1)
k

 ψ0k (2.12)

so that, with ψ0↑(k) = ψ0k

(
1
0

)
,

(ψ0↑(k′),σpA
1
x
σpA ψ0↑(k)) = (ψ0↑(k′),

(
pA

1
x

pA + iσpA ×
1
x

pA

)
ψ0↑(k))

= (ψ0↑(k′),
kk′

x
ψ0↑(k)). (2.13)

Hence, the restriction of this operator to ψ0↑ is independent of B. Therefore,

(ψg, V2 ψg) = −4γÑ2
0

∫ ∞
−∞

dx3 G
2(x3) · 2π

∫ ∞
0

% d% e−eB%
2/2 1√

%2 + x2
3

,
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G(x3) =
∫ ∞

0

dk f̃(k) AE
1

EA +m
k sin kx3. (2.14)

Note that the integrands in (2.9) and (2.14) are even functions of x3, simplifying
the respective integration region to [0,∞).

For the numerical evaluation of the integrals it is convenient to shift variables

from x3 to y by means of y =
√

eB
2 x3 in order to get rid of the B-depencence in

the function E from (2.11). In turn, we measure the magnetic field in units of Z2,
i.e. B = λZ2[m2e3], λ ≥ 2, and introduce the scaled variables

ã = a

√
eB

2
=

1√
2
, µ = m/

√
eB

2
=

√
2√

λZe2
,

Z̃ = Z ′/

√
eB

2
=

Zeff
√

2√
λZ

, κ = k/

√
eB

2
. (2.15)

Then we obtain for the energy functional E0[Zeff ]

(ψg, (hBR −m) ψg) = c0

∫ ∞
0

dκ
1

Z̃2 + κ2
K2

1 (ã
√
Z̃2 + κ2)

(√
κ2 + µ2 − µ

)
− Ze2 c0

π

∫ ∞
0

dy E(y)
[
I2
1 + I2

2

]
=: E0[Zeff ] (2.16)

where

c0 =

√
2λZ ãZ̃2

πK1(2ãZ̃)
me2

I1 =
∫ ∞

0

dκ
1√

Z̃2 + κ2
K1(ã

√
Z̃2 + κ2)

(√
κ2 + µ2 + µ√
κ2 + µ2

) 1
2

cos(κy) (2.17)

I2 =
∫ ∞

0

dκ
κ√

κ2 + µ2 + µ

1√
Z̃2 + κ2

K1(ã
√
Z̃2 + κ2)

(√
κ2 + µ2 + µ√
κ2 + µ2

) 1
2

sin(κy).

Finally we determine Zeff from the variational principle

δ E0[Zeff ] = 0. (2.18)

Equivalently, the ground-state energy of the Brown-Ravenhall operator is esti-
mated from above by EBRg = min

Zeff>0
E0[Zeff ].

3. Asymptotic B-dependence

In this section we will show that EBRg decreases according to
√
B for B →∞.

This is done by considering the behaviour of the scaled variational parameter Z̃
which solves (2.18). Fig.1 shows Z̃ as a function of B for Z = 20 and 80. Whereas Z̃
decreases for Z = 20 according to a power law (∼ B−0.3) even for the highest fields
considered, there is a distinct flattening of Z̃ with increasing B in the relativistic
case Z = 80. These numerical results suggest that for relativistic ions the optimized
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scaled variational parameter tends to a strictly positive constant as B → ∞, a
conjecture which is proven below.

In order to derive the asymptotic B-dependence of the ground-state energy
we define Ẽ(µ, Z̃) = (ψg, (hBR −m)ψg)/

√
B according to (2.16). At B = ∞ we

have µ = 0 where the rhs of (2.16) divided by
√
B is independent of B and so

is the variational solution Z̃(0). Table 1 gives the numerical results for Z̃(0) and
Ẽ(0, Z̃(0)) for various nuclear charges Z. Thus a finite Z̃(0) > 0 guarantees not
only that |Ẽ(0, Z̃(0))| < ∞ (as the respective integrals are convergent), but also
that Ẽ(0, Z̃(0)) < 0.

Z Z̃(0) EBRg /
√
B

20 0.0074 -0.0718
40 0.054 -1.425
60 0.137 -4.777
80 0.239 -9.868

Table 1. Z̃ and the corresponding scaled ground-state energy Ẽ(0, Z̃(0)) =
EBRg /(Z

√
λ) in atomic units at µ = 0 (corresponding to B = ∞) for nuclear

charges Z ranging from 20 to 80.

The existence of the limit limµ→0 Z̃(µ) = Z̃(0) implies the existence of
limµ→0 Ẽ(µ, Z̃(µ)) = Ẽ(0, Z̃(0)) = −c̃ as discussed near the end of this section.
As a result,

EBRg ∼ −c̃ B1/2 as B →∞. (3.1)

In order to prove the above conjecture we start by showing that there are
constants a0, b0 so that as B →∞ the optimized Z̃ obeys 0 < a0 ≤ Z̃ ≤ b0 <∞.
In other words we prove by contradiction that (i) Z̃ does not tend to zero and
(ii) Z̃ <∞ as B →∞.

(i) Let us assume first that Z̃ → 0 as B → ∞, as in the nonrelativistic
case. In the unscaled variables this corresponds to ãZ̃ = aZ ′ → 0. Since a → 0
like B−

1
2 we thus assume that Z ′ increases more weakly than B

1
2 as B →∞. This

property holds for all effective charges in a neighbourhood of the solution to the
variational principle. Therefore, we will calculate the kinetic and potential energy
as a function of the effective charge and only subsequently consider the variational
principle.

From the behaviour of the modified Bessel function near zero, K1(z) ∼ 1
z as

z → 0, we obtain for the kinetic energy (2.8),

(ψg, EA ψg) ∼ c̃ Z
′3

∫ ∞
0

dk
1

(Z ′2 + k2)2

√
k2 +m2, (3.2)
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independent of a. With k = Z ′ζ and Z ′ →∞ with B →∞,

Z
′3

∫ ∞
0

dk

√
k2 +m2

(Z ′2 + k2)2
= Z ′

∫ ∞
0

dζ

√
ζ2 + (m/Z ′)2

(1 + ζ2)2
∼ c̃ Z ′ (3.3)

where c̃ > 0, so that the kinetic energy becomes linear in Z ′. We note that the
step from (2.8) to (3.2) implies an interchange of limits B →∞ and k →∞. This
relies on (3.2) being a convergent majorant since K1 is monotonically decreasing.

For the potential energy we use (2.17) with the substitution κ = Z̃η [23,
(3.723)],

I1 ∼
1
ãZ̃

∫ ∞
0

dη
cos(Z̃yη)

1 + η2
=

π

2ãZ̃
e−Z̃y. (3.4)

Further, from (2.11) with M = 50,∫ ∞
0

dy E(y) e−2Z̃y =
∫ M

0

dy E(y) e−2Z̃y +
∫ ∞
M

dy (
1
y

+ O(
1
y3

)) e−2Z̃y (3.5)

= c(Z̃)− Ei(−2Z̃ ·M) −→ c̃ − ln(Z̃) (Z̃ → 0),

since the first integral as well as the higher-order terms (in 1
y ) of the second integral

lead to a finite result which is independent of Z̃ as Z̃ → 0. We have also used the
near-zero expansion of the exponential integral Ei [23, (3.352),(8.214)].

For the second contribution I2 we have [23, (3.723)],

I2 ∼
1
ãZ̃

∫ ∞
0

dη
sin(Z̃yη)

1 + η2
=

1
2ãZ̃

[
e−Z̃y Ei(Z̃y) − eZ̃y Ei(−Z̃y)

]
. (3.6)

Dividing again the integration region of
∫∞

0
dy E(y) I2

2 into the intervals [0,M ] ∪
[M,∞) and using that

∣∣∣∫∞0 dη sin(Z̃yη)/(1 + η2)
∣∣∣ ≤ π

2 , the integral over [0,M ] is

finite irrespective of Z̃ (if the prefactor (ãZ̃)−1 is ignored). The boundedness of
the integral in (3.6) also assures the convergence concerning the higher-order terms
(in 1

y ) in the integral over [M,∞). In order to show that the remaining integral is
bounded we substitute Z̃y = ζ and get from (3.6)∫ ∞

M

dy
1
y
I2
2 ∼

1
(2ãZ̃)2

∫ ∞
0

dζ

ζ

[
e−ζ Ei(ζ) − eζ Ei(−ζ)

]2
(3.7)

as Z̃ → 0. With e−ζ Ei(ζ) − eζ Ei(−ζ) ∼ −2ζ ln ζ as ζ → 0 the integral converges
near zero.

For investigating ζ → ∞ we make a partial integration of the lhs of (3.6).
Then ∫ ∞

M

dy
1
y
I2
2 ∼

1
(ãZ̃)2

∫ ∞
0

dζ

ζ

[
1
ζ
− 2

ζ

∫ ∞
0

dη
η cos ζη

(1 + η2)2

]2

. (3.8)

Since | cos ζη| ≤ 1, the η-integral is finite for all ζ so that the ζ-integral converges
for ζ →∞.
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Collecting results,

(ψg, (V1 + V2) ψg) ∼ c̃
√
λ Z̃3 · 1

Z̃2
ln(Z̃) ∼ −c2 Z ′ lnB (3.9)

as B →∞ where c2 > 0 is some constant. The variational functional becomes

E0[Zeff ] ∼ (c̃ − c2 lnB) Zeff/a0 (B →∞) (3.10)

and it is obvious that δE0[Zeff ] = 0 has no solution.

(ii) Let us now assume that aZ ′ → ∞ as B → ∞. As a consequence,
Z ′ ∼ B

1
2 w(B) with w(B) → ∞ as B → ∞. Using the asymptotic behaviour of

the modified Bessel function, K1(z) ∼
√

π
2 e
−z/
√
z as z →∞, we have from (2.8)

(ψg, EA ψg) ∼ c̃ Z ′
√
aZ ′

∫ ∞
0

dζ
ζ

(1 + ζ2)3/2
e−2aZ′(

√
1+ζ2−1). (3.11)

We make further the substitution x = 2aZ ′(
√

1 + ζ2 − 1). This leads to

(ψg, EA ψg) ∼
c̃

2

√
Z ′

a

∫ ∞
0

dx

(1 + x/2aZ ′)2
e−x. (3.12)

The integral converges to a finite (nonzero) limit as aZ ′ → ∞. In order to show
this we use a sandwich estimate,∫ 2aZ′

0

dx

4
e−x ≤

∫ ∞
0

dx

(1 + x/2aZ ′)2
e−x ≤

∫ ∞
0

dx e−x. (3.13)

For aZ ′ → ∞ the lower bound tends to 1
4 , and the upper bound is 1. Thus

the kinetic energy behaves like
√
Z ′/a ∼ B

1
2
√
w(B). As a consequence, the

potential energy has to decrease at least like B
1
2
√
w(B) in order to produce a

bound state. It is rigorously established that such a bound ground state of hBR

exists for arbitrarily large B if γ < 2
π [24, 4],[25, p.202].

On the other hand, the ground-state energy can decrease at most like
√
B.

This is due to the relative form boundedness of V1 +V2 with respect to EA. Indeed,
following [2] and [26] we can write (ψ, (V1 + V2)ψ) = (ψ̃, β̃U0V U

−1
0 β̃ψ̃) for ψ ∈

H1/2(R3)⊗ C2 and ψ̃ =
(
ψ
0

)
. Here, β̃ = 1+β

2 projects onto the upper components
of a Dirac 4-spinor and U0 is the unitary Foldy-Wouthuysen transformation which
commutes with EA. Then one gets from the diamagnetic inequality and the Kato
inequality [26]

|(ψ, (V1 + V2) ψ)| = |(ψ0, V ψ0)| ≤ γ
π

2
(ψ0,

√
E2
A + eσB ψ0)

≤ γ
π

2
(ψ,EAψ) + γ

π

2

√
eB ‖ψ‖2 (3.14)

where we have introduced ψ0 = U−1
0 β̃ψ̃ = U−1

0 ψ̃. This leads to the inequality,

(ψ, hBR ψ) ≥ (1− γ π
2

) (ψ,EA ψ) − γ
π

2

√
eB ‖ψ‖2. (3.15)
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For γ < 2
π the rhs of (3.15) is thus a lower bound for the ground-state energy,

allowing at most a decrease according to B
1
2 . This contradicts aZ ′ →∞.

Finally we prove that Z̃ as a function of the inverse magnetic field converges
to its limiting value at B → ∞ (allowing for the choice a0 = b0) and so does
Ẽ(µ, Z̃(µ)). Since for B → ∞ we have Z̃ 6= 0 at the energy minimum we can
assume B ≥ B0 sufficiently large so that Z̃ can be restricted to a positive interval
Ĩ. Then the integrands in (2.16) and (2.17) are continuous in κ and µ in the interval
[0,∞)× [0, µ0] with µ0 = m/

√
eB0/2 except possibly in the point (κ, µ) = (0, 0),

and they are also continuous and continuously differentiable with respect to Z̃
for Z̃ ∈ Ĩ . Since all integrals are convergent, Ẽ is a continuous function of µ and
Z̃, and so is the derivative ∂Ẽ/dZ̃. The existence of a numerical solution Z̃(µ0)
satisfying ∂Ẽ

∂Z̃
(µ0, Z̃(µ0)) = 0 together with the existence of a ground state for any

µ < µ0 guarantees that there is a continuous solution Z̃(µ) to ∂Ẽ
∂Z̃

(µ, Z̃(µ)) = 0 for
0 ≤ µ ≤ µ0, whence also Ẽ(µ, Z̃(µ)) is continuous. This assures the convergence
of Ẽ(µ, Z̃(µ))→ Ẽ(0, Z̃(0)) as µ→ 0. Thus our result (3.1) is established.

We note that in the nonrelativistic case, the operator
√
k2 +m2 −m has to

be replaced by k2

2m in (3.2) so that the kinetic energy behaves like Z
′2 instead of

Z ′ as B →∞. This gives [15] Enr0 [Zeff ] ∼ c̃1 Z2
eff − c̃2 Zeff lnB and hence

δ Enr0 [Zeff ] = 0 ⇐⇒ Zeff =
c̃2
2c̃1

lnB, (3.16)

which leads to Enrg ∼ −c̃ (lnB)2 as B →∞, where c̃ is a generic constant.
The nonrelativistic results according to [15], described in section 5, are also

included in Fig.1. They show a power-law decrease of Z̃ with B for both values of
Z. Note the deviations from the Brown-Ravenhall result even in the nonrelativistic
case (Z = 20), which become larger when B increases.

Although not shown in the figure we have tested the convergence of Z̃(µ) for
Z = 80 up to λ = 1013. Actually Z̃(µ) is not monotonically decreasing towards
Z̃(0), but has a shallow minimum near λ = 105 (caused by the spin-dependent
potential V2).

4. The field-free case

In this section we compare the ground-state energy of the Brown-Ravenhall
operator for B = 0, obtained from a variational model, with the accurate LCAO
results from [7]. In order to study the dependence of this ground-state energy
on the variational wavefunction we have used two types, a spherical hydrogenic
wavefunction,

ψ̃0(x) =
Z
′3/2

√
π

e−Z
′x =

∫
R3
dk f̃0(k) eikx, (4.1)
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f̃0(k) =
1

π5/2

Z
′5/2

(k2 + Z ′2)2

and a relativistic function,

ψrel(x) = N0 x
γ̃ e−Z

′x =
∫
R3
dk f̃rel(k) eikx,

f̃rel(k) = N0
Γ(2 + γ̃)

2π2k

1
(Z ′2 + k2)1+γ̃/2

sin
(

(2 + γ̃) arctan
k

Z ′

)
, (4.2)

N0 =
(2Z ′)3/2+γ̃√
4π Γ(3 + 2γ̃)

, γ̃ =
√

1− (Z ′e2)2 − 1,

which is (apart from a constant) identical to the large component of the Dirac
ground-state wavefunction. Their Fourier representations [23, (3.944)] are required
because eikx is an eigenfunction to Ep = EA(B = 0) with eigenvalue

√
k2 +m2.

Using the nonrelativistic spin-up state, ψ̃0↑ = ψ̃0

(
1
0

)
, we obtain for the ex-

pectation value of the kinetic energy,

(ψ̃0↑, Ep ψ̃0↑) =
Z
′3/2

√
π

∫
R3
dk f̃0(k)

√
k2 +m2

∫
R3
dx e−Z

′x eikx (4.3)

=
32Z

′5

π

∫ ∞
0

k2 dk

√
k2 +m2

(k2 + Z ′2)4
.

This integral can be evaluated analytically in terms of a hypergeometric function
2F1 [23, (3.259)] so that

(ψ̃0↑, (Ep −m) ψ̃0↑) = m

[
64

15π 2F1

(
−1

2
,

3
2
,

7
2
, 1− (

Z ′

m
)2

)
− 1
]
. (4.4)

Denoting Ek =
√
k2 +m2 and Ak = ((Ek +m)/Ek)1/2 we obtain for the first

potential term,

(ψ̃0↑, V1 ψ̃0↑) = −γ
2

∫
R3
dx
∫
R6
dk′ dk f̃0(k′) e−ik

′x Ak′
1
x
f̃0(k) eikx Ak

= −32γZ
′5

π2

∫ ∞
0

dx

x

[∫ ∞
0

k dk
1

(k2 + Z ′2)2
Ak sin kx

]2

. (4.5)

Concerning V2 we note that due to the symmetry of the integration intervals
the expectation value of σp 1

x σp is just 1
x k′k (since Ek, Ak and f̃0 are even

functions). We write the angular integral of dk in the following way,∫
S2
dΩk k eikx = −i∇x

∫
S2
dΩk eikx = −i∇x

4π sin kx
kx

= 4πix
k

x
j1(kx),

(4.6)
where j1 is a spherical Bessel function. Then

(ψ̃0↑, V2 ψ̃0↑)

= −γ
2

∫
R3
dx
∫
R6
dk′ dk f̃0(k′) e−ik

′x 1
Ek′ +m

Ak′
1
x

k′k
1

Ek +m
Ak f̃0(k) eikx
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= −32γZ
′5

π2

∫ ∞
0

x dx

[∫ ∞
0

k3 dk
1

(k2 + Z ′2)2

1
Ek +m

Ak j1(kx)
]2

. (4.7)

We note that (4.7) is subordinate to (4.5) by approximately a factor of ( k
Ek+m )2 ∼

( Z
′

2m )2 = ( Zeff
2·137.04 )2 if k � m, respectively Z ′ � m. However, V2 gains importance

at relativistic charges.
For the relativistic function (4.2) we proceed in a similar way and obtain the

result, setting ψrel↑ = ψrel
(

1
0

)
,

(ψrel↑, (Ep −m) ψrel↑)

= c00

∫ ∞
0

dk
1

(Z ′2 + k2)2+γ̃
sin2

(
(2 + γ̃) arctan

k

Z ′

)
(
√
k2 +m2 −m),

c00 =
16
π

22γ̃ Z
′3+2γ̃ Γ2(2 + γ̃)

Γ(3 + 2γ̃)
(4.8)

and

(ψrel↑, (V1 + V2) ψrel↑) = −γ
π
c00

∫ ∞
0

x dx
(
I2
10 + I2

20

)
, (4.9)

I10 =
∫ ∞

0

k dk
1

(Z ′2 + k2)1+γ̃/2
sin
(

(2 + γ̃) arctan
k

Z ′

)
Ak

sin kx
kx

,

I20 =
∫ ∞

0

k2 dk
1

(Z ′2 + k2)1+γ̃/2

1
Ek +m

Ak sin
(

(2 + γ̃) arctan
k

Z ′

)
j1(kx).

The decrease of these integrals with k is slightly weaker than for those in (4.5)
and (4.7). Again, the total energy is minimized with respect to the variational
parameter Zeff = Z ′a0.

Our results for the ground-state energy are given in atomic units (a0 = 1).
In order to convert relativistic units (r.u.) into atomic units (a.u.) we note that
the energy unit is E0 = me4

~2 = 27.21 eV= 1 a.u. and that the momentum unit is

a−1
0 [16, p.123]. We write

√
k2 +m2 = m

√
1 + ( ka0

ma0
)2 = m

√
1 + (ka0)2e4 and

further, m [r.u.] = m
E0

[a.u.] = 1
e4 [a.u.] as well as γ [r.u.] = γ

E0
[a.u.] = Z

me2 [a.u.]. m
occurs also in Z ′/m = Zeffe

2 which is dimensionless. In short, one has to replace
Z ′ by Zeff , γ by Z, the prefactor m in the kinetic energy (and in (2.17)) by 1/e4

but elsewhere m by 1/e2.

Z EDg −m EBRg Erel ERWg

20 -201.1 -201.1 -201.3 -201.3
40 -817.8 -817.6 -822.4 -823.9
60 -1896 -1893 -1928 -1934
80 -3532 -3513 -3647 -3686

Table 2. Ground-state energy at B = 0 for Z = 20, 40, 60 and 80. EDg −m,
Dirac energy. EBRg , present results using the hydrogenic wavefunction (4.1). Erel,
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present results with the relativistic trial function (4.2). ERWg , LCAO results taken
from Reiher and Wolf [7]. All energies in atomic units.

Table 2 gives the ground-state (with the rest energy subtracted) for one-
electron ions with Z between 20 and 80. The third and fourth columns contain,
respectively, the results for EBRg and Erel. As a matter of fact, EBRg is quite close
to the exact Dirac energy, with a difference not exceeding 0.5 percent even for
Z = 80. The relativistic trial function on the other hand reproduces the LCAO re-
sults within 1 percent. It is evident that the LCAO results for the Brown-Ravenhall
operator fall below the Dirac energy, the more so, the higher Z. Detailed calcula-
tions [7] show that one has to include (for Z ∼ 80) all terms of the Douglas-Kroll
series up to 5th order in the field strength γ to approach the Dirac energy within
0.01 percent. One is led to explain the reasonable agreement between EBRg and
EDg − m by the fact that although hBR is exaggerating the relativistic effects,
this is compensated for by forming the expectation value with a nonrelativistic
function. This gives us confidence that also for B 6= 0 the Dirac results are well
represented by our variational results obtained from nonrelativistic functions.

5. Numerical results for B 6= 0

We have determined EBRg from the energy functional (2.16) for nuclear
charges between 1 and 80 and for a large variety of magnetic fields B. Fig.2 shows
the dependence of the ground-state energy on Z for fixed B. It is evident that EBRg
decreases not only with B but also with Z. When approximated by −EBRg ∼ Zs
(which is fairly accurate for Z . 80) we have s ≈ 2.1 when B = 0, s ≈ 1.25 when
B = 2.56× 104 (in units of m2e3) which increases to s ≈ 1.55 for B = 107.

The competition between the magnetic length and the scaled Bohr radius
suggests to consider B/Z2 as the relevant magnetic field parameter. In fact, when
B/Z2 = λm2e3 is kept fixed but Z is varied, the ratio EBRg (Z,B)/EBRg (Z, 0)
(where the latter is calculated with the spherical nonrelativistic trial function
(4.1)) is approximately constant. This suggests the factorization

EBRg (Z,B) ≈ EBRg (Z, 0) · f(B/Z2) (5.1)

with some function f only depending on λ. As seen from Fig.3, the scaling (5.1)
is well satisfied for Z . 20, but even for Z = 80 the deviations from a universal
function f are rather small. When Z = 80, f may be approximated by a power
law, f ∼ λs with s ≈ 0.35, for 20 . λ . 104. It follows from Table 1 that the
scaling does no longer hold at B =∞. Indeed (at Z = 80), s increases for λ & 104

to its asymptotic value s = 0.5, valid for λ & 107. The strong change in s near
λ = 105 may be related to the minimum in the variational parameter Z̃.

We have also compared our B-dependent ground-state energies to the non-
relativistic results from Rau et al [15] who have derived an analytic formula for
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the energy functional of the one-electron ion (with the spin shift eB
2m subtracted),

Enr0 [Zeff ] =
me4

2

[
Z2
eff − 2Z Zeff

U(1, 1, ζ)
1− ζ U(1, 1, ζ)

]
, ζ =

2Z2
eff

B
m2e3.

(5.2)
In this equation U is the irregular degenerate hypergeometric function, and the
relation U(2, 2, ζ) = ζ−1 − U(1, 1, ζ) was applied to the formula in [15]. For the
numerical computation we have used the integral representation [23, (9.211)]

U(1, 1, ζ) =
∫ ∞

0

dt e−ζt
1

1 + t
. (5.3)

The nonrelativistic ground-state energy is obtained from Enrg = min
Zeff>0

Enr0 [Zeff ].

Fig.4 shows the ratio EBRg /Enrg as a function of the magnetic field parameter λ.
The difference between the two theories in the nonrelativistic case (Z = 1) at small
λ is due to the choice of different variational wavefunctions. A spherical hydrogenic
function gives results which deviate for λ = 2 from the accurate ground-state
energy (−1.022, calculated with the help of a large harmonic oscillator basis [27])
by only 4 percent and hence is superior to the one-dimensional function used in our
model (which deviates by 13.5 percent). However, for very large λ the spherical
wavefunction becomes effectively a one-dimensional one and indeed, the Z = 1
ratio decreases towards unity for λ & 103. Even more, the present result for Z = 1
and λ = 5× 103 (EBRg = −11.67) differs from an accurate relativistic calculation
(-11.87 [13]) by only 1.7 percent. For Z = 20, still considered to be nonrelativistic
at B = 0, the plotted ratio behaves very similar to the Z = 1 case for λ . 100, but
it continues to increase with λ for the higher magnetic fields. For Z = 80, |EBRg |
increases much faster with λ than |Enrg |, and the relativistic effects are large beyond
λ = 100. This feature may be explained by the fact that the larger B, the closer
passes the electron by the nucleus. If, in addition, Z is high, the purely relativistic
spin-dependent interaction term V2 comes into play.

We recall that in the low-Z studies of the Dirac ground state [12, 13] rel-
ativistic effects turned out to be negligibly small even for the highest B values
considered. In fact, for Z = 1 and λ ≤ 104, relativistic effects were found to be
below 0.01 percent. For Z = 20 and λ = 2 (where the accurate result, −409.6 [13]
differs from Enrg = −393.2 again by only 4 percent), relativistic effects amount to
0.2 percent.

6. Conclusion

We have calculated the ground-state energy of the pseudorelativistic Brown-
Ravenhall operator for one-electron ions in strong magnetic fields up to B =
104 Z2 [m2e3], using a simple variational wavefunction. For nonrelativistic sys-
tems (Z . 20) we have tested our results against the nonrelativistic variational
theory of Rau and coworkers, and we have found that for moderate fields (B ≈
10− 20 Z2 [m2e3], large enough so that it is reasonable to use a one-dimensional
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hydrogenic trial function) EBRg differs from [15] by less than 5 percent. The in-
fluence of relativistic effects has been established for Z & 20 and large magnetic
fields, leading to a decrease of the ground-state energy relative to the nonrelativis-
tic theory, the more so, the higher Z.

We have found that the ratio λ between the (square of the) scaled Bohr
radius and the magnetic length should be considered as the relevant magnetic
field parameter. In fact, the ground-state energy depends to a good approximation
only on B/Z2 rather than on B itself. This is in contrast to the scaling according
to B/Z4/3 and B/Z3 for moderate and large B, respectively, derived from the
Thomas-Fermi theory for multielectron atoms [28, 18].

When B is increased to infinity, it is shown that the variational ground-
state energy decreases like −c1B1/2, which is an upper bound to the true ground-
state energy of the Brown-Ravenhall operator. On the other hand a lower bound
was derived earlier, hBR ≥ −c2B1/2 (with c1, c2 constants). This leads to the
conjecture that for the infimum of the spectrum of hBR one has

inf σ(hBR) ∼ −c̃ B1/2 as B →∞. (6.1)

This differs from the logarithmic B-dependence of the ground state of the one-
electron Pauli operator. It is, however, consistent with a recent investigation of the
Dirac operator where a scaling of the ground-state energy with

√
B was derived

in the asymptotic regime [29]. This confirms that relativistic effects indeed play
an important role.
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Figure Captions

Fig.1
Z̃ = Zeff

√
2/(Z

√
λ) as a function of the magnetic field strength B (in units

2.35 × 109 G) for Z = 20 (— — —) and Z = 80 (——— ). Results are also
shown for the nonrelativistic model of Rau and coworkers [15]: Z = 20 (− − −)
and Z = 80 (− · − · −).

Fig.2
Ground-state energy EBRg as a function of the nuclear charge for fixed magnetic
field B. (· · · · ·), B = 0. (——— ), B = 2.56 × 104 (in units 2.35 × 109 G). (—
— —), B = 1.28× 105. (− − −), B = 106. (− · − · −), B = 107.

Fig.3
Ratio between EBRg (Z,B) and the field-free ground-state energy EBRg (Z, 0) as a
function of the magnetic field parameter λ. Results for Z = 1 (− ·− ·−), Z = 20
(— — —) and Z = 80 (———).

Fig.4
Ratio between the relativistic ground-state energy EBRg and the results for Enrg
from the nonrelativistic model of Rau and coworkers [15] as a function of λ. Z =
1 (− · − · − · −), Z = 20 (— — —) and Z = 80 (——— ).
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