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Abstract

It is shown that the essential spectrum of the pseudo-relativistic Dirac
operator according to Jansen and Hess which includes the Coulomb po-
tential up to second order, extends from mc2 to infinity when the nu-
clear charge is below the critical value Ze2 ≈ 1.006. There is also no
singular continuous spectrum in that case, and for small Z no embedded
eigenvalues. This work is an extension of investigations by Evans, Perry
and Siedentop on the Brown-Ravenhall operator which is of first order in
the potential. It is based on the fact, recently proven by Brummelhuis,
Siedentop and Stockmeyer, that the spectrum of the Jansen-Hess operator
is bounded from below for subcritical charges Z.
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1 Introduction

The Dirac operator of an electron with mass m and momentum p in an external
field V is given by (in relativistic units, ~ = c = 1)

H = αp + βm + V (1.1)

where α and β are the Dirac matrices and in the coordinate representation of
H, p has to be identified with −i∂/∂x. However H, acting on the Hilbert space
L2(R3)× C4, is not bounded from below. In the case of a Coulomb potential,

V (x) = − γ

x
, γ := Ze2 (1.2)

(with x := |x|, Z the nuclear charge number of the ion and e2 = (137.04)−1

the fine structure constant), where the exact eigenfunctions are known, this dif-
ficulty may be circumvented by introducing the projection operator P+ onto the
positive spectral subspace of H and considering the bounded operator P+H P+

instead which has the same positive-energy eigenstates as H [15].

For noncoulombic central potentials the eigenfunctions and hence P+ are un-
known. An approximation to P+H P+ was considered by Brown and Ravenhall
[3] who introduced the operator (see also [15])

B := Λ+H Λ+, Λ+(p) :=
1
2

(
1 +

αp + βm

Ep

)
(1.3)

where Λ+ projects onto the positive spectral subspace of the free Dirac operator,
Ep being the energy of the electron. By construction, B consists of a zero-order
and a first-order term in the potential V , and one may define an operator
b0m + b1m acting on the two-dimensional space L2(R3)× C2 by using the fact
that any four-spinor ψ ∈ D(B) can be represented in terms of a Pauli spinor
u ∈ L2(R3)× C2. One identifies [6]

(ψ,B ψ) =: (u, (b0m + b1m)u) (1.4)

where b0m and b1m denote the corresponding zero- and first-order contributions
in V , respectively

b0m := Ep :=
√
p2 +m2

b1m := A(p) [V + RV R] A(p) (1.5)

with A(p) :=

√
Ep +m

2Ep
, R := h(p)(σp̂), h(p) :=

p

Ep +m

where p̂ := p/p, p := |p| and σ is the vector of the Pauli matrices.

A method to construct an operator which approximates P+H P+ to higher
order in V is the Foldy-Wouthuysen transformation technique [7]. It consists of

2



a series of unitary transformations successively applied to H which cast H into
a block-diagonal form to any given order in V , leading (within this order) to a
decoupling of the positive and negative spectral subspaces of H.

Following Douglas and Kroll [5], the transformed operator is defined by

(Un...U1U0) H (Un...U1U0)−1 =: H(n) + O(V n+1) (1.6)

where H(n) has block-diagonal structure, each block acting on L2(R3)×C2. The
first transformation, U0, is the free-particle Foldy-Wouthuysen transformation
[2]

U0 = A(p) (1 + βR0), R0 := h(p) (αp̂) (1.7)

which casts the zero-order term of H into block-diagonal form while the non-
(block)diagonal remainder is of first order in V . The transformations U1, ..., Un
have the form

Ui = (1 + W 2
i )1/2 + Wi, i = 1, ..., n (1.8)

where the anti-hermitean operators Wi are successively constructed from the
requirement that the non-(block)diagonal terms of order i vanish. An explicit
expression for H(2) was provided by Douglas and Kroll [5], but was later cor-
rected by Jansen and Hess [11]. Its upper block, termed bm, which corresponds
to the positive spectral subspace, agrees with b0m + b1m from (1.4) up to first
order in V , but has an additional second-order term

bm = b0m + b1m + b2m

b2m :=
1
2

(w1mO1 − O1w1m) (1.9)

where O1 := A(p) (RV − V R)A(p), and w1m is an integral operator linear
in V , defined by w1mEp + Epw1m = O1. It should be noted that due to the
particular structure (1.8) of the transformation U2 combined with the linearity
of W2 in V, bm is unaffected by U2.

The Coulomb case (1.2) is well suited for investigating the quality of the
above approximations since one can compare with the exact solutions. For this
case, the spectral properties of the Brown-Ravenhall operator b0m+b1m were in
detail studied by Evans and coworkers [6, 1], and the boundedness from below
of the Jansen-Hess operator bm for subcritical charges γ was recently proven by
Brummelhuis et al [4]. In the present work we want to prove, for the Coulomb
potential (1.2),

Theorem 1.1 Let the critical coupling constant γc ≈ 1.006 be defined as the
smaller solution of 1− γ/2 (π/2 + 2/π) + γ2/8 (π/2 − 2/π)2 = 0. If γ < γc,

(i) the essential spectrum of bm is given by σess(bm) = σess(b0m) = [m,∞),
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(ii) the singular continuous spectrum of bm is empty.

Evans et al [6] proved Theorem 1.1 for the operator b0m + b1m, the critical
coupling constant being 2/(π/2 + 2/π) ≈ 124.16 e2, and Balinsky and Evans
[1] showed that above max{m,m(2γ − 1

2 )} there are no embedded eigenvalues
in the essential spectrum. By using similar techniques we extend their results
to the second-order term b2m.

2 Preliminaries

Let ϕ ∈ S(R3) × C2 be a spinor in the Schwartz space of smooth strongly
localised functions. Then one can define the energy of the electron as the ex-
pectation value of bm,

Em(ϕ) := (ϕ, bmϕ) =
2∑
i=0

(ϕ, bimϕ). (2.1)

The strategy of this work is to base proofs on the results for the case of massless
particles, i.e. for m = 0 in (1.1) and in the subsequent equations. (We will drop
the index m if reference is made to the m = 0 case). When m = 0, b0 = p,
and simple scaling properties are found to hold.

It was proven by Brummelhuis et al [4] that the difference between the
energies in the massive and in the massless case is bounded, i.e.

|Em(ϕ) − E(ϕ)| ≤ md ‖ϕ‖2, d > 0. (2.2)

From this it is easily shown that bm is form bounded from below because of
the positivity of b, i.e. (ϕ, b ϕ) ≥ 0 for γ ≤ γc [4]:

Em(ϕ) ≥ −md ‖ϕ‖2 + (ϕ, b ϕ) ≥ −md ‖ϕ‖2 (2.3)

with γc from Theorem 1.1. Since bm is symmetric (being a function of p and
its conjugate x), (2.3) allows for the Friedrichs extension of bm to a self-adjoint
operator on the Hilbert space L2(R3) × C2. In the following, the notation bm
will always imply its Friedrichs extension.

Introducing the resolvents (bm + µ)−1 and (b0m + µ)−1, their boundedness
for a suitably chosen µ > 1 follows from the strict positivity of (bm + µ) and
(b0m + µ) which is trivial for the latter operator and is a consequence of (2.3)
for bm + µ :

(ϕ, (bm + µ)ϕ) ≥ −md (ϕ,ϕ) + µ(ϕ,ϕ) > 0 for µ ≥ md+ 1. (2.4)
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For the proof of Theorem 1.1(i) it suffices to show [6] that the resolvent difference

Rm(µ) := (bm + µ)−1 − (b0m + µ)−1 is compact (2.5)

for µ from (2.4). It then follows that the essential spectra of bm and b0m coincide
[14, p.112].

The proof of the compactness (2.5) is based on Lemma 2.6 of Herbst [10]
where it is shown that

(b0m + µ)−1 1√
x

is compact (2.6)

for all m ≥ 0 and µ ≥ 1. Another ingredient of the proof of (2.5) is the b0m-form
boundedness of b1m + b2m with relative bound c less than one, i.e.

|(ϕ, (b1m + b2m)ϕ)| ≤ c (ϕ, b0mϕ) + C (ϕ,ϕ) (2.7)

∀ ϕ ∈ Q2, with 0 < c < 1, C ∈ R

where Q2 := H1/2(R3)× C2 is the form domain of b0m (with H1/2(R3) :=
{ϕ ∈ L2(R3) :

∫
R3

|ϕ(p)|2 (1 + p2)1/2 dp <∞} in the p-space representation).

With (2.7), bm may be defined as a form sum of b0m and (b1m + b2m) with
coinciding form domain Q2 for bm and b0m.

The form boundedness (2.7) can be obtained from the respective form bound-
edness in the massless case. To show the latter, the following lemma is needed:

Lemma 2.1 Let b := b0 + b1 + b2 the Jansen-Hess operator for m = 0. If
γ ≤ 4/π,

(ϕ,−b1 ϕ) ≥ (ϕ, b2 ϕ) ∀ ϕ ∈ Q2. (2.8)

Due to the scaling properties of b in the massless case (discussed in the beginning
of section 4), the proof can readily be carried out in Mellin space using the
techniques from [4] and is given in Appendix A. It should be noted in passing
that a corresponding inequality for the kernels, −b1(p,p′) ≥ b2(p,p′) with
bi(p,p′) defined in (3.2) with m = 0, does not hold; in fact one can show that
for p′ = 0, p 6= 0, b2(p,p′) is dominating over −b1(p,p′) for any positive value
of the coupling constant γ (while, e.g. for p = p′ 6= 0, −b1(p,p′) is larger than
b2(p,p′)).

In the massless case, the form boundedness (2.7) is easily derived with the
help of (2.8) and the positivity of b: In the Mellin space representation (A.4) of
(ϕ, b ϕ) one can show [4] that for γ < γc, (b]0 +

√
2π b(1)]

ls +
√

2π b(2)]
ls )(t−i/2) ≥

ε > 0 and hence
(ϕ, bϕ) ≥ ε (ϕ, b0ϕ) (2.9)
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whereas ε = 0 for γ = γc. Therefore

(ϕ, (−b1 − b2)ϕ) ≤ (1− ε) (ϕ, b0 ϕ) (2.10)

which proves (2.7) in the m = 0 case for γ < γc.

An additional element in the proof of boundedness of operators necessary to
show the compactness (2.5) is the estimate derived by Lieb and Yau [13] which
we give in a slightly generalised form:

Let K(p,p′) = K(p′,p) ≥ 0 be a symmetric kernel, p,p′ ∈ R3, and let
f(p) > 0 for p > 0 a smooth convergence inducing function. Then∣∣∣∣∫
R3×R3

dp dp′ ϕ(p)K(p,p′)ψ(p′)
∣∣∣∣ ≤ (∫

R3
dp |ϕ(p)|2 I(p)

∫
R3
dp |ψ(p)|2 I(p)

)1
2

I(p) :=
∫
R3
dp′ K(p,p′)

∣∣∣∣ f(p)
f(p′)

∣∣∣∣2 . (2.11)

This estimate relies on Schwarz’s inequality. Conventionally, one takes f(p)
:= pα with a suitable α > 0 to investigate the convergence of I.

For the proof of Theorem 1.1(ii) dilation analyticity is used [6]. One defines
for θ := eξ with |ξ| < ξ0, ξ ∈ R, the unitary dilation group on L2(R3)× C2 by

dθ ϕ(p) := ϕθ(p) := θ−3/2 ϕ(p/θ) (2.12)

Then one extends θ to the domain D0 := {θ = eξ : ξ ∈ C, |ξ| < ξ0} with
ξ0 > 0 to be chosen later, and defines the dilated operators

bm,θ := dθ bm d−1
θ . (2.13)

For θ ∈ D0, dθ is no longer unitary, neither is bm,θ self-adjoint.

We have to show that bm,θ is an analytic operator in D0. Since we want bm,θ
to be defined as a form sum on H1/2(R3) × C2, analyticity requires that ([6],
[14, p.20])

b1m,θ + b2m,θ is b0m,θ-form bounded (2.14)

with relative bound less than one ∀ θ ∈ D0, where bim,θ := dθ bim d
−1
θ , i =

0, 1, 2.

Moreover, for bm,θ defined as an operator on L2(R3)×C2, one must show that

(b0m + µ)−1/2 (b1m,θ + b2m,θ) (b0m + µ)−1/2 is an analytic family in D0.
(2.15)

Taking ϕ ∈ S ×C2 such that dθϕ is analytic in D0, one can extend the formula

(ϕ,
1

bm − z
ϕ) = (dθϕ,

1
bm,θ − z

dθϕ), z ∈ C\R (2.16)
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which for θ ∈ D0 ∩ R is based on the unitarity of dθ, to D0 ⊂ C because
analyticity of the r.h.s. allows application of the identity theorem from the
theory of complex functions. Since S is dense in H1/2(R3) [8, p.192], (2.16)
holds for all ϕ ∈ H1/2(R3)×C2 (although H1/2(R3) itself is not invariant under
complex dilations).

Furthermore we need to show that

Rm,θ(µ) := (bm,θ + µ)−1 − (b0m,θ + µ)−1 is compact (2.17)

for µ defined in (2.4). Then, following the argumentation of [6], one can use
Lemma 3 of [14, p.111] together with the strong spectral mapping theorem ([14,
p.109]) to prove that the essential spectra of b0m,θ and bm,θ coincide. (Note
that the additional condition for Lemma 3 to hold, a nonempty resolvent set of
(bm,θ + µ)−1 containing inner points in C, follows from the boundedness of this
operator in D0 as shown in section 5.2). Since σess(b0m,θ) and hence σess (bm,θ)
is a curve in the complex plane intersecting R only in the point m, we have

lim
Im z→0

Im (ϕ,
1

bm − z
ϕ) < ∞ (2.18)

by means of (2.16) except when Re z coincides with isolated points of R+

(namely m or eigenvalues of bm). (2.18) implies that the singular continuous
spectrum of bm is absent in [m,∞) ([14, p.137,186]; [10]).

3 Representations of bm

We start by selecting the momentum representation and define integral opera-
tors bim(p,p′), i = 1, 2 by means of

(ϕ, bmϕ) =
∫
R3
dp ϕ(p) b0m(p) ϕ(p) (3.1)

+
∫
R3×R3

dp dp′ ϕ(p) [b1m(p,p′) + b2m(p,p′)] ϕ(p′)

where we have indicated explicitly the p-dependence of b0m. These operators
were calculated from (1.5) by Evans et al [6] and from (1.9) by Brummelhuis et
al [4],

b1,m(p,p′) := − γ

2π2

1
|p− p′|2

[1 + σp̂σp̂′ h(p)h(p′)] A(p)A(p′)

b2m(p,p′) :=
1
2

( γ

2π2

)2
∫
R3
dp′′

1
|p− p′′|2

1
|p′′ − p′|2

·
[

1
Ep′ + Ep′′

+
1

Ep + Ep′′

]
A(p)A(p′)A2(p′′) (3.2)
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·
[
h2(p′′)− σp̂′′ σp̂′ h(p′′)h(p′)− σp̂′′ σp̂h(p′′)h(p) + σp̂σp̂′ h(p)h(p′)

]
where the factors of the type |p − p′|−2 result from the momentum-space rep-
resentation of the potential (1.2). We note that for m = 0, h(p) = 1 and
A(p) = 1√

2
while in the general case, h(p) ∈ [0, 1] and A(p) ∈ [ 1√

2
, 1] are also

bounded.

For the proof of the compactness (2.5) it is advantageous to choose an x-space
representation. Identifying again p with −i∂/∂x (and p with (−∆)

1
2 ), b1m

and b2m can be written in the following way

b1m = −γ A(p)
[

1
x
A(p) + h(p) σp̂

1
x
σp̂ h(p)A(p)

]

b2m =
( γ

2π

)2

A(p)
[

1
x
A2(p) h2(p) W10,m + W10,mA(p)h2(p)

1
x
A(p)

− 1
x
A2(p)h(p) σp̂ W11,m − W11,mA(p)

1
x
A(p) σp̂ h(p)

− σp̂ h(p)
1
x
σp̂ h(p)A2(p) W10,m − σp̂ h(p) W11,mA(p)

1
x
A(p)

+ σp̂ h(p)
1
x
A2(p) W11,m + σp̂ h(p) W10,mA(p)

1
x
A(p) σp̂ h(p)

]
. (3.3)

In the expression for b2m we have introduced integral operators W10,m and
W11,m which are closely related to w1m as defined below (1.9). Since later a
factorisation will be used for each term of (3.3), all operators but 1/x may be
analysed in terms of their momentum representation. In p-space representation,
W10,m and W11,m are defined by

(W10,m ϕ)(p) :=
∫
R3
dp′

1
|p− p′|2

A(p′)
1

Ep + Ep′
ϕ(p′)

(W11,m ϕ)(p) :=
∫
R3
dp′

1
|p− p′|2

σp̂′ · h(p′) A(p′)
1

Ep + Ep′
ϕ(p′) (3.4)

It is readily verified that Fourier transforming b1m and b2m leads to the equations
(3.2).

4 The essential spectrum of bm

In this section we show the b0m-form boundedness (2.7) of b1m + b2m as well as
the compactness of Rm(µ) from (2.5) in order to prove that σess(bm) = [m,∞)
(Theorem 1.1(i)). Many ingredients of these proofs would have to be repeated
when dilation analyticity and the compactness of Rm,θ(µ) is shown. Therefore
we formulate the proofs for the generalised operators bm,θ and consider (2.7)
and (2.5) as the special cases for θ = 1.
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We start by deriving the scaling properties of bm,θ defined in (2.13). For
θ ∈ R+ we have

Em(ϕ) = (ϕ, bm ϕ) = (dθϕ, (dθ bm d−1
θ ) dθϕ) (4.1)

and making in (3.1) the substitution q := θp, q′ := θp′ one obtains

Em(ϕ) =
∫
R3
dq θ−3/2 ϕ(q/θ) b0m(q/θ) θ−3/2 ϕ(q/θ) (4.2)

+
∫
R3
dq θ−

3
2 ϕ(q/θ)

∫
R3
dq′ θ−3 (b1m(q/θ,q′/θ) + b2m(q/θ,q′/θ)) θ−

3
2 ϕ(q′/θ)

Using the definition (2.12) of dθϕ we obtain upon identification with the
r.h.s. of (4.1)

b0m,θ(p) := dθ b0m(p) d−1
θ = b0m(p/θ)

=
√
p2/θ2 +m2 =

1
θ

√
p2 + (mθ)2 =

1
θ
b0m·θ(p) (4.3)

bim,θ(p,p′) := dθ bim(p,p′) d−1
θ = θ−3 bim(p/θ,p′/θ) =

1
θ
bim·θ(p,p′),

i = 1, 2, where the last equality results from inspection of the explicit expres-
sions (3.2) for bim(p,p′), implying that bim·θ(p,p′) results from (3.2) by means
of the substitutions

Ep 7→ Eθ(p) :=
√
p2 +m2θ2, h(p) 7→ hθ(p) :=

p√
p2 +m2θ2 +mθ

A(p) 7→ Aθ(p) :=

(√
p2 +m2θ2 +mθ

2
√
p2 +m2θ2

)1/2

. (4.4)

The definition (4.3) of the operators bim,θ and bim·θ is readily extended to com-
plex θ ∈ D0. Note the simple scaling with 1/θ of the corresponding operators
bi,θ (i = 0, 1, 2) in the massless case which follows from (4.3).

4.1 The b0m-form boundedness

Let us take a general θ ∈ D0. Using the scaling property (4.3) we have

|(ϕ, (b1m,θ + b2m,θ)ϕ)|

≤
∣∣∣∣1θ
∣∣∣∣ · [ |(ϕ, (b1m·θ − b1)ϕ)| + |(ϕ, (b2m·θ − b2)ϕ)| + |(ϕ, (b1 + b2)ϕ)| ] (4.5)

From the exponential form, θ = eξ, one derives the estimate for |1/θ|, valid for
δ := |Re ξ| < 1,

1− δ ≤ e−δ ≤
∣∣∣∣1θ
∣∣∣∣ = e−Re ξ ≤ eδ ≤ 1 + 2δ. (4.6)
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For θ ∈ D0 one has |Re ξ| < ξ0 , such that by requiring ξ0 < 1 one can replace
δ by ξ0 in (4.6). The same estimates also hold for the inverse, |θ|.

Using the b0-form boundedness (2.10) of b1 + b2 we find for the last term of
(4.5) ∣∣∣∣1θ

∣∣∣∣ · |(ϕ, (b1 + b2)ϕ)| ≤ (1 + 2ξ0) (1− ε) (ϕ, b0 ϕ) (4.7)

where ξ0 can be chosen sufficiently small such that (1 + 2ξ0)(1− ε) =: c < 1.
Provided the first two terms in (4.5) are bounded, this proves the b0-form bound-
edness of b1m,θ + b2m,θ with form bound smaller than 1.

In this section we are concerned with the b0m-form boundedness in the case
θ = 1 ( the general case being deferred to section 5.1). Then we can use the
results of Tix [16, Theorem 1] and Brummelhuis et al [4, Lemma 5] who have
shown, by comparing massive and massless operators, the boundedness of the
first- and second-order term, respectively

|ϕ, (b1m − b1)ϕ)| ≤ (|ϕ|, |b1m − b1| · |ϕ|) ≤ m d1 ‖ϕ‖2

|(ϕ, (b2m − b2)ϕ)| ≤ (|ϕ|, |b2m − b2| · |ϕ|) ≤ m d2 ‖ϕ‖2. (4.8)

Hence, b1m + b2m is b0-form bounded. The b0m-form boundedness (2.7) is an
immediate consequence since b0 = p ≤

√
p2 +m2 = b0m.

4.2 The compactness of the resolvent difference Rm(µ)

We will show later that (b0m,θ +µ)−1 is bounded for θ in a suitable domain D0.
Then, following Evans et al [6] we use the second resolvent identity to write

(bm,θ + µ)−1 − (b0m,θ + µ)−1 = −(b0m,θ + µ)−1(b1m,θ + b2m,θ) (bm,θ + µ)−1

= −
[
(b0m,θ + µ)−1(b0m + µ)

]
· {(b0m + µ)−1(b1m,θ + b2m,θ) (b0m + µ)−1/2}

·
[
(b0m + µ)1/2(bm,θ + µ)−1

]
(4.9)

We will show that the operator in curly brackets is compact while the two oper-
ators in square brackets are bounded. Then the product of all three operators
is compact.

For the case θ = 1 the left operator in square brackets is unity. For the
proof of the boundedness of the rightmost operator for θ = 1 we use bm +µ > 0
to define the bounded square root operator (bm + µ)−1/2 and we make the
decomposition

(b0m + µ)1/2(bm + µ)−1 = (b0m + µ)1/2(bm + µ)−1/2(bm + µ)−1/2. (4.10)

Let ϕ ∈ H1/2(R3) × C2 and define ψ := (bm + µ)−1/2ϕ. Then, making use of
the self-adjointness of (bm + µ)1/2 (by means of its Friedrichs extension), the
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requirement for the boundedness of (b0m +µ)1/2(bm +µ)−1/2 can be expressed
in the following way

‖ (b0m + µ)1/2(bm + µ)−1/2ϕ ‖2 = ‖ (b0m + µ)1/2ψ ‖2 = (ψ, (b0m + µ)ψ)

≤ c0 ‖ ϕ ‖2 = c0 (ψ, (bm + µ)ψ) (4.11)

for a suitable constant c0 > 0.

This means that the required boundedness is proven provided the following
inequality holds

c0 (ψ, (b0m + b1m + b2m + µ)ψ) − (ψ, (b0m + µ)ψ) ≥ 0 (4.12)

However, recalling that from the b0m-form boundedness (2.7) one has the esti-
mate

(ψ, (b1m + b2m)ψ) ≥ −c (ψ, b0m ψ) − C (ψ,ψ) (4.13)

with 1 > c := 1 − ε, and noting that b0m and µ are nonnegative, (4.12) holds
true if one chooses c0 ≥ 1/ε and µ > max(1, c0C/(c0 − 1)).

Next we show the compactness of the operator in curly brackets from (4.9).
The compactness of the first-order term (b0m + µ)−1b1m,θ (b0m + µ)−1/2 was
already shown by Evans et al [6]. So we concentrate on the second-order term

(b0m + µ)−1b2m,θ (b0m + µ)−1/2 =:
1
θ
·
( γ

2π

)2 8∑
i=1

βim·θ (4.14)

where βim·θ is obtained with the help of (3.3) and the scaling (4.3),

8∑
i=1

βim·θ = (b0m+µ)−1Aθ(p)
[

1
x
A2
θ(p)h

2
θ(p)W10,m·θ+W10,m·θAθ(p)h2

θ(p)
1
x
Aθ(p)

− 1
x
A2
θ(p)hθ(p)σp̂W11,m·θ − W11,m·θAθ(p)

1
x
Aθ(p)σp̂hθ(p) (4.15)

− σp̂hθ(p)
1
x
σp̂hθ(p)A2

θ(p) W10,m·θ − σp̂hθ(p) W11,m·θAθ(p)
1
x
Aθ(p)

+σp̂hθ(p)
1
x
A2
θ(p)W11,m·θ+σp̂hθ(p)W10,m·θAθ(p)

1
x
Aθ(p)σp̂hθ(p)

]
(b0m+µ)−

1
2

with W10,m·θ and W11,m·θ from (3.4) with the replacements (4.4). First we
note that all eight terms βim·θ from (4.15) contain the coordinate x in the form
1/x and differ in their momentum dependence only by the bounded operators
σp̂, Aθ(p) or hθ(p) (their boundedness is shown in the next section). We shall
only present the proof of compactness for the first term β1m·θ in detail. One
can readily carry through the proof for the other seven terms using the same
techniques, together with ‖σp̂ϕ‖2 = (ϕ, (σp̂)2ϕ) = ‖ϕ‖2. In particular, each
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of the terms is found to contain the compact operator (b0m + µ)−1 x−1/2 from
(2.6) which assures compactness provided the remaining factors are bounded.

We use the commutativity of multiplication operators depending only on
momentum p (such as Aθ, hθ, b0m + µ) to decompose β1m·θ into

β1m·θ = Aθ(p) {(b0m + µ)−1 1√
x
} ·
[

1√
x
A2
θ(p)h

2
θ(p) (b0m + µ)−1/2

]
·
[
(b0m + µ)1/2 W10,m·θ (b0m + µ)−1/2

]
(4.16)

For θ = 1, the prefactor A(p) is bounded by 1. We are left to prove that the
two operators in square brackets are bounded.

Let us concentrate on the first operator. Then, defining ψ := A2
θ(p)h

2
θ(p)

(b0m +µ)−1/2ϕ we obtain, using the inequality of Kato [12, p.307], 1/x ≤ π
2 p,

and the self-adjointness of 1/x

‖ 1√
x
A2
θ(p)h

2
θ(p) (b0m + µ)−1/2 ϕ ‖2 = (ψ,

1
x
ψ) ≤ π

2
(ψ, pψ)

≤ π

2
(ψ, (b0m + µ)ψ) =

π

2
‖ A2

θ(p) h
2
θ(p) ϕ ‖2

≤ π

2
‖ A2

θ(p) ‖2 · ‖ h2
θ(p) ‖2 ·‖ϕ‖2 =: c1 ‖ϕ‖2 (4.17)

with µ from (2.4). For θ = 1, h(p) is bounded by 1 such that c1 <∞.

Next we show the boundedness of the operator

Wλ
10,m·θ := (b0m + µ)λ W10,m·θ (b0m + µ)−λ (4.18)

for λ = −1, − 1
2 and 1

2 which are our cases of interest (actually, boundedness
can be shown for |λ| < 3

2 ). Defining the nonnegative kernel

K̃(p,p′) := (b0m(p) + µ)λ
1

|p− p′|2
|Aθ(p′)|

∣∣∣∣ 1
Eθ(p) + Eθ(p′)

∣∣∣∣ (b0m(p′) + µ)−λ

(4.19)
and the convolution K(p′,p′′) :=

∫
R3

dp K̃(p,p′) · K̃(p,p′′) which is symmetric

in p′ and p′′ and also nonnegative, we obtain with the help of the Lieb and Yau
formula (2.11) (with ψ := ϕ and the choice f(p) := pα )

‖Wλ
10,m·θ ϕ ‖2 =

∫
R3
dp

∣∣∣∣(b0m(p) + µ)λ
∫
R3
dp′

1
|p− p′|2

Aθ(p′)

· 1
Eθ(p) + Eθ(p′)

(b0m(p′) + µ)−λ ϕ(p′)
∣∣∣∣2

≤
∫
R3
dp
(∫

R3
dp′ K̃(p,p′) |ϕ(p′)|

)2

≤
∫
R3
dp′ |ϕ(p′)|2 · I(p′) (4.20)
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I(p′) :=
∫
R3
dp′′ K(p′,p′′)

(
p
′α

p′′α

)2

Thus Wλ
10,m·θ is bounded if I(p′) is finite for all p′ ∈ R3

with a suitably chosen
α.

Let us turn to the case θ = 1 again. Since the integrand of I(p′) is nonneg-
ative, we can estimate K̃(p,p′) and hence I(p′) from above by replacing A(p′)
by 1. In addition we need the estimates (with µ > 1 and λ > 0)

1
Ep + Ep′

=
1√

p2 +m2 +
√
p′2 +m2

≤ 1
p+ p′

,

(b0m(p) + µ)−λ = (
√
p2 +m2 + µ)−λ ≤ (p+ µ)−λ ≤ (p+ 1)−λ,

(b0m(p) + µ)λ ≤ (p+m+ µ)λ ≤ ((p+ 1) + m+ µ+ 1)λ

≤ ((p+ 1) + (p+ 1) (m+ µ+ 1))λ = (p+ 1)λ (m+ µ+ 2)λ (4.21)

since p+ 1 ≥ 1. With this we estimate K̃(p,p′)

K̃(p,p′) ≤ (m+ µ+ 2)|λ| (p+ 1)λ
1

|p− p′|2
1

p+ p′
(p′ + 1)−λ (4.22)

Apart from a finite constant, the r.h.s. of (4.22) is just the corresponding kernel
in the massless case (since for m = 0, Ep = b0(p) = p, and one can take
µ = 1). This means that the integral I(p′) from (4.20) can be estimated by the
corresponding integral in the massless case. The finiteness of I(p′) for m = 0 is
shown in Appendix B.

5 Dilation analyticity

In the massless case, dilation analyticity is trivial because from (4.3), dilation
of bm is equivalent to multiplication by the bounded, analytic factor 1/θ. For
the m 6= 0 case, we start by showing that the operators Aθ(p), hθ(p), (Eθ(p) +
Eθ(p′))−1 are bounded for θ ∈ D0 with D0 a neighbourhood of unity in the
complex plane (defined below (2.12)), and we derive bounds which are related
to the respective operators for θ = 1. Such bounds were given by Evans et al [6]
for Eθ(p). Indeed, from the estimate of |θ| given below (4.6), 1 − ξ0 ≤ |θ| ≤
1 + 2ξ0, we get for |Im ξ| ≤ ξ0 ≤ 1/2 (using 1− 2x2 ≤ cos 2x ≤ 1)

(1− ξ0) Ep ≤ |Eθ(p)| ≤ (1 + 2ξ0) Ep. (5.1)

We demonstrate the techniques in the case of Eθ(p) + mθ which is needed to
estimate Aθ(p) and hθ(p). The upper estimate is obtained from

|Eθ(p) +mθ| ≤ |Eθ(p)| + m|θ| ≤ (1 + 2ξ0) Ep + m (1 + 2ξ0)
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= (1 + 2ξ0) (Ep +m) (5.2)

For the lower bound we define the phases ϕp and ϕ0 of Eθ(p) =
√
p2 +m2θ2

and θ = eξ, respectively

ϕp :=
1
2

arctan
m2e2Re ξ sin(2 Im ξ)

p2 +m2e2Re ξ cos(2 Im ξ)
, ϕ0 := Im ξ (5.3)

With the restriction |Im ξ| < π/4 we assure cos(2 Im ξ) > 0 i.e. positivity of
the denominator of ϕp. Since arctan is an odd, monotonically increasing function
we can estimate |ϕp| from above by dropping p2 in the denominator, |ϕp| ≤
1
2 arctan(tan 2|Im ξ|) = |Im ξ|. We therefore get |ϕ0 − ϕp| ≤ 2|Im ξ| and
hence cos(ϕ0 − ϕp) ≥ cos(2 Im ξ) ≥ 1 − 2|Im ξ|2 ≥ (1 − ξ0)2 for |Im ξ| <
ξ0 ≤ 1/2. Thus we estimate

|Eθ(p) +mθ| =
∣∣∣|Eθ(p)| + m|θ|ei(ϕ0−ϕp)

∣∣∣ ≥ |Eθ(p)| + m|θ| cos(ϕ0 − ϕp)

≥ (1− ξ0)Ep + m (1− ξ0)3 ≥ (1− ξ0)3 (Ep +m) (5.4)

where in the first inequality we have dropped the imaginary part and used that
its r.h.s. is nonnegative. From this we find, using the definition (4.4) of Aθ(p)
and hθ(p)

(1− ξ0)3

1 + 2ξ0
A2(p) ≤ |Aθ(p)|2 ≤

1 + 2ξ0
1− ξ0

A2(p)

1
1 + 2ξ0

h(p) ≤ |hθ(p)| ≤
1

(1− ξ0)3
h(p) (5.5)

In a similar way we find

1
|Eθ(p) + Eθ(p′)|

≤ 1
(1− ξ0)3

1
Ep + Ep′

≤ 1
(1− ξ0)3

1
p+ p′

(5.6)

Taking ξ0 ≤ 1/2 assures that (5.5) and (5.6) are valid for all θ ∈ D0.

5.1 The b0m,θ-form boundedness

Refering to (4.5) and (4.7) it remains to prove the boundedness of |(ϕ, (bim·θ −
bi)ϕ)|, i = 1, 2, as well as the estimate of b0 by b0m,θ since (4.7) only provides
the b0-form boundedness.

In order to show the second item we start by estimating the real part of
b0m·θ

Re
√
p2 +m2θ2 =

[
(p2 +m2e2Reξ cos(2 Im ξ))2 + (m2e2Reξ sin(2 Im ξ))

] 1
4 cosϕp

≥ p cosϕp ≥ p cos(Im ξ) ≥ p (1− |Im ξ|) ≥ p (1− ξ0) (5.7)
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for |Im ξ| < ξ0 ≤ π/4, where ϕp is defined in (5.3) and we have followed the
argumentation below (5.3) and used that cosx ≥ 1 − |x| for |x| ≤ 1. Then
with (5.7)

|(ϕ, b0m,θ ϕ)| =
∣∣∣∣1θ
∣∣∣∣ · |(ϕ, b0m·θ ϕ)| ≥ (1− ξ0) · |Re (ϕ, b0m·θ ϕ)|

≥ (1− ξ0)2 (ϕ, pϕ) = (1− ξo)2 (ϕ, b0 ϕ) (5.8)

Hence, the r.h.s. of (4.7) can be estimated by c0 |(ϕ, b0m,θ ϕ)| with c0 :=
(1 + 2ξ0) (1 − ε) (1 − ξ0)−2 < 1 for sufficiently small ξ0, which provides the
b0m,θ-form boundedness with form bound < 1.

The first item is proven by estimating every term of |(ϕ, (bim·θ − bi)ϕ)| by
the corresponding term in the θ = 1 case. Since all these terms (for θ = 1)
have separately been shown to be bounded by Brummelhuis et al [4] and Tix
[16] during the course of their proofs of (4.8), we are done.

We use the partial wave expansion (A.2) of the energy Em(ϕ) and note that
bim·θ and blsm·θ are obtained from bim and blsm, respectively, by attaching to
every occuring m the multiplication factor θ. With the explicit form of b(1)

lsm

from (A.2) we get

|(ϕ, (b1m·θ − b1)ϕ)| ≤ γ

2π

∑
ν

∫ ∞
0

dp |aν(p)|
∫ ∞

0

dp′ |aν(p′)|

·

{∣∣∣∣∣
√

1 +
mθ

Eθ(p)

√
1 +

mθ

Eθ(p′)
− 1

∣∣∣∣∣ ql(p/p′)
+

∣∣∣∣∣
√

1− mθ

Eθ(p)

√
1− mθ

Eθ(p′)
− 1

∣∣∣∣∣ ql+2s(p/p′)

}
(5.9)

where for each term of b1m·θ − b1, the triangle inequality was used. We now

define f±(m) :=
√

1± mθ

Eθ(p)
·
√

1± mθ

Eθ(p′)
and use the mean value theorem

in the following form (it is applicable to the real functions Re f+ and Im f+)

|f+(m) − f+(0)| =
√

Re2(f+(m)− f+(0)) + Im2(f+(m)− f+(0))

=

√(
m · Re

df+

dm
(m̃1)

)2

+
(
m · Im df+

dm
(m̃2)

)2

(5.10)

≤ m

√∣∣∣∣df+

dm
(m̃1)

∣∣∣∣2 +
∣∣∣∣df+

dm
(m̃2)

∣∣∣∣2 ≤ m

[ ∣∣∣∣df+

dm
(m̃1)

∣∣∣∣ +
∣∣∣∣df+

dm
(m̃2)

∣∣∣∣ ]
with m̃1, m̃2 some values between 0 and m. With z := m · θ we obtain

df+

dm
= θ

df+

dz
= θ

d

dz

√
1 +

z√
p2 + z2

√
1 +

z√
p′2 + z2

(5.11)
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= θ

√
1 +

z√
p2 + z2

1
2

p
′2

p′2 + z2

1√
(p′2 + z2) + z

√
p′2 + z2

+ (p↔ p′)

where the symbol (p↔ p′) stands for the first term with p and p′ interchanged,
and df−/dz is given by (5.11) with z replaced by −z. With the estimates (4.6)
and (5.1) for |θ| and |Eθ(p)|, as well as (5.2) and (5.4) we deduce∣∣∣∣df+

dm
(m̃)

∣∣∣∣ ≤ (1 + ε̃)

( ∣∣∣∣∣df
(1)
+

dm
(m̃)

∣∣∣∣∣
θ=1

+

∣∣∣∣∣df
(2)
+

dm
(m̃)

∣∣∣∣∣
θ=1

)
(5.12)

for a suitable ε̃, where df (1)
+ /dm denotes the first term in the last line of (5.11)

and df
(2)
+ /dm is this term with p and p′ interchanged.

We now follow Tix [16] to estimate (5.12) by an expression proportional to
the inverse momentum and independent of m̃ by using that for θ = 1, z = m̃ ≥
0 ∣∣∣∣∣df

(1)
+

dm
(m̃)

∣∣∣∣∣
θ=1

≤
√

2 · 1
2
· p
′2

p′2
· 1√

p′2 + m̃2
≤ 1

p′
(5.13)

and likewise

∣∣∣∣∣df
(2)
+

dm
(m̃)

∣∣∣∣∣
θ=1

≤ 1
p
.

Upon substitution of (5.10) with (5.12) and (5.13) into (5.9), one obtains
integrals which Tix [16] has proven to be finite with the help of the formula
(2.11) of Lieb and Yau.

The same method, i.e. the modified mean value theorem (5.10) together
with an estimate of type (5.12) to each of the terms appearing in the derivative
of the corresponding function given in [4], can be applied to show boundedness
of b2m·θ − b2 by relying on the respective proof by Brummelhuis et al [4] for the
θ = 1 case.

5.2 Analyticity of the operator
(b0m + µ)−1/2 (b1m,θ + b2m,θ) (b0m + µ)−1/2

In this subsection we show that T2(θ) := (b0m + µ)−1/2 b2m,θ (b0m + µ)−1/2

is an analytic family. For the first-order term T1(θ) relating to b1m,θ this was
already proven by Evans et al [6]. According to [14, p.14] the following items
are required:

(i) T2(θ) is closed for θ ∈ D0.

This requires the proof of boundedness of T2(θ) because T2(θ) is defined on
the Hilbert space L2(R3) × C2. For a complete domain, boundedness implies
closure.
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The boundedness of T2(θ) is shown by the same means as compactness of
(b0m + µ)−1 b2m,θ (b0m + µ)−1/2 = (b0m + µ)−1/2 T2(θ). Refering to section
4.2 the latter requires the proof of compactness of the eight operators βim·θ
of type (4.16). For i = 1 and Aθ(p) and hθ(p) estimated by the bounded
operators A(p) and h(p), cf. (5.5), the l.h.s. of (4.17) is bounded also for
θ 6= 1. In the proof of the boundedness of (b0m+µ)1/2W10,m·θ (b0m+µ)−1/2 for
θ ∈ D0, we can by means of the estimates (5.5) and (5.6) for the θ-dependent
quantities provide an upper bound for the kernel K̃(p,p′) from (4.19), which
is proportional to the corresponding kernel in the m = 0 case. Boundedness of
(b0m + µ)1/2W10,m·θ (b0m + µ)−1/2 then follows from Appendix B in the same
way as for the θ = 1 case. The very same tools also yield compactness for the
other βim·θ, i = 2, ..., 8.

For the boundedness of T2(θ) we define β̃im·θ := (b0m + µ)1/2βim·θ. The
basic difference is that in the decompositions of type (4.16) the compact op-
erator (b0m + µ)−1 x−1/2 is now replaced by (b0m + µ)−1/2 x−1/2 and that
(b0m+µ)−1W10,m·θ (b0m+µ) is replaced by (b0m+µ)−1/2W10,m·θ (b0m+µ)1/2.
However, we have already included the case λ = −1/2 in the earlier proof of
boundedness of Wλ

10,m·θ from (4.18), so it only remains to prove boundedness
of (b0m + µ)−1/2 x−1/2. This is done by means of Kato’s inequality [12, p.307]

in the inverse form, 1/p ≤ π
2 x, and introducing ψ :=

1√
x
ϕ one has

‖ (b0m + µ)−1/2 1√
x
ϕ ‖2 = (ψ, (b0m + µ)−1 ψ) ≤ (ψ,

1
p
ψ)

≤ π

2
(ψ, xψ) =

π

2
(ϕ,ϕ) (5.14)

(ii) T (θ) := T1(θ) + T2(θ) has a nonempty resolvent set %(T (θ)) for each
θ ∈ D0.

Since the (operator-)boundedness of T (θ) implies its form boundedness be-
cause of |(ϕ, T (θ)ϕ)| ≤ ‖ϕ‖· ‖ T (θ)ϕ ‖, the expectation value of T (θ) and
hence the spectrum of T (θ) is bounded, i.e. 6= C. This means that %(T (θ)) 6= ∅.

(iii) For every θ0 ∈ D0, T (θ) is an analytic function of θ in a neighbourhood
U(θ0) of θ0.

This is true because D0 is open and b1m,θ, b2m,θ depend analytically on
θ for θ ∈ D0. (Note that bim,θ = (1/θ)bim·θ, i = 1, 2, and as seen from
(3.2) and (1.5), the m · θ-dependence enters analytically through Eθ(p) and
Eθ(p) + m · θ the moduli of which are bounded away from zero for θ ∈ D0

and m 6= 0 according to (5.1) and (5.4)). To obtain T (θ), b1m,θ + b2m,θ is
only multiplied by bounded factors which are independent of θ, hence T (θ) is
analytic in D0.

(iv) For every θ0 ∈ D0 there is a λ0 ∈ %(T (θ0)) which is also in the resolvent
set of the ’neighbouring’ operator T (θ) for θ ∈ U(θ0).
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This follows from the θ-independence of the form bound of T (θ) for all
θ ∈ D0. For |(ϕ, T (θ)ϕ)| ≤M(ϕ,ϕ), every z with |z| > M is in the resolvent
set of T (θ) for all θ ∈ D0, hence also for T (θ0) and for T (θ) with θ ∈ U(θ0).

5.3 The compactness of Rm,θ(µ)

Our starting point is (4.9) for θ ∈ D0. The compactness of the operator in curly
brackets was proven in the last section, and the boundedness of the first factor
in square brackets is easily shown. With m replaced by µ in (5.4) and with
µ > 1 we have

|(b0m,θ + µ)−1 (b0m + µ)| =

∣∣∣∣∣θ
√
p2 +m2 + µ

Eθ(p) + µθ

∣∣∣∣∣
≤ |θ|

∣∣∣∣∣
√
p2 +m2 + µ

(1− ξ0)3 (Ep + µ)

∣∣∣∣∣ ≤ 1 + 2ξ0
(1− ξ0)3

(5.15)

which proves its boundedness (and simultaneously the boundedness of (b0m,θ +
µ)−1 since Ep + µ > 1 for µ > 1).

It remains to show the boundedness of (b0m + µ)1/2 (bm,θ + µ)−1. The
boundedness of (bm,θ + µ)−1 for θ ∈ D0 follows from the positivity (2.4) of this
operator for θ = 1 and the analyticity of bm,θ in D0. This assures that there is a
neighbourhood of 1 in C such that Re (bm,θ+µ) > 0 and hence |bm,θ+µ| > 0.
For ξ0 sufficiently small, D0 is a subset of this neighbourhood.

Further we note that the operator (b0m,θ + µ)1/2 exists because for θ ∈ D0,
Re (b0m,θ + µ) > Re b0m,θ ≥ m (1 − ξ0) ≥ 0. This follows from a (5.7)-type
sequence of inequalities because for b0m,θ =

√
p2/θ2 +m2 only p and m have

to be interchanged in (5.7), a sign reversal of ξ playing no role for the real part
of this operator. With this we decompose

(b0m+µ)
1
2 (bm,θ+µ)−1 =

[
(b0m + µ)

1
2 (b0m,θ + µ)−

1
2

][
(b0m,θ + µ)

1
2 (bm,θ + µ)−1

]
(5.16)

The boundedness of the first operator in square brackets follows from (5.15).
In order to prove boundedness of the second operator in square brackets let us
first take θ ∈ R+ ∩D0. Then from unitarity of the dilation operator dθ one has

‖ (b0m +µ)1/2 (bm +µ)−1 ϕ ‖ = ‖ dθ (b0m +µ)1/2 d−1
θ · dθ (bm +µ)−1 d−1

θ · dθϕ ‖

= ‖ (b0m,θ + µ)1/2 (bm,θ + µ)−1 ϕθ ‖ (5.17)

With the choice of ϕ ∈ S × C2, i.e. ϕθ an analytic vector in θ ∈ D0 and using
that bm,θ (as well as b0m,θ) is analytic in D0, the r.h.s. of (5.17) is analytic
in D0. From the identity theorem we infer that (5.17) holds for all θ ∈ D0.
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However, the l.h.s. of (5.17) is bounded by, say, c1 as shown in section 4.2.
Hence

‖ (b0m,θ + µ)1/2 (bm,θ + µ)−1 ϕθ ‖ ≤ c1 (ϕ,ϕ) = c1 (ϕθ, ϕθ) (5.18)

which proves the desired boundedness. Note that the last equality in (5.18) also
is a consequence of the identity theorem.

6 Absence of embedded eigenvalues

We conclude this work by showing that for m 6= 0 there is an m-dependent
bound above which there are no eigenvalues of bm embedded in the essential
spectrum. For m = 0 we prove the absence of eigenvalues.

Theorem 6.1 Let the critical coupling constant γc as in Theorem 1.1. If m = 0
and γ < γc, the spectrum of b is absolutely continuous.

For the proof we only have to show that b has no eigenvalues. Then the
spectrum is given by σ(b) = σess(b) = σac (b) because σsc(b) = ∅ as stated in
Theorem 1.1 (ac = absolute continuous and sc = singular continuous). Following
Evans et al [6] we proceed in two steps

(i) Assume E 6= 0 is an eigenvalue of b, i.e. there exists ϕ ∈ H1/2(R3) × C2

such that b ϕ = Eϕ. As demonstrated in [6] for the operator b0 + b1
this leads to a contradiction since for each θ ∈ D0 ∩ R+, dθϕ is an
eigenfunction of b to the eigenvalue θE because of the scaling of b with
θ (in the massless case), θ · (dθb d−1

θ ) dθϕ = θ · b/θ (dθϕ) = θ · E dθϕ.
However, the existence of an uncountable set of (orthonormal) eigenvectors
of a (self-adjoint) operator in the Hilbert space H1/2(R3)×C2 contradicts
separability of the Hilbert space.

(ii) Assume E = 0 is an eigenvalue of b, i.e. there exists ϕ 6= 0 such that
b ϕ = 0. Using the partial wave decomposition of b and ϕ as introduced
in Appendix A we have from (A.4) in Mellin space

0 = (ϕ, b ϕ) = E(ϕ) =
∑
ν

∫ ∞
−∞

dt |a]ν(t+ i/2)|2 b]ls(t− i/2) (6.1)

where b]ls := b]0 +
√

2π b
(1)]
ls +

√
2π b

(2)]
ls . However, positivity of b or

equivalently, of b]ls(t − i/2) for γ < γc implies that the r.h.s. of (6.1) can
only be zero if for each ν,

|a]ν(t+ i/2)| = 0 almost everywhere for t ∈ R. (6.2)
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If ϕ ∈ S × C2 then a]ν is an analytic function of τ in the strip {τ ∈ C :
−∞ < t = Re τ < ∞, 0 ≤ Im τ ≤ 1

2}. From the identity theorem it
follows that |a]ν(t)| = 0 and unitarity of the Mellin transform gives

0 =
∫ ∞
−∞

dt |a]ν(t)|2 =
∫ ∞

0

dp |aν(p)|2 (6.3)

hence aν(p) = 0 in R+ and thus ϕ = 0. However, since S is dense in
H1/2(R3) we have ϕ = 0 in H1/2(R3)×C2 which is a contradiction to our
assumption ϕ 6= 0.

For the m 6= 0 case, we have

Theorem 6.2 Let γ < γc with γc as in Theorem 1.1. Then the eigenvalues λ
of bm are confined to λ ≤ m(1 + s(γ)) with

s(γ) := max{0, s0(m1γ −m0 +m2γ
2)}

where s0 := 5, m0 := 0.3058, m1 := 2
5 and m2 := 2.253. In particular,

for γ < 0.29 (i.e. Z < 40) the essential spectrum of bm has no embedded
eigenvalues.

The proof proceeds along the lines provided by Balinsky and Evans [1] in
the case of the Brown-Ravenhall operator b0m + b1m. However, a refinement
of the estimates is mandatory to show the absence of embedded eigenvalues for
small coupling constants.

Starting point is the virial theorem [1, Lemma 2.1]. If ϕ is an eigenfunction
to bm with eigenvalue λ and use is made of the scaling property (4.3) of bm,θ
with θ, the virial theorem takes the form

lim
θ→1

(ϕθ,
bm·θ − bm
θ − 1

ϕ) = λ ‖ϕ‖2 (6.4)

for θ ∈ R+ and ϕθ = dθϕ from (2.12). In order to interchange the limit θ → 1
with the integration, the uniform absolute convergence of the form on the l.h.s.
of (6.4) is needed.

Since m · θ ∈ R+, the proofs [16, 4] of form boundedness of
∣∣∣∣dbim·θdm · θ

∣∣∣∣ , i =

1, 2, also guarantee boundedness for the off-diagonal form if use is made of the
generalised Lieb and Yau formula (2.11),

(|ϕθ|,
∣∣∣∣ dbm·θdm · θ

∣∣∣∣ |ϕ|)| ≤ c ‖ϕθ‖ · ‖ϕ‖ = c ‖ϕ‖2, c ∈ R. (6.5)

Hence from the mean value theorem, with ξ some value between min{m · θ,m}
and max{m · θ,m},∣∣∣∣(ϕθ, bm·θ − bmθ − 1

ϕ)
∣∣∣∣ ≤ (|ϕθ|, m

∣∣∣∣ dbm·θdm · θ
(ξ)
∣∣∣∣ |ϕ|) ≤ mc ‖ϕ‖2 (6.6)
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such that the dominated convergence theorem applies. We therefore obtain from
(6.4)

λ ‖ϕ‖2 = m2

∫
R3
dp |ϕ(p)|2 1

Ep

+ m

∫
R3×R3

dpdp′ ϕ(p)
(
db1m(p,p′)

dm
+
db2m(p,p′)

dm

)
ϕ(p′) (6.7)

Due to the self-adjointness of b1m and hence of db1m/dm, the interchange of
p and p′ in the expectation value leads to complex conjugation. Therefore the
term linear in the coupling constant can be written in the following way∫

R3×R3
dp dp′ ϕ(p)

db1m(p,p′)
dm

ϕ(p′)

= Re
∫
R3×R3

dp dp′ ϕ(p)
(

1
Ep
− m

E2
p

)
b1m(p,p′)ϕ(p′)

+
γ

2π2

∫
R3×R3

dpdp′ϕ(p)
1

|p− p′|2
A(p)A(p′)σp̂σp̂′h(p)h(p′)

(
1
Ep

+
1
E′p

)
ϕ(p′).

(6.8)
Following [1], the first term in (6.8) carrying the negative sign of b1m is elimi-
nated with the help of the eigenvalue equation in the form

(ψ, bmϕ) =
∫
R3
dpψ(p)Epϕ(p) +

∫
R3×R3

dpdp′ψ(p) [b1m(p,p′) + b2m(p,p′)]ϕ(p′)

= (ψ, λϕ)

ψ(p) :=
(

1
Ep
− m

E2
p

)
ϕ(p). (6.9)

This procedure of eliminating a negative first-order term at the expense of ad-
ditional zero-order terms (for which no further estimate is needed) and second-
order terms (which are small for small γ) is mandatory for the desired estimate
on the eigenvalue λ. With (6.8) and (6.9), (6.7) results in

λ

m
‖ϕ‖2 =

∫
R3
dp |ϕ(p)|2

(
m

Ep
+ (

λ

Ep
− 1)(1− m

Ep
)
)

+
γ

2π2

∫
R3×R3

dpdp′ ϕ(p)

·A(p)A(p′)
[

1
|p− p′|2

σp̂σp̂′h(p)h(p′)
(

1
Ep

+
1
Ep′

)
+

γ

4π2
T2(p,p′)

]
ϕ(p′)

(6.10)
where the lengthy expression for T2(p,p′) is given in Appendix C. Applying the
Lieb and Yau formula (2.11) with ϕ := ψ := ϕAh and ϕA, respectively, to the
first-order and second-order term, one obtains with |σp̂σp̂′| ≤ 1(
λ

m
− 1
)∫

R3
dp |ϕ(p)|2

(
1− m

Ep
+
m2

E2
p

)
≤ −

∫
R3
dp |ϕ(p)|2 (Ep −m)(2Ep −m)

E2
p
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+
γ

2π2

∫
R3
dp |ϕ(p)|2A(p)2

{
h2(p)

∫
R3
dp′

1
|p− p′|2

(
1
Ep

+
1
Ep′

) ∣∣∣∣ f(p)
f(p′)

∣∣∣∣2

+
γ

4π2

∫
R3
dp′ |T2(p,p′)|

∣∣∣∣ f(p)
f(p′)

∣∣∣∣2
}

(6.11)

The last term in (6.11) can be further estimated by breaking T2(p,p′) into
its constituents and estimating each contribution separately. Note that the
convergence inducing function can be chosen differently for each integral. Apart
from the conventional choice f(p) = p3/4 [1, 4], we also allow for functions of
the type f(p) = p3/4 (

p

ε(p)
)1/2 with ε(p) ∈ {Ep, Ep + m, p + m} to optimise

the estimates. Further, the following estimate is used in the evaluation of the
integrals over p′,

1√
(qp′)2 + 1 + c

≤


1

1 + c
, p′ ≤ 1/q

1
qp′

, p′ > 1/q

, c ≥ 0, q ≥ 0 (6.12)

An outline of the evaluation of the second-order term in γ is given in Appendix
C. Defining q := p/m, denoting the estimate of

∫
R3

dp′ |T2(p,p′)| |f(p)/f(p′)|2

by (4π2)2q2M2(q), and taking f(p) := p3/4 in the term linear in γ, such that
(with (B.1), the substitution q′ := p′/mq and (6.12))∫

R3
dp′

1
|p− p′|2

1
E′p

(
p

p′

)3/2

≤ 4π2 α(q) (6.13)

α(q) := 1 +
1
π

(
2
√
q ln

∣∣∣∣1 + q

1− q

∣∣∣∣ + 2 (q − 1) arctan
1
√
q
− (q + 1) ln

∣∣∣∣1 +
√
q

1−√q

∣∣∣∣ )
we arrive at the following estimate

0 ≤ m3

∫
R3
dq |ϕ(mq)|2

(
1 − 1√

q2 + 1
+

1
q2 + 1

) (
1 − λ

m
+ φ(q)

)
(6.14)

φ(q) :=
q2

q2 + 2−
√
q2 + 1

1
f0(q)

(
−g0(q) + γg1(q) + γ2g2(q)

)
f0(q)

where

g0(q) :=
2
√
q2 + 1− 1√
q2 + 1 + 1

, g1(q) :=
q + α(q)

√
q2 + 1√

q2 + 1 + 1

g2(q) := (q2 + 1 +
√
q2 + 1)M2(q), f0(q) :=

q + c

aq + b
(6.15)

are nonnegative bounded functions. The auxiliary function f0 with a, b, c > 0
has been introduced to improve on the estimate of φ. It follows from (6.14) that
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for φ < 0, λ < m since the factor multiplying the last bracket is nonnegative.
With m0 := min g0f0, m1 := sup g1f0 and m2 := max g2f0 for 0 ≤ q < ∞,
this condition is fulfilled for −m0 + m1γ + m2γ

2 < 0, i.e. γ < γ0, say. For
a := 5, b := 1

5 , c := 1.1, we obtain m0 = 0.3058, m1 = 2
5 , m2 = 2.253, and

hence γ0 = 0.29. This improves on the value γ0 = 0.159 obtained for f0 = 1
(where m0 = 1

2 , sup g1 = 2, sup g2 = 29
4 ). Denoting by s0 the supremum of the

prefactor of φ(q) in q ∈ R+, s0 := sup q2/(q2 + 2 −
√
q2 + 1) f−1

0 (q) = 5, we
can estimate φ(q) for γ > γ0 to obtain from (6.14)

λ ≤ m (1 + φ(q)) ≤ m (1 + s0(m1γ −m0 +m2γ
2)). (6.16)

In the Brown-Ravenhall case (g2 ≡ 0) φ(q) can be written as γ − g0/g1(q)
multiplied by a nonnegative factor, and one obtains for the eigenvalues λ̃ of
b0m + b1m the estimate λ̃ < m for γ < γ̃0 := 0.973 which is the minimum of
g0/g1 in R+. This covers the whole range of boundedness (from below) of the
Brown-Ravenhall operator (γ < 2/(π/2 + 2/π) = 0.906 [6]) and improves on
the result of Balinsky and Evans [1] (γ ≤ 3/4 obtained for α(q) = 1.)
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Appendix A

Proof of Lemma 2.1

It is convenient to introduce the partial wave expansions [6]

ϕ(p) =
∑
ν

p−1 aν(p) Ων(p̂) ν = {l,M, s}

1
|p− p′|2

=
2π
pp′

∑
lM

ql(
p

p′
) YlM (p̂) YlM (p̂′) (A.1)

where Ων(p̂) are the Dirac angular momentum eigenstates (the vector spherical
hamonics [2]), YlM (p̂) are spherical harmonics, l = 0, 1, ..., M = −l − 1

2 ,−l +
1
2 , ..., l + 1

2 , s = − 1
2 ,

1
2 , and ql(x) is related to the Legendre function Ql(x) of

the second kind by ql(x) := Ql( 1
2x + 1

2x ). Then the energy (3.1) can be written
in the following way [6, 4], making use of orthonormality of the set Ων(p̂) and
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likewise of YlM (p̂),

Em(ϕ) =
∑
ν

∫ ∞
0

dp aν(p)
∫ ∞

0

dp′ blsm(p, p′) aν(p′)

blsm(p, p′) := b0m δ(p− p′) + b
(1)
lsm(p, p′) + b

(2)
lsm(p, p′) (A.2)

where

b
(1)
lsm(p, p′) = −γ

π
[ql(p/p′) + h(p)h(p′) ql+2s(p/p′)] A(p)A(p′)

b
(2)
lsm(p, p′) =

1
2

(γ
π

)2
∫ ∞

0

dp′′
[

1
Ep′ + Ep′′

+
1

Ep + Ep′′

]
A(p)A(p′) A2(p′′)

· [ql(p′′/p) h(p′′) − ql+2s(p′′/p) h(p)] [ql(p′/p′′) h(p′′) − ql+2s(p′/p′′) h(p′)]

As a next step, the Mellin space representation is introduced because in the
m = 0 case, it offers an integral representation of E(ϕ) with a positive integrand.
For a function f ∈ L2(R+) the Mellin transform f ] ∈ L2(R) is defined as

f ](t) :=
1√
2π

∫ ∞
0

dp f(p) p−it−1/2 (A.3)

Since the Mellin transform is unitary, E(ϕ) =
2∑
i=0

(ϕ, biϕ) is invariant and can

be cast into the following form [4]

E(ϕ) =
∑
ν

∫ ∞
−∞

dt a]ν(t)
(∫ ∞

0

dp′ bls(·, p′) aν(p′)
)]

(t) (A.4)

=
∑
ν

∫ ∞
−∞

dt

∣∣∣∣a]ν(t+
i

2
)
∣∣∣∣2 (b]0 +

√
2π b(1)]

ls +
√

2π b(2)]
ls

)
(t− i

2
)

with

b]0(t− i

2
) = 1, b

(1)]
ls (t− i

2
) = − γ

2π

[
q]l (t− i/2) + q]l+2s(t− i/2)

]
b
(2)]
ls (t− i

2
) =

√
2π
2

( γ
2π

)2 [
q]l (t− i/2) − q]l+2s(t− i/2)

]2
Since q]l (t − i/2) ≥ 0 ∀ l ∈ N0 [4] one has −b(1)]

ls (t − i/2) ≥ 0 and
b
(2)]
ls (t− i/2) ≥ 0 and therefore also −b1 ≥ 0 and b2 ≥ 0. We show that

−b(1)]
ls (t− i

2
) − b

(2)]
ls (t− i

2
) ≥ 0 (A.5)

which thus proves −b1− b2 ≥ 0, i.e. Lemma 2.1. We proceed in two steps. First
we show the existence of a sufficiently large l1 such that (A.5) holds for l ≥ l1
and s = ± 1

2 . Subsequently we use a recurrence relation to prove that if (A.5)
holds for a given l it also holds for l − 1.
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(i) From [9, p.937]

lim
|z|→∞

∣∣∣∣Γ(z + a)
Γ(z)

z−a
∣∣∣∣2 = 1 for z ∈ C\(Z− ∪ {0}), a ∈ R (A.6)

We take a := − 1
2 , z := l

2 + 1 − it
2 and introduce the explicit expression

for q]l (t− i/2) in terms of Gamma functions [4]

q]l (t−
i

2
) =

√
π

2
√

2

∣∣∣∣∣Γ( l2 + 1
2 −

it
2 )

Γ( l2 + 1− it
2 )

∣∣∣∣∣
2

(A.7)

Then from (A.6) follows the existence of l0 ∈ N such that for any given ε
with 0 < ε < 1,

(1− ε) 1∣∣ l
2 + 1− it

2

∣∣ < 2

√
2
π
q]l (t−

i

2
) < (1 + ε)

1∣∣ l
2 + 1− it

2

∣∣ (A.8)

for l > l0. From this it follows that the upper and lower bounds of
q]l (t− i/2) and hence of b(1)]

ls (t− i/2) decrease as l−1 for l→∞, while the
bounds of b(2)]

ls (t − i/2) are of order O(l−2) making that term negligible
with respect to b

(1)]
ls (t − i/2) for sufficiently large l. Hence there exists

l1 ∈ N such that

(−b(1)]
ls − b(2)]

ls )(t− i

2
) ≥ 0 for all l ≥ l1, s = ±1

2
. (A.9)

(ii) It was shown by Brummelhuis et al [4] that for γ ≤ 4/π (and hence for
γ < γc)

1 +
√

2π (b(1)]
l−1,1/2 + b

(2)]
l−1,1/2) ≤ 1 +

√
2π (b(1)]

l,1/2 + b
(2)]
l,1/2) (A.10)

∀ l ∈ N0, which by means of b(i)]l+1,−1/2 = b
(i)]
l,1/2, i = 1, 2, l ∈ N0 (which

follows from (A.4)) holds also for s = −1/2. Here and in the following the
argument (t− i/2) of b(i)]ls is suppressed. Hence

−b(1)]
ls − b

(2)]
ls ≤ −b(1)]

l−1,s − b
(2)]
l−1,s, (l, s) ∈ {(N0,

1
2

) ∪ (N,−1
2

)}
(A.11)

Setting in (A.11) l = 0 for s = 1
2 and l = 1 for s = − 1

2 and continuing
the chain of inequalities to the left until l1 is reached, proves that −b(1)]

ls −
b
(2)]
ls ≥ 0 for all l, s.
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Appendix B

Proof of the boundedness of Wλ
10 in the massless case

In order to prove the finiteness of I(p′) as defined in (4.20) we start by
showing that I(p′) only depends on p′. Choosing spherical coordinates for p′,
the angular integrations can be performed by means of [9, p.58]

∫
S2
dω′

1
|p− p′|2

=
2π
pp′

ln
∣∣∣∣p+ p′

p− p′

∣∣∣∣ =
2π
pp′


2p
p′ + O(p2), p→ 0

2p′

p + O( 1
p2 ), p→∞

(B.1)
With A(p′) ≤ 1 and m = 0 (and the choice µ := 1) in the definition (4.19) for
K̃(p,p′) we have

I(p′) =
∫
R3×R3

dp′′ dp K̃(p,p′) K̃(p,p′′)
p
′2α

p′′2α

≤
∫
R3×R3

dp′′dp(p+1)2λ 1
|p− p′|2

1
p+ p′

(p′+1)−λ
1

|p− p′′|2
1

p+ p′′
(p′′+1)−λ

p
′2α

p′′2α

=: 4π2Ĩ(p′) (B.2)

In order to separate the variables we perform scaling transformations q := p/p′

and q′′ := p′′/qp′ of the variables p and p′′, respectively [4], to obtain

Ĩ(p′) = (p′ + 1)−λ
∫ ∞

0

dq q1−2α (qp′ + 1)2λ 1
q + 1

ln
∣∣∣∣q + 1
q − 1

∣∣∣∣
·
∫ ∞

0

dq′′ (q′′)1−2α (qp′q′′ + 1)−λ
1

1 + q′′
ln
∣∣∣∣1 + q′′

1− q′′

∣∣∣∣ (B.3)

showing that, apart from the factors (qp′ + 1)2λ and (qp′q′′ + 1)−λ the two
integrals are alike and decouple.

Case (a): p′ →∞

This case gives the most severe restrictions to the exponent α of the con-
vergence inducing function. Assume q 6= 0, q′′ 6= 0 (and note that if e.g.
q → 0 would be taken before the limit p′ →∞ was carried out, the q-integrand
would behave like q2−2α near zero, leading to the restriction 2− 2α > −1, i.e.
α < 3/2 for convergence). Then

(p′ + 1)−λ (qp′ + 1)2λ (qp′q′′ + 1)−λ −→ qλ q
′′−λ (B.4)

which makes Ĩ(p′) independent of p′ in the limit p′ →∞ and leads to a splitting
into the product of two integrals, lim

p′→∞
Ĩ(p′) =: I∞(λ) I∞(−λ). We thus have
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to find α such that I∞(±λ) is finite for the two cases of interest, λ = 1
2 , 1. The

integrand of I∞(λ) behaves like

q1+λ−2α 1
q + 1

ln
∣∣∣∣q + 1
q − 1

∣∣∣∣ −→ {
2q2+λ−2α, q → 0
2q−1+λ−2α, q →∞ (B.5)

Convergence at the lower limit requires 2+λ−2α > −1 and at the upper limit
−(1− λ+ 2α) < −1 such that finiteness of Ĩ(p′) for p′ →∞ is achieved if

±λ
2
< α <

3
2
± λ

2
(B.6)

where either all upper or all lower signs must be taken. For λ = 1, one obtains
the interval { 1

2 < α < 2} ∩ {−1
2 < α < 1} = { 1

2 < α < 1} while for λ = 1/2
one gets { 1

4 < α < 7
4} ∩ {−

1
4 < α < 5

4} = { 1
4 < α < 5

4}. Both values of λ
are covered by the interval

{α ∈ R+ :
1
2
< α < 1} (B.7)

In particular, (B.7) satisfies the condition α < 3/2 imposed above (B.4).

Case (b): p′ = 0

This case renders Ĩ(p′) independent of λ, given by the product of identical
integrals Ĩ(p′ = 0) = (I∞(0))2. From (B.6) one obtains finiteness for 0 < α <
3/2 whereof (B.7) is a subset.

Case (c): 0 < p′ <∞

Let us first consider the second integral. It behaves like (q′′)2−2α for q′′ → 0
which requires α < 3/2. For q′′ → ∞, it behaves like q−λ · (q′′)−1−2α−λ for
q 6= 0 and like (q′′)−1−2α for q = 0, resulting in the restrictions α > −λ/2 and
α > 0, respectively. Hence, for the values of λ under consideration, one finds
1
2 < α < 3

2 in total.

Turning to the q-integral, it behaves for q = 0 like q2−2α as noted before,
and for q →∞ like q−1−2α+λ (where we have included the factor q−λ contained
in the second integral) leading to α > λ/2. In total we obtain the permitted
interval 1

4 < α < 3
2 . Since { 1

2 < α < 3
2} ∩ {

1
4 < α < 3

2} ⊇ {
1
2 < α < 1},

the cases (b) and (c) give no further restriction on the interval (B.7). Hence we
have proven that I(p′) is finite for e.g. α = 3/4 when λ ∈ {± 1

2 , 1}.
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Appendix C

We present guidelines to the proof of the boundedness from above of the
point spectrum of bm.

The operator T2 defined in (6.10) is given explicitly by

T2(p,p′) :=
∫
R3
dp′′

1
|p− p′′|2

1
|p′′ − p′|2

(C.1){
− p

′′2

2Ep′′(Ep′′ +m)

[
m

Ep′′

(
1
Ep′

1
Ep′ + Ep′′

+
1
Ep

1
Ep + Ep′′

)

+
(

1
Ep′ + Ep′′

+
1

Ep + Ep′′

)(
1
Ep′′

+
m

E2
p′′

)]

+ σp̂′′ σp̂′
p′p′′

2Ep′′(Ep′ +m)

[
m

Ep′′

(
1
Ep′

1
Ep′ + Ep′′

+
1
Ep

1
Ep + Ep′′

)
+
(

1
Ep′ + Ep′′

+
1

Ep + Ep′′

) (
1
Ep′

+
m

E2
p′′

)]

+ σp̂′′ σp̂
pp′′

2Ep′′(Ep +m)

[
m

Ep′′

(
1

Ep′(Ep′ + Ep′′)
+

1
Ep(Ep + Ep′′)

)
+
(

1
Ep′ + Ep′′

+
1

Ep + Ep′′

) (
1
Ep

+
m

E2
p′′

)]

− σp̂σp̂′
pp′(Ep′′ +m)

2Ep′′(Ep +m)(Ep′ +m)

[
m

Ep′′

(
1
Ep′

1
Ep′ + Ep′′

+
1
Ep

1
Ep + Ep′′

)
+
(

1
Ep′ + Ep′′

+
1

Ep + Ep′′

)(
1
Ep

+
1
Ep′
− 1
Ep′′

+
m

E2
p′′

)]}

We demonstrate the procedure of estimating the integral over T2(p,p′) in-
troduced in (6.11) for one particular term,

I :=
∫
R3×R3

dp′dp′′ |σp̂′′ σp̂′| p′p′′

2Ep′′(Ep′ +m)
m

Ep′′Ep

1
Ep + Ep′′

· 1
|p− p′′|2

1
|p′′ − p′|2

∣∣∣∣ f(p)
f(p′)

∣∣∣∣2 . (C.2)

We take f2(p) := p5/2/(Ep + m) and make the substitutions q′′ :=
p′′

mq
and

q′ :=
p′

mqq′′
for p′′ and p′, respectively. With q := p/m we perform the angular

integrations with the help of (B.1) and estimate |σp̂′′ σp̂′| by 1 such that

I ≤ 2π2q4 1√
q2 + 1

1√
q2 + 1 + 1

∫ ∞
0

dq′
1
q
′ 1
2

ln
∣∣∣∣1 + q′

1− q′

∣∣∣∣
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·
∫ ∞

0

dq′′q
′′ 3

2 ln
∣∣∣∣1 + q′′

1− q′′

∣∣∣∣ 1
(qq′′)2 + 1

1√
q2 + 1 +

√
(qq′′)2 + 1

(C.3)

We estimate the last factor with the help of
√

(qq′′)2 + 1 ≥ 1 and then use the
estimate (6.12) to obtain

I ≤ 4π3q4 1√
q2 + 1

1

(
√
q2 + 1 + 1)2

[∫ 1/q

0

dq′′q
′′ 3

2 ln
∣∣∣∣1 + q′′

1− q′′

∣∣∣∣
+

1
q2

∫ ∞
1/q

dq′′
1
q
′′ 1

2
ln
∣∣∣∣1 + q′′

1− q′′

∣∣∣∣
]

= 8π3q2 1√
q2 + 1

1

(
√
q2 + 1 + 1)2

[
π − 4

5q
1
2

ln
∣∣∣∣1 + q

1− q

∣∣∣∣
+
(

2q2

5
− 2
)

arctan
1
√
q

+
(

1 − q2

5

)
ln
∣∣∣∣1 +

√
q

1−√q

∣∣∣∣ +
4
15
√
q

]
(C.4)

Due to the above choice of f(p), the r.h.s. of (C.4)∼ q 5
2 for q → 0, assuring that

its contribution to M2(q) defined below (6.12) is finite. The integrals occuring
here and in the remaining contributions to T2 can be found in [9, p.205,206]
after substitutions of the type x := 1/q, x := q

1
2 .
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