
Spectral Theory of the Atomic Dirac Operator

in the No-Pair Formalism

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

vorgelegt von

Doris Jakubaßa-Amundsen

28.4.2004



1. Berichterstatter: Heinz Siedentop
2. Berichterstatter: W.D.Evans

Tag der mündlichen Prüfung: 13.7.04
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Zusammenfassung

Die auf Dirac zurückgehende relativistische Beschreibung der Bewegung von Teil-
chen in einem Zentralfeld führt zu der Besonderheit, daß es neben den Zuständen
mit positiver Energie auch solche mit beliebig kleiner (negativer) Energie gibt, die
den entsprechenden Antiteilchen zugeordnet werden. Obwohl man in der Physik
voraussetzt, daß im Grundzustand alle Niveaus mit negativer Energie besetzt sind,
treten Probleme immer dann auf, wenn keine exakte Lösung der Dirac-Gleichung
angegeben werden kann. Hat der Energieerwartungswert keine untere Schranke, so
können zur Bestimmung der Energiezustände die üblichen Variationsverfahren, die
auf eine Minimierung der Energie abzielen, nicht angewandt werden. Es sind entwe-
der sogenannte Minimax-Prozeduren vonnöten, oder man muß auf andere Methoden
ausweichen.

Ein von Foldy und Wouthuysen für freie Teilchen und später von Douglas und
Kroll für Teilchen im Zentralfeld vorgestellter Lösungsversuch des Problems des ne-
gativen Energiekontinuums besteht darin, mit Hilfe einer unitären Transformation
die positiven und negativen Energiezustände zu entkoppeln. Wenn die Erzeugung
von Teilchen-Antiteilchen-Paaren ausgeschlossen werden kann (z.B. in der Spek-
troskopie von Atomen), so kann man sich durch diese Methode auf die Berück-
sichtigung positiver Energiezustände beschränken. Bei Anwesenheit eines Zentral-
potentials gelingt die Entkopplung nicht exakt, es ist jedoch möglich, für nicht zu
starke (sogenannte unterkritische) Zentralfelder eine störungstheoretische Entwick-
lung nach der Potentialstärke vorzunehmen.

Von Hess und Mitarbeitern wurde der aus dieser Transformation resultierende
Operator in quantenchemischen Rechnungen zur Struktur der Atome eingesetzt.
Aus mathematischer Sicht erhebt sich jedoch die Frage, ob der neue Operator wirk-
lich nur positive Energiezustände besitzt, ob die störungstheoretische Entwicklung
konvergiert, und vor allem, wie groß die Potentialstärke maximal sein darf, damit
diese Eigenschaften vorliegen.

Während der nach Brown und Ravenhall benannte, die Potentialstärke bis ma-
ximal erster Ordnung enthaltende Operator ausführlich mathematisch analysiert
worden ist, ist von dem von Jansen und Hess eingeführten Operator, der zusätzlich
den quadratischen Term in der Potentialstärke enthält, bisher nur seine Beschränkt-
heit nach unten, sowie seine Positivität im fiktiven Fall eines einzigen, masselosen
Teilchens gezeigt worden. Dabei stimmt im untersuchten Fall des reinen Coulomb-
potentials die maximal zulässige Potentialstärke (die durch die Ladung des Zen-
tralkerns festgelegt ist) fast genau mit derjenigen überein, die man aus einer exak-
ten quantenmechanischen Rechnung für das Nullwerden der Grundzustandsenergie
erhält.

In der vorliegenden Arbeit wird ein unitäres Transformationsschema vorgestellt,
das in der mathematischen Festkörperphysik zur Untersuchung der Teilchenbewe-
gung in beschränkten, periodischen Potentialen bereits erfolgreich angewandt wor-
den ist. Dieses führt zu einer sehr einfachen Darstellung der transformierten Ope-
ratoren und ermöglicht somit eine mathematische Analyse auch im Fall mehrerer
Teilchen.

Zunächst wird im Einteilchenfall die unitäre Äquivalenz des neuen Transforma-
tionsschemas zu der von Douglas und Kroll eingeführten Transformation gezeigt.
Sodann wird die Formbeschränktheit und Positivität des Jansen-Hess-Operators
für massebehaftete Teilchen untersucht und sein wesentliches Spektrum und Punkt-
spektrum lokalisiert. Betreffs der Konvergenz der störungstheoretischen Entwick-
lung im hier untersuchten Fall des reinen Coulombfeldes kann nur die Dominanz
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des Anteils erster Ordnung bezüglich des Anteils zweiter Ordnung in der Potential-
stärke nachgewiesen werden. Im Rahmen des hier verwendeten Verfahrens ist eine
generelle Aussage für die Terme höherer Ordnung nicht möglich. Für ein Zentral-
feld mit leicht abgeschwächter Singularität läßt sich jedoch zeigen, daß die Terme
höherer Ordnung von den Termen niedrigerer Ordnung kontrolliert werden und daß
die Entwicklung konvergiert.

Die gleichen Untersuchungsmethoden werden sodann auf den Zweiteilchenfall an-
gewandt, wobei zum ersten Mal auch die Zweiteilchenwechselwirkung bis inklusive
zweiter Ordnung in der Kopplungskonstanten berücksichtigt wird. Auch hier läßt
sich Formbeschränktheit, Dominanz der linearen über die quadratischen Potential-
terme, sowie Positivität zeigen. Die im Rahmen der hier angewandten Abschätzun-
gen sich ergebende kritische Potentialstärke für die Gültigkeit dieser Eigenschaften
liegt leicht unterhalb derjenigen des Einteilchenfalls.

Für das Zweiteilchenspektrum kann gezeigt werden, daß das wesentliche Spek-
trum dasjenige zweier freier Teilchen umfaßt und sich nicht ändert, wenn man die
Zweiteilchenwechselwirkung zweiter Ordnung wegläßt. Außerdem existieren keine
Eigenwerte, wenn die Teilchenmasse zu null gesetzt wird.

Abschließend wird ein kurzer Ausblick auf den transformierten Operator zweiter
Ordnung im allgemeinen Fall von N Teilchen gegeben. Dieser Operator kann ex-
plizit angegeben und seine Positivität bestimmt werden. Die sich dabei ergebende
kritische Potentialstärke für ein neutrales Atom ist deutlich niedriger als im Ein-
teilchenfall. Wenngleich die hier verwendeten Methoden keine optimale Schranke
für die zulässige Potentialstärke liefern, ist dies doch ein Indiz dafür, daß man die
Zweiteilchenpotentiale höherer Ordnung nicht, wie bislang üblich, vernachlässigen
sollte.
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Abstract

By means of a unitary transformation scheme borrowed from the study of quan-
tum lattice systems, the Dirac operator of a one-electron ion is transformed into a
pseudo-relativistic operator which easily allows for the elimination of the positron
degrees of freedom. This operator is block-diagonal with respect to the projection
onto the positive (respective negative) spectral subspace of the free Dirac operator,
to a fixed order in the strength of the electron-nucleus Coulomb potential. It is
demonstrated that this transformation scheme is unitarily equivalent to the one
introduced by Douglas and Kroll, and that the pseudo-relativistic operators of (up
to) first and second order in the potential strength agree with the Brown-Ravenhall
and the Jansen-Hess operator, respectively. The transformation scheme is succes-
sively applied to two-electron and N -electron systems in a Coulomb central field,
and it is shown that the transformation operators are well-defined and that the
potential terms of the resulting pseudo-relativistic operators are relatively bounded
with respect to the kinetic energy operator for subcritical potential strength. In
the case of a modified Coulomb potential, V = −γx−1+ε, 0 < ε � 1, one can
even prove subordinacy of the higher-order potential terms and thus convergence
of the perturbation series.

The investigations of Evans, Perry and Siedentop and of Balinsky and Evans,
concerning the single-particle Brown-Ravenhall operator are extended to the Jansen-
Hess operator. It is shown that its essential spectrum is given by [m,∞) for poten-
tial strengths γ < 1.006, that the singular continuous spectrum is empty and that
for γ < 0.29, there are no embedded eigenvalues in [m,∞); also, that for massless
particles, the spectrum is absolutely continuous. Whereas positivity of the massless
Jansen-Hess operator was proved by Brummelhuis, Siedentop and Stockmeyer for
γ ≤ 1.006, we were in the massive case only able to show positivity for γ ≤ 0.83.
For the two-electron ion and N -electron atom, positivity is established for γ ≤ 0.82
and γ ≤ 0.44, respectively. The large reduction of the critical potential strength for
the N -electron atom is attributed to the two-particle second-order potential terms
in the pseudo-relativistic operator. Although our bounds on γ are not sharp, this
is a challenge to the quantum chemists who are usually neglecting these terms.

Apart from positivity, also the relative boundedness of the second-order potential
terms with respect to the first-order potential terms is investigated for the two-
particle pseudo-relativistic operator, as well as its spectrum. It is found that the
free-particle positive spectrum [2m,∞) is a subset of the essential spectrum of the
full two-particle pseudo-relativistic operator (for γ < 0.89), and that the essential
spectrum does not change when the two-particle second-order interaction terms are
dropped (for γ < 0.65). Again, eigenvalues are absent in the massless case. This
property holds for γ < 0.98.
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Introduction

With the advent of relativistic quantum mechanics (Dirac 1928), the analysis of
Dirac operators has played an important role in mathematical physics. Relativity
covers two aspects, particles moving at high velocity (close to the velocity c of
light) or being exposed to very strong potentials. For a single particle with mass m
and spin 1

2 in an electric potential V the Dirac operator reads (in relativistic units
~ = c = 1)

H = D0 + V = −iα ∂

∂x
+ βm + V

where D0 is the Dirac operator of a free particle (i.e. its kinetic energy operator),
and β, αi, i = 1, 2, 3 are the Dirac matrices in C4,4 (Rose 1961)

αi =
(

0 σi
σi 0

)
, β =

(
I 0
0 −I

)
σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

with σi the Pauli matrices and I the 2 × 2 unit matrix. D0 is defined in the
Hilbert space H := L2(R3)× C4. H is equipped with the scalar product (ϕ,ψ) :=∫
R3

ϕ(x)ψ(x) dx where ϕψ :=
4∑
i=1

ϕiψi, the sum running over the 4 components

ϕi, ψi of the spinors ϕ and ψ.
D0 is self-adjoint on its domain D(D0) ⊂ H. The potential V is a multiplication

operator in coordinate space. In order that the sum D0 + V is also a self-adjoint
operator on D(D0), the potential must be controlled by the kinetic energy, i.e., V
has to be D0-bounded,

‖V ϕ‖ ≤ c ‖D0 ϕ‖ + C ‖ϕ‖

with c < 1 and C ∈ R (Kato 1966, p.287).
Below we will define H in terms of its quadratic form, subject to the relative

form boundedness of V with respect to |D0|,

|(ϕ, V ϕ)| ≤ c (ϕ, |D0|ϕ) + C (ϕ,ϕ)

with c < 1 and |D0| := (D2
0)1/2. We will take the spin- 1

2 particle to be an electron
moving in the central Coulomb potential of a point nucleus of charge number Z,

V = −γ
x
, γ = Z e2,

where x := |x| and in our units, e2 ≈ 1/137.04 is the fine-structure constant. The
required |D0|-form boundedness of V leads to a restriction of the potential strength
γ.

The spectrum of an operator H gives information about the energy values which
the particle can have when it moves in the potential V . It is the set

σ(H) := {λ ∈ R : H − λ id is not boundedly invertible},

i.e., σ(H) is the complement of the subset λ ∈ R for which H − λ id is bijective
with a bounded inverse (id is the identity operator). For a free particle (V = 0),
the spectrum of the Dirac operator consists of two half-lines, (−∞,m] ∪ [m,∞)

−m m

r r
0
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separated by a gap of 2m (in our units, m is the rest energy of the particle; states
above m are electronic states, while states below −m are allocated to positrons).
From this it follows that the Dirac operator is unbounded both from above and from
below. When the potential is switched on, bound eigenstates appear with energies
Ei lying in the gap. The eigenvalue equation Hϕi = Eiϕi is exactly solvable for
the point-nucleus Coulomb potential, with its lowest (ground-state) energy given
by (Darwin 1928, see also Rose 1961)

E0 = m
√

1− Z2e4 ,

yielding E0 ≥ 0 for γ = Ze2 ≤ 1. This exact reference value can be used to test
our perturbative approach given below. Beyond that our method can be applied to
Coulomb-type potentials where no exact solutions exist (such as sums of Coulombic
and short-range potentials occurring in the single-particle models for multi-electron
ions).

In electron spectroscopy the energies involved are usually much smaller than
the gap such that the creation of electron-positron pairs, described in terms of
excitation of a state with energy smaller than −m to a state lying above m (or to
an unoccupied bound state with positive energy), is negligible.

As long as only electrons (but not positrons) are considered, it is of disadvan-
tage to describe them in terms of an operator which is unbounded from below. For
the determination of the energy eigenstates the common simple variational princi-
ples, based on minimising the energy expectation value, cannot be used any more.
Instead, so-called minimax procedures are required (Dolbeault, Esteban and Séré
2000 and references therein), or different methods have to be found.

Historically, several tools were employed to get rid of the negative-energy con-
tinuum and to derive from the Dirac operator a pseudo-relativistic operator which
is bounded from below. Pauli, based on his two-component pre-Dirac theory which
incorporates relativistic effects (Pauli 1927), introduced a systematic procedure for
the elimination of the two small (positron-like) components of the 4-spinor obeying
the Dirac eigenvalue equation (see, e.g., Pauli 1958). The resulting equation for a
function composed of the remaining two (large, i.e., electron-like) components of
ϕ is of (nonrelativistic) Schrödinger type. However, the operator defined by this
Schrödinger-type equation has some serious drawbacks, e.g., the operators in cer-
tain orders of Ze2 are no longer symmetric. The idea of reducing the Dirac operator
by means of elimination and substitution methods to a semibounded operator (act-
ing on 2-spinors) with the same ground-state properties was pursued further, see
for example Durant and Malrieu (1987), DES (2000).

Another approach consisted in minimising the square of the Dirac operator
(Baylis and Peel 1983), a method which works well if the potential is nonpositive.

Concerning the free (V = 0) Dirac operator, a major step forward was taken
by Foldy and Wouthuysen (1950). They decoupled the positive and negative spec-
tral subspaces by means of a certain unitary transformation and so obtained a
semibounded, 2 × 2 matrix-valued operator in the electronic subspace. Also other
people got involved in this project. De Vries (1970) gives an overview over related
transformations and the properties of the transformed operators.

In the presence of an external field the Foldy-Wouthuysen transformation leads
no longer to a complete decoupling of the two spectral subspaces. So Brown and
Ravenhall (1951) suggested to project the Dirac operator onto the positive spectral
subspace of the free Dirac operator D0 by means of

Λ+ =
1
2

(
1 +

D0

|D0|

)
.



6

They obtained the operator

H(1) := Λ+ (D0 + V ) Λ+

which is bounded from below for not too strong potentials. Formally, an operator
semibounded for all potentials (which admit a spectral gap) would arise from using
instead of Λ+ an exact projector P+ which projects onto the above-gap spectral
subspace of the Dirac operator with potential, D0 + V. Since this projector is
unknown in the case of a general potential, Douglas and Kroll (1974) introduced
a perturbative approach which is based on the ideas of Foldy and Wouthuysen. It
aims at decoupling the spectral subspaces of D0 up to a given (arbitrarily chosen)
order n in the potential strength γ. This is achieved by means of a series of n+ 1
consecutive unitary transformations of the Dirac operator, starting with the Foldy-
Wouthuysen one. In each successive step, the transformation operator is determined
by the requirement that the terms of correspondingly lowest order in γ which still
couple the electron-positron subspaces are eliminated.

In the present work it is shown that the Douglas-Kroll transformation scheme is
a special case of a much more general transformation scheme derived from pertur-
bation theory (Morse and Feshbach 1953, p.1018) and developed for the study of
quantum lattice systems.

The basic idea is nicely displayed in the work of Datta, Fernández and Fröhlich
(1999). Assume a self-adjoint operator of the form H = H0+γṼ such that the spec-
trum of H0 has bounded subsets separated by spectral gaps and let Pi, i = 1, ..., N
be a partition of unity, where Pi are spectral projections onto disjoint subsets of
σ(H0). By means of a series of n unitary transformations, H is transformed into
an operator which is block-diagonal up to order n in γ with respect to the spectral
projections Pi. In the case of a lattice where one deals with bounded operators,
it can be shown that for H0-bounded potentials γṼ the perturbation series in γ
converges.

In the lattice case of a discrete spectrum, the transformation operators can eas-
ily be computed. Since only (discrete) sums are involved, the defining equation for
the transformation operator is algebraic with an explicit solution (see e.g. Datta,
Fernández and Fröhlich 1999). If, on the other hand, the spectrum is continuous
as for the Dirac operator, the corresponding sums will be singular, and a differ-
ent method for solving the defining operator equation has to be used. Sobolev
(2003,2004), in his study of periodic Schrödinger operators on a lattice, introduced
pseudodifferential operator techniques which are readily applicable to the integral
operators occurring for Coulomb-type potentials. Changing from coordinate space
to momentum space where D0 is diagonal,

D0(p) = αp + β m,

one can represent the potentials V (as well as the transformation operators) in
terms of pseudodifferential operators, defined by their symbols v, i.e.,

(V ϕ)(x) :=
1

(2π)3/2

∫
R3
eipx v(x,p) ϕ̂(p) dp.

In this representation, the defining equations for the transformation operators turn
into algebraic equations for their symbols, which are readily solvable. In our work we
will call the general transformation scheme by means of unitary pseudodifferential
operators the ’Sobolev transformation scheme’.

Wolf, Reiher and Hess (2002, 2004) have evaluated the transformed Dirac oper-
ator up to fifth order in γ for its use in quantum chemical variational calculations.
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A thorough mathematical analysis has, however, only been performed for the first-
order term which agrees with the Brown-Ravenhall operator defined above (Evans,
Perry and Siedentop 1996, Balinksy and Evans 1998, 1999).

For the second-order pseudo-relativistic operator, introduced by Jansen and Hess
(1989), only the boundedness from below for subcritical potential strength (γ ≤
1.006) is known. Also, positivity of the Jansen-Hess operator in the fictitious case
of a massless particle has been shown (Brummelhuis, Siedentop and Stockmeyer
2002). The value 1.006 for the critical potential strength is very close to the exact
value 1 where the ground-state energy E0 becomes zero.

In the case of more than one particle in a central field, the intuitive way of con-
structing an operator which is the sum of one-particle Dirac operators D(k)

0 + V (k)

plus the two-particle interaction terms, does not lead to correct results. Indeed, as
was pointed out by Brown and Ravenhall (1951), one does not get stable bound-
state solutions. Instead, a consistent formulation within quantum electrodynamics
is required. An operator acting on 4-spinors can be derived from the full QED
Hamiltonian. It can be split into a part Hno−pair which describes stationary elec-
tronic states (conserving the number of electrons), a second part Hpair which ac-
counts for pair creation, and remaining parts which additionally involve the ra-
diation field. The mere consideration of Hno−pair in this operator is called the
’no-pair’ approximation, where one disregards pair creation and the coupling to the
photon field. For the two-particle case, N = 2, Sucher (1958) derived the following
operator (which below will be called Coulomb-Dirac operator)

Hno−pair =
2∑
k=1

(D(k)
0 + V (k)) + P

(1)
+ P

(2)
+ V (12) P

(1)
+ P

(2)
+

from the Bethe-Salpeter equation of quantum electrodynamics (Bethe and Salpeter
1957). The P

(k)
+ are the exact projectors defined above, relating to the single-

particle operator D(k)
0 + V (k) of particle k, and V (12) is the interaction between

paericles 1 and 2. A nice account of the derivation of this operator is given by
Douglas and Kroll (1974) who call the eigenvalue equation of Hno−pair the Coulomb
ladder equation.

Alternatively, it was later suggested (Mittleman 1981) to replace P (k)
+ by the free

projectors Λ(k)
+ , but to project the complete operator

2∑
k=1

(D(k)
0 +V (k)) +V (12), i.e.

also the single-particle contribution. This is, like the Brown-Ravenhall operator in
the single-particle case, only an approximation linear in the potentials.

One aim of the present work is to get some additional information on D0-form
boundedness and the spectral properties of the (single-particle) Jansen-Hess op-
erator for massive particles. The major goal is, however, to apply the Sobolev
transformation scheme to N -electron atoms. For N = 2, the pseudo-relativistic
operator has been derived by Douglas and Kroll (1974), and they also provide the
second-order terms of the transformed electron-electron Coulomb interaction. How-
ever, within the Douglas-Kroll transformation scheme, these second-order terms are
so complicated that they have been neglected in any numerical computation (Hess
1986) assuming that they are small anyway (Wolf, Reiher and Hess 2004). Applica-
tion of the Sobolev transformation scheme provides a breakthrough in the respect
that the resulting transformed second-order operators have a very simple structure.
Thus a detailed mathematical analysis becomes feasible.

The lay-out of the present work is as follows. After an overview of some basic
auxiliary theorems and of the pseudodifferential operator technique (section I.1),
the single-particle Sobolev transformation scheme is described for the Coulomb



8

potential (section I.2), and its convergence is shown not for the Coulomb field,
but for the slightly less singular potential V = −γ/x1−ε (0 < ε � 1). Section
I.3 furnishes the equivalence to the Douglas-Kroll transformation scheme, as well
as the explicit form of the transformed operator to second order in γ in either
representation. Subsequently, D0-form boundedness of the potential terms of the
Jansen-Hess operator is shown as well as subordinacy of the second-order terms
with respect to the first-order terms for sufficiently small potential strength. Also,
positivity is proven, although we did not succeed in showing it for the same range
of γ as in the massless case (section I.4). The single-particle investigations are ter-
minated with the localisation of the essential spectrum of the Jansen-Hess operator
at [m,∞), with the proof of the absence of singular continuous spectrum as well
as the absence of embedded eigenvalues in [m,∞) up to certain critical coupling
strengths, and finally with showing the absolute continuity of the spectrum for the
fictitious massless particle. These results are a generalisation of those known for
the Brown-Ravenhall operator.

Part II deals with the two-particle Coulomb-Dirac operator. In this case, the
second unitary transformation contains a correlated two-particle contribution (the
boundedness of which is proven in section II.3) which, however, does not enter
into the transformed second-order operator (section II.4). Again, the relative form
boundedness of the transformed potential terms as well as positivity of the result-
ing pseudo-relativistic operator is proven for subcritical potential strength. The
maximum possible potential strength for these properties to hold, derived from the
present type of estimates, is slightly below the one for the single-particle opera-
tor. Part II is closed by localising the essential spectrum of the pseudo-relativistic
two-particle operator. With the help of its behaviour under translations it is found
that the essential spectrum of the free two-particle operator, [2m,∞), is a subset
of the essential spectrum of the transformed two-particle operator with all poten-
tial terms included. The essential spectrum of the latter does not change when
the transformed two-particle second-order potential is dropped. The proof of the
conjecture that the infimum of the essential spectrum of a two-electron ion is given
by the ground-state energy of the corresponding one-electron ion, increased by the
rest energy of the second electron (the relativistic version of the HVZ theorem
(Reed-Simon 1978, Theorem XIII.17)) is left to future investigations.

We close our work by deriving the second-order pseudo-relativistic operator in
the N -particle case, N > 2 (part III). To this order it turns out to be a simple
generalisation of the operator derived for N = 2, and hence its positivity is readily
shown. In the case of neutral atoms (N = Z) the corresponding critical potential
strength is found to be considerably smaller than for one- or two-electron ions. Its
reduction for N = Z is a consequence of the additional presence of the second-
order two-particle interaction terms which scale with N2. Although controlled by
the first-order electron-electron interaction, these terms are conjectured to be of
opposite sign. Hence their neglect in quantum chemical calculations should be
questioned.
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I. One-Electron Ions and the Jansen-Hess Operator

Let D0 = αp + βm be the free one-particle Dirac operator with p := −i∂/∂x.
It is defined in the Hilbert space L2(R3)× C4, and it is essentially self-adjoint on
S(R3)×C4 where S is the Schwartz space of smooth strongly decreasing functions
(Werner 1995, p.167). This dense subspace will be used when certain analyticity
or convergence properties of the 4-spinors are required. The domain D(D0) on
which D0 is self-adjoint, is H1(R3) × C4. The Sobolev spaces of order σ can be
characterised in the following manner.

Let f : R3 → R be defined by f(p) := (1 + p2)1/2, and consider for ϕ ∈ S the
Fourier transform

(f̂σϕ)(p) = (1 + p2)
σ
2 ϕ̂(p), (I.1)

which can be continuously extended to S ′, the dual space of S. Here, p := |p|
is the modulus of p and ϕ̂ denotes the Fourier transform of ϕ. Define the space
Hσ(R3) by means of

Hσ(R3) := {ϕ ∈ S ′ : fσ ϕ ∈ L2(R3)} (I.2)

with the scalar product

(ϕ,ψ)σ := (fσ ϕ, fσ ψ) =
∫
R3

(1 + p2)σ ϕ̂(p) ψ̂(p) dp. (I.3)

These Sobolev spaces are Hilbert spaces and are dense subspaces of L2(R3). In
turn, S is dense in Hσ(R3) (Werner 1995, §V.2; Folland 1995, p.192). Our cases
of interest are σ = 1 and σ = 1/2. The space H1/2(R3)×C4 is the form domain of
D0.

The one-electron Dirac operator is defined by H = D0+V with V := −γ/x where
x := |x|. For subcritical potential strengths γ <

√
3/2 one has D(H) = D(D0)

with H being self-adjoint on D(D0) and for γ < 1, H has a self-adjoint extension
(Thaller 1992, p.114).

I.1. Preliminaries.

This section contains a compilation of some auxiliary theorems which will be
frequently used in the following. They concern estimates of essentially self-adjoint
operators from above, in the form as well as in the norm sense. They are formulated
for single-particle operators, but they are readily generalised to the multi-particle
case (see part II). Also, the pseudodifferential operator calculus will be introduced.

a) Auxiliary theorems

In all subsequent formulae, integration over three-dimensional coordinates or
momenta extends over the whole space R3.

Lemma I.1 (Lieb and Yau formula).
Let k(p,p′) = k(p′,p) ≥ 0 be a symmetric kernel, p,p′ ∈ R3. Let f(p) > 0 for
p > 0 be a smooth convergence generating function. Then for ϕ ∈ S(R3)×Cn with
n ∈ N0 and S the Schwartz space, one has∣∣∣∣∫ dp dp′ ϕ(p) k(p,p′) ϕ(p′)

∣∣∣∣ ≤ ∫
dp |ϕ(p)|2 I(p)

I(p) :=
∫
dp′ k(p,p′)

f(p)
f(p′)

. (I.1.1)
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The lemma is easily derived from the Schur test for the boundedness of integral
operators (see e.g. Halmos and Sunder 1978, p.22). It can be proved with the help
of the Schwarz inequality (Lieb and Yau 1988, EPS 1996).

Lemma I.2 (Lieb and Yau formula for arbitrary kernels).
Let A be an integral operator defined by the kernel k(p,p′),

(Aϕ)(p) =
∫
dp′ k(p,p′) ϕ(p′). (I.1.2)

Let f(p) > 0 for p > 0 and ϕ,ψ ∈ S(R3)× Cn, n ∈ N0. Then

|(ϕ,Aψ)| =
∣∣∣∣∫ dp dp′ ϕ(p) k(p,p′)ψ(p′)

∣∣∣∣
≤
(∫

dp |ϕ(p)|2 I1(p) ·
∫
dp |ψ(p)|2 I2(p)

) 1
2

(I.1.3)

I1(p) :=
∫
dp′ |k(p,p′)| f(p)

f(p′)
, I2(p) :=

∫
dp′ |k(p′,p)| f(p)

f(p′)
.

If A is essentially self-adjoint and ϕ = ψ, the inequality simplifies to

|(ϕ,Aϕ)| ≤
∫
dp |ϕ(p)|2 Ĩ1(p) (I.1.4)

where Ĩ1 is given by I1 with |k(p,p′)| replaced by c0 k̃(p,p′), an estimate of k(p,p′)
and its adjoint.

If f(p) can be chosen in such a way that I1(p) and I2(p) are bounded for all
p ∈ R+, then A is form bounded.

Proof. The l.h.s. of (I.1.3) is first estimated by
∫
dpdp′ |ϕ(p)| |k(p,p′)| 12 |k(p,p′)| 12

|ψ(p′)|. Introducing the factor unity = (f(p)/f(p′))
1
2 (f(p′)/f(p))

1
2 as in the proof

of Lemma I.1, (I.1.3) results from the Schwarz inequality.
Symmetric operators fulfilling (ϕ,Aϕ) = (Aϕ,ϕ) can readily be shown from

(I.1.2) to have kernels with k(p,p′) = k∗(p′,p). Both |k(p,p′)| and |k∗(p,p′)| can
be estimated by c0k̃(p,p′) where k̃(p,p′) is a nonnegative function characterising
the symbol class of A (to be explained in subsection b). Hence, both I1(p) and
I2(p) can be estimated by the same integral, which proves (I.1.4). �

Lemma I.3 (Operator boundedness for form bounded operators).
Let A be an essentially self-adjoint operator acting on S(R3) × Cn, n ∈ N0.
Suppose that A is form bounded with form bound c where c is obtained with the help
of Lemma I.2. Then

‖Aϕ‖2 ≤ c2 (ϕ,ϕ). (I.1.5)

The condition on c can be dropped if A extends to a nonnegative operator.

Hence, under the above assumption operator boundedness is a consequence of
form boundedness. Note that the reverse (with the same constant c) is always true,
since one has |(ϕ,Aϕ)| ≤ ‖Aϕ‖ · ‖ϕ‖ ≤ c ‖ϕ‖2, if ‖A‖ ≤ c is bounded.

Proof. In the special case that A extends to a form bounded, self-adjoint operator
with A ≥ 0, the proof is very simple. With A = A

1
2 · A 1

2 and consequently
‖A‖ ≤ ‖A 1

2 ‖2, one has

‖A‖ = sup
‖ϕ‖=1

‖Aϕ‖ ≤ sup
‖ϕ‖=1

‖A 1
2ϕ‖2 = sup

‖ϕ‖=1

(ϕ,Aϕ) ≤ c. (I.1.6)
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Now let A be an arbitrary symmetric operator defined by (I.1.2). Then, applying
the Lieb and Yau formula (I.1.4),

‖Aϕ‖2 ≤
∫
dp dq′ |ϕ(q′)| |k∗(p,q′)|

∫
dp′ |k(p,p′)| |ϕ(p′)|

≤
∫
dp′ |ϕ(p′)|2 · IN (p′) (I.1.7)

IN (p′) := c20

∫
dq′ dp k̃(p′,p) · k̃(p,q′)

f(p′)
f(q′)

with k̃ from Lemma I.2. By assumption, A is form bounded with form bound c,
i.e.

|(ϕ,Aϕ)| ≤
∫
dp′ |ϕ(p′)|2 If (p′) (I.1.8)

If (p′) := c0

∫
dp k̃(p′,p)

f(p′)
f(p)

≤ c.

Therefore,

IN (p′) = c0

∫
dp k̃(p′,p)

f(p′)
f(p)

· If (p) ≤ c0c

∫
dp k̃(p′,p)

f(p′)
f(p)

≤ c2 (I.1.9)

such that from (I.1.7), ‖Aϕ‖2 ≤ c2 ‖ϕ‖2 which proves the lemma. �

Lemma I.4 (Commutativity in norm).
Let A,B be essentially self-adjoint operators acting on S(R3) × Cn, n ∈ N0 and
let B be bounded. If AB is bounded with ‖AB‖ ≤ c, then BA is also bounded with
bound c.

Proof. We have

0 ≤ ‖BAϕ‖2 = (BAϕ,BAϕ) = (ϕ,AB BAϕ) ≤ ‖ϕ‖ · ‖AB‖ ‖BAϕ‖.
(I.1.10)

If ‖BAϕ‖ = 0 then one has trivially ‖BAϕ‖ ≤ c ‖ϕ‖. For ‖BAϕ‖ 6= 0 we get
from (I.1.10)

‖BAϕ‖ ≤ ‖ϕ‖ · ‖AB‖ ≤ c ‖ϕ‖. (I.1.11)
�

The proof is the same if A is bounded instead of B.

b) Pseudodifferential operators

Pseudodifferential operators (ΨDO’s) are defined in terms of a generalised Fourier
transformation of a function ϕ. Let for the present case of interest ϕ ∈ S(R3)×C4.
A pseudodifferential operator A is defined through its symbol a(x,p) : R3 × R3 →
C

4,4, a complex matrix-valued function, by means of (Taylor 1981)

(Aϕ)(x) :=
1

(2π)3/2

∫
dp eipx a(x,p) ϕ̂(p). (I.1.12)

Since the free Dirac operator D0 = αp + βm is a multiplication operator in
momentum space, it is convenient to set up the ΨDO calculus in Fourier space.
Introducing the Fourier transform â(q,p) of the symbol a(x,p), we get

(Aϕ)(x) =
1

(2π)3

∫
dp eipx

∫
dq eiqx â(q,p) ϕ̂(p). (I.1.13)

From this, the Fourier transform of Aϕ is found to be

(Âϕ)(p) =
1

(2π)3/2

∫
dp′ â(p− p′,p′) ϕ̂(p′). (I.1.14)
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If A can be extended to a self-adjoint operator satisfying (ϕ,Aϕ) = (Aϕ,ϕ), its
symbol and its adjoint are related by means of

â(−q,p + q)∗ = â(q,p). (I.1.15)

For later use we define the symbol of a product of operators A,B. Replacing
formally ϕ in (I.1.13) by Bϕ, one obtains

(AB ϕ)(x) =
1

(2π)3

∫
dp eipx

∫
dp′ â(p− p′,p′) B̂ϕ(p′). (I.1.16)

Inserting (I.1.14) for B̂ϕ(p), one gets for the Fourier transformed symbol âb of AB,

âb(q,p) =
1

(2π)3/2

∫
dp′ â(q− p′,p + p′) b̂(p′,p). (I.1.17)

The estimate of a symbol defines its so-called symbol class (Taylor 1981, Sobolev
2004). To estimate the symbol a (in momentum space) means that we classify
â(q,p) by its asymptotic behaviour for q, p→ 0 and q, p→∞ where q and p are
the moduli of q and p, respectively. A necessary condition is that â is a continuous
function of q and p in R+ × R+.

We note that the symbol class of a is sufficient to characterise the convergence
properties of the respective integrals involving the symbol of A.

I.2. The Sobolev transformation scheme.

Our aim is to transform the one-particle Dirac operator by means of a series
of unitary transformations such that the resulting operator does not couple the
positive and negative spectral subspaces of the free Dirac operator D0. Unitary
transformations do not change the expectation value and hence the spectrum of the
operator; however, different unitary transformations may lead to different operators.
The decoupling of the spectral subspaces can be achieved up to any given order in
the potential strength γ. First we define the transformations, then we show that
the well-known Brown-Ravenhall operator, linear in γ, is reproduced. Subsequently
we set up the transformed Dirac operator and prove boundedness of the operators
which define the unitary transformations. Finally we show the subdominance of
the higher-order potential terms in the case of the potential V = −γ/x1−ε, which
is slightly less singular than the Coulomb field.

Our basic result is formulated in the following theorem.
Theorem I.1.
Let H = D0 + V be the one-particle Dirac operator acting on S(R3) × C4 with
S the Schwartz space of smooth strongly localised functions. Let γ be the strength
of the potential V. Then there exists a sequence of unitary transformations Uk =
eiBk , k = 1, ..., n, such that the transformed Dirac operator can be written in the
following way

(U1 · · ·Un)−1H U1 · · ·Un = H(n) + R(γn+1) (I.2.1)

H(n) = Λ+

(
n∑
k=0

Hk

)
Λ+ + Λ−

(
n∑
k=0

Hk

)
Λ−. (I.2.2)

Here, Λ+ projects onto the positive spectral subspace of D0, Λ− = 1−Λ+, and Hk

is a p-form bounded operator, its form bound being proportional to γk, k = 1, ..., n.
The remainder R(γn+1) which still couples the spectral subspaces of D0 is p-form
bounded with form bound proportional to γn+1. The operators Bk are symmetric
and bounded, extending to self-adjoint operators on L2(R3)× C4.
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An operator Hk with the properties stated in the theorem is said to be of order
γk.

a) Unitary transformations

Let Uk(t) = eiBkt, t ∈ R be a group of unitary operators and consider Uk = eiBk

as an element of this group.
Let A be an arbitrary t-independent operator. The derivative of the transformed

operator is given by

d

dt
A(t) :=

d

dt

(
e−iBktAeiBkt

)
= i Uk(−t) [A,Bk] Uk(t) (I.2.3)

where we have introduced the commutator [A,Bk] := ABk − BkA. This equation
is easily integrated, noting that A(0) = A,

A(t) = Uk(−t)A Uk(t) = A + i

∫ t

0

dτ Uk(−τ) [A,Bk] Uk(τ). (I.2.4)

Iterating once, i.e. replacing A in (I.2.4) by the operator [A,Bk] and inserting the
resulting equation into the r.h.s. of (I.2.4), one obtains for t = 1

A(1) = A + i[A,Bk] + i2
∫ 1

0

dτ

∫ τ

0

dt′ Uk(−t′) [[A,Bk], Bk]Uk(t′). (I.2.5)

After n − 1 iterations the following representation of A(1) = e−iBk AeiBk is ob-
tained,

A(1) = A + i[A,Bk] +
1
2!
i2 [[A,Bk], Bk] + ...+

1
n!
in [[...[A,Bk], ..., Bk] + R

(I.2.6)
where the n-th term consists of n commutators with Bk, and the remainder R is
an (n+ 1)-fold integral.

Let us apply this scheme inductively to the Dirac operator H = D0 +V. Assume
that to order n− 1 the transformation has been achieved with a resulting operator
of the form given in Theorem I.1,

(U1 · · ·Un−1)−1 H U1 · · ·Un−1 = H(n−1) + Hn + R(γn+1) (I.2.7)

where Hn is of order γn and still couples the spectral subspaces. R is a generic
notation for the remainder. Decompose Hn into

Hn = Vn + Wn, Vn := Λ+HnΛ+ + Λ−HnΛ−
Wn := Λ+HnΛ− + Λ−HnΛ+ . (I.2.8)

The next transformation, Un = eiBn , aims at eliminating the term Wn which, in
contrast to Vn, couples the spectral subspaces. This condition will fix Bn. We note
that from (I.2.6), the transformation reproduces the operator itself, such that the
term H(n−1), already in the desired form, is preserved. From this it follows that
H(n−1) contains the zero-order term Λ+D0Λ+ + Λ−D0Λ− = D0 (note that Λ±
commutes with D0 and Λ2

+ + Λ2
− = 1).

We obtain

U−1
n (H(n−1) + Hn) Un = H(n−1) + Vn + Wn + i[D0, Bn] (I.2.9)

+ i [(Λ+

n−1∑
k=1

HkΛ+ + Λ−
n−1∑
k=1

HkΛ−), Bn] + R(B2
n).

Bn is determined from the requirement

Wn + i [D0, Bn] = 0. (I.2.10)
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Since Wn is of order γn, Bn is proportional to γn. Moreover, the commutators
of the type [(Λ+HkΛ+ + Λ−HkΛ−), Bn] are of order γn+k with k ≥ 1, and R
is of order γ2n. Hence, these terms are disregarded (together with the remainder
R(γn+1) from (I.2.7)) in constructing the transformed operator to order n,

H(n) = H(n−1) + Vn = D0 + V1 + V2 + ...+ Vn. (I.2.11)

Particularly interesting are the cases n = 1 and n = 2. For n = 1, we have

H(1) = D0 + V1 = Λ+ (D0 + V ) Λ+ + Λ− (D0 + V ) Λ−. (I.2.12)

Restricting H(1) to the positive spectral subspace H+,1, the second term on the
r.h.s. of (I.2.12) vanishes and the remaining term agrees with the Brown-Ravenhall
operator analysed by EPS (1996).

Let us now consider n = 2. From (I.2.11) it follows that the transformed Dirac
operator in second order is determined by the first transformation, U1 = eiB1 ,
only. However, the existence of the second transformation, U2 = eiB2 , has to be
established to show that H(2) is indeed the transformed operator, with a remainder
of order γ3. We have

U−1
1 H U1 = D0 + V1 +W1 + i [D0, B1] + i [V,B1] − 1

2
[[D0, B1], B1] + R(γ3),

R(γ3) = −
∫ 1

0

dτ

∫ τ

0

dt′ U1(−t′) [[V,B1], B1] U1(t′) (I.2.13)

− i
∫ 1

0

dτ

∫ τ

0

dt′
∫ t′

0

dτ ′ U1(−τ ′) [[[D0, B1], B1], B1] U1(τ ′).

Making use of the defining relation for B1, W1 + i[D0, B1] = 0, the operator H(2)

takes the form
H(2) = D0 + V1 + Λ+H2Λ+ + Λ−H2Λ− (I.2.14)

H2 := i [V1, B1] +
i

2
[W1, B1].

When restricted to H+,1, the first contribution to H2 vanishes (see section I.3).

b) Determination of B1 and its existence

We will consider the operators Bn, n = 1, 2... as pseudodifferential operators,
defined by means of their symbols, φn. These symbols will be derived in momentum
space from a solution of (I.2.10). The result for B1 is described in the following
lemma.
Lemma I.5 (Characterisation of the transformation U1 = eiB1).
The symbol φ1 of B1 is given by

φ̂1(q,p) = − iγ0

q2

1
Ep + E|q+p|

(D̃0(q + p) − D̃0(p)) (I.2.15)

with γ0 := γ/
√

2π and

D̃0(p) :=
D0(p)
|D0(p)|

, |D0(p)| = Ep =
√
p2 +m2 . (I.2.16)

Its symbol class is determined by

|φ̂1(q,p)| ≤ c

q

1
(q + p+ 1)2

(I.2.17)

with some constant c ∈ R+. B1 is a bounded, self-adjoint operator on L2(R3)×C4.
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Proof.
(i) Calculation of φ̂1

One has to solve

−i [D0, B1] = W1 =
1
2

(V − D̃0 V D̃0). (I.2.18)

We consider the operators B1, V,D0 as ΨDO’s according to (I.1.13). From the
Fourier transforms of D0 and V one gets for ϕ ∈ S(R3)× C4,

(D̂0ϕ)(p) = D0(p) ϕ̂(p) = (αp + βm) ϕ̂(p)

(V ϕ)(x) =
1

(2π)3/2

∫
dq eiqx

(
− γ

2π2q2

) ∫
dp eipx ϕ̂(p) (I.2.19)

such that the symbol v of V is defined by v̂(q,p) = −
√

2/π γ/q2. Moreover,

(D0B1 ϕ)(x) =
1

(2π)3

∫
dp dq D0 e

i(p+q)x φ̂1(q,p) ϕ̂(p)

=
1

(2π)3

∫
dp dq [α(p + q) + βm] ei(p+q)x φ̂1(q,p) ϕ̂(p). (I.2.20)

Acting (I.2.18) on ϕ and equating the respective symbols leads to the following
algebraic equation for φ̂1 :

[α(p + q) + βm] φ̂1(q,p) − φ̂1(q,p) [αp + βm] = i ŵ1(q,p) (I.2.21)

= − iγ0

q2
[1 − D̃0(q + p) · D̃0(p)].

ŵ1(q,p), behaving like q−1 for q → 0, is less singular than v̂(q,p), such that the
prescription (I.2.8) for W1 implies a regularisation of the potential V .

In order to solve (I.2.21) the ansatz is made

φ̂1(q,p) = − iγ0

q2
(c1αq + c2αp + c3β) (I.2.22)

and from the properties of the Dirac matrices, β2 = 1, α2
i = 1, βαi = −αiβ, i =

1, 2, 3,
αiαk = −αkαi (i 6= k), the following identities are derived

αp ·αp = p2, αq ·αp = 2pq − αp ·αq. (I.2.23)

Insertion of (I.2.22) into (I.2.21) then leads to an equation of the type

λ1 αp ·αq + λ2 αq · β + λ3 αp · β + λ4 = 0 (I.2.24)

where the λk, k = 1, ..., 4, are scalars depending on p and q. (I.2.24) must hold
for p,q ∈ R3 whence λk = 0, k = 1, ..., 4. The resulting system of 4 equations for
the ci, i = 1, 2, 3 has a unique solution,

c1 (q2+2pq) = 1 − Ep
E|q+p|

, c2 = 2c1 −
1

EpE|q+p|
, c3 = c2m (I.2.25)

such that

φ̂1(q,p) = − iγ0

q2

{
[(q + 2p)α + 2βm]

1
q2 + 2pq

(
1 − Ep

E|q+p|

)
− pα+ βm

EpE|q+p|

}
.

(I.2.26)
It is readily verified that (I.2.26) can be cast into the form

φ̂1(q,p) = − iγ0

q2

1
Ep + E|q+p|

{
αq

E|q+p|
+ [αp + βm]

(
1

E|q+p|
− 1

Ep

)}
(I.2.27)

from which the claim (I.2.15) of the lemma is obvious.
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(ii) Symbol class of φ1

It is seen from (I.2.27) that φ̂1(q,p) is continuous in both variables except for
q = 0. Moreover, φ̂1(q,p) is finite but nonzero for p = 0 and diverges like 1/q
for q → 0, while asymptotically, it decreases like 1/q3 respective 1/p2. Taken
into consideration that B1 is dimensionless (since U1 = eiB1) and so is φ1(x,p),
one finds that φ̂1(q,p) is of dimension (momentum)−3 and hence is estimated by
|φ̂1(q,p)| ≤ c/q · (q + p+ 1)−2.

(iii) Boundedness of B1

We present the proof of the form boundedness of B1; the operator boundedness
of B1 follows from Lemma I.3.

The basic ingredient is the Lieb and Yau formula from Lemma I.2. From (I.2.27)
one has φ̂∗1(q,p) = −φ̂1(q,p) since α and β are self-adjoint, such that (I.1.4) can
be used with the constant c0 = 1 and k̃ = k. Starting from (I.1.14), applying
(I.1.4) and subsequently inserting the symbol class (I.2.17) of φ1, one obtains for
ϕ ∈ L2(R3)× C4 the estimate

|(ϕ,B1ϕ)| = |(ϕ̂, B̂1ϕ)| ≤ 1
(2π)

3
2

∫
dq |ϕ̂(q)|

∫
dp |φ̂1(q− p,p)| |ϕ̂(p)|

≤ c

(2π)
3
2

∫
dp |ϕ̂(p)|2 · I1(p) (I.2.28)

I1(p) :=
∫
dq

1
|q− p|

1
(|q− p| + p+ 1)2

f(p)
f(q)

.

It remains to prove that I1(p) is bounded for p ∈ R+. For the convergence gener-
ating function, the choice f(p) := p is made. Performing the angular integration
with the help of Appendix A, one obtains

I1(p) = 2π
∫ ∞

0

dq

(
1

|q − p| + p+ 1
− 1

q + 2p+ 1

)
= 4π ln

2p+ 1
p+ 1

<∞ .

(I.2.29)
Hence B1, and also U1 = eiB1 , is a bounded operator on L2(R3)× C4.

(iv) Self-adjointness of B1

Taking the adjoint of the defining equation (I.2.18) and using that D0 and W1

extend to self-adjoint operators, leads to W1 = −i[D0, B
∗
1 ], which agrees with

(I.2.18) for B∗1 = B1. In fact, from the explicit form (I.2.27) of φ̂1, the symmetry
condition (I.1.15) follows immediately. Self-adjointness of B1 is then a consequence
of its boundedness. �

c) Existence of the transformations of higher order

In order to identify the structure of the operators Bn, we set up the defining
equation for n = 2. From the definition (I.2.8) of the potential W2, using H2 from
(I.2.14), one obtains

−i[D0, B2] = W2 = iΛ+( [V1, B1] +
1
2

[W1, B1] )Λ− + iΛ−( [V1, B1] +
1
2

[W1, B1] )Λ+

=
i

8

(
3 [V,B1] + [D̃0, V D̃0B1] + [D̃0, B1D̃0V ] + 3 D̃0 [B1, V ] D̃0

)
(I.2.30)

where V1 = V −W1 was used. Thus, apart from the bounded multiplication factors
D̃0 (in momentum space), W2 is determined from the commutator [V,B1]. For
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n = 3, the commutators [[V,B1], B1] and [V,B2] enter into W3. In general, Wn is
composed of multiple commutators of V with Bk, k < n.

In order to show the boundedness of Bn (which implies the existence of Un =
eiBn as well as of H(n) containing commutators with Bk, k < n), we have to
establish the p-form boundedness of the potentials Wn. Explicitly, we have to
prove the following proposition.

Proposition I.1 (Existence of Sobolev transformations).
Let Un = eiBn , n ≥ 1, be the unitary transformations from Theorem I.1. Let φn
be the symbol of Bn and Wn the potential in the defining equation for φn. Then
Wn is p-form bounded on H1/2(R3)× C4 by means of

|(ϕ,Wnϕ)| ≤ c (ϕ, pϕ) (I.2.31)

with some c ∈ R+, and Bn extends to a bounded operator on L2(R3)× C4.

Proof.
(i) p-form boundedness of Wn

The proof is by induction. Starting with n = 1, the p-form boundedness of W1

from (I.2.18) follows from Kato’s (1966) inequality, (ϕ, 1
xϕ) ≤ π

2 (ϕ, pϕ), and from
the self-adjointness and boundedness of D̃0 by 1,

|(ϕ,W1ϕ)| ≤ 1
2
|(ϕ, V ϕ)| +

1
2
|(D̃0ϕ, V D̃0ϕ)| ≤ γπ

4
(ϕ, pϕ) +

γπ

4
(ϕ, pϕ)

(I.2.32)
where in the second term, D̃0pD̃0 = p has been used.

By induction hypothesis, Wn′ is p-form bounded on H1/2(R3)×C4 for n′ ≤ n−1.
We recall that Wn′ is of the order γn

′
and is composed of multiple commutators of

V with Bk, k < n′. The orders k (in γ) of all factors Bk, k ≤ n′ − 1, which enter
into a given commutator contributing to Wn′ must add to n′ − 1, the last factor γ
being supplied by the linearity in V . Hence, the induction hypothesis implies that
all commutators of smaller order than γn are p-form bounded. In the induction
step one has to show that [V,Bn−1] and [[·], Bk], k < n− 1, are p-form bounded,
where [·] denotes a p-form bounded multiple commutator.

Without loss of generality one may assume that [·] extends to a self-adjoint
operator. We symmetrise the kernel by means of |[̂·]| ≤ |[̂·]| + |[̂·]

∗
| using that

[̂·](q−p,p) = [̂·]
∗
(p−q,q) and that symbol and its adjoint are in the same symbol

class. With the help of the Lieb and Yau formula (I.1.1), the p-form boundedness
of [̂·] can be expressed in the following way

|(ϕ, [·]ϕ)| ≤ 1
(2π)3/2

∫
dp |ϕ̂(p)|2

∫
dq
( ∣∣∣[̂·](q− p,p)

∣∣∣ +
∣∣∣[̂·]∗(q− p,p)

∣∣∣ ) f(p)
f(q)

≤ 1
(2π)3/2

∫
dp |ϕ̂(p)|2 c p = c′ (ϕ, pϕ) (I.2.33)

with some constant c > 0 and c′ = c/(2π)3/2. The inequality in the second line of
(I.2.33) restricts the convergence generating function to f(p) := pλ with 1 < λ < 3.
This is true because both [̂·](q−p,p) and [̂·](p−q,q) are regular for q → 0 (since
all operators of which [·] is composed have symbols which are regular when the
second variable tends to zero), restricting λ < 3, and because [̂·] is of dimension
(momentum)−2, decreasing like q−2 for q →∞, such that λ > 1 is required. These
properties hold also for the symbol wk of the self-adjoint operator Wk. Inequality
(I.2.23) is therefore also valid for ŵk in place of [̂·], if k < n (when Wk is p-form
bounded).
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We present the proof of p-form boundedness of [[·], Bk]; the corresponding proof
for [V,Bn−1] can be carried out along the same lines.

First we estimate the symbol φk of Bk by the symbol wk. To do so, recall that
φ̂k and ŵk are interrelated by an equation of the type (I.2.21), derived from the
defining equation (I.2.10) for Bk. This equation implies that the behaviour of φ̂k
for p → 0 and q → 0 is that of ŵk, while there occurs an extra power of q−1 and
p−1 for q →∞ and p→∞, respectively. Therefore

|φ̂k(q,p)| ≤ c

q + p+ 1
|ŵk(q,p)|. (I.2.34)

From the essential self-adjointness of [·] and Bk, using the Fourier transform
(I.1.14), one has

|(ϕ, [[·], Bk]ϕ)| ≤ |([̂·]ϕ, B̂kϕ)| + |(B̂kϕ, [̂·]ϕ)|

≤ 1
(2π)3

∫
dp′dp dq |ϕ̂(p)|

{∣∣∣[̂·]∗(p′ − p,p)
∣∣∣ |φ̂k(p′ − q,q)| (I.2.35)

+ |φ̂∗k(p′ − p,p)|
∣∣∣[̂·](p′ − q,q)

∣∣∣} |ϕ̂(q)|.

According to (I.1.4)ff, the kernel of this integral can be estimated by one which is
symmetric in p and q, such that the Lieb and Yau formula is applicable, with the
choice f(p) = p2. Using subsequently the estimate (I.2.34) for φk and its adjoint,
one gets

|(ϕ, [ [·], Bk]ϕ)| ≤ c0
(2π)3

∫
dp |ϕ̂(p)|2 ·

{∫
dp′

∣∣∣[̂·](p− p′,p′)
∣∣∣ p2

p′2

·
∫
dq

1
|p′ − q|+ q + 1

|ŵk(p′ − q,q)| p
′2

q2
(I.2.36)

+
∫
dp′

1
|p− p′|+ p′ + 1

|ŵk(p− p′,p′)| p
2

p′2

∫
dq
∣∣∣[̂·](p′ − q,q)

∣∣∣ p′2
q2

}
.

By virtue of (I.2.33), the second integral over [̂·] can be estimated by cp′, respec-
tively. Since ŵk is p-form bounded, (I.2.33) can be used for ŵk. Thus the second
term in the curly brackets can be estimated by∫
dp′

1
|p− p′|+ p′ + 1

|ŵk(p−p′,p′)| p
2

p′2
·c p′ ≤ c

∫
dp′ |ŵk(p−p′,p′)| p

2

p′2
≤ c′p.

(I.2.37)
In the first integral, the factor (|p′ − q|+ q + 1)−1 is bounded for all q ∈ R+ and
hence can be estimated by its value at q = 0. Therefore, the first term of (I.2.36)
in curly brackets is estimated by∫

dp′
∣∣∣[̂·](p− p′,p′)

∣∣∣ p2

p′2
· c̃

p′ + 1
· c p′ ≤ c′′ p. (I.2.38)

Insertion into (I.2.36) proves the p-form boundedness of the commutator [[·], Bk].

(ii) Boundedness of Bn
This is a consequence of the p-form boundedness of Wn. From the first line of

(I.2.33), with [̂·] replaced by φ̂n, one gets with f(p) = p2,

|(ϕ,Bnϕ)| ≤ c

(2π)3/2

∫
dp |ϕ̂(p)|2

∫
dq |φ̂n(p− q,q)| p

2

q2
≤ c̃ (ϕ,ϕ) (I.2.39)

since according to (I.2.34) and (I.2.37), the q-integral is bounded. �
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Remark. Due to logarithmic divergencies occurring in the estimates of ŵn(q,p),
n ≥ 1, the proof of boundedness of Bn cannot be based on the algebra of symbol
classes, a powerful method in the case of periodic potentials (Sobolev 2003,2004).

d) p-form boundedness of the remainder R(γn+1)

From its definition as remainder after multiple iterations of (I.2.5)-type equations
(see e.g. (I.2.13)), R(n+1) is composed of a finite number of compact integrals over
a unitary transform of the same multiple commutators [·] which would contribute to
the n+1st order term Vn+1 after one additional transformation (for the commutator
involving D0, use (I.2.10)). These commutators are p-form bounded according to
the proof of Proposition I.1, and it remains to show that the unitary transform
preserves the p-form boundedness. Consider

|(ϕ, Uk(−τ) [·]Uk(τ)ϕ)| = |(Uk(τ)ϕ, [·]Uk(τ)ϕ)|

≤ c (Uk(τ)ϕ, pUk(τ)ϕ) = c (ϕ, Uk(−τ) pUk(τ)ϕ). (I.2.40)
Since Uk(τ) = eiBkτ with Bk a bounded operator, we can Taylor expand

(ϕ, e−iBkτ p eiBkτ ϕ) ≤
∞∑

n,m=0

τn

n!
τm

m!
|(ϕ,Bnk pBmk ϕ)|. (I.2.41)

The sum on the r.h.s. represents a symmetric operator such that its kernel has the
required symmetry property to apply the Lieb and Yau formula (with convergence
generating function f(p) = p). Our proof proceeds in 4 steps: We prove p-form
boundedness of (i) pBk, (ii) pBmk (by induction), (iii) BkpBmk , (iv) Bnk pB

m
k .

According to (I.2.28) we establish boundedness of an operator A by means of
boundedness of the integral IA over its Fourier transformed symbol ŝA. For Bk, we
have boundedness from (I.2.39),

IBk :=
1

(2π)3/2

∫
dq |φ̂k(p− q,q)| p

2

q2
≤ ck. (I.2.42)

p-form boundedness is proven by showing that the integrals IA (with A := Bnk pB
m
k )

are proportional to p.
(i)

IpBk =
1

(2π)3/2

∫
dq p |φ̂k(p− q,q)| p

2

q2
≤ p ck. (I.2.43)

(ii) Our induction hypothesis is IpBmk ≤ pc
m
k . We decompose pBm+1

k = pBmk ·Bk
and use (I.1.17) for the symbol of a product of operators. Then with (I.2.42),

IpBm+1
k

=
1

(2π)3/2

∫
dq′ |ŝpBm+1

k
(p− q′,q′)| p

2

q′2
(I.2.44)

≤ 1
(2π)3

∫
dq |ŝpBmk (p− q,q)| p

2

q2
·
∫
dq′ |φ̂k(q− q′,q′)| q

2

q′2
≤ p cmk · ck = p cm+1

k .

(iii) Decomposing BkpBmk = Bk · pBmk , one has from (I.2.37)

IBkpBmk ≤
1

(2π)3

∫
dq |φ̂k(p− q,q)| p

2

q2
·
∫
dq′ |ŝpBmk (q− q′,q′)| q

2

q′2

≤ cmk
1

(2π)3/2

∫
dq |φ̂k(p− q,q)| p

2

q
≤ cmk c′k p. (I.2.45)

(iv) We claim IBnk pBmk ≤ p c
′n
k cmk . Then, using (I.2.45)

IBn+1
k pBmk

≤ 1
(2π)3

∫
dq |φ̂k(p− q,q)| p

2

q2
·
∫
dq′ |ŝBnk pBmk (q− q′,q′)| q

2

q′2
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≤ c
′n
k cmk · c′k p = p c

′n+1
k cmk . (I.2.46)

Thus we obtain from the Lieb and Yau formula applied to (I.2.41)
∞∑

n,m=0

τn

n!
τm

m!
|(ϕ,Bnk pBmk ϕ)| ≤ c

∞∑
n,m=0

τn

n!
τm

m!
c
′n
k cmk (ϕ, pϕ)

= c ec
′
kτ+ckτ (ϕ, pϕ) (I.2.47)

with c a constant resulting from using the same estimate for symbol and its adjoint.
This shows that (ϕ,Uk(−τ)pUk(τ)ϕ) is p-form bounded and completes the proof
since exp(c′kτ + ckτ) is a continuous function of τ. With the same reasoning, any
multiple finite-dimensional compact integral over multiple unitary transforms of
p-form bounded commutators is therefore again p-form bounded.

Items a) – d) constitute the proof of Theorem I.1.

e) Subordinacy of the potential terms of higher order for a modified potential

For the Coulomb field V , the total potential of the transformed Dirac operator
H(n) to any order γn is p-form bounded. In fact, since Vn differs from Wn only by
bounded operators (see (I.2.8)), p-form boundedness of Vn and hence of H(n)−D0

according to (I.2.11) follows directly from the p-form boundedness of Wn. Thus,

|(ϕ, (H(n) −D0)ϕ)| = |(ϕ, (V1 + ...+ Vn)ϕ)| ≤ c(ϕ, pϕ) ≤ c(ϕ,Epϕ). (I.2.48)

The form bound c is proportional to the coupling strength γ, and from the present
type of estimate only smaller than 1 if γ � 1 is sufficiently small. Applying more
elaborate methods (see section I.4) a form bound < 1 for γ < 1 has been established
in the case of V1 + V2, but no further results are known.

In this section we want to investigate a slightly less singular potential,

V (x) := − γ

x1−ε , v̂(q) = −γ
√

2
π

fε
q2+ε

, ε > 0 (I.2.49)

where the symbol v̂(q,p) = v̂(q) is the Fourier transform and fε := cos πε2 Γ(1 + ε)

→ 1 for ε → 0. For this potential it will be shown that the series
∞∑
k=1

Vk is

convergent in the sense that Vk+1 is Vk-form bounded, and that the remainder
after n transformations is Vn-form bounded, all with an arbitrarily small form
bound. This means that the Sobolev transformation scheme can be viewed as a
proper perturbative approach for all potentials which are less singular than the
Coulomb field as long as they decay at infinity sufficiently fast (such that the
Fourier transform exists). Numerical investigations for the ground-state energy of
one-electron ions within the Douglas-Kroll transformation scheme (to be discussed
in section I.3) up to fifth order indicate convergence even in the case of a Coulomb
field (Wolf, Reiher and Hess 2002).

Our results are collected in the following proposition.
Proposition I.2 (Convergence of series for modified potential).
For the modified Coulomb potential (I.2.49) we have

(i) For every k ∈ N, ε < 1
k+1 , the k-th order potential term Vk is p-form

bounded with form bound less than 1.
(ii) Let ϕ ∈ S(R3)× C4. Let µk > 0 for k ∈ N be the infimum of the constant

c in the estimate |(ϕ, Vkϕ)| ≤ c (ϕ, p1−kεϕ). Then Vk+1 is subordinate to
Vk in the sense

|(ϕ, Vk+1 ϕ)| ≤ δ |(ϕ, Vkϕ)| + C (ϕ,ϕ) (I.2.50)
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with 0 < δ < 1 arbitrarily small, and C ∈ R+ a constant depending on δ.
(iii) Let R := (U1 · · ·Un)−1HU1 · · ·Un − H(n) be the remainder of order n+ 1

in the potential strength. Then R is subordinate to Vn.

For the proof, an auxiliary inequality is needed.

Lemma I.6. For 0 < (n+1)ε < 1, c0 ∈ R+, n ∈ N and every ϕ ∈ H1/2(R3)×C4

one has
c0 (ϕ, p1−(n+1)εϕ) ≤ c (ϕ, p1−nεϕ) + C (ϕ,ϕ) (I.2.51)

with c < 1 and C ∈ R+. For n = 0 this implies p-form boundedness with form
bound < 1,

c0 (ϕ, p1−εϕ) ≤ c (ϕ, pϕ) + C (ϕ,ϕ). (I.2.52)

Proof. We use an elementary inequality from analysis,

a · b ≤ aλ

λ
+

bµ

µ
for a, b > 0,

1
λ

+
1
µ

= 1, (I.2.53)

choose λ := 1−nε
1−(n+1)ε > 1, µ = 1−nε

ε and 0 < δ < 1 to be specified later. We
decompose

p1−(n+1)ε =
(
δ p1−(n+1)ε

)
· 1
δ
≤ 1− (n+ 1)ε

1− nε
δ

1−nε
1−(n+1)ε p1−nε +

ε

1− nε

(
1
δ

) 1−nε
ε

.

(I.2.54)
Then, estimating further (using δλ < δ),

c0 (ϕ, p1−(n+1)εϕ) ≤ c0 δ (ϕ, p1−nεϕ) + c0
ε

1− nε
δ−

1−nε
ε (ϕ,ϕ). (I.2.55)

With the choice δ := min{ 1
2c0
, 1

2}, (I.2.51) is verified. �

Before we embark on the proof of the proposition, we show for k = 1 that
|(ϕ, Vkϕ)| ≤ c (ϕ, p1−kεϕ) with some constant c > 0, such that µk in (ii) is well
defined.
Without restriction, we can take µk > 0. In fact, assume µk = 0. Since 0 <
(ϕ, p1−kεϕ) < ∞ (for ϕ 6= 0), the above inequality implies (ϕ, Vkϕ) = 0. Then
Vk does not contribute to the expectation value of the transformed Dirac operator
and can be disregarded altogether.

In this section, all previously defined quantities will now pertain to the modified
potential (I.2.49). In order to estimate V1, we translate (I.2.21) to the new potential
and obtain for its symbol v1

v̂1(q,p) = v̂(q) − ŵ1(q,p) = − γ0

q2+ε
fε (1 + D̃0(q + p) · D̃0(p)). (I.2.56)

The multiplier of q−(2+ε) is a bounded operator which is estimated by a constant
c1. According to (I.2.28) we obtain with f(p) := p2

|(ϕ, V1 ϕ)| ≤ 1
(2π)3/2

∫
dp |ϕ̂(p)|2

∫
dq |v̂1(q− p,p)| p

2

q2
. (I.2.57)

In the latter integral, we make the substitution pq′ := q − p and estimate with
the help of Appendix A

c1

∫
dq

1
|q− p|2+ε

p2

q2
= 2πc1 p1−ε

∫ ∞
0

dq′

q′1+ε
ln
∣∣∣∣q′ + 1
q′ − 1

∣∣∣∣ ≤ c · p1−ε. (I.2.58)

Thus |(ϕ, V1ϕ)| ≤ c0 (ϕ, p1−εϕ) with some constant c0. Since µ1 = inf c0 > 0,
we have |(ϕ, V1ϕ)| > µ1

2 (ϕ, p1−εϕ).
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Proof of Proposition, (ii):
First we take k = 1. From (I.2.14) we have V2 =

∑
s=±

Λs(i[V1, B1] + i
2 [W1, B1])Λs.

As before, we disregard in the estimate of V2 all bounded operators involving D̃0

and consider V2 as being represented by the commutator [V,B1].
We recall that the symbol of B1 is proportional to ŵ1(q,p) and accordingly

is estimated by |φ̂1(q,p)| ≤ c
q1+ε

1
(q+p+1)2 . Also, as before, |φ̂∗1| = |φ̂1|. With

the substitution q′ := q/p′ in the first integral we obtain, following (I.2.35) and
(I.2.36),

|(ϕ, [V,B1]ϕ)| ≤ |(V̂ ϕ, B̂1ϕ)| + |(B̂1ϕ, V̂, ϕ)| ≤
∫
dp |ϕ̂(p)|2 {I11(p) + I12(p)}

I11(p) =
1

(2π)3

∫
dp′ dq |v̂(p′ − p)| |φ̂1(p′ − q,q)| · p

2

q2
(I.2.59)

≤ c

∫
dp′

1
|p′ − p|2+ε

p2

p′2
·
∫
dq′

1
q′2

1
p′ε |q′ − p̂′|1+ε (|q′ − p̂′| + 1 + 1

p′ )
2

I12(p) ≤ c

∫
dp′

1
|p′ − p|1+ε(|p′ − p| + p + 1)2

p2

p′2
·
∫
dq

1
|p′ − q|2+ε

p
′2

q2
.

For I11, the q′-integral is estimated by dropping 1
p′ in the last factor of the denom-

inator. With the substitution k := q′ − p̂′ and Appendix A, one finds∫
dq′

q′2
1

|q′ − p̂′|1+ε

1
(|q′ − p̂′| + 1)2

=
∫ ∞

0

dk
k1−ε

(k + 1)2
· 2π
k

ln
∣∣∣∣k + 1
k − 1

∣∣∣∣ <∞.
(I.2.60)

The p′-integral, after making the substitution pp′′ := p′ and applying similar
techniques as in (A.2), is given by

p2

∫
dp′

1
|p′ − p|2+ε

1
p′2+ε

= p1−2ε

∫ ∞
0

dp′′
1
p′′ε

2π
εp′′

(
1

|p′′ − 1|ε
− 1
|p′′ + 1|ε

)
≤ c · p1−2ε. (I.2.61)

The second contribution, I12, is estimated in a similar way and leads to the same
result. Thus

I11(p) + I12(p) ≤ c̃ p1−2ε (I.2.62)
with some constant c̃. Using Lemma I.6 and the definition of µ1, one finally obtains

|(ϕ, V2ϕ)| ≤ c0 (ϕ, p1−2εϕ) ≤ c0 δ (ϕ, p1−εϕ) + C (ϕ,ϕ) (I.2.63)

<
2c0 δ
µ1
|(ϕ, V1ϕ)| + C(ϕ,ϕ)

with 2c0δ/µ1 < 1 for δ chosen sufficiently small. This proves (ii) for k = 1.
The proof of the induction step from k to k + 1 proceeds along the same lines

as applied earlier to show the p-form boundedness of Wn or Vn. By induction
hypothesis commutators of order m ≤ k in the potential strength, denoted by [·]m,
have the following symbol estimates (compare (I.2.33))∫

dq
( ∣∣∣[̂·]m(q− p,p)

∣∣∣ +
∣∣∣[̂·]∗m(q− p,p)

∣∣∣ ) (p
q

)λ
≤ c p1−mε (I.2.64)

where λ can be chosen in the interval (1, 3). We demonstrate the proof for the
commutator [[·]m, Bk−m+1] which contributes to Vk+1. For the commutator [V,Bk]
which also contributes to Vk+1 the proof is similar. Since the symbol classes of Wm

and [·]m are equal, it follows from (I.2.34)

|φ̂m(q,p)| ≤ c

q + p+ 1

∣∣∣[̂·]m(q,p)
∣∣∣ ≤ c

q + 1

∣∣∣[̂·]m(q,p)
∣∣∣ . (I.2.65)
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Then from (I.2.35) and (I.2.36) one has with some c0 ∈ R+,

|(ϕ, [[·]m, Bk−m+1]ϕ)| ≤ c0
(2π)3

∫
dp |ϕ̂(p)|2 (I00 + I01) (I.2.66)

I00 :=
∫
dp′ |[·]m(p− p′,p′)| p

2

p′2
·
∫
dq

1
|q− p′|+ p′ + 1

∣∣∣[̂·]k−m+1(q− p′,p′)
∣∣∣ p′2
q2

I01 :=
∫
dp′

1
|p− p′|+ p′ + 1

∣∣∣[̂·]k−m+1(p− p′,p′)
∣∣∣ p2

p′2
·
∫
dq
∣∣∣[̂·]m(p′ − q,q)

∣∣∣ p′2
q2
,

where in the term denoted by I00, |φ̂k−m+1(p′−q,q)| was estimated by its adjoint
before applying (I.2.65). In I01, the q-integral is by (I.2.64) estimated by c p

′1−mε.
Further one has with a ≥ 0 and δ > 0∫

dq
1

a+ q + 1

∣∣∣[̂·]n(p− q,q)
∣∣∣ p2

q2
· q1−δ ≤ p−δ

∫
dq
∣∣∣[̂·]n(p− q,q)

∣∣∣ p2+δ

q2+δ

≤ c p1−nε−δ (I.2.67)

if 2 + δ < 3. Then with δ := mε, I01 ≤ c̃ p1−(k−m+1)ε p−mε = c̃ p1−(k+1)ε.
In I00 we estimate in the denominator |q−p′|+p′+1 by p′ and subsequently use

(I.2.64) to estimate the q-integral by c p
′−(k−m+1)ε. With λ := 2+(k−m+1) ε (for

(k−m+ 1)ε < 1) in (I.2.64) we obtain I00 ≤ c̃ p−(k−m+1)ε · p1−mε = c̃ p1−(k+1)ε.
Therefore

|(ϕ, [[·]m, Bk−m+1]ϕ)| ≤ c0 (ϕ, p1−(k+1)εϕ) (I.2.68)

which proves (I.2.64) for k+1. The same estimate can be shown for |(ϕ, [V,Bk]ϕ)|.
Hence

|(ϕ, Vk+1ϕ)| ≤ c′ (ϕ, p1−(k+1)εϕ) ≤ c′ δ 2
µk
|(ϕ, Vkϕ)| + C (ϕ,ϕ) (I.2.69)

which completes the proof of (ii). �

Proof of Proposition, (i):
We use again induction. For k = 1, applying Lemma I.6 to the estimate of V1,

|(ϕ, V1 ϕ)| ≤ c0 (ϕ, p1−ε ϕ) ≤ c (ϕ, pϕ) + C (ϕ,ϕ) (I.2.70)

with c < 1. For k > 1, we assume that Vk is p-form bounded with form bound
c1 < 1. Then we have from (ii)

|(ϕ, Vk+1 ϕ)| ≤ δ |(ϕ, Vkϕ)| + C (ϕ,ϕ) ≤ δ (c1 (ϕ, pϕ) + C1 (ϕ,ϕ)) + C (ϕ,ϕ).
(I.2.71)

Since δ can be chosen arbitrarily small, one has δc1 < 1. �

A consequence of (I.2.71) is the p-form boundedness (with form bound < 1) of
every finite sum V1 + ...+ Vn.

Proof of Proposition, (iii):
We have to show that all Bk are bounded operators. Then we can proceed as in
section 2d to show that a unitary transform Uk = eiBkτ preserves the p1−(n+1)ε-
form boundedness of the commutators of order n + 1 in the potential strength of
which R is consisting. Consequently, one has with (ϕ, p1−kεϕ) < 2

µk
|(ϕ, Vkϕ)| for

k = n+ 1 and with (I.2.50)

|(ϕ,Rϕ)| = const · |(ϕ, Vn+1ϕ)| ≤ const · δ |(ϕ, Vnϕ)| + C ′ (ϕ,ϕ) (I.2.72)

with const · δ < 1 for a suitably chosen δ. This shows the subordinacy with respect
to Vn.



24

It remains to prove the boundedness ofBk.We will show this directly by using the
algebra of symbol estimates. For B1, from (I.2.42) with the substitution q′ := q−p,

IB1 ≤
c

(2π)3/2

∫
dq

1
|p− q|1+ε

1
(|p− q|+ q + 1)2

· p
1−ε

q1−ε

≤ c

(2π)3/2

∫
dq′

1
q′1+ε

1
(q′ + 1)2

· p1−ε

|p + q′|1−ε
≤ c′ (I.2.73)

since the integral is finite for p → 0 and for p →∞ and the singularity of the last
factor at p = −q′ is integrable. The convergence generating function f(p) = p

1−ε
2

was chosen to allow for a (I.2.45)-type estimate when showing that the presence of
Uk plays no role (but to prove boundedness of IB1 , one can also take f(p) = 1).

For B2, we use the estimate (I.2.34) of φ̂2 by ŵ2 and recall that W2 is determined
from the commutator [V,B1]. Consider the symbol of V B1 via (I.1.17),

|v̂φ1(q,p)| ≤ c

(2π)3/2

∫
dp′

1
|q− p′|2+ε

· 1
p′1+ε(p′ + p+ 1)2

. (I.2.74)

It is found that |v̂φ1(q,p)| = const for p = 0, ∼ 1/p2 for p → ∞ and ∼ 1/q2+ε

for q → ∞ while it diverges for q → 0. The behaviour near q = 0 is obtained by
performing the angular integration with the help of Appendix A such that one gets
for q 6= 0, ε 6= 0,

|v̂φ1(q,p)| ≤ c̃

q

∫ ∞
0

dp′

p′ε
1

(p′ + p+ 1)2

(
1

|q − p′|ε
− 1
|q + p′|ε

)
. (I.2.75)

Since the divergence at q = 0 results from the behaviour of the integral near p′ = 0,
it is sufficient to reduce the integration region to [0, 1] and estimate (p′ + p +
1)−2 ≤ 1. The resulting integral can be performed analytically with the help of
hypergeometric functions (Gradshteyn and Ryzhik 1965, p.284), and it behaves
∼ q1−2ε for q → 0. B1V is in the same operator class such that we obtain

|ŵ2(q,p)| ≤ c
1 + qε

q2ε(q + p+ 1)2
. (I.2.76)

By induction, one can show that for k > 2, one has |ŵk(q,p)| ≤ c
(q+p+1)2+ε .

Thus one obtains regularisation upon increasing k, resulting in bounded operators
Bk, k > 1. �

Proposition I.2 provides justification for representing the transformed Dirac op-
erator in terms of a series expansion in the potential strength. Note, however, that
the limit ε → 0 cannot be carried out since in (I.2.55), ε

1−nε δ
− 1−nε

ε → ∞ as
ε → 0, which implies C → ∞ in (I.2.51). Therefore, this limit cannot be used to
prove p-form boundedness of Vk, 1 ≤ k ≤ n with form bound less than one, in
the case of the Coulomb potential.

I.3. Relation to the Douglas-Kroll transformation scheme.

The Douglas-Kroll transformation scheme for the Dirac operator is based on
the Foldy-Wouthuysen (1950) transformation, aimed at casting the free Dirac op-
erator into an operator which does not couple the upper and lower components
of the relativistic wavefunction. In this section, the Foldy-Wouthuysen transfor-
mation, generalised by Douglas and Kroll (1974) to Dirac operators including an
electrostatic potential, will be described. Subsequently, it will be shown that the
Douglas-Kroll transformation scheme is equivalent to the Sobolev transformation
scheme. Finally, the advantages and drawbacks of the resulting operators will be
discussed.
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a) The Douglas-Kroll transformation scheme

Like the Sobolev transformation scheme, the Douglas-Kroll transformation scheme
consists of a series of unitary operators U ′j . The zeroth-order transformation oper-
ator is diagonal in momentum space and is given by

U ′0 := A(p)
(

1 + β
αp

Ep +m

)
, A(p) :=

(
Ep +m

2Ep

) 1
2

, (I.3.1)

and for the transformed Dirac operator one obtains with U
′−1
0 = A(p) (1−β αp

Ep +m
)

U ′0HU
′−1
0 = βEp + E1 + O1

E1 := A(p)
(
V +

αp
Ep +m

V
αp

Ep +m

)
A(p), (I.3.2)

O1 := βA(p)
(

αp
Ep +m

V − V
αp

Ep +m

)
A(p).

When a potential is present the operator E1, called an even operator because it
commutes with β, is also diagonal. But there is an additional term, the so-called
odd termO1 which anticommutes with β and which does couple the two components
of ψ. Therefore, the next transformation, U ′1, is aimed at eliminating O1. As has
been shown by Wolf, Reiher and Hess (2002), the choice of this transformation is not
unique. Historically, a square-root form was chosen, U ′j = (1 +W 2

j )
1
2 +Wj , j ≥ 1,

with antisymmetric operators Wj , i.e. (ϕ,Wjϕ) = −(Wjϕ,ϕ). However, in order
to establish the equivalence with the Sobolev transformations, an exponential form
has to be taken,

U ′j := e−iSj , j ≥ 1, (I.3.3)
with essentially self-adjoint operators Sj . For this exponential form, the transfor-
mation scheme (I.2.6) from the previous section can be used, such that

U ′1U
′
0H U

′−1
0 U

′−1
1 = βEp + E1 + O1 + i[βEp, S1] + i[E1 +O1, S1]

−1
2

[ [βEp, S1], S1] + R(γ3). (I.3.4)

S1 is chosen as an odd operator which eliminates O1 according to

i [βEp, Sj ] = −Oj , j = 1 (I.3.5)

hence S1 is of first order in the potential like O1, and the terms which are disre-
garded in (I.3.4) are in fact at least of third order in the potential. The transfor-
mation scheme is continued in the sense that after k transformations, the potential
term which is of k + 1st order in the potential strength, is decomposed into even
(Ek+1) and odd (Ok+1) contributions (corresponding to their behaviour when com-
muted with β), and the successive transformation U ′k+1 = e−iSk+1 eliminates the
odd term by means of the choice (I.3.5) for j = k+ 1. After n+ 1 transformations
one arrives at

H ′n := βEp + E1 + ...+ En (I.3.6)
which only consists of even terms and agrees with the transformed Dirac operator
to the order of γn+1.

With H ′n of this form, one can easily eliminate the lower components of ψ in order
to obtain e.g. the nonrelativistic limit. This is either done by choosing ψ :=

(
u
0

)
, or

equivalently, by projecting the block-diagonalised matrix-valued operator H ′n onto
the upper block (by means of forming 1+β

2 H ′n
1+β

2 ). With this procedure, one has
a reduction from the 4-dimensional space of ψ to the 2-dimensional space of u.

Let ψ :=
(
u
0

)
with u ∈ H1/2(R3)×C2 an arbitrary function. Then one can form

the expectation value of H ′n and in this way define an operator b(n)
m which acts on
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H1/2(R3)× C2 (instead of H1/2(R3)× C4) by means of (Douglas and Kroll 1974,
EPS 1996)

(ψ,H ′n ψ) = (u, b(n)
m u) (I.3.7)

= (u, (b0m + b1m + ...+ bnm) u).

The index m refers to the particle mass while the other index denotes the order in
the potential strength.

b) Equivalence of Sobolev and Douglas-Kroll transformation scheme

If the Douglas-Kroll unitary transformations are chosen of exponential type, one
has a termwise equivalence of the transformed Dirac operator to any order n in the
potential strength. For non-exponential unitary transformations, the transformed
operator will differ from the Sobolev transformed operator for sufficiently high n
(e.g. n > 4 for a square-root type). However, the equivalence persists if the
same type of unitary transformation (not necessarily exponential) is used in both
transformation schemes.

We consider expectation values of the Sobolev transformed Dirac operator taken
with a 4-spinor ϕ in the positive spectral subspace H+,1 := Λ+(H1/2(R3)× C4) of
the free Dirac operator D0. Such a spinor can in momentum space be expressed in
terms of Pauli spinors u ∈ H1/2(R3)× C2 (Rose 1961, EPS 1996),

ϕ̂(p) =
1√

2Ep (Ep +m)

(
(Ep +m) û(p)

pσ û(p)

)
, (I.3.8)

where σ is the vector of the three Pauli matrices given in the introduction. We
have the following theorem.
Theorem I.2.
Let ϕ ∈ Λ+(S(R3) × C4) be a 4-spinor in the positive spectral subspace of D0,
which defines a Pauli spinor u according to (I.3.8). Let H ′n be the Douglas-Kroll
transformed Dirac operator to n-th order in the potential strength, using exponential
unitary operators U ′j. Let H(n) be the Sobolev-transformed operator from Theorem
I.1. Then their expectation values agree to any order n,

(ϕ,H(n) ϕ) =

(
ϕ,

n∑
k=0

Hk ϕ

)
=
((

u

0

)
,H ′n

(
u

0

))
n = 1, 2, ... . (I.3.9)

The proof is performed with the help of a lemma.
Lemma I.7 (Relation between transformed potentials).
Let H = D0 + V and Uj = eiBj , j = 1, ..., n be the Sobolev transformation
scheme, where the potential term of k-th order in the potential strength γ is de-
composed into Vk + Wk. Let U ′0, U

′
j = e−iSj , j = 1, ..., n be the Douglas-Kroll

transformation scheme with the respective decomposition into Ek + Ok. Then one
has the identification

βEp = U ′0D0 U
′−1
0 , Ek = U ′0 Vk U

′−1
0 , Ok = U ′0Wk U

′−1
0

Sk = U ′0Bk U
′−1
0 , k = 1, ..., n (I.3.10)

with U ′0 from (I.3.1).

Proof of Theorem.
The key observation is the relation between the spinor ψ =

(
u
0

)
and the spinor ϕ

in the positive spectral subspace of D0,

ϕ = U
′−1
0 ψ, (I.3.11)
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which is easily verified in momentum space from the explicit form (I.3.8) of ϕ̂ and
from the definition (I.3.1) of U ′0. We note in passing that D0ϕ = Epϕ is an
immediate consequence of (I.3.11).

The first equality of the theorem is based on Λ+ϕ = ϕ and Λ−ϕ = 0 such that
(ϕ, Vkϕ) = (ϕ, (Λ+HkΛ++Λ−HkΛ−)ϕ) = (ϕ,Hkϕ). Moreover, from U ′0VkU

′−1
0 =

Ek, k = 1, 2, ... and U ′0D0U
′−1
0 = βEp (Lemma I.7), one has

(ϕ,H(n) ϕ) =

(
U
′−1
0 ψ, (D0 +

n∑
k=1

Vk)U
′−1
0 ψ

)
=

(
ψ, (βEp +

n∑
k=1

Ek) ψ

)
= (ψ,H ′n ψ), (I.3.12)

which proves the theorem. �

Proof of Lemma.
We use the induction principle.

(i) Verification of (I.3.10) to first order in γ

The equality U ′0D0U
′−1
0 = βEp follows directly from (I.3.2) if one sets V = 0.

By means of explicit calculation, one has from (I.2.18) in the massless (m = 0)
case

U ′0W1 U
′−1
0 =

1√
2

(1 + βαp̂) · 1
2

(V − α p̂ V αp̂) · 1√
2

(1 + αp̂β)

=
1
2

[β αp̂ V − βV αp̂] = O1 (I.3.13)

with p̂ = p/p. Similarly, with V1 = 1
2 (V + αp̂Vαp̂), one shows U ′0V1U

′−1
0 = E1.

The proof for the massive case proceeds along the same lines, using the relation
m
Ep

+ p2

Ep(Ep+m) = 1.

In order to prove S1 = U ′0B1U
′−1
0 we first show that S1 is uniquely determined

by (I.3.5). Representing S1 andO1 by their respective symbols s1 and o1 via (I.1.13)
and noting that βEp is a multiplication operator in Fourier space, one obtains from
(I.3.5)

−ô1(q,p) = iβE|p+q| ŝ1(q,p) − iŝ1(q,p) βEp
= iβ

(
E|p+q| + Ep) ŝ1(q,p

)
(I.3.14)

which can be uniquely solved for ŝ1(q,p). We now transform the defining equation
(I.2.10) for B1 with U ′0

U ′0W1 U
′−1
0 = −i (U ′0D0U

′−1
0 )(U ′0B1U

′−1
0 ) + i (U ′0B1U

′−1
0 )(U ′0D0U

′−1
0 )

⇐⇒ O1 = −i
[
βEp, U

′
0B1 U

′−1
0

]
(I.3.15)

From the uniqueness of the solution it follows from (I.3.15) and (I.3.5) that U ′0B1U
′−1
0

= S1 and hence the uniqueness of the operator B1.

(ii) Proof for arbitrary order in γ
We assume that to order n− 1 the claim (I.3.10) of Lemma I.7 holds. As a conse-
quence, the relation between the Dirac operators after n− 1 transformations (plus
the zeroth-order one in the Douglas-Kroll case), asserted by Theorem I.2, does hold
too, i.e. (cf. (I.2.11))

βEp + E1 + E2 + ...+ En−1 + En +On = U ′0 (D0 + V1 + ...+ Vn−1 + Vn +Wn) U
′−1
0

(I.3.16)
where we are allowed to include the terms of n-th order since En and On only
depend on βEp, Ej , Oj , Sj , j = 1, ..., n− 1, with the identical dependence of Vn
and Wn on D0, Vj , Wj , Bj , j = 1, ..., n − 1. From (I.3.10) for j = 1, ..., n − 1
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it therefore follows that En = U ′0VnU
′−1
0 and On = U ′0WnU

′−1
0 . Carrying out the

n-th transformation one gets

H ′n = e−iSnH ′n−1 e
iSn = βEp + E1 + ...+ En−1 + En +On + i [βEp, Sn] + R(γn+1)

U+
n · · ·U+

1 H U1 · · ·Un = D0 + V1 + ...+ Vn−1 + Vn + Wn + i [D0, Bn] + R(γn+1).
(I.3.17)

Bn is obtained from Wn = −i [D0, Bn], or transformed with U ′0,

U ′0Wn U
′−1
0 = On = −iU ′0 [D0, Bn] U

′−1
0 = −i [βEp, U ′0BnU

′−1
0 ]. (I.3.18)

From uniqueness of the solution Sn to the equation On = −i[βEp, Sn] follows
U ′0BnU

′−1
0 = Sn. �

c) The Jansen-Hess operator representations

The second-order operator H ′2 has gained particular attention because, if numeri-
cally investigated, its ground-state energy is rather close to the exact solution of the
one-particle Dirac equation in the case of a Coulomb potential. In this respect, H ′2
is a considerable improvement over the first-order Brown-Ravenhall operator which
largely underestimates the ground-state energy for high nuclear charges (Wolf, Rei-
her and Hess 2002). It was first derived by Jansen and Hess (1989) who added a
missing term to the original result of Douglas and Kroll (1974).

(i) The Douglas-Kroll transformed second-order operator
Using the Douglas-Kroll transformation scheme, we define an operator b(2)

m :=
bm := b0m + b1m + b2m acting on H1/2(R3) × C2, by virtue of (I.3.7). From
their definition, Sk, Ek and Ok are integral operators in momentum space, and
so are b1m, b2m. However, a coordinate-space representation is sometimes more
convenient for the analysis of an operator.

We start from the definition of the Jansen-Hess operator on H1/2(R3) × C4

(Jansen and Hess 1989),

H ′2 = βEp + E1 +
i

2
[O1, S1] (I.3.19)

with E1 andO1 from (I.3.2) and the symbol of S1 from (I.3.14). We use
((
u
0

)
, αiαj

(
u
0

))
= (u, σiσju) and

((
u
0

)
, β
(
u
0

))
= (u, u) as well as (αp̂)2 = (σp̂)2 = 1, and obtain

with V = −γ/x, identifying p with −i∂/∂x and p with (−∆)
1
2 ,

b0m = Ep =
√
p2 +m2

b1m = −γ A(p)
[

1
x
A(p) + h(p) σp̂

1
x
σp̂ h(p)A(p)

]
b2m =

( γ
2π

)2

A(p)
[

1
x
A2(p) h2(p) W10,m + W10,mA(p)h2(p)

1
x
A(p)

− 1
x
A2(p)h(p) σp̂ W11,m − W11,mA(p)

1
x
A(p) σp̂ h(p)

− σp̂ h(p)
1
x
σp̂ h(p)A2(p) W10,m − σp̂ h(p) W11,mA(p)

1
x
A(p)

+ σp̂ h(p)
1
x
A2(p) W11,m + σp̂ h(p) W10,mA(p)

1
x
A(p) σp̂ h(p)

]
, (I.3.20)

with A(p) :=

√
Ep +m

2Ep
and h(p) :=

p

Ep +m
. For mass m = 0, one has h(p) = 1

and A(p) = 1√
2

while in the general case (m ≥ 0), h(p) ∈ [0, 1] and A(p) ∈ [ 1√
2
, 1]
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are bounded multiplication operators in momentum space. In the expression for
b2m we have introduced (bounded) integral operators W10,m and W11,m which are
related to the transformation operator S1 and are defined in momentum-space
representation by means of

(Ŵ10,m ϕ)(p) :=
∫
dp′

1
|p− p′|2

A(p′)
1

Ep + Ep′
ϕ(p′)

(Ŵ11,m ϕ)(p) :=
∫
dp′

1
|p− p′|2

σp̂′ · h(p′) A(p′)
1

Ep + Ep′
ϕ(p′). (I.3.21)

For later use, we also give the Jansen-Hess operator as an integral operator
in momentum space. To do so, we Fourier transform the potential −γ/x, which
introduces factors of the type |p−p′|−2 (see (I.2.19)), and obtain (EPS 1996, BSS
2002)

(u, bmu) =
∫
dp û(p) b0m(p) û(p) +

∫
dp dp′ û(p) [b1m(p,p′) + b2m(p,p′)] û(p′)

(I.3.22)
where

b1,m(p,p′) := − γ

2π2

1
|p− p′|2

[1 + σp̂σp̂′ h(p)h(p′)] A(p)A(p′)

b2m(p,p′) :=
1
2

( γ

2π2

)2
∫
dp′′

1
|p− p′′|2

1
|p′′ − p′|2

[
1

Ep′ + Ep′′
+

1
Ep + Ep′′

]
·A(p)A(p′)A2(p′′) (h(p′′)σp̂′′ − h(p)σp̂) (h(p′′)σp̂′′ − h(p′)σp̂′). (I.3.23)

Recall that in the momentum representation, the kinetic energy operator b0m(p) =
Ep is diagonal. This is of great help when considering the form boundedness and
compactness of the potential terms relative to the kinetic energy (see next section).

(ii) The Sobolev transformed second-order operator
Restricting H1/2(R3) × C4 to the positive spectral subspace of the free Dirac

operator, it is sufficient to consider instead of H(2) the operator

B(2)
m := D0 + H1 + H2 = D0 + V +

i

2
[W1, B1] (I.3.24)

=: D0 + B1m + B2m

which is derived from (I.2.14). For the first term, i[V1, B1], from H2 we have
according to Lemma I.7 and (I.3.12), U ′0 [V1, B1]U

′−1
0 = [E1, S1]. This is an odd

operator (because S1 is odd) and therefore its expectation value formed with ψ =(
u
0

)
vanishes. So it can be dropped.

The explicit form of the last term, B2m := i
2 [W1, B1] is obtained with the help

of the ΨDO technique in a similar way as applied to the calculation of the symbol
φ1 of B1. We use the symbol equation ĵ(q,p) = i

2 (ŵ1φ1 − φ̂1w1)(q,p) for the
symbol j of B2m, together with (I.1.17), and recall that W1 = 1

2 (V −D̃0V D̃0) with
D̃0 a multiplier in momentum space. Then we obtain

ĵ(q,p) =
i

4
1

(2π)
3
2

∫
dp′

{
v̂(q− p′)φ̂1(p′,p)− D̃0(q + p) v̂(q− p′) D̃0(p + p′)

·φ̂1(p′,p)−φ̂1(q− p′,p + p′) v̂(p′) + φ̂1(q− p′,p + p′) D̃0(p′ + p) v̂(p′) D̃0(p′)
}
.

(I.3.25)
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Alternatively, B2m can be viewed as an integral operator with kernel kB . There
is a simple relation between kB and the Fourier transform ĵ of the symbol of B2m.
From (I.1.14) one has

(ϕ̂, B̂2mϕ) =
∫
dp ϕ̂(p)

∫
dp′ kB(p,p′) ϕ̂(p′)

=
1

(2π)
3
2

∫
dp ϕ̂(p)

∫
dp′ ĵ(p− p′,p′) ϕ̂(p′)

⇐⇒ kB(p,p′) =
1

(2π)
3
2
ĵ(p− p′,p′). (I.3.26)

Inserting the expressions (I.2.19) and (I.2.15) for the symbols of V and B1, respec-
tively, one obtains

kB(p,p′) =
γ2

16π4

∫
dp′′

1
|p′′ − p|2

1
|p′′ − p′|2

(1 − D̃0(p′′))(
1

Ep′′ + Ep
+

1
Ep′′ + Ep′

)

(I.3.27)
where D̃0(p) ϕ̂(p) = ϕ̂(p) has been used whenever D̃0 is acting on ϕ.

From this kernel, one can derive the coordinate-space representation of B2m. To
this aim, we define an auxiliary potential V10,m by means of

(V̂10,mϕ)(p′′) :=
∫
dp′

1
|p′′ − p′|2

1
Ep′′ + Ep′

ϕ̂(p′). (I.3.28)

Then the part of (I.3.27) which is proportional to (Ep′′ + Ep′)−1 leads to the fol-
lowing operator, called J1,

(J1ϕ)(x) =
γ2

16π4

√
π

2
1
x

∫
dp′′ eip

′′x (1− D̃0(p′′)) (V̂10,mϕ)(p′′)

=
γ2

8π2

1
x

(1− D̃0(p)) (V10,m ϕ)(x) (I.3.29)

where, as before, p has to be interpreted as −i∂/∂x. The other part of (I.3.27)
leads to the conjugate of J1 (in accordance with the symmetry of B2m). We get

B2m =
γ2

8π2

{
1
x

(1− D̃0(p))V10,m + V10,m (1− D̃0(p))
1
x

}
. (I.3.30)

Since V10,m has a very simple structure, it is possible to find its coordinate repre-
sentation in order to provide an explicit expression for B2m.

We have the identity

1
Ep′′ + Ep′

=
∫ ∞

0

dt e−t(Ep′′+Ep′ ), (I.3.31)

leading to a factorisation of the p′′- and p′-dependent terms in the integrand. So
we obtain

V10,m = 2π2

∫ ∞
0

dt e−tEp
1
x
e−tEp , (I.3.32)

resulting in

B2m =
γ2

4

∫ ∞
0

dtJ(t), J(t) := C(t)e−tEp + e−tEpC(t) (I.3.33)

where C(t) is a self-adjoint, positive operator,

C(t) :=
1
x

(1− D̃0(p)) e−tEp
1
x
. (I.3.34)
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The latter property is true because one has (ϕ, (1− D̃0)ϕ) = ‖ϕ‖2(1− (ϕ,D̃0ϕ)
(ϕ,ϕ) ) ≥

‖ϕ‖2(1−‖D̃0‖) = 0, such that 1− D̃0 ≥ 0 is a positive operator. From this follows
that (ϕ,C(t)ϕ) = (e−tEp/2 1

x ϕ, (1− D̃0(p)) e−tEp/2 1
x ϕ) ≥ 0.

d) Choice of transformation scheme

From a comparison of the Jansen-Hess operator in its representations bm and
B

(2)
m in coordinate space, (I.3.20) respective (I.3.24) with (I.3.30), it is obvious that

B
(2)
m , obtained with the Sobolev transformation scheme, has a much simpler shape.
Although we did not find it possible to show positivity of the second-order term

B2m from the representation (I.3.33), it is evident from (I.3.27) that its kernel
has a positive real part. There is a proof by Iantchenko (see IJA 2003), involving
the partial-wave representation of the operator b2m shown in Appendix B, that
the respective (partial-wave) kernels of the second-order term of the Jansen-Hess
operator are indeed positive.

The breakthrough provided by the Sobolev transformation scheme becomes clear
when one proceeds from the one-particle Dirac operator to the multi-particle Cou-
lomb-Dirac operator to be discussed in parts II and III. For example, compare the
Douglas-Kroll transformed two-particle second-order operator (Douglas and Kroll
1974, eqs. (4.22) – (4.24)), filling nearly a whole page, with the respective Sobolev
transformed operator (II.4.4) which opens the way to mathematical analysis.

The advantage of the Douglas-Kroll transformed operators lies in their ready
access to numerical calculations in quantum chemistry (Hess 1986, Wolf, Reiher
and Hess 2002,2004). If atomic binding energies and energy shifts due to relativistic
processes are of interest, variational calculations are a very efficient tool. Such
computations are much simpler if carried out in two-dimensional space, permitting
an arbitrary choice of wavefunction u (without having to care for the restriction to
the positive spectral subspace).

I.4. Boundedness properties and positivity of the Jansen-Hess operator.

From Theorem I.2, one has the relation between the Douglas-Kroll transformed
operator b(n)

m and the Sobolev-transformed operator B(n)
m ,(

b
(n)
m 0
0 0

)
=

1
2

(1 + β) U ′0 B
(n)
m U

′−1
0

1
2

(1 + β) (I.4.1)

which differ only by the bounded operators β and U ′0. Therefore, in most cases it
plays no role whether the transformed operator is chosen in the form b

(n)
m or B(n)

m .
In the following analysis, both representations will be used.

The boundedness properties of an essentially self-adjoint operator A defined on
a dense subset of a Hilbert space H are crucial for its extension to a self-adjoint
operator. Let the operator A consist of the kinetic energy operator D0 and a sum
of potential terms V1, ..., Vk. Assume V1 + ...+ Vk is D0-form bounded with form
bound c less than 1, such that the form domain of A is the same as that of D0,
implying that A is well-defined in the form sense. Then A is form-bounded from
below, (ϕ,Aϕ) = (ϕ, (D0 + V1 + ... + Vk)ϕ) ≥ (1 − c) (ϕ,D0ϕ) > 0, such that
there exists the self-adjoint Friedrichs extension of A on H (Pearson 1988, p.104;
EPS 1996).
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a) Collection of literature results

The properties given below concern the Brown-Ravenhall operator B(1)
m , b

(1)
m

(EPS 1996, Tix 1997, 1998, Burenkov and Evans 1998) as well as the massless
Jansen-Hess operator b := b(2); a few results are also known for the massive
Jansen-Hess operator b(2)

m (Stockmeyer 2002, BSS 2002).
Lemma I.8 (Brown-Ravenhall operator).
Let u ∈ S(R3)× C2 and γBR = 2/(π2 + 2

π ).

(i) Let b(1)
m = b0m + b1m. Then b1m is b0m-form bounded with form bound < 1

for γ < γBR.
(ii) Let b(1) := b0 + b1 be the massless Brown-Ravenhall operator. Then

|(u, (b1m − b1)u)| ≤ 3
2
mγ (u, u). (I.4.2)

|(u, (b(1)
m − b(1))u)| ≤ m (1 +

3
2
γ) (u, u).

(iii) For γ ≤ γBR, b
(1)
m is positive. Explicitly,

(u, b(1)
m u) ≥ m (1− γ) (u, u). (I.4.3)

iv) In the partial-wave representation of b(1)
m , the ground-state configuration is

l = 0, s = 1
2 .

(v) If γ > γBR, b
(1)
m is unbounded from below.

The first item of (ii) was proved by Tix (1997), but no explicit bound was given.
This was provided later by Stockmeyer (2002). In order to calculate the form
bound of the massive Brown-Ravenhall operator relative to the massless one we
use the mean value theorem of differential calculus to deduce 0 ≤ b0m − b0 =√
p2 +m2−p = m (db0mdm )m=µ = m · µ√

p2+µ2
≤ m for any number µ ∈ (0,m) and

all p ≥ 0. Adding the bound 3
2mγ of the first-order terms completes the proof.

Positivity was proved by Tix (1998), and items (iv) and (v) were shown by
EPS(1996).

In order for D0 + V to be a well-defined operator in the form sense, V has
to be D0-form bounded with form bound smaller than one (which is the case for
γ < γBR, see EPS(1996) and part II, Lemma II.6).
Lemma I.9 (Positivity of the massless Jansen-Hess operator).
Let u ∈ S(R3)× C2 and γJ = 1.006 be the smaller root of 1− γ

γBR
+ dγ2 = 0,

d = 1
8 (π2 −

2
π )2.

(i) Let b = b0 + b1 + b2. Then b2 ≥ 0.
(ii) For γ ≤ γJ , b is positive with

(u, b u) ≥ (1 − γ

γBR
+ dγ2) (u, b0 u). (I.4.4)

(iii) In the partial-wave representation of b, the ground-state configuration is
l = 0, s = 1

2 .

The bound γJ is not sharp, i.e. b is not unbounded from below for all γ > γJ
(Siedentop, Priv. Comm.). The reason is that for γ > 9.11, the r.h.s. of (I.4.4) is
again positive.

The proof is performed in Mellin space (Stockmeyer 2002, BSS 2002) which is
introduced in Appendix B. When m 6= 0, the nonexistent scaling properties of the
operator b(2)

m (in contrast to b) prohibit an analogous proof of positivity in the
massive case. Instead, one has
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Lemma I.10 (Bounds for the massive Jansen-Hess operator).
Let u ∈ S(R3)× C2, and let bm := b

(2)
m = b0m + b1m + b2m.

(i)
|(u, (b2m − b2)u)| ≤ mγ2d0 (u, u) (I.4.5)

with d0 := 8 + 12
√

2.
(ii)

(u, bm u) ≥ dγm (u, u) for γ ≤ γBR (I.4.6)
with dγ := 1− γ − γ2d.

(iii)
(u, bm u) ≥ −cm (u, u) for γ ≤ γJ (I.4.7)

and c := 3
2γ + d0γ

2.

The boundedness (ii) from below follows immediately from (I.4.3) and (I.4.5)
since b2 ≥ 0.

The lower bound (iii) for γBR < γ ≤ γJ follows from (I.4.2) and (I.4.5)
(Stockmeyer 2002).

b) Additional boundedness properties of the Jansen-Hess operator

Our first goal is to show the subordinacy of the second-order term b2m with
respect to the first-order term in the potential strength γ.
Proposition I.3 (Subordinacy of b2m respective B2m).
Let B(2)

m = D0 +B1m +B2m with −B1m := −V = γ
x ≥ 0. If γ ≤ 4/π, then

(i) for m = 0,
−b1 ≥ b2 ≥ 0. (I.4.8)

(ii) For m ≥ 0,

−B1m − B2m =
γ

x
Rm + R∗m

γ

x
(I.4.9)

where Rm is a bounded operator with Re Rm ≥ 0.
(iii) For γ ≤ 4

πC , −B1m−B2m is positive. Explicitly, for ϕ ∈ Λ+(S(R3)×C4),

(ϕ, (−B1m −B2m) ϕ) ≥ (1 − C · γπ
4

) (ϕ,−B1m ϕ), (I.4.10)

where C is a constant of order unity.
The methods of proof for the massless and massive case (i) and (iii), respectively,

are very different. For m = 0, the proof can be carried out in Mellin space which is
a great simplification. For m 6= 0, the coordinate-space representation of B1m and
B2m has to be used.

Proof of (i).
According to Appendix B, a partial-wave expansion of the function u ∈ S(R3)×C2

in momentum space is made,

û(p) =
∑
ν

p−1 aν(p) Ων(p̂) ν = {l,M, s} (I.4.11)

and further, the Mellin space representation a#
ν (t) of the coefficient aν(p) is intro-

duced via formula (B.5). The expectation value of b can be written in alternative
ways,

(ϕ, b ϕ) =
∑
ν

∫ ∞
0

dp aν(p)
∫ ∞

0

dp′ bls(p, p′) aν(p′)

=
∑
ν

∫ ∞
−∞

dt

∣∣∣∣a#
ν (t+

i

2
)
∣∣∣∣2 b#ls(t−

i

2
) (I.4.12)
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with bls and b#ls given explicitly in (B.4) and (B.7), (B.8), respectively. This shows
that b is diagonal in Mellin space. In order to prove −b1 − b2 ≥ 0, it is sufficient
to prove

−b(1)#
ls (t− i

2
) − b

(2)#
ls (t− i

2
) ≥ 0 (I.4.13)

where b(1)
ls and b

(2)
ls are the first- and second-order contributions in γ, respectively,

to the partial wave bls of b.
We proceed in two steps. First we show that (I.4.13) holds for any l larger

than a given l1. Subsequently we establish a recurrence relation to prove (I.4.13)
inductively for decreasing l.

(α) Search for l1
The gamma function entering into the definition of b(1)#

ls and b(2)#
ls via (B.9) has

the following property (Gradshteyn and Ryzhik 1965, p.937)

lim
|z|→∞

∣∣∣∣Γ(z + a)
Γ(z)

z−a
∣∣∣∣2 = 1 for z ∈ C\(Z− ∪ {0}), a ∈ R (I.4.14)

From (B.9) one has q#
l (t − i

2 ) =
√
π

2
√

2

∣∣∣∣Γ(z + a)
Γ(z)

∣∣∣∣2 for z := l
2 + 1 − it

2 and

a := − 1
2 . Then (I.4.14) guarantees the existence of l0 ∈ N such that for any ε with

0 < ε < 1, and for all l > l0,

(1− ε) 1∣∣ l
2 + 1− it

2

∣∣ < 2

√
2
π
q#
l (t− i

2
) < (1 + ε)

1∣∣ l
2 + 1− it

2

∣∣ . (I.4.15)

From this and from the functional dependence (B.8) of b(1)#
ls and b

(2)#
ls on q#

l it
follows that the upper and lower bounds of q#

l (t− i/2) and hence of b(1)#
ls (t− i/2)

decrease as l−1 for l→∞, while the bounds of b(2)#
ls (t− i/2) are of order O(l−2)

making that term negligible with respect to b(1)#
ls (t − i/2) for sufficiently large l.

Since −b(1)#
ls (t− i

2 ) is strictly positive for γ > 0, it follows that there exists l1 ∈ N
such that

(−b(1)#
ls − b(2)#

ls )(t− i

2
) ≥ 0 for all l ≥ l1, s = ±1

2
. (I.4.16)

(β) Recurrence relation
From the explicit representation (B.8) one has b(i)#

l+1,− 1
2
(t− i

2 ) = b
(i)#

l, 12
(t− i

2 ),

i = 1, 2, l ∈ N0, such that we can restrict ourselves to s = 1
2 .

For γ ≤ 4/π it was shown by Stockmeyer (2002) and BSS (2002) that

1 +
√

2π (b(1)#
l,1/2 + b

(2)#
l,1/2)(t− i

2
) ≤ 1 +

√
2π (b(1)#

l+1,1/2 + b
(2)#
l+1,1/2)(t− i

2
). (I.4.17)

Hence

(−b(1)#
l+1,s − b

(2)#
l+1,s)(t−

i

2
) ≤ (−b(1)#

ls − b(2)#
ls )(t− i

2
), (l, s) ∈ {(N0,

1
2

) ∪ (N,−1
2

)}.
(I.4.18)

Starting in the r.h.s. of (I.4.18) with l = 0 if s = 1
2 and with l = 1 for s = − 1

2
and continuing the chain of inequalities to the left until l1 is reached, proves that
(−b(1)#

ls − b(2)#
ls )(t− i/2) ≥ 0 for all l, s. �

Proof of (ii).
From the Sobolev representation (I.3.24) with (I.3.30) we have, using Λ− =
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(1− D̃0(p))/2,

−(B1m + B2m) =
γ

x
Rm + R∗m

γ

x
(I.4.19)

Rm :=
1
2
− γ

4π2
Λ− V10,m.

We prove that Rm is bounded with positive real part if γ ≤ 4
π , by showing that

‖ γ
4π2 Λ− V10,m‖ ≤ 1

2 , i.e. for ϕ ∈ L2(R3)× C4,

‖ γ

4π2
Λ− V10,m ϕ‖ ≤ γ

4π2
‖Λ−‖ ‖V10,m ϕ‖ ≤

γ

4π2
‖Λ−‖ ‖V10,m‖ · ‖ϕ‖ ≤ c ‖ϕ‖

(I.4.20)
with c ≤ 1

2 . Note that ‖Λ−‖ = 1, and that the adjoint operator is also estimated
by the r.h.s. of (I.4.20).

Because of Lemma I.3 it is sufficient to prove the above boundedness for the
quadratic form of V10,m. Using the momentum representation (I.3.28) and the
Lieb and Yau formula, Lemma I.1, one has

|(ϕ, V10,m ϕ)| =
∫
dp ϕ̂(p)

∫
dp′

1
|p− p′|2

1
Ep + Ep′

ϕ̂(p′)

≤
∫
dp |ϕ̂(p)|2

∫
dp′

1
|p− p′|2

1
p+ p′

f(p)
f(p′)

(I.4.21)

where the estimate Ep ≥ p was used. Choosing f(p) = p one obtains with Appendix
A,

|(ϕ, V10,m ϕ)| ≤
∫
dp |ϕ̂(p)|2 · π

3

2
(I.4.22)

and consequently from Lemma I.3, ‖V10,m ϕ‖ ≤ π3

2 ‖ϕ‖. In order to restrict the
constant c in (I.4.20) to 1

2 , one needs γ
4π2 · π

3

2 ≤
1
2 . which leads to the condition

γ ≤ 4
π . �

Proof of (iii).
For boundedness proofs of an operator B relative to an operator A a diagonal rep-
resentation of the dominating operator A is of advantage. Should B be nondiagonal
in this representation, it can nevertheless be estimated (by means of the Lieb and
Yau formula) by a diagonal operator which is in the same symbol class as B. In
the present case, the operator A stands for the Coulomb field V which is diago-
nal in coordinate space. Therefore, the kernel kB of the subordinate second-order
operator B2m is required in coordinate space.

We use the inverse Fourier transform, ϕ̂(p) = 1
(2π)3/2

∫
dx e−ipx ϕ(x), to cast

(I.3.26) into the form

(ϕ,B2m ϕ) =
∫
dx ϕ(x)

∫
dx′ k(x,x′) ϕ(x′) (I.4.23)

k(x,x′) :=
1

(2π)3

∫
dp eipx

∫
dp′ kB(p,p′) e−ip

′x′ .

Then we can estimate with Lemma I.1

−(ϕ, (B1m + B2m) ϕ) ≥ −(ϕ,B1m ϕ) − |(ϕ,B2m ϕ)|

≥ −(ϕ,B1m ϕ) −
∫
dx |ϕ(x)|2

∫
dx′ |k(x,x′)| f(x)

f(x′)
. (I.4.24)
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In Appendix E it is shown that the second integral can be estimated by C · πγ
2

4
1
x

with some constant C. Thus,

−(ϕ, (B1m +B2m)ϕ) ≥
∫
dx |ϕ(x)|2 γ

x

(
1 − C · γπ

4

)
, (I.4.25)

from which it follows that −B1m − B2m ≥ 0 for γ ≤ 4
πC . On the other hand, we

have the estimate (I.4.8) for the massless case, which provides the sharp critical
potential strength γ = 4

π for positivity of −b1 − b2. Upon comparing with (I.4.25)
which holds for m ≥ 0, we conjecture that we can set C = 1. The strict proof for
C = 1 would require a numerical computation of the integrals in (E.3). �

As a consequence of Proposition I.3, we get form boundeness of the second-order
potential term relative to the first-order term. From (I.4.10) and (I.4.24) we have
for all m ≥ 0

Corollary.

| (ϕ,B2m ϕ)| ≤ C
γπ

4
(ϕ,−B1m ϕ) (I.4.26)

with form bound < 1 for γ < 4/πC.

Now we turn to the form boundedness of the total potential relative to the
kinetic energy. For subcritical potential strength where the form bound is less than
one, the Jansen-Hess operator is well-defined in the form sense and, thanks to its
boundedness from below, (I.4.7), its Friedrichs extension exists to a self-adjoint
operator on L2(R3)× C2 respective Λ+(L2(R3)× C4).
Proposition I.4 (|D0|-form boundedness of total potential).
Let bm = b0m + b1m + b2m be the Jansen-Hess operator and let u ∈ H1/2(R3)×C2.
Then for all masses m ≥ 0 we have

|(u, (b1m + b2m) u)| ≤ c (u, b0m u) + C (u, u) (I.4.27)

with c < 1 for γ < γJ = 1.006, and C ∈ R. For m = 0 we have C = 0.

Proof.
Let first m = 0. From Lemma I.9 we have

(u, b u) ≥ ε (u, b0 u) (I.4.28)

with 0 < ε < 1 for 0 < γ < γJ . Inserting b = b0 + b1 + b2 leads with Proposition
I.3 to

0 ≤ (u, (−b1 − b2) u) ≤ (1− ε) (u, b0 u) (I.4.29)

which proves (I.4.27) with C = 0.
For m 6= 0 we estimate

|(u, (b1m + b2m)u)| ≤ |(u, (b1m− b1)u)| + |(u, (b2m− b2)u)| + |(u, (b1 + b2)u)|.
(I.4.30)

The first two terms are estimated by constants with the help of Lemmata I.8 and
I.10, while the b0-form boundedness of the last (massless) term has just been proved.
Collecting results and using that 0 ≤ b0 ≤ b0m,

|(u, (b1m + b2m) u)| ≤ 3
2
mγ (u, u) + mγ2d0 (u, u) + (1− ε) (u, b0 u)

≤ m (
3
2
γ + γ2d0) (u, u) + (1− ε) (u, b0m u) (I.4.31)

which completes the proof of (I.4.27). �
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c) Positivity of the massive Jansen-Hess operator

Whereas positivity of the massless Jansen-Hess operator is established for all
potential strengths up to γJ (Lemma I.9) we were not able to reach this ambitious
goal for m 6= 0. Using positivity of the kernel kB of the (second-order) Jansen-Hess
term B2m we have, however,

Proposition I.5 (Positivity of bm for m 6= 0).
Let bm = b0m + b1m + b2m be the Jansen-Hess operator acting on H1/2(R3)×C2.
Then bm > 0 for γ < γc, explicitly

(u, bm u) ≥ c(γ) (u, b0m u) (I.4.32)

with c(γ) > 0 for γ < γc = 0.5929 (Z ≤ 81). In case the proof is carried out
numerically, the critical coupling strength is increased to γ̃c = 0.8368 (Z ≤ 114).
c(γ) is equal to inf

x∈R+
G0 1

2
(x) from (I.4.48) and (I.4.53), respectively.

We note that from the partial-wave decomposition (B.3) of the expectation value
of bm it follows that bm is positive if the components blsm associated with each
partial wave ν = {l,M, s} are positive.

For the proof a lemma is needed, stating that the largest kernel of the family
blsm is supplied by the lowest angular momentum channel.

Lemma I.11 (Monotonicity of the kernel blsm(p, p′)).
Let blsm(p, p′) = b0m(p) δ(p − p′) + b

(1)
lsm(p, p′) + b

(2)
lsm(p, p′) be the kernel of the

partial-wave decomposed Jansen-Hess operator in momentum space, acting on
H1/2(R+ ∪ {0}). For all p, p′ ≥ 0, l ∈ N0 we have

(i)

−b(1)
lsm(p, p′) ≤ −b(1)

0 1
2m

(p, p′) for s = ±1
2

(I.4.33)

(ii)

b
(2)
lsm(p, p′) ≤ b

(2)

0 1
2m

(p, p′) for s =
1
2
, l ≥ 0 (I.4.34)

b
(2)
lsm(p, p′) ≤ b

(2)

1− 1
2m

(p, p′) for s = −1
2
, l ≥ 1.

The Brown-Ravenhall case (i), proved by EPS (1996), follows immediately from
the explicit form of b(1)

lsm(p, p′) given in (B.3), since the reduced Legendre functions
ql(y) are monotonically decreasing in l for all y 6= 1. The estimates (ii) for the
second-order terms were proved by Iantchenko (see IJA 2003).

Corollary.
For m 6= 0, the ground-state configuration in the partial-wave representation of bm
is a superposition of l = 0, s = 1

2 and l = 1, s = − 1
2 components.

As concerns the missing link in (ii), the dominance of b(2)

0 1
2m

(p, p′) over b(2)

1− 1
2m

(p, p′),
we note that for m 6= 0, the kernels scale with m,

b
(k)
lsm(p, p′) = b

(k)
ls1(q, q′) k = 1, 2, (I.4.35)

where q := p/m, q′ := p′/m, and for k = 2, q′′ := p′′/m have to be substituted
in the expressions (B.3). Hence with p, p′ ∈ [0,∞), one also has q, q′ ∈ [0,∞),
such that one can restrict oneself to the case m = 1. We have numerical evidence
that indeed, b(2)

0 1
2 1

(p, p′) − b(2)

1− 1
2 1

(p, p′) ≥ 0 for all p, p′ ≥ 0. Note, however, that

there is no global dominance of the integrand in b
(2)
lsm(p, p′) for l = 0 over the one

for l = 1. This is to be contrasted to the proof of Lemma I.11(ii) which profits
from the global dominance of the integrand for the minimum l considered.
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Proof of Proposition.
Consider the estimate of the energy in a partial-wave state aν , defined by (B.1) and
(B.3),

(aν , blsm aν) ≥ (aν , b0m aν) + (aν , b
(1)
lsm aν) − |(aν , b(2)

lsm aν)|

≥ (aν , b0m aν) − (|aν |, −b(1)
lsm |aν | ) − (|aν |, b(2)

lsm |aν | ) (I.4.36)

where we have used that the kernels of −b(1)
lsm and b

(2)
lsm are positive (cf. (B.3) and

IJA 2003). The last two terms can be estimated with the help of the Lieb and Yau
formula of Lemma I.1.

Consider first the case s = 1
2 . Following EPS(1996), the first-order term with

its explicit form (B.3) is estimated by∫ ∞
0

∫ ∞
0

dp dp′ |aν(p)| − b(1)
lsm(p, p′) |aν(p′)| (I.4.37)

≤ γ

π

∫ ∞
0

dp |aν(p)|2 A2(p)
{∫ ∞

0

dp′ ql(
p

p′
)
p

p′
+ h2(p)

∫ ∞
0

dp′ ql+2s(
p

p′
)
p

p′

}
where here and in the following we use f(p) = p for the convergence generating
function. Using that ql(y) is monotonically decreasing in l we obtain with the
formulae from Appendix A∫ ∞

0

dp′
[
ql(

p

p′
) + h2(p) ql+1(

p

p′
)
]
p

p′
≤
∫ ∞

0

dp′
[
q0(

p

p′
) + h2(p) q1(

p

p′
)
]
p

p′

= p

(
π2

2
+ 2 h2(p)

)
. (I.4.38)

For the second-order term in (I.4.36) we make the additional estimates

A2(p′′)
(

1
Ep′ + Ep′′

+
1

Ep + Ep′′

)
≤ Ep′′ +m

2Ep′′
· 2
m+ Ep′′

≤ 1
p′′
, (I.4.39)

and we also drop the two negative terms in the integrand of the kernel of b(2)
lsm.

Then we get

( |aν |, b(2)
lsm |aν | ) ≤

γ2

2π2

∫ ∞
0

dp |aν(p)|2 A(p)2

∫
dp′

p

p′

∫ ∞
0

dp′′

p′′

·
{
ql(
p′′

p
) ql(

p′′

p′
) h2(p′′) + h2(p) ql+1(

p′′

p
) ql+1(

p′′

p′
)
}
. (I.4.40)

We estimate the integrand again by its value at l = 0 and use that h2(p′′) ≤ 1.
We substitute z := p′/p′′ for p′. Then, the integrals decouple and one gets with
Appendix A∫ ∞

0

dp′
p

p′

∫ ∞
0

dp′′

p′′
ql(
p′′

p
)ql(

p′′

p′
) h2(p′′) ≤

∫ ∞
0

dp′′

p′′
q0(

p′′

p
)
∫ ∞

0

dp′
p

p′
q0(

p′′

p′
)

= p

∫ ∞
0

dp′′

p′′
q0(

p′′

p
) ·
∫ ∞

0

dz

z
q0(z) = p

(
π2

2

)2

, (I.4.41)

and similarly for the second term,∫ ∞
0

dp′
p

p′

∫ ∞
0

dp′′

p′′
ql+1(

p′′

p
) ql+1(

p′′

p′
) ≤ p

∫ ∞
0

dp′′

p′′
q1(

p′′

p
)·
∫ ∞

0

dz

z
q1(z) = p·22.

(I.4.42)
Collecting results, the expectation value of the Jansen-Hess operator is estimated
by

(aν , bl 12maν) ≥
∫ ∞

0

dp |aν(p)|2 Ep ·G0 1
2
(p), (I.4.43)
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G0 1
2
(p) := 1 − γ

π

p

Ep
A2(p)

(
π2

2
+ 2h2(p)

)
− γ2

2π2

p

Ep
A2(p)

(
π4

4
+ 4h2(p)

)
.

The m-invariance of G0 1
2
(p) for m 6= 0 becomes obvious when x := p/m is intro-

duced. Then Ep = m
√
x2 + 1 and with the definitions of A(p) and h(p) (given

below (I.3.20)) one has

G0 1
2
(mx) = 1− γ

π
x

{√
x2 + 1 + 1
x2 + 1

(
π2

4
+
γπ3

16

)
+

x2

(
√
x2 + 1 + 1)(x2 + 1)

(
1 +

γ

π

)}
(I.4.44)

which is independent of m. Hence, G0 1
2
(mx) = G0 1

2
(x).

If G0 1
2
(x) > 0 then bl 12m > 0. One easily derives G0 1

2
(x) = 1 for x = 0 and

G0 1
2
(x) → 1 − γ

π (1 + π2

4 + γ
π + γ π

3

16 ) for x → ∞ which is positive for sufficiently
small γ. Our strategy is to look for min

x∈R+
G0 1

2
(x) as a function of γ and subsequently

determine γc by requiring that this minimum is zero.
The requirement G′

0 1
2
(x) = 0 gives the following equation for the minimum value

x0

αx2
0 = α (1 +

√
x2

0 + 1 ) + β
3x2

0

√
x2

0 + 1 + x4
0 + 3x2

0

(
√
x2

0 + 1 + 1)2
(I.4.45)

with α := π2

4 + γπ3

16 and β := 1 + γ
π . Defining z0 :=

√
x2

0 + 1 this results in a
quadratic equation for z0,

(z0 − 2) (z0 + 1) α = β (z0 − 1) (z0 + 2) (I.4.46)

with the solution (since z0 ≥ 1 and α > β)

z0 =
α+ β +

√
9α2 + 9β2 − 14αβ

2(α− β)
. (I.4.47)

From this one can calculate

G0 1
2
(x0) = 1 − γ

π
x0

1
z2

0

[α (z0 + 1) + β (z0 − 1)] != 0 (I.4.48)

resulting in γc = 0.5929.
Now we turn to the case s = − 1

2 . For these states, one can again use ql−1(y) ≤
q0(y) to estimate the expectation values of b(1)

lsm and b
(2)
lsm by those for l = 1 and

s = − 1
2 . The subsequent method of calculation is the same as for the states with

l = 0, s = 1
2 , only that q0(y) and q1(y) are interchanged. Instead of (I.4.43) one

now obtains

(aν , bl− 1
2m
aν) ≥

∫ ∞
0

dp |aν(p)|2 Ep ·G1− 1
2
(p), (I.4.49)

G1− 1
2
(p) := 1 − γ

π

p

Ep
A2(p)

(
2 +

π2

2
h2(p)

)
− γ2

2π2

p

Ep
A2(p)

(
4 +

π4

4
h2(p)

)
.

We will show that (with p := mx)

G1− 1
2
(x) = 1− γ

π
x

{√
x2 + 1 + 1
x2 + 1

(1 +
γ

π
) +
√
x2 + 1− 1
x2 + 1

(
π2

4
+
γπ3

16
)

}
(I.4.50)

is monotonically decreasing, attaining its infimum at x → ∞, namely G1− 1
2
(x) →

1 − γ
π (1 + π2

4 ) − γ2

π2 (1 + π4

16 ). This limit value is again strictly decreasing with γ,
and at γ = γc = 0.5929, it equals 0.0932 > 0. This shows that (aν , bl,− 1

2 ,m
aν) > 0

for γ ≤ γc such that we have finally proved (aν , blsmaν) > 0 for γ < γc.
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The derivative of G1− 1
2
(x) can be cast into the form

−G′1− 1
2
(x) =

γ

π

1
(x2 + 1)2

{
x2

(
π2

4
− 1
)

+
√
x2 + 1

(
1 +

π2

4

)
+ 1− π2

4

+ γ

[
x2

(
π3

16
− 1
π

)
+
√
x2 + 1

(
1
π

+
π3

16

)
+

1
π
− π3

16

]}
...... (I.4.51)

The r.h.s. of (I.4.51) is positive for all x ∈ R+ since
√
x2 + 1 ≥ 1, showing that

G1− 1
2
(x) is monotonically decreasing.

The critical potential strength can be improved by evaluating numerically the
integrals over the kernel of b(2)

lsm which result from the Lieb and Yau formula, without
any further estimate. For the Brown-Ravenhall operator an improved estimate for
s = 1

2 , provided by Tix(1998), is used,

(aν , (b0m + b
(1)
lsm) aν) ≥

∫ ∞
0

dp |aν(p)|2 Ep T0 1
2
(x), (I.4.52)

T0 1
2
(x) := 1 − γ

2

{
(
√
x2 + 1 + 1)

arctanx
x

+
(
√
x2 + 1− 1)(x− arctanx)
(x2 + 1) arctanx− x

}
,

valid for all l, s according to EPS(1996).
Then, estimates for the expectation values of bl 12m and bl− 1

2m
similar to those

given in (I.4.43) and (I.4.49) result, with the functions G0 1
2
(x) and G1− 1

2
(x) re-

placed by new functions G̃0 1
2
(x) and G̃1− 1

2
(x), respectively. One can show nu-

merically that G̃0 1
2
(x) is monotonically decreasing in x, attaining its infimum at

x→∞,

inf
x∈R+

G̃0 1
2
(x) = 1 − γ

2

(
π

2
+

2
π

)
− γ2

8

(
π

2
− 2
π

)2

. (I.4.53)

From setting this equal to zero, the value γ̃c = 0.8368 is obtained.
For the case s = − 1

2 (l ≥ 1), the first-order term is also evaluated numerically
without any further approximation, and the factor h(p)h(p′) is kept in the kernel
when applying the Lieb and Yau formula. Then it is found (numerically) that
G̃1− 1

2
(x) is monotonically decreasing with its infimum at x = ∞ again given by

(I.4.53). Moreover, one always has G̃1− 1
2
(x) > G̃0 1

2
(x). Thus G̃1− 1

2
(x) > 0 if

γ < γ̃c.
Collecting results, we have blsm > 0 for s = ± 1

2 and γ < γ̃c. �

The present proof of positivity by means of the Lieb and Yau formula cannot be
extended to provide critical potential strengths beyond γ̃c. This is lower than the
Brown-Ravenhall value, γBR = 0.906 (Z ≤ 124; EPS 1996), derived from (I.4.53)
by dropping the quadratic term in γ.

One might think of a different way to prove positivity of bm, by trying to establish
that −b(1)

lsm(p, p′) > b
(2)
lsm(p, p′) for all values of p, p′ and subsequently using the

method of proof of Lemma 1 in EPS (1996). In Appendix G it is shown, however,
that there is some region of p, p′ where b(2)

lsm(p, p′) is dominating.

I.5. Spectral properties of the Jansen-Hess operator.

The spectrum σ of a self-adjoint operator (which in our case is the Friedrichs
extension on the Hilbert space L2(R3)×C2) consists of the essential spectrum σess
and the eigenvalues of finite multiplicity. The essential spectrum, in turn, is the
union of the absolute continuous spectrum σac, the singular continuous spectrum
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σsc, the eigenvalues of infinite multiplicity, and the limit points of σp, where the
point spectrum σp is the set of eigenvalues (Reed-Simon 1980, p.231,236).

This section concerns the essential spectrum of the Jansen-Hess operator bm,
both for m = 0 and m 6= 0. In particular, the absence of singular continuous
spectrum and embedded eigenvalues will be shown. The strategy of proof is in
many cases the same as applied for the corresponding theorems concerning the
Brown-Ravenhall operator (EPS 1996, Balinsky and Evans 1998). In these cases,
the proofs will only be outlined.

Let us start by recalling the known results for the Brown-Ravenhall operator.
Lemma I.12 (Spectrum of Brown-Ravenhall operator).
Let b(1)

m = b0m + b1m, and assume γ < γBR = 2/(π2 + 2
π ). Then

σess(b(1)
m ) = [m,∞)

σsc(b(1)
m ) = ∅.

If m = 0 and γ ≤ γBR, σp(b(1)) = ∅,

i.e. b(1)
m has no singular continuous spectrum and b(1) = b0 + b1 has no eigenvalues,

such that σ(b(1)) is absolutely continuous.
The absence of embedded eigenvalues in the essential spectrum for m 6= 0 can

be shown with the help of the virial theorem.
Lemma I.13 (Absence of embedded eigenvalues for Brown-Ravenhall operator).
Let γ ≤ γ0. Then b

(1)
m has no eigenvalues in [m,∞).

This lemma was proven by Balinsky and Evans (1998) for γ0 = 3
4 . By improv-

ing their estimates we have obtained γ0 = γBR, the maximum possible potential
strength for stability of b(1)

m . The proof of this new result will be given after the
proof of Theorem I.4.

Let us now turn to the Jansen-Hess operator and state our corresponding results.
Theorem I.3.
Let bm = b0m+ b1m+ b2m be the Jansen-Hess operator and assume γ < γJ with the
critical potential strength γJ = 1.006 as in Lemma I.9. Then

(i) σess(bm) = σess(b0m) = [m,∞)
(ii) σsc(bm) = ∅.
(iii) If m = 0, σp(b) = ∅, i.e. the spectrum of b is absolutely continuous.
For the proof, one needs the behaviour of bm under complex dilations. For

θ := eξ ∈ R+, the unitary group of dilation operators dθ is introduced by means of

dθ û(p) = θ−3/2 û(p/θ) =: ûθ(p) (I.5.1)

with u ∈ L2(R3) × C2. Then for |ξ| < ξ0 with a suitably chosen ξ0 > 0, θ is
extended to the complex domain Dξ0 := {θ = eξ : ξ ∈ C, |ξ| < ξ0}. One defines
the dilated operators

bm,θ := dθ bm d−1
θ (I.5.2)

and correspondingly bkm,θ = dθbkmd
−1
θ for k = 0, 1, 2.

When θ ∈ R+, expectation values are invariant under dθ, such that for
u ∈ H1/2(R3)× C2,

(u, bm u) = (dθ u, (dθ bm d−1
θ ) dθ u). (I.5.3)

In order to derive the explicit form of bm,θ we make in (I.3.22) the substitution
q := θp, q′ := θp′ such that

(u, bm u) =
∫
dq θ−3/2 û(q/θ) b0m(q/θ) θ−3/2 û(q/θ) (I.5.4)
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+
∫
dq θ−

3
2 û(q/θ)

∫
dq′ θ−3 [b1m(q/θ,q′/θ) + b2m(q/θ,q′/θ)] θ−

3
2 û(q′/θ).

Upon identification with (I.5.3) one obtains

b0m,θ(p) = b0m(p/θ) =
√
p2/θ2 +m2 =

1
θ
Ep(m · θ) =

1
θ
b0m·θ(p) (I.5.5)

bkm,θ(p,p′) = θ−3 bkm(p/θ,p′/θ) =
1
θ
bkm·θ(p,p′), k = 1, 2,

where the last equality results from inspection of the explicit expressions (I.3.23)
for the kernels of b1m and b2m.

The definition (I.5.5) of the dilated operators bkm,θ in terms of bkm·θ is readily
extended to complex θ ∈ Dξ0 . In the massless case, (I.5.5) reduces to the simple
scaling

b0,θ(p) =
1
θ
b0(p), bk,θ(p,p′) =

1
θ
bk(p,p′), k = 1, 2. (I.5.6)

Proof outline of (i).
From Lemma I.12 we know that the essential spectrum of b0m + b1m coincides with
that of b0m, so it remains to show that adding b2m leads to no changes.

It is known that a compact operator does not change the essential spectrum,
however b2m is not bounded from above and hence is not compact. Therefore, the
strategy of Weyl’s essential spectral theorem (Reed-Simon 1978, p.122) is used:
From the compactness of the resolvent difference

Rm(µ) := (bm + µ)−1 − (b0m + µ)−1 (I.5.7)

with µ ≥ 1 a constant such that the resolvents are bounded (note that b0m ≥ 0,
and bm is also bounded from below for γ ≤ γJ according to Lemma I.10), it follows
that the essential spectra of bm and b0m coincide.

With the help of the second resolvent identity, A−1 = B−1 −B−1(A−B)A−1,
Rm(µ) is decomposed,

Rm(µ) = −(b0m + µ)−1 (b1m + b2m) (bm + µ)−1 (I.5.8)

= −
{

(b0m + µ)−1 (b1m + b2m) (b0m + µ)−1/2
} [

(b0m + µ)1/2 (bm + µ)−1
]

and it is shown that Rm(µ) is compact by means of compactness of the term in
curly brackets and boundedness of the second factor.

To show boundedness of the term in square brackets we split off the bounded
operator (bm +µ)−1/2. Boundedness of (b0m +µ)1/2(bm +µ)−1/2 results from the
b0m-form boundedness of bm (Proposition I.4) expressed as

(ψ, (b1m + b2m)ψ) ≥ −(1− ε) (ψ, b0m ψ) − C (ψ,ψ). (I.5.9)

From this we obtain with ψ := (bm +µ)−1/2 u the required boundedness condition

‖(b0m+µ)1/2 (bm+µ)−1/2 u‖2 = (ψ, (b0m+µ)ψ) ≤ c0 ‖u‖2 = c0 (ψ, (bm+µ)ψ)
(I.5.10)

upon the choices c0 ≥ 1/ε and µ > max{1, c0C/(c0 − 1)}.
Compactness concerning the first-order contribution, b1m, to the factor in curly

brackets, was shown by EPS (1996). Their proof is based on Lemma 2.6 of Herbst
(1977) which states that the operator (b0m + µ)−1 1√

x
is compact. For the second-

order contribution, b2m, we use the Sobolev representation (I.3.24) and (I.3.30) of
operators and introduce the following factorisation

(D0 + µ)−1 B2m (D0 + µ)−1/2 =
γ2

8π2

{
(D0 + µ)−1 1√

x

}
(I.5.11)
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·
[

1√
x

(1− D̃0(p))(Ep + µ)−1/2

] [
(Ep + µ)1/2 V10,m (D0 + µ)−1/2

]
+
γ2

8π2

[
(D0 +µ)−1V10,m(1−D̃0(p))(Ep +µ)

]{
(Ep +µ)−1 1√

x

}[
1√
x

(D0 +µ)−1/2

]
.

Since these operators act on the positive spectral subspace of D0, the lemma of
Herbst (1977) assures that the operators in curly brackets in (I.5.11) are compact.
The operators in square brackets are readily shown to be bounded by using that
D̃0(p) is bounded as is V10,m (see (I.4.22)), and by applying Kato’s (1966) inequal-
ity, 1/x ≤ π

2 p, to the terms involving 1√
x

(D0 + µ)−1/2. For example, using the
Lieb and Yau formula (Lemma I.1), one can estimate for ϕ ∈ H+,1

‖(Ep + µ)1/2 V10,m (D0 + µ)−1/2 ϕ‖2 (I.5.12)

=
∫
dp
∣∣∣∣(Ep + µ)1/2

∫
dp′

1
|p− p′|2

1
Ep + Ep′

(Ep′ + µ)−1/2 ϕ̂(p′)
∣∣∣∣2

≤
∫
dp′ |ϕ̂(p′)|2 ·

∫
dp |K(p′,p)| f(p′)

f(p)
with K(p′,p) :=

∫
dq k((q,p′) k(q,p) and

k(q,p) := (Eq + µ)1/2 1
|q− p|2

1
Eq + Ep

(Ep + µ)−1/2. (I.5.13)

Choosing f(p) = p3/2 and estimating (Eq + Ep)−1 by (q + m)−1 for m 6= 0 (while
substituting p =: qp′′ for m = 0) in the integral over p, it is straightforward to
verify that the integral over the kernel in (I.5.12) is finite. (For a more detailed
proof within the Douglas-Kroll representation of operators, see JA (2002).) �

Proof outline of (ii).
Concerning the absence of the singular continuous spectrum, one has to show that
the family of bounded operators (b0m+µ)−1/2(b1m,θ+b2m,θ)(b0m+µ)−1/2 extends
to an analytic operator-valued function in Dξ0 ( EPS 1996, JA 2002). The dilated
functions dθu are also analytic in Dξ0 , provided u ∈ S(R3)× C2 which is a dense
subspace of H1/2(R3)× C2 (Folland 1995, p.192).

For θ ∈ R ∩ Dξ0 and z ∈ C\R, one has invariance of the (finite) resolvent
expectation value under dilations,

(u,
1

bm − z
u) = (dθ u,

1
bm,θ − z

dθ u). (I.5.14)

However, because of the identity theorem from complex analysis, analyticity of dθu
and of bm,θ guarantees (I.5.14) for all θ ∈ Dξ0 . Moreover, since S is dense in H1/2,

(I.5.14) holds for all u ∈ H1/2(R3)× C2.
The essential spectrum of bm,θ is the same as that of b0m,θ, which again is shown

by proving the compactness of the resolvent difference Rm,θ(µ) := (bm,θ + µ)−1 −
(b0m,θ + µ)−1, along the lines indicated in the proof of (i).

We note that for fixed θ = exp(x+ iy), σess(b0m,θ) = {b0m,θ(p) : p ∈ [0,∞)} =
{
√
p2/θ2 +m2 : p ∈ [0,∞)}. Hence for m = 0 it is the nonnegative real axis

rotated by the angle −y around the origin, and for m 6= 0 it is a curve in the
complex plane intersecting R only at the point m.

Therefore, apart from isolated points, the resolvent sets of b0m,θ and bm,θ (which
are the complementary sets of the spectrum σ in C) agree and coincide due to
(I.5.14) also with the resolvent set of bm. Since there exists only one intersection
point of σess(bm,θ) with R+, we have

lim
Imz→0

Im (u,
1

bm − z
u) < ∞ (I.5.15)
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except at isolated points of R+. From this it follows that the singular continuous
spectrum is absent (Reed-Simon 1978, §XIII.6, XIII.10; EPS 1996). �

Proof of (iii).
We have to show that for m = 0, b has no eigenvalues.

First assume E 6= 0 is an eigenvalue of b, i.e. there exists u ∈ H1/2(R3) × C2

such that b u = Eu. Due to the scaling property (I.5.6), we have for θ ∈ Dξ0 ∩R+

(dθ b d−1
θ ) uθ =

1
θ
b uθ = E uθ (I.5.16)

such that θE is eigenvalue of b. Since, however, Dξ0 ∩R+ is overcountable, there is
an overcountable basis of eigenvectors uθ which contradicts the separability of the
Hilbert space H1/2(R3)× C2.

Assume now E = 0 is an eigenvalue of b, i.e. there exists u 6= 0 such that
b u = 0. Using the partial wave decomposition introduced in Appendix B, we have
from (B.7) in Mellin space

0 = (u, b u) =
∑
ν

∫ ∞
−∞

dt |a#
ν (t+ i/2)|2 b#ls(t− i/2) (I.5.17)

where b#ls(t −
i
2 ) = 1 +

√
2π( b(1)#

ls + b
(2)#
ls )(t − i

2 ). However, positivity of b for
γ < γJ results from b#ls(t−

i
2 ) being strictly positive. Therefore, the r.h.s. of (I.5.17)

can only be zero if for each ν,

|a#
ν (t+ i/2)| = 0 almost everywhere for t ∈ R. (I.5.18)

If u ∈ S(R3) × C2 then a#
ν is an analytic function in the strip {τ = t + is ∈ C :

−∞ < t < ∞, 0 ≤ s ≤ 1
2}. From the identity theorem it follows that a#

ν (t) = 0
for all t ∈ R. Unitarity of the Mellin transform gives

0 =
∑
ν

∫ ∞
−∞

dt |a#
ν (t)|2 =

∑
ν

∫ ∞
0

dp |aν(p)|2 = ‖u‖2, (I.5.19)

hence u = 0. Since S is dense in H1/2 we have u = 0 in H1/2(R3) × C2, a
contradiction. �

Our last result is a generalisation of Lemma I.13 to the massive Jansen-Hess
operator.
Theorem I.4.
Let bm be the massive Jansen-Hess operator and assume γ < γJ = 1.006. Then the
eigenvalues λ of bm are confined to λ ≤ m(1 + s(γ)) with

s(γ) := max{0, s0(m1γ −m0 +m2γ
2)} (I.5.20)

where s0 := 5, m0 := 0.3058, m1 := 2
5 and m2 := 2.253. In particular, for

γ < 0.29 (Z < 40) the essential spectrum of bm has no embedded eigenvalues.

Proof. For an operator bm with the scaling property (I.5.5) under dilations dθ,
Balinsky and Evans (1998; Lemma 2.1) formulated the following virial theorem

lim
θ→1

(uθ,
bm·θ − bm
θ − 1

u) = λ ‖u‖2 (I.5.21)

for θ ∈ R+. In order to interchange the limit θ → 1 with the spatial integration,
the uniform absolute convergence of the form on the l.h.s. of (I.5.21) is needed.

In order to show this, we rely on the proofs of form boundedness of
∣∣∣∣dbkmdm

∣∣∣∣ , k =

1, 2, by Stockmeyer (2002) for k = 1 and BSS (2002) for k = 2, when establishing
Lemma I.8(ii) and Lemma I.10(i). In the present case, we only have to replace
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m 7→ m · θ ∈ R+ and use the Lieb and Yau formula for off-diagonal forms (Lemma
I.2).

Defining m1 := min{m,m · θ} and M1 := max{m,m · θ}, and applying the mean
value theorem with ξ ∈ (m1,M1), we thus obtain with ‖uθ‖ = ‖u‖,∣∣∣∣(uθ, bm·θ − bmθ − 1

u)
∣∣∣∣ ≤ (|uθ|, m

∣∣∣∣ dbm·θdm · θ
(ξ)
∣∣∣∣ |u|) ≤ mc ‖u‖2 (I.5.22)

with some constant c, such that the dominated convergence theorem applies. Thus,
carrying out the limit in (I.5.21) we get

λ ‖u‖2 = m2

∫
dp |û(p)|2 1

Ep

+ m

∫
dpdp′ û(p)

(
db1m(p,p′)

dm
+
db2m(p,p′)

dm

)
û(p′). (I.5.23)

Therefore upon differentiating (I.3.23) the term linear in the coupling constant can
be written in the following way∫

dp dp′ û(p)
db1m(p,p′)

dm
û(p′)

= Re
∫
dp dp′ û(p)

(
1
Ep
− m

E2
p

)
b1m(p,p′) û(p′)

+
γ

2π2

∫
dp dp′ û(p)

1
|p− p′|2

A(p)A(p′)σp̂σp̂′h(p)h(p′)
(

1
Ep

+
1
E′p

)
û(p′).

(I.5.24)
The first term in (I.5.24) carrying the negative sign of b1m is eliminated with the
help of the eigenvalue equation in the form

(ψ, bm u) =
∫
dp ψ(p)Epû(p) +

∫
dp dp′ ψ(p) [b1m(p,p′) + b2m(p,p′)] û(p′)

= (ψ, λ u)

ψ(p) :=
(

1
Ep
− m

E2
p

)
û(p). (I.5.25)

This procedure of eliminating a negative first-order term at the expense of addi-
tional zero-order terms (for which no further estimate is needed) and second-order
terms (which are small for small γ) is mandatory for the desired estimate on the
eigenvalue λ. With (I.5.24) and (I.5.25), the virial theorem (I.5.23) results in

λ

m
‖u‖2 =

∫
dp |û(p)|2

(
m

Ep
+ (

λ

Ep
− 1)(1− m

Ep
)
)

+
γ

2π2

∫
dp dp′ û(p)

·A(p)A(p′)
[

1
|p− p′|2

σp̂σp̂′h(p)h(p′)
(

1
Ep

+
1
Ep′

)
+

γ

4π2
T2(p,p′)

]
û(p′)

(I.5.26)
where the lengthy expression for T2(p,p′), originating from the derivative of the
second-order term b2m(p,p′), is given in Appendix H.

Applying the Lieb and Yau formula, Lemma I.1, with ψ̂(p) 7→ A(p)h(p) û(p) and
A(p) û(p), respectively, to the first-order and second-order term, and estimating
|σp̂σp̂′| by unity, one obtains(

λ

m
− 1
)∫

dp |û(p)|2
(

1− m

Ep
+
m2

E2
p

)
≤ −

∫
dp |û(p)|2 (Ep −m)(2Ep −m)

E2
p

+
γ

2π2

∫
dp |û(p)|2A(p)2

{
h2(p)

∫
dp′

1
|p− p′|2

(
1
Ep

+
1
Ep′

)
f(p)
f(p′)
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+
γ

4π2

∫
dp′ |T2(p,p′)| f(p)

f(p′)

}
(I.5.27)

The last term in (I.5.27) can be further estimated by breaking T2(p,p′) from (H.1)
into its constituents and estimating each contribution separately as indicated in
Appendix H. Recalling that the convergence generating functions can be chosen
differently for each integral, functions of the type f(p) = p3/2 as well as f(p) =
p3/2 p

e(p)
with e(p) ∈ {Ep, Ep + m, p + m} are selected in order to optimise the

estimates. Further, the following estimate is used in the evaluation of the integrals
over p′,

1√
(qp′)2 + 1 + c

≤


1

1 + c
, p′ ≤ 1/q

1
qp′

, p′ > 1/q

, c ≥ 0, q ≥ 0 . (I.5.28)

Defining q := p/m, denoting the estimate of
∫
dp′ |T2(p,p′)| f(p)/f(p′) by

(4π2)2q2M2(q), and taking f(p) := p3/2 in the term linear in γ, such that with
formula (A.1), the substitution q′ := p′/mq for p′ and (I.5.28),∫

dp′
1

|p− p′|2
1
E′p

(
p

p′

)3/2

≤ 4π2 α(q) (I.5.29)

α(q) := 1 +
1
π

(
2
√
q ln

∣∣∣∣1 + q

1− q

∣∣∣∣ + 2 (q − 1) arctan
1
√
q
− (q + 1) ln

∣∣∣∣1 +
√
q

1−√q

∣∣∣∣ ) ,
we arrive at the following estimate

0 ≤ m3

∫
dq |û(mq)|2

(
1 − 1√

q2 + 1
+

1
q2 + 1

) (
1 − λ

m
+ φ(q)

)
(I.5.30)

φ(q) :=
q2

q2 + 2−
√
q2 + 1

1
f0(q)

(
−g0(q) + γg1(q) + γ2g2(q)

)
f0(q)

where

g0(q) :=
2
√
q2 + 1− 1√
q2 + 1 + 1

, g1(q) :=
q + α(q)

√
q2 + 1√

q2 + 1 + 1

g2(q) := (q2 + 1 +
√
q2 + 1)M2(q), f0(q) :=

q + c

aq + b
(I.5.31)

are nonnegative bounded functions. The auxiliary function f0 with a, b, c > 0 has
been introduced to improve on the estimate of φ. It follows from (I.5.30) that
for φ < 0, λ < m since the factor multiplying the last bracket is nonnegative.
With m0 := inf g0f0, m1 := sup g1f0 and m2 := sup g2f0 for 0 ≤ q < ∞, this
condition on φ is fulfilled for −m0 + m1γ + m2γ

2 < 0, i.e. γ < γ0, say. For
a := 5, b := 1

5 , c := 1.1, we obtain m0 = 0.3058, m1 = 2
5 , m2 = 2.253, and hence

γ0 = 0.29. This improves on the value γ0 = 0.159 obtained for f0 = 1 (where
m0 = 1

2 , sup g1 = 2, sup g2 = 29
4 ). Denoting by s0 the supremum of the prefactor

of φ(q) in q ∈ R+, s0 := sup q2/(q2 + 2 −
√
q2 + 1) f−1

0 (q) = 5, we can estimate
φ(q) for γ > γ0 to obtain from (I.5.30)

λ ≤ m (1 + φ(q)) ≤ m (1 + s0(m1γ −m0 +m2γ
2)), (I.5.32)

which proves the theorem. �
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In the Brown-Ravenhall case, Lemma I.13, we have derived the improved critical
potential strength γ0 by setting g2 ≡ 0 in φ(q). Thus we have the estimate (I.5.30)
with λ replaced by λ̃, the eigenvalue of b(1)

m , and with φ(q) now defined by

φ(q) :=
q2

q2 + 2−
√
q2 + 1

g1(q)
(
γ − g0(q)

g1(q)

)
. (I.5.33)

We obtain φ(q) < 0 for γ < min
q∈R+

g0(q)
g1(q) = 0.973 =: γ̃0. In particular, φ(q) < 0 and

hence λ̃ < m for γ ≤ γBR = 0.906.
Note that Balinsky and Evans (1998) did not use the improved estimate (I.5.28)

for small p′, but rather 1/qp′ throughout. This results in α(q) = 1 in place of
(I.5.29).
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II. Two-Electron Ions

The generalisation of the one-electron Dirac theory to an N -electron atom leads
to the Coulomb-Dirac operator (Sucher 1958, Douglas and Kroll 1974)

H =
N∑
k=1

(D(k)
0 + V (k)) + P+,N

N∑
n<k

e2

|xn − xk|
P+,N (II.1)

in the Hilbert space A (L2(R3) × C4)N where A denotes antisymmetrisation of
the N -electron wavefunction with respect to the interchange of any two electrons.
The form domain of H is the subspace HN := A(H1/2(R3)× C4)N . Here, D(k)

0 =
α(k)p(k) +β(k)m is the free Dirac operator of electron k, V (k) its central Coulomb
potential, and the second sum runs over all values of n and k from 1 to N with the

restriction n < k. The projector P+,N =
N⊗
k=1

P
(k)
+ is a direct product of the single-

particle projectors P (k)
+ onto the positive spectral subspace of H(k) = D

(k)
0 +V (k).

II.1. The independent-particle model.

Let us assume that H can be approximated by a sum of identical one-particle op-
erators h(k), which are obtained from a self-consistent field (Hartree-Fock) approach
(Landau and Lifschitz 1965, §69; Sucher 1980),

H =
N∑
k=1

h(k). (II.1.1)

For noninteracting particles, ψ ∈ HN can be chosen as Slater determinant com-
posed of the single-particle states ϕ1, ..., ϕN . Then one gets

(ψ,Hψ) =
N∑
k=1

(ϕk, h(k) ϕk), (II.1.2)

which is just a superposition of the one-particle expectation values. One should keep
in mind, however, the restriction on the set (ϕk)k=1,...,N to provide a non-vanishing
Slater determinant.

In this case, the Sobolev transformation scheme applied to H leads to a simple
result. Since operators acting on distinct particles commute, the transformed oper-
ator to order n is represented as a sum over (identical) one-particle contributions,
compare (I.2.11) and (I.2.12),

H(n) =
N∑
k=1

(
D

(k)
0 + Ṽ

(k)
1 + ...+ Ṽ (k)

n

)
(II.1.3)

where in the definition of the i-th order potential terms Ṽ (k)
i (i = 1, 2, ..., n),

the Coulomb field V (k) = −γ/xk is everywhere replaced by the effective Hartree-
Fock single-particle potential contained in h(k). In general, this effective potential
consists of Coulomb-type and bounded contributions. Hence, the single-particle
results of part I concerning relative form boundedness and positivity hold also in
the case of independent particles.
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II.2. Unitary transformations.

Let us abandon the independent-particle model and include the electron-electron
correlations inherent in the Coulomb-Dirac operator (II.1). In the following we
will only consider the two-electron case (N = 2). Let ψ ∈ H+,2 := (Λ(1)

+ ⊗
Λ(2)

+ )(A(H1/2(R3)×C4)2) be an antisymmetrised two-particle spinor in the positive
spectral subspace of the free Dirac operator, that means

Λ(1)
+ Λ(2)

+ ψ = ψ, Λ(1)
+ Λ(2)

− ψ = Λ(1)
− Λ(2)

+ ψ = Λ(1)
− Λ(2)

− ψ = 0 (II.2.1)

where for brevity we write Λ(1)Λ(2) for Λ(1) ⊗ Λ(2). Our aim is to apply the
Sobolev transformation scheme to the two-particle operator (II.1), such that the
transformed Coulomb-Dirac operator takes the block-diagonal form U+HU =
H(n) +R((e2)n+1) with

H(n) := proj (A) := Λ(1)
+ Λ(2)

+ AΛ(1)
+ Λ(2)

+ + Λ(1)
− Λ(2)

− AΛ(1)
− Λ(2)

− + Λ(1)
+ Λ(2)

− AΛ(1)
+ Λ(2)

−

+ Λ(1)
− Λ(2)

+ AΛ(1)
− Λ(2)

+ , (II.2.2)

where A is an operator to be determined later, and R is the remainder which is
of order (e2)n+1. In contrast to the one-particle case, the expansion parameter is
the fine structure constant e2, rather than the strength γ = Ze2 of the central
potential. The operator A in (II.2.2) includes terms to order n in e2.

We start by using the integral representation of the projectors P (k)
+ , Λ(k)

+ (Kato
1966, Chap.II, §1.3)

P
(k)
+ =

1
2

+
1

2π

∫ ∞
−∞

dη
1

D
(k)
0 + V (k) + iη

, Λ(k)
+ =

1
2

+
1

2π

∫ ∞
−∞

dη
1

D
(k)
0 + iη
(II.2.3)

to express P (k)
+ in terms of the free projector Λ(k)

+ with the help of the resolvent
identity,

1

D
(k)
0 + V (k) + iη

=
1

D
(k)
0 + iη

− 1

D
(k)
0 + iη

V (k) 1

D
(k)
0 + V (k) + iη

, (II.2.4)

giving

P
(k)
+ = Λ(k)

+ − 1
2π

∫ ∞
−∞

dη
1

D
(k)
0 + iη

V (k) 1

D
(k)
0 + V (k) + iη

(II.2.5)

=: Λ(k)
+ + F

(k)
V .

Then the two-particle term of H turns into

P
(1)
+ P

(2)
+ V (12) P

(1)
+ P

(2)
+ = Λ(1)

+ Λ(2)
+ V (12) Λ(1)

+ Λ(2)
+ + F

(1)
V Λ(2)

+ V (12) Λ(1)
+ Λ(2)

+

+ F
(2)
V Λ(1)

+ V (12) Λ(1)
+ Λ(2)

+ + Λ(1)
+ Λ(2)

+ V (12) Λ(2)
+ F

(1)
V + Λ(1)

+ Λ(2)
+ V (12) Λ(1)

+ F
(2)
V + R
(II.2.6)

where V (12) :=
e2

|x1 − x2|
and R comprises the remaining terms which are of order

(e2)3.
Since the linear term in e2 (the first term on the r.h.s of (II.2.6)) has already

the desired block-diagonal structure of (II.2.2), the first Sobolev transformation

U1 = eiB1 := ei(B
(1)
1 +B

(2)
1 ) (II.2.7)

can be restricted to a sum of the one-particle self-adjoint operators B(k)
1 from chap-

ter I. Thereby use is made of the fact that all single-particle operators pertaining
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to particle 1 commute with those of particle 2. One obtains, using the defining
equation (I.2.10) for the operators B(k)

1 ,

U−1
1 H U1 =

2∑
k=1

(
D

(k)
0 + V

(k)
1 + i [V (k)

1 , B
(k)
1 ] +

i

2
[W (k)

1 , B
(k)
1 ]
)

+ Λ(1)
+ Λ(2)

+ V (12) Λ(1)
+ Λ(2)

+ + i [Λ(1)
+ Λ(2)

+ V (12) Λ(1)
+ Λ(2)

+ , B
(1)
1 +B

(2)
1 ] (II.2.8)

+(F (1)
0 Λ(2)

+ +F
(2)
0 Λ(1)

+ )V (12)Λ(1)
+ Λ(2)

+ +Λ(1)
+ Λ(2)

+ V (12)(Λ(2)
+ F

(1)
0 +Λ(1)

+ F
(2)
0 )+R((e2)3)

where

F
(k)
0 := − 1

2π

∫ ∞
−∞

dη
1

D
(k)
0 + iη

V (k) 1

D
(k)
0 + iη

, k = 1, 2 (II.2.9)

is the first-order term in e2 of the iteration obtained for F (k)
V by successive insertion

of the resolvent identity (II.2.4).
For any operator C we introduce the decomposition by means of 1 · C · 1 with

1 = (Λ(1)
+ + Λ(1)

− )(Λ(2)
+ + Λ(2)

− ),

C = proj (C) + off (C), (II.2.10)

where proj (C) is defined in (II.2.2) and off (C) contains all nondiagonal combina-
tions of the projectors. We identify C with all terms in (II.2.8) which are of second
order in e2, and eliminate off (C) by means of the second Sobolev transformation
U2 in an analogous way as in the one-particle case. Explicitly,

U2 = eiB2 , B2 = B
(1)
2 + B

(2)
2 + B

(12)
2 (II.2.11)

where B(k)
2 are one-particle operators affecting only particle k while B(12)

2 is a two-
particle operator. B2 is defined by

off (C) = −i [(D(1)
0 +D

(2)
0 ), B(1)

2 +B
(2)
2 +B

(12)
2 ]. (II.2.12)

Accordingly, C is decomposed into single- and two-particle contributions, C =
C(1) + C(2) + C(12) with

C(k) := i [V (k)
1 , B

(k)
1 ] +

i

2
[W (k)

1 , B
(k)
1 ], k = 1, 2

C(12) := i
2∑
k=1

[Λ(1)
+ Λ(2)

+ V (12) Λ(1)
+ Λ(2)

+ , B
(k)
1 ] (II.2.13)

+ (F (1)
0 Λ(2)

+ + F
(2)
0 Λ(1)

+ ) V (12) Λ(1)
+ Λ(2)

+ + Λ(1)
+ Λ(2)

+ V (12) (Λ(2)
+ F

(1)
0 + Λ(1)

+ F
(2)
0 ).

Since off (C) is linear in C, (II.2.12) is satisfied if we define the single-particle
operators as done earlier, using the projector property (Λ(k)

± )2 = Λ(k)
± ,

off (C(k)) = Λ(k)
+ C(k) Λ(k)

− + Λ(k)
− C(k) Λ(k)

+ = −i [D(k)
0 , B

(k)
2 ], k = 1, 2

(II.2.14)
and

off (C(12)) =: W (12) = −i [(D(1)
0 +D

(2)
0 , B

(12)
2 ]. (II.2.15)

We collect our results in the following proposition.
Proposition II.1 (Existence of Sobolev transformations).
Let U1 = eiB1 , U2 = eiB2 be the Sobolev transformations such that the transformed
two-particle Coulomb-Dirac operator (U1U2)−1H U1U2 has the block-diagonal pro-
jector form of (II.2.2) up to second order in the coupling constant e2. Then B1 and
B2 are self-adjoint bounded operators on (L2(R3)× C4)2.
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The boundedness of B2 is shown in the next setion. Then the self-adjointness
of B(12) follows immediately from the defining equation (II.2.15) since W (12) is
symmetric.

II.3. Existence of B2.

When the existence of B2 is shown, the transformed Coulomb-Dirac operator up
to second order in e2 takes the form

U−1
2 U−1

1 H U1U2 = proj (H0 +H1 +H2) + Λ(1)
+ Λ(2)

+ V (12) Λ(1)
+ Λ(2)

+ + R((e2)3)
(II.3.1)

H0 =
2∑
k=1

D
(k)
0 , H1 =

2∑
k=1

V (k), H2 =
2∑
k=1

C(k) + C(12).

The existence of B(1)
2 and B

(2)
2 was shown in chapter I and it remains to prove

the existence of B(12)
2 . We start by demonstrating that B(12)

2 can be obtained
explicitly, and then show the form boundedness of B(12)

2 . Operator boundedness
follows from Lemma I.3.

a) Determination of B(12)
2

In order to solve for B(12)
2 , we apply the unitary transformation U

′(1)
0 U

′(2)
0 with

U
′(k)
0 the zero-order single-particle Foldy-Wouthuysen transformation introduced

earlier, to the defining equation (II.2.15).
With S

(12)
2 := U

′(1)
0 U

′(2)
0 B

(12)
2 (U

′(1)
0 )−1(U

′(2)
0 )−1 and the transformation proper-

ties of the single-particle operators from Lemma I.7 we obtain

U
′(1)
0 U

′(2)
0 off (C(12)) (U

′(1)
0 )−1(U

′(2)
0 )−1 = −i [(β(1)E(1)

p + β(2)E(2)
p ), S(12)

2 ].
(II.3.2)

In order to get rid of the matrix-valued operators β(k) on the r.h.s. of (II.3.2),
the l.h.s. is split into terms of a given symmetry with respect to interchange with
β(k) (corresponding to the ’even’ and ’odd’ terms in the single-particle case),
C+− +C−+ +C−−, with β(1)C+− = C+−β

(1), β(2)C+− = −C+−β
(2), β(1)C−+ =

−C−+β
(1), β(2)C−+ = C−+β

(2), β(1)C−− = −C−−β(1), β(2)C−− = −C−−β(2),

and S
(12)
2 = S

(12)
+− + S

(12)
−+ + S

(12)
−− is split accordingly. Due to the linearity of

(II.3.2) this equation can be broken into three decoupled equations for the three
contributions of S(12)

2 .
Using the ΨDO technique (which will be demonstrated in the context of bound-

edness of B(12)
2 ) to express S(12)

+− , S
(12)
−+ , S

(12)
−− by their respective symbols, the

resulting equation for the symbols can be solved explicitly upon reducing the mul-
tiplying factor in front of the symbol to a scalar (by suitable multiplication with a
linear combination of β(1) and β(2), using the above symmetry properties as well
as (β(k))2 = 1). This proves the uniqueness of S(12)

2 and hence of B(12)
2 like in the

one-particle case.
We add a sketch of the proof that the l.h.s. of (II.3.2) does not contain an

even-even contribution (which commutes with both β(1) and β(2)).
First we note that any single-particle 4-spinor in the negative spectral subspace

of D0 can in momentum space be expressed in the form (Rose 1961)

ϕ̂−(p) =
1√

2Ep(Ep +m)

(
−σp v̂(p)

(Ep +m) v̂(p)

)
, v ∈ H1/2(R3)× C2 (II.3.3)
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and for a 4-spinor ψ− =
(

0
v

)
one has

ϕ− = U
′−1
0 ψ− (II.3.4)

in complete analogy to ϕ+ = U
′−1
0 ψ+ with ψ+ =

(
u
0

)
and ϕ+ in the positive

spectral subspace of D0. Note that in all quantities introduced above a superscript
(k) pertaining to particle k has been suppressed.

The absence of an even-even contribution of U
′(1)
0 U

′(2)
0 off (C(12))(U

′(1)
0 )−1(U

′(2)
0 )−1

means that its expectation value formed with states of the type ψ(1)
+ ψ

(2)
+ , ψ

(1)
+ ψ

(2)
− ,

ψ
(1)
− ψ

(2)
+ , ψ

(1)
− ψ

(2)
− vanishes. (In fact, let A be odd with respect to β(1). Then

(ψ(1)
+ , Aψ

(1)
+ ) = (β(1)ψ

(1)
+ , Aβ(1)ψ

(1)
+ ) = −(ψ(1)

+ , (β(1))2Aψ
(1)
+ ) = −(ψ(1)

+ , Aψ
(1)
+ ).)

However, by means of (II.3.4)ff this is just the expectation value of off (C(12))
formed with states of the type ϕ++ (both particles in the positive spectral sub-
space), ϕ+−, ϕ−+ (one particle in either space) or ϕ−− (both particles in the
negative spectral subspace). By definition of the projectors, e.g. Λ(1)

+ Λ(2)
− ϕ+− =

ϕ+−, Λ(1)
+ Λ(2)

+ ϕ+− = Λ(1)
− Λ(2)

+ ϕ+− = Λ(1)
− Λ(2)

− ϕ+− = 0, it is easily seen that such
expectation values vanish indeed.

This fact establishes the correspondence between the Douglas-Kroll transfor-
mation and the Sobolev transformation (proven in section I.3 for single-particle
operators) also in the two-particle case.

b) Boundedness of B(12)
2

Define the two-particle Fourier transform ψ̂(p1,p2) of ψ by means of

ψ(x1,x2) =
1

(2π)3

∫
dp1 dp2 e

ip1x1 eip2x2 ψ̂(p1,p2). (II.3.5)

Represent the operator B(12)
2 by means of its symbol φ12 via

(B(12)
2 ψ)(x1,x2) =

1
(2π)3

∫
dp1 dp2 e

ip1x1 eip2x2 φ12(x1,x2; p1,p2) ψ̂(p1,p2)

=
1

(2π)6

∫
dp1 dp2 ds ds′ ei(p1+s)x1 ei(p2−s′)x2 φ̂12(s, s′; p1,p2) ψ̂(p1,p2) (II.3.6)

where we have introduced the Fourier transformed symbol φ̂12. We note that al-
though V (12) depends only on the difference x1 − x2, B

(12)
2 does not because the

single-particle operators in C(12) introduce additional dependences on x1 respective
x2.

Lemma II.1 (Generalised Lieb and Yau formula).
Let ψ = ψ(x1,x2) be an antisymmetrised two-particle function. Then for any two-
particle essentially self-adjoint operator A(12) with symbol a12 one has

|(ψ,A(12)ψ)| ≤ c

∫
dp1 dp2 |ψ̂(p1,p2)|2 · I(12)(p1,p2) (II.3.7)

I(12)(p1,p2) :=
∫
dp′1 dp

′
2 |â12(p′1 − p1,p2 − p′2; p1,p2)| f(p1) g(p2)

f(p′1) g(p′2)

where c is a constant and f, g are nonnegative convergence generating functions.

Instead of the factorised form f(p1)g(p2) one can also choose a more general
form, f(p1, p2), with f ≥ 0.
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Proof. With (II.3.5) and (II.3.6) we have

(ψ,A(12)ψ) =
1

(2π)3

∫
dp1dp2dp′1dp

′
2ψ̂(p1,p2)â12(p1−p′1,p

′
2−p2; p′1,p

′
2)ψ̂(p′1,p

′
2).

(II.3.8)
Estimating the integrand of (II.3.8) by means of absolute values of each factor, and
subsequently using the Schwarz inequality, one finds

|(ψ,A(12)ψ)| ≤ (II.3.9)

1
(2π)3

(∫
dp1dp2dp′1dp

′
2|ψ̂(p1,p2)|2|â12(p1 − p′1,p

′
2 − p2,p′1,p

′
2)|f(p1) g(p2)
f(p′1) g(p′2)

) 1
2

·
(∫

dp1 dp2 dp′1 dp
′
2 |ψ̂(p′1,p

′
2)|2 |â12(p1 − p′1,p

′
2 − p2; p′1,p

′
2)| f(p′1) g(p′2)

f(p1) g(p2)

) 1
2

.

From the equality (A(12)ψ,ψ) = (ψ,A(12)ψ) for symmetric operators one derives
the relation between the symbol â12 and its adjoint â∗12

â∗12(q1,q2; p1,p2) = â12(−q1,−q2; q1 + p1,p2 − q2) (II.3.10)

In the second integral of (II.3.9) we interchange (p1,p2) with (p′1,p
′
2), and in the

first integral we use (II.3.10) with q1 := p1 −p′1, q2 := p′2 −p2 and the fact that
(like in the one-dimensional case) symbol and its adjoint are in the same symbol
class, i.e.

|â∗12(q1,q2; p1,p2)| ≤ c0 |â12(q1,q2; p1,p2)|. (II.3.11)

Then the inequality (II.3.7) follows immediately with c := 1
(2π)3 c

1
2
0 . �

Lemma II.2 (Symbol class of B(12)
2 ).

Let ŵ12 be the symbol of W (12) which defines the transformation operator B(12)
2 .

Then the symbol φ̂12 of B(12)
2 is estimated by

|φ̂12(s, s′; p1,p2)| ≤ c

s+ s′ + p1 + p2 + 1
|ŵ12(s, s′; p1,p2)| (II.3.12)

with some constant c.

Proof. We first have to rewrite the defining equation (II.2.15) in terms of the
respective symbols. From the representation (II.3.6) of B(12)

2 we have e.g.

(D(2)
0 B

(12)
2 ψ)(x1,x2) =

1
(2π)6

∫
dp1 dp2 ds ds′ ei(p1+s)x1 ei(p2−s′)x2

·[α(2) (p2 − s′) + β(2)m] φ̂12(s, s′; p1,p2) ψ̂(p1,p2). (II.3.13)
Defining the symbol ŵ12 by means of an equation corresponding to (II.3.6), (II.2.15)
holds if the following equality is satisfied

[α(1) (p1 + s) + β(1)m +α(2) (p2 − s′) + β(2)m] φ̂12(s, s′; p1,p2) (II.3.14)

− φ̂12(s, s′; p1,p2) [α(1)p1 + β(1)m + α(2)p2 + β(2)m] = i ŵ12(s, s′; p1,p2).
From this equation it follows that for p1 → 0, p2 → 0, s → 0 or s′ → 0, the
behaviour of φ̂12 is that of ŵ12, while there occurs an extra power of p−1

1 , p−1
2 , s−1

or s
′−1, respectively, for p1 → ∞, p2 → ∞, s → ∞ or s′ → ∞, respectively. This

leads to the estimate (II.3.12). �

Recalling that W (12) = off (C(12)), it follows from (II.2.13) that, apart from fac-
tors Λ±, ŵ12 is determined from the commutators [V (12), B

(k)
1 ] and [F (k)

0 , V (12)].
In the context of boundedness of B(12)

2 , these additional factors Λ± can be disre-
garded since they are bounded multiplication operators in momentum space. We
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start by showing that F (k)
0 is in the same symbol class as B(k)

1 such that it will be
sufficient to consider only the commutator [V (12), B

(k)
1 ].

Lemma II.3 (Symbol class of F0).
Let F0 be defined by

F0 = − 1
2π

∫ ∞
−∞

dη
1

D0 + iη
V

1
D0 + iη

(II.3.15)

with V = −γ/x the Coulomb field, and let f0 be its symbol. Then one has the
following estimate

|f̂0(q,p)| ≤ γ
c

q

1
(q + p+ 1)2

. (II.3.16)

Proof. We introduce the Fourier representation of V and of the single-particle
function ϕ to write

(F0ϕ)(x) =
γ

(2π)5/2

∫ ∞
−∞

dη
1

D0 + iη

∫
dq eiqx 1

2π2q2

1
D0 + iη

∫
dp eipx ϕ̂(p).

(II.3.17)

Using that
1

D0 + iη
eipx =

D0 − iη
D2

0 + η2
eipx =

D0 − iη
E2
p + η2

eipx with D0(p) = αp+βm,

and that the odd terms in η vanish upon integration, the theorem of residues can
be applied to evaluate the η-integral. The contour is closed over the upper half
plane where the two poles at η = iEp and η = iE|p+q| have to be considered. This
leads to ∫ ∞

−∞
dη

D0(q + p)D0(p)− η2

(E2
|q+p| + η2)(E2

p + η2)

=
π

E2
p − E2

|q+p|

(
D0(q + p)D0(p) + E2

|q+p|

E|q+p|
−
D0(q + p)D0(p) + E2

p

Ep

)
= − π

Ep + E|q+p|
(1 − D̃0(q + p) D̃0(p)) (II.3.18)

with D̃0 := D0/|D0| as before. Comparing with the standard definition (I.1.13)
of F0 in terms of its symbol f0, its momentum representation is extracted from
(II.3.17),

f̂0(q,p) = − γ√
2π

1
q2

1
Ep + E|q+p|

(1 − D̃0(q + p) D̃0(p)), (II.3.19)

which shows that the symbol (and hence the kernel) of F0 has a negative (or zero)
real part for all q,p ∈ R3. Note that f̂0 satisfies the condition (I.1.15) for self-
adjointness of F0. From Lemma I.5 it follows that there is a simple relation between
f̂0 and the symbol φ̂1 of B1,

f̂0(q,p) = −i D̃0(q + p) φ̂1(q,p) (II.3.20)

such that Lemma II.3 is a consequence of Lemma I.5. �

From (II.3.15) it is also easily seen that F0 is a self-adjoint operator since the
integration region is symmetric in η. Thus we derive from (II.3.20) the operator
relations

F0 = −i D̃0 B1 = i B1 D̃0

B1 = i D̃0 F0 = −i F0 D̃0 (II.3.21)

where the second line is obtained from the first one upon multiplication by iD̃0.

Now we aim at expressing the symbol of B(12)
2 by the symbols of the commutator

[V (12), B
(k)
1 ]. Let w(12)

a be the symbol of V (12)B
(1)
1 and w(12)

b the one of B(1)
1 V (12).
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Due to the antisymmetry of ψ and the invariance of V (12) upon particle exchange,
one has

(ψ, (V (12)B
(2)
1 −B(2)

1 V (12)) ψ) = (ψ, (V (12)B
(1)
1 −B(1)

1 V (12)) ψ) (II.3.22)

such that one can estimate from (II.3.12)∣∣∣φ̂12(s, s′; p1,p2)
∣∣∣ ≤ c1

s+ s′ + p1 + p2 + 1

{
|ŵ(12)
a (s, s′; p1,p2)|+|ŵ(12)

b (s, s′; p1,p2)|
}

(II.3.23)
with a suitable constant c1.

We proceed by calculating ŵ(12)
a and ŵ

(12)
b . With

χ(x1,x2) := (B(1)
1 ψ)(x1,x2) (II.3.24)

=
1

(2π)3

∫
dp′1 ds

′ eip
′
1x1eis

′x1 φ̂
(1)
1 (s′,p′1)

1
(2π)

3
2

∫
dp′2 e

ip′2x2 ψ̂(p′1,p
′
2)

and its momentum representation

χ̂(p1,p2) =
1

(2π)3

∫
dx1 dx2 e

−ip1x1e−ip2x2 χ(x1,x2) (II.3.25)

=
1

(2π)
3
2

∫
ds′ φ̂(1)

1 (s′,p1 − s′) ψ̂(p1 − s′,p2)

we get, following (II.3.6) and subsequently making the variable transforms p1−s′ 7→
p1, s + s′ = s′′ (finally replacing s 7→ s′, s′′ 7→ s),

(V (12)B
(1)
1 ψ︸ ︷︷ ︸
χ

(x1,x2) =
1

(2π)3

1
2π2

∫
dp1dp2ds

e2

s2
eip1x1eip2x2eis(x1−x2)χ̂(p1,p2)

=
e2

(2π)6

√
2
π

∫
dp1 dp2 ds ds′ ei(p1+s)x1ei(p2−s′)x2

e2

s′2
φ̂

(1)
1 (s− s′,p1) ψ̂(p1,p2).

(II.3.26)
Comparing with (II.3.6) we can extract the symbol of V (12)B

(1)
1 ,

ŵa
(12)(s, s′; p1,p2) =

√
2
π

e2

s′2
φ̂

(1)
1 (s− s′,p1). (II.3.27)

Similarly,

(B(1)
1 V (12) ψ)(x1,x2) =

1
(2π)6

∫
dp1 dp2 ds ds′ ei(p1+s)x1ei(p2−s′)x2

·
√

2
π
φ̂

(1)
1 (s− s′,p1 + s′)

e2

s′2
ψ̂(p1,p2) (II.3.28)

whence

ŵ
(12)
b (s, s′; p1,p2) =

√
2
π

e2

s′2
φ̂

(1)
1 (s− s′,p1 + s′). (II.3.29)

In order to prove the form boundedness of B(12)
2 , we apply the generalised Lieb

and Yau formula (II.3.7), such that with the estimate (II.3.23),

|(ψ,B(12)
2 ψ)| ≤ c

∫
dp1 dp2 |ψ̂(p1,p2)| · I(12)(p1,p2)

I(12)(p1,p2) ≤ c1

∫
dp′1 dp

′
2

f(p1) g(p2)
f(p′1) g(p′2)

1
|p1 − p′1|+ |p2 − p′2|+ p1 + p2 + 1

(II.3.30)

· e2

√
2
π

{
1

|p2 − p′2|2
|φ̂(1)

1 (p′1 − p1 − p2 + p′2,p1)|
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+
1

|p2 − p′2|2
|φ̂(1)

1 (p′1 − p1 − p2 + p′2,p1 + p2 − p′2)|
}
.

We make the substitution p′2 − p2 =: q for p′2 and estimate (|p1 − p′1|+
|p2 − p′2|+ p1 + p2 + 1)−1 ≤ c p

′−1
2 . Then with the estimate (I.2.17) for φ̂(1)

1 ,

I(12)(p1,p2) ≤ C

∫
dq

1
|q + p2|

1
q2

g(p2)
g(|q + p2|)

∫
dp′1

c̃

|p′1 − p1 + q|
(II.3.31)

·
(

1
(|p′1 − p1 + q|+ p1 + 1)2

+
1

(|p′1 − p1 + q|+ |p1 − q|+ 1)2

)
f(p1)
f(p′1)

.

Choosing f(p) = p and keeping ξ := p1 − q constant, the first p′1-integral reduces
to

Iξ :=
∫
dp′1

c̃

|p′1 − ξ|
1

(|p′1 − ξ|+ p1 + 1)2

p1

p′1
. (II.3.32)

The angular integration is done with the help of Appendix A, resulting in

Iξ = 2π c̃
p1

ξ

∫ ∞
0

dp′1

(
1

|p′1 − ξ|+ p1 + 1
− 1

p′1 + ξ + p1 + 1

)
= 4π c̃

p1

ξ
ln
ξ + p1 + 1
p1 + 1

= 4π c̃
p1

|p1 − q|
ln
|p1 − q|+ p1 + 1

p1 + 1
(II.3.33)

In order to prove that Iξ is bounded, i.e. Iξ ≤ C0 <∞ for all q,p1 ∈ R3, we first
investigate the case ξ = 0 (i.e. p1 = q). From (II.3.32),

I0 =
∫
dp′1

c̃

p′1

1
(p′1 + p1 + 1)2

p1

p′1
= 4π c̃

∫ ∞
0

dp′1
p1

(p′1 + p1 + 1)2

= 4π c̃
p1

p1 + 1
<∞. (II.3.34)

If ξ 6= 0, one finds by inspection of (II.3.33) that Iξ → 0 for p1 → 0 or q →∞ while
Iξ <∞ for q → 0 or p1 →∞. Since for ξ 6= 0, Iξ is a continuous function of both
variables in R3 × R3, this proves its boundedness.

The second p′1-integral in (II.3.31) results in 4πc̃ ln 2ξ+1
ξ+1 in place of Iξ, which is

also bounded. Choosing g(p) = p, we have thus

I(12)(p1,p2) ≤ C ′
∫
dq

1
q2

p2

|q + p2|2
= C ′ π3 <∞ (II.3.35)

where Appendix A was used. Therefore,

|(ψ,B(12)
2 ψ)| ≤ C̃ (ψ,ψ). (II.3.36)

II.4. The transformed Coulomb-Dirac operator.

We shall restrictH(n) of section II.2 to the two-particle positive spectral subspace
H+,2. Due to the properties (II.2.1), only the first term of H(n) survives in the
expectation value. Let us concentrate on that contribution to H(n) for n = 2, which
affects both particles simultaneously. From (II.3.1) and (II.2.13) for ψ ∈ H+,2 with
the property Λ(1)

+ ψ = ψ = Λ(2)
+ ψ, one obtains

(ψ,H12 ψ) := (ψ,Λ(1)
+ Λ(2)

+ V (12) Λ(1)
+ Λ(2)

+ ψ) + (ψ,C(12) ψ)

= (ψ, V (12) ψ) + i (ψ,
2∑
k=1

(V (12)Λ(1)
+ Λ(2)

+ B
(k)
1 − B

(k)
1 Λ(1)

+ Λ(2)
+ V (12)) ψ) (II.4.1)

+ (ψ, [ (F (1)
0 + F

(2)
0 )V (12) + V (12) (F (1)

0 + F
(2)
0 ) ] ψ)
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Due to the exchange antisymmetry of ψ, an equivalent representation of (II.4.1) is

(ψ,H12 ψ) = (ψ, V (12) ψ) + 2i (ψ, (V (12)Λ(1)
+ B

(1)
1 − B

(1)
1 Λ(1)

+ V (12)) ψ)

+ 2 (ψ, (F (1)
0 V (12) + V (12)F

(1)
0 ) ψ), (II.4.2)

which is more convenient for mathematical analysis (although in applications an
operator, which is symmetric in both particles, is usually prefered).

The second-order term is further simplified by means of (II.3.21),

(ψ,C(12) ψ) = 2 (ψ, (V (12) Λ(1)
− F

(1)
0 + F

(1)
0 Λ(1)

− V (12)) ψ)

= 2 (ψ, i (V (12) Λ(1)
− B

(1)
1 − B

(1)
1 Λ(1)

− V (12)) ψ). (II.4.3)

Collecting results and using (I.3.24) for the single-particle contribution, the total
transformed two-particle operator acting on H+,2 can be reduced to the following
expression

H(2) =
2∑
k=1

(
D

(k)
0 + V (k) +

i

2
[W (k)

1 , B
(k)
1 ]

)
+ V (12) + C(12) (II.4.4)

C(12) =
2∑
k=1

(
V (12) Λ(k)

− F
(k)
0 + F

(k)
0 Λ(k)

− V (12)
)
,

where we have again used the symmetrised form of the second-order two-particle
term C(12). In order to derive its explicit form, we recall

Λ(k)
− =

1
2

(1−D̃(k)
0 ), φ̂

(1)
1 (q,p) = −i γ√

2π
1
q2

1
E|q+p| + Ep

(D̃(1)
0 (q+p)−D̃(1)

0 (p))

(II.4.5)
and (II.3.24), (II.3.26) to obtain

(ψ, V (12)Λ(1)
− B

(1)
1 ψ) = (V (12) ψ,Λ(1)

− B
(1)
1 ψ)

=
e2

(2π)
3
2 · 4π2

∫
dp1 dp2 dp′1 dp

′
2 ψ̂(p1,p2)

1
|p2 − p′2|2

(1 − D̃
(1)
0 (p2 − p′2 + p1))

·φ̂(1)
1 (p2 − p′2 + p1 − p′1,p

′
1) ψ̂(p′1,p

′
2) (II.4.6)

and
(ψ,B(1)

1 Λ(1)
− V (12) ψ) = (Λ(1)

− B
(1)
1 ψ, V (12) ψ)

=
e2

(2π)
3
2 · 4π2

∫
dp1 dp2 dp′1 dp

′
2 ψ̂(p1,p2) φ̂(1)∗

1 (p′2 − p2 + p′1 − p1,p1)

·(1 − D̃
(1)
0 (p′2 − p2 + p′1))

1
|p′2 − p2|2

ψ̂(p′1,p
′
2). (II.4.7)

We define the kernel kA(12) of a two-particle operator A(12) by means of

(ψ,A(12)ψ) =
∫
dp1 dp2 ψ̂(p1,p2)

∫
dp′1 dp

′
2 kA(12)(p1,p2; p′1,p

′
2) ψ̂(p′1,p

′
2)

(II.4.8)
which is related to the Fourier transformed symbol â12 of A(12) from (II.3.8) by

means of

kA(12)(p1,p2; p′1,p
′
2) =

1
(2π)3

â12(p1 − p′1,p
′
2 − p2; p′1,p

′
2). (II.4.9)

Then

kC(12)(p1,p2; p′1,p
′
2) = − 2γe2

(2π)4

1
|p2 − p′2|2

1
|p2 − p′2 + p1 − p′1|2
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·

{
1

E|p2−p′2+p1| + Ep′1
(1− D̃(1)

0 (p2 − p′2 + p1)) (1 + D̃
(1)
0 (p′1))

+
1

Ep1 + E|p′2−p2+p′1|
(1 + D̃

(1)
0 (p1)) (1 − D̃(1)

0 (p′2 − p2 + p′1))

}
. (II.4.10)

Since ‖D̃(1)
0 ‖ = 1, the expression in curly brackets is a matrix-valued function with

a nonnegative real part, and therefore Re kC12 ≤ 0 for all pk,p′k ∈ R3, k = 1, 2.
For the contribution to H12 which is linear in e2 one gets with (II.3.5) and

(II.3.26)

kV (12)(p1,p2; p′1,p
′
2) =

1
2π2

e2

|p′2 − p2|2
δ(p′2 − p2 + p′1 − p1) ≥ 0. (II.4.11)

Note that the singularities of the kernels of C(12) and V (12) coincide, but they are
of different type.

II.5. Properties of the transformed Coulomb-Dirac operator.

Having established the explicit form of the transformed two-particle Coulomb-
Dirac operator up to second order in the coupling constant e2, we will now show
the subordinacy of the interaction terms with respect to the kinetic energy, and
ultimately the positivity of the transformed operator. Of course, both properties
will only be valid for not too large central potentials.

a) p-form boundedness of C(12)

Lemma II.4 (p-form boundedness of second-order potential).
Let C(12)

1 := V (12)Λ(1)
− F

(1)
0 +F (1)

0 Λ(1)
− V (12) with V (12) the electron-electron Coulomb

interaction and F (1)
0 the first-order expansion term of the projector P (1)

+ , defined in
(II.2.9). Then for ψ ∈ H+,2,

|(ψ,C(12)
1 ψ)| ≤ γe2 π

2

4
(ψ, p1 ψ) ≤ γ e2 π

2

4
(ψ,Ep1 ψ) (II.5.1)

with form bound γe2 π2

4 < 1 for γe2 < 0.405 corresponding to Z ≤ 55/e2.

Since ψ is antisymmetric with respect to particle exchange, one can replace
(ψ, p1ψ) by 1

2 (ψ, (p1 + p2)ψ) on the r.h.s. of (II.5.1), such that for C(12) from
(II.4.3), Lemma II.4 gives

|(ψ,C(12) ψ)| ≤ γe2 π
2

4
(ψ, (p1 + p2)ψ) ≤ γ e2 π

2

4
(ψ, (Ep1 + Ep2) ψ). (II.5.2)

Proof. Using the generalised Lieb and Yau formula (Lemma II.1), we have

|(ψ,C(12)
1 ψ)| = |(ψ, 1

2
C(12) ψ)|

≤
∫
dp1 dp2 dp′1 dp

′
2 |ψ̂(p1,p2)| 1

2
|kc(12)(p1,p2; p′1,p

′
2)| |ψ̂(p′1,p

′
2)|

≤
∫
dp1 dp2 |ψ̂(p1,p2)|2 · J0(p1,p2) (II.5.3)

J0(p1,p2) :=
1
2

∫
dp′1 dp

′
2 |kC(12)(p1,p2; p′1,p

′
2)| f(p1)

f(p′1)
g(p2)
g(p′2)

.
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For the convergence generating functions we choose g = 1 and f(p) = p2. Moreover,
one has

|1± D̃0| ≤ 1 + |D̃0| = 2. (II.5.4)
Hence, inserting the explicit form (II.4.10) for the kernel of C(12), it follows

J0(p1,p2) ≤ γe2

(2π)4

∫
dp′1 dp

′
2

1
|p′2 − p2|2

1
|p′2 − p2 + p′1 − p1|2

· 4

{
1

E|p2−p′2+p1| + Ep′1
+

1
E|p′2−p2+p′1| + Ep1

}
· p

2
1

p
′2
1

. (II.5.5)

Since the integrand is a nonnegative function, one can estimate the energy denom-
inators by their value for mass m = 0. We denote the two summands of J0 by Ja
and Jb, respectively,

J0(p1,p2) = 4
γe2

(2π)4
(Ja + Jb)(p1,p2) (II.5.6)

and replace p′2 by ξ2 := p′2 − p2 − p1 in Ja. Then

Ja(p1,p2) ≤
∫
dp′1 dp

′
2

1
|p′2 − p2|2

1
|p′2 − p2 + p′1 − p1|2

1
|p2 − p′2 + p1| + p′1

p2
1

p
′2
1

= p2
1

∫
dξ2

1
|ξ2 + p1|2

∫
dp′1
p
′2
1

1
ξ2 + p′1

1
|ξ2 + p′1|2

. (II.5.7)

The second integral is readily evaluated with the help of Appendix A, yielding
π3/(2ξ2

2). Again using Appendix A for the remaining integral, one obtains the
estimate for Ja,

Ja(p1,p2) ≤ π6

2
p1. (II.5.8)

In the second contribution to J0 one makes the substitutions q′2 := p′2 − p2 for
p′2 and subsequently q1 := q′2 + p′1 for p′1. Then

Jb(p1,p2) ≤
∫
dq1

1
|q1 − p1|2

p2
1

q1 + p1

∫
dq′2
q
′2
2

1
|q′2 − q1|2

(II.5.9)

and the two integrals involved are the same as for Ja. Hence, Jb(p1,p2) is also
estimated by the r.h.s. of (II.5.8). Insertion into (II.5.3) yields

|(ψ,C(12)
1 ψ)| ≤

∫
dp1 dp2 |ψ̂(p1,p2)|2 · 4γe2

(2π)4
· π6 p1 (II.5.10)

which, since p1 ≤ Ep1 , is the assertion of Lemma II.4. �

b) Subordinacy of C(12)

We show that for sufficiently small potential strength, the second-order term
C(12) can be controlled by the electron-electron potential V (12). Also, considering
the limit of an infinite translation, C(12) is subordinate to V (12) in the form sense.
As a consequence, the form sum of V (12) and C(12) is positive (corresponding to a
repulsive total two-particle potential).
Proposition II.2 (Subdominance of second-order potential).
Let C(12) be the second-order two-particle potential and V (12) = e2/|x1−x2|. Then
for ψ ∈ H+,2,

(i)
|(ψ,C(12) ψ)| ≤ c ‖V (12) ψ‖ · ‖ψ‖ (II.5.11)

with c < 1 for γ < π
π2−4 = 0.535 (Z ≤ 73).
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(ii)
|(ψ,C(12) ψ)| ≤ π C γ (ψ, V (12) ψ) (II.5.12)

with relative form bound smaller than one for γ < 1
πC , C being a constant

of order unity.
If for the proof of (i), the same estimates are used as for (ii), one gets c < 1 if

γ < 1/π (Z ≤ 43), corresponding to C = 1.

Proof of (i).
With the definition of C(12) we have

|(ψ,C(12) ψ)| ≤ 2
(
|(ψ, V (12) Λ(1)

− F
(1)
0 ψ)| + |(ψ, F (1)

0 Λ(1)
− V (12) ψ)|

)
≤ 4 ‖V (12) ψ‖ · ‖Λ(1)

− F
(1)
0 ψ‖ ≤ 4 ‖V (12) ψ‖ · ‖F (1)

0 ψ‖ (II.5.13)

since Λ(1)
− = 1

2 (1− D̃0) has norm unity.
Thus it remains to show the operator boundedness of F (1)

0 . Since F (1)
0 is a one-

particle operator, it suffices to take ϕ ∈ Λ+(L2(R3) × C4). From (I.1.13) for F (1)
0

with (II.3.19),

(F (1)
0 ϕ)(x) = − γ

(2π)
5
2 · 2π

∫
dq

1
q2

∫
dp′ei(q+p′)x 1

Ep′ + E|q+p′|

·
(

1− D̃(1)
0 (q + p′)D̃(1)

0 (p′)
)
ϕ̂(p′) (II.5.14)

such that
‖F (1)

0 ϕ‖2 =
∫
dx F (1)

0 ϕ(x) F (1)
0 ϕ(x)

=
γ2

(2π)4

∫
dp dp′ dq ϕ̂(p)

(
1 − D̃

(1)
0 (p)D̃(1)

0 (q + p)
) 1
q2

1
Ep + E|q+p|

(II.5.15)

· 1
|q + p− p′|2

1
Ep′ + Eq+p|

(
1 − D̃

(1)
0 (q + p)D̃(1)

0 (p′)
)
ϕ̂(p′).

Let first m = 0. Then Ep = p and D̃
(1)
0 (p) = αp̂.

We have from (I.3.11) ϕ̂(p) = U
′−1
0

(
û(p)

0

)
= 1√

2
(1 − βD̃

(1)
0 (p))

(
û(p)

0

)
with

u ∈ L2(R3)× C2 and therefore

ϕ̂(p)
(

1 − D̃
(1)
0 (p)D̃(1)

0 (q + p)
) (

1 − D̃
(1)
0 (q + p)D̃(1)

0 (p′)
)
ϕ̂+(p′)

= û(p) {1− σ(q̂ + p) · σp̂′ + σp̂ · σp̂′ − σp̂′ · σ(q̂ + p)} û(p′). (II.5.16)
With the substitution q′ := q + p for q, the kernel of (II.5.15) relating to û is

given by

k
F

(1)∗
0 F

(1)
0

(p,p′) =
γ2

(2π)4

∫
dq′

1
|q′ − p|2

1
p+ q′

1
|q′ − p′|2

1
p′ + q′

{1− σq̂′ · σp̂′ + σp̂ · σp̂′ − σp̂ · σq̂′} (II.5.17)
This kernel has the same angular dependence of its integrand as the kernel of the
massless second-order term b2 of the Jansen-Hess operator (see (I.3.23) for m = 0).
Therefore, with a partial wave decomposition of û, the results of BSS(2002) can be
used to obtain∫
dp dp′ û(p) k

F
(1)∗
0 F

(1)
0

(p,p′) û(p′) =
∑
ν

∫ ∞
0

dp

∫ ∞
0

dp′ âν(p) k(ν)(p, p′) âν(p′)

k(ν)(p, p′) :=
(γ
π

)2∫ ∞
0

dq′
1

p+ q′
1

p′ + q′
(ql(q′/p)−ql+2s(q′/p))(ql(q′/p′)−ql+2s(q′/p′))

(II.5.18)
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with the reduced Legendre functions ql from Appendix B, and ν = {l,M, s}. The
Lieb and Yau formula turns (II.5.18) into

‖F (1)
0 ϕ‖2 ≤

∑
ν

∫ ∞
0

dp |âν(p)|2 ·
(γ
π

)2

Ils(p) (II.5.19)

Ils(p) ≤ I0(p) :=
∫ ∞

0

dp′
∫ ∞

0

dq′
1

q′ + p

1
q′ + p′

(q0(q′/p)− q1(q′/p))

(q0(q′/p′)− q1(q′/p′)) · f(p)
f(p′)

where use has been made of the fact that the ground-state configuration l = 0, s =
1
2 provides the largest value of Ils(p) (see Appendix C). The convergence gener-
ating function f can be set to unity and the integrals in (II.5.19) are evaluated
analytically. For example, with x := p′/q′ (for p′) and subsequently y := q′/p (for
q′) one gets from Appendix A

I3(p) := −
∫ ∞

0

dq′
1

q′ + p
q1(q′/p) ·

∫ ∞
0

dp′
1

q′ + p′
q0(q′/p′) = −1 · π

2

4
. (II.5.20)

The other three contributions to I0 are calculated in a similar way, giving

I0(p) =
(
π2

4

)2

− π2

4
− π2

4
+ 1 =

(
π2

4
− 1
)2

. (II.5.21)

Therefore, ‖F (1)
0 ϕ‖2 ≤

(
π2

4
− 1
)2

·
(γ
π

)2

‖ϕ‖2. It is easy to verify with the help

of (II.3.4) that (II.5.16) holds also for the states in the negative spectral subspace
of D(1)

0 (with û replaced by v̂), such that in this subspace, the norm of F (1)
0 is the

same. Hence from (II.5.13)

|(ψ,C(12) ψ)| ≤ ‖V (12) ψ‖ · 4‖F (1)
0 ‖ · ‖ψ‖ = c ‖V (12) ψ‖ · ‖ψ‖ (II.5.22)

with c = 4
(
π2

4
− 1
)
γ

π
which is < 1 for γ <

π

π2 − 4
.

For m 6= 0, there are two possibilities. One can make the additional estimates
|1 − D̃(1)

0 (p)D̃(1)
0 (q)| ≤ 2 and 1

Ep+Eq
≤ 1

p+q after having applied the Lieb and
Yau formula directly to (II.5.15). However, this will increase the bound as shown
below. With the substitution q′ := q + p for q one obtains

‖F (1)
0 ϕ‖2 ≤ γ2

(2π)4
· 4
∫
dp |ϕ̂(p)|2 Im(p)

Im(p) :=
∫
dq′

1
|q′ − p|2

1
p+ q′

∫
dp′

1
|q′ − p′|2

1
p′ + q′

f(p)
f(p′)

. (II.5.23)

Choosing f(p) = p, this leads with Appendix A to

Im(p) =
∫
dq′

1
|q′ − p|2

1
p+ q′

2πp
q′
· π

2

4
=
(
π3

2

)2

, (II.5.24)

such that ‖F (1)
0 ϕ‖2 ≤ 4γ2

(2π)4
·
(
π3

2

)2

‖ϕ‖2 and therefore

‖F (1)
0 ‖ ≤

2γ
(2π)2

π3

2
=

γπ

4
. (II.5.25)

Hence, |(ψ,C(12)ψ)| ≤ γπ ‖V (12)ψ‖.
Alternatively, we apply a method put forth by Herbst (1977), which will provide

the same bound for F (1)
0 as in the m = 0 case. Using the behaviour of the kernel
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of F (1)
0 under (unitary) dilations dθ defined in (I.5.1), extracted from (I.3.26) and

(II.3.19),

kF0,m(q/θ,q′/θ) = − γ

(2π)2
θ3 1
|q− q′|2

1√
q′2 +m2θ2 +

√
q2 +m2θ2

·

(
1 − αq + βmθ√

q2 +m2θ2

αq′ + βmθ√
q′2 +m2θ2

)
= θ3 kF0,m·θ (q,q

′) (II.5.26)

where the subscript m (respective m · θ) is introduced to refer explicitly to the
mass parameter. From an (I.5.5)-type relation for the dilated kernel, one gets
(dθkF0,md

−1
θ )(q,q′) = θ−3kF0,m(q/θ,q′/θ) = kF0,m·θ (q,q

′), and therefore, from
the norm invariance under unitary transformations,

‖F0,m‖ = sup
‖ϕ‖=1

(ϕ, F0,mϕ) = sup
‖ϕθ‖=1

(ϕθ, dθF0,md
−1
θ ϕθ)

= sup
‖ϕθ‖=1

(ϕθ, F0,m·θϕθ) = ‖F0,m·θ‖. (II.5.27)

Performing the limit θ → 0, the r.h.s. of (II.5.27) becomes independent of m and
therefore we get ‖F (1)

0 ‖ ≤
γ
π (π

2

4 − 1) for all m ≥ 0. �

Proof of (ii).
We will show that

(ψ, V (12) ψ) + (ψ,C(12) ψ) ≥ (ψ, V (12) ψ) − |(ψ,C(12) ψ)|

≥ (1 − Cπγ) (ψ, V (12) ψ) (II.5.28)

from which (ii) is an immediate consequence. Since V (12) is diagonal in coordinate
space, we use the same strategy as for the proof of Proposition I.3 in the massive
case, and transform the kernel of C(12) into coordinate space. With the help of the
inverse Fourier transform of (II.3.5) we obtain from (II.4.8)

(ψ,C(12) ψ) =
1

(2π)6

∫
dx1 dx2 ψ(x1,x2)

∫
dx′1 dx

′
2 k(x1,x2; x′1,x

′
2) ψ(x′1,x

′
2)

(II.5.29)

k(x1,x2; x′1,x
′
2) :=

∫
dp1dp2dp′1dp

′
2e
ip1x1eip2x2kC(12)(p1,p2; p′1,p

′
2)e−ip

′
1x′1e−ip

′
2x′2

with the kernel kC(12) defined in (II.4.10). Then we use the generalised Lieb and
Yau formula, Lemma II.1, to estimate

(ψ, V (12) ψ) − |(ψ,C(12) ψ)| ≥
∫
dx1 dx2 |ψ(x1,x2)|2

{
e2

|x1 − x2|

− 1
(2π)6

∫
dx′1 dx

′
2 |k(x1,x2; x′1,x

′
2)| f(x1)

f(x′1)
· g(x2)
g(x′2)

}
. (II.5.30)

In Appendix F the second integral is estimated, with the result

(ψ, V (12) ψ) − |(ψ,C(12) ψ)| ≥
∫
dx1 dx2 |ψ(x1,x2)|2

{
e2

|x1 − x2|
− Cπγe2

|x1 − x2|

}
(II.5.31)

which proves (II.5.28). �

Lemma II.5 (Translation property).
Let Ta defined on H+,2 be the translation Taψ(x1,x2) = ψ(x1 + a,x2 + a)
=: ψa(x1,x2). Then for ψ ∈ H+,2,

lim
a→∞

(ψa, (V (12) + C(12)) ψa) = (ψ, V (12) ψ). (II.5.32)
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An immediate consequence is lim
a→∞

‖(V (12) + C(12))ψa‖ = ‖V (12)ψ‖.

Proof. Upon using the substitution xi := yi + a, i = 1, 2, one gets

(Taψ, V (12) Taψ) = (ψa, V (12) ψa)

=
∫
dy1 dy2 ψ(y1 + a,y2 + a)

e2

|y1 − y2|
ψ(y1 + a,y2 + a)

=
∫
dx1 dx2 ψ(x1,x2)

e2

|x1 − x2|
ψ(x1,x2) = (ψ, V (12) ψ) (II.5.33)

which means that V (12) is translational invariant. With C
(12)
1 = V (12)Λ(1)

− F
(1)
0 +

F
(1)
0 Λ(1)

− V (12) we continue by showing that Λ(1)
− is Ta-invariant as well, while

T ∗aF
(1)
0 Ta vanishes for a→∞. From this and from the unitarity relation T ∗aTa = 1

one gets the desired result,

lim
a→∞

(ψa, C(12) ψa) = 2 lim
a→∞

(ψa, C
(12)
1 ψa) = 0. (II.5.34)

We start by showing that D̃(1)
0 is Ta-invariant. From comparison with (II.5.33),

T ∗a D̃
(1)
0 Ta = T ∗a

−i∑3
k=1 αk∂x1k + βm√

−
∑3
k=1 ∂

2
x1k

+m2

Ta (II.5.35)

=
−i
∑3
k=1 αk∂(x1k−ak) + βm√
−
∑3
k=1(∂x1k−ak) +m2

= D̃
(1)
0

where ∂x1k := ∂/∂x1k with x1k the k-th component of x1. As a consequence, Λ(1)
1

= 1
2 (1− D̃(1)

0 ) is Ta-invariant, as well as D(1)
0 .

Using the representation (II.2.9) for F (1)
0 , one gets further

T ∗aF
(1)
0 Ta = − γ

2π

∫ ∞
−∞

dη

(
T ∗a

1

D
(1)
0 + iη

Ta

) (
T ∗a

1
x1

Ta

) (
T ∗a

1

D
(1)
0 + iη

Ta

)

= − γ

2π

∫ ∞
−∞

dη
1

D
(1)
0 + iη

1
|x1 − a|

1

D
(1)
0 + iη

−→ 0 (a→∞). (II.5.36)

�

An important application of this result will concern the spectrum of the trans-
formed Coulomb-Dirac operator (see section II.6).

c) Estimate of V (12)

In order to prove subordinacy of the summed interaction terms for a largest
possible critical potential strength, an improved estimate of the Coulomb field V (12)

is needed. For ψ ∈ A(H1/2(R3)× C4)2, Kato’s inequality provides the sharp form
bound (ψ, V (12)ψ) ≤ π

4 e
2 (ψ, (p1 + p2)ψ) (BBHS 1999). However, if in addition

ψ is in the positive spectral subspace of the free Dirac operator, the form bound
turns out to be smaller.

To this aim we first consider the one-particle case.
Lemma II.6 (Improved estimate of Coulomb field).
Let ϕ ∈ H+,1 be a one-particle function in the positive spectral subspace of the free
Dirac operator. Then

(ϕ,
1
x
ϕ) ≤ 1

γBR
(ϕ,Ep ϕ) (II.5.37)
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where γBR = 2
π/2 +2/π = 0.906 is the critical potential strength for stability of the

Brown-Ravenhall operator.
This bound holds also for ϕ ∈ Λ−(H1/2(R3)× C4) (DES 2000).

Proof. For the massless case we use an inequality derived by BSS (2003) in
the course of their proof of positivity of the massless Brown-Ravenhall operator
(their Theorem 2). With the equivalence of expectation values (Theorem I.2) for
u ∈ H1/2(R3)× C2 and ϕ ∈ Λ+(H1/2(R3)× C4), one has

(ϕ, (D0 −
γ

x
) ϕ) = (

(
u

0

)
, U0 (D0 −

γ

x
) U−1

0

(
u

0

)
) = (u, (b0 + b1) u)

≥ (u, p u) (1 − γ

γBR
). (II.5.38)

Since ϕ is an eigenstate of D0 with D0ϕ = pϕ (for m = 0), and (u, p u) = (ϕ, pϕ)
because the zero-order Foldy-Wouthuysen transformation U0 commutes with p, this
leads to

(ϕ, p ϕ) − γ (ϕ,
1
x
ϕ) ≥ (ϕ, p ϕ) − γ

γBR
(ϕ, p ϕ) (II.5.39)

which proves the lemma since Ep(m = 0) = p.

Based on the work of Tix (1998), Burenkov and Evans (1998) have derived for
the case m 6= 0 an inequality corresponding to (II.5.38),

(ϕ, (D0 −
γ

x
) ϕ) ≥ (1 − γ

γBR
) (ϕ,Ep ϕ), (II.5.40)

from which the assertion (II.5.37) follows in the same way as for m = 0. �

Now we turn to the electron-electron potential.
Lemma II.7 (|T |-form boundedness of V (12)).
Let ψ ∈ H+,2 and T = D

(1)
0 +D

(2)
0 . Then one has the estimate

(ψ, V (12) ψ) ≤ e2

2γBR
(ψ, (Ep1 + Ep2) ψ) (II.5.41)

with form bound e2/(2γBR) = 0.004.

Proof. Following Bach et al (BBHS 1999) we get with the substitution y1 := x1−x2

for x1,

(ψ, V (12) ψ) =
∫
dx1 dx2 ψ(x1,x2)

e2

|x1 − x2|
ψ(x1,x2)

= e2

∫
dx2

∫
dy1 ϕx2(y1)

1
y1

ϕx2(y1) (II.5.42)

where ϕx2(y1) := ψ(y1 + x2,x2). Introducing the Fourier transform ϕ̂x2(p1) of
ϕx2(y1) with respect to y1 and using Lemma II.6,

(ψ, V (12) ψ) ≤ e2

γBR

∫
dx2 (ϕ̂x2(p1), Ep1 ϕ̂x2(p1)) (II.5.43)

=
e2

γBR

∫
dx2 (ϕx2(y1),

√
−∆y1 +m2 ϕx2(y1)) =

e2

γBR
(ψ,Ep1 ψ)

=
e2

2γBR
(ψ, (Ep1 + Ep2) ψ).

where in the second line, x1 = y1 + x2 was substituted back, Ep1 =
√
−∆x1 +m2

and the symmetry property of ψ were used. �
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d) |T |-form boundedness of the perturbation and positivity

We start by collecting some results for the (one-particle) Jansen-Hess operator
from section I, which will be needed below.
Lemma II.8 (Form bounds for one-particle operators).
Let D(k)

0 + V (k) + i
2 [W (k)

1 , B
(k)
1 ] be the single-particle operator up to second order

as defined in section I. Then for ψ ∈ H+,2, the following inequalities hold
(i) massless case, m = 0:

V (k) +
i

2
[W (k)

1 , B
(k)
1 ] ≤ 0 for γ ≤ 4/π (II.5.44)

i

2
[W (k)

1 , B
(k)
1 ] ≥ 0 (II.5.45)

(ψ, (D(k)
0 + V (k) +

i

2
[W (k)

1 , B
(k)
1 ] )ψ) ≥ (1− γ

γBR
+ dγ2) (ψ,D(k)

0 ψ) (II.5.46)

with d = 1
8 (π/2 − 2/π)2.

(ii) massive case, m 6= 0:

(ψ,
i

2
[W (k)

1 , B
(k)
1 ] ψ) ≥ −md0γ

2 (ψ,ψ) (II.5.47)

with d0 := 8 + 12
√

2,

(ψ, (D(k)
0 + V (k) +

i

2
[W (k)

1 , B
(k)
1 ] )ψ) ≥ (1− γ

γBR
− dγ2) (ψ,D(k)

0 ψ) (II.5.48)

(ψ, (V (k) +
i

2
[W (k)

1 , B
(k)
1 ] ) ψ) ≤ m (d0γ

2 +
3
2
γ) (ψ,ψ) for γ ≤ 4/π.

(II.5.49)

Proof. If an inequality holds in the single-particle case, one can easily show its
validity in the case of two-particle expectation values. Let us start with (II.5.44).
We have to prove that (for particle 1)

(ψ, (V (1) +
i

2
[W (1)

1 , B
(1)
1 ] ) ψ) ≤ 0. (II.5.50)

From Proposition I.3 we know that for m = 0 and γ ≤ 4/π,

(u, (b(1)
1 + b

(1)
2 ) u) ≤ 0 ∀ u ∈ H1/2(R3)× C2. (II.5.51)

Using the equivalence with the Sobolev transformation, we derive for ϕ = U−1
0

(
u
0

)
∈ Λ+(H1/2(R3)× C4),

(ϕ, (V (1) +
i

2
[W (1)

1 , B
(1)
1 ] )ϕ) ≤ 0. (II.5.52)

Let ψ = ψ(x1,x2) ∈ H+,2 and set ψ(x1,x2) =: ψx2(x1). Then Λ(1)
+ ψx2(x1) =

ψx2(x1), i.e. for fixed x2, ψx2(x1) ∈ Λ(1)
+ (H1/2(R3) × C4), such that (II.5.52)

holds,

(ψx2 , (V
(1) +

i

2
[W (1)

1 , B
(1)
1 ] ) ψx2) ≤ 0. (II.5.53)

Integration over x2 yields the desired result (II.5.50).
The inequalities (II.5.45) and (II.5.46) are derived in a similar way from (u, b2 u)

≥ 0 and from (u, b u) ≥ (1 − γ/γBR + dγ2)(u, p u) (BSS 2002, see also Lemma
I.9).

From the boundedness of the difference between massive and massless second-
order term (BSS 2002, see also Lemma I.10),

−md0γ
2 (u, u) ≤ (u, (b2m − b2) u) ≤ md0γ

2 (u, u) (II.5.54)
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one has (u, b2m u) ≥ (u, b2 u) −md0γ
2 (u, u) ≥ −md0γ

2 (u, u), and hence (II.5.47)
holds. Inequality (II.5.48) results from (u, bmu) ≥ (1 − γ/γBR − dγ2)(u,Ep u)
(Proposition I.5), whereas the last inequality (II.5.49) is based on (II.5.54) and
Lemma I.8,

(u, (b1m − b1) u) ≤ 3
2
mγ (u, u), (II.5.55)

such that

(u, (b1m + b2m) u) ≤ (u, (b1 + b2) u) + (md0γ
2 +

3
2
mγ) (u, u)

≤ m (d0γ
2 +

3
2
γ) (u, u) (II.5.56)

where (II.5.51) was used. �

Proposition II.3 (|T |-form boundedness and positivity).
Let H(2) be the transformed Coulomb-Dirac operator up to second order in the
coupling constant e2, and let ψ ∈ H+,2 be an antisymmetrised two-particle spinor.
Within this space, one has

(ψ,H(2) ψ) = (ψ,

(
2∑
k=1

(D(k)
0 + V (k) +

i

2
[W (k)

1 , B
(k)
1 ] ) + V (12) + 2C(12)

1

)
ψ)

=: (ψ, (T + W ) ψ) (II.5.57)

with C
(12)
1 from Lemma II.4 and T := D

(1)
0 + D

(2)
0 . The total potential W is

|T |-form bounded,
|(ψ,W ψ)| ≤ c (ψ, T ψ) + C (ψ,ψ) (II.5.58)

with form bound c < 1 for γ < 0.986 (Z ≤ 135) and C = 0 if m = 0, and c < 1 for
γ < 0.89 (Z ≤ 122) if m 6= 0. We also have positivity,

(ψ, (T + W ) ψ) ≥ 0, (II.5.59)

for γ < 0.986 if m = 0, and for γ < 0.825 (Z ≤ 113) if m 6= 0.

Proof. We consider first the massless case and estimate W from above. With
(II.5.44) and Lemmata II.4 and II.7,

(ψ,Wψ) ≤ (ψ, (V (12) + 2C(12)
1 )ψ) ≤ e2

2γBR
(ψ, (p1 + p2)ψ) + γe2π

2

4
(ψ, (p1 + p2)ψ)

= ch (ψ, T ψ) with ch :=
e2

2γBR
+

γe2π2

4
. (II.5.60)

One has ch < e2 for γ < 0.18 and ch < 1 for γ < 55.3.
For the estimate of W from below, we use the result of BBS (2002), inequality

(II.5.46). Then with V (12) ≥ 0 and Lemma II.4,

(ψ,W ψ) ≥ (− γ

γBR
+ dγ2) (ψ, T ψ) − γe2 π

2

4
(ψ, T ψ) = −cl (ψ, T ψ),

(II.5.61)
with cl := γ ( 1

γBR
+ e2π2/4) − dγ2.

We have cl < 1 for γ < 0.986. Therefore, W is |T |-form bounded,

|(ψ,W ψ)| ≤ c (ψ, T ψ) with c := max{ch, cl}. (II.5.62)

c = cl for 0.004 < γ < 10.1. For γ ≤ 0.004, one has c = ch � 1.
Positivity of the transformed operator follows immediately from (II.5.61),

(ψ, (T +W ) ψ) ≥ (1− cl) (ψ, T ψ) > 0 for cl < 1. (II.5.63)
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Now we turn to the case m 6= 0. First we estimate W from above, using (II.5.49)
as well as the second inequality of (II.5.60) which also holds for m 6= 0 :

(ψ,W ψ) ≤ 2m (d0γ
2 +

3
2
γ) (ψ,ψ) + ch (ψ, (Ep1 + Ep2) ψ). (II.5.64)

For the estimate of W from below, the proof of Lemma II.7 shows that (ψ, 1
x1
ψ)

≤ 1
γBR

(ψ, p1 ψ). Hence, for V (1) = −γ/x1,

(ψ, V (1) ψ) ≥ − γ

γBR
(ψ, p1 ψ) ≥ − γ

γBR
(ψ,Ep1 ψ). (II.5.65)

Then, with (II.5.47), V (12) ≥ 0 and (II.5.2):

(ψ,W ψ) ≥ − γ

γBR
(ψ, (Ep1+Ep2) ψ) − 2md0γ

2 (ψ,ψ) − γe2 π
2

4
(ψ, (Ep1+Ep2) ψ)

= −c̃l (ψ, T ψ) − 2md0γ
2 (ψ,ψ), (II.5.66)

with c̃l := γ( 1
γBR

+ e2π2/4) which is < 1 for γ < 0.89.
As a consequence, |T |-form boundedness of W is expressed in the following way

|(ψ,W ψ)| ≤ c (ψ, T ψ) + 2m (d0γ
2 +

3
2
γ) (ψ,ψ) (II.5.67)

where
c := max {ch, c̃l} (II.5.68)

and c = c̃l for γ > e2/2.
In order to establish positivity, the single-particle estimates are used. With

(II.5.48), one finds

(ψ, (T +W ) ψ) ≥ (1 − γ

γBR
− dγ2) (ψ, T ψ) − γe2 π

2

4
(ψ, T ψ)

= c0 (ψ, T ψ) with c0 := 1 − γ (
1

γBR
+ e2 π

2

4
) − dγ2. (II.5.69)

Positivity is obtained for c0 > 0, i.e. γ < 0.825. �

We note that due to the smallness of e2 (with respect to γ) for high nuclear
charges, the critical potential strength for positivity of the two-particle operator is
close to those for positivity of the Jansen-Hess operator.

Collecting results, the |T |-form boundedness of the total potential W with form
bound < 1 ensures that T +W is well defined as a form sum of T and W with the
form domain of T . Moreover, the semiboundedness of the transformed Coulomb-
Dirac operator allows for its Friedrichs extension to a self-adjoint operator on the
Hilbert space (Λ(1)

+ ⊗ Λ(2)
+ )(A(L2(R3)× C4)2).

II.6. The spectrum of the transformed Coulomb-Dirac operator.

In this section it is shown that the free-particle positive spectrum is a subset of
the essential spectrum of the transformed Coulomb-Dirac operator H(2) and that
the second-order two-particle interaction does not change the essential spectrum of
H(2). Moreover we will prove that in the massless case, there are no eigenvalues
embedded in the essential spectrum. Let us start with some known results.

We recall that we are only interested in expectation values (and the resulting
spectrum) of H(2) taken with states ψ in the positive spectral subspace H+,2 of
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the free two-particle operator T = D
(1)
0 + D

(2)
0 . With this restriction, one has

σ(T ) = σess(T ) = [2m,∞). This is easily seen from

(T̂ψ)(p1,p2) = (Ep1 + Ep2) ψ̂(p1,p2) = (
√
p2

1 +m2 +
√
p2

2 +m2 ) ψ̂(p1,p2).
(II.6.1)

With H(2) from (II.5.57) we define the abbreviations

H(2) = T +W, W = W (1) + W (2) + V (12) + 2C(12)
1 , (II.6.2)

with W (k) := V (k)+ i
2 [W (k)

1 , B
(k)
1 ], k = 1, 2 the potential term of the Jansen-Hess

operator for particle k.
Let σ(D(k)

0 + W (k)) be the respective one-particle spectrum. Dropping for a
moment all two-particle interactions, the spectrum of the sum of the single-particle
operators is given by (Reed-Simon 1980, Corollary to Theorem VIII.33)

σ(T +W (1) +W (2)) = {λ1 + λ2 : λk ∈ σ(D(k)
0 +W (k)), k = 1, 2}. (II.6.3)

So if D(1)
0 +W (1) has a bound ground state with eigenvalue 0 < λ01 < m, then the

essential spectrum of T +W (1) +W (2) starts at λ01 +m, i.e.

σess(T +W (1) +W (2)) = [m+ inf
λ1∈σ(D

(1)
0 +W (1))

λ1,∞) (II.6.4)

(Reed-Simon 1978, p.121). This is true because for the Jansen-Hess operator
D

(1)
0 + W (1), the essential spectrum is the same as for D(1)

0 for subcritical po-
tential strength, namely [m,∞) (see Theorem I.3).

Let us now switch on the two-particle interactions. We aim at proving the
following properties of the spectrum.
Theorem II.1 (Location of essential spectrum).

Let H(2) = T +W with T = D
(1)
0 +D

(2)
0 and W =

2∑
k=1

W (k) +V (12) + 2C(12)
1 be the

transformed Coulomb-Dirac operator up to second order in the coupling constant
e2, acting on H1

+,2 := (Λ(1)
+ ⊗Λ(2)

+ )(A(H1(R3)×C4)2). Then for potential strengths
γ < 0.89, the spectrum has the following properties

(i)
[2m,∞) = σ(T ) ⊂ σ(T + V (12)) ⊂ σ(H(2)) (II.6.5)

(ii)
[2m,∞) = σess(T ) ⊂ σess(T + V (12)) ⊂ σess(H(2)) (II.6.6)

and for γ < 0.654,
(iii)

σess(H(2)) = σess(T +
2∑
k=1

W (k) + V (12)). (II.6.7)

The bound 0.89 on γ arises from the requirement that H(2) is well-defined (see
Proposition II.3).
For the proof of inclusions (i) and (ii) we use the behaviour under translations
(Hunziger 1966, Reed-Simon 1978, p.370, problem 45), together with the Weyl
criterion (Weidmann 1980, Theorem 7.22).
Lemma II.9 (Weyl criterion).
Let A be a self-adjoint operator in a Hilbert space H. Then λ ∈ σ(A) iff there exists
a sequence (ψl)l∈N in the domain of A with ‖ψl‖ > 0 such that

‖(A − λ)ψl‖ −→ 0 (l→∞). (II.6.8)

If (ψl)l∈N can be chosen orthogonal then λ ∈ σess(A).
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In the following, all symmetric operators are considered as self-adjoint by means
of their Friedrichs extension (which exists for subcritical γ).

Proof of (i) and (ii).
Let Ta be the translation defined in Lemma II.5 and let a := n ∈ N. Then (Tn)n∈N
induces a sequence (ψn)n∈N where a→∞ corresponds to n→∞.

From the proof of Lemma II.5 we know that D(k)
0 and V (12) are Tn-invariant,

while (ψn,W (k)ψn) and (ψn, C
(12)
1 ψn) tend to zero when n→∞. Hence

lim
n→∞

‖(H(2) − λ) ψn‖2 = lim
n→∞

(ψn, (H(2) − λ)2 ψn) = (ψ, (T + V (12) − λ)2 ψ)

= ‖(T + V (12) − λ) ψ‖2. (II.6.9)

Now let λ ∈ σ(T + V (12)). Then there exists a sequence (ψl)l∈N such that ‖(T +
V (12) − λ)ψl‖ → 0 as l → ∞. We identify the ψ from (II.6.9) with ψl and
translate each ψl with Tn. Constructing a diagonal subsequence (ψl,l)l∈N of the
sequence (ψl,n)n,l∈N we get

lim
l→∞

‖(H(2) − λ) ψl,l‖2 = lim
l→∞

‖(T + V (12) − λ) ψl‖2 = 0 (II.6.10)

such that λ ∈ σ(H(2)). This proves σ(T + V (12)) ⊂ σ(H(2)).
In order to prove the first inclusion of (i), we choose a translation T

(1)
b which

affects only the coordinate x1, i.e. T (1)
b ψ(x1,x2) = ψ(x1 + b,x2) =: ψ(1)

b (x1,x2).
This translation leaves T invariant, but not V (12), since

T
(1)∗
b V (12) T

(1)
b =

e2

|x1 − b− x2|
→ 0 as b→∞. As a consequence,

lim
b→∞

‖(T + V (12) − λ) ψ(1)
b ‖

2 = ‖(T − λ) ψ‖2. (II.6.11)

We set b := n to define a sequence (ψ(1)
n )n∈N and use the same argumentation to

prove that for λ ∈ σ(T ), we have λ ∈ σ(T + V (12)).
In order to prove (ii), we take the sequence (ψl)l∈N to be an orthogonal sequence

and construct via translation with Tn the diagonal subsequence (ψl,l)l∈N. Since the
(ψl)l∈N are orthogonal, the translated functions (ψl,l)l∈N are linearly independent
and can be orthogonalised. Hence for λ ∈ σess(T +V (12)), we have λ ∈ σess(H(2)).
By choosing the sequence (ψ(1)

n )n∈N orthogonal, it follows in a similar way that
σess(T ) ⊂ σess(T + V (12)).

We remark that this proof holds both for m = 0 and m 6= 0. �

Proof of (iii).
For the proof of equality (II.6.7) it is sufficient to show that the resolvent difference

Rµ := (H(2) + µ)−1 − (Hv + µ)−1, (II.6.12)

Hv := T +
2∑
k=1

W (k) + V (12)

is compact for a suitable µ ≥ 1 (see section I.5). Using the second resolvent identity,
we decompose

Rµ = − (Hv + µ)−1 2C(12)
1 (H(2) + µ)−1 (II.6.13)

= −
[
(Hv + µ)−1 (T + µ)

]
·
{

(T + µ)−1 2C(12)
1 (T + µ)−1

}
·
[
(T + µ) (H(2) + µ)−1

]
and show that the operator in curly brackets is compact and the adjacent two
factors are bounded.
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a) Compactness of W2 := (T + µ)−1 C
(12)
1 (T + µ)−1

We apply the strategy to write W2 as the norm-convergent limit of a sequence
(W2n)n∈N of (compact) Hilbert-Schmidt operators. If so, W2 is compact too.
In order to construct the Hilbert Schmidt operators we use the property that an
operator A is Hilbert-Schmidt iff its kernel kA is square integrable (Reed-Simon
1980, Theorem VI.23).

In order to define the sequence (W2n)n∈N, we must introduce convergence gen-
erating functions in momentum space and apply a regularisation of the Coulomb
potential.

We first decompose C(12)
1 into two self-adjoint operators,

C
(12)
1 = C

(12)
1ε + R

(12)
1ε , (II.6.14)

C
(12)
1ε := e−ε(p1+p2)V (12)Λ(1)

− F
(1)
0 + F

(1)
0 Λ(1)

− V (12)e−ε(p1+p2)

R
(12)
1ε := gεV

(12)Λ(1)
− F

(1)
0 + F

(1)
0 Λ(1)

− V (12)gε, gε := 1 − e−ε(p1+p2)

and secondly, we introduce the screened Coulomb field 1
xe
−εx with its Fourier trans-

form
√

2
π

1
p2 + ε2

and decompose each of the two momentum denominators in the

prefactor of the kernel (II.4.10) of C(12) (which is twice the kernel of C(12)
1 ) ac-

cording to

1
p2

= eε + fε, eε :=
1

p2 + ε2
, fε :=

ε2

p2(p2 + ε2)
(II.6.15)

which results in a decomposition of C(12)
1 into 8 self-adjoint operators,

C
(12)
1 = C

(12)
1ε (eε, eε) + C

(12)
1ε (eε, fε) + C

(12)
1ε (fε, eε) + C

(12)
1ε (fε, fε)

+ R
(12)
1ε (eε, eε) + R

(12)
1ε (eε, fε) + R

(12)
1ε (fε, eε) + R

(12)
1ε (fε, fε). (II.6.16)

We now prove the compactness of W2n := (T +µ)−1 C
(12)
1ε (eε, eε) (T +µ)−1 with

ε := 1/n via the square integrability of its kernel. Subsequently we will show that
the remaining operators from the decomposition of C(12)

1 vanish in the limit ε→ 0.
We have

k
C

(12)
1ε (eε,eε)

(p1,p2; p′1,p
′
2) = − γe2

(2π)4

1
|p2 − p′2|2 + ε2

1
|p2 − p′2 + p1 − p′1|2 + ε2

(II.6.17)

·

{
e−ε(p1+p2) 1

E|p2−p′2+p1| + Ep′1
(1− D̃(1)

0 (p2 − p′2 + p′1)) (1 + D̃
(1)
0 (p′1))

+
1

Ep1 + E|p′2−p2+p′1|
(1 + D̃

(1)
0 (p1)) (1− D̃(1)

0 (p′2 − p2 + p′1)) e−ε(p
′
1+p′2)

}
.

In the modulus of the kernel, |1 ± D̃(1)
0 (p)| is estimated by 2 and the energy de-

nominators by their massless expression, resulting in

|kW2n(p1,p2; p′1,p
′
2)| ≤ 4γe2

(2π)4

1
p1+ p2+µ

1
|p2− p′2|2+ ε2

1
|p2− p′2+ p1− p′1|2+ ε2

(II.6.18)

·
{
e−ε(p1+p2) 1

|p2 − p′2 + p1|+ p′1
+

1
p1 + |p′2 − p2 + p′1|

e−ε(p
′
1+p′2)

}
1

p′1 + p′2 + µ
.
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Using the substitutions q2 := p2−p′2 and q1 := p1−p′1+q2 as well as the estimates
(p1 + p2 + µ)−1 ≤ 1, (p′1 + p′2 + µ)−1 ≤ 1 for µ ≥ 1, we have to show that the
integral S is finite, defined by

S :=
∫
dp1 dp2 dp′1 dp

′
2 |kW2n(p1,p2; p′1,p

′
2)|2 ≤ 4γe2

(2π)4

∫
dq1 dq2 (II.6.19)

· 1
(q2

2 + ε2)2

1
(q2

1 + ε2)2

{∫
dp1 dp2 e

−2ε(p1+p2) 1
(|p1 + q2|+ |p1 + q2 − q1|)2

+
∫
dp′1 dp

′
2

(
2e−ε(|q1+p′1−q2|+|q2+p′2|) e−ε(p

′
1+p′2) 1

p′1 + |q1 + p′1|

· 1
|q1 + p′1 − q2|+ |p′1 − q2|

+ e−2ε(p′1+p′2) 1
(|q1 + p′1 − q2|+ |p′1 − q2|)2

)}
.

It is obvious that for ε > 0, all integrals converge near zero and infinity. Explicitly,
in the first term (using the formulae from Appendix A)∫

dq2
1

(q2
2 + ε2)2

1
(|p1 + q2|+ |p1 + q2 − q1|)2

≤
∫
dq2

1
(q2

2 + ε2)2

1
|p1 + q2|2

=
∫ ∞

0

q2 dq2

(q2
2 + ε2)2

2π
p1

ln
q2 + p1

|q2 − p1|
=

c

p1
(II.6.20)

with c <∞, and similarly for the third term. In the second term, the denominator
is estimated by (p′1 · |p′1−q2|)−1 showing that this singularity is even weaker. This
proves that W2n is Hilbert-Schmidt.

It remains to show that ‖W2n −W2‖ = ‖(T + µ)−1
(
C

(12)
1 − C(12)

1ε (eε, eε)
)

(T +

µ)−1‖ → 0 with ε→ 0.
Since all seven contributions to C(12)

1 −C(12)
1ε (eε, eε) are self-adjoint, each of these

operators can be estimated separately with the help of the generalised Lieb and Yau
formula and suitable convergence generating functions. Two basic facts are needed
to show the estimate by some power of ε

•
∫
dq1

ε2

q2
1(q2

1 + ε2)
= 4πε2

∫ ∞
0

dq1

q2
1 + ε2

= 2π2ε (II.6.21)

• 1
p+ µ

(
1 − e−εp

)
≤ 1

p

(
1 − e−εp

)
≤ ε. (II.6.22)

The proof is displayed in Appendix D, with the result (for m 6= 0)

‖(W2n −W2) ψ‖2 ≤ c2ε ‖ψ‖2 (II.6.23)

which proves that W2 is Hilbert-Schmidt.

b) Boundedness of (T + µ) (H(2) + µ)−1

For χ ∈ A(L2(R3)×C4)2 and ψ := (H(2) +µ)−1 χ ∈ A(H1(R3)×C4)2, we have
to show that there exists a constant c such that

‖(T + µ) (H(2) + µ)−1 χ‖2 = (ψ, (T + µ)2 ψ)
!
≤ c ‖χ‖2 = c (ψ, (H(2) + µ)2 ψ)

(II.6.24)
for some µ ≥ 1. Let H(2) = T +W. We follow BBHS (1999) and use the triangle
inequality, ‖(H(2) + µ)ψ‖ ≥ ‖(T + µ)ψ‖ − ‖Wψ‖.

Assume we can show

‖W ψ‖
!
≤ c0 ‖T ψ‖ (II.6.25)

with c0 < 1. Then from ‖Tψ‖ ≤ ‖(T + µ)ψ‖ we get

‖(H(2) + µ)ψ‖ ≥ (1− c0) ‖(T + µ)ψ‖. (II.6.26)
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From this inequality, (II.6.24) is a consequence if we require

‖(T + µ)ψ‖ ≤ c (1− c0) ‖(T + µ)ψ‖ (II.6.27)

which is fulfilled for c ≥ 1
1− c0

. We note that (II.6.25) has already been proven in

the form sense (Proposition II.3); it does, however, not follow from (II.5.58), as is
well known (Kadison and Ringrose 1983, p.251). In fact, potentials with Coulomb
singularities have weaker estimates in the norm sense than in the form sense (see
Appendix C).

Proof of (II.6.25):
Since the total potential enters quadratically, we have to use its symmetrised form
(with respect to particle exchange), i.e. replace 2C(12)

1 by C(12)
1 +C

(12)
2 . From the

antisymmetry property of ψ together with the fact that for any pair of self-adjoint
operators A,B one has |(ψ,AB ψ)| = |(BAψ,ψ)| = |(ψ,BAψ)|, the estimate of
‖Wψ‖2 = (ψ,W 2ψ) can be reduced to

(ψ, (W (1) + W (2) + V (12) + C
(12)
1 + C

(12)
2 )2 ψ) (II.6.28)

≤ (ψ, [(W (1) +W (2))2 + (V (12))2 + 2(C(12)
1 )2] ψ) + 2 |(ψ,C(12)

1 C
(12)
2 ψ)|

+4|(ψ,W (1)V (12)ψ)|+4|(ψ,W (1)C
(12)
1 ψ)|+4|(ψ,W (1)C

(12)
2 ψ)|+4|(ψ, V (12)C

(12)
1 ψ)|.

Let us first consider the massless case. In Appendix C, the estimates for
(ψ, (W (1))2ψ) and (ψ, (V (12))2ψ) are calculated, with the results

(ψ, (W (1))2 ψ) ≤ cw (ψ, p2
1 ψ), cw =

(
4
3
γ +

2
9
γ2

)2

= (1.33γ + 0.22γ2)2,

(II.6.29)
(ψ, (V (12))2 ψ) ≤ cv (ψ, p2

1 ψ) = cv (ψ, p2
2 ψ), cv = 4e4.

Further, we estimate

‖C(12)
1 ψ‖ ≤ ‖V (12)Λ(1)

− F
(1)
0 ψ‖ + ‖F (1)

0 Λ(1)
− V (12) ψ‖

≤ ‖V (12)Λ(1)
− F

(1)
0 ψ‖ + ‖F (1)

0 ‖ · ‖Λ
(1)
− ‖ · ‖V (12) ψ‖. (II.6.30)

For the first term, define ϕ := Λ(1)
− F

(1)
0 ψ and χ := p2ψ (with χ ∈ A(L2(R3) ×

C
4)2, ϕ, ψ ∈ A(H1(R3)× C4)2) such that

‖V (12)Λ(1)
− F

(1)
0 ψ‖ = ‖V (12)ϕ‖ ≤

√
cv ‖p2 ϕ‖ =

√
cv ‖p2Λ(1)

− F
(1)
0 ψ‖

=
√
cv ‖Λ(1)

− F
(1)
0 p2 ψ‖ ≤

√
cv ‖Λ(1)

− ‖ ‖F
(1)
0 ‖ ‖p2 ψ‖ ≤

√
cv ‖F (1)

0 ‖ (ψ, p2
2 ψ)

1
2 .

(II.6.31)
From the estimate (II.5.22), ‖F (1)

0 ‖ ≤
γ
π (π

2

4 − 1) and therefore

‖C(12)
1 ψ‖ ≤ ‖F (1)

0 ‖
(√

cv (ψ, p2
2 ψ)

1
2 + ‖V (12) ψ‖

)
≤
√
cs ‖p2 ψ‖, (II.6.32)

with cs =
(

2γ
π

[
π2

4
− 1
])2

cv.

Again from Appendix C, |(ψ,W (1)W (2) ψ)| ≤ cn (ψ, p1p2 ψ) with cn = [γ2 (π2 +
2
π ) + γ2

8 (π2 −
2
π )2]2 = (1.1γ + 0.11γ2)2 < cw (for γ > 0) , such that

(ψ, (W (1) +W (2))2 ψ) ≤ 2 (ψ, (W (1))2 ψ) + 2 |(ψ,W (1)W (2) ψ)|
≤ cw (ψ, (p2

1 + p2
2)ψ) + 2cn (ψ, p1p2 ψ) ≤ cw (ψ, T 2 ψ). (II.6.33)

Since the estimates of V (12) and C(12)
1 , C

(2)
2 are smaller by a factor of e2 as compared

to those of W (1) and W (2) (when the central potential strength γ is large), we are
not aiming at optimised estimates. Rather, we use estimates of the type (for A,B
self-adjoint), |(ψ,ABψ)| = |(Aψ,Bψ)| ≤ ‖Aψ‖ · ‖Bψ‖.
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As an exemplary case, consider

|(ψ,W (1)V (12) ψ)| ≤ ‖W (1) ψ‖ ‖V (12) ψ‖ ≤
√
cw ‖p1 ψ‖ ·

√
cv ‖p2 ψ‖

=
√
cwcv ‖p1 ψ‖2 =

1
2
√
cwcv (ψ, (p2

1 + p2
2)ψ) ≤ 1

2
√
cwcv (ψ, T 2 ψ). (II.6.34)

Thus, collecting results,

(ψ,W 2 ψ) ≤ (cw + 2e4 + 2cs + 4e2√cw + 4
√
cwcs + 4e2√cs ) (ψ, T 2 ψ)

=: c20 ‖T ψ‖2 (II.6.35)
with c0 < 1 for γ < 0.654 (Z ≤ 89). Hence the boundedness of (T+µ)(H(2)+µ)−1

is proven for m = 0 and γ < 0.654 .
We follow the argumentation of Herbst (1977) to infer the boundedness for the

m 6= 0 case, with the same bound. The only necessary ingredient to show is the
scaling property of (T + µ)(H(2) + µ)−1 under dilations.

First we note that no specification of µ was needed in the m = 0 proof of the
boundedness. Since T =

√
p2

1 +m2 +
√
p2

2 +m2 > 0 for m 6= 0 and, according
to Proposition II.3, H(2) > 0 for γ < 0.825 which is larger than the critical γ
from above, both T and H(2) are invertible such that µ can be set to zero. In the
compactness proof, µ can also be set to zero if m 6= 0. The reason is the estimate

1√
p2 +m2

≤ c

p+ 1
for a suitable constant c (e.g. c ≥ max{2, 2

m}). Since the

values of the occurring bounds are irrelevant, a finite additional factor c plays no
role.

We introduce the dilation dθ by means of dθψ̂(p1,p2) = θ−3 ψ̂(p1/θ,p2/θ)
=: ψ̂θ(p1,p2) for θ ∈ R+.

From (I.5.5) we know that dθEp(m) d−1
θ = Ep/θ(m) = 1

θ Ep(m · θ). Similarly,
dθW

(k)(m) d−1
θ = 1

θW
(k)(m · θ), k = 1, 2 follows from the scaling properties of

bkm because of (I.4.1) and dθU ′0(m)d−1
θ = U ′0(m · θ) (which is easily obtained from

the explicit expression (I.3.1) for U ′0).
For the two-particle operators V (12) and C

(12)
1 one has from (II.4.8) – (II.4.11),

(ψ, V (12) ψ) = (ψθ, dθV (12)d−1
θ ψθ) (II.6.36)

=
∫
dp1 dp2 θ

−3ψ̂(p1/θ,p2/θ)
∫
dp′1 dp

′
2 kθ(p1,p2; p′1,p

′
2) θ−3 ψ̂(p′1/θ,p

′
2/θ)

= θ6

∫
dp1/θ dp2/θ ψ̂(p1/θ,p2/θ)

∫
dp′1/θ dp

′
2/θ kθ(p1,p2; p′1,p

′
2) ψ̂(p′1/θ,p

′
2/θ)

where kθ = dθ k d
−1
θ is the dilated kernel of V (12) (respective C(12)

1 ).
Upon considering dpk/θ, dp′k/θ, k = 1, 2 as new variables, one can identify

k(p1/θ,p2/θ; p′1/θ,p
′
2/θ) θ

−6 = kθ(p1,p2; p′1,p
′
2). (II.6.37)

Thus one easily verifies from the explicit form (II.4.11), (II.4.10) of the kernels
of V (12) and C

(12)
1 , that kV (12),θ(p1,p2; p′1,p

′
2) = 1

θ kV (12)(p1,p2; p′1,p
′
2) and

(dθkC(12),md
−1
θ )(p1,p2; p′1,p

′
2) = 1

θ kC(12),m·θ(p1,p2; p′1,p
′
2). Hence we have

dθH
(2)(m) d−1

θ =
1
θ
H(2)(m · θ), dθ T (m) d−1

θ =
1
θ
T (m · θ). (II.6.38)

Moreover, with H
(2)
θ = 1

θ H
(2)(m · θ) it follows upon inversion that (H(2)

θ )−1 =
( 1
θ H

(2)(m · θ))−1 = θ (H(2)(m · θ))−1. Thus

dθ T (H(2))−1 d−1
θ = (dθ T d−1

θ ) (dθH(2) d−1
θ )−1 =

1
θ
T (m · θ) · θ (H(2)(m · θ))−1

= T (H(2))−1(m · θ). (II.6.39)
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Hence our operator is dilational invariant with m being absorbed in the dilation
parameter θ′ := m · θ. Since dilation as a unitary transformation does not change
the norm, we get ‖T (H(2))−1(m)‖ = ‖T (H(2))−1(m = 0)‖ ≤ c with the constant
c from the m = 0 estimate given above.

c) Boundedness of (Hv + µ)−1(T + µ)

From Lemma I.4 we have ‖(Hv+µ)−1 (T+µ)‖ ≤ c if ‖(T+µ) (Hv+µ)−1‖ ≤ c.
However, for γ < 0.654, the latter follows immediately from the proof of bounded-
ness of (T+µ)(H(2)+µ)−1 upon dropping the interactions C(12)

1 , C
(12)
2 everywhere.

�

It should be noted that in the r.h.s of (II.6.7) in Theorem II.1, the electron-
electron interaction V (12) cannot be dropped. In fact, its kernel contains the delta-
function (viz. (II.4.11)), the square of which is highly singular. The fact that V (12)

is not relatively compact with respect to T is due to the unboundedness of V (12)

when x1 and x2 go to infinity, keeping simultaneously x1 = x2 (Reed-Simon 1978,
p.120).

Concerning the absence of eigenvalues in the massless case, the same holds true
as in the one-particle case.
Theorem II.2 (Absence of eigenvalues in massless case).
Let m = 0 and the critical potential strength γ0 = 0.986 as in Proposition II.3.
Then the spectrum of H(2) has no eigenvalues for γ < γ0.

Proof. We show that (i), H(2) has no eigenvalues 6= 0, and (ii) that E = 0 is no
eigenvalue.

For (i) we argue as in the one-particle case (Theorem I.3(iii)). From (II.6.38)
we know that H(2) scales under dilations according to dθH

(2)(m = 0) d−1
θ =

1
θ H

(2)(m = 0). Therefore, assume ψ is an eigenfunction of H(2) with eigenvalue
E 6= 0, then dθψ is also an eigenfunction of H(2) (with eigenvalue θE). This
contradicts the separability of the Hilbert space (H1/2(R)3 × C4)2.

For (ii) we also follow the proof of Theorem I.3(iii). Assume there exists an
eigenfunction ψ 6= 0 to H(2) with eigenvalue E = 0. Then from (II.5.61) and a
partial wave analysis, together with the Mellin transform properties given in BSS
(2002), see Appendix C for a generalisation to the two-particle case, we have

0 = (ψ,H(2) ψ) ≥
(

1 − γ (
1

γBR
+ e2 π

2

4
) + d γ2

)
(ψ, 2p1 ψ)

= 2
∫
dp2

∑
ν

∫ ∞
−∞

dt
∣∣a#
ν,p2

(t+ i/2)
∣∣2 (1 − γ (

1
γBR

+ e2 π
2

4
) + d γ2

)
.

(II.6.40)
If γ < 0.986, the factor in brackets is strictly positive and hence |a#

ν,p2
(t+ i

2 )|2 = 0
almost everywhere. The remaining part of the proof can be copied from the one of
Theorem I.3(iii), to show that ψ = 0, a contradiction. �
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III. Outlook: The general N -particle case

For N fermionic particles, we define the positive spectral subspace of the free
N -particle Dirac operator by means of H+,N := Λ+,N A

(
H1/2(R3)× C4

)N
, to be

considered as subspace of the Hilbert space Λ+,NA(L2(R3) × C4)N , where Λ+,N

is the product of the free projectors for each particle,

Λ+,N := Λ(1)
+ · · ·Λ

(N)
+ . (III.1)

and the spin of each particle is assumed to be 1
2 . A state ψ ∈ H+,N can be

considered as a superposition of Slater determinants (see section II.1), such that

each summand of ψ contains a product of N one-particle states,
N∏
i=1

ϕ
(α)
σ(i)(xi),

where σ ∈ SN is a permutation and α enumerates the basis of the single-particle
Hamiltonian h(k). Since operators acting on distinct particles commute, the above
definition of our Hilbert space agrees with the conventional definition H+,N =
ΛNn=1H+ where ΛNn=1 symbolises the N -fold antisymmetric tensor product of the
single-particle Hilbert spaces H+ := Λ+ (H1/2(R3) × C4) (see e.g. Hoever and
Siedentop 1999). In particular, one has Λ(k)

+ ψ = ψ for all k = 1, ..., N.
The transformation scheme for the Coulomb-Dirac operator (II.1), introduced

in section II.2 for the two-particle case, can readily be generalised to an atom with
N electrons, N > 2. Iterating the representation (II.2.5) of the projector P (k)

+ for
particle k, to get P (k)

+ = Λ(k)
+ + F

(k)
0 +R((e2)2), and defining the products

Fk := Λ(1)
+ · · ·Λ

(k−1)
+ F

(k)
0 Λ(k+1)

+ · · ·Λ(N)
+ , k ∈ {1, ..., N}, (III.2)

the two-particle interaction term of (II.1) is expanded according to

P+,N

N∑
n<k

V (nk) P+,N =
N∑
n<k

(
Λ(n)

+ Λ(k)
+ V (nk) Λ+,N

+
N∑
m=1
m 6=n,k

(Λ(n)
+ Λ(k)

+ V (nk) Λ(m)
+ Fm + Fm Λ(m)

+ V (nk) Λ(n)
+ Λ(k)

+ )

+ F
(n)
0 Λ(k)

+ V (nk) Λ+,N + F
(k)
0 Λ(n)

+ V (nk) Λ+,N + Λ+,N V
(nk) F

(n)
0 Λ(k)

+ (III.3)

+ Λ+,N V
(nk) F

(k)
0 Λ(n)

+

)
+ R((e2)3).

The first Sobolev transformation can be written in terms of the one-particle self-
adjoint operators B(k)

1

U1 = eiB1 , B1 =
N∑
k=1

B
(k)
1 . (III.4)

Then the Coulomb-Dirac operator turns into

U−1
1 H U1 =

N∑
k=1

(
D

(k)
0 + V

(k)
1 + i[V (k)

1 , B
(k)
1 ] +

i

2
[W (k)

1 , B
(k)
1 ]
)

+
N∑
n<k

{
Λ(n)

+ Λ(k)
+ V (nk) Λ+,N + i [Λ(n)

+ Λ(k)
+ V (nk)Λ+,N , B

(1)
1 + ...+B

(N)
1 ] (III.5)

+
N∑
m=1
m 6=n,k

(
Λ(n)

+ Λ(k)
+ V (nk) Λ(m)

+ Fm + Fm Λ(m)
+ V (nk) Λ(n)

+ Λ(k)
+

)
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+
(
F

(n)
0 Λ(k)

+ + F
(k)
0 Λ(n)

+

)
V (nk)Λ+,N +Λ+,NV

(nk)
(
F

(n)
0 Λ(k)

+ +F (k)
0 Λ(n)

+

)}
+ R((e2)3).

The second Sobolev transformation, U2 = eiB2 , B2 =
N∑
k=1

B
(k)
2 +

∑
µ
B

(µ)
2 +

∑
λ

B
(λ)
2

with B(k)
2 single-particle operators, B(µ)

2 two-particle and B(λ)
2 three-particle oper-

ators (µ and λ running over all possible pairs and triplets that can be formed from
N particles), eliminates the ’odd’ second-order terms which have the form off(C) =
C− proj(C), proj(C) collecting the block-diagonal terms in the three-particle rep-
resentation of C = 1 ·C · 1 with 1 = (Λ(n)

+ + Λ(n)
− )(Λ(k)

+ + Λ(k)
− )(Λ(m)

+ + Λ(m)
− ). The

existence and boundedness of B2 may be shown along the same lines as for the
two-particle case.

Let us consider the expectation value of the transformed Hamiltonian with an
N -particle wavefunction ψ ∈ H+,N . Disregarding positive projectors adjacent to
ψ one obtains up to second order

(ψ,U−1
2 U−1

1 H U1 U2 ψ) =
N∑
k=1

(
ψ, (D(k)

0 + V (k) +
i

2
[W (k)

1 , B
(k)
1 ] )ψ

)

+
N∑
n<k

(ψ,Hnk ψ) + R((e2)3) (III.6)

with

Hnk := V (nk) + i {V (nk) Λ(n)
+ B

(n)
1 + V (nk) Λ(k)

+ B
(k)
1 − B

(n)
1 Λ(n)

+ V (nk)

− B(k)
1 Λ(k)

+ V (nk) } + V (nk) F
(n)
0 + V (nk) F

(k)
0

+ 2
N∑
m=1
m 6=k,n

V (nk) F
(m)
0 + F

(n)
0 V (nk) + F

(k)
0 V (nk). (III.7)

Representing B(k)
1 in terms of F (k)

0 with the help of (II.3.21), Hnk simplifies to

Hnk = V (nk) + V (nk) (Λ(n)
− F

(n)
0 + Λ(k)

− F
(k)
0 ) + (F (n)

0 Λ(n)
− + F

(k)
0 Λ(k)

− ) V (nk)

+ 2
N∑
m=1
m 6=n,k

V (nk) F
(m)
0 . (III.8)

Since in the last term of (III.8), the two operators V (nk) and F
(m)
0 act on distinct

particles, it can be shown that this term vanishes for ψ ∈ H+,N (see Appendix
J). Thus we obtain a simple generalisation of the transformed two-particle operator
(II.4.4).

In principle, like in the one-particle case, an n-fold transformation of the Coulomb-
Dirac operator will lead to an operator of the form proj(A) + R((e2)n+1) where
proj(A) is a generalisation of (II.2.2) which involves the diagonal products of n
projectors. In proj(A), up to n particles (out of N) are affected simultaneously.

We close our work with some results about the stability of the N -electron atom
(N ≥ 3).

Having found the Sobolev representation of the transformed (up to second order)
N -particle Coulomb-Dirac operator H(2) we can use the results from part I and II
to establish a lower bound.



77

Let

(ψ,H(2) ψ) =
N∑
k=1

(ψ,B(k)
m ψ) +

N∑
k>n

(ψ, (V (nk) + C(nk)) ψ) (III.9)

where the operators on the r.h.s. of (III.6) and (III.8) are abbreviated by B(k)
m , the

Jansen-Hess operator of particle k, and C(nk), the second-order interaction between
particles n and k.

From Proposition I.5 we have

(ψ,B(k)
m ψ) ≥ c(γ) (ψ,D(k)

0 ψ) (III.10)

with c(γ) = 1− γ
γBR
− γ2

8 (π2−
2
π )2 from (I.4.53), where we have used that ψ ∈ H+,N

such that E(k)ψ = D
(k)
0 ψ.

Moreover, the second-order two-particle potential is estimated from Lemma II.4,

|(ψ,C(nk) ψ)| ≤ γe2 π
2

4
(ψ, (D(n)

0 + D
(k)
0 ) ψ) = γe2 π

2

2
(ψ,D(1)

0 ψ) (III.11)

where the symmetry of ψψ with respect to particle exchange has been exploited.

Hence
N∑
k>n

= N(N−1)
2 can be used, together with (ψ,ND(1)

0 ψ) =
N∑
k=1

(ψ,D(k)
0 ψ).

Finally one can take advantage of V (nk) ≥ 0 to drop the respective term.
Therefore, the total operator H(2) can be estimated by

(ψ,H(2) ψ) ≥
N∑
k=1

(ψ,
[
c(γ) − γe2 π

2(N − 1)
4

]
D

(k)
0 ψ). (III.12)

We have stability, even positivity, for all γ for which the expression in square
brackets is nonnegative.

Thus we have proved

Proposition III.1 (Stability of N -electron ions and atoms).
Let γ = Ze2, N ≤ Z be the number of electrons, and let H(2) be the transformed
N -particle Coulomb-Dirac operator up to second order in the potential strength γ.
Then

H(2) ≥ 0 for γ ≤ γN (III.13)

with γN the smallest solution to

1 − γ

γBR
− γ2

8

(
π

2
− 2
π

)2

− γe2 π
2(N − 1)

4
= 0 (III.14)

where γBR = 2
π/2+2/π .

For neutral atoms (N = Z) we have stability for γ ≤ 0.446 (Z ≤ 61).

Since the l.h.s. of (III.14) is decreasing both with N and γ, it follows that for
γ ≤ 0.446, we have stability for all ions with N ≤ Z.

Alternatively, one might think of estimating C(nk) by V (nk) via Proposition II.2.
However, even with the conjecture C = 1, one would need the restriction γ ≤ 1

π
(i.e. Z ≤ 43) for a positive two-particle interaction term. This bound is lower than
the above value, Z ≤ 61.

We remark that stability of matter for the Brown-Ravenhall operator was shown
by Balinsky and Evans (1999) in the case of K nuclei and one electron, and by
Hoever and Siedentop (1999) in the case of K nuclei and N electrons (at zero
mass) for γ ≤ γBR (Z ≤ 124) and γ ≤ 0.64 (Z ≤ 88), respectively.
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The contribution of two-particle second-order terms (neglected in the Brown-
Ravenhall operator) is usually considered to be unimportant because of the small-
ness of their coupling constant e2 (with respect to γ). However, since these terms
tend to be negative (which we conjecture from the negativity property of the kernel
of C(nk), see (II.4.10)), and since they occur with a weight proportional to N2, they
will counteract stability for large N in a non-negligible way. That becomes evident
from the large reduction of the critical potential strength for atoms as compared to
one- or two-electron ions found in this work.
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Appendix A

Compilation of integrals

Let
∫
R3

dp =
∞∫
0

p2dp
∫
S2

dω with
∫
S2

dω = 2π
1∫
−1

d(cosϑp) in spherical coordi-

nates, where ϑp is the azimuthal angle of p with respect to some fixed axis, assuming
cylindrical symmetry.

We identify (p′ ± p)2 = p
′2 + p2 ± 2pp′ cosϑp′ =: b+ ax with x := cosϑp′ and

a := ±2pp′, b := p
′2 + p2.∫

S2
dω′

1
|p′ ± p|2

=
2π
pp′

ln
∣∣∣∣p+ p′

p− p′

∣∣∣∣ =
2π
pp′


2p
p′ + O(p2), p→ 0

2p′

p + O( 1
p2 ), p→∞

(A.1)

1
2π

∫
S2
dω′

1
|p′ ± p|

1
(|p′ ± p|+ c)2

=
∫ 1

−1

dx
1√

b+ ax

1
(
√
b+ ax + c)2

=
2
a

∫ √b+a
√
b−a

dz

(z + c)2
=

2
a

(
1√

b− a+ c
− 1√

b+ a+ c

)
. (A.2)

As a by-product,∫
S2
dω′

1
|p± p′|

=
2π
pp′

(p+ p′ − |p− p′| ). (A.3)

In the following integrals, q0(p′/p) := ln
p+ p′

|p− p′|
= ln

1 + p′/p

|1− p′/p|
and q1(y) :=

1
2

(y +
1
y

) ln
1 + y

|1− y|
− 1.

1
2π

∫
dp′

1
|p′ ± p|2

p

p′2
=
∫ ∞

0

dp′

p′
ln

p+ p′

|p− p′|
= 2

∫ 1

0

dy

y
q0(y) =

π2

2
(A.4)

1
2π

∫
dp′

1
|p′ ± p|2

p

p′(p′ + p)
=
∫ ∞

0

dp′

p′ + p
q0(p/p′) =

∫ 1

0

dy

y
q0(y) =

π2

4
(A.5)

1
2π

∫
dp′

1
|p′ ± p|2

p2

p′2
1

p′ + p
= p

∫ ∞
0

dp′

p′
1

p′ + p
q0(p′/p) =

∫ 1

0

dy

y
q0(y) =

π2

4
(A.6)∫ ∞

0

dy

yα
q0(y) =

π

2
Γ(α2 ) Γ(1− α

2 )
Γ(α+1

2 ) Γ(3−α
2 )

, 0 < α < 2 (A.7)∫ ∞
0

dy
√
y
ql(y) =

2π
2l + 1

, l = 0, 1, ... (A.8)

∫ ∞
0

dp′

p′
q1(p/p′) = 2

∫ 1

0

dy

y
q1(y) = 2 (A.9)

∫ ∞
0

dp′

p′ + p
q1(p/p′) =

∫ 1

0

dy

y
q1(y) = 1. (A.10)

The integrals can be found with the help of Gradshteyn and Ryzhik (1965); the
integrals (A.4) and (A.9) are provided by EPS (1996), (A.7) by BSS (2002), while
(A.8) is based on an integral given by Tix (1998; see also (C.6) and (C.7)).
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We also provide some finite integrals which are needed for the proof of Theorem
I.4. For a > 0,∫ a

0

dy y5/2 q0(y) =
2
7

[
a

7
2 ln

∣∣∣∣1 + a

1− a

∣∣∣∣ − 2 arctan
√
a+ 4

√
a+

4
5
a

5
2 − ln

∣∣∣∣1 +
√
a

1−
√
a

∣∣∣∣ ]
(A.11)

∫ a

0

dy y3/2 q0(y) =
2
5

[
a5/2 ln

∣∣∣∣1 + a

1− a

∣∣∣∣ +
4
3
a3/2 + 2 arctan

√
a − ln

∣∣∣∣√a+ 1√
a− 1

∣∣∣∣ ]
(A.12)

∫ a

0

dy y1/2 q0(y) =
2
3

[
a3/2 ln

∣∣∣∣1 + a

1− a

∣∣∣∣ + 4
√
a − 2 arctan

√
a − ln

∣∣∣∣1 +
√
a

1−
√
a

∣∣∣∣ ]
(A.13)

∫ a

0

dy
1
√
y
q0(y) = 2

√
a ln

∣∣∣∣1 + a

1− a

∣∣∣∣ + 4 arctan
√
a − 2 ln

∣∣∣∣√a+ 1√
a− 1

∣∣∣∣ (A.14)

∫ ∞
a

dy
1
√
y
q0(y) = 2

[
π −

√
a ln

∣∣∣∣1 + a

1− a

∣∣∣∣ − 2 arctan
√
a + ln

∣∣∣∣√a+ 1√
a− 1

∣∣∣∣ ]
(A.15)

∫ a

0

dy
1
y3/2

q0(y) = 4 arctan
√
a + 2 ln

∣∣∣∣1 +
√
a

1−
√
a

∣∣∣∣ − 2√
a

ln
∣∣∣∣1 + a

1− a

∣∣∣∣ (A.16)

∫ ∞
a

dy
1
y3/2

q0(y) = 2π − 2 ln
∣∣∣∣√a+ 1√
a− 1

∣∣∣∣ − 4 arctan
√
a +

2√
a

ln
∣∣∣∣1 + a

1− a

∣∣∣∣ (A.17)

∫ ∞
a

dy
1
y5/2

q0(y) =
2
3

[
−π +

4√
a

+ 2 arctan
√
a+

1
a

3
2

ln
∣∣∣∣1 + a

1− a

∣∣∣∣− ln
∣∣∣∣1 +

√
a

1−
√
a

∣∣∣∣ ]
(A.18)

These integrals can be found in Gradshteyn and Ryzhik (1965, p.205,206), after
substitutions of the type x := 1/q, x := q1/2. Note that the integrals (A.11) –
(A.13) diverge for a → ∞, whereas (A.14) and (A.16) tend to 2π. For a → 0,
(A.18) diverges, too.

Appendix B

Partial-wave decomposition of the Jansen-Hess operator and its
Mellin transform in the massless case

We provide a compilation of results given in EPS (1996), Tix (1997), Stockmeyer
(2002) and BSS (2002).

a) Partial-wave decomposition for m ≥ 0

For u ∈ S(R3)×C2 and for the Fourier transformed Coulomb field one introduces
the partial wave expansions

û(p) =
∑
ν∈I

p−1 aν(p) Ων(p̂) ν = {l,M, s}
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1
|p− p′|2

=
2π
pp′

∑
lM

ql(
p

p′
) YlM (p̂) YlM (p̂′) (B.1)

where Ων(p̂) are the Dirac angular momentum eigenstates (the vector spherical
hamonics (Rose 1961)), YlM (p̂) are spherical harmonics and the reduced Legendre
functions ql(x) are related to the Legendre functions Ql(x) of the second kind
(Abramowitz and Stegun 1965) by ql(x) := Ql( 1

2x + 1
2x ). For x 6= 1, one has the

integral representation (EPS 1996)

ql(x) =
∫ ∞
t+
√
t2−1

z−l−1 dz√
1− 2zt+ z2

, t =
1
2

(x+
1
x

). (B.2)

The index set is I := {ν = (l,M, s) | l ∈ N0, M = −l− 1
2 , ..., l+

1
2 , s = ± 1

2 , l+ s >
0, Ων 6= 0} and p̂ := p/p. Then the expectation value (u, bm u) of the Jansen-Hess
operator can be written in the following way, making use of the orthonormality of
the set Ων(p̂) and likewise of YlM (p̂),

(u, bm u) =
∑
ν

∫ ∞
0

dp aν(p)
∫ ∞

0

dp′ blsm(p, p′) aν(p′)

blsm(p, p′) := b0m(p) δ(p− p′) + b
(1)
lsm(p, p′) + b

(2)
lsm(p, p′) (B.3)

where b0m(p) = Ep,

b
(1)
lsm(p, p′) = −γ

π
[ql(p/p′) + h(p)h(p′) ql+2s(p/p′)] A(p)A(p′)

b
(2)
lsm(p, p′) =

1
2

(γ
π

)2
∫ ∞

0

dp′′
[

1
Ep′ + Ep′′

+
1

Ep + Ep′′

]
A(p)A(p′) A2(p′′)

· [ql(p′′/p) h(p′′) − ql+2s(p′′/p) h(p)] [ql(p′′/p′) h(p′′) − ql+2s(p′′/p′) h(p′)] .

A(p) and h(p) are defined below (I.3.20). If m = 0, one has Ep = p and
h(p) = 1. On behalf of the symmetry ql(x) = ql(1/x), the kernel reduces to the
following form

b0(p) = p

b
(1)
ls (p, p′) = − γ

2π
[ql(p/p′) + ql+2s(p/p′)] (B.4)

b
(2)
ls (p, p′) =

γ2

8π2

∫ ∞
0

dp′′

p′′
[ql(p′′/p) − ql+2s(p′′/p)] [ql(p′′/p′) − ql+2s(p′′/p′)] .

From (B.4) it follows that b(1)
ls (p, p′) ≤ 0 and b(2)

ls (p, p′) ≥ 0 for all p, p′ ∈ R+. This
is a consequence of the property 0 ≤ ql+1(y) ≤ ql(y) for y 6= 1 and l = 0, 1, ... .

b) Mellin transform for m = 0

For a function f ∈ L2(R+) the Mellin transform f# ∈ L2(R), a unitary map, is
defined by

f#(t) :=
1√
2π

∫ ∞
0

dp f(p) p−it−1/2. (B.5)

If f ∈ S(R+), it can be extended to an analytic function on the complex plane and
satisfies for α ∈ C

(pα f)#(t) = f#(t+ iα). (B.6)

Since the Mellin transform is unitary for t ∈ R (and for pαf ∈ L2(R+)), the
expectation value of the Jansen-Hess operator is invariant. Due to the scaling
properties under dilations, the second-order kernel b(2)

ls (p, p′) can be written in terms
of a Mellin convolution, resulting in a factorisation of the two respective Mellin
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transforms. This leads to a kernel which can be cast into a diagonal form (Tix
1997, Stockmeyer 2002),

(u, b u) =
∑
ν

∫ ∞
−∞

dt a#
ν (t)

(∫ ∞
0

dp′ bls(·, p′) aν(p′)
)#

(t) (B.7)

=
∑
ν

∫ ∞
−∞

dt a#
ν (t) (b#0 +

√
2π b(1)#

ls +
√

2π b(2)#
ls )(t) a#

ν (t+ i)

=
∑
ν

∫ ∞
−∞

dt

∣∣∣∣a#
ν (t+

i

2
)
∣∣∣∣2 (b#0 +

√
2π b(1)#

ls +
√

2π b(2)#
ls

)
(t− i

2
)

where the last equality results from a shift of the integration path by −i/2, made
possible by the analyticity of the integrand, with

b#0 (t− i

2
) = 1, b

(1)#
ls (t− i

2
) = − γ

2π

[
q#
l (t− i/2) + q#

l+2s(t− i/2)
]

b
(2)#
ls (t− i

2
) =

√
2π
2

( γ
2π

)2 [
q#
l (t− i/2) − q#

l+2s(t− i/2)
]2
. (B.8)

The Mellin transformed reduced Legendre functions are defined in terms of the
gamma function by

q#
l (t− i

2
) =

√
π

2
√

2

Γ( l2 + 1
2 −

it
2 )

Γ( l2 + 1− it
2 )
·

Γ( l2 + 1
2 + it

2 )
Γ( l2 + 1 + it

2 )
, (B.9)

which are positive functions for real t. From this representation it follows that
b
(1)#
ls (t − i/2) ≤ 0 and b

(2)#
ls (t − i/2) ≥ 0, and eventually b ≥ 0 for subcritical

potential strength γ.

Appendix C

Proof of the operator |T |-boundedness of the two-particle interac-
tions for m = 0

a) Estimate of ‖V (12) ψ‖
In the one-particle case we have Hardy’s inequality (see e.g. Herbst 1977)

(ϕ,
e4

x2
ϕ) ≤ 4e4 (ϕ, p2 ϕ) (C.1)

which can be derived from the Lieb and Yau formula (Lemma I.1), taking the
convergence generating function f(p) = p

5
2 . With this inequality we obtain

(ψ, (V (12))2 ψ) =
∫
dx1 dx2 ψ(x1,x2)

e4

|x1 − x2|2
ψ(x1,x2)

= e4

∫
dx1

∫
dy2 ϕx1(y2)

1
y2

2

ϕx1(y2) ≤ 4e4 (ψ, p2
2 ψ) (C.2)

where ϕx1(y2) := ψ(x1,y2 + x1) and the same strategy as in the proof of Lemma
II.7 was used.

b) Estimate of ‖W (1) ψ‖
For the remaining parts of this appendix we use the unitary equivalence of the

Sobolev transformed operators with the Douglas-Kroll transformed operators to
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work in the 2-spinor space, u ∈ A(H1(R3) × C2)2. As in the one-particle case, we
make a partial wave decomposition of u with respect to the first variable,

û(p1,p2) =
∑
ν∈I

p−1
1 aν,p2(p1) Ων(p̂1), ν = {l,M, s} (C.3)

and keep in mind that the coefficient aν,p2(p1) depends additionally on p2. Then
we can adopt the strategy of Mellin transform from Appendix B and obtain

(ψ, (W (1))2 ψ) = ((b1m+b2m)u, (b1m+b2m)u) = (((b1m+b2m)u)#, ((b1m+b2m)u)#)

=
∫
dp2

∑
ν

∫ ∞
−∞

dt |a#
ν,p2

(t+ i)|2 (2π) |b(1)#
ls (t) + b

(2)#
ls (t)|2 (C.4)

where b1m, b2m refer to particle 1 and # denotes Mellin transform with respect to
p1. The basic difference to the estimate of the quadratic form of W (1) is that the
integrand of (C.4) is diagonal as it stands (and not only by a shift of coordinate t).
Since b(n)#

ls (t) 6= b
(n)#
ls (t− i

2 ), n = 1, 2, new estimates for these complex functions
have to be found. Using the explicit form (B.8) we have

|b(1)#
ls (t) + b

(2)#
ls (t)|2 ≤

(
|b(1)#
ls (t)| + |b(2)#

ls (t)|
)2

(C.5)

=

(
γ

2π
|q#
l (t) + q#

l+2s(t)| +
√

2π
2

( γ
2π

)2

|q#
l (t) − q#

l+2s(t)|
2

)2

.

This expression is invariant under the transformation (l, s) 7→ (l + 2s,−s) and
therefore we can restrict ourselves to s = 1

2 .
One can derive from (B.2) that q′l(y) is negative and |q′l(y)| is monotonically

decreasing with l for y > 1 and l ≥ 0. Therefore 0 ≤ ql(y)−ql+1(y) ≤ q0(y)−q1(y).
From the definition (B.5) of the Mellin transform we obtain

|q#
l (t) ∓ q#

l+1(t)| =
1√
2π

∣∣∣∣∫ ∞
0

dy (ql(y) ∓ ql+1(y)) y−it−
1
2

∣∣∣∣
≤ 1√

2π

∫ ∞
0

dy
√
y

(q0(y) ∓ q1(y)) = q#
0 (0) ∓ q#

1 (0). (C.6)

From the explicit representation of q#
l (t − i

2 ) for real t, (B.9), together with the
identity theorem for complex t = i

2 and the functional equation Γ(z + 1) = zΓ(z),
one gets

q#
l (0) =

√
π

2
√

2

Γ( l+1
2 + 1

4 ) Γ( l+1
2 −

1
4 )

Γ( l2 + 1 + 1
4 ) Γ( l2 + 1− 1

4 )
=
√

2π
2l + 1

(C.7)

such that

2π
∣∣∣b(1)#
ls (t) + b

(2)#
ls (t)

∣∣∣2 ≤ 2π

(
γ

2π
(
√

2π +
√

2π
3

) +
√

2π
2

( γ
2π

)2

(
√

2π −
√

2π
3

)2

)2

=
(

4
3
γ +

2
9
γ2

)2

. (C.8)

Since according to (B.6), a#
ν,p2

(t+ i) = (p1aν,p2(p1))#(t), we finally obtain

(ψ, (W (1))2 ψ) ≤
∫
dp2

∑
ν

∫ ∞
−∞

dt
∣∣(p1 aν,p2(p1))#(t)

∣∣2 · (4
3
γ +

2
9
γ2

)2

=
(

4
3
γ +

2
9
γ2

)2

(u, p2
1 u) =

(
4
3
γ +

2
9
γ2

)2

(ψ, p2
1 ψ). (C.9)
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We remark that for the first-order contribution (linear in γ), we get ‖V (1)ψ‖ ≤
c̃‖p1ψ‖. The bound c̃ := 4

3γ is sharp and considerably larger than the opti-
mised bound c = γ

2 (π2 + 2
π ) = γ/γBR obtained from the quadratic form estimate

|(ψ, V (1)ψ)| ≤ c (ψ, p1ψ) according to Lemma II.6, viz. c̃/c = 1.21. This confirms
that (positive) potentials with Coulomb-type singularities belong to the class A of
operators for which the statement (ψ,Aψ) ≤ c (ψ, pψ) =⇒ (ψ,A2ψ) ≤ c2 (ψ, p2ψ)
does not hold. (Another counter-example is the estimate of the Coulomb field with
general wavefunctions (not restricted to the positive spectral subspace), compare
Hardy’s and Kato’s inequality with a bound ratio of 4/π = 1.27.)

c) Estimate of |(ψ,W (1)W (2) ψ)|
To this aim, we make a second partial wave decomposition of (C.3) with respect

to the second variable p2,

û(p1,p2) =
∑
ν∈I

p−1
1

∑
ν′∈I

p−1
2 aνν′(p1, p2) Ων(p̂1) Ων′(p̂2), ν′ = {l′M ′s′}.

(C.10)
It then follows that

(W (1) ψ,W (2) ψ) =
∑
νν′

∫ ∞
0

dp1

∫ ∞
0

dp2

∫ ∞
0

dp′1 kν(p1, p′1) aνν′(p′1, p2)

·
∫ ∞

0

dp′2 kν′(p2, p
′
2) aνν′(p1, p

′
2) (C.11)

where kν(p1, p
′
1) := b

(1)
lsm(p1, p

′
1) + b

(2)
lsm(p1, p

′
1) is the kernel relating to W (1) and

kν′(p2, p
′
2) relates to W (2). The factorisation of the kernel of W (1)W (2) allows for

a factorisation of integrals in the generalised Lieb and Yau formula such that (with
p1 and p′1 interchanged)

|(W (1) ψ,W (2) ψ)| ≤
∑
νν′

∫ ∞
0

dp1

∫ ∞
0

dp2 |aνν′(p1, p2)|2 · Iν(p1) · Iν′(p2)

Iν(p1) :=
∫ ∞

0

dp′1 |kν(p′1, p1)| f(p1)
f(p′1)

(C.12)

Iν′(p2) :=
∫ ∞

0

dp′2 |kν′(p2, p
′
2)| g(p2)

g(p′2)
.

We can estimate Iν(p1) and Iν′(p2) as done in the proof of Proposition I.5 by
functions which are independent of ν and ν′. Explicitly, starting from mass m 6= 0
and using (I.4.43) with (I.4.53),

Iν(p1) ≤ lim
m→0

Ep1 (1 − G̃0 1
2
(p1/m)) ≤ p1 lim

m→0
(1 − inf

p1∈R+
G̃0 1

2
(p1/m))

= p1

[
γ

2

(
π

2
+

2
π

)
+

γ2

8

(
π

2
− 2
π

)2
]

(C.13)

where use has been made of the fact that inf
p1∈R+

G̃0 1
2
(p1/m) is independent of m.

From this we get

|(ψ,W (1)W (2) ψ)| ≤

(
γ

2

(
π

2
+

2
π

)
+

γ2

8

(
π

2
− 2
π

)2
)2

(ψ, p1p2 ψ). (C.14)
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Appendix D

Proof of the norm convergence of the sequence (W2n)n∈N of
Hilbert-Schmidt operators for m 6= 0

As a typical example, we show first that Aε := (T +µ)−1 C
(12)
1ε (eε, fε) (T +µ)−1

has the property |(ψ,Aεψ)| ≤ c ·ε and then that Bε := (T +µ)−1R
(12)
1ε (eε, eε) (T +

µ)−1 also is form bounded by some power of ε. C
(12)
1ε and R

(1)
1ε are defined in

(II.6.14) – (II.6.16).

a) Estimate of Aε
Using the generalised Lieb and Yau formula (II.3.7) with (II.3.8) we have

|(ψ,Aε ψ)| ≤ c0

∫
dp1 dp2 |ψ̂(p1,p2)|2 (I1 + I2) (D.1)

where I1 and I2 relate to the two parts of the kernel of Aε. Estimating
|1± D̃(1)

0 (p)| ≤ 2, (Ep1 +Ep2 +µ)−1 ≤ (p1 +p2 +µ)−1, (E|p2−p′2+p1|+Ep′1)−1 ≤
(|p2−p′2+p1|+m)−1, (Ep′1 +Ep′2 +µ)−1 ≤ (p′2+µ)−1 and setting the convergence
generating functions f = 1 and g(p) = p + 1, we obtain with the substitutions
q2 := p′2 − p2 for p′2 and q1 := p′1 − p1 + p′2 − p2 for p′1,

I1 ≤ c′
1

p1 + p2 + µ
e−ε(p1+p2)

∫
dq1 dq2

1
q2
2 + ε2

ε2

q2
1(q2

1 + ε2)
1

|p1 − q2|+m

· 1
|q2 + p2|+ µ

p2 + 1
|q2 + p2|+ 1

. (D.2)

The q1-integral is according to (II.6.21) proportional to ε while the q2-integral is
finite and independent of ε except for m = 0. In fact, setting p1 = m = 0 and
integrating near zero leads to a logarithmic ε dependence for ε→ 0,∫ 1

0

q2
2 dq2

1
q2(q2

2 + ε2)
=

1
2

∫ ε2+1

ε2

dz

z
=

1
2
(
ln(1 + ε2) − ln ε2

)
≤ 1

2
ln 2 + | ln ε|.

(D.3)
Hence, I1 ≤ c1ε + c2ε | ln ε| with appropriate constants c1 and c2 independent of
p1 and p2. If m 6= 0, the ln ε-term does not occur.

For the second integral I2 we estimate (Ep1 +E|p′2−p2+p′1|)
−1 ≤ (m+ |p′2−p2 +

p′1|)−1 and e−ε(p
′
1+p′2) ≤ 1,

I2 ≤ c′
1

p1 + p2 + µ

∫
dq1 dq2

1
q2
2 + ε2

ε2

q2
1(q2

1 + ε2)
1

m+ |q1 + p1|

· 1
|q2 + p2|+ µ

p2 + 1
|q2 + p2|+ 1

. (D.4)

The q2-integral is finite and independent of ε for all p2. This is trivial for p2 = 0
whereas for large p2 (with p2+1

p1+p2+µ ≤ 1 and Appendix A)∫
dq2

1
q2
2 + ε2

1
|q2 + p2|+ µ

1
|q2 + p2|+ 1

≤
∫
dq2

1
q2
2

1
|q2 + p2|2

=
π3

p2
.

(D.5)
The q1-integral is pathological for p1 = 0 when m tends to zero. In fact,∫ ∞

0

dq1
ε2

q2
1 + ε2

1
q1 +m

= lim
R→∞

ε2

m2 + ε2

∫ R

0

dq1

(
−q1 +m

q2
1 + ε2

+
1

q1 +m

)
=

mε

m2 + ε2

( ε
m

ln
ε

m
+

π

2

)
≤ c1ε + c2ε

2 ln ε + O(ε2), (m 6= 0). (D.6)
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The integral (D.6) diverges logarithmically with m for fixed ε as m → 0, and
tends to π

4 if m = ε = 1
n → 0. Thus I2 is no longer bounded by ε for all p1, p2

when m → 0. In order to include the massless case in the proof, a more careful
decomposition should replace (II.6.15).

Collecting results

|(ψ,Aε ψ)| ≤ ε ‖ψ‖2 (c + C ε ln ε + O(ε))

−→ 0 (ε→ 0, m 6= 0) (D.7)

with suitable constants c, C.
In a similar way, the operator involving C

(12)
1ε (fε, eε) can be estimated by the

r.h.s. of (D.7), while the third term, C(12)
1ε (fε, fε), leads to an estimate which

vanishes to higher order in ε.

b) Estimate of Bε
We start from

|(ψ,Bε ψ)| ≤ c′0

∫
dp1 dp2 |ψ̂(p1,p2)|2 (J1 + J2) (D.8)

and choose the convergence generating functions f(p) = p and g = 1. Then one
estimates the integral J1 corresponding to the first part of the kernel of Bε by

J1 ≤ c′
1

p1 + p2 + µ

(
1 − e−ε(p1+p2)

)∫
dp′1 dp

′
2

1
|p2 − p′2|2 + ε2

· 1
|p2 − p′2 + p1 − p′1|2 + ε2

1
E|p2−p′2+p1| + Ep′1

1
p′1 + p′2 + µ

p1

p′1
. (D.9)

When (D.9) is estimated by setting ε = 0 in the two denominators and when
(p′1 +p′2 +µ)−1 ≤ 1/p′1 is used, the integral coincides with one given in the proof of
Lemma II.4. From (II.5.5) to (II.5.8), together with the estimate ε of the prefactor
according to (II.6.22) one finds

J1 ≤ c′ ε · π6/2. (D.10)

For the second integral J2 we estimate by setting ε = 0 as before and make the
substitutions q2 := p′2 − p2 for p′2 and q1 := q2 + p′1 for p′1. Then

J2 ≤ c′
1

p1 + p2 + µ

∫
dq1 dq2

1
q2
2

1
|q1 − p1|2

1
Ep1 + Eq1

(D.11)

·
[(

1 − e−ε(p
′
1+p′2)

) 1
p′1 + p′2 + µ

]
p1

p′1
.

In this expression, we can no longer use the estimate (II.6.22) for the term in square
brackets because the remaining integral does not converge. Rather, we consider the
factor 1− e−εp with p := p′1 + p′2 = |q1 − q2| + |q2 + p2| as a function of x := ε

1
2 .

Then its derivative is
d

dx
f(x) :=

d

dx

(
1 − e−x

2p
)

= 2xp e−x
2p ≥ 0 (D.12)

with its maximum given by max
x≥0

(2xp e−x
2p) =

√
2p e−

1
2 . Accordingly, one can

Taylor expand,

f(x) = f(0) + x
d

dx
f(x)

∣∣∣∣
x=0

+ O(x2). (D.13)
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Since f(0) = 0, one has from the mean value theorem the estimate |f(x)| ≤
x ·
√

2p e−
1
2 , and the integral corresponding to the linear term in x provides a

convergent majorant:

M :=
∫
dq1 dq2

1
q2
2

1
|q1 − p1|2

1
Ep1 + Eq1

√
p′1 + p′2

p′1 + p′2 + µ

1
p′1
. (D.14)

Estimating (Ep1 + Eq1)−1 ≤ 1/q1 and

√
p′1 + p′2

p′1 + p′2 + µ
≤ 1√

p′1 + p′2
≤ 1

p
′ 1
2

1

one has

M ≤
∫
dq1

q1

1
|q1 − p1|2

∫
dq2

q2
2

1
|q1 − q2|

3
2
. (D.15)

With the substitution p := q2−q1, the second integral can be estimated with the
help of Appendix A,∫

dp

p
3
2

1
|p + q1|2

=
2π
q1

∫ ∞
0

dp
√
p

ln
p+ q1

|p− q1|
=

2π
√
q1

∫ ∞
0

dy
√
y

ln
y + 1
|y − 1|

=
(2π)2

√
q1

.

(D.16)

The remaining integral is the same as (D.16) such that M ≤ const
√
p1

. Insertion

into (D.11) gives

J2 ≤ c′
1

p1 + p2 + µ
M x
√

2 e−
1
2 · p1 ≤ c

√
ε (D.17)

with c a suitable constant independent of p1 and p2.

c) Estimate of remaining terms

In the remaining three contributions to W2 −W2n which contain the factors
R

(12)
1ε (eε, fε), R

(12)
1ε (fε, eε) and R

(12)
1ε (fε, fε), the following estimate can be made,

ε2

p2(p2 + ε2)
≤ ε2

p2 · ε2
≤ 1

p2
, (D.18)

which reduces them exactly to the estimate of the operator Bε after the additional
ε2 in the denominators have been dropped.

Collecting results, we have proved that in lowest order of ε,

|(ψ, (T + µ)−1
(
C

(12)
1 − C

(12)
1ε (eε, eε)

)
(T + µ)−1 ψ) | ≤ c ε

1
2 ‖ψ‖2. (D.19)

The operator boundedness follows from (D.19) by means of Lemma I.3.

Appendix E

Estimate of the Jansen-Hess term B2m in coordinate space

Our goal is to show boundedness of the integral in (I.4.24),
∫
dx′ |k(x,x′)| f(x)

f(x′) ,

relative to the Coulomb field γ/x, for arbitrary mass m ≥ 0.
We take f(x) = x and obtain with (I.4.23) and (I.3.27) for the kernel k of B2m,

k(x,x′) = c0

∫
dp eipx

∫
dp′ e−ip

′x′
∫
dp′′

1
|p′′ − p|2

1
|p′′ − p′|2

·(1 − D̃0(p′′))
(

1
Ep′′ + Ep

+
1

Ep′′ + Ep′

)
(E.1)



88

with c0 := 1
(2π)3

γ2

16π4 . We recall the Coulombic integrals,∫
dq eiqx 1

q2
=

2π2

x∫
dq eiqx 1

q
=

4π
x2

(E.2)

and use the first one for the p′-integral (with the variable shift q′ := p′ − p′′)
respective p-integral to obtain

k(x,x′) = 2π2c0

(
1
x′
I1 +

1
x
I2

)
, (E.3)

I1 :=
∫
dp dp′′ eipx e−p′′x′ 1

|p′′ − p|2
(1 − D̃0(p′′))

1
Ep′′ + Ep

I2 :=
∫
dp′ dp′′ eip

′′x e−ip
′x′ 1
|p′′ − p′|2

(1 − D̃0(p′′))
1

Ep′′ + Ep′
.

We make the substitutions q := p′′ − p and q := p′′ − p′ for p and p′ in I1 and
I2, respectively. This turns the energy denominators into (Ep′′ + E|p′′−q|)−1, and
additionally one gets the factor 1

q2 .

Since ‖1− D̃0(p′′)‖ = 2, the symbol class of B2m is not changed if 1− D̃0(p′′)
is replaced by 2. Also, it is not changed if in the energy denominators, one sets
q = 0 and drops the mass. Then k is estimated by

|k(x,x′)| ≤ C · 2π2c0

{
1
x′

(∫
dq e−iqx 1

q2

) (∫
dp′′ eip

′′(x−x′) 1
p′′

)
+

1
x

(∫
dq eiqx′ 1

q2

) (∫
dp′′ eip

′′(x−x′) 1
p′′

)}
= C · 4π2c0

1
x′
· 2π2

x
· 4π
|x− x′|2

(E.4)

with some constant C, using that both terms, resulting from I1/x
′ and I2/x, are

equal. Integration over x′ leads with the help of Appendix A to∫
dx′ |k(x,x′)| f(x)

f(x′)
≤ C · γ

2

4π2

1
x

∫
dx′

1
x′

1
|x− x′|2

· x
x′

= C · π
4
γ2 1

x
. (E.5)

Appendix F

Estimate of the second-order two-particle potential C(12) in coor-
dinate space

We want to prove boundedness of the integral in (II.5.30),
1

(2π)6

∫
dx′1dx

′
2 |k(x1,x2; x′1,x

′
2)| f(x1)

f(x′1)
g(x2)
g(x′2) relative to the electron-electron poten-

tial e2

|x1−x2| .

We choose f(x) = x2 and g = 1. For the kernel k of C(12) we have from (II.5.29)
and (II.4.10),

k(x1,x2; x′1,x
′
2) = c1

∫
dp1 dp2 dp′1 dp

′
2 e

ip1x1 eip2x2
1

|p2 − p′2|2
(F.1)
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· 1
|p2 −p′2 +p1 −p′1|2

{
1

E|p2−p′2+p1|+Ep′1
(1− D̃(1)

0 (p2 −p′2 +p1)) (1 +D̃(1)
0 (p′1))

+
1

Ep1 + E|p′2−p2+p′1|
(1 + D̃

(1)
0 (p1)) (1− D̃(1)

0 (p′2 − p2 + p′1))

}
e−ip

′
1x′1 e−ip

′
2x′2

with c1 := − 2γe2

(2π)4 . We make the substitutions q2 := p2 − p′2 for p2 and q1 :=
p2 − p′2 + p1 − p′1 for p1 such that the remaining integration over p′2 becomes
trivial. Then,

k(x1,x2; x′1,x
′
2) = (2π)3c1 δ(x2 − x′2)

(∫
dq2 e

iq2(x2−x1) 1
q2
2

)
·
∫
dq1 dp′1 e

iq1x1
1
q2
1

eip
′
1(x1−x′1) (I1 + I2)

I1 :=
1

E|q1+p′1| + Ep′1
(1− D̃(1)

0 (q1 + p′1)) (1 + D̃
(1)
0 (p′1)) (F.2)

I2 :=
1

E|q1−q2+p′1| + E|p′1−q2|
(1 + D̃

(1)
0 (q1 − q2 + p′1)) (1− D̃(1)

0 (p′1 − q2)).

The integral in brackets is evaluated by means of (E.2). Since ‖1± D̃(1)
0 ‖ = 2, the

symbol class of C(12) is not changed upon replacing (1−D̃(1)
0 (q1+p′1))(1+D̃(1)

0 (p′1))
by 4 in I1 and similarly in I2. Note, however, that this is a rather crude estimate.

Moreover, we can replace q1 and q2 in the energy denominators of I1 and I2
by zero, and also set m = 0, without changing the symbol class of C(12). This is
a good estimate since, due to the factors q−2

1 and q−2
2 , small values of q1 and q2

give an essential contribution to the integrals. We conjecture that the constant C,
picked up by these estimates, should be 1

2 . C . 1. We get

|k(x1,x2; x′1,x
′
2)| ≤ (2π)3 |c1| 4C δ(x2 − x′2)

2π2

|x2 − x1|

· 2
(∫

dq1 e
iq1x1

1
q2
1

) (∫
dp′1 e

ip′1(x1−x′1) 1
2p′1

)
= (2π)6 · 8π2 |c1|C δ(x2 − x′2)

1
|x2 − x1|

1
x1

1
|x1 − x′1|2

(F.3)

where again (E.2) was used.
With the help of Appendix A, the integration over x′1,x

′
2 leads to

1
(2π)6

∫
dx′1 dx

′
2 |k(x1,x2; x′1,x

′
2)| f(x1)

f(x′1)
· g(x2)
g(x′2)

(F.4)

= 8π2 |c1|C
1

|x2 − x1|

∫
dx′1

1
|x1 − x′1|2

· x1

x
′2
1

= C πγ
e2

|x2 − x1|
.

Appendix G

On the relation of the kernels b(2)
lsm(p, p′) and b

(1)
lsm(p, p′) of the

Jansen-Hess operator

In the massless case, we know from Proposition I.3 that −b1 ≥ b2 ≥ 0 for
subcritical γ. We will show that this inequality does not hold for the respective
kernels of b1 and b2, i.e. there exist p, p′ ∈ R+ such that b(2)

ls (p, p′) ≥ −b(1)
ls (p, p′).
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We start by restricting ourselves to the ground state (l = 0, s = 1
2 ) and define

for m = 0
f1(p, p′) := q0(p/p′) + q1(p/p′) (G.1)

f2(p, p′) :=
∫ ∞

0

dp′′

p′′

[
q0(

p′′

p
) − q1(

p′′

p
)
] [

q0(
p′′

p′
) − q1(

p′′

p′
)
]

such that −b1(p, p′) ≥ b2(p, p′) ⇐⇒ f1(p, p′) ≥ γ
4π f2(p, p′) according to (B.4).

First we note that the above inequality holds for p = p′ 6= 0 since q0(p/p′) =
ln p+p′

|p−p′| , and hence f1(p, p′) diverges logarithmically. On the other hand, f2(p, p′)
remains finite for p 6= 0,

f2(p, p) =
∫ ∞

0

dp′′

p′′

(
q0(

p′′

p
) − q1(

p′′

p
)
)2

< ∞ (G.2)

since
q0(y) = q0(1/y) = 2y +

2
3
y3 + O(y5) (G.3)

q1(y) = q1(1/y) =
4
3
y2 + O(y4) for y → 0.

Let us now for fixed p ∈ R+ consider the behaviour when p′ tends to infinity.
Then from (G.3),

f1(p, p′) =
2p
p′

+ O(
p

p′
)2. (G.4)

We will show that f2(p, p′) behaves like ln p′

p′ for large p′. Since q0(y) > q1(y) for
small y 6= 0 (see (G.3)), we need only consider q0 in the second square bracket of
(G.1). We split the remaining integral into two parts,

I1 :=
∫ 1

0

dp′′

p′′

(
q0(

p′′

p
) − q1(

p′′

p
)
)
q0(

p′′

p′
)

I2 :=
∫ ∞

1

dp′′

p′′

(
q0(

p′′

p
) − q1(

p′′

p
)
)
q0(

p′′

p′
). (G.5)

Recalling that q0(p′′/p′) ∼ p′′

p′ for p′ →∞, and q0(p′′/p) ∼ p
p′′ for p′′ →∞, it is

obvious that I2 decreases weaker with p′ than ∼ 1
p′ . To make this more explicit,

we subtract and add the asymptotic behaviour of q0(p′′/p),

I2 = I21 + I22, (G.6)

I21 :=
∫ ∞

1

dp′′

p′′

(
q0(

p′′

p
) − q1(

p′′

p
) − 2p

p′′

)
q0(

p′′

p′
)

I22 := 2p
∫ ∞

1

dp′′

p′′2
q0(

p′′

p′
).

From (G.3), the integrand of I21 behaves ∼ 1
p′′

(
2
3
p3

p′′3
− 4

3
p2

p′′2

)
· p
′′

p′ for p′ → ∞
and p′′ large, such that the p′′-integral is convergent at the upper limit, giving
I21 ∼ cp

p′ for p′ →∞.
The integral I22 can be evaluated analytically. Let x := 1/p′′, such that with

q := 1/p′,

I22 = 2p
∫ 1

0

dx ln
x+ 1/p′

|x− 1/p′|
= 2p

∫ 1

0

dx (ln(x+ q) − ln |x− q|) (G.7)

= 2p [(1 + q) ln(1 + q) − 2q ln q − (1− q) ln(1− q)] −→ 2p (−2q ln q) = 4p
ln p′

p′

for q → 0, i.e. p′ →∞. It remains to show that I1 ∼ 1
p′ for p′ →∞ such that the

logarithmic singularity is not cancelled. But this is trivial since the integrand of I1
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is finite both on the upper and lower integration limit (or in case of p′′ = p = 1 it
has an integrable singularity). This proves that

f2(p, p′) ∼ c p ln p′

p′
for p′ →∞ (G.8)

such that γ
4π f2(p, p′) > f1(p, p′) for arbitrary γ > 0 and sufficiently large p′.

It can easily be shown from the behaviour of ql(p′′/p′) for higher l that

b
(2)
ls (p, p′)

−b(1)
ls (p, p′)

∼ c ln p′ for p′ →∞ (G.9)

holds also for l > 0.
We remark that a numerical calculation reproduces this singular behaviour for

m = 1, such that due to the scaling property (I.4.35) it holds true for all m.

Appendix H

Estimate of the second-order contribution to the virial theorem
for bm

The operator T2 defined in (I.5.26) is given explicitly by

T2(p,p′) :=
∫
dp′′

1
|p− p′′|2

1
|p′′ − p′|2

(H.1){
− p

′′2

2Ep′′(Ep′′ +m)

[
m

Ep′′

(
1
Ep′

1
Ep′ + Ep′′

+
1
Ep

1
Ep + Ep′′

)

+
(

1
Ep′ + Ep′′

+
1

Ep + Ep′′

)(
1
Ep′′

+
m

E2
p′′

)]

+ σp̂′′ σp̂′
p′p′′

2Ep′′(Ep′ +m)

[
m

Ep′′

(
1
Ep′

1
Ep′ + Ep′′

+
1
Ep

1
Ep + Ep′′

)
+
(

1
Ep′ + Ep′′

+
1

Ep + Ep′′

) (
1
Ep′

+
m

E2
p′′

)]

+ σp̂′′ σp̂
pp′′

2Ep′′(Ep +m)

[
m

Ep′′

(
1

Ep′(Ep′ + Ep′′)
+

1
Ep(Ep + Ep′′)

)
+
(

1
Ep′ + Ep′′

+
1

Ep + Ep′′

) (
1
Ep

+
m

E2
p′′

)]

− σp̂σp̂′
pp′(Ep′′ +m)

2Ep′′(Ep +m)(Ep′ +m)

[
m

Ep′′

(
1
Ep′

1
Ep′ + Ep′′

+
1
Ep

1
Ep + Ep′′

)
+
(

1
Ep′ + Ep′′

+
1

Ep + Ep′′

)(
1
Ep

+
1
Ep′
− 1
Ep′′

+
m

E2
p′′

)]}
.

We demonstrate the procedure of estimating the integral over T2(p,p′) intro-
duced in (I.5.27) for one particular term,

I :=
∫
dp′dp′′ |σp̂′′ σp̂′| p′p′′

2Ep′′(Ep′ +m)
m

Ep′′Ep

1
Ep + Ep′′

· 1
|p− p′′|2

1
|p′′ − p′|2

f(p)
f(p′)

. (H.2)
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We take f(p) := p5/2/(Ep + m) and make the substitutions q′′ :=
p′′

mq
and q′ :=

p′

mqq′′
for p′′ and p′, respectively. We estimate |σp̂′′ σp̂′| by 1 and set q := p/m.

Then the angular integrations can be performed with the help of (A.1), such that

I ≤ 2π2q4 1√
q2 + 1

1√
q2 + 1 + 1

∫ ∞
0

dq′
1
q
′ 1
2

ln
∣∣∣∣1 + q′

1− q′

∣∣∣∣
·
∫ ∞

0

dq′′q
′′ 3

2 ln
∣∣∣∣1 + q′′

1− q′′

∣∣∣∣ 1
(qq′′)2 + 1

1√
q2 + 1 +

√
(qq′′)2 + 1

(H.3)

We estimate the last factor with the help of
√

(qq′′)2 + 1 ≥ 1 and then use the
estimate (I.5.28) to obtain

I ≤ 4π3q4 1√
q2 + 1

1

(
√
q2 + 1 + 1)2

[∫ 1/q

0

dq′′q
′′ 3

2 ln
∣∣∣∣1 + q′′

1− q′′

∣∣∣∣
+

1
q2

∫ ∞
1/q

dq′′
1
q
′′ 1

2
ln
∣∣∣∣1 + q′′

1− q′′

∣∣∣∣
]

= 8π3q2 1√
q2 + 1

1

(
√
q2 + 1 + 1)2

[
π − 4

5q
1
2

ln
∣∣∣∣1 + q

1− q

∣∣∣∣
+
(

2q2

5
− 2
)

arctan
1
√
q

+
(

1 − q2

5

)
ln
∣∣∣∣1 +

√
q

1−√q

∣∣∣∣ +
4
15
√
q

]
. (H.4)

Due to the above choice of f(p), the r.h.s. of (H.4)∼ q
5
2 for q → 0, assuring that

its contribution to M2(q) defined below (I.5.28) is finite. The integrals occurring
here and in the remaining contributions to T2 are listed in Appendix A, starting
from (A.11).

It should be noted that the Sobolev representation for the Jansen-Hess operator
cannot be used in the virial theorem. The reason is that the transformation opera-
tors U ′0 in (I.4.1) linking bm and B(2)

m do depend on the mass m and hence influence
the derivatives.

Appendix J

On the expectation value of F0 in the positive spectral subspace

We will show that for the first-order expansion term F0 of the exact projector
P+, one has (ψ, F0 ψ) = 0 if ψ ∈ H+,N .

For a state ψ in the positive spectral subspace of the free Dirac operator, one
has for any l ∈ {1, ..., N} : Λ(l)

+ ψ = ψ. Therefore the expectation value of F (l)
0 , l

specifying the particle on which F0 is acting, can be written in the form

(ψ, F (l)
0 ψ) = (Λ(l)

+ ψ, F
(l)
0 Λ(l)

+ ψ) = (ψ,Λ(l)
+ F

(l)
0 Λ(l)

+ ψ). (J.1)

Dropping the index l again, we use the relation (I.3.26) between the symbol and
the kernel of an operator to extract from (II.3.19)

kF0(p,p′) = − γ

(2π)2

1
|p− p′|2

1
Ep + Ep′

(1 − D̃0(p) D̃0(p′)) (J.2)

such that the r.h.s. of (J.1) is written as

(ψ,Λ+ F0 Λ+ ψ) = − γ

(2π)2

1
4

∫
R3N−3

dQ

∫
dp dp′

1
|p− p′|2

1
Ep + Ep′
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· ψ̂Q(p) (1 + D̃0(p)) (1 − D̃0(p) D̃0(p′)) (1 + D̃0(p′)) ψ̂Q(p′), (J.3)
where Q comprises the coordinates (respective momenta) of the remaining N − 1
particles. However, it is easily verified that

(1 + D̃0(p)) (1 − D̃0(p) D̃0(p′)) (1 + D̃0(p′)) = 0 (J.4)

since D̃2
0 = 1. Thus (ψ, F0 ψ) = 0.

We want to add that also Λ− F0 Λ− = 0, such that F0 = Λ+ F0 Λ− +Λ− F0 Λ+

is an odd operator. (However, ‖F0ψ‖ 6= 0 for ψ ∈ H+,N , see section II.5.)
Define now a multi-particle operator A(nk) F

(l)
0 with l 6= n, k. (In our case of

interest, A(nk) := V (nk).) Since for ψ ∈ H+,N one has Λ(l)
+ ψ = ψ, the expectation

value turns into

(ψ,A(nk) F
(l)
0 ψ) = (ψ,A(nk) Λ(l)

+ F
(l)
0 Λ(l)

+ ψ) (J.5)

because Λ(l)
+ commutes with A(nk) for distinct particles. However, the r.h.s. of (J.5)

vanishes since Λ(l)
+ F

(l)
0 Λ(l)

+ = 0 as shown above.



94

References

Abramowitz M. and Stegun I.A. 1965: Handbook of Mathematical Functions with
Formulas, Graphs and Mathematical Tables. Dover Publications, New York

(BBHS) Bach V., Barbaroux J.M., Helffer B. and Siedentop H. 1999: On the
stability of the relativistic electron-positron field. Commun. Math. Phys. 201,
445-460

Balinsky A.A. and Evans W.D. 1998: On the virial theorem for the relativistic
operator of Brown and Ravenhall, and the absence of embedded eigenvalues. Lett.
Math. Phys. 44, 233-248

Balinsky A.A. and Evans W.D. 1999: Stability of one-electron molecules in the
Brown-Ravenhall model. Commun. Math. Phys. 202, 481-500

Bethe H.A. and Salpeter E.E. 1957: Quantum Mechanics of One and Two Electron
Atoms. Springer-Verlag, Berlin

Brown G.E. and Ravenhall D.G. 1951: On the interaction of two electrons. Proc.
Roy. Soc. London A208, 552-559

(BSS) Brummelhuis R., Siedentop H. and Stockmeyer E. 2002: The ground state
energy of relativistic one-electron atoms according to Jansen and Hess. Doc. Math.
7, 167-182

Burenkov V.I. and Evans W.D. 1998: On the evaluation of the norm of an integral
operator associated with the stability of one-electron atoms. Proc. Roy. Soc.
(Edinburgh) 128A, 993-1005

Darwin C.G. 1928: The wave equations of the electron. Proc. Roy. Soc. (London)
A118, 654-679

Datta N., Fernández R. and Fröhlich J. 1999: Effective hamiltonians and phase
diagrams for tight-binding models. Journal of Stat. Phys. 96, 545-611

Dirac P.A.M. 1928: The quantum theory of the electron. Proc. Roy. Soc. London
A117, 610-624

(DES) Dolbeault J., Esteban M.J. and Séré E. 2000: Variational characterisation
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Notations

A antisymmetrisation with respect to interchange of two particles
A(n) operator A relating to the n-th particle
A∗ adjoint of operator A
a(x,p) symbol of operator A, defined by

(Aϕ)(x) = (2π)−
3
2
∫
dp a(x,p) eipxϕ̂(p)

â(q,p) Fourier transform of symbol with respect to x
[A,B] AB −BA (commutator of A and B)
α vector of Dirac matrices in C4,4

β

(
I
−I

)
∈ C4,4

C complex space
D0 free one-particle Dirac operator
D̃0 D0/|D0| (an operator of norm unity)
dθ dilation operator, defined by dθû(p) = θ−

3
2 û(p/θ)

dω area element on the unit sphere S2

f# Mellin transform, defined by f#(t) = (2π)−
1
2

∞∫
0

dp f(p) p−it−
1
2

γ potential strength
γBR 2/(π2 + 2

π )
γc critical potential strength
γJ 1.006
Γ gamma function
H D0 + V (Dirac operator)
H Hilbert space (complete metric space with scalar product)
H+,1 Λ+ (H1/2(R3)× C4)
H+,N Λ(1)

+ ⊗ · · · ⊗ Λ(N)
+ A(H1/2(R3)× C4)N , N the number of particles

H1/2(R3) Sobolev space of order 1/2 (form domain of D0)
H1(R3) Sobolev space of order 1 (domain of D0)
Im z imaginary part of z
kA(p,p′) kernel of operator A, defined by (Aϕ)(p) =

∫
dp′ kA(p,p′)ϕ(p′)

L2(R3) Hilbert space of (equivalence class of) square-integrable functions
with domain R3

Λ+ projection onto the positive spectral subspace of D0

Λ− projection onto the negative spectral subspace of D0

N0 space of natural numbers N ∪ {0}
Ων vector spherical harmonic
ΨDO pseudodifferential operator (defined by its symbol)
R real space
R+ positive real space
Re z real part of z
S Schwartz space of infinitely differentiable, rapidly decreasing

functions
σ1, σ2, σ3 Pauli matrices in C2,2

σ(H) spectrum of H
σac(H) absolutely continuous spectrum of H
σess(H) essential spectrum of H
σp(H) point spectrum of H (set of eigenvalues of H)
σsc(H) singular continuous spectrum of H
T kinetic energy operator
Ta translation operator, defined by Taϕ(x) = ϕ(x + a)
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Uk unitary transformation operator
V −γ/x (Coulomb potential), except in section I.2.d
YlM spherical harmonic
Z− space of negative integers
( · , · ) scalar product in the Hilbert space L2

(ϕ, φ)
∫
dx ϕ(x) φ(x)

ϕ̂ Fourier transform of ϕ
(ϕ̂, φ̂)

∫
dp ϕ̂(p) φ̂(p) = (ϕ, φ)

‖ ‖ norm in L2(R3)
‖Aϕ‖ (Aϕ,Aϕ)1/2

‖A‖ sup
‖ϕ‖=1

‖Aϕ‖
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1978-1980 Forschungsstipendiat/Lektor an den Universitäten Bergen, Oslo (Norwegen)
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