VARIATIONAL GROUND STATE FOR RELATIVISTIC IONS
IN STRONG MAGNETIC FIELDS

D. H. JAKUBASSA-AMUNDSEN

ABSTRACT. The lowest bound state of a one-electron ion in a constant mag-
netic field B is calculated from the pseudorelativistic no-pair Brown-Ravenhall
operator. The variational wavefunction is chosen as the product of a Landau
function (in the transverse direction) and a hydrogenic state (in the longitu-
dinal direction). The dependence of the ground-state energy on the nuclear
charge Z as well as on the magnetic field strength is investigated, and a scaling
with B/Z? is observed. Relativistic effects are shown to be important both
for large B and large Z. When B — o0, a decrease of the ground-state energy
with v/B is found in contrast to the In B behaviour of the Pauli operator.

PACS: 02.30.Xx, 03.65.-w, 03.65.Pm

1. INTRODUCTION

A relativistic atomic electron of mass m in a magnetic field B = V x A
resulting from a vector potential A is described by the Dirac operator H,

H = Dy+7V, Ds = a(p—-eA) + pm, (1.1)

where a, 3 are Dirac matrices and V' = —7 is the Coulomb field generated by a
point nucleus of charge Z fixed at the origin. The coordinate and momentum of the
electron are denoted, respectively, by x and p (with x = |x| = /2% + 23 + 23),
and the field strength is v = Ze?. Relativistic units (A = ¢ = 1) are used in the
formulae, with e? a2 1/137.04 being the fine structure constant.

The unboundedness of H from below (which is due to the presence of the
positron states) is usually remedied by approximating H with semibounded pseu-
dorelativistic operators if pair creation plays no role. A widely used pseudorela-
tivistic operator which nevertheless accounts for the spin degrees of freedom is
the Brown-Ravenhall operator h®%. It can be obtained from a projection of H
onto the positive spectral subspace of the electron at V' = 0 [1] (see also [2] for
its mathematical analysis). Equivalently, h?% is the first-order term (in «) of the
Douglas-Kroll series which results from a unitary transformation scheme [3] ap-
plied to H in order to decouple the positive and negative spectral subspaces.

Our motivation to study the lowest bound state of the single-particle Brown-
Ravenhall operator is the fact that it provides the bottom of the essential spectrum
of the respective two-particle operator [4]. In the absence of magnetic fields the
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ground-state energy of h?F was first calculated by Hardekopf and Sucher [5] by
solving numerically the corresponding eigenvalue equation in momentum space.
These authors also showed that the difference from the exact Dirac eigenvalue,
EgD = m+/1—~2, is of the order of 4° (which amounts to an error of 4% for
Z = 80).

The convergence of the Douglas-Kroll series was investigated numerically
(up to the 14" order in 7) by Hess and coworkers [6, 7] for the ground state of
one-electron and multi-electron ions and atoms. They performed linearly combined
atomic orbital (LCAO) calculations within a large Gaussian basis set (in coordinate
space), which they transformed into a basis that diagonalizes the kinetic energy
operator entering into all potential terms [8]. A rigorous mathematical proof of
the series convergence was given only recently [9].

There is also an early study on the transformed Dirac operator which allows
for a magnetic field [10]. In that work relativistic effects were estimated in pertur-
bation theory by making an expansion in 1/c¢ rather than invoking the Douglas-
Kroll series. Such an expansion is, however, ill-defined [11], and it led to a serious
overprediction of the relativistic effects.

Indeed, investigations carried out for small nuclear charges (Z < 20) on the
Dirac operator itself showed that relativistic effects on its ground-state energy
are very small in the considered range of magnetic field strengths [12, 13]. In
one method the wavefunction was expanded in terms of Landau levels and the
resulting coupled differential equations were solved in an approximate way [12].
Another method used a trial function in a variational calculation which consisted
of a superposition of products of a Landau function and a relativistic hydrogenic
function [13].

In the general case where the trial function is not closely related to the true
ground state, a minimax principle has to be used to obtain the lowest bound state
of the Dirac operator [14]. If, however, an operator is bounded from below, the
much simpler minimum principle in a variational calculation is sufficient. Then,
on one hand, a large basis of trial functions can be taken in order to obtain accu-
rate results. On the other hand, appropriately chosen simple variational functions
reduce the numerical effort considerably while retaining the important features.
Such an approach was used by Rau and coworkers [15] to describe atoms and one-
electron ions in intense magnetic fields. Neglecting relativistic and spin effects,
they employed the Schrédinger operator Hg = ﬁ(p —eA)? + V. If spin is con-
sidered (in a nonrelativistic way), the Schrédinger operator turns into the Pauli
operator Hp = Hg — ﬁeaB. Its ground state differs from that of Hg by simply
a shift of —ﬁeB (see e.g. [16, 15]), so that spin effects can easily be included.

The variational ground-state wavefunction in [15] for a one-electron ion is
taken as a product state consisting of a hydrogenlike 1s function (to an effective
charge which serves as variational parameter) and a ground-state Landau function
(for the transverse degrees of freedom). The so determined ground-state energy has
the correct behaviour at B = 0 by construction. For B — oo, with % subtracted,
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it also shows the correct (In B)? behaviour. Note that it is rigorously proven that
the ground-state energy of the Pauli operator decreases according to (In B)? as
B — o0, the error being of the order of In B - In(Iln B) [17].

It can be shown that for large magnetic fields where the magnetic length
ﬁ is much smaller than the scaled Bohr radius ag/Z, the electron occupies the

lowest Landau band [18]. Then the ground-state function is no longer dominated
by a spherical hydrogenic state, but this state degenerates to a one-dimensional
function in the direction of B (while the transverse degrees of freedom are confined
by the magnetic field). In fact, this longitudinal function becomes an eigenstate to
a d-type potential when B — oo [19].

In the present work we extend the Rau et al method to the pseudorelativistic
operators. As a matter of fact, a magnetic field can easily be incorporated into
the Douglas-Kroll series [20, 21]. The Brown-Ravenhall operator is well-defined in
the form sense for v < 7. (the bound ~. = %, corresponding to Z = 87 and valid
for A € La0(R?) and B bounded or in Ly(R?), is in a yet unpublished work
[24] increased to 2/(5 + 2) for locally bounded A). However, for the higher-order
terms of the Douglas-Kroll series, this bound on ~ decreases with the magnetic
field strength and goes to zero as B — oo [21]. Therefore the higher-order terms
are inferior to the first-order term for very large magnetic fields (despite their
better approximation of EQD at B =0).

In our variational ansatz a one-dimensional hydrogenic function (together
with the Landau function) is used for the ground state of the Brown-Ravenhall
operator, valid if B is sufficiently large. The model is described in section 2 and the
asymptotic B-dependence is extracted in section 3. Section 4 provides variational
results for the B = 0 case, including a comparison with the accurate ground-state
energy. The B-dependence of the ground-state energy (for B/Z? < 10! G) is
discussed in section 5 with particular emphasis on a scaling property, as well as
on the onset of relativistic effects. The conclusion is drawn in section 6.

2. THE VARIATIONAL MODEL
The Brown-Ravenhall operator in a magnetic field is given by [22, 21]
hBR = Ea+Vi+V, (2.1)

opa 1 opa
Ea4+mx Eg+m

1
i = _’YAE;AEa Vo = _’)/AE E,

where E4 = |D 4] is the kinetic energy operator,

E
Es = \/p4 —eaB+m2, Ap = fatm (2:2)
2E,

and pa = p — eA. o = (01,09,03) is the vector of Pauli spin matrices. In the
following we take B = Bes to be a constant magnetic field along the es-axis,
generated by

B

A(x) = 5 (—w2,71,0) (2.3)
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which obeys V- A = 0. hP% acts in the Hilbert space Ly(R?)®C? and extends to
a self-adjoint operator for 7 < 7.. Its form domain is Hj5(R*) ® C* where H; /o
denotes a Sobolev space.

Let us first switch off the scalar potentials V; and V,. Then we can profit from
the fact that E4 = 2m Hp(V = 0) +m? so that EZ (and thus E4) is diagonalized
by the eigenstates of the Pauli operator.

The ground state is characterized by a spin-up state, 11 = Yok (é), resulting
in —ecB o = —eo3Bg = —eB1y;. Taking the normalized lowest Landau
function [16, 15] and allowing for a free electronic motion in the x3-direction, we
have
eB
21’
and Eitor = [(eB+k) —eB+m?] ¢or = (K> +m®) vor,  (24)

where ¢ = \/x? + 23 is the radial coordinate perpendicular to B. Thus the corre-
sponding eigenvalue of E, is given, independently of B, by the energy vk2 + m?2
of a free relativistic electron of momentum k, with its ground state at k = 0.

The presence of the Coulomb field restricts the motion in the x3-direction and
we choose for our variational wavefunction a superposition of momentum states,
Vg = o (é), normalized to unity, with

2 .
Yor(0,v3) = Ny e B/t ¢ikra Ny =

Go(x) = N emeBe/4 / ks F(k) o2, (2.5)
5 aZ' - eB 3
N 2 4 1.2 Ny = (%
) = A BT, R = (o)

where K7 is a modified Bessel function and
a = 1/VeB (2.6)

the magnetic length. The function f is taken as the Fourier transform of a one-
dimensional hydrogenic ground-state function to a parameter Z' = Z.5s/ao
(where Z.s; is an effective charge — our variational parameter — and ap =
h%/(me?) the Bohr radius) [23, (3.914)],

/ dk f(k) eikes = (=Z'Va+a3, (2.7)

The idea behind the choice (2.7) is the confinement of the electronic motion
in the (271, z2)-direction by the magnetic length, valid if @ < a¢/Z or equivalently,
B > Z?m?%e® (in conventional units, 1m?e3c/h3 = 2.35 x 10° G). Its advan-
tage compared to the ansatz used in [15], where exp(—Z'x) is taken instead of
exp(—Z'y/a? + x3), is the exact diagonalization of the kinetic energy E4 because
the Fourier transform (2.7) does not affect the transverse degrees of freedom. We
note in passing that in [15] the cyclotron radius r. = v/2 a is taken as the magnetic
scale. This leads to the condition B > 2 Z%m?2e®.
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Let us now determine the expectation value of h2# —m (where the electron’s
rest energy mc? is subtracted) with respect to the function t,. For the kinetic
energy we get, using (2.7) for the inverse Fourier transformation,

(g, (Ea —m)thy) = Ny /jjyf f(k) /Rgdx U,y (x) («/kz +m2 — m) o—eBo* /4 yikas

2072 > 1
= —_— — K2 Z,2 k2 2 2 - . 2.
WKl(QaZ’)/O dk 77 2(a/ 2 + k2) (\/k +m m) (2.8)

In order to evaluate the potential terms, also Eg has to be taken in its mo-
mentum representation (2.5) because in V; and V5, E4 enters on both sides of
the Coulomb potential —y/z. As f and Ag are even functions of k we get

('l/)gvvlwg) = —47N§/

— 00

o o 1
dxs F?(x3) - 27r/ odp emeBet/2 -
0 0 + a3

F(x3) = /O "k f(k) Ag coskxs. (2.9)
We have [23, (3.468)]

> 2 1 [ 27 2 eB
9 d efeBg /2 — - eeBm’3/2 1 — €T — . 2.10

For the numerical evaluation of the probability function ¢ we use an integral
representation (for 0 < y < 50) and, respectively, the asymptotic expansion [23,
(8.254)] (for y > 50),

(] T 1<1 315)
B =R e 1 —o) = [ dr o = D (1= gk s - ).
(2.11)
Concerning the potential term V5 we have to evaluate opy % op4 on a spin-
up eigenstate of type (2.4). With the vector potential A from (2.3) and p = —iV,

we get
% (ixl =+ 332)

(p eA') ka - % (21‘2 _ 1‘1)

k

Yok (2.12)

so that, with ¥o; (k) = ¥ox ((1))7

(vo1(K"),opA i opa o (k) = (Yor(k), (pA é pa +iopa X %PA) Yor(k))

= (o (). 2 ey 1)) (2.13)

Hence, the restriction of this operator to 1y is independent of B. Therefore,

oo [
) . )
(g, Va thg) = —4yNG / dws G*(x3) - 21 / Y ——
- 0 0% + 3



6 D. H. JAKUBASSA-AMUNDSEN

G(z3) = / dk f(k) Ap ﬁ k sin k. (2.14)
0

Note that the integrands in (2.9) and (2.14) are even functions of z3, simplifying
the respective integration region to [0, 00).
For the numerical evaluation of the integrals it is convenient to shift variables

from z3 to y by means of y = /%> €B 15 in order to get rid of the B-depencence in

the function E from (2.11). In turn, we measure the magnetic field in units of Z2,
i.e. B=MAZ%m?%e3], A > 2, and introduce the scaled variables

d_a\/e? L’ /\/j \/_22
Z_Z/\/i eff\f, k= k/ ?. (2.15)

Then we obtain for the energy functlonal EO[Zc 7f]

(g, (PR = m) ) = Co/oood/‘é s KXaVZ2 1 r2) (Ve )

72 + K2
Ze2 ¢ &
- 0/ dy E(y) [I + 13| =: Eo[Zeyy] (2.16)
0
where ~
V2N Z aZ? 9
cg = ———— me
7TK1(251,Z)
oo 1 - /.2
Il = H%Kl(a\/ ZQ—FK?Q " +ILL +'u COS(K/y) (217)
V2% + K2 VR 4

oo 1 _ /2
IQZ/dK n - Ki(aV Z? + Kk?) KAt sm(/@y).
o R+ 2R N

Finally we determine Z.s; from the variational principle
0 Eg[Zess] = 0. (2.18)

Equivalently, the ground-state energy of the Brown-Ravenhall operator is esti-
mated from above by EJf = Zmim0 Eo[Zeyy].
eff>

3. ASYMPTOTIC B-DEPENDENCE

In this section we will show that Ef 1t Jecreases according to VB for B — oo.
This is done by considering the behaviour of the scaled variational parameter Z
which solves (2.18). Fig.1 shows Z as a function of B for Z = 20 and 80. Whereas Z
decreases for Z = 20 according to a power law (~ B~°-3) even for the highest fields
considered, there is a distinct flattening of Z with increasing B in the relativistic
case Z = 80. These numerical results suggest that for relativistic ions the optimized
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scaled variational parameter tends to a strictly positive constant as B — oo, a
conjecture which is proven below.

In order to derive the asymptotic B-dependence of the ground-state energy
we define E(u, Z) = (1bg, (WP —m)1h,) /v B according to (2.16). At B = oo we
have y = 0 where the rhs of (2.16) divided by v/B is independent of B and so
is the variational solution Z(0). Table 1 gives the numerical results for Z(0) and
E(0, Z(0)) for various nuclear charges Z. Thus a finite Z(0) > 0 guarantees not
only that |E(0, Z(0))] < co (as the respective integrals are convergent), but also
that £(0, Z(0)) < 0.

Z | z0) |EPE)VB

20 | 0.0074 | -0.0718
40 | 0.054 | -1.425
60 | 0.137 | -4.777
80 | 0.239 |-9.868

Table 1. Z and the corresponding scaled ground-state energy E(0, Z(0)) =
E;BR/(Z\/X) in atomic units at p = 0 (corresponding to B = oo) for nuclear
charges Z ranging from 20 to 80.

The existence of the limit lim,, o Z(x) = Z(0) implies the existence of

lim,, o E(u, Z(1)) = E(0,Z(0)) = —¢ as discussed near the end of this section.
As a result,

EBR ~ —¢B'/? as B — oo. (3.1)

In order to prove the above conjecture we start by showing that there are
constants ag, bg so that as B — oo the optimized A obeys 0 < ag < Z < by < .
In other words we prove by contradiction that (7) Z does not tend to zero and
(i1) Z < oo as B — oo.

(1) Let us assume first that Z — 0 as B — oo, as in the nonrelativistic
case. In the unscaled variables this corresponds to aZ = aZ’ — 0. Since a — 0
like B~% we thus assume that Z’ increases more weakly than B? as B — oo. This
property holds for all effective charges in a neighbourhood of the solution to the
variational principle. Therefore, we will calculate the kinetic and potential energy
as a function of the effective charge and only subsequently consider the variational
principle.

From the behaviour of the modified Bessel function near zero, Ki(z) ~ 1 as
z — 0, we obtain for the kinetic energy (2.8),

(s Bathg) ~ 2% [ iz e, (3.2)

SR VEETSE
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independent of a. With k = Z/¢ and Z’ — oo with B — oo,

.. oo JVE2? 2 2 1 72
23/ dk% :Z’/ df# ~ ¢7'
0 (272 +k?) 0 (1+¢?)
where ¢ > 0, so that the kinetic energy becomes linear in Z’. We note that the
step from (2.8) to (3.2) implies an interchange of limits B — oo and k — oo. This
relies on (3.2) being a convergent majorant since K; is monotonically decreasing.

For the potential energy we use (2.17) with the substitution x = Zn [23,
(3.723)],

(3.3)

Lo~ L cos(Zyn) _ 7z
aZ Jo 1+ n? 247

Further, from (2.11) with M = 50,

(3.4)

oo . M . (') -
/ dy E(y) o220 = / dy Ey) e=22v + / dy (2 + 0(%)) 22 (35)
0 0 M Y Yy

= «(Z)—FEi(-2Z-M) — ¢ —In(Z) (Z —0),
since the first integral as well as the higher-order terms (in y) of the second integral

lead to a finite result which is independent of Z as Z — 0. We have also used the
near-zero expansion of the exponential integral Ei [23, (3.352),(8.214)].
For the second contribution Iy we have [23, (3.723)],

sin Zyn 1 I Ny Sy B
Iy ~ — = = YEi(Zy) — e“YEi(—Zy)| . 3.6
2o [ IR e iy - AE-2e)]. 69

Dividing again the integration region of fooo dy E(y) I2 into the intervals [0, M] U
[M, 00) and using that ‘fooo dn sin(Zyn) /(1 + 772)‘ < 7, the integral over [0, M] is
finite irrespective of Z (if the prefactor (aZ)~! is ignored). The boundedness of

the integral in (3.6) also assures the convergence concerning the higher-order terms
(in i) in the integral over [M, c0). In order to show that the remaining integral is

bounded we substitute Zy = ¢ and get from (3.6)

< 1 1 d¢ ¢ o_ ) 2
/M dy ; 2~ (2&2)2/0 7 [e CEi(¢) — e*Ei(—()] (3.7)

as Z — 0. With e~¢ Ei(¢) — e Ei(—() ~ —2¢In¢ as ¢ — 0 the integral converges
near zero.
For investigating ( — oo we make a partial integration of the lhs of (3.6).

Then
< 1 1 d¢ 2 [ ncos(n 2
dy = 12 ~ = - - = dn ——| . .
/M e (az)2/ ¢ L 8 n(1+02)2] (35

Since |cos(n| < 1, the n-integral is finite for all ¢ so that the (-integral converges
for ( — oo.
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Collecting results,
~ 73 1 ~ ’
(g, (Vi + Vo) 1by) ~ EVAZ = In(Z) ~ —c3 Z' nB (3.9)
as B — oo where ¢y > 0 is some constant. The variational functional becomes
EO[Zeff] ~ (5 — C2 1HB) Zeff/ao (B — OO) (3.10)
and it is obvious that 0 Ey[Z.¢f] = 0 has no solution.

(i)  Let us now assume that aZ’ — oo as B — oo. As a consequence,
Z' ~ Bz w(B) with w(B) — oo as B — oo. Using the asymptotic behaviour of

the modified Bessel function, K1(z) ~ /5 e %/\/z as z — 0o, we have from (2.8)
o ¢ —202'(\/14¢2—1)
(g, Eaty) ~ &2 \/aZ’A K e VI @

We make further the substitution = 2aZ’(1/1 4+ ¢2 — 1). This leads to

(1hg, Ea 1) \/7/ 1+x/2a2,) e v, (3.12)

The integral converges to a finite (nonzero) limit as aZ’ — oo. In order to show
this we use a sandwich estimate,

2a7' 00 e’}
dx dx
— e T <« — T d -, 3.13
/0 1 ° */0 A +z/2a2')2 © */0 ve (3.13)

For aZ' — oo the lower bound tends to i and the upper bound is 1. Thus
the kinetic energy behaves like /Z'/a ~ B2 \/w(B). As a consequence, the
potential energy has to decrease at least like B2 w(B) in order to produce a
bound state. It is rigorously established that such a bound ground state of A%
exists for arbitrarily large B if v < 2 [24, 4],[25, p.202].

On the other hand, the ground-state energy can decrease at most like v/B.
This is due to the relative form boundedness of V; 4+ V5 with respect to E 4. Indeed,
following [2] and [26] we can write (1, (Vi 4+ Va)¥) = (4, BUV U, *Be) for o €
Hl/g(R3) ® C? and 1; = (15) Here, B = # projects onto the upper components
of a Dirac 4-spinor and Uy is the unitary Foldy-Wouthuysen transformation which
commutes with F4. Then one gets from the diamagnetic inequality and the Kato
inequality [26]

[ (Vi + Vo) )] = [(w0, Viko)| < 3 (o, /B + coB ty)
< 75 (. Eav) + vy VeB 4] (3.14)
where we have introduced 1o = Uy ' 3¢ = Uy '1). This leads to the inequality,
(.17 Y) = (1=5) (¥, Ba ) — 75 VeB [l (3.15)



10 D. H. JAKUBASSA-AMUNDSEN

For v < 2 the ths of (3.15) is thus a lower bound for the ground-state energy,

™
allowing at most a decrease according to B 2. This contradicts aZ’ — cc.

Finally we prove that Z as a function of the inverse magnetic field converges
to its limiting value at B — oo (allowing for the choice ag = by) and so does
E(u, Z(p)). Since for B — oo we have Z # 0 at the energy minimum we can
assume B > B sufficiently large so that Z can be restricted to a positive interval
I. Then the integrands in (2.16) and (2.17) are continuous in # and g in the interval

[0,00) x [0, po] with po = m/+/eBy/2 except possibly in the point (x, u) = (0,0),
and they are also continuous and continuously differentiable with respect to Z
for Z € I. Since all integrals are convergent, F is a continuous function of p and

Z, and so is the derivative OF / dZ. The existence of a numerical solution Z (120)
satisfying %(uo, Z(110)) = 0 together with the existence of a ground state for any

1 < o guarantees that there is a continuous solution Z(u) to g—g(,u, Z(u)) = 0 for

0 < p < po, whence also E(u, Z(u)) is continuous. This assures the convergence
of E(u, Z(u)) — E(0,Z(0)) as 4 — 0. Thus our result (3.1) is established.

We note that in the nonrelativistic case, the operator v'k2 + m?2 — m has to
2 ’
be replaced by 2k—m in (3.2) so that the kinetic energy behaves like Z 2 instead of
Z' as B — oo. This gives [15] By [Zess] ~ &1 Z2;; — ¢a Zeyy In B and hence

SEMN[Zes] = 0 =  Zogp = 20—621 In B, (3.16)
which leads to Ej” ~ —¢(In B)? as B — oo, where ¢ is a generic constant.

The nonrelativistic results according to [15], described in section 5, are also
included in Fig.1. They show a power-law decrease of Z with B for both values of
Z. Note the deviations from the Brown-Ravenhall result even in the nonrelativistic
case (Z = 20), which become larger when B increases.

Although not shown in the figure we have tested the convergence of Z(u) for
Z =80 up to A = 10'3. Actually Z(p) is not monotonically decreasing towards
Z(0), but has a shallow minimum near A\ = 10° (caused by the spin-dependent
potential V3).

4. THE FIELD-FREE CASE

In this section we compare the ground-state energy of the Brown-Ravenhall
operator for B = 0, obtained from a variational model, with the accurate LCAO
results from [7]. In order to study the dependence of this ground-state energy
on the variational wavefunction we have used two types, a spherical hydrogenic
wavefunction,

_ 7'3/2

_ efZ'x _ 3 6ikx )
o) = =2 [ i e (4.1
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. 1 AL

and a relativistic function,

¢rel(x) = N()LL':Y e_le = / dk frel(k) eikx7
R3

. r'2+79) 1 . - k
fra(k) = Ny o7k (27T ) sin <(2 + 74) arctan Z’) , (4.2)
27! 3/244
NO = ( ) = ;)(/ = 1_(Zle2)2 _17
4rT'(3+ 27)

which is (apart from a constant) identical to the large component of the Dirac
ground-state wavefunction. Their Fourier representations [23, (3.944)] are required
because %% is an eigenfunction to E, = E4(B = 0) with eigenvalue vk2 + m?2.

Using the nonrelativistic spin-up state, @OT = 1[)0 (é), we obtain for the ex-
pectation value of the kinetic energy,

'3/2
z2e dk Fo(k) k2 + m? dx e 7w gihx (4.3)
T
B 3225 / 12 di \/kzz—i—mZ
0 (k2 + Z/2)%
This integral can be evaluated analytically in terms of a hypergeometric function
2F1 [23, (3259)] so that

~ ~ 64 137 A
(Yo1, (Ep —m) vo1) = m {ﬁ 2 I (—5,5,5,1 — (E)2) — 1} . (4.4)

Denoting Ey = vk?+m? and A = ((Ex +m)/Ek)1/2 we obtain for the first
potential term,

(Yor, Bp Por) =

™

~ ~ ~ - 1 - .
Gors Vi dor) = =3 [ [ d i folh) €% A L folk) € 4
R3 R6 xT
32920 [®da [ [ 1 77

Concerning V5, we note that due to the symmetry of the integration intervals
the expectation value of op % op is just %k'k (since Fy, Ay and fo are even
functions). We write the angular integral of dk in the following way,
AU ke™™ = iV, [ dQ e* = iV, msinkr i K j1(kx),
S2 S2 kx x
(4.6)

where j; is a spherical Bessel function. Then

(1/:0% Va JJOT)

1 1 1
= __/ dx/ dk' dk fo(k') e > A = Kk
R3 RS Ew +m T E,+m

Ay, fo(k) ™
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32yZ'% [ < 1 1 2
= — d k” dk Ay j1(k . 4.7
[t | [ R g e Acie)| - (4D
o . . k_\2

We note that (4.7) is subordinate to (4.5) by approximately a factor of (57;)* ~

(2Zm)2 = (2_f§§f04)2 if k < m, respectively Z' < m. However, V5 gains importance
at relativistic charges.

For the relativistic function (4.2) we proceed in a similar way and obtain the

result, setting Yrerr = rei ((1))»
(wrelTa (Ep - m) ¢T81T)

o 1 , - k
= Coo/o dk 7T TR sin? ((2+7) arctan> (VK2 +m2—m),

Z/
16 _ox r3i0s T2(2+7)
= =W gty = 1 4.
€00 . T(3+29) (4.8)
and -
(Yretr, (Vi + Vo) Yreny) = —% C00/0 wdr (Ify + I%) , (4.9)
> 1 : - k sin kx
IlO = /O I{?dk W Sin ((2—1—’}/) arctan 7) Ak kx s

o 1 1 k
Ly = /0 12 dk ZTTER B i Ay sin ((2 + %) arctan ?) J1(kz).
The decrease of these integrals with k is slightly weaker than for those in (4.5)
and (4.7). Again, the total energy is minimized with respect to the variational
parameter Z.s5 = Z'ay.
Our results for the ground-state energy are given in atomic units (ap = 1).
In order to convert relativistic units (r.u.) into atomic units (a.u.) we note that

the energy unit is Fy = ";54 = 27.21 eV=1 a.u. and that the momentum unit is

ag* [16, p.123]. We write vk2 +m?2 = my/1 + (T’ZL&%)Q = m+/1 + (kag)?e* and

further, m [ru] = glau] = Llau] as well as v [r.u] = Zolaun] = 2 la.u]. m

occurs also in Z'/m = Z.¢ f€2 which is dimensionless. In short, one has to replace
Z' by Zegf, v by Z, the prefactor m in the kinetic energy (and in (2.17)) by 1/e*
but elsewhere m by 1/e?.

D BR RW
Z | EP —m | E! E,a | El

20 | -201.1 -201.1 | -201.3 || -201.3
40 | -817.8 -817.6 | -822.4 || -823.9
60 | -1896 -1893 | -1928 || -1934
80 | -3532 -3513 | -3647 || -3686

Table 2. Ground-state energy at B = 0 for Z = 20, 40, 60 and 80. Ef —m,
Dirac energy. EER, present results using the hydrogenic wavefunction (4.1). E,.;,
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present results with the relativistic trial function (4.2). EfW, LCAO results taken
from Reiher and Wolf [7]. All energies in atomic units.

Table 2 gives the ground-state (with the rest energy subtracted) for one-
electron ions with Z between 20 and 80. The third and fourth columns contain,
respectively, the results for EP® and E,¢;. As a matter of fact, EZ® is quite close
to the exact Dirac energy, with a difference not exceeding 0.5 percent even for
Z = 80. The relativistic trial function on the other hand reproduces the LCAO re-
sults within 1 percent. It is evident that the LCAO results for the Brown-Ravenhall
operator fall below the Dirac energy, the more so, the higher Z. Detailed calcula-
tions [7] show that one has to include (for Z ~ 80) all terms of the Douglas-Kroll
series up to 5" order in the field strength + to approach the Dirac energy within
0.01 percent. One is led to explain the reasonable agreement between EfR and
Eéj — m by the fact that although hP® is exaggerating the relativistic effects,
this is compensated for by forming the expectation value with a nonrelativistic
function. This gives us confidence that also for B # 0 the Dirac results are well
represented by our variational results obtained from nonrelativistic functions.

5. NUMERICAL RESULTS FOR B # 0

We have determined Ef R from the energy functional (2.16) for nuclear
charges between 1 and 80 and for a large variety of magnetic fields B. Fig.2 shows
the dependence of the ground-state energy on Z for fixed B. It is evident that EER
decreases not only with B but also with Z. When approximated by fEfR ~ 7%
(which is fairly accurate for Z < 80) we have s ~ 2.1 when B =0, s~ 1.25 when
B =2.56 x 10* (in units of m2e3) which increases to s ~ 1.55 for B = 10”.

The competition between the magnetic length and the scaled Bohr radius
suggests to consider B/Z? as the relevant magnetic field parameter. In fact, when
B/Z? = Am?e3 is kept fixed but Z is varied, the ratio EfR(Z,B)/EfR(Z, 0)
(where the latter is calculated with the spherical nonrelativistic trial function
(4.1)) is approximately constant. This suggests the factorization

EPR(Z,B) ~ EPR(Z,0)- f(B/Z?) (5.1)

with some function f only depending on . As seen from Fig.3, the scaling (5.1)
is well satisfied for Z < 20, but even for Z = 80 the deviations from a universal
function f are rather small. When Z = 80, f may be approximated by a power
law, f ~ A* with s ~ 0.35, for 20 < A < 10%. It follows from Table 1 that the
scaling does no longer hold at B = co. Indeed (at Z = 80), s increases for A > 104
to its asymptotic value s = 0.5, valid for A > 107. The strong change in s near
A = 105 may be related to the minimum in the variational parameter Z.

We have also compared our B-dependent ground-state energies to the non-
relativistic results from Rau et al [15] who have derived an analytic formula for
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the energy functional of the one-electron ion (with the spin shift % subtracted),
me* U(1,1,¢) 27?2
EnT Zc _ 22 _ 2ZZ€ R St it VA _ eff 2 3.

2 B
(5.2)
In this equation U is the irregular degenerate hypergeometric function, and the
relation U(2,2,¢) = ¢! —U(1,1,¢) was applied to the formula in [15]. For the
numerical computation we have used the integral representation [23, (9.211)]

> 1
U(1,1,¢) = dt et ——. 5.3
110 = [aet o (53
The nonrelativistic ground-state energy is obtained from Ej” = min Eg” (Zetyl-

Zepp>0

Fig.4 shows the ratio EfR /Ey" as a function of the magnetic field parameter .
The difference between the two theories in the nonrelativistic case (Z = 1) at small
A is due to the choice of different variational wavefunctions. A spherical hydrogenic
function gives results which deviate for A\ = 2 from the accurate ground-state
energy (—1.022, calculated with the help of a large harmonic oscillator basis [27])
by only 4 percent and hence is superior to the one-dimensional function used in our
model (which deviates by 13.5 percent). However, for very large A the spherical
wavefunction becomes effectively a one-dimensional one and indeed, the Z = 1
ratio decreases towards unity for A > 103. Even more, the present result for Z = 1
and A =5 x 10? (EfR = —11.67) differs from an accurate relativistic calculation
(-11.87 [13]) by only 1.7 percent. For Z = 20, still considered to be nonrelativistic
at B = 0, the plotted ratio behaves very similar to the Z = 1 case for A < 100, but
it continues to increase with A for the higher magnetic fields. For Z = 80, |Ef |
increases much faster with A than |Ep"[, and the relativistic effects are large beyond
A = 100. This feature may be explained by the fact that the larger B, the closer
passes the electron by the nucleus. If, in addition, Z is high, the purely relativistic
spin-dependent interaction term V5 comes into play.

We recall that in the low-Z studies of the Dirac ground state [12, 13] rel-
ativistic effects turned out to be negligibly small even for the highest B values
considered. In fact, for Z = 1 and A < 10?%, relativistic effects were found to be
below 0.01 percent. For Z = 20 and A = 2 (where the accurate result, —409.6 [13]
differs from E}" = —393.2 again by only 4 percent), relativistic effects amount to
0.2 percent.

6. CONCLUSION

We have calculated the ground-state energy of the pseudorelativistic Brown-
Ravenhall operator for one-electron ions in strong magnetic fields up to B =
10* Z2 [m?e3], using a simple variational wavefunction. For nonrelativistic sys-
tems (Z < 20) we have tested our results against the nonrelativistic variational
theory of Rau and coworkers, and we have found that for moderate fields (B =
10 — 20 Z2 [m?2e3], large enough so that it is reasonable to use a one-dimensional
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hydrogenic trial function) EgBR differs from [15] by less than 5 percent. The in-
fluence of relativistic effects has been established for Z 2 20 and large magnetic
fields, leading to a decrease of the ground-state energy relative to the nonrelativis-
tic theory, the more so, the higher Z.

We have found that the ratio A between the (square of the) scaled Bohr
radius and the magnetic length should be considered as the relevant magnetic
field parameter. In fact, the ground-state energy depends to a good approximation
only on B/Z? rather than on B itself. This is in contrast to the scaling according
to B/Z*® and B/Z? for moderate and large B, respectively, derived from the
Thomas-Fermi theory for multielectron atoms [28, 18].

When B is increased to infinity, it is shown that the variational ground-
state energy decreases like —¢; B'Y/2, which is an upper bound to the true ground-
state energy of the Brown-Ravenhall operator. On the other hand a lower bound
was derived earlier, hB% > —¢y BY/? (with ¢1, ¢ constants). This leads to the
conjecture that for the infimum of the spectrum of h®% one has

inf o(RPR) ~ — B1/? as B — oo. (6.1)

This differs from the logarithmic B-dependence of the ground state of the one-
electron Pauli operator. It is, however, consistent with a recent investigation of the
Dirac operator where a scaling of the ground-state energy with v/ B was derived
in the asymptotic regime [29]. This confirms that relativistic effects indeed play
an important role.
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FIGURE CAPTIONS

Fig.1

Z = Z.;sV2/(ZVX) as a function of the magnetic field strength B (in units
2.35 x 10 G) for Z =20 (— — —) and Z = 80 (——— ). Results are also
shown for the nonrelativistic model of Rau and coworkers [15]: Z =20 (- — —)
and Z =80 (—-—-— ).

Fig.2

Ground-state energy Ef R as a function of the nuclear charge for fixed magnetic
field B. (-« -- ), B=0. (——— ), B =256 x 10* (in units 2.35 x 10° G). (—
— ), B=128x10°. (— — =), B=10%. (—-—-—), B=10.

Fig.3

Ratio between EFf(Z, B) and the field-free ground-state energy EZH(Z,0) as a
function of the magnetic field parameter A. Results for Z =1 (—-—-— ), Z =20
(———)and Z =80 (—).

Fig.4

Ratio between the relativistic ground-state energy EfR and the results for EJ"
from the nonrelativistic model of Rau and coworkers [15] as a function of A\. Z =
1 (- —-—-— ), Z=20 (—— —)and Z=80 (—).
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