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Abstract
A Mourre-type estimate is derived for the pseudorelativistic Brown–Ravenhall
operator describing an atomic electron in a specific magnetic field of constant
direction. As a consequence it is shown that its point spectrum is finite in
R\{m} if the Coulomb potential strength γ is below 1

2 . An extension of the
Mourre-type estimate to the exact block-diagonalized Dirac operator is also
discussed.

PACS number: See endnote 1

1. Introduction

We consider a relativistic electron in the Coulomb field V = −γ /x of a point nucleus with
charge Z fixed at the origin (we have γ = Ze2 with e2 ≈ 1/137.04 the fine structure constant).
In addition, we allow for the presence of an external magnetic field, B = ∇ × A with vector
potential A. The electron is described by the Dirac operator (in relativistic units, h̄ = c = 1),

H = DA + V, DA = α(p − eA) + βm, (1.1)

where α = (α1, α2, α3) and β are Dirac matrices and m is the electron mass. x and p denote,
respectively, the coordinate and the momentum of the electron, and x = |x| is the modulus of
x. H is defined in the Hilbert space L2(R

3) ⊗ C
4 [1].

It is well known that the spectrum of H extends to minus infinity because of the existence
of the positronic states. There are, however, many situations where pair creation plays no
role and where the negative continuum states can be disregarded. One of the current methods
to get rid of these states, i.e. to remedy the unboundedness of H from below, is to work
with pseudorelativistic no-pair operators instead. An operator of widespread interest is the
Brown–Ravenhall operator [2–4] because it is simply the projection of H onto the electron’s
positive spectral subspace defined for γ = 0. This operator can be identified [5] as the first-
order term (in γ ) of the Douglas–Kroll series resulting from a unitary transformation scheme
[6, 7] applied to H in order to decouple the spectral subspaces of electron and positron up to a
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given order in γ . An exact block diagonalization of H was recently achieved (for A = 0) by
Siedentop and Stockmeyer [8] who established the convergence of the Douglas–Kroll series
for γ � 0.38.

If a (classical) magnetic field is admitted the investigations of the pseudorelativistic
operators are scarce, in contrast to the multitude of studies concerning the Schrödinger or Pauli
operators (for those see the comprehensive review by Erdös [9]). There are investigations on
the stability of matter ([10], see also [11] for a pseudorelativistic scalar operator) as well as on
the localization of the essential spectrum [12, 13] within the Brown–Ravenhall model. Some
spectral analysis was also done for the Jansen–Hess operator (which is the second-order term
of the Douglas–Kroll series [14]).

For a more detailed description of the spectrum of operators the Mourre estimate [15, 16]
has proven to be a powerful tool. In the case of Schrödinger operators it was used to prove the
absence of positive eigenvalues and the absence of the singular continuous spectrum (see e.g.
[17]). It was also derived for Hamilton operators where the kinetic energy is a more general
function of the particle momentum [18]. In all this work, the relative compactness of the
potential with respect to the kinetic energy is an essential condition. For the pseudorelativistic
operators matters are complicated by the fact that they enjoy only relative boundedness instead
of relative compactness. It is shown below that for a pure Coulomb potential V (and some
restrictions on the vector potential) a Mourre-type estimate can nevertheless be established in
the single-particle case. However, bounds on the potential strength γ become necessary.

The paper is organized as follows. In section 2 the Brown–Ravenhall operator is
introduced and the relevant boundedness properties are stated. The Mourre-type estimate
for this operator (proposition 1) is derived in section 3 and is subsequently used to prove
the absence of accumulation points of eigenvalues and of eigenvalues of infinite multiplicity
in R\{m} (theorem 1, section 4). The application of the Mourre-type estimate for related
operators in the field-free case (A = 0) is discussed in section 5. In particular, the absence
of eigenvalues above m (when Z � 35) is provided for the exact (block-diagonalized) Dirac
operator (theorem 2). The paper is concluded with a remark on A �= 0 results for this operator.

2. The Brown–Ravenhall operator and its boundedness properties

We start this section by introducing the Brown–Ravenhall operator H BR, acting on the four-
dimensional spinor space. Its derivation in terms of the above-mentioned projection or
alternatively, from a unitary transformation scheme, exists in the literature for the case of
A = 0 (see e.g. [3, 5, 7]). The inclusion of a magnetic field is straightforward [19, 14]. Thus
we restrict ourselves to that part of the formalism which is necessary to introduce the quantities
to be used in the subsequent estimates.

The first unitary transformation in the Douglas–Kroll scheme is the Foldy–Wouthuysen
transformation U0 = AE

(
1 + β

α(p−eA)

EA+m

)
with AE = (

EA+m
2EA

)1/2
. Its application to H block

diagonalizes the kinetic part DA and results in [6]

U0HU−1
0 = βEA + E1 + O1

EA := |DA| =
√

(p − eA)2 − eσB + m2 � m (2.1)

E1 := U0
1
2 (V + D̃AV D̃A)U−1

0 , O1 := U0
1
2 (V − D̃AV D̃A)U−1

0 ,

where D̃A = DA/EA and σ is the vector of Pauli matrices. We note that the transformed
potential, U0V U−1

0 = E1 + O1, has been separated into its (block) diagonal term E1 and the
off-diagonal term O1. We also recall that E2

A − m2 = (σ(p − eA))2 is the Pauli operator. The
Brown–Ravenhall operator is defined by the diagonal part of (2.1) projected onto its upper
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block,

H BR = 1 + β

2
U0HU−1

0

1 + β

2
= 1 + β

2
(EA + E1)

1 + β

2
(2.2)

where β2 = 1 is used.
Since by construction, H BR is a 4 × 4 matrix-valued operator with only one 2 × 2 entry,

termed hBR, i.e. H BR = (
hBR 0

0 0

)
, it is often convenient to work in the reduced two-dimensional

spinor space instead. This is done by setting ϕ := (
u

0

)
with a two-spinor u and identifying

[3, 7]

(u, hBRu) = (ϕ,H BRϕ). (2.3)

The analysis of an operator which can be decomposed into a kinetic and a potential part
is considerably simplified if the potential is controlled by the kinetic part (allowing for a
‘perturbative’ treatment of the potential). This control is expressed by means of the relative
boundedness (or form boundedness) of the potential with respect to the kinetic part with bound
less than one. It guarantees a self-adjoint extension of the operator when its kinetic part has
this property.

For example, we may consider eσB in (2.1) as a potential added to the Schrödinger
kinetic energy (p − eA)2. Let us assume that A ∈ L2,loc(R

3) and
∫
|x−y|�1 |B(y)|2 dy < ∞

for x ∈ R
3 such that B is (p − eA)2-bounded with bound zero [20]. Then EA with domain

D(EA) = H1(R
3) ⊗ C

4 (where Hr denotes the Sobolev spaces) extends to a self-adjoint
operator in L2(R

3) ⊗ C
4 [21, 14]. The condition on B at infinity can, however, be avoided

if A ∈ L3,loc(R
3) [1, p 113, notes 4.3] or if A is a C2-function (according to the theory of

first-order elliptic differential operators [22, p 54, 112, problem 45]). This relies on the fact
that the self-adjointness of the Dirac operator DA is transferred to EA =

√
D2

A.

Turning to the Brown–Ravenhall operator which can be split according to H BR =: TA+VA

we have the kinetic part TA = 1+β

2 EA
1+β

2 related to EA and the potential part VA according
to (2.2). The TA-boundedness of VA will be needed explicitly in the proof of theorem 1
once the Mourre-type estimate has been established. In order to show this boundedness
property we will use estimates which rely on the diamagnetic inequality and on the relative
boundedness of the potential in the A = 0 case. For ψ ∈ L2(R

3) and A ∈ L2,loc(R
3), the

diamagnetic inequality estimates the Schrödinger-type operator S2
A = (p − eA)2 + m2 by the

field-free (A = 0) kinetic energy operator E2
p = p2 + m2 (with p = |p|) in the following

way,
∣∣(e−tS2

Aψ
)
(x)
∣∣ �

(
e−tE2

p |ψ |)(x) ([23, 24], see also [21] and references therein). Using

the integral representations e−tÃ = 1√
π

∫∞
0

dτ√
τ

e−τ e−(t2/4τ)Ã2
[11] and Ã−1 = ∫∞

0 dt e−tÃ we
get as an immediate consequence,∣∣∣∣∣

(
1

S
2/n

A

ψ

)
(x)

∣∣∣∣∣ �
(

1

E
2/n
p

|ψ |
)

(x), n = 2m̃, m̃ = 0, 1, . . . . (2.4)

For the sake of demonstration we give the proof of (2.4) when m̃ = 0:∣∣∣∣
(

1

S2
A

ψ

)
(x)

∣∣∣∣ =
∣∣∣∣
∫ ∞

0
dt
(
e−tS2

Aψ
)
(x)

∣∣∣∣ �
∫ ∞

0
dt
∣∣(e−tS2

Aψ
)
(x)
∣∣

�
∫ ∞

0
dt
(
e−tE2

p |ψ |)(x) =
(

1

E2
p

|ψ |
)

(x). (2.5)

For m̃ > 0 we choose Ã := S
2/n

A and proceed by successively applying the first integral
representation until we arrive at e−t̃S2

A (with some t̃). After having used the diamagnetic
inequality all integrals are performed in the reversed order.
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Let f > 0 be a function in coordinate space such that f E
−2/n
p is bounded by cn. Then

from (2.4) f S
−2/n

A has the same bound (which is a generalization of [21, theorem 2.4]),∥∥∥∥∥f 1

S
2/n

A

ψ

∥∥∥∥∥
2

�
∥∥∥∥∥f 1

E
2/n
p

|ψ |
∥∥∥∥∥

2

� c2
n‖ψ‖2. (2.6)

Choosing f (x) = 1
x
, n = 2 and f (x) = 1√

x
, n = 4, respectively, and taking ϕ1 = S−1

A ψ and

ϕ2 = S
−1/2
A ψ , (2.6) leads to the estimates (upon using the Hardy and Kato inequalities for cn),

‖V ϕ1‖ � 2γ ‖
√

(p − eA)2 + m2ϕ1‖
(ϕ2, V ϕ2) � γπ

2
(ϕ2,

√
(p − eA)2 + m2ϕ2).

(2.7)

We note that these estimates are readily extended to several particles since the diamagnetic
inequality holds in arbitrary dimension ν [25, p 163]. Considering for example two particles
(denoted by k = 1, 2 such that ν = 6) and choosing f (x1, x2) = 1

|x1−x2|1/2 , n = 4, one obtains

for ϕ ∈ H1/2(R
6),

(
ϕ,

1

|x1 − x2|ϕ
)

� c2
4

(
ϕ,

√√√√ 2∑
k=1

(pk − eA(xk))2 + 2m2ϕ

)

� c2
4

(
ϕ,

2∑
k=1

√
(pk − eA(xk))2 + m2ϕ

)
(2.8)

with c2
4 = π

2 from the estimate (see e.g. [12])(
ϕ,

1

|x1 − x2|ϕ
)

� π

2
(ϕ, p1ϕ) � π

2

(
ϕ,

√
p2

1 + p2
2 + 2m2ϕ

)
. (2.9)

All these estimates also hold for m = 0.

For later use (in the proof of the Mourre-type estimate) we mention that the inclusion
of a magnetic field preserves compactness [17, p 117]. This is also a consequence of the
diamagnetic inequality and may be shown as follows. Let us assume that f 1

E
2/n
p

is compact,

i.e. f is E
2/n
p -bounded with bound zero. From (2.6) it follows that f is also S

2/n

A -bounded with
bound zero. Lemma 11.5 from [26] implies that if in addition,

∥∥χRf 1
S

2/n

A

∥∥ → 0 as R → ∞
(where χR is the characteristic function on the set {x ∈ R

3 : |x| > R}) then f 1
S

2/n

A

is compact1.

Assume f → 0 as x → ∞. From (2.6) with f replaced by χRf we have indeed∥∥∥∥∥χRf
1

S
2/n

A

∥∥∥∥∥ �
∥∥∥∥∥χRf

1

E
2/n
p

∥∥∥∥∥ � ‖χRf ‖
∥∥∥∥∥ 1

E
2/n
p

∥∥∥∥∥→ 0 (2.10)

as R → ∞ since E
−2/n
p � m−2/n is bounded and since |χRf | < ε is arbitrarily small for R

sufficiently large.
Let us in the following consider only bounded magnetic fields B, i.e. B = |B| � B0

and derive the TA-boundedness of VA for that case. With βEA = EAβ (because EA is block
diagonal) and ϕ = (

u

0

) ∈ H1(R
3) ⊗ C

4 we have ‖TAϕ‖ = ‖EAϕ‖. Since U0 and D̃A have
norm unity,

‖VAϕ‖ =
∥∥∥∥1 + β

2
E1

1 + β

2
ϕ

∥∥∥∥ � 1

2

∥∥V U−1
0 ϕ

∥∥ +
1

2

∥∥V D̃AU−1
0 ϕ

∥∥. (2.11)

1 Estimates (2.7)–(2.10) should replace the estimates in [14, 12] derived from the inequality (ϕ1, p
2ϕ1) �

(ϕ1, (p − eA)2ϕ1) which is not generally valid [24]. The results given in these papers are not affected.
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From (2.7) one easily obtains [14] ‖V ϕ̃‖� 2γ ‖EAϕ̃‖ + 2γ
√

eB0‖ϕ̃‖. Also, EA commutes with
D̃A and with U0. In fact, we can decompose the commutator [U0, EA] = AE[β,EA] α(p−eA)

EA+m
+

AEβ 1
EA+m

[α(p − eA), EA]. We have [β,EA] = 0 and so [α(p − eA), EA] = [DA,EA] −
m[β,EA] = 0. Thus, setting ϕ̃ = U−1

0 ϕ and, respectively, ϕ̃ = D̃AU−1
0 ϕ we get

‖VAϕ‖ � 2γ ‖EAϕ‖ + 2γ
√

eB0‖ϕ‖. (2.12)

It follows that VA is EA-bounded and thus TA-bounded with bound smaller than one if γ < 1
2 ,

implying D(H BR) = D(EA) = H1(R
3) ⊗ C

4. We note that this bound is more restrictive than
the respective form bound, γ < 2

π
[10, 14], necessary to guarantee the self-adjointness of

H BR by means of the Friedrichs extension.
It is also possible to show the EA-boundedness of VA without a constant term on the rhs.

This fact relies on an estimate introduced by Balinsky et al [27] which relates the Schrödinger
operator to the Pauli operator (when zero-modes are absent). That estimate is extended in [12,
lemma 7] for any A ∈ L2,loc(R

3) to

E2
A � δ2

m(B)[(p − eA)2 + m2] = δ2
m(B)S2

A,

δm(B) = inf
‖ϕ‖=1

‖(1 − S∗
mSm)ϕ‖ (2.13)

with Sm := (eB)
1
2
(
E2

A + eB
)− 1

2 and where 0 < δm(B) � 1. When ‖B‖∞ = B0, one can make

use of SmS∗
m = eB

1
2

1
E2

A+eB
B

1
2 � eB

m2+eB
� eB0

m2+eB0
. This leads to an improved lower bound,

m2

m2+eB0
� δm(B) � 1.

One obtains from (2.7) and (2.13),

‖V ϕ‖ � 2γ

δm(B)
‖EAϕ‖, (2.14)

which results in ‖VAϕ‖ � 2γ

δm(B)
‖EAϕ‖ in place of (2.12). Note that one has to pay for the

omission of the constant term by an inferior bound, γ < 1
2δm(B).

3. The Mourre-type estimate for the Brown–Ravenhall operator

The Mourre estimate tells us that a suitable commutator of an (unbounded) operator is strictly
positive in a given spectral interval �, apart from some compact remainder. As a consequence,
the operator will not have eigenvalues accumulating in that interval. It is the aim of this section
to derive such an estimate for hBR with a slight weakening of the compactness condition.

Proposition 1. Let hBR be the Brown–Ravenhall operator with magnetic field of constant
direction generated by a vector potential A satisfying

(i) A ∈ L2,loc(R
3),∇ · A = 0;

(ii) ∇ × A bounded and continuous;
(iii) fA := αeA + e(x∇)(αA) as a function of x bounded, (EA + µ)−1fA(EA + µ)−1 compact

for some µ � 0.

Let E� be the spectral projection for hBR onto an open interval � ⊂ R. Then there exists
a constant α0 > 0 and an operator kA with (EA + µ)−1kA(EA + µ)−1 compact such that for
m /∈ �,

E�i[hBR, aA]E� � α0E� + E�kAE� (3.1)

where [hBR, aA] = hBRaA − aAhBR is the commutator with a suitably chosen self-adjoint
operator aA.
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We note that all assumptions are satisfied if A ∈ C1(R3) with A → 0 as x → ∞
and with div A = 0. Then A and its derivative are bounded, and also fA is bounded
and vanishes at infinity. This assures the compactness of fA(Ep + µ)−1 and thus of
fA(EA + µ)−1 = fA(SA + µ)−1 · (SA + µ)(EA + µ)−1 for µ � 0 due to (2.10) and (2.13).

We shall construct the operator aA from the generator A of dilations (which is used in the
Mourre estimate for Schrödinger operators), recalling that p = −i∇ and px = xp − 3i,

A = 1

2
(xp + px) = xp − 3i

2
. (3.2)

The domain of A is C∞
0 (R3). One easily verifies, using the invariance i[αp + V,A] =

αp + V, the commutator relation for the Dirac operator (1.1),

i[H,A] = H − βm + αeA + e(x∇)(αA). (3.3)

In order to derive the commutator of hBR we apply the Foldy–Wouthuysen transformation U0

to this equation. Then, separating U0HU−1
0 from (2.1) into its block-diagonal and off-diagonal

part, i.e. U0HU−1
0 = H̃ BR + O1 with H̃ BR := βEA + E1, we get

i[H̃ BR, AU ] + i[O1, AU ] = H̃ BR + O1 − mC1 + U0fAU−1
0 ,

AU := U0AU−1
0 ,

(3.4)

where the domain of AU is MA := {U0ϕ : ϕ ∈ C∞
0 (R3)⊗C

4} and fA is defined in proposition
1. The operator C1 := U0βU−1

0 is unitary and self-adjoint, C∗
1C1 = C2

1 = 1. From the block
structure of the matrix-valued symmetric operators,

H̃ BR =
(

hBR 0
0 h22

)
, AU =

(
a11 a12

a∗
12 a22

)
, O1 =

(
0 o12

o∗
12 0

)
, (3.5)

we obtain the upper left block of (3.4) in the following form:

i[hBR, a11] = hBR − mc11 + kA,

kA := (U0fAU−1
0

)
11 − i[O1, AU ]11,

(3.6)

where c11 = (C1)11 and the subscript 11 denotes the respective upper left block. From (3.6)
it follows that B̃ := i[hBR, a11] − hBR − kA = −mc11 is a bounded operator. Thus for
ψ ∈ L2(R

3) ⊗ C
2, using that c11 is self-adjoint and bounded by 1 (since C1 is), we have the

estimate

(ψ, B̃ψ) = −m(ψ, c11ψ) � −m|(ψ, c11ψ)| � −m(ψ,ψ) (3.7)

such that B̃ � −m. Applying E� to this inequality we get

E�i[hBR, a11]E� � E�(hBR − m)E� + E�kAE�. (3.8)

In order to prove the Mourre-type estimate (3.1), identifying aA with a11, we first have
to show the compactness of (EA + µ)−1kA(EA + µ)−1. We recall that U0 commutes with EA

such that (EA + µ)−1U0fAU−1
0 (EA + µ)−1 is compact by assumption (iii) which is then also

true for its upper left block.
The compactness of (EA + µ)−1i[O1, AU ](EA + µ)−1 is proven in the following way.

From (2.1) and (3.2) we have

i[O1, AU ] = i

2
U0[V − D̃AV D̃A, xp]U−1

0

= 1

2
U0(V − i[D̃A, xp]V D̃A − D̃AV D̃A − D̃AV i[D̃A, xp])U−1

0 . (3.9)
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Since EA commutes with D̃A, the compactness concerning the first and third terms is easily
shown. In fact,

1

EA + µ
U0(V − D̃AV D̃A)U−1

0

1

EA + µ

= −γU0

(
1

EA + µ

1

x

1

EA + µ
− D̃A

1

EA + µ

1

x

1

EA + µ
D̃A

)
U−1

0 . (3.10)

As 1
x1/2 (Ep + µ)−1 is a compact operator according to Herbst [28], the operator (EA +

µ)−1 1
x1/2

1
x1/2 (EA +µ)−1 is compact (by (2.10) and (2.13)) and thus (3.10) represents a compact

operator.
The fourth term in (3.9) is the Hermitean conjugate of the second term and thus need not

be discussed separately. From (3.3) and D̃A = DA
1

EA
we have

i[D̃A, xp] = (DA(m = 0) + fA)
1

EA

+ iDA

[
1

EA

, xp
]

(3.11)

where DA(m = 0) = α(p − eA). The first term of (3.11), inserted into the second term of
(3.9), leads to the following operator,

K1 := γ

2
U0

1

EA + µ
(DA(m = 0) + fA)

{
1

EA

1

x

1

EA + µ

}
D̃AU−1

0 . (3.12)

E−1
A

1
x
(EA + µ)−1 is compact as discussed above. (EA + µ)−1DA(m = 0) is bounded as is fA

according to the assumption (iii). Thus K1 is compact.
The remaining term K2, arising from the commutator contribution in (3.11), can be cast

into the form

K2 := γ

2

(
U0

1

EA + µ
DA

)
i

[
1

EA

, xp
]
EA

{
1

EA

1

x

1

EA + µ

} (
D̃AU−1

0

)
(3.13)

where the operators in round brackets are bounded and in curly brackets compact. K2

is compact if i
[

1
EA

, xp
]
EA = − i

EA
[EA, xp] is bounded. (For A = 0 this is trivial since

i[E−1
p , xp] = −p2/E3

p.) In order to show this we express the commutator in terms of [DA, xp]
which is known from (3.3). We use a formula [29, (C.1.4)] generalized to positive self-adjoint
operators Ã,

[e−tÃ, B̃] = −t

∫ 1

0
dτ e−τ tÃ[Ã, B̃] e−(1−τ)tÃ, (3.14)

where B̃ is self-adjoint and t � 0. This formula is obtained with the help of the formal
derivative of B̃(τ ) := e−τ tÃB̃ eτ tÃ e−tÃ for 0 < τ < 1 which subsequently is integrated.

We will also need a heat kernel estimate, proven in the Schrödinger case for magnetic
fields of constant direction by Loss and Thaller [30]. It concerns the estimate of the
kernel of e−tE2

A by the respective kernel of the field-free operator. This kernel is given
by e−t (p2+m2)(x, x′) = (4πt)−

3
2 e−(x−x′)2/4t e−tm2

(see e.g. [25, p 161] for m = 0), with the
important property that it is positive.

Proposition 2. Let B(x) with 0 < B(x) � B0 be a continuous magnetic field of constant
direction. Then the heat kernel of E2

A satisfies the following bound,∣∣e−tE2
A(x, x′)

∣∣ � 1√
4πt

eB0

4π sinh(eB0t)
e−(x−x′)2/(4t) eeB0t e−m2t . (3.15)

As a consequence,∣∣e−tE2
A(x, x′)

∣∣ � c(B0) e−tẼ2
p (x, x′) (3.16)

where Ẽp :=
√

p2 + (m − ε)2 with 0 < ε < m.

7
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The proof of (3.15) is indicated in appendix A. The step from (3.15) to (3.16) follows
from eB0t eeB0 t

sinh(eB0t)
� 1 + 2eB0t and t e−m2t � c e−(m−ε)2t .

Let us proceed with the boundedness proof of i
EA

[EA, xp]. We write EA = limt→0
(
1 −

e−tE2
A

)/
(tEA) and apply the integral representation [21] E−1

A = π−1/2
∫∞

0 dττ−1/2 e−τE2
A .

Then, with (3.14) as well as E2
A = D2

A,

i[EA, xp] = lim
t→0

1√
π

1

t

∫ ∞

0

dτ√
τ

(
i
[
e−τE2

A, xp
]− i

[
e−(t+τ)E2

A, xp
])

= − lim
t→0

1√
π

1

t

∫ ∞

0

dτ√
τ

(τI1 − tI2) (3.17)

where

I1 :=
∫ 1

0
dµ e−µτE2

A

(
i
[
D2

A, xp
]

e−(1−µ)τE2
A − e−µtE2

A i
[
D2

A, xp
]

e−(1−µ)(t+τ)E2
A

)
I2 :=

∫ 1

0
dµ e−µ(t+τ)E2

A i
[
D2

A, xp
]

e−(1−µ)(t+τ)E2
A .

(3.18)

From (3.3) we have i
[
D2

A, xp
] = (DA(m = 0)+fA)DA +DA(DA(m = 0)+fA) which consists

of four summands, each of which will be treated separately.
The boundedness resulting from (a)DA(m = 0)DA is easily obtained since this operator

commutes with EA. Using that limt→0
1
t
(f (0) − f (t)) = −f ′(0) we get for the contribution

(a) to the commutator,

lim
t→0

1

t
(τ I1 − tI2)(a) = DA(m = 0)DA e−τE2

A

(
τE2

A − 1
)

(3.19)

such that i
EA

[EA, xp](a) = DA(m=0)DA

2E2
A

is bounded. The same holds true when DA(m = 0)DA

is replaced by (b)DADA(m = 0).
For the term (c)DAfA we first study the contribution from I2 and define the operator

Oa := DA

EA

√
π

∫ ∞

0

dτ√
τ

∫ 1

0
dµ e−µτE2

AfA e−(1−µ)τE2
A, (3.20)

and prove the boundedness of O∗
a. Using the representation of e−µτE2

A by its kernel together
with proposition 2 we obtain for ϕ̃ := D̃Aϕ ∈ L2(R

3) ⊗ C
4,

|(O∗
aϕ)(x)| � 1√

π

∫ ∞

0

dτ√
τ

∫ 1

0
dµ

∫
R

6
dy dy′∣∣e−(1−µ)τE2

A(x, y)
∣∣|fA(y)| · ∣∣e−µτE2

A(y, y′)
∣∣|ϕ̃(y′)|

� c2(B0)√
π

‖fA‖∞
∫ ∞

0

dτ√
τ

∫ 1

0
dµ

∫
R

3
dy′ e−τ Ẽ2

p (x, y′)|ϕ̃(y′)|

= c̃

(
1

Ẽp

|ϕ̃|
)

(x) (3.21)

with some B0-dependent constant c̃. Therefore ‖O∗
aϕ‖ � c̃

∥∥ 1
Ẽp

∥∥‖D̃Aϕ‖ � C̃‖ϕ‖, which
implies that also Oa is bounded.

Let us now investigate the contribution from I1 which can be expressed as a sum of two
operators, using that d

dt
e−µ(t+τ)E2

A |t=0 = −µE2
A e−µτE2

A,

Ob1 + Ob2 := DA

EA

√
π

∫ ∞

0

√
τ dτ

∫ 1

0
dµ
(
µE2

A e−µτE2
AfA e−(1−µ)τE2

A

+ e−µτE2
AfA(1 − µ)E2

A e−(1−µ)τE2
A

)
. (3.22)

8
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For Ob1 we obtain the estimate, taking ϕ,ψ ∈ L2(R
3) ⊗ C

4,

∣∣(ψ,Ob1ϕ
)∣∣ � 1√

π
‖D̃Aψ‖

∥∥∥∥E2
A

∫ 1

0
µ dµ

∫ ∞

0

√
τ dτ e−µτE2

A ϕ̃

∥∥∥∥ (3.23)

where ϕ̃ := fA e−(1−µ)τE2
Aϕ. The integral E2

A

∫ 1
0 µ dµ

∫∞
0

√
τ dτ e−µτE2

A =
E2

A

∫ 1
0 µ dµ

√
π

2µ3/2E3
A

=
√

π

EA
is bounded, and ϕ̃ with ‖ϕ̃‖ � ‖fA‖∞‖ϕ‖ does not change

its convergence properties. Thus
∣∣(ψ,Ob1ϕ

)∣∣ � C‖ψ‖‖ϕ‖ with some constant C. In
the same way (substituting µ̃ := 1 − µ) one shows the boundedness of O∗

b2
. Thus

i
EA

[EA, xp](c) = Oa + Ob1 + Ob2 is bounded.
For (d)fADA we write the operator relating to I1 as a sum Od1 + Od2 in analogy to (3.22)

and make for Od1 the following decomposition,

(
ψ,Od1ϕ

) = 1√
π

∫ ∞

0
dτ

∫ 1

0
dµ

(
τ

1
4 µ

1
2

1

µ̃
3
8

e−µτE2
AEAψ, fAτ

1
4 µ

1
2 µ̃

3
8 DA e−µ̃τE2

Aϕ

)
. (3.24)

Upon using the Schwarz inequality and the boundedness of fA we can estimate
∣∣(ψ,Od1ϕ

)∣∣ �
π− 1

2
(
I 2

1 · I 2
2

) 1
2 where

I 2
2 � ‖fA‖2

∞

(
ϕ,

∫ 1

0
dµµµ̃

3
4

∫ ∞

0
dττ

1
2 E2

A e−2µ̃τE2
Aϕ

)

= ‖fA‖2
∞

√
π

4
√

2

∫ 1

0
dµ

µ

(1 − µ)
3
4

(
ϕ,

1

EA

ϕ

)
� c2‖ϕ‖2. (3.25)

Likewise, I 2
1 �

√
π

4
√

2

∫ 1
0 dµµ− 1

2 (1 − µ)−
3
4
(
ψ, 1

EA
ψ
)

� c1‖ψ‖2. For the operator Od2 we
consider (ψ,O∗

d2
ϕ) and proceed as in (3.23)ff to prove its boundedness (by introducing ϕ̃d See endnote 2

with ‖ϕ̃d‖ = ∥∥fA e−µτE2
AE−1

A ϕ
∥∥ � c‖ϕ‖). In the same way the contribution from I2 is handled

(relying on the boundedness of DA

∫ 1
0 dµ

∫∞
0 dττ−1/2 e−µ̃τE2

A = 2
√

πDA/EA). Collecting
results, we thus have shown the boundedness of i

EA
[EA, xp]. This establishes the compactness

of (EA + µ)−1i[O1, AU ](EA + µ)−1 and hence of (EA + µ)−1kA(EA + µ)−1.
The last part in the proof of the Mourre-type estimate (3.1) is the search for a positive

constant α0 on the rhs of (3.8) if m /∈ �.
Let first � be an open interval on the real line such that inf � > m. Then

E�(hBR − m)E� � E�α0E� = α0E� with α0 := inf � − m > 0.

If � ⊂ (−∞,m) we have σess(EA) ∩ � = ∅ since EA � m. Moreover it was shown
in [14] that σess(h

BR) = σess(EA) for γ < 1
2 (in the proof of [14, theorem 2] one has

to drop all second-order terms in γ ). This means that σ(hBR) ∩ � is discrete and E� is
compact. Then one trivially has an α0 > 0 because the rhs of (3.8) can be rearranged,
E�(hBR − m)E� + E�kAE� = α0E� + E�k̃E� with k̃ := kA − E�(α0 + m)E� + E�hBRE�.

The operator hBRE� is bounded such that E�hBRE� is compact. The same is true for
(α0 + m)E�. Thus (3.8) turns into (3.1) with k̃ substituted for kA.

We note that proposition 1 differs from the conventional Mourre estimate [15, 17,
p 62] in that the latter requires the compactness of E�kAE� itself. For the pseudorelativistic
operators it will turn out that E�kAE� is only compact for sufficiently small potential strength
γ . As shown below, this restriction on γ results from the requirement that the potential is
EA-bounded with bound < 1. Also conditions on the domain of aA and on the range of the
commutator (to define it in the form sense) are usually included in the Mourre estimate. Here,
these conditions will appear in the context of proposition 3.

9
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4. Finite point spectrum

In this section we show that the following theorem is a consequence of the Mourre-type
estimate.

Theorem 1. Let hBR be the Brown–Ravenhall operator with magnetic field of constant
direction generated by a vector potential A subject to the conditions of proposition 1.

Then for γ < 1
2 (Z � 68), hBR has in R\{m} at most isolated eigenvalues of finite

multiplicity.

For the proof of theorem 1 we proceed as follows. First we establish that the expectation
value of the lhs of the Mourre-type estimate (3.1) vanishes, if taken with any eigenfunction of
hBR. Then we make use of the fact that for a sequence of eigenfunctions converging weakly to
zero the expectation value of a compact operator goes to zero. This leaves us with a positive
expectation value of the rhs of (3.1), a contradiction.

The first item is guaranteed by Mourre’s proposition [15, proposition II.4, 17, theorem
4.6].

Proposition 3 (Mourre). Let H and A be self-adjoint operators acting in the Hilbert space L2

and satisfying

(a) D(A) ∩ D(H) is a core for H.
(b) i[H,A] defined on D(A)∩D(H) is a bounded map from H1 into H−1 (where D(H) = H1

and ψ ∈ H−1 if
∥∥ 1

|H |+1ψ
∥∥ < ∞).

(c) There is a self-adjoint operator H0 with D(H0) = D(H) such that i[H0,A] is a bounded
map from H1 into L2, and D(A) ∩ D(H0A) is a core for H0.

Then, if ψ is an eigenfunction of H and µ̃ > 0,

(ψ, [H,A]ψ) = lim
µ̃→∞

(
ψ,

[
H, iµ̃A

1

A + iµ̃

]
ψ

)
= 0. (4.1)

In order to apply proposition 3 we have to verify the conditions (a)–(c) for our operators
under consideration. It is the conditions (a) and (b) that are conventionally included in the
Mourre estimate.

(a) We recall that D(H BR) = D(EA) = H1(R
3) ⊗ C

4. The domain MA of AU defined below
(3.4) is dense in L2. In fact, let ψ0 ∈ L2(R

3) ⊗ C
4. Then U−1

0 ψ0 ∈ L2(R
3) ⊗ C

4

and there is ϕn ∈ C∞
0 (R3) ⊗ C

4 such that
∥∥U−1

0 ψ0 − ϕn

∥∥ < ε. Consequently,
‖ψ0 − U0ϕn‖ = ∥∥U0

(
U−1

0 ψ0 − ϕn

)∥∥ < ε.

Moreover, MA is a subset of H1, the domain of EA, as for any ψ = U0ϕ ∈ MA we
have ‖EAψ‖ = ‖U0EAϕ‖ � ‖EAϕ‖ < ∞. From MA = H1 = L2 it follows that
MA = D(AU) ∩ D(H BR) is a core for H BR.

(b) We have to show that for ψ ∈ H1, i[H̃ BR, AU ]ψ ∈ H−1 by investigating all operators of
(3.4) which constitute the commutator. The bounded operators U0fAU−1

0 and mC1 as well
as H̃ BR map into L2 ⊂ H−1. So does O1 (by (2.11) and (2.12)). The remaining operator
i[O1, AU ] maps into H−1 which can be shown by considering ψ ∈ MA ⊂ H1(R

3) ⊗ C
4

such that (EA + µ)ψ ∈ L2(R
3) ⊗ C

4. We decompose

i[O1, AU ]ψ = (EA + µ)K̃(EA + µ)ψ =: (EA + µ)ϕ̃ (4.2)

where K̃ := (EA + µ)−1i[O1, AU ](EA + µ)−1 is compact, in particular bounded.
Therefore, ϕ̃ ∈ L2(R

3) ⊗ C
4 such that (EA + µ)ϕ̃ is in H−1 by definition, relying

on (2.12).

10
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(c) We identify H0 with EA. Setting V = 0 in (3.4), the commutator reduces to

i[βEA,AU ] = βEA − mC1 + U0fAU−1
0 . (4.3)

For ψ ∈ MA ⊂ H1(R
3) ⊗ C

4 we thus have ‖i[βEA,AU ]ψ‖ < ∞ implying that
i[βEA,AU ] maps from H1 into L2. It is easily seen that AU leaves MA invariant. One has
for ψ = U0ϕ ∈ MA,

AUψ = U0AU−1
0 U0ϕ = U0ψ̃ ∈ MA (4.4)

since ψ̃ := Aϕ ∈ C∞
0 (R3)⊗C

4. Therefore, D(EAAU) = MA and D(AU)∩D(EAAU) =
MA is a core for EA.

All these results hold necessarily for the upper left block of the operators under
consideration, establishing the applicability of proposition 3.

The remaining proof of theorem 1 follows Mourre [15], see also [17, proof of theorem 4.7].
Let � ∈ R be an open interval on which the Mourre-type estimate holds. Let (λn)n∈N ∈ � be
an infinite sequence of eigenvalues of hBR converging to λ ∈ �, or let λ be an eigenvalue of
infinite multiplicity (represented by λn = λ for all n ∈ N). We will show that such λ cannot
exist.

Let (ψn)n∈N be the orthonormal sequence of eigenfunctions to (λn)n∈N (which converges
weakly to zero). We claim that (ψn,E�kAE�ψn) → 0 as n → ∞. Define ψ̃n :=
(hBR + µ)E�ψn and choose µ such that hBR + µ is invertible (note that hBR is bounded
from below for γ < 2

π
). Then we decompose

(ψn,E�kAE�ψn) =
(

ψ̃n,
1

hBR + µ
(EA + µ)

{
1

EA + µ
kA

1

EA + µ

}
(EA + µ)

1

hBR + µ
ψ̃n

)
.

(4.5)

We have E�ψn = ψn and ψ̃n = (λn + µ)ψn

w
⇀ 0 as n → ∞. (ψ̃n is normalizable since

‖ψ̃n‖ = λn + µ → λ + µ ∈ R+ as n → ∞.) Moreover, (EA + µ)(hBR + µ)−1 is bounded for
γ < 1

2 because of the relative boundedness (2.12). Thus the operator in (4.5) is compact and
turns (ψ̃n)n∈N into a strongly convergent sequence. Therefore the rhs of (4.5) goes to zero as
n → ∞.

Finally we get from the Mourre-type estimate (3.1), using proposition 3,

i lim
n→∞(ψn, [hBR, a11]ψn) � α0 + lim

n→∞(ψn,E�kAE�ψn), (4.6)

i.e. 0 � α0, a contradiction. Since (3.1) holds in R\{m} this proves theorem 1.

5. Application to related operators

We shall first concentrate on the special case A = 0 and later turn to the general case. When
magnetic fields are absent in the Brown–Ravenhall operator it can be shown that theorem 1,
based on the Mourre-type estimate, holds even for γ < 3

4 (see [31, (II.6.29)] for this bound).
It is also readily possible to derive a Mourre-type estimate for the pseudorelativistic operators
of higher order in γ . We have done so for the (second-order) Jansen–Hess operator which
is well defined for γ < 1.006 [5]. The proof relies on the explicit expression for the kernel
of the second unitary transformation U1 which follows the Foldy–Wouthuysen transformation
U0 (for A = 0) in the Douglas–Kroll scheme. It obeys U1U0 = U0 e−iB1 , B1(p, p′) =
− iγ

(2π)2
1

(p−p′)2
1

Ep+Ep′ (D̃0(p)−D̃0(p′)) with D̃0 = (αp + βm)/Ep [7]. By applying U1U0 to the
Dirac operator there arise additional (remainder) terms—in contrast to the Brown–Ravenhall

11
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case—but it can be shown that they have the required compactness property. Since the potential
of the Jansen–Hess operator is Ep-bounded (with bound < 1) for γ � 0.67 [31], the Mourre-
type estimate establishes a finite point spectrum up to this value. It should be noted, however,
that different methods (relying on the virial theorem for the Brown–Ravenhall operator [4, 31]
and on dilation analyticity for the Jansen–Hess operator [32]) provide better bounds for the
absence of eigenvalues (for hBR) respectively accumulation points of eigenvalues (for the
latter) above m (γ < 0.906 [3] respectively γ < 1.006) because they only require the Ep-
form boundedness of the respective potentials.

A case of interest is, however, the exact block-diagonalized Dirac operator. The block
diagonalization of H is achieved by the unitary transformation Ũ = U0U with U0 as above
and U given by [8]

U = [1 − (�− − �+)(P+ − �+)] (1 − (P+ − �+)
2)−

1
2 . (5.1)

P+ is the projector onto the positive spectral subspace of H while �± = 1
2 (1± D̃0) = P±(γ =

0) with P− = 1 − P+.U (and hence Ũ ) exist for ‖P+ − �+‖ < 1, i.e. for γ < 0.685.

The domain of Hex := ŨHŨ−1 is D(Hex) = {Ũϕ : ϕ ∈ H1(R
3) ⊗ C

4} since H is self-
adjoint on D(Ep) = H1(R

3) ⊗ C
4 (for γ < 1

2 [1, p 112]). If Ũ leaves H1 invariant then
D(Hex) = H1(R

3) ⊗ C
4.

This invariance, which is needed for the applicability of proposition 3 (see below),
requires for ϕ ∈ H1(R

3) ⊗ C
4 that ‖EpŨϕ‖ = ∥∥U0

(
EpUE−1

p

)
Epϕ

∥∥ < ∞. This holds true
since EpUE−1

p is bounded (which is proven in appendix B for γ � γc = 0.257).

Applying Ũ to the commutator equation (3.3) for A = 0 we get, defining AŨ := ŨAŨ−1,

i[Hex, AŨ ] = Hex − mŨβŨ−1. (5.2)

This leads to the following estimate for its upper left block (according to (3.5)–(3.7)),

i[hex, ã11] − hex � −m (5.3)

where hex and ã11 denote the upper left block of Hex and AŨ , respectively.
Now let λ be an eigenvalue of hex and ψλ ∈ H1(R

3) ⊗ C
2 the normalized eigenfunction

to λ. Then we get from (5.3),

(ψλ, i[hex, ã11]ψλ) � λ − m. (5.4)

The application of Mourre’s proposition (4.1)–(5.4) results in λ � m, which proves:

Theorem 2. Let γ � γc = 0.257(Z � 35) and A = 0. Then hex and hence the Dirac operator
H has no eigenvalues above m.

The assumptions (a)–(c) in proposition 3 are readily verified. For (a) we have
D(AŨ ) =: M̃ = {

Ũϕ : ϕ ∈ C∞
0 (R3) ⊗ C

4} which is dense in L2. Moreover, M̃ ⊂ H1

since for ψ = Ũϕ ∈ M̃ we have ‖Epψ‖ = ∥∥(EpŨE−1
p

)
Epϕ

∥∥ < ∞ from appendix B. Thus
M̃ = D(AŨ ) ∩ D(Hex) is a core for Hex.

(b) holds since from (5.2), i[Hex, AŨ ] even maps from H1 into L2. For (c) we set
H0 := Hex. We have M̃ ⊂ D(HexAŨ) since for ϕ ∈ C∞

0 , ‖HexAŨŨϕ‖ = ‖HexŨAϕ‖ < ∞.

This is so because A leaves C∞
0 ⊂ H1 invariant. Thus D(AŨ ) ∩ D(HexAŨ) = M̃.

When a magnetic field is included H = DA + V can be block diagonalized in
exactly the same way by Ũ = U0UA, where UA is defined in (5.1) with the replacements
�± �→ �A,± = 1

2 (1 ± D̃A) and P+ �→ PA,+ (the projector relating to DA + V ). The existence
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of UA requires a bound on γ which will depend on the magnetic field. Incidentally this
B-dependence enters in a very simple way as shown presently. Like in the A = 0 case the
bound on γ is determined from the requirement ‖PA,+ − �A,+‖ < 1. It is calculated with the
help of the diamagnetic inequality in form (2.6),∥∥∥∥∥ 1

x1/2

1

S
1/2
A

ψ

∥∥∥∥∥ �
∥∥∥∥∥ 1

x1/2

1

E
1/2
p

∥∥∥∥∥ ‖ψ‖ �
√

π

2
‖ψ‖ (5.5)

and with an estimate of |H | by EA from below, using (2.14),

‖Hψ‖ � ‖DAψ‖ − ‖V ψ‖ �
(

1 − 2γ

δm(B)

)
‖EAψ‖. (5.6)

Using the representation PA,+ − �A,+ = γ

2π

∫∞
−∞ dη(DA + iη)−1 1

x
(H + iη)−1 [8] we get for

f, g ∈ L2(R
3) ⊗ C

4 from the Schwarz inequality,

|(f, (PA,+ − �A,+)g)| � γ

2π

(∫ ∞

−∞
dη

∥∥∥∥ 1

x
1
2

1

DA − iη
f

∥∥∥∥
2
) 1

2
(∫ ∞

−∞
dη

∥∥∥∥ 1

x
1
2

1

H + iη
g

∥∥∥∥
2
) 1

2

.

(5.7)

With (5.5) we obtain∥∥∥∥ 1

x1/2

1

H + iη
g

∥∥∥∥ �
√

π

2

∥∥∥∥∥S1/2
A

1

E
1/2
A

∥∥∥∥∥
∥∥∥∥E1/2

A

1

|H |1/2

∥∥∥∥
∥∥∥∥ |H |1/2

H + iη
g

∥∥∥∥ . (5.8)

Further we have
∥∥S1/2

A E
−1/2
A

∥∥ � (δm(B))−1/2 by (2.13) and estimate E
1/2
A by |H |1/2 for

γ < δm(B)/2 from (5.6). For the last term in (5.8) we profit from
∫∞
−∞ dη‖|Ã|1/2(Ã ±

iη)−1g‖2 = π‖g‖2 for any operator Ã [8] such that, using the same technique for both factors
in (5.7),

|(f, (PA,+ − �A,+)g)| � γπ

4δm(B)

(
1 − 2γ

δm(B)

)−1/2

‖f ‖‖g‖. (5.9)

We define the scaled parameter γ̃ = γ /δm(B), and get ‖PA,+−�A.+‖ < 1 if γ̃ π
4 (1−2γ̃ )−1/2 <

1. This results in γ̃ � 0.44, i.e. γ � 0.44δm(B). For B = 0(δm(B) = 1) this bound is smaller
than that obtained in [8] (by a different estimate which, however, is inferior if B �= 0).

In conclusion, we remark that a Mourre-type estimate (3.1) with � above m can also be
established for the block-diagonalized Dirac operator hex when A �= 0. Since on the rhs of
(5.3) there will appear the additional term k̃A := (ŨfAŨ−1)11, only the absence of eigenvalues
of infinite multiplicity or of accumulation points of eigenvalues of hex in � can be inferred
(as for the Brown–Ravenhall operator). The assumptions on A are, however, different from
those stated in proposition 1. The first condition in (iii) as well as the restrictions posed by
proposition 2 (except B � B0) have to be replaced by the requirement that A is bounded, its
bound being sufficiently small such that the EA-boundedness of Ep is assured. Moreover, the
necessary bound on the potential strength γ is much more restrictive than that given above
(for the existence of UA) and depends on the particular choice of the magnetic field.
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Appendix A. Estimate of the heat kernel of E2
A for bounded B � B0

With the assumption that B has constant direction in space we can restrict ourselves to a two-
dimensional problem, i.e. A = (A1(x1, x2), A2(x1, x2), 0) such that B = (0, 0, B(x1, x2)).

Accounting for the required boundedness of B, we can take 0 < B(x1, x2) � B0. We assume
that the reader is acquainted with the work of Loss and Thaller [30] for the estimate of the
heat kernel of the Schrödinger operator Hs := (p⊥ − eA)2 where p⊥ = (p1, p2, 0) and will
only indicate the necessary modifications of their proof. We have E2

A = Hs +p2
3 − eσ3B +m2.

Since there is no dependence on x3, the heat kernel relating to the third dimension reduces to
the free heat kernel in one dimension, e−tp2

3 (x3, x
′
3) = (4πt)−

1
2 e−(x3−x ′

3)
2/4t [25, p 35], as a

multiplicative factor.
Given an initial state u0(x), its time evolution is defined by

u(x, t) = e−tẼ2
Au0(x) (A.1)

where here and in the following x = (x1, x2) and Ẽ2
A = E2

A − p2
3. From (A.1) we obtain

du
dt

= −Ẽ2
Au and u0 is the solution of this equation at t = 0 (which is a Gaussian function for

a constant field B(x1, x2) = B0 [33]).
We have d

dt
|u|2 = u du

dt
+ du

dt
u which, following [30, section 3] and using uσ3u � |u|2,

leads to the estimate

1

2

∫
R

2
dx|u|r−2 d

dt
|u|2 � −(r − 1 − c2)

∫
R

2
dx|u|r−2(∇|u|)2

− 2ec

r

∫
R

2
dx B|u|r +

∫
R

2
dx|u|r (eB − m2) (A.2)

where r = r(t) � 2 and c is a constant with 0 < c <
√

r − 1. We remark that due to the
definition of our operator, the changes with respect to the work of Loss and Thaller concern
the replacements A �→ −eA, t

2 �→ t. The negative sign of A can be compensated by a negative
sign in the auxiliary function ∇S of [30] which has dropped out in (A.2). So the first two
terms in (A.2) are (up to a factor of 2 from the definition of t) identical to those of [30], while
the last term is an additional term arising from the structure of Ẽ2

A.

Since c <
√

r − 1 � r
2 for all r � 1, we can estimate further, using the normalization∫

R
2 dx|u|r = 1 and 0 < B � B0,∫

R
2

dx|u|reB
(

1 − 2c

r

)
− m2 � −2c

r
eB0 + (eB0 − m2). (A.3)

Upon insertion into (A.2) one gets, apart from the constant term (eB0 − m2), the identical
expression of [30]. Therefore,

d

dt
ln‖u‖r � r ′

r2

∫
R

2
dx|u|r ln|u|r − (r − 1 − c2)

∫
R

2
dx|u|r−2(∇|u|)2

− 2c

r
eB0 + (eB0 − m2) � −2L(r, r ′) + (eB0 − m2) (A.4)

where L(r, r ′) is the function obtained by [30] for the optimal choice of c such that the rhs of
the first inequality in (A.4) under the absence of (eB0 − m2) is minimized. Integrating (A.4)
from 0 to t with the choice of r such that r(0) = p, r(t) = q, and then exponentiating, leads
to

∥∥e−tẼ2
A

∥∥
Lp→Lq

= sup
u∈Lp

∥∥e−tẼ2
Au
∥∥

q

‖u‖p

� e−2
∫ t

0 dtL(r,r ′) · eeB0t−m2t . (A.5)
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The further reasoning from [30, remark 2 and theorem 1.3] then provides∣∣e−tẼ2
A(x, x′)

∣∣ � eB0

4π sinh(eB0t)
e−(x−x′)2/4t eeB0t−m2t (A.6)

for two-dimensional x, x′, which completes the proof of proposition 2.

Appendix B. Boundedness of EpUE−1
p

We shall prove the boundedness of the adjoint operator E−1
p U ∗Ep. From (5.1) we have

E−1
p U ∗Ep = E−1

p (1 − (P+ − �+)
2)−

1
2 Ep

[
1 − E−1

p (P+ − �+)Ep(�− − �+)
]
. (B.1)

Noting that ‖�− − �+‖ = ‖D̃0‖ = 1 we will first show that E−1
p (P+ − �+)Ep

can be bounded below unity if γ is small enough. Using the integral representation
P+ − �+ = − 1

2π

∫∞
−∞ dη(D0 + iη)−1V (H + iη)−1 we follow the strategy of [8] and estimate

for f, g ∈ H1(R
3) ⊗ C

4 by means of the Schwarz inequality, introducing W := E
− 5

4
p

1
x
E

1
4
p ,

∣∣(f,E−1
p (P+ − �+)Epg

)∣∣ = γ

2π

∣∣∣∣∣
∫ ∞

−∞
dη

(
f,E−1

p

|η| 1
4

D0 + iη
E

5
4
p WE

− 1
4

p

|η|− 1
4

H + iη
Epg

)∣∣∣∣∣
� γ

2π

⎛
⎝∫ ∞

−∞
dη

∥∥∥∥∥E
5
4
p

|η| 1
4

D0 − iη
E−1

p f

∥∥∥∥∥
2
⎞
⎠

1
2

‖W‖
⎛
⎝∫ ∞

−∞
dη

∥∥∥∥∥E− 1
4

p

|η|− 1
4

H + iη
Epg

∥∥∥∥∥
2
⎞
⎠

1
2

.

(B.2)

Let us assume for the moment that W is bounded by cw. In the first factor we can use the

integral formula, introducing f̃ = E
1
4
p f and y = η/Ep [34, p 354],∫ ∞

−∞
dη

∥∥∥∥∥ |η| 1
4

D0 − iη
E

1
4
p f

∥∥∥∥∥
2

=
(

f̃ ,

∫ ∞

−∞
dη

|η| 1
2

D2
0 + η2

f̃

)

= 2
∫ ∞

0
dy

y
1
2

1 + y2

⎛
⎝f̃ ,

1

E
1
2
p

f̃

⎞
⎠ = π

√
2‖f ‖2. (B.3)

In order to treat the second factor in the same way we estimate E−1
p by |H |−1 with the help of

Hardy’s inequality,

‖Hg‖ � ‖D0g‖ + ‖Vg‖ � (1 + 2γ )‖Epg‖ (B.4)

and consequently E
− 1

2
p � (1 + 2γ )

1
2 |H |− 1

2 (note that |H | � νγ Ep > 0 for γ <
√

3
2 with

νγ = 1
3

√
1 − γ 2(

√
4γ 2 + 9 − 4γ )[35]). Then with g̃ = Epg and η = |H |η̃,∫ ∞

−∞
dη

∥∥∥∥∥E− 1
4

p

|η|− 1
4

H + iη
Epg

∥∥∥∥∥
2

� (1 + 2γ )
1
2

(
g̃, |H |− 1

2

∫ ∞

−∞
dη

|η|− 1
2

H 2 + η2
g̃

)

� 2(1 + 2γ )
1
2

∫ ∞

0
dη̃

1

η̃
1
2 (1 + η̃2)

(g̃, |H |−2g̃) � π
√

2(1 + 2γ )
1
2

1

ν2
γ

‖g‖2 (B.5)

where in the last inequality |H |−2 � 1
ν2
γ
E−2

p was used.

Insertion into (B.2) leads to the desired estimate,∣∣(f,E−1
p (P+ − �+)Epg

)∣∣ � cw

γ√
2νγ

(1 + 2γ )
1
4 ‖f ‖‖g‖ =: c0‖f ‖‖g‖. (B.6)
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For γ < γc (see below) we have c0 < 1. With the same argumentation as [8, proof of lemma
5] this proves the boundedness of E−1

p (1 − (P+ − �+)
2)−

1
2 Ep as well. Thus E−1

p U ∗Ep is
bounded.

It remains to show the boundedness of W and to find the constant cw. According to
the Lieb and Yau formula which is related to the Schur test for the boundedness of integral
operators [36] (see also [7]), the integrals over the kernel kW of W , multiplied by suitable
nonnegative convergence generating functions h,

I (p) :=
∫

R
3

dp′|kW (p, p′)| h(p)

h(p′)

J (p′) :=
∫

R
3

dp|kW (p, p′)|h(p′)
h(p)

(B.7)

have to be finite. Using the Fourier representation of 1
x

we get kW (p, p′) = 1
2π2 E

− 5
4

p
1

|p−p′|2 E
1
4
p′ .

We choose h(p) = p
3
2 and use

∫
S2 dω′ 1

|p−p′|2 = 2π
pp′ ln p+p′

|p−p′ | for the angular integral. Then

I (p) = 1

π

1

pE
5
4
p

∫ ∞

0
dp′p′ ln

p + p′

|p − p′|E
1
4
p′

p
3
2

p
′ 3

2

J (p′) = 1

π

E
1
4
p′

p′

∫ ∞

0
p dp ln

p + p′

|p − p′|
1

E
5
4
p

p
′ 3

2

p
3
2

.

(B.8)

We make the substitutions p′ = pq ′ in I and p = p′q in J and introduce the parameters

ξ1 = p/m and ξ2 = p′/m. Then, using the estimates ξ 2q
′2+1

ξ 2+1 = ξ 2q
′2

ξ 2+1 + 1
ξ 2+1 � q

′2 + 1 and

(a + b)
1
n � a

1
n + b

1
n for a, b � 0 and n ∈ N, we obtain

I (mξ1) � 1

π

∫ ∞

0

dq ′

q ′ 1
2

ln
1 + q ′

|1 − q ′|
(
1 + q ′ 1

4
)

J (mξ2) � 1

π

∫ ∞

0

dq

q
3
2

ln
1 + q

|1 − q|

(
1 +

1

q
1
4

)
.

(B.9)

These integrals can be evaluated analytically with the help of a formula from [5], and they
provide the same bound for I and J . Hence,∥∥∥∥E− 5

4
p

1

x
E

1
4
p

∥∥∥∥ � sup
ξ1,ξ2�0

[I (mξ1)J (mξ2)]
1
2 � 2 +

4

3 tan
(

π
8

) =: cw ≈ 5.22. (B.10)

If inserted into (B.6) we get c0 < 1 for γ < 0.187. A numerical evaluation of the integrals
(B.8) shows that their maximum value is attained for p, p′ → ∞, providing the upper bound
I (mξ1), J (mξ2) � 4

3 tan(π/8)
≈ 3.22. This leads to γc = 0.257 corresponding to Z = 35. This

bound is inferior to the bound γc = 0.382 obtained by [8] for the invariance of H1/2 by Ũ .

References

[1] Thaller B 1992 The Dirac Equation (Berlin: Springer)
[2] Brown G E and Ravenhall D G 1951 On the interaction of two electrons Proc. R. Soc. London A 208 552–9
[3] Evans W D, Perry P and Siedentop H 1996 The spectrum of relativistic one-electron atoms according to Bethe

and Salpeter Commun. Math. Phys. 178 733–46
[4] Balinsky A A and Evans W D 1998 On the virial theorem for the relativistic operator of Brown and Ravenhall,

and the absence of embedded eigenvalues Lett. Math. Phys. 44 233–48
[5] Brummelhuis R, Siedentop H and Stockmeyer E 2002 The ground-state energy of relativistic one-electron atoms

according to Jansen and Hess Doc. Math. 7 167–82

16

http://dx.doi.org/10.1007/BF02108822
http://dx.doi.org/10.1023/A:1007425400991


J. Phys. A: Math. Theor. 41 (2008) 000000 D H Jakubassa-Amundsen

[6] Douglas M and Kroll N M 1974 Quantum electrodynamical corrections to the fine structure of helium Ann.
Phys., NY 82 89–155

[7] Jakubassa-Amundsen D H 2005 The projected single-particle Dirac operator for Coulombic potentials Doc.
Math. 10 331–56

[8] Siedentop H and Stockmeyer E 2006 The Douglas–Kroll–Hess method: convergence and block-diagonalization
of Dirac operators Ann. Henri Poincaré 7 45–58
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[19] De Vries E 1970 Foldy–Wouthuysen transformations and related problems Fortschr. Phys. 18 149–82
[20] Udim T 1986 Schrödinger–Operatoren für Teilchen mit Spin: A. Wesentliche Selbstadjungiertheit Abh. Math.

Sem. Univ. Hamburg 56 49–73
[21] Avron J, Herbst I and Simon B 1978 Schrödinger operators with magnetic fields: I. General interactions Duke

Math. J. 45 847–83
[22] Reed M and Simon B 1975 Fourier Analysis, Self-Adjointness (Methods of Modern Mathematical Physics vol

2) (New York: Academic)
[23] Ikebe T and Kato T 1962 Uniqueness of the self-adjoint extension of singular elliptic differential operators Arch.

Ration. Mech. Anal. 9 77–92
[24] Simon B 1976 Universal diamagnetism of spinless Bose systems Phys. Rev. Lett. 36 1083–4
[25] Simon B 1979 Functional Integration and Quantum Physics (New York: Academic)
[26] Teschl G 2005 Lecture Notes on Mathematical Methods in Quantum Mechanics with Application to Schrödinger

Operators, section 11 e-print: www.mat.univie.ac.at/∼gerald/ftp/index.html
[27] Balinsky A A, Evans W D and Lewis R T 2001 Sobolev, Hardy and CLR inequalities associated with Pauli

operators in R
3 J. Phys. A: Math. Gen. 34 19–23

[28] Herbst I W 1997 Spectral theory of the operator (p2 + m2)
1
2 − Ze2/r Commun. Math. Phys. 53 285–94
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