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Abstract
The capture of a target electron to the projectile continuum with simultaneous
photon emission, known as radiative ionization (RI), is investigated
theoretically for fast, highly charged projectiles colliding with light target
atoms. Based on the impulse approximation in its post form, the features
of radiative ionization are studied and contrasted with the related processes
of radiative electron capture and nonradiative electron capture to continuum
(ECC). A large RI cusp asymmetry is found, increasing strongly with projectile
charge but decreasing with projectile velocity. However, in contrast to
ECC, the cusp is skewed to the high-energy side. Results are shown for
20 MeV amu−1 Kr36+ + H and for 100 and 400 MeV amu−1 U92+ on H and N.

1. Introduction

Radiative electron capture into bound states of heavy bare or one-electron ions has been a
field of current interest ever since its discovery by Raisbeck and Yiou (1971), Schnopper et al
(1972). Due to powerful accelerator facilities, radiative electron capture (REC) experiments
were extended to the relativistic regime (Gould et al (1984), Anholt et al (1984); for recent
research see, for example, Stöhlker et al (1995, 1997)). For uranium projectiles, REC into
K, L and M shells could be identified (Stöhlker et al 1995, 1998). In addition, the photon
spectra show a large low-energy background with a threshold-like behaviour at the series limit
(Kienle et al 1973, Yamadera et al 1981, Ludziejewski et al 1998). This background has been
interpreted in terms of radiative ionization (Jakubaßa and Kleber 1975, Yamadera et al 1981)
which can be viewed as continuation of REC across the ionization threshold of the projectile.

The interest in reinvestigating radiative ionization is twofold. First, a simultaneous
measurement of the momentum of both emitted particles, electron and photon, is planned
at the ESR storage ring of GSI in Darmstadt, Germany (Hagmann 2003). With this aim,
the COLTRIMS detector technique, a 2D position-sensitive detector equipped with a forward
electron spectrometer and a large solid-angle Ge x-ray detector, will be used. The analysis
of the charge states of both projectile and recoil ion allows for a unique identification of the
single ionization channel (Moshammer et al 1994). When measured for bare projectiles in
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coincidence with bare ejectiles and singly ionized recoil ions at the radiative ionization (RI)
cusp, one thus obtains an unambiguous experimental identification of the RI process.

Second, a comparison of the capture to continuum cusp shape from electron capture to
continuum (ECC) and from RI provides a sensitive test of the influence of the additional photon
degrees of freedom on the dynamics of target ionization. The ECC cusp has been studied
extensively (for a review see Groeneveld et al 1984). It is strongly skewed to the low-energy
side which can only be correctly described within a higher-order theory (Jakubaßa-Amundsen
1983). While ECC is dominant at moderate collision velocities, the additional photon emission
becomes important at very high velocities. The only comparison between ECC and RI existing
so far (Martiarena and Garibotti 1985) is within the first-order Born theory for p + He collisions
and concerns only the absolute values.

RI is also closely related to bremsstrahlung emission of a fast electron in the field of the
heavy projectile. In fact, within the impulse approximation (IA) the cross section for RI is
basically obtained by folding the cross section for electron–nucleus bremsstrahlung with the
momentum distribution of the electron in its initial state. The emitted photon carries away
the excess energy of the electron, allowing for high capture-to-continuum cross sections even
when the relative velocity between target and projectile is high.

Correspondingly, similar theoretical models are used for the description of these
interrelated processes. Calculations on both radiative electron capture (Briggs and Dettmann
1974, Kleber and Jakubaßa 1975) as well as radiative ionization (Jakubaßa and Kleber 1975)1

date back to the mid-1970s. Relativistic effects for REC were already considered by Spindler
et al (1979) and Hino and Watanabe (1987) while a strict relativistic formulation of the theory
was provided by Eichler (1990) and the first exact calculations (within the IA) were performed
by Ichihara et al (1994). Electron–nucleus bremsstrahlung, the underlying process for RI,
was already calculated by Elwert and Haug (1969), using semirelativistic Sommerfeld–Maue
wavefunctions for the electron. A fully relativistic treatment was provided later (Tseng and
Pratt 1971).

In the present work a relativistic formulation of the RI process is presented and the
calculations are performed with Sommerfeld–Maue wavefunctions. This is a reasonable
approximation according to Shaffer et al (1996) who have compared the exact bremsstrahlung
theory with the Elwert–Haug results and with experiment for collision systems similar to
those investigated here. The theory is formulated in section 2. Section 3 provides numerical
results for the fourfold differential RI cross sections and RI cusp asymmetries in the case of
projectiles up to U92+ at collision energies between 10 and 400 MeV amu−1. Section 3 also
gives a comparison between the cusp shapes of the RI and ECC processes. Conclusions are
drawn in section 4. Atomic units (h̄ = m = e = 1) are used unless otherwise indicated.

2. Theory

We consider the case of an asymmetric collision and restrict ourselves to bare projectiles
moving much faster than the target electrons according to their classical orbiting velocity. The
target electrons are described within the independent particle model and the coupling to the
photon field is treated to first order.

1 In equation (1.2) of that paper, a factor F = 5
2 + 3

4
2E−h̄ω
E−h̄ω ln (

√
E+

√
E−h̄ω)2

h̄ω is missing. In equation (2.13), B should
be replaced by 1, and correspondingly G = B = 1 in equation (2.20) in the case of the IA.
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2.1. Transition amplitude

Target ionization into low-lying energy states with respect to the projectile frame of reference
is described by means of electron capture to the continuum, i.e. the electron is emitted into a
projectile eigenstate ψ

(σ f )

f,P . Since we deal with light targets (Z P � ZT , where Z P and ZT

are the nuclear charges of projectile and target, respectively), the electron–target interaction
will be neglected not only in the final state, but also in the intermediate electronic states.
The starting point is the general expression for the transition amplitude in its post form for
ionization induced by the photon field A

′, which is given by

a f i = − i

c

∫
d4x ′ψ(σ f )′

f,P (x ′)d+
λA

′(x ′)Ŝ�(σi)

i (x) (2.1)

where �(σi )

i is the exact wavefunction relating asymptotically to the initial bound target state
ψ
(σi )
i,T ·σi and σ f are the spin projections in the initial and final state, respectively. Primes denote

quantities defined in the projectile frame of reference and x ′ = (ct ′,x′) and x = (ct,x) are the
space and time coordinates of the electron in the projectile and target frame, respectively. Since
we deal with a heavy projectile, the calculation is conveniently performed in the projectile’s
rest system. Therefore, �(σi)

i , defined in the target frame, has to be transformed by means of
the Lorentz boost operator Ŝ.

When the coupling is exclusively due to the photon field, one has

γ0A
′(x ′) = −αA′(x ′) (2.2)

with γ0 and α Dirac matrices (Rose 1971) and the photon field given by

A′(x ′) = A′
λe

ik′ x′
d+
λ , A′

λ =
√

c2

(2π)2ω′ eλ (2.3)

where d+
λ is the creation operator of a photon with 4-momentum k ′ = (ω

′
c ,−k′) and polarization

direction eλ.
Describing the wavefunction �(σi )

i (x) by means of the Lippmann–Schwinger equation
(Bjorken and Drell 1964, p 107) and neglecting all interactions except the electron–projectile
Coulomb field one gets

Ŝ�(σi)
i (x) ≡ �

(σi )
′

i (x ′) =
∫

d4 y ′
[
δ(x ′ − y ′) +

1

c
S′

P (x
′, y ′)A′

P(y
′)
]
ψ
(σi )

′
i,T (y ′) (2.4)

where A
′
P denotes the electron–projectile interaction and S′

P (x
′, y ′) describes the electron

propagation in this field. One can simplify (2.4) by using the definition of a projectile scattering
eigenstate ψ(s)

′
q,P (x

′) of momentum q and spin projection s′:∫
d4 y ′

[
δ(x ′ − y ′) +

1

c
S′

P (x
′, y ′)A′

P(y
′)
]

q ′
s(y

′) = ψ
(s)′
q,P (x

′) (2.5)

where

q ′
s(x

′) = 1

(2π)2
u(s)q eiqx′−iδsωq t ′

u(s)q =
(
ωq + mc2

2ωq

)1/2(
1 + δsαq

c

ωq + mc2

)
es, s = 1, . . . , 4, ωq =

√
q2c2 + c4

(2.6)

is a relativistic plane wave (Rose 1971) of energy δsωq with δs = +1 for the particle states
(s = 1, 2) and −1 for the antiparticle states (s = 3, 4), and es a 4D unit vector.

A complete set of plane waves (2.6) is introduced into (2.4) where the energy ωq in the
phase factor of q ′

s is treated as an independent variable. However, an on-shell approximation
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is made by keeping ωq = √
q2c2 + c4 in the definition of the spinor u(s)q . This on-shell

approximation is reasonable for light targets as it corresponds to neglecting the binding of the
electron in its initial state. Then (2.4) turns into

�
(σi )

′
i (x ′) = 1

c

4∑
s=1

∫
dq dωq ψ

(s)′
q,P (x

′)(q ′
s(x

′), ψ(σi )
′

i,T (x ′)) (2.7)

where the brackets (·, ·) denote integration over x ′. When (2.7) is inserted into (2.1) and
ψ = ψ+γ0 is used, one obtains the transition amplitude in the IA:

aIA
f i = i

c
A′
λ

∫
d4x ′ ψ(σ f )+′

f,P (x ′)αeik′x′ 1

c

4∑
s=1

∫
dq dωq ψ

(s)′
q,P (x

′)(q ′
s(x

′), Ŝ ψ(σi )

i,T (x)). (2.8)

One thus obtains a factorization into two matrix elements. The first of them describes inelastic
electron scattering from the radiation field. Splitting d4x ′ into c dt ′ dx′ and separating the time
dependence, one gets∫

d4x ′ψ(σ f )+′
f,P (x ′)αeik′x′

ψ
(s)′
q,P (x

′) = c√
2π

Wrad(σ f , s, q)2πδ(E ′
f + ω′ − δsωq) (2.9)

with

Wrad(σ f , s, q) =
∫

dx′ψ(σ f )+′
f,P (x′)αe−ik′x′

ψ
(s)′
q,P (x

′) (2.10)

and E ′
f is the electronic final-state energy (including the rest mass).

For the evaluation of the second matrix element in (2.8) another complete set of free states,
pσ (x), now defined in the target frame of reference, is introduced such that

M := 1

c
(q ′

s(x
′), Ŝψ(σi )

i,T (x)) = 1

c2

4∑
σ=1

∫
dp dωp(q

′
s(x

′), Ŝ pσ (x))(pσ (x), ψ
(σi )

i,T (x)). (2.11)

The second term in brackets is readily expressed in terms of the initial-state wavefunction in
momentum space: ϕ(σi )

i,T (p),

1

c
(pσ (x), ψ

(σi )

i,T (x)) = 1

c

∫
dx c dt

1

(2π)2
u(σ )+p e−ipx+iδσωptψ

(σi )

i,T (x)e
−iE T

i t

= √
2πu(σ )+p ϕ

(σi )

i,T (p)δ(δσωp − ET
i ) (2.12)

where ET
i is the energy of the bound target electron and δσ = +1 for σ = 1, 2 and −1 for

σ = 3, 4. For the first term, the Lorentz boost operator Ŝ and the transformation connecting
x to x ′ have to be specified (Bjorken and Drell 1964, Jakubaßa-Amundsen 1997):

Ŝ =
√

1 + γ

2

(
1 − γ v/c

1 + γ
αz

)

x = �x ′ + b, � =



γ 0 0 γ v/c
0 1 0 0
0 0 1 0

γ v/c 0 0 γ




(2.13)

where γ = (1 − v2/c2)−1/2, v is the collision velocity (with the z axis chosen along the beam
direction) and b = (0, bx , by, 0) is the impact parameter. Then

1

c
(q ′

s(x
′), Ŝ pσ (x)) = 1

(2π)4
1

c

∫
dx′ c dt ′ u(s)+q e−iqx′

eiδsωq t ′
√

1 + γ

2

(
1 − γ v/c

1 + γ
αz

)

× u(σ )p eip⊥(x′⊥+b)eipzγ (z′+vt ′)e−iδσ ωpγ (t ′+vz′/c2)
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=
√

1 + γ

2

[
u(s)+q

(
1 − γ v/c

1 + γ
αz

)
u(σ )p

]
eip⊥bδ(p⊥ − q⊥)

× δ(δsωq + pzγ v − γ δσωp)δ

(
−qz + pzγ − γ δσωp

v

c2

)
. (2.14)

As concerns the spin sums, it follows from the δ-function in (2.9) that δs = 1 since E ′
f +ω′ > 0

and ωq > 0. Also from (2.12), δσ > 0 since ET
i , ωp > 0. Therefore, the sums over s and

σ run only over the particle states. However, in the scalar product u(σ )+p ϕ
(σi )
i,T (p) in (2.12),

the antiparticle contribution σ = 3, 4 is also strongly suppressed because we only consider a
light (nonrelativistic) target whose momentum distribution is strongly peaked at p = 0 where
u(σ )+p ϕ

(σi )
i,T (p) is strictly zero for σ = 3, 4. Therefore, (2.12) would approximately vanish for

antiparticle states even without the presence of the δ-function. Hence, after carrying out the
ωp integration (by means of the δ-function), the sum over σ may well be extended up to σ = 4
such that the completeness relation

∑4
σ=1 u(σ )p u(σ )+p = 1 can be used. Then M turns into

M =
√

2π

γ

√
1 + γ

2

[
u(s)+q

(
1 − γ v/c

1 + γ
αz

)
ϕ
(σi )

i,T (p)

]
eiq⊥bδ

(
δsωq − γ ET

i + v

[
γ ET

i

v

c2
+ qz

])

(2.15)

where p = (p⊥, pz)with p⊥ = q⊥ and pz = ET
i v/c

2 + qz/γ . Collecting results, the transition
amplitude (2.8) is

aIA
f i = 2π i

γ

√
1 + γ

2
A′
λ

2∑
s=1

∫
dq eiq⊥bWrad(σ f , s, q)

×
[

u(s)+q

(
1 − γ v/c

1 + γ
αz

)
ϕ
(σi )
i,T (p)

]
δ(E ′

f + ω′ − ET
i /γ + qzv). (2.16)

2.2. Cross section

In order to obtain the total cross section for target ionization from an initial state i with
simultaneous photon emission one has to integrate over impact parameter and sum over the
unobserved final states. If one does not fix the spin state of the initial electron one must, in
addition, average over these states. If calculated in the projectile frame of reference, one thus
needs to evaluate

σ =
∫

dk′

ω′/c2

∫ dk′
f

E ′
f /c

2

1

2

∑
σi

∑
λ,σ f

∫
d2b

∣∣∣∣∣
√
ω′

c2

E ′
f

c2
aIA

f i

∣∣∣∣∣
2

. (2.17)

The sum over the final states involves a sum over the spin projections σ f , the polarization
directions eλ as well as the momenta of the photon (k′) and the emitted electron (k′

f ).
The volume elements are written in the relativistically invariant form (Bjorken and Drell
1964, p 124) which simplifies the conversion to the laboratory frame. The corresponding
Lorentz transformation for the 4-momenta is


E/c
kx

ky

kz


 = �




E ′/c
k ′

x

k ′
y

k ′
z


 (2.18)

with � from (2.13). The inverse transformation is obtained by replacing v with −v in �. One
derives the relations

ω′ = γω

(
1 − v

c
cos θ

)
, E ′

f = γ (E f − vk f cosϑ f ) (2.19)
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where θ = �(k,v) is the photon emission angle and ϑ f = �(k f ,v) is the electron

emission angle (in the target frame of reference). With dk′
ω′/c2 = dk

ω/c2 ,
dk′

f

E ′
f /c

2 = dk f

E f /c2 and

dk = ω2

c3 dω d�, dk f = k f E f

c2 dE f d� f one obtains the fourfold differential cross section for
electron emission with energy E f into the solid angle d� f accompanied by the emission of a
photon with energy ω into the solid angle d�:

d4σ

dE f d� f dω d�
= k f ωω

′ E ′
f

2c5

∑
λ,σi ,σ f

∫
d2b|aI A

f i |2

= (2π)4(1 + γ )

4c5v
k fω

2

(
1 − v

c
cos θ

)
(E f − vk f cosϑ f )S

S =
∑
λ,σi ,σ f

∫
dq δ(E ′

f + ω′ − ET
i /γ + qzv)

×
∣∣∣∣A′

λ

2∑
s=1

Wrad(σ f , s, q)

[
u(s)+q

(
1 − γ v/c

1 + γ
αz

)
ϕ
(σi )
i,T (p)

]∣∣∣∣
2

.

(2.20)

The polarization vectors of the photon are perpendicular to its wavevector, so with k′ =
(k ′ sin θ ′, 0, k ′ cos θ ′) one can choose

eλ1 = (0, 1, 0), eλ2 = (− cos θ ′, 0, sin θ ′). (2.21)

These vectors can be converted to the target frame of reference by means of cos θ ′ =
(cos θ − v

c )/(1 − v
c cos θ), sin θ ′ = sin θ/(γ (1 − v

c cos θ)) which are derived from (2.18).

2.3. Approximations

In this section we describe the approximations used for the electronic wavefunctions. Since
the exact relativistic wavefunctions do not allow for a representation of the matrix elements in
closed form, semirelativistic wavefunctions are used which are exact up to first order in Z/c
with Z the respective nuclear charge.

For the bound states, this semirelativistic approximation leads to the Darwin functions
(Davidović et al 1978). These functions provide an excellent description for the light targets
considered here. In momentum space a target state characterized by the quantum numbers
ji, li ,mi and si = 1/2 is given by

ϕ
(sign mi )

i,T (p) = NT
i

∑
ml ,ms

(li mlsi ms | jimi)a
(sign ms )

i (p)ϕ̃i,T (p)

NT
i =

[
1 +

(
ZTµ

ni

)2]−1/2

a(+)i (p) =



1
0
µpz

µp+


 , a(−)i (p) =




0
1
µp−
−µpz




(2.22)

with p± = px±ipy, µ = c/(ET
i +mc2) and ϕ̃i,T (p) the nonrelativistic bound-state momentum-

space wavefunction characterized by ni , li ,ml . In the case li = 0, the sum in (2.22) consists
of a single term, such that the factor of (2.20) in square brackets reduces to[

u(s)+q

(
1 − γ v/c

1 + γ
αz

)
a(σi )

i (p)

]
NT

i ϕ̃i,T (p). (2.23)

The function ϕ̃i,T is independent of s and hence can be taken outside the spin sum in (2.20). For
li �= 0 an average over ji and mi may be carried out since, for light targets, the ji subshells are
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approximately degenerate. According to Jakubaßa-Amundsen (1997) this leads to the simple
replacement in (2.23)

|ϕ̃i,T (p)|2 −→ 1

2li + 1

∑
ml

|ϕ̃li ,ml ,T (p)|2. (2.24)

The projectile scattering states are described in terms of the semirelativistic Sommerfeld–
Maue wavefunctions. Despite their approximate nature for high-Z atoms, they have been
successfully applied to explain measured bremsstrahlung cross sections even for Z = 79
(Geisenhofer and Nakel 1996, Shaffer et al 1996). The Sommerfeld–Maue functions are
defined in terms of derivatives of confluent hypergeometric functions (see e.g. Eichler 1990, p
187)

ψ
(s)′
q,P (x

′) = Nq eiqx′
(

1 − ic

2Eq
α∇

)
1 F1(iηq , 1, i(qr ′ − qx′))u(s)q

Nq = 1

(2π)3/2
eπηq/2�(1 − iηq), u(+)q = Cq




1
0
νqz

νq+


 , u(−)q = Cq




0
1
νq−
−νqz




(2.25)

with

ηq = Z P Eq

qc2
, r ′ = |x′|, Cq = (

Eq + c2

2Eq
)1/2,

ν = c/(Eq + c2), q± = qx ± iqy, Eq = (q2c2 + c4)1/2.

With the abbreviations Fq = 1 F1(iηq , 1, i(qr ′ − qx′)) and Fk = 1 F1(iη f , 1, i(k ′
f r ′ +

k′
f x

′)) the radiation matrix element (2.10) simplifies to

Wrad(σ f , s, q) = Nq N f u
(σ f )+
k′

f

[∫
dx′ Mkq (x

′)
]

u(s)q

Mkq (x
′) = e−ik′

f x
′
Fkαei(q−k′)x′

Fq + e−ik′
f x

′ ic

2E ′
f

(α∇Fk)αei(q−k′)x′
Fq

− e−ik′
f x

′
Fkαei(q−k′)x′ ic

2Eq
(α∇Fq)

(2.26)

where a fourth term containing the product of derivatives has been dropped for consistency
with a first-order approximation in Z P/c (Elwert and Haug 1969). N f is identical to Nq but for
the replacement of ηq by η f = Z P E ′

f /k ′
f c2 ≈ Z P/k ′

f for small k ′
f . For the further evaluation

the identity is used:

∇x′ 1 F1(iηq , 1, i(s0r ′ − s0x
′)) = − s0

r ′ ∇s0 1 F1(iηq , 1, i(s0r ′ − s0x
′)) (2.27)

such that the radiation matrix element can be written in terms of two integrals:

I0 =
∫

dx′ eip0x
′
Fk Fq

I1(s0) = ∇s0

∫
dx′ 1

r ′ 1 F1(iηq , 1, i(s0r ′ − s0x
′))eip0x

′
Fk

(2.28)

where p0 = q −k′ −k′
f is introduced and s0 must ultimately be replaced by q. Both integrals

can be evaluated analytically with the help of the Nordsieck (1954) formula:

I0 = − lim
ε→0

∂

∂ε
W (ε), I1(s0) = lim

ε→0
∇s0 W (ε)

W (ε) =
∫

dx
1

r
1 F1(iηq , 1, i(s0r − s0x))eip0xe−εr

1 F1(iη f , 1, i(k ′
f r + k′

f x))

= 2π

α̃
e−πηq

(
α̃

γ̃

)iηq
(
γ̃ + δ̃

γ̃

)−iη f

2 F1

(
1 − iηq , iη f , 1,

α̃δ̃ − β̃γ̃

α̃(γ̃ + δ̃)

) (2.29)
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with α̃ = 1
2 (p2

0 + ε2), β̃ = k′
f p0 − iεk ′

f , γ̃ = s0p0 + iεs0 − α̃, δ̃ = s0k ′
f + s0k

′
f − β̃ and 2 F1

is a hypergeometric function. For the second integral one obtains

I1(q) = 2πe−πηq α̃iηq −1γ̃ iη f −iηq −1(γ̃ + δ̃)−iη f −1

{
2 F1

(
1 − iηq , iη f , 1,

α̃δ̃ − β̃γ̃

α̃(γ̃ + δ̃)

)

×
[
−iη f γ̃

(
p0 + k ′

f

q

q
+ k′

f

)
+ i(η f − ηq)p0(γ̃ + δ̃)

]

+ 2 F1

(
2 − iηq , 1 + iη f , 2,

α̃δ̃ − β̃γ̃

α̃(γ̃ + δ̃)

)
iη f (1 − iηq)

× (α̃ + β̃)γ̃

α̃(γ̃ + δ̃)

[
γ̃ k ′

f

q

q
+ γ̃k′

f − δ̃p0

]}
. (2.30)

I0 is calculated along the same lines (Jakubaßa-Amundsen 1983). The radiation matrix
element (2.26) is proportional to

I :=
∫

dx′ Mkq (x
′) =

[
1 +

c

2E ′
f

(αp0)

]
αI0 +

icq

2

[
2

E ′
f

I1(q)−
(

1

E ′
f

− 1

Eq

)
α(αI1(q))

]
.

(2.31)

Introducing cylindrical coordinates (q⊥, ϕq, qz) for q, the integral over qz becomes trivial and
the cross section (2.20) turns into

d4σ

dE f d� f dω d�
= (2π)4(1 + γ )

4c5v2
k fω

2

(
1 − v

c
cos θ

)
(E f − vk f cosϑ f )|NT

i N f |2

×
∫ ∞

0
q⊥ dq⊥

∣∣∣∣ϕ̃i,T

(
q⊥, ET

i

v

c2
+

qz

γ

)∣∣∣∣
2

|Nq |2
∫ 2π

0
dϕq

×
2∑
λ=1

2∑
σi ,σ f =1

∣∣∣∣u(σ f )+
k′

f
(A′

λI)

( 2∑
s=1

u(s)q u(s)+q

)(
1 − γ v/c

1 + γ
αz

)
a(σi )

i

×
(

q⊥, ET
i

v

c2
+

qz

γ

)∣∣∣∣
2

, qz = −1

v
(E ′

f + ω′ − ET
i /γ ).

(2.32)

One has |2πN f |2 = η f /(1−e−2πη f ) and |2πNq |2 = ηq/(1−e−2πηq ). Note that the differential
cross section (2.32) depends both on the polar (ϑ f ) and azimuthal angle (ϕ f ) of k f , because a
plane is defined by the outgoing electron and photon which destroys the symmetry with respect
to the beam axis (except for ϑ f = 0◦, 180◦).

3. Cross section analysis and results

The fourfold differential cross section for radiative ionization is calculated from (2.32)
without further approximations. The hypergeometric functions occurring in the radiation
matrix elements are obtained by means of their series expansion since the argument z =
(α̃δ̃ − β̃γ̃ )/(α̃(γ̃ + δ̃)) � 1 in the region of interest. The matrix multiplications and the spin
sums are evaluated numerically. In the case of nonhydrogenic targets, the nonrelativistic part
ϕ̃li ,ml ,T of the Darwin functions is taken as a Hartree–Fock single-particle wavefunction which
is Fourier transformed with the method of fast Bessel transforms (Talman 1978) as described
in Jakubaßa-Amundsen (1997). Also, experimental binding energies are used.

3.1. Structure of the differential cross section

The prominent feature of the RI cross section differential in energy and angle of the emitted
electron is the cusp at E ′

f = c2 corresponding to a laboratory-frame kinetic energy of
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E f,kin = E f − c2 = γ E ′
f − c2 = c2(γ − 1). It arises from the divergence of the final-

state normalization factor N f when η f ≈ Z P/k ′
f → ∞ as k ′

f → 0.
However, the cusp shape depends strongly on the projectile and target. For the sake of a

detailed analysis, peaking approximations are introduced to make the theory more transparent.
For the light targets considered here, the spherically (or spherically averaged) initial-state

density |ϕ̃i,T (q⊥, ET
i v/c

2 + qz/γ )|2 is strongly peaked at zero momentum, i.e. at q⊥ = 0 and
qz = −γ ET

i v/c
2 ≈ −γ v for ET

i ≈ c2. Due to the photon degrees of freedom, qz is not fixed
by the energy-conserving δ-function. Taking the slowly varying remainder of the q integrand
outside the integral at q = (0, qz0) with qz0 = −γ ET

i v/c
2, one sees that the differential cross

section (2.20) or (2.32) becomes proportional to the target Compton profile Ji :∫
dq δ(E ′

f + ω′ − ET
i /γ + qzv)|ϕ̃i,T (q⊥, ET

i v/c
2 + qz/γ )|2

= 1

v
Ji (E

T
i v/c

2 + qz/γ ) = 1

v
Ji

(
ET

i /v − 1

γ v
(E ′

f + ω′)
)
. (3.1)

From this it follows that the photon spectrum is peaked at ω′ = ω′
peak = γ ET

i − E ′
f , the

peak shape being determined by the momentum distribution of the bound electron in its
initial state. A similar dependence on the Compton profile of the initial state is also known
from REC peak studies (see, e.g., Stöhlker et al 1998). Figure 1 shows the photon spectrum
from U92+ + H collisions at an electron momentum slightly above the cusp for two collision
velocities, v = 97.7 and 58.7. The spectrum is plotted versus (ω − ωpeak)/v which is the
argument of Ji when transformed to the target frame at the photon angle θ = 90◦ (ω = ω′/γ ).
It is evident from figure 1 that this scaling of the Compton profile is valid for the differential
cross section.

If the photon frequency is fixed at, say, ω′ = ω′
peak(E

′
f = c2) but E ′

f is varied, it follows
from (3.1) that the electron spectrum is also sensitive to the target Compton profile. This
is shown in figure 2 where the electron spectrum resulting from 400 MeV amu−1 U92+ + N
collisions is plotted. The narrow cusp at E f,kin = 217.9 keV is superimposed on a broad peak
which mirrors the momentum distribution of the nitrogen subshells.

In REC studies, the angular distribution of the emitted photons has attained a great deal
of interest. While nonrelativistically it shows a sin2 θ dependence, the relativistic theory for
REC into the inner shells still gives an approximate sin2 θ variation, resulting from mutual
cancellation of retardation and Lorentz transformation effects (Spindler et al 1979, Stöhlker
et al 1997). Figure 3 depicts the angular photon distribution for radiative ionization at electron
energies slightly above and below the cusp. The deviation from a sinusoidal shape is quite
significant. Apart from finite cross sections at 0◦ and 180◦ which result from contributions of
all multipolarities to the RI transition amplitude, the photon distribution is peaked at angles
<90◦ for 216 keV electrons, while the peak is shifted to backward angles for energies beyond
the cusp. A comparison of the REC spectra obtained with Sommerfeld–Maue functions and
with exact relativistic wavefunctions, respectively (Eichler 1990), indicates that the strong
peak shift to the backward direction may partly be due to the use of inaccurate wavefunctions.
This conjecture is supported by bremsstrahlung investigations (Tseng and Pratt 1971), but the
difference between results with the two types of wavefunctions is considerably smaller in that
case.

3.2. Cusp cross section

In order to compare with experiment, the fourfold differential RI cross section has to be
convoluted with the detector resolution. Particularly crucial is the averaging over the angular
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Figure 1. Fourfold differential cross section for RI from 100 and 400 MeV amu−1 U92+ + H
collisions for forward electron emission (ϑ f = 0◦) as a function of scaled photon energy ω.
The photon emission angle is θ = 90◦ , kinetic electron energy E f,kin = E f − mc2 = 55 keV
(upper curve) and 220 keV (lower curve). The respective peak frequencies are ωpeak = 49.22 and
152.75 keV.

resolution of the electron spectrometer. Let ±θ0 be the angular acceptance around ϑ f = 0.
Then one defines〈

d4σ

dE f d� f dω d�

〉
θ0

= 1

1 − cos θ0

∫ θ0

0
sin ϑ f dϑ f

(
1

π

∫ π

0
dϕ f

d4σ

dE f d� f dω d�

)
(3.2)

where the expression in brackets on the rhs provides an additional averaging over the azimuthal
electron angle ϕ f if the emission direction of the electron (with respect to the photon) is
not specified experimentally for 0 < ϑ f � θ0. Figure 4 shows the cusp spectrum from
100 MeV amu−1 U92+ + H collisions. The fourfold differential cross section at forward
emission, both averaged and non-averaged, are plotted. Also given is the cross section divided
by the normalization factor |2π N f |2 in order to display the background spectrum. The strong
asymmetry with respect to the cusp energy will be discussed in the next section.

In figure 5 the velocity dependence of the peak value of the averaged cross section is
displayed. A strong decrease with γ v is found, which is similar for the two projectiles
investigated, U92+ and Kr36+. There is an increase of the peak value with projectile charge
according to ZλP with 2.1 � λ � 2.2. This should not be confused with the Z 2

P dependence of
the first Born approximation for (radiationless) target ionization since, in the present theory,
the projectile field is included to all orders in the final electronic state.
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Figure 2. Fourfold differential cross section for RI from 400 MeV amu−1 U92+ + N collisions
at forward emission (ϑ f = 0◦) as a function of kinetic electron energy E f,kin . Shown are the
contributions from the nitrogen 1s electrons (——), 2s electrons (- - - -), 2p electrons (— · —)

and their sum (– – –). The photon parameters are θ = 90◦, ω = 152.75 keV which is the peak
frequency at the cusp position.

3.3. Cusp asymmetry

As discussed in Jakubaßa-Amundsen (1983), the cusp asymmetry in the case of (radiationless)
electron capture to continuum arises from a discontinuity of the matrix element describing
inelastic electron scattering from the projectile field, when ϑ ′

f switches from 0◦ to 180◦ in
the limit k f → 0. In first-order Born theory, where the ‘incoming’ electron is described by a
plane wave (instead of a projectile scattering eigenstate), this discontinuity is only contained
in a phase factor and therefore is not visible in the cross section. For the cusp asymmetry to
occur, a higher-order approximation is required. Experimentally measured cusp asymmetries
are thus a sensitive test of theory.

In the case of RI, the pathological matrix element is Wrad , or more precisely, the
hypergeometric functions contained in I0 and I1 from (2.29) and (2.30). In the limit k ′

f → 0,
i.e. η f → ∞, the hypergeometric function 2 F1(a, iη f + l, c, z) turns into the confluent
hypergeometric function 1 F1(a, c, iη f z) if a, l, c are constants and z ∼ k ′

f . We will show

that the argument iη f z = iη f
α̃δ̃−β̃ γ̃
α̃(γ̃+δ̃)

still depends on the electron emission angle ϑ ′
f . With this

aim the peaking approximations from section 3.1 are applied. Recalling these results (with
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Figure 3. Fourfold differential cross section for RI from 400 MeV amu−1U92+ + H collisions
as a function of photon angle θ for forward electron emission (ϑ f = 0◦) at two energies
E f,kin = 216 keV(— · —) and 220 keV (- - - -). The photon frequency is ω = 152.75 keV.
Also shown is the sin2 θ distribution (——) normalized at θ = 90◦ to the corresponding cross
section at the higher electron energy.

ET
i ≈ c2) and considering only electron emission parallel or antiparallel to the beam direction,

one has

k′
f = ±εez, ε → +0, E ′

f ≈ c2

q ≈ −γv, ω′ ≈ (γ − 1)c2,

k′ = k ′e′
k, k ′ = ω′/c ≈ (γ − 1)c, e′

k = (sin θ ′, 0, cos θ ′)
(3.3)

where +ε corresponds to ϑ ′
f = 0 and −ε to ϑ ′

f = 180◦.
Without loss of generality the quantities entering into the argument z can be assumed real

(i.e. their tiny imaginary part is disregarded). Also, k ′
f is set equal to zero in p0 from (2.28).

Then one has

α̃ ≈ 1
2γ

2v2 + 1
2 (γ − 1)2c2 + γ (γ − 1)vc cos θ ′

β̃ ≈ ∓ε(γ v + (γ − 1)c cos θ ′)
γ̃ ≈ 1

2γ
2v2 − 1

2 (γ − 1)2c2

δ̃ ≈ ε(γ v ± (γ − 1)c cos θ ′)

(3.4)

where the sign ± relates to the sign of ε in (3.3). One has α̃ > 0 and, since (γ − 1)c < γv

for v < c also γ̃ , δ̃ > 0 while β̃ < 0 for forward emission (ϑ ′
f = 0) and β̃ > 0 for backward

emission (ϑ ′
f = 180◦). In the weak relativistic limit, γ − 1 < 0.1, one may disregard the
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Figure 4. Fourfold differential cross section for RI from 100 MeV amu U92+ + H collisions for
forward electron emission as a function of kinetic electron energy. Besides the cross section
for ϑ f = 0◦ (- - - -), the cross section averaged over a detector angular acceptance of 0 ± 1.5◦
according to (3.2) is also shown (——). The chain curve denotes the ϑ f = 0◦ cross section divided
by η f /(1 − e−2πη f ). The photon parameters are θ = 90◦ and ω = 49.22 keV.

terms ∼(γ − 1) which originate from the photon momentum. Then with (3.4) and (2.18)

iη f z ≈



4iZ P

γ v
, k f z = γ (v + ε)

0, k f z = γ (v − ε).
(3.5)

There is a discontinuity when passing from k f < γv to k f > γv, which results in different
electron emission intensities.

Equation (3.5) suggests that the cusp asymmetry scales with 4iZ P/γ v. Figure 6 shows
the cusp asymmetry A defined by

A = d4σN (γ c2 + ε, 0)

d4σN (γ c2 − ε, 0)
(3.6)

where d4σN (E f , ϑ f ) = 1
|N f |2

d4σ
dE f d� f dω d� is the cross section without the normalization factor

and ε > 0 is a small quantity. When Z P/γ v is kept fixed, A varies only within 5% for
11 < Z p � 98, and it has a maximum near Z P = 64. For large γ this scaling is no longer
valid and the discontinuity of z (and hence of the differential cross section) will also depend
on the emission direction θ ′ of the photon, cf (3.4). At Z P ≈ 3, A is 20% below its maximum
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Figure 5. Fourfold differential RI cross section from U92+ + H (——) and Kr36+ + H (- - - -)
collisions averaged over the detector resolution θ0 = 1.5◦ for forward electron emission (ϑ f = 0◦)
as a function of the collision momentum γ v. The photon emission angle is θ = 90◦ . At each
velocity the photon energy is chosen to be the peak energy at the cusp position, and with this ω
fixed, E f is chosen to provide the cross section maximum.

value. The violation of scaling for small Z P (and hence for small velocities) points to the
breakdown of the IA, and consideration of higher-order couplings to the target field will gain
importance.

The increase of asymmetry with Z P at fixed v and its decrease with γ v for a given
projectile, as suggested by (3.5), is verified in figures 6 and 7.

3.4. Comparison with ECC

In order to compare the RI cusp with the one from radiationless electron capture to continuum,
the fourfold differential cross section (2.32) has to be integrated over the photon degrees
of freedom. It is convenient to integrate over θ and ω as defined in the target frame of

reference. By (2.19) the peak frequency is obtained from ωpeak = ω′
peak

γ (1−v/c cos θ) where

ω′
peak = γ (ET

i − E f + vk f ) for θ f = 0◦ is independent of θ . The doubly differential
RI cross section is calculated from

d2σ

dE f d� f
= 2π

∫ π

0
sin θ dθ

∫ ωpeak +�E

ωmin

dω
d4σ

dE f d� f dω d�
(3.7)
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Figure 6. Asymmetry A for collisions of bare projectiles with a hydrogen target as a function of
projectile charge Z P . At each Z P , v is either taken constant (v = 28, ——) or chosen such that
Z P /γ v = 1 (- - - -). ω is taken as the peak frequency at the cusp position (10.77 keV for v = 28)
and θ = 90◦ . The electron emission angle is ϑ f = 0◦.

where �E = constant v/(1 − v
c cos θ) with constant ∼3 as suggested from the argument of

the Compton profile for hydrogen, 1
γ v
(ω′

peak − ω′) = 1
v
(ωpeak − ω)(1 − v

c cos θ), cf (3.1)
and the discussion below. Accordingly, ωmin = max(0, ωpeak −�E).

An estimate of this doubly differential cross section can be obtained from the following
consideration. Assuming that (for weakly relativistic systems) the angular distribution follows
roughly a sin2 θ dependence, and that the spectrum is exclusively determined by the bound-state
Compton profile, one has

d2σ

dE f d� f
≈ 2π

(∫ π

0
sin3 θ dθ

)(
1

Ji(0)

∫ ∞

−∞
dωJi

(
ωpeak − ω

v

))

× d4σ

dE f d� f dω d�
(ω = ωpeak, θ = 90◦). (3.8)

Since in the cusp, ωpeak = c2(γ−1)
γ (1−v/c cos θ) >

v2

4 , the lower limit 0 of the ω integral has been

replaced by −∞, assuming that ωpeak

v
> v

4 � ZT
ni

such that the Compton profile is well
localized on the positive half-line. For a hydrogen target, Ji(0) = 8/3π and the prefactor
multiplying the fourfold differential cross section in (3.8) is given by π2v. At the outer wings
of the cusp, the approximation (3.8) is, however, rather poor (see figure 8).

Figure 8 compares the electron spectra from 20 MeV amu−1 Kr36+ + H collisions (v =
27.9) at ϑ f = 0 with and without photon emission. The ECC calculation is nonrelativistic
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Figure 7. Asymmetry A for collisions of U92+ (——) and Kr36+ (- - - -) with hydrogen as a function
of collision velocity (lower scale) and momentum γ v (upper scale). The photon frequency is taken
as the peak frequency at the cusp position and θ = 90◦ . The electron emission angle is ϑ f = 0◦.

(Jakubaßa-Amundsen 1983) but for this velocity γ = 1.021 is still close to unity. It is evident
that the asymmetries for the two processes are very different. Not only is the RI cusp skewed to
the high-energy side whereas the ECC cusp is enhanced at the low-energy side, but the RI cusp
asymmetry is also considerably stronger. This is not immediately clear from a mathematical
point of view since the discontinuities of the corresponding hypergeometric functions are much
alike (Jakubaßa-Amundsen 1983).

A physical interpretation is given with the help of figure 9. In the ECC process the cusp
electrons originate from high momentum components of the target (pz > v/2), which scatter
quasielastically from the projectile. Elastic scattering favours forward angles, such that the
electrons are predominantly emitted antiparallel to the beam direction (left panel of figure 9),
i.e. ϑ ′

f = 180◦ or k f < γv. On the other hand, RI is caused by electrons approximately at
rest in the target frame (but having kinetic energy (γ − 1)c2 in the projectile frame) which are
decelerated to low energy ε while the excess energy is carried away by the emitted photon.
These electrons bounce back from the projectile and are therefore mostly emitted in the beam
direction (right panel of figure 9), i.e. ϑ ′

f = 0 corresponding to k f > γv.
The doubly differential cross sections near the peak maximum, and therefore also the

total cross sections of RI and ECC, are of comparable magnitude for 20 MeV amu−1 collision
energy. If only electrons are observed, the measured electron yield includes the contributions
of both processes, resulting in an RI-type cusp asymmetry which is considerably weakened
(figure 8). A first-order Born estimate for the differential RI and ECC cusp cross sections from
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Figure 8. Doubly differential cross section for forward electron emission (ϑ f = 0◦) in
20 MeV amu−1 Kr36+ + H collisions as a function of kinetic electron energy. The ECC cross
section (— · —) is taken from Jakubaßa-Amundsen (1983). The RI cross section is calculated
from (3.7) (——) and from (3.8) (- - - -), respectively. The sum of ECC and RI is denoted by
(× × ×).

Figure 9. Schematic view of electron scattering from the projectile P during the ECC process
(left) and the RI process (right). ez denotes the beam direction.

p + H collisions (Miraglia and Garibotti 1985) shows that, at low velocities, ECC is dominant See endnote 1
while at high velocity RI will take over, the point of equal magnitude being near 20 MeV. That
this is the same energy where the Kr + H ECC and RI processes are also of similar importance
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is, however, considered as fortuitous since ECC has a much stronger Z P dependence (∼Z 5
P , as

conjectured from capture to bound states Jakubaßa-Amundsen and Amundsen 1980) than RI
(∼Z 2.1

P ). From figure 5 it follows that, in the weak relativistic regime (v � 50), the fourfold RI
cross section decreases ∼v−λ with 5.3 � λ � 5.8 and the doubly differential RI cross section
behaves like v−λ+1 due to the extra v introduced by the scaling (3.8). This is slightly stronger
than the first-order Born result (v−4, Miraglia and Garibotti 1985). Considered as a function of
momentum, the fourfold RI cross section decreases ∼(γ v)−λ with λ nearly constant (dropping
from 5.1 to 4.7 when v increases from 20 to 100). In the ultrarelativistic limit (γ → ∞) the
total RI cross section σ ∼ γ−1. This is inferred from the Eichler (1990) result for REC since
continuity across the ionization threshold implies the same behaviour for REC and RI.

4. Conclusion

A relativistic formulation of the IA has been provided in order to describe radiative ionization
by very fast and very heavy projectiles. While the relativistic kinematics is treated exactly,
the projectile scattering eigenstates are approximated by semirelativistic Sommerfeld–Maue
wavefunctions. It was shown numerically that the RI differential cross section obtained in this
way coincides with the nonrelativistic RI theory in the limit γ → 1 and Z P → 0.

It has been found that, for fixed energy and forward emission of the electron, the features
of the relativistic REC photon distribution are recovered for electron energies beyond the cusp
energy: the angular distribution is not symmetric with respect to θ = 90◦, but the peak is shifted
to larger angles (θpeak ∼ 105◦ for 400 MeV amu−1 U92+ + H, for all E f > γ c2). However
when the energy is below the cusp, the θ distribution is skewed to smaller angles. The spectrum
of the emitted photons is governed by the Compton profile of the initial state. This similarity
of the photon features of RI and REC is due to the continuity across the ionization threshold.

If, on the other hand, the photon degrees of freedom are kept fixed (or integrated over), the
electron spectrum for forward electron emission shows a double structure: on a background,
which again is shaped by the target Compton profile, is superimposed the cusp-like peak as
known from electron capture to continuum investigations. The shape of this cusp differs
strongly, however, from the ECC cusp in that it sits on a Compton-profile-shaped background
and has a considerably stronger asymmetry with a greater intensity on the high-energy side of
the cusp. This difference is related to the fact that small momentum transfers govern the RI
process whereas ECC requires the high momentum components of the initial bound state. The
cusp asymmetry scales approximately with Z P/γ v for weakly relativistic systems but depends
additionally on the photon emission direction in the general relativistic case.

We are confident that the approximations introduced to make the calculations feasible are
well justified and do not affect our basic conclusions. Whenever Z P � ZT and 1

2v
2 � |ET

i |, it
is safe to neglect the binding energy compared to the electron’s kinetic energy in the projectile
frame of reference (the on-shell approximation), as well as the correlation energy in a multi-
electron target (the single-particle approximation). This also allows for the omission of the
electron–target interaction in the intermediate and final states (the IA), in particular since
we deal with electron capture to continuum where the relative velocity between electron and
projectile approaches zero.

Concerning the use of the Sommerfeld–Maue wavefunctions for the ejected electron, this
is certainly a good approximation in the weak relativistic case (e.g. for 20 MeV amu Kr36+ + H
with γ = 1.02). Thus the strong asymmetry of the RI cusp is not altered by the
use of these functions. For higher energies, if one trusts the IA, one can rely on
previous investigations on the accuracy of the Sommerfeld–Maue wavefunctions within the
bremsstrahlung calculations, since the folding with the initial-state momentum distribution
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will not influence the applicability of these functions. Even for projectiles with high nuclear
charge, Sommerfeld–Maue wavefunctions are expected to give reliable results since, in the
case of RI, no high-momentum tails are involved because the emitted photon carries away all
excess energy. This is in contrast to, for example, (e, 2e) investigations where high momentum
transfers are often required, making semirelativistic wavefunctions inappropriate.
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