The single-particle pseudorelativistic Jansen-Hess operator with magnetic field

D H Jakubassa-Amundsen

Mathematics Institute, University of Munich, Theresienstr. 39, 80333 Munich, Germany
E-mail: dj@mathematik.uni-muenchen.de
Received 27 February 2006, in final form 10 April 2006
Published 23 May 2006
Online at stacks.iop.org/JPhysA/39/7501

Abstract

The pseudorelativistic no-pair Jansen-Hess operator is derived for the case where in addition to the Coulomb potential an external magnetic field \mathbf{B} is permitted. With some restrictions on the vector potential, it is shown that this operator is positive provided the strength γ of the Coulomb potential is below a critical value ($\gamma_{c} \leqslant 0.35$, depending on the magnetic field energy E_{f}). Moreover, for $\gamma<0.32$ and for \mathbf{B} tending asymptotically to zero in a weak sense, the essential spectrum is given by $[m, \infty)+E_{f}$.

PACS number: 03.65.-w

1. Introduction

The spectral properties of the Dirac operator and its nonrelativistic limit, the Pauli operator, describing an atom in an external magnetic field, are a topic of current interest (see the comprehensive review by Erdös [8]). The Dirac operator for an electron in an electric field V and a magnetic field $\mathbf{B}=\nabla \times \mathbf{A}$, acting in the Hilbert space $L_{2}\left(\mathbb{R}^{3}\right) \otimes \mathbb{C}^{4}$, is given by [3, section 1.3]

$$
\begin{align*}
& H=D_{A}+V+E_{f} \tag{1.1}\\
& D_{A}:=\alpha \mathbf{p}_{A}+\beta m, \quad \mathbf{p}_{A}:=\mathbf{p}-e \mathbf{A} .
\end{align*}
$$

D_{A} is the free Dirac operator with α and β Dirac matrices, m is the electron mass, $V=-\gamma / x$ is the Coulomb field generated by a nucleus of charge Z fixed at the origin ($\gamma=Z e^{2}$ with $e^{2} \approx 1 / 137.04$ the fine structure constant). In (1.1) the (classical) field energy E_{f} is included:

$$
\begin{equation*}
E_{f}:=\frac{1}{8 \pi} \int_{\mathbb{R}^{3}} B^{2}(\mathbf{x}) \mathrm{d} \mathbf{x}=\frac{1}{8 \pi}\|\mathbf{B}\|^{2} \tag{1.2}
\end{equation*}
$$

where $\|\cdot\|$ denotes the L_{2}-norm, \mathbf{x} is the coordinate and $\mathbf{p}=-\mathrm{i} \nabla$ the momentum of the electron. Relativistic units $(\hbar=c=1)$ are used and $|\mathbf{x}|=x$. There is a simple relation to the Pauli operator, $\frac{1}{2 m}\left(\sigma \mathbf{p}_{A}\right)^{2}=\frac{1}{2 m}\left[\left(\mathbf{p}_{A}\right)^{2}-e \boldsymbol{\sigma} \mathbf{B}\right]$, where $\boldsymbol{\sigma}$ is the vector of Pauli spin matrices
[3, section 1.4],

$$
\begin{equation*}
D_{A}^{2}=(\mathbf{p}-e \mathbf{A})^{2}-e \boldsymbol{\sigma} \mathbf{B}+m^{2} \tag{1.3}
\end{equation*}
$$

We need regularity conditions on the vector potential \mathbf{A} to assure that H is well defined and self-adjoint. First, we require that

$$
\begin{equation*}
\nabla \cdot \mathbf{A}=0, \quad\|\mathbf{B}\|<\infty \tag{1.4}
\end{equation*}
$$

These conditions imply the commutation relation $\mathbf{p A}=\mathbf{A p}[19, \mathrm{p} 438]$ and $\mathbf{A} \in L_{6}\left(\mathbb{R}^{3}\right)$ which results from a Sobolev inequality [9]. The condition $\mathbf{B} \in L_{2}\left(\mathbb{R}^{3}\right)$ renders E_{f} finite. If, in addition to $\boldsymbol{\nabla} \cdot \mathbf{A}=0, \mathbf{A}$ is a C^{1}-function, it was shown ([17], based on [13]) that $\left(\mathbf{p}_{A}\right)^{2}$ is essentially self-adjoint on $C_{0}^{\infty}\left(\mathbb{R}^{3}\right) \otimes \mathbb{C}^{2}$. Later, $\mathbf{A} \in L_{2}$,loc $\left(\mathbb{R}^{3}\right)$ was established as the weakest possible condition for this property to be true [1], [5, p 9]. As a second condition, we require therefore that $\mathbf{A} \in L_{2, \text { loc }}\left(\mathbb{R}^{3}\right)$. Let the magnetic field satisfy

$$
\begin{equation*}
N_{B}(\mathbf{x}):=\int_{|\mathbf{x}-\mathbf{y}| \leqslant 1}|\mathbf{B}(\mathbf{y})|^{2} \mathrm{~d} \mathbf{y} \leqslant C \tag{1.5}
\end{equation*}
$$

with a constant $C \in \mathbb{R}$ independent of $\mathbf{x}\left((1.5)\right.$ holds for any $\left.\mathbf{B} \in L_{2}\left(\mathbb{R}^{3}\right)\right)$. This guarantees the essential self-adjointness of the Pauli operator. The proof is based on the work of Udim [32, theorem 4.2], showing that a consequence of (1.5) is the $\left(\mathbf{p}_{A}\right)^{2}$-boundedness of $e \boldsymbol{\sigma} \mathbf{B}$ with bound zero. This property establishes the required essential self-adjointness according to the Kato-Rellich theorem [28, theorem X.12].

From the symmetry of $\sigma \mathbf{p}_{A}$, we have $\left(\psi,\left(\sigma \mathbf{p}_{A}\right)^{2} \psi\right)=\left\|\boldsymbol{\sigma} \mathbf{p}_{A} \psi\right\|^{2} \geqslant 0$ for $\psi \in$ $C_{0}^{\infty}\left(\mathbb{R}^{3}\right) \otimes \mathbb{C}^{2}$. Thus, $\left(\sigma \mathbf{p}_{A}\right)^{2}$ is a non-negative, self-adjoint operator (by means of closure). It follows [18, theorem 3.35, p 281] that this is also true for

$$
\begin{equation*}
E_{A}:=\left|D_{A}\right|=\sqrt{\left(\sigma \mathbf{p}_{A}\right)^{2}+m^{2}} \geqslant m \tag{1.6}
\end{equation*}
$$

which is the kinetic energy term of the pseudorelativistic operator that will be introduced in section 2.

Due to the positron degrees of freedom, the Dirac operator H has a spectrum which is unbounded from below. However, in the spectroscopy of static or slowly moving ions, pair creation plays no role. One of the current techniques, used in the field-free case $(\mathbf{A}=0)$, to construct from H an operator which solely describes the electronic states is the application of a unitary transformation scheme to H (see, e.g., [7, 15, 30]). A perturbative expansion in the central field strength γ provides pseudorelativistic operators which are block diagonal in the free (i.e., $Z=0$) electronic positive and negative spectral subspaces up to a given order in γ. The zero- plus first-order term in this series, the Brown-Ravenhall operator, has obtained widespread interest because it is simply the restriction of H to the positive spectral subspace. The terms up to second order, comprising the Jansen-Hess operator, provide, however, a much better representation of the bound-state energies [35]. This operator has been proven to be positive with essential spectrum $\sigma_{\mathrm{ess}}=[m, \infty)$ for sufficiently small $\gamma[4,12,14]$.

If $\mathbf{A} \neq 0$, investigations are scarce. It is known that in the absence of the Coulomb field V, the Dirac operator can be block diagonalized by means of a Foldy-Wouthuysen transformation U_{0} [6, section 3.1],

$$
\begin{align*}
& U_{0} D_{A} U_{0}^{-1}=\beta E_{A} \\
& U_{0}:=\left(\frac{m+E_{A}}{2 E_{A}}\right)^{\frac{1}{2}}+\frac{\beta \boldsymbol{\alpha} \mathbf{p}_{A}}{\left(2 E_{A}\left(m+E_{A}\right)\right)^{\frac{1}{2}}} . \tag{1.7}
\end{align*}
$$

U_{0}^{-1} is obtained from U_{0} by replacing $\beta \boldsymbol{\alpha} \mathbf{p}_{A}$ by $\alpha \mathbf{p}_{A} \beta=-\beta \boldsymbol{\alpha} \mathbf{p}_{A}$. For later use, we note that E_{A} commutes with $U_{0},\left[E_{A}, U_{0}\right]=0$, because $\left[\beta \boldsymbol{\alpha} \mathbf{p}_{A}, E_{A}\right]=\left[\beta, E_{A}\right] \alpha \mathbf{p}_{A}+\beta\left[\alpha \mathbf{p}_{A}, E_{A}\right]$ vanishes (the first commutator being zero since E_{A} is block diagonal). There are also
a few studies of the 'magnetic' Brown-Ravenhall operator showing that this operator is either unbounded from below (if \mathbf{A} is disregarded in the projector onto the positive spectral subspace [10]) or that it is positive for $\gamma<\frac{2}{\pi}$ (if \mathbf{A} is not disregarded) which assures stability of relativistic matter in this model [22, 23].

The aim of the present work is to derive the 'magnetic' Jansen-Hess operator $H^{(2)}$ from the corresponding transformation scheme (section 2), to show under which conditions it is positive (theorem 1, section 4) and to provide criteria for $\sigma_{\mathrm{ess}}=[m, \infty)+E_{f}$ to hold (theorem 3, section 6). An auxiliary step is the invariance of the essential spectrum upon removal of the Jansen-Hess potential (theorem 2, section 5). Consequently, theorem 3 also holds for the 'magnetic' Brown-Ravenhall operator (which results from dropping the second-order term in γ). The basic difference from the $\mathbf{A}=0$ case in constructing and analysing $H^{(2)}$ is due to the fact that the kinetic energy operator E_{A} is no longer a multiplicator in momentum space (as is $E_{A=0}=: E_{P}=\sqrt{p^{2}+m^{2}}$). Hence, formal techniques have to replace Fourier analysis (sections 2 and 3). Moreover, in contrast to the 'magnetic' Brown-Ravenhall operator, the required bounds on γ for self-adjointness and positivity depend nontrivially on the magnetic field. Therefore, these bounds are inferior to the $\mathbf{A}=0$ case. With $\gamma \rightarrow 0$ for $B \rightarrow \infty$, our analysis makes the Jansen-Hess operator an unlikely candidate for stability of matter. However, for laboratory magnetic fields up to $10^{12} \mathrm{G}$ this operator should be superior to the 'magnetic' Brown-Ravenhall operator regarding electron spectroscopy.

2. The transformed Dirac operator

Let us define the projector onto the positive magnetic spectral subspace of the electron (defined by switching off V but fully including \mathbf{A}),

$$
\begin{equation*}
\Lambda_{A,+}:=\frac{1}{2}\left(1+\frac{D_{A}}{\left|D_{A}\right|}\right) . \tag{2.1}
\end{equation*}
$$

For any $\varphi_{+} \in \mathcal{H}_{+, 1}:=\Lambda_{A,+}\left(H_{1}\left(\mathbb{R}^{3}\right) \otimes \mathbb{C}^{4}\right)$ (where the Sobolev space $H_{1}\left(\mathbb{R}^{3}\right) \otimes \mathbb{C}^{4}$ is the domain of D_{A}), we have trivially $\Lambda_{A,+} \varphi_{+}=\varphi_{+}$and $D_{A} \varphi_{+}=E_{A} \varphi_{+}$, and one easily verifies that with $\psi:=\binom{u}{0}, u \in H_{1}\left(\mathbb{R}^{3}\right) \otimes \mathbb{C}^{2}, \varphi_{+}$can be expressed as

$$
\begin{equation*}
\varphi_{+}=U_{0}^{-1} \psi \tag{2.2}
\end{equation*}
$$

(namely using (1.7), $\left.D_{A}\left(U_{0}^{-1} \psi\right)=U_{0}^{-1} \beta E_{A} \psi=U_{0}^{-1} E_{A}(\beta \psi)=U_{0}^{-1} E_{A} \psi=E_{A} U_{0}^{-1} \psi\right)$.
Let $H_{V}:=D_{A}+V$. We construct a unitary transformation U such that the transformed Dirac operator decouples the magnetic spectral subspaces of the electron,

$$
\begin{equation*}
U^{-1} H U=\Lambda_{A,+}\left(U^{-1} H_{V} U\right) \Lambda_{A,+}+\Lambda_{A,-}\left(U^{-1} H_{V} U\right) \Lambda_{A,-}+E_{f} \tag{2.3}
\end{equation*}
$$

with $\Lambda_{A,+}$ from (2.1) and $\Lambda_{A,-}=1-\Lambda_{A,+}$. The choice of the projector $\Lambda_{A,+}$ in (2.3) preserves the gauge invariance of the transformed operator [22]. The field energy E_{f} is a constant which is not affected by U. If one defines P_{+}as the projector onto the positive spectral subspace of the Dirac operator H_{V}, then (2.3) is equivalent to the condition

$$
\begin{equation*}
U^{-1} P_{+} U=\Lambda_{A,+} \tag{2.4}
\end{equation*}
$$

If, in addition, the Foldy-Wouthuysen transformation U_{0} is applied, the desired block-diagonal operator is obtained as a consequence of $U_{0} \Lambda_{A,+} U_{0}^{-1}=\frac{1}{2}(1+\beta)$ (see (1.7) and the discussion below):

$$
\begin{align*}
& M=\frac{1}{2}(1+\beta) M \frac{1}{2}(1+\beta)+\frac{1}{2}(1-\beta) M \frac{1}{2}(1-\beta)=:\left(\begin{array}{ll}
h & 0 \\
0 & g
\end{array}\right) \tag{2.5}\\
& M:=U_{0} U^{-1} H_{V} U U_{0}^{-1}
\end{align*}
$$

where h, g are matrices in $\mathbb{C}^{2,2}$.

Rather than solving (2.4) for U (which was recently achieved in the field-free case [29, 30]), we start from (2.3) and apply a technique [15] which is equivalent to the Douglas-Kroll transformation scheme [7, 16]. We formally expand $U=\exp \left(\mathrm{i} \sum_{k=1}^{\infty} B_{k}\right)$, where B_{k} is an operator which contains the potential V to k th order, and we are interested in the transformed operator which is block diagonal up to second order in the potential strength γ. Denoting by $H^{(2)}$ the second-order solution of (2.3) restricted to $\mathcal{H}_{+, 1}$ (the 'magnetic' Jansen-Hess operator) we have, in analogy to the $\mathbf{A}=0$ case,

$$
\begin{equation*}
H^{(2)}:=\Lambda_{A,+}\left\{D_{A}+V+\frac{\mathrm{i}}{2}\left[W_{1}, B_{1}\right]+E_{f}\right\} \Lambda_{A,+} \tag{2.6}
\end{equation*}
$$

with $W_{1}:=\Lambda_{A,+} V \Lambda_{A,-}+\Lambda_{A,-} V \Lambda_{A,+}$ being the off-diagonal part of $V . B_{1}$ is determined from the condition

$$
\begin{equation*}
W_{1}=-\mathrm{i}\left[D_{A}, B_{1}\right] . \tag{2.7}
\end{equation*}
$$

Alternatively, we can obtain B_{1} from (2.4). Using the integral representation of $P_{+}[18$, chapter II.1.4] and expanding P_{+}in terms of V by means of the second resolvent identity, we have

$$
\begin{align*}
P_{+} & =\frac{1}{2}+\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \eta \frac{1}{D_{A}+V+\mathrm{i} \eta} \\
& =\Lambda_{A,+}-\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \eta \frac{1}{D_{A}+\mathrm{i} \eta} V \frac{1}{D_{A}+V+\mathrm{i} \eta}=\Lambda_{A,+}+F_{A}+R \tag{2.8}
\end{align*}
$$

where $\Lambda_{A,+}$ and F_{A} are the zero- and first-order terms, respectively, while the remainder R is of higher order in V. Defining $\tilde{D}_{A}:=D_{A} /\left|D_{A}\right|$ and solving (2.4) up to first order in V, we get

$$
\begin{equation*}
2 F_{A}-\mathrm{i} B_{1} \tilde{D}_{A}+\mathrm{i} \tilde{D}_{A} B_{1}=0 \tag{2.9}
\end{equation*}
$$

Multiplication of (2.9) by \tilde{D}_{A} from the left and, respectively, from the right and addition of the resulting equations provides the useful relation

$$
\begin{equation*}
F_{A} \tilde{D}_{A}=-\tilde{D}_{A} F_{A} . \tag{2.10}
\end{equation*}
$$

Whereas (2.9) is also only an implicit equation for B_{1}, a trial for B_{1} can be found from the formal solution U of (2.4) which is completely analogous to the field-free case [29], $\left.U^{-1}=\left[1+\left(\Lambda_{A,+}-\Lambda_{A,-}\right)\left(P_{+}-\Lambda_{A,+}\right)\right]\left(1-\left(P_{+}-\Lambda_{A,+}\right)^{2}\right)^{-\frac{1}{2}}\right)$. An expansion of this formal solution up to first order in V leads to

$$
\begin{equation*}
B_{1}=\mathrm{i} \tilde{D}_{A} F_{A} \tag{2.11}
\end{equation*}
$$

With the help of (2.10), it is easily verified that (2.11) is indeed a solution to (2.9). Insertion into (2.6) finally results in

$$
\begin{align*}
& H^{(2)}=\Lambda_{A,+}\left\{D_{A}+V+B_{2 m}+E_{f}\right\} \Lambda_{A,+} \\
& B_{2 m}:=\frac{1}{4}\left[V F_{A} \tilde{D}_{A}+\tilde{D}_{A} F_{A} V+\tilde{D}_{A} V F_{A}+F_{A} V \tilde{D}_{A}\right] \tag{2.12}
\end{align*}
$$

3. Relative form boundedness of the Jansen-Hess potential

In order to establish self-adjointness of $H^{(2)}$, the form boundedness of the potential contributions to $H^{(2)}$ (restricted to the 'positive' space $\mathcal{H}_{+, 1}$) relative to the kinetic energy operator E_{A} is needed. We have to fix the potential strength γ such that this bound becomes smaller than one. We start by showing the relative boundedness of the linear term (in γ) V, then we prove the boundedness of the operator B_{1} (introduced by the transformation U) and subsequently the relative boundedness of the quadratic term. The resulting form boundedness
of the Jansen-Hess potential relative to E_{A} is stated in lemma 1, and the condition for $H^{(2)}$ being self-adjoint is part of theorem 1.

3.1. E_{A}-boundedness of V and boundedness of B_{1}

A basic ingredient is the inequality $\left(\varphi, \exp \left(-\mathbf{p}_{A}^{2} t\right) \varphi\right) \leqslant\left(\varphi, \exp \left(-p^{2} t\right) \varphi\right)$, valid for $t \geqslant 0$ and $\mathbf{A} \in L_{2, \text { loc }}\left(\mathbb{R}^{3}\right)$ ([1] and references therein). Making use of $\left(\varphi, p^{2} \varphi\right)=-\lim _{t \rightarrow 0}$ $\left(\varphi, \frac{\exp \left(-t p^{2}\right)-1}{t} \varphi\right)$ [24], one derives

$$
\begin{equation*}
\left(\varphi,(\mathbf{p}-e \mathbf{A})^{2} \varphi\right) \geqslant\left(\varphi, p^{2} \varphi\right) \tag{3.1}
\end{equation*}
$$

which is known as diamagnetic inequality (see also earlier work [13] for the related inequality $\left.\left(|\varphi|, p^{2}|\varphi|\right) \leqslant\left(\varphi,(\mathbf{p}-e \mathbf{A})^{2} \varphi\right)\right)$. A consequence is

$$
\begin{equation*}
|\mathbf{p}-e \mathbf{A}| \geqslant p \tag{3.2}
\end{equation*}
$$

Further, let $\mathcal{O}_{-}:=\frac{1}{2}(|\mathcal{O}|-\mathcal{O}) \geqslant 0$ be the negative part of an operator \mathcal{O} and $\operatorname{tr} \mathcal{O}_{-}$its trace (i.e., the sum over the absolute values of the negative eigenvalues of \mathcal{O} times the spin degrees of freedom). Then by means of (3.1) and the Lieb-Thirring inequality [21,23] for any $\mu>0$ and $d>0$ one has
$\operatorname{tr}\left[\mu(\mathbf{p}-e \mathbf{A})^{2}+e \boldsymbol{\sigma} \mathbf{B}\right]_{-}^{d} \leqslant \mu^{d} \operatorname{tr}\left[p^{2}+\frac{e \boldsymbol{\sigma} \mathbf{B}}{\mu}\right]_{-}^{d} \leqslant 2 \mu^{d} L_{d, 3} \int_{\mathbb{R}^{3}}\left(\frac{e|\mathbf{B}|}{\mu}\right)^{d+\frac{3}{2}} \mathrm{~d} \mathbf{x}$
with constants $L_{\frac{1}{2}, 3} \leqslant 0.06003$ and $L_{1,3} \leqslant 0.0403$.
Then, following [23] we get the form estimate for $\varphi \in H_{1}\left(\mathbb{R}^{3}\right) \otimes \mathbb{C}^{4},\|\varphi\|=1$, using Kato's inequality $\frac{1}{x} \leqslant \frac{\pi}{2} p$ and (3.2) as well as the trace inequality for non-negative, self-adjoint operators, $\operatorname{tr}\left(\mathcal{O}_{1}-\mathcal{O}_{2}\right)_{-} \leqslant \operatorname{tr}\left(\mathcal{O}_{1}^{2}-\mathcal{O}_{2}^{2}\right)_{-}^{\frac{1}{2}}$,

$$
\begin{align*}
\left(\varphi, E_{A} \varphi\right)-\left(\varphi, \frac{\gamma_{0}}{x} \varphi\right) & \geqslant\left(\varphi, \sqrt{E_{A}^{2}-m^{2}} \varphi\right)-\frac{\gamma_{0} \pi}{2}(\varphi,|\mathbf{p}-e \mathbf{A}| \varphi) \\
& \geqslant-\operatorname{tr}\left[\left(E_{A}^{2}-m^{2}\right)-\left(\frac{\gamma_{0} \pi}{2}|\mathbf{p}-e \mathbf{A}|\right)^{2}\right]_{-}^{\frac{1}{2}} \\
& \geqslant-2 L_{\frac{1}{2}, 3} \frac{e^{2}}{\left[1-\left(\gamma_{0} \pi / 2\right)^{2}\right]^{\frac{3}{2}}}\|\mathbf{B}\|^{2} \tag{3.4}
\end{align*}
$$

for $\gamma_{0}<\frac{2}{\pi}$.
Moreover, using $\operatorname{tr} \mathcal{O}_{-} \leqslant\left(\operatorname{tr} \mathcal{O}_{-}^{\frac{1}{2}}\right)^{2}[27, \mathrm{p} 210]$ and Hardy's inequality $\frac{1}{x^{2}} \leqslant 4 p^{2}$,

$$
\begin{align*}
\left\|E_{A} \varphi\right\|^{2}-\left\|\frac{\gamma_{1}}{x} \varphi\right\|^{2} & \geqslant\left(\varphi,\left[\left(1-4 \gamma_{1}^{2}\right)(\mathbf{p}-e \mathbf{A})^{2}-e \boldsymbol{\sigma} \mathbf{B}\right] \varphi\right) \\
& \geqslant-\left(\operatorname{tr}\left[\left(1-4 \gamma_{1}^{2}\right)(\mathbf{p}-e \mathbf{A})^{2}-e \boldsymbol{\sigma} \mathbf{B}\right]_{-}^{\frac{1}{2}}\right)^{2} \\
& \geqslant-\left[2 L_{\frac{1}{2}, 3} \frac{e^{2}}{\left[1-4 \gamma_{1}^{2}\right]^{\frac{3}{2}}}\|\mathbf{B}\|^{2}\right]^{2} \tag{3.5}
\end{align*}
$$

for $\gamma_{1}<\frac{1}{2}$. Thus, we obtain the E_{A}-boundedness of the potential V in the form and in the norm [28, p 162],
$|(\varphi, V \varphi)| \leqslant \frac{\gamma}{\gamma_{0}}\left(\varphi, E_{A} \varphi\right)+\gamma c_{B}(\varphi, \varphi), \quad c_{B}:=\frac{2}{\gamma_{0}} L_{\frac{1}{2}, 3} \frac{e^{2}}{\left[1-\left(\gamma_{0} \pi / 2\right)^{2}\right]^{\frac{3}{2}}}\|\mathbf{B}\|^{2}$
and

$$
\begin{equation*}
\|V \varphi\| \leqslant \frac{\gamma}{\gamma_{1}}\left\|E_{A} \varphi\right\|+\gamma d_{B}\|\varphi\|, \quad d_{B}:=\frac{2}{\gamma_{1}} L_{\frac{1}{2}, 3} \frac{e^{2}}{\left[1-4 \gamma_{1}^{2}\right]^{\frac{3}{2}}}\|\mathbf{B}\|^{2} . \tag{3.7}
\end{equation*}
$$

The boundedness of B_{1} is a consequence of the boundedness of F_{A}, since

$$
\begin{equation*}
\left\|B_{1}\right\| \leqslant\left\|\tilde{D}_{A}\right\|\left\|F_{A}\right\|=\left\|F_{A}\right\| . \tag{3.8}
\end{equation*}
$$

With (3.6) at hand, the boundedness of F_{A} is easy to show. Following the proof of [30, lemma 1], we have for $\varphi_{+}, \psi_{+} \in \mathcal{H}_{+, 1}$ from (2.8)

$$
\begin{align*}
\left\|F_{A}\right\| & =\frac{1}{2 \pi}\left\|\int_{-\infty}^{\infty} \mathrm{d} \eta \frac{1}{D_{A}+\mathrm{i} \eta} V \frac{1}{D_{A}+\mathrm{i} \eta}\right\| \\
& \leqslant \frac{\gamma}{2 \pi} \sup _{\left\|\varphi_{+}\right\|=\left\|\psi_{+}\right\|=1} \int_{-\infty}^{\infty} \mathrm{d} \eta\left|\left(\varphi_{+}, \frac{1}{D_{A}+\mathrm{i} \eta} \frac{1}{x^{1 / 2}} \cdot \frac{1}{x^{1 / 2}} \frac{1}{D_{A}+\mathrm{i} \eta} \psi_{+}\right)\right| \\
& \leqslant \frac{\gamma}{2 \pi} \sup _{\left\|\varphi_{+}\right\|=\left\|\psi_{+}\right\|=1} \int_{-\infty}^{\infty} \mathrm{d} \eta\left\|\frac{1}{x^{1 / 2}} \frac{1}{D_{A}-\mathrm{i} \eta} \varphi_{+}\right\| \cdot\left\|\frac{1}{x^{1 / 2}} \frac{1}{D_{A}+\mathrm{i} \eta} \psi_{+}\right\| . \tag{3.9}
\end{align*}
$$

An application of the Schwarz inequality leads to

$$
\begin{equation*}
\left\|F_{A}\right\| \leqslant \frac{\gamma}{2 \pi} \sup _{\left\|\varphi_{+}\right\|=\left\|\psi_{+}\right\|=1}\left(\int_{-\infty}^{\infty} \mathrm{d} \eta\left\|\frac{1}{x^{1 / 2}} \frac{1}{D_{A}-\mathrm{i} \eta} \varphi_{+}\right\|^{2}\right)^{\frac{1}{2}} \cdot\left(\int_{-\infty}^{\infty} \mathrm{d} \eta\left\|\frac{1}{x^{1 / 2}} \frac{1}{D_{A}+\mathrm{i} \eta} \psi_{+}\right\|^{2}\right)^{\frac{1}{2}} \tag{3.10}
\end{equation*}
$$

Setting $\varphi:=\frac{1}{D_{A}-\mathrm{i} \eta} \varphi_{+}$(note that $D_{A}^{2}>0$ for $m \neq 0$ such that $\left(D_{A}-\mathrm{i} \eta\right)^{-1}$ is bounded for $\eta \in \mathbb{R}$), we have from (3.6)

$$
\begin{equation*}
\left\|\frac{1}{x^{\frac{1}{2}}} \frac{1}{D_{A}-\mathrm{i} \eta} \varphi_{+}\right\|^{2}=\left(\varphi, \frac{1}{x} \varphi\right) \leqslant \frac{1}{\gamma_{0}}\left(\varphi, E_{A} \varphi\right)+c_{B}(\varphi, \varphi) \tag{3.11}
\end{equation*}
$$

and thus we get for the two (equal) integrals in (3.10), using $D_{A} \varphi_{+}=E_{A} \varphi_{+}$,

$$
\begin{align*}
\int_{-\infty}^{\infty} \mathrm{d} \eta \| \frac{1}{x^{1 / 2}} & \frac{1}{D_{A}-\mathrm{i} \eta} \varphi_{+} \|^{2} \leqslant \frac{1}{\gamma_{0}}\left(\varphi_{+}, \int_{-\infty}^{\infty} \mathrm{d} \eta \frac{1}{E_{A}+\mathrm{i} \eta} E_{A} \frac{1}{E_{A}-\mathrm{i} \eta} \varphi_{+}\right) \\
& +c_{B}\left(\varphi_{+}, \int_{-\infty}^{\infty} \mathrm{d} \eta \frac{1}{E_{A}^{2}+\eta^{2}} \varphi_{+}\right)=\frac{1}{\gamma_{0}} \cdot \pi\left\|\varphi_{+}\right\|^{2}+c_{B} \pi\left(\varphi_{+}, \frac{1}{E_{A}} \varphi_{+}\right) . \tag{3.12}
\end{align*}
$$

We estimate $E_{A} \geqslant m$ and finally obtain the boundedness of $\left\|F_{A}\right\|$:

$$
\begin{equation*}
\left\|F_{A}\right\| \leqslant \frac{\gamma}{2 \gamma_{0}}\left(1+c_{B} \frac{\gamma_{0}}{m}\right) . \tag{3.13}
\end{equation*}
$$

We note that due to the existence of zero modes [25] the lower bound m of E_{A} is sharp: there is a field $\mathbf{B}_{0}=\nabla \times \mathbf{A}_{0} \in L_{2}\left(\mathbb{R}^{3}\right)$, satisfying (1.4) and hence (1.5), and a function $\psi_{0} \in H_{1}\left(\mathbb{R}^{3}\right) \backslash\{0\} \otimes \mathbb{C}^{2}$ such that

$$
\begin{equation*}
\boldsymbol{\sigma}\left(\mathbf{p}-e \mathbf{A}_{0}\right) \psi_{0}=0 \tag{3.14}
\end{equation*}
$$

From this it follows that the 4 -spinor $\binom{\psi_{0}}{0}$ obeys $D_{A_{0}}\binom{\psi_{0}}{0}=m\binom{\psi_{0}}{0}$, i.e. it lies in the positive magnetic spectral subspace of the electron, and m is the lowest positive eigenvalue of $D_{A_{0}}$.

3.2. Relative boundedness of the Jansen-Hess potential

From (2.12) we get for $\psi_{+} \in \mathcal{H}_{+, 1}$, with $\left\|\Lambda_{A,+}\right\|=1$,

$$
\begin{align*}
\left\|\left(4 \Lambda_{A,+} B_{2 m} \Lambda_{A,+}\right) \psi_{+}\right\| & \leqslant\left\|4 B_{2 m} \psi_{+}\right\| \\
& \leqslant\left\|V F_{A} \tilde{D}_{A} \psi_{+}\right\|+\left\|\tilde{D}_{A} F_{A} V \psi_{+}\right\|+\left\|\tilde{D}_{A} V F_{A} \psi_{+}\right\|+\left\|F_{A} V \tilde{D}_{A} \psi_{+}\right\| . \tag{3.15}
\end{align*}
$$

We shall estimate each of these four terms separately, using the boundedness (3.13) of F_{A} and the relative boundedness (3.7) of V. First, we show

$$
\begin{equation*}
\left[D_{A}, F_{A}\right]=\frac{1}{2}\left[\tilde{D}_{A}, V\right] \tag{3.16}
\end{equation*}
$$

We multiply (2.7) with \tilde{D}_{A} and insert B_{1} from (2.11). This gives

$$
\begin{equation*}
\tilde{D}_{A} W_{1}=-\mathrm{i} \tilde{D}_{A}\left(\mathrm{i} D_{A} \tilde{D}_{A} F_{A}-\mathrm{i} \tilde{D}_{A} F_{A} D_{A}\right)=\left[D_{A}, F_{A}\right] \tag{3.17}
\end{equation*}
$$

Inserting for W_{1} (below (2.6)) results in (3.16).
Using that $\left\|\tilde{D}_{A}\right\|=1$ and $\tilde{D}_{A} \psi_{+}=\psi_{+}$, (3.15) gives

$$
\begin{equation*}
\left\|4 B_{2 m} \psi_{+}\right\| \leqslant 2\left\|V F_{A} \psi_{+}\right\|+2\left\|F_{A}\right\|\left\|V \psi_{+}\right\| . \tag{3.18}
\end{equation*}
$$

With (3.7) and (3.16), defining $F_{A} \psi_{+}=: \varphi$, we estimate the first term by

$$
\begin{align*}
\left\|V F_{A} \psi_{+}\right\| & \leqslant \frac{\gamma}{\gamma_{1}}\left\|\left|D_{A}\right| \varphi\right\|+\gamma d_{B}\|\varphi\| \leqslant \frac{\gamma}{\gamma_{1}}\left\|D_{A} F_{A} \psi_{+}\right\|+\gamma d_{B}\left\|F_{A}\right\|\left\|\psi_{+}\right\| \\
& \leqslant \frac{\gamma}{\gamma_{1}}\left\{\left\|F_{A}\right\|\left\|D_{A} \psi_{+}\right\|+\frac{1}{2}\left\|\tilde{D}_{A}\right\|\left\|V \psi_{+}\right\|+\frac{1}{2}\left\|V \psi_{+}\right\|\right\}+\gamma d_{B}\left\|F_{A}\right\|\left\|\psi_{+}\right\| \tag{3.19}
\end{align*}
$$

Thus, we get

$$
\begin{equation*}
\left\|B_{2 m} \psi_{+}\right\| \leqslant \frac{\gamma}{\gamma_{1}}\left(\frac{\gamma}{2 \gamma_{1}}+\left\|F_{A}\right\|\right)\left\|D_{A} \psi_{+}\right\|+\gamma d_{B}\left(\frac{\gamma}{2 \gamma_{1}}+\left\|F_{A}\right\|\right)\left\|\psi_{+}\right\| . \tag{3.20}
\end{equation*}
$$

Using (3.13) this results in

$$
\begin{align*}
& \left\|B_{2 m} \psi_{+}\right\| \leqslant c\left\|E_{A} \psi_{+}\right\|+C\left\|\psi_{+}\right\| \\
& c:=\frac{\gamma^{2}}{2 \gamma_{1}}\left(\frac{1}{\gamma_{1}}+\frac{1}{\gamma_{0}}+\frac{c_{B}}{m}\right), \quad C:=\gamma^{2} \frac{d_{B}}{2}\left(\frac{1}{\gamma_{1}}+\frac{1}{\gamma_{0}}+\frac{c_{B}}{m}\right) . \tag{3.21}
\end{align*}
$$

Note that both constants, c and C, depend on the field energy through $\|\mathbf{B}\|=\left(8 \pi E_{f}\right)^{\frac{1}{2}}$.
From the E_{A}-boundedness of $B_{2 m}$ follows the E_{A}-form boundedness of $B_{2 m}$ with the same relative bound c [28, p 168]. Thus, we have proven

Lemma 1. Let $H^{(2)}=D_{A}+V+B_{2 m}+E_{f}$ be the 'magnetic' Jansen-Hess operator acting on $\mathcal{H}_{+, 1}$. Then $V+B_{2 m}$ is E_{A}-form bounded,

$$
\begin{equation*}
\left|\left(\psi_{+},\left(V+B_{2 m}\right) \psi_{+}\right)\right| \leqslant\left(\frac{\gamma}{\gamma_{0}}+c\right)\left(\psi_{+}, E_{A} \psi_{+}\right)+\tilde{C}\left(\psi_{+}, \psi_{+}\right) \tag{3.22}
\end{equation*}
$$

with $c=\frac{\gamma^{2}}{2 \gamma_{1}}\left(\frac{1}{\gamma_{1}}+\frac{1}{\gamma_{0}}+\frac{c_{B}}{m}\right)$, where c_{B} and d_{B} are defined in (3.6) and (3.7), and \tilde{C} is some $\|\mathbf{B}\|$-dependent constant. (The parameters $\gamma_{0}<\frac{2}{\pi}$ and $\gamma_{1}<\frac{1}{2}$ can be chosen arbitrarily.)

4. Positivity of $\boldsymbol{H}^{(2)}$

Let $\delta>0$ and recall that $E_{A} \geqslant m$ is bounded below. If in (3.21), the δE_{A}-bound $\frac{c}{\delta}$ of $B_{2 m}$ is smaller than unity, then according to [18, theorem 4.11, p 291] $\delta E_{A}+B_{2 m}$ is also bounded below by means of

$$
\begin{equation*}
\left(\psi_{+},\left(\delta E_{A}+B_{2 m}\right) \psi_{+}\right) \geqslant\left(\delta m-\max \left\{\frac{C}{1-c / \delta}, C+c m\right\}\right)\left(\psi_{+}, \psi_{+}\right) \tag{4.1}
\end{equation*}
$$

where the constants c and C are defined in (3.21).
Using the above results, we can estimate

$$
\begin{align*}
\left(\psi_{+}, H^{(2)} \psi_{+}\right) & =\left(\psi_{+}, E_{A} \psi_{+}\right)-\left|\left(\psi_{+}, V \psi_{+}\right)\right|+\left(\psi_{+}, B_{2 m} \psi_{+}\right)+E_{f}\left(\psi_{+}, \psi_{+}\right) \\
& \geqslant\left(\psi_{+},\left(\left(1-\frac{\gamma}{\gamma_{0}}\right) E_{A}+B_{2 m}\right) \psi_{+}\right)-\gamma c_{B}\left(\psi_{+}, \psi_{+}\right)+E_{f}\left(\psi_{+}, \psi_{+}\right) \\
& \geqslant\left(\left(1-\frac{\gamma}{\gamma_{0}}\right) m-\max \left\{\frac{C}{1-c /\left(1-\gamma / \gamma_{0}\right)}, C+c m\right\}-\gamma c_{B}+E_{f}\right)\left(\psi_{+}, \psi_{+}\right) \tag{4.2}
\end{align*}
$$

This results in
Theorem 1. Let $H^{(2)}=D_{A}+V+B_{2 m}+E_{f}$ be the 'magnetic' Jansen-Hess operator acting on $\mathcal{H}_{+, 1}$. If the E_{A}-form bound of $V+B_{2 m}$ is smaller than unity,

$$
\begin{equation*}
\frac{\gamma}{\gamma_{0}}+c<1 \tag{4.3}
\end{equation*}
$$

then $H^{(2)}$ is bounded below and thus extends to a self-adjoint operator on $\Lambda_{A,+}\left(L_{2}\left(\mathbb{R}^{3}\right) \otimes \mathbb{C}^{4}\right)$. If in addition

$$
\begin{equation*}
\left(1-\frac{\gamma}{\gamma_{0}}\right) m-\gamma c_{B}-\max \left\{\frac{C\left(1-\gamma / \gamma_{0}\right)}{1-\gamma / \gamma_{0}-c}, C+c m\right\}+E_{f}>0 \tag{4.4}
\end{equation*}
$$

then $H^{(2)}$ is positive. This restricts the potential strength to $\gamma<\gamma_{c}$ where $\gamma_{c} \leqslant 0.353$ depending on the magnetic field \mathbf{B}.

In order to derive the conditions on the bound for γ which are required for theorem 1, we first consider the case $\mathbf{B}=0$. Then, we can set $\gamma_{0}=\frac{2}{\pi}$ and $\gamma_{1}=\frac{1}{2}$, and both inequalities, (4.3) and (4.4), are satisfied for $\gamma<\gamma_{c}^{(0)}$, where $\gamma_{c}^{(0)}=0.353(Z \leqslant 48)$ is a solution of

$$
\begin{equation*}
\frac{\gamma}{\gamma_{0}}+c=\gamma \frac{\pi}{2}+\gamma^{2}\left(2+\frac{\pi}{2}\right)=1 \tag{4.5}
\end{equation*}
$$

This is considerably smaller than the critical γ obtained earlier for the field-free case ($\gamma_{c}^{(0)}=1.006[4]$), where one is able to work in momentum space and to use Mellin transform techniques.

When \mathbf{B} is turned on, the bound on γ from the self-adjointness condition decreases slowly. For example, if $\|\mathbf{B}\|=2.5$, then by optimizing γ_{0} and γ_{1} one gets from (4.3) $\gamma_{c}=0.335\left(\gamma_{0}=0.6, \gamma_{1}=0.498\right)$, whereas positivity is guaranteed for $\gamma<0.316\left(\gamma_{0}=\right.$ $\left.0.6, \gamma_{1}=0.47\right)$. The relativistic ground-state binding energy of an electron, $\left|E_{g}-m\right|:=$ $m\left|\sqrt{1-\gamma^{2}}-1\right|=0.0644$ (in units where $m=1$, using $\gamma=\gamma_{c}^{(0)}$), may be used as a reference value with which to compare the field energy E_{f}. Even for quite large fields ${ }^{1}$, e.g. $\|\mathbf{B}\|=10$ (where $E_{f} \approx 60\left|E_{g}-m\right|$), the critical potential strength (with

[^0]$\left.\gamma_{0}=0.54, \gamma_{1}=0.499\right)$ has only slightly decreased, $\gamma_{c}=0.299(Z<41)$ while $H^{(2)}>0$ for $\gamma<0.275\left(\gamma_{0}=0.54, \gamma_{1}=0.45\right)$.

However, when $\|\mathbf{B}\|$ becomes extremely large (but still is finite), our estimates (resulting in (4.4)) no longer guarantee positivity because C is of fourth order in $\|\mathbf{B}\|$ and eventually dominates E_{f}. In order to remedy this deficiency, different estimates for the E_{A}-boundedness of the potential V are required.

For the magnetic fields which are $\left(\mathbf{p}_{A}\right)^{2}$-bounded with bound $\kappa \rightarrow 0$ (and hence also $\left(\mathbf{p}_{A}\right)^{2}$-form bounded with the same bound), we have from (1.3)

$$
\begin{align*}
(\varphi,|\mathbf{B}| \varphi) & \leqslant \kappa\left(\varphi, \mathbf{p}_{A}^{2} \varphi\right)+C_{\kappa}(\varphi, \varphi) \\
& \leqslant \kappa\left(\varphi, E_{A}^{2} \varphi\right)+\kappa e(\varphi,|\mathbf{B}| \varphi)+C_{\kappa}(\varphi, \varphi) \tag{4.6}
\end{align*}
$$

proving the E_{A}^{2}-form boundedness of $|\mathbf{B}|$ with bound $\kappa /(1-\kappa e)$. It can be shown [34, proof of theorem 10.17] that the constant C_{κ} depends linearly on $\sup _{\mathbf{x} \in \mathbb{R}}\left(N_{B}(\mathbf{x})\right)^{\frac{1}{2}}$ which in turn can be estimated above by $\|\mathbf{B}\|$. So, we get from Hardy's inequality and (3.1)

$$
\begin{equation*}
\left(\varphi, V^{2} \varphi\right) \leqslant 4 \gamma^{2}\left(\varphi, \mathbf{p}_{A}^{2} \varphi\right) \leqslant 4 \gamma^{2}\left(\varphi, E_{A}^{2} \varphi\right)+4 \gamma^{2} e(\varphi,|\mathbf{B}| \varphi) \tag{4.7}
\end{equation*}
$$

Using (4.6), we eventually obtain the estimate

$$
\begin{equation*}
\|V \varphi\| \leqslant 2 \gamma\left(1+\frac{\kappa e}{1-\kappa e}\right)^{\frac{1}{2}}\left\|E_{A} \varphi\right\|+2 \gamma\left(\frac{e}{1-\kappa e}\right)^{\frac{1}{2}} C_{\kappa}^{\frac{1}{2}}\|\varphi\| \tag{4.8}
\end{equation*}
$$

in place of (3.7). Note that κ can be taken arbitrarily close to 0 such that the E_{A}-bound of V agrees with the one in (3.7). However, the last term in (4.8) increases only $\sim\|\mathbf{B}\|^{\frac{1}{2}}$. A similar estimate replaces (3.6) for the E_{A}-form boundedness of V.

In order to get explicit constants, let us for the moment assume that \mathbf{B} is bounded with $\|\mathbf{B}\|_{\infty} \leqslant\|\mathbf{B}\|$. Then, the last term in (4.7) is estimated by $4 \gamma^{2} e\|\mathbf{B}\|_{\infty}(\varphi, \varphi) \leqslant 4 \gamma^{2} e\|\mathbf{B}\|(\varphi, \varphi)$, giving $\|V \varphi\| \leqslant 2 \gamma\left\|E_{A} \varphi\right\|+2 \gamma(e\|\mathbf{B}\|)^{\frac{1}{2}}\|\varphi\|$. For the form bound, using Kato's inequality, one gets

$$
\begin{align*}
|(\varphi, V \varphi)| & \leqslant \gamma \frac{\pi}{2}(\varphi,|\mathbf{p}-e \mathbf{A}| \varphi) \leqslant \gamma \frac{\pi}{2}\left(\varphi, \sqrt{E_{A}^{2}+e|\mathbf{B}|} \varphi\right) \\
& \leqslant \gamma \frac{\pi}{2}\left(\varphi, E_{A} \varphi\right)+\gamma \frac{\pi}{2}(e\|\mathbf{B}\|)^{\frac{1}{2}}(\varphi, \varphi) \tag{4.9}
\end{align*}
$$

When (3.6) and (3.7) are replaced by these two inequalities in the subsequent estimates, conditions (4.3) and (4.4) of theorem 1 now read

$$
\begin{equation*}
1-\gamma \frac{\pi}{2}-c_{1}>0 \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(1-\gamma \frac{\pi}{2}\right) m-\gamma \frac{\pi}{2}(e\|\mathbf{B}\|)^{\frac{1}{2}}-\max \left\{\frac{C_{1}(1-\gamma \pi / 2)}{1-\gamma \pi / 2-c_{1}}, C_{1}+c_{1} m\right\}+E_{f}>0 \tag{4.11}
\end{equation*}
$$

where c_{1} and C_{1} are the changed bounds for $B_{2 m}$, replacing (3.21),
$c_{1}:=\gamma^{2}\left(2+\frac{\pi}{2}+\frac{\pi}{2} \frac{(e\|\mathbf{B}\|)^{\frac{1}{2}}}{m}\right), \quad C_{1}:=\gamma^{2}\left(\left[2+\frac{\pi}{2}\right](e\|\mathbf{B}\|)^{\frac{1}{2}}+\frac{\pi}{2} \frac{e\|\mathbf{B}\|}{m}\right)$.
In condition (4.11) for the positivity of $H^{(2)}$ the leading term in $\|\mathbf{B}\|$ is now E_{f}, guaranteeing positivity for sufficiently large $\|\mathbf{B}\|$. For example, for $\|\mathbf{B}\|=10$, (4.10) and (4.11) hold for $\gamma<0.304$, this limit already exceeding the corresponding one from (4.3).

We close this section by showing that a \mathbf{B}-dependent constant in the form boundedness of V (which in turn leads to a B-dependent condition (4.3) for self-adjointness of $H^{(2)}$) cannot be avoided [36].

It was proven [2] that for a homogeneous magnetic field \mathbf{B}, the ground-state energy of the Pauli operator in a central Coulomb field of any given strength $Z_{0} e^{2}$ diverges logarithmically with B. This leads to the estimate

$$
\begin{equation*}
\frac{1}{2 m}\left(\varphi,\left(E_{A}^{2}-m^{2}\right) \varphi\right)-\left(\varphi, \frac{Z_{0} e^{2}}{x} \varphi\right) \geqslant-c_{0}(\ln B)^{2}(\varphi, \varphi) \tag{4.13}
\end{equation*}
$$

with a suitable (Z_{0}-dependent) constant c_{0} and sufficiently large B. The estimate is sharp since (4.13) turns into an equality if φ is the ground-state function. Let $Z_{0}=Z / 2$. Then, (4.13) is written in the following way:

$$
\begin{align*}
\left(\varphi, \frac{2 Z_{0} e^{2}}{x} \varphi\right) & =|(\varphi, V \varphi)| \\
& \leqslant c_{3}\left(\varphi, E_{A} \varphi\right)+\left(\varphi, E_{A}\left(\frac{E_{A}}{m}-c_{3}\right) \varphi\right)+\left[2 c_{0}(\ln B)^{2}-m\right](\varphi, \varphi) \tag{4.14}
\end{align*}
$$

where $0<c_{3}<1$ is an arbitrary real number. Since $E_{A} \geqslant m$, the second term in (4.14) is positive and cannot compensate the B-dependence of the third term for $B \rightarrow \infty$. The fact that a homogeneous \mathbf{B}-field violates our requirement $\|\mathbf{B}\|<\infty$ is no serious problem, since the strong localization of the ground-state function in all three spatial directions [2, 26] allows for the replacement of the homogeneous \mathbf{B} by an L_{2}-field (by smoothly cutting off at very large distances) without changing the ground-state energy.

5. Relative compactness of the perturbation

The aim of this section is to prove
Theorem 2. Let $H^{(2)}=H_{0}+W$ be the 'magnetic' Jansen-Hess operator with $H_{0}:=$ $\Lambda_{A,+}\left(D_{A}+E_{f}\right) \Lambda_{A,+}$ and $W:=\Lambda_{A,+}\left(V+B_{2 m}\right) \Lambda_{A,+}$. Then, we have for $\gamma<\tilde{\gamma}_{c}$

$$
\begin{equation*}
\sigma_{\mathrm{ess}}\left(H^{(2)}\right)=\sigma_{\mathrm{ess}}\left(H_{0}\right) \tag{5.1}
\end{equation*}
$$

The critical potential strength is $\tilde{\gamma}_{c} \leqslant \tilde{\gamma}_{c}^{(0)}=0.319$ and depends on the magnetic field \mathbf{B}.
Equivalently [18, problem 5.38, p 244], we have to prove the compactness of the difference R_{μ} of the resolvents of $H^{(2)}$ and H_{0},

$$
\begin{equation*}
R_{\mu}:=\frac{1}{H^{(2)}+\mu}-\frac{1}{H_{0}+\mu}=-\frac{1}{H_{0}+\mu} \Lambda_{A,+}\left(V+B_{2 m}\right) \Lambda_{A,+} \frac{1}{H^{(2)}+\mu} \tag{5.2}
\end{equation*}
$$

where the second resolvent identity is used, and $\mu>0$ has to be chosen suitably. We decompose

$$
\begin{align*}
R_{\mu} & =: R_{\mu}(V)+R_{\mu}\left(B_{2 m}\right) \\
& =-\left\{\frac{1}{H_{0}+\mu}\left(\Lambda_{A,+} V \Lambda_{A,+}+\Lambda_{A,+} B_{2 m} \Lambda_{A,+}\right) \frac{1}{\left(H_{0}+\mu\right)^{\lambda}}\right\}\left[\left(H_{0}+\mu\right)^{\lambda} \frac{1}{H^{(2)}+\mu}\right] \tag{5.3}
\end{align*}
$$

where $\lambda \in\left\{\frac{1}{2}, 1\right\}$, and we will show that the two operators in curly brackets are compact while the factor in square brackets is bounded. This will prove the compactness of R_{μ}.

5.1. Relative compactness of $V^{\frac{1}{2}}$

For the proof of the above assertion we need, with $V=-\gamma / x$, the following lemma.

Lemma 2. Let $H_{0}=\Lambda_{A,+}\left(D_{A}+E_{f}\right) \Lambda_{A,+}$ with D_{A} from (1.1) and $\Lambda_{A,+}$ from (2.1). Then, the operator

$$
\begin{equation*}
\frac{1}{x^{\frac{1}{2}}} \Lambda_{A,+} \frac{1}{H_{0}+\mu} \tag{5.4}
\end{equation*}
$$

is compact for $\mu>0$.
According to [18, theorem 4.10, p 159], its adjoint $\left(H_{0}+\mu\right)^{-1} \Lambda_{A,+} x^{-\frac{1}{2}}$ is then compact too.

Proof. We start by showing the boundedness of $x^{-\frac{1}{2}}\left(\left|D_{A}\right|+\mu\right)^{-\frac{1}{2}}$ on $L_{2}\left(\mathbb{R}^{3}\right) \otimes \mathbb{C}^{4}$. From (3.6), we get

$$
\begin{equation*}
\left\|\frac{1}{x^{\frac{1}{2}}} \frac{1}{\left(\left|D_{A}\right|+\mu\right)^{\frac{1}{2}}} \psi\right\|^{2} \leqslant \frac{1}{\gamma_{0}}\left\|\left|D_{A}\right|^{\frac{1}{2}} \frac{1}{\left(\left|D_{A}\right|+\mu\right)^{\frac{1}{2}}} \psi\right\|^{2}+c_{B}\left\|\frac{1}{\left(\left|D_{A}\right|+\mu\right)^{\frac{1}{2}}} \psi\right\|^{2} \tag{5.5}
\end{equation*}
$$

Since $\left(\left|D_{A}\right|+\mu\right)^{-\frac{1}{2}}$ is bounded for $\mu>0$ and since $\left|D_{A}\right|\left(\left|D_{A}\right|+\mu\right)^{-1} \leqslant 1$, the rhs of (5.5) is bounded. This implies the relative boundedness of $x^{-\frac{1}{2}}$ with respect to $\left|D_{A}\right|$ with form bound $a=0$. In fact, using [28, p 340, problem 19],

$$
\begin{equation*}
a=\lim _{\mu \rightarrow \infty}\left\|\frac{1}{x^{\frac{1}{2}}}\left(\left|D_{A}\right|+\mu\right)^{-1}\right\|, \tag{5.6}
\end{equation*}
$$

we have from (5.5), with $\left|D_{A}\right| \geqslant m$,

$$
\left\|x^{-\frac{1}{2}}\left(\left|D_{A}\right|+\mu\right)^{-1} \psi\right\| \leqslant\left\|x^{-\frac{1}{2}}\left(\left|D_{A}\right|+\mu\right)^{-\frac{1}{2}}\right\|\left(\frac{1}{m+\mu}\right)^{\frac{1}{2}}\|\psi\|
$$

which proves $a=0$.
Following [31, lemma 11.5], we define a smooth function $\chi_{0} \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$ mapping to [0, 1] by means of

$$
\chi_{0}(\mathbf{x}):= \begin{cases}1, & x<R \tag{5.7}\\ 0, & x \geqslant R+1\end{cases}
$$

with some $R>0$, such that supp $\left(1-\chi_{0}\right) \subset \mathbb{R}^{3} \backslash B_{R}(0)$, where $B_{R}(0)$ is a ball of radius R centred at the origin. Further, let $\left(\psi_{n}\right)_{n \in \mathbb{N}}$ be a normalized sequence in $H_{1}\left(\mathbb{R}^{3}\right) \otimes \mathbb{C}^{4}$ weakly converging to zero. We prove the compactness of (5.4) by showing that $\left\|x^{-\frac{1}{2}} \Lambda_{A,+}\left(H_{0}+\mu\right)^{-1} \psi_{n}\right\| \rightarrow 0$ for $n \rightarrow \infty$. We decompose

$$
\begin{equation*}
\left\|\frac{1}{x^{\frac{1}{2}}} \Lambda_{A,+} \frac{1}{H_{0}+\mu} \psi_{n}\right\| \leqslant\left\|\left(1-\chi_{0}\right) \frac{1}{x^{\frac{1}{2}}} \Lambda_{A,+} \frac{1}{H_{0}+\mu} \psi_{n}\right\|+\left\|\frac{1}{x^{\frac{1}{2}}} \chi_{0} \Lambda_{A,+} \frac{1}{H_{0}+\mu} \psi_{n}\right\| . \tag{5.8}
\end{equation*}
$$

For the first term, we have

$$
\begin{equation*}
\left\|\left(1-\chi_{0}\right) \frac{1}{x^{\frac{1}{2}}} \Lambda_{A,+} \frac{1}{H_{0}+\mu} \psi_{n}\right\| \leqslant \frac{1}{R^{\frac{1}{2}}}\left\|\left(1-\chi_{0}\right) \Lambda_{A,+} \frac{1}{H_{0}+\mu} \psi_{n}\right\| \leqslant \frac{c}{R^{\frac{1}{2}}} \tag{5.9}
\end{equation*}
$$

with some constant c. Thus, it can be made smaller than $\epsilon / 2$ if $R>(2 c / \epsilon)^{2}$.
For the second term, we define $\tilde{\psi}_{n}:=\chi_{0} \Lambda_{A,+}\left(H_{0}+\mu\right)^{-1} \psi_{n}$ and use the $\left|D_{A}\right|$-boundedness of $x^{-\frac{1}{2}}$ with bound $a \rightarrow 0$,

$$
\begin{equation*}
\left\|\frac{1}{x^{\frac{1}{2}}} \chi_{0} \Lambda_{A,+} \frac{1}{H_{0}+\mu} \psi_{n}\right\| \leqslant a\left\|\left|D_{A}\right| \tilde{\psi}_{n}\right\|+b\left\|\tilde{\psi}_{n}\right\|, \tag{5.10}
\end{equation*}
$$

with some constant b. In order to establish that $\left\|\left|D_{A}\right| \tilde{\psi}_{n}\right\|$ is finite (such that $a\left\|\left|D_{A}\right| \tilde{\psi}_{n}\right\|$ can be dropped), we consider

$$
\begin{equation*}
\mathcal{O}:=\left[D_{A}, \chi_{0}\right]=\alpha\left(\mathbf{p} \chi_{0}\right) \tag{5.11}
\end{equation*}
$$

which is bounded because χ_{0} is a C_{0}^{∞}-function. Thus, we can decompose

$$
\begin{equation*}
\chi_{0}\left|D_{A}\right|^{2} \chi_{0}=\chi_{0} D_{A} \cdot D_{A} \chi_{0}=D_{A} \chi_{0}^{2} D_{A}-\mathcal{O} \chi_{0} D_{A}+D_{A} \chi_{0} \mathcal{O}-\mathcal{O}^{2} \tag{5.12}
\end{equation*}
$$

and estimate

$$
\begin{align*}
\left\|\left|D_{A}\right| \tilde{\psi}_{n}\right\|^{2}= & \left(\psi_{n}, \frac{1}{H_{0}+\mu} \Lambda_{A,+}\left(D_{A} \chi_{0}^{2} D_{A}-\mathcal{O} \chi_{0} D_{A}+D_{A} \chi_{0} \mathcal{O}-\mathcal{O}^{2}\right) \Lambda_{A,+} \frac{1}{H_{0}+\mu} \psi_{n}\right) \\
\leqslant & \left\|\chi_{0}\right\|_{\infty}^{2}\left\|D_{A} \Lambda_{A,+} \frac{1}{H_{0}+\mu} \psi_{n}\right\|^{2}+\left\|\mathcal{O} \Lambda_{A,+} \frac{1}{H_{0}+\mu} \psi_{n}\right\| \\
& \times\left\|\chi_{0}\right\|_{\infty}\left\|D_{A} \Lambda_{A,+} \frac{1}{H_{0}+\mu} \psi_{n}\right\| \cdot 2+\left\|\mathcal{O} \Lambda_{A,+} \frac{1}{H_{0}+\mu} \psi_{n}\right\|^{2} . \tag{5.13}
\end{align*}
$$

Since $D_{A} \Lambda_{A,+}\left(H_{0}+\mu\right)^{-1}=\Lambda_{A,+} D_{A} \Lambda_{A,+}\left(\Lambda_{A,+} D_{A} \Lambda_{A,+}+\Lambda_{A,+} E_{f} \Lambda_{A,+}+\mu\right)^{-1} \leqslant 1$, all terms on the rhs of (5.13) are bounded.

Concerning the last term of (5.10), we will establish the compactness of the operator $K:=\chi_{0} \Lambda_{A,+}\left(H_{0}+\mu\right)^{-1}$. Then $\left\|\tilde{\psi}_{n}\right\| \rightarrow 0$ for $n \rightarrow \infty$. Collecting results, this shows that the second term of (5.8) can be made smaller than $\epsilon / 2$ for n sufficiently large and thus proves the desired compactness of the operator (5.4).

The strategy to show the compactness of K is to start with the operator $K_{1}:=\chi_{0}\left(p^{2}+\right.$ $\left.m^{2}\right)^{-\frac{1}{2}}$ which is compact as a product of bounded functions $f(\mathbf{x}), g(\mathbf{p})$, each of which tending to zero as x, respectively p, go to infinity (see, e.g., [31, lemma 7.10]). Then, bounded operators $\mathcal{O}_{1}, \mathcal{O}_{2}$ are constructed such that $K_{1} \cdot \prod \mathcal{O}_{i}=K$.

Let $\mathcal{O}_{1}:=\sqrt{p^{2}+m^{2}} D_{A}^{-1}$. For showing the boundedness of \mathcal{O}_{1} let $\psi:=D_{A}^{-1} \varphi$. Then from the diamagnetic inequality and (4.6),

$$
\begin{align*}
\left\|\mathcal{O}_{1} \varphi\right\|^{2} & =\left(\psi,\left(p^{2}+m^{2}\right) \psi\right) \leqslant\left(\psi,\left(E_{A}^{2}+e|\mathbf{B}|\right) \psi\right) \\
& \leqslant\left(1+\frac{\kappa e}{1-\kappa e}\right)\|\varphi\|^{2}+\frac{e C_{\kappa}}{1-\kappa e}\left\|D_{A}^{-2}\right\|\|\varphi\|^{2}, \tag{5.14}
\end{align*}
$$

the rhs being obviously bounded.
With $\mathcal{O}_{2}:=D_{A} \Lambda_{A,+}\left(H_{0}+\mu\right)^{-1} \leqslant 1$ (as shown above), we arrive at $K_{1} \cdot \mathcal{O}_{1} \cdot \mathcal{O}_{2}=K$.

We remark that in the same way the compactness of $x^{-\frac{1}{2}}\left(\left|D_{A}\right|+\mu\right)^{-1}$ on $L_{2}\left(\mathbb{R}^{3}\right) \otimes \mathbb{C}^{4}$ can be shown. The only additional ingredient is the boundedness of $D_{A}\left(\left|D_{A}\right|+\mu\right)^{-1}$ in the equation corresponding to (5.13), which follows from $\left\|D_{A}\left(\left|D_{A}\right|+\mu\right)^{-1} \psi_{n}\right\|^{2}=$ $\left(\psi_{n},\left|D_{A}\right|^{2}\left(\left|D_{A}\right|+\mu\right)^{-2} \psi_{n}\right) \leqslant\left\|\psi_{n}\right\|^{2}$.

5.2. Boundedness of $\left(H_{0}+\mu\right)^{\lambda}\left(H^{(2)}+\mu\right)^{-1}$

Let first $\lambda=1$. From (3.7) and (3.21), we have the relative form boundedness of the potential for $\psi \in H_{1}\left(\mathbb{R}^{3}\right) \otimes \mathbb{C}^{4}$ and $\psi_{+}:=\Lambda_{A,+} \psi$,
$\left\|\Lambda_{A,+}\left(V+B_{2 m}\right) \Lambda_{A,+} \psi\right\| \leqslant\left\|V \psi_{+}\right\|+\left\|B_{2 m} \psi_{+}\right\| \leqslant a_{0}\left\|D_{A} \psi_{+}\right\|+b_{0}\left\|\psi_{+}\right\|$
with

$$
\begin{equation*}
a_{0}:=\frac{\gamma}{\gamma_{1}}+\frac{\gamma^{2}}{2 \gamma_{1}}\left(\frac{1}{\gamma_{1}}+\frac{1}{\gamma_{0}}+\frac{c_{B}}{m}\right), \quad b_{0}:=\gamma d_{B}+C, \tag{5.16}
\end{equation*}
$$

where c_{B} is defined in (3.6). We have to restrict $\gamma<\tilde{\gamma}_{c}$ such that $a_{0}<1$. $\tilde{\gamma}_{c}$ depends on \mathbf{B}, its maximum value (for $\mathbf{B}=0$) being $\tilde{\gamma}_{c}^{(0)}=0.319(Z \leqslant 43)$, obtained as solution to $2 \gamma+\gamma^{2}\left(2+\frac{\pi}{2}\right)=1$.

Let $\epsilon:=1-a_{0}$ with $0<\epsilon<1$. With $\psi:=\left(H^{(2)}+\mu\right)^{-1} \psi_{+}$, we want to show

$$
\begin{equation*}
\left\|\left(H_{0}+\mu\right) \frac{1}{H^{(2)}+\mu} \psi_{+}\right\|^{2}=\left\|\left(H_{0}+\mu\right) \psi\right\|^{2} \leqslant c_{1}^{2}\left\|\psi_{+}\right\|^{2}=c_{1}^{2}\left\|\left(H^{(2)}+\mu\right) \psi\right\|^{2} \tag{5.17}
\end{equation*}
$$

for a suitable $c_{1}>0$. We estimate, using $\left\|D_{A} \psi_{+}\right\|=\left\|\Lambda_{A,+} D_{A} \Lambda_{A,+} \psi\right\| \leqslant\left\|H_{0} \psi\right\|$ and $\left\|\psi_{+}\right\| \leqslant\left\|\Lambda_{A,+}\right\|\|\psi\|$,

$$
\begin{align*}
c_{1}\left\|\left(H^{(2)}+\mu\right) \psi\right\| & \geqslant c_{1}\left\|\left(H_{0}+\mu\right) \psi\right\|-c_{1}\left\|\Lambda_{A,+}\left(V+B_{2 m}\right) \Lambda_{A,+} \psi\right\| \\
& \geqslant c_{1}\left\|\left(H_{0}+\mu\right) \psi\right\|-c_{1}\left\{a_{0}\left\|H_{0} \psi\right\|+b_{0}\|\psi\|\right\} \\
& \geqslant c_{1}\left\|\left(H_{0}+\mu\right) \psi\right\|+\left(1-c_{1}\right)\left(\left\|H_{0} \psi\right\|+\mu\|\psi\|\right) \geqslant\left\|\left(H_{0}+\mu\right) \psi\right\| . \tag{5.18}
\end{align*}
$$

Condition (5.18) is satisfied if $-c_{1} a_{0} \geqslant 1-c_{1}$ as well as $-c_{1} b_{0} \geqslant\left(1-c_{1}\right) \mu$, requiring the choice $c_{1} \geqslant 1 / \epsilon$ and $\mu \geqslant c_{1} b_{0} /\left(c_{1}-1\right)$.

For $\lambda=\frac{1}{2}$, the bound on γ can be improved by working with quadratic forms. From (3.22), we have

$$
\begin{equation*}
\left(\psi, \Lambda_{A,+}\left(V+B_{2 m}\right) \Lambda_{A,+} \psi\right) \geqslant-a_{1}\left(\psi, \Lambda_{A,+} D_{A} \Lambda_{A,+} \psi\right)-\tilde{C}(\psi, \psi) \tag{5.19}
\end{equation*}
$$

with $a_{1}:=a_{0}-\gamma\left(\frac{1}{\gamma_{1}}-\frac{1}{\gamma_{0}}\right)$. Trivially, we have $\left(H_{0}+\mu\right)^{\frac{1}{2}}\left(H^{(2)}+\mu\right)^{-1}=\left(H_{0}+\mu\right)^{\frac{1}{2}}\left(H^{(2)}+\right.$ $\mu)^{-\frac{1}{2}} \cdot\left(H^{(2)}+\mu\right)^{-\frac{1}{2}}$ where the last factor is bounded. For the boundedness of the other factor, we use the strategy of (5.17) to require $\left\|\left(H_{0}+\mu\right)^{\frac{1}{2}} \psi\right\|^{2} \leqslant c_{2}\left\|\left(H^{(2)}+\mu\right)^{\frac{1}{2}} \psi\right\|^{2}$ which is satisfied if $c_{2} \geqslant 1 /\left(1-a_{1}\right)$ and $\mu \geqslant c_{2} \tilde{C} /\left(c_{2}-1\right)$. The necessary condition for $c_{2}>0$ is $a_{1}<1$, i.e. inequality (4.3). The corresponding maximum value for γ is $\gamma_{c}^{(0)}=0.353$.

5.3. Compactness of $R_{\mu}(V)$

We take $\lambda=\frac{1}{2}$ and decompose
$-\frac{1}{H_{0}+\mu} \Lambda_{A,+} V \Lambda_{A,+} \frac{1}{\left(H_{0}+\mu\right)^{\frac{1}{2}}}=\gamma\left\{\frac{1}{H_{0}+\mu} \Lambda_{A,+} \frac{1}{x^{\frac{1}{2}}}\right\}\left[\frac{1}{x^{\frac{1}{2}}} \Lambda_{A,+} \frac{1}{\left(H_{0}+\mu\right)^{\frac{1}{2}}}\right]$.
The factor in square brackets is bounded according to a (5.5)-type estimate by using that $\Lambda_{A,+}\left|D_{A}\right| \Lambda_{A,+} \leqslant H_{0}+\mu$. Together with lemma 2 and the result of section 5.2, this proves the compactness of $R_{\mu}(V)$ for $\gamma<\gamma_{c}$ determined from (4.3).

5.4. Compactness of $R_{\mu}\left(B_{2 m}\right)$

According to the four contributions of $B_{2 m}$ from (2.12), we define

$$
\begin{equation*}
\frac{1}{H_{0}+\mu}\left(\Lambda_{A,+} B_{2 m} \Lambda_{A,+}\right) \frac{1}{\left(H_{0}+\mu\right)^{\lambda}}=:-\frac{\gamma}{4} \sum_{i=1}^{4} \mathcal{O}_{i}(\lambda) \tag{5.21}
\end{equation*}
$$

For $i=1$, we take $\lambda=1$ and decompose

$$
\begin{equation*}
\mathcal{O}_{1}(1)=\left\{\frac{1}{H_{0}+\mu} \Lambda_{A,+} \frac{1}{x^{\frac{1}{2}}}\right\} \cdot\left[\frac{1}{x^{\frac{1}{2}}} F_{A} \tilde{D}_{A} \Lambda_{A,+} \frac{1}{H_{0}+\mu}\right] . \tag{5.22}
\end{equation*}
$$

In order to show the boundedness of the operator in square brackets, we use a (5.5)-type estimate for $x^{-\frac{1}{2}}$ and note that $F_{A} \tilde{D}_{A} \Lambda_{A,+}\left(H_{0}+\mu\right)^{-1}$ is bounded. It then remains to show the boundedness of $M:=\left|D_{A}\right|^{\frac{1}{2}} F_{A} \tilde{D}_{A} \Lambda_{A,+}\left(H_{0}+\mu\right)^{-1}$. We estimate for $\varphi \in L_{2}\left(\mathbb{R}^{3}\right) \otimes \mathbb{C}^{4}$, noting that $F_{A} \tilde{D}_{A}=-\tilde{D}_{A} F_{A}$,

$$
\begin{align*}
\|M \varphi\|^{2} & =\left(\tilde{D}_{A} F_{A} \Lambda_{A,+} \frac{1}{H_{0}+\mu} \varphi,\left|D_{A}\right| \tilde{D}_{A} F_{A} \Lambda_{A,+} \frac{1}{H_{0}+\mu} \varphi\right) \\
& \leqslant\left\|\tilde{D}_{A} F_{A} \Lambda_{A,+} \frac{1}{H_{0}+\mu}\right\|\|\varphi\| \cdot\left\|D_{A} F_{A} \Lambda_{A,+} \frac{1}{H_{0}+\mu} \varphi\right\| . \tag{5.23}
\end{align*}
$$

We use (3.16) to commute D_{A} with F_{A}, being left with two terms involving the potential V. In turn, these terms can be estimated according to (3.7) by replacing V with $\left|D_{A}\right|$ plus a bounded remainder. For example, we get

$$
\begin{gather*}
\| \frac{1}{2} \tilde{D}_{A} V \Lambda_{A,+} \\
\frac{1}{H_{0}+\mu} \varphi\left\|\leqslant \frac{\gamma}{2 \gamma_{1}}\right\| \tilde{D}_{A}\| \|\left|D_{A}\right| \Lambda_{A,+} \frac{1}{H_{0}+\mu} \varphi \| \tag{5.24}\\
+\frac{\gamma d_{B}}{2}\left\|\tilde{D}_{A}\right\|\left\|\Lambda_{A,+} \frac{1}{H_{0}+\mu}\right\|\|\varphi\|
\end{gather*}
$$

which obviously is bounded.
For $i=2$, we take $\lambda=\frac{1}{2}$ and decompose
$\mathcal{O}_{2}\left(\frac{1}{2}\right)=\frac{1}{H_{0}+\mu} \Lambda_{A,+} \tilde{D}_{A} F_{A}\left(\left|D_{A}\right|+\mu\right) \cdot\left\{\frac{1}{\left|D_{A}\right|+\mu} \frac{1}{x^{\frac{1}{2}}}\right\} \cdot\left[\frac{1}{x^{\frac{1}{2}}} \Lambda_{A,+} \frac{1}{\left(H_{0}+\mu\right)^{\frac{1}{2}}}\right]$.

Referring to our previous considerations, it remains to show the boundedness of the adjoint of the first term, $\left|D_{A}\right| F_{A} \tilde{D}_{A} \Lambda_{A,+}\left(H_{0}+\mu\right)^{-1}$, since $\mu\left(H_{0}+\mu\right)^{-1} \Lambda_{A,+} \tilde{D}_{A} F_{A}$ is trivially bounded (and since any bounded operator has a bounded adjoint). With $\left|D_{A}\right| F_{A} \tilde{D}_{A}=-D_{A} F_{A}$, we arrive at the last term of (5.23), the boundedness of which has just been shown.

For $i=3$, we take again $\lambda=1$. Then,

$$
\begin{align*}
\mathcal{O}_{3}(1) & =\frac{1}{H_{0}+\mu} \Lambda_{A,+} \tilde{D}_{A} \frac{1}{x} F_{A} \Lambda_{A,+} \frac{1}{H_{0}+\mu} \\
& =\tilde{D}_{A} \cdot\left\{\frac{1}{H_{0}+\mu} \Lambda_{A,+} \frac{1}{x^{\frac{1}{2}}}\right\} \cdot\left[\frac{1}{x^{\frac{1}{2}}} F_{A} \Lambda_{A,+} \frac{1}{H_{0}+\mu}\right] \tag{5.26}
\end{align*}
$$

of which the first factor is compact and the second factor bounded. For the factor in square brackets we estimate according to (5.5), and further

$$
\begin{equation*}
\left\|\left|D_{A}\right|^{\frac{1}{2}} F_{A} \Lambda_{A,+} \frac{1}{H_{0}+\mu} \varphi\right\|^{2} \leqslant\left\|F_{A} \Lambda_{A,+} \frac{1}{H_{0}+\mu} \varphi\right\| \cdot\left\|\left|D_{A}\right| F_{A} \Lambda_{A,+} \frac{1}{H_{0}+\mu} \varphi\right\| . \tag{5.27}
\end{equation*}
$$

Since $\left\|\left|D_{A}\right| \tilde{\varphi}\right\|^{2}=\left(\tilde{\varphi}, D_{A}^{2} \tilde{\varphi}\right)=\left\|D_{A} \tilde{\varphi}\right\|^{2}$, the second factor agrees with the one from (5.23).
For $i=4$ and $\lambda=1$, we have $\mathcal{O}_{4}(1)=\left(H_{0}+\mu\right)^{-1} \Lambda_{A,+} F_{A} \frac{1}{x} \tilde{D}_{A} \Lambda_{A,+}\left(H_{0}+\mu\right)^{-1}=\mathcal{O}_{3}(1)^{*}$. Together with the result from section 5.2, this proves compactness of $R_{\mu}\left(B_{2 m}\right)$ for $\gamma<\tilde{\gamma}_{c}$ defined below (5.16).

6. The essential spectrum

For the Schrödinger operator with purely magnetic field, \mathbf{p}_{A}^{2}, it was shown, following the work of Jörgens [17], that its essential spectrum is given by

$$
\begin{equation*}
\sigma_{\mathrm{ess}}\left(\mathbf{p}_{A}^{2}\right)=[0, \infty) \tag{6.1}
\end{equation*}
$$

provided $\mathbf{A} \in L_{2, \text { loc }}\left(\mathbb{R}^{3}\right)$ and

$$
\begin{equation*}
N_{A}(\mathbf{x})=\int_{|\mathbf{x}-\mathbf{y}| \leqslant 1}|\mathbf{A}(\mathbf{y})|^{2} \mathrm{~d} \mathbf{y} \longrightarrow 0 \tag{6.2}
\end{equation*}
$$

as $\mathbf{x} \rightarrow \infty$ ([20], see also [33]). In particular, condition (6.2) is satisfied if $\mathbf{B} \rightarrow 0$ as $\mathbf{x} \rightarrow \infty$ [20]. It is, however, easy to show that it is sufficient that $N_{B}(\mathbf{x}) \rightarrow 0($ as $\mathbf{x} \rightarrow \infty)$ for (6.2) to hold. We use the relation between \mathbf{A} and \mathbf{B} introduced in [11],

$$
\begin{equation*}
\mathbf{A}(\mathbf{y})=\int_{0}^{1} t \mathrm{~d} t \mathbf{B}(\mathbf{x}+t(\mathbf{y}-\mathbf{x})) \wedge(\mathbf{y}-\mathbf{x}) \tag{6.3}
\end{equation*}
$$

which satisfies $\boldsymbol{\nabla} \times \mathbf{A}=\mathbf{B}$ (since $\boldsymbol{\nabla} \cdot \mathbf{B}=0$). Then we have, substituting $\mathbf{z}:=\mathbf{y}-\mathbf{x}$,

$$
\begin{align*}
N_{A}(\mathbf{x}) & =\int_{z \leqslant 1}|\mathbf{A}(\mathbf{z}+\mathbf{x})|^{2} \mathrm{~d} \mathbf{z} \\
& =\int_{z \leqslant 1} \mathrm{~d} \mathbf{z} \int_{0}^{1} t \mathrm{~d} t \int_{0}^{1} \tau \mathrm{~d} \tau(\mathbf{B}(\mathbf{x}+t \mathbf{z}) \wedge \mathbf{z})(\mathbf{B}(\mathbf{x}+\tau \mathbf{z}) \wedge \mathbf{z}) \tag{6.4}
\end{align*}
$$

We estimate $|\mathbf{B} \wedge \mathbf{z}| \leqslant|\mathbf{B}|$ (since $z \leqslant 1)$ and factorize the integrand according to $\frac{t^{1+\epsilon}}{\tau^{\epsilon}}|\mathbf{B}(\mathbf{x}+t \mathbf{z})|$. $\frac{\tau^{1+\epsilon}}{t^{\epsilon}}|\mathbf{B}(\mathbf{x}+\tau \mathbf{z})|$ with, e.g., $\epsilon=\frac{1}{4}$. Applying the Schwarz inequality, we get upon substituting $\xi:=t \mathbf{z}$ for \mathbf{z}

$$
\begin{align*}
N_{A}(\mathbf{x}) & \leqslant\left(\int_{0}^{1} \frac{\mathrm{~d} \tau}{\tau^{2 \epsilon}}\right) \int_{0}^{1} t^{2+2 \epsilon} \mathrm{~d} t \int_{z \leqslant 1} \mathrm{~d} \mathbf{z}|\mathbf{B}(\mathbf{x}+t \mathbf{z})|^{2} \\
& =\int_{0}^{1} \frac{\mathrm{~d} \tau}{\tau^{\frac{1}{2}}} \int_{0}^{1} \frac{\mathrm{~d} t}{t^{\frac{1}{2}}} \int_{\xi \leqslant t} \mathrm{~d} \boldsymbol{\xi}|\mathbf{B}(\mathbf{x}+\boldsymbol{\xi})|^{2} \leqslant 4 \int_{\xi \leqslant 1} \mathrm{~d} \boldsymbol{\xi}|\mathbf{B}(\mathbf{x}+\xi)|^{2} \tag{6.5}
\end{align*}
$$

which, upon assumption, tends to 0 as $\mathbf{x} \rightarrow \infty$.
A further consequence of $N_{B}(\mathbf{x}) \rightarrow 0$ (as $\mathbf{x} \rightarrow \infty$) is that $e \sigma \mathbf{B}$ is \mathbf{p}_{A}^{2}-compact [32, theorem 5.2.2]. Thus, the essential spectrum of the Pauli operator $\left(\sigma \mathbf{p}_{A}\right)^{2}$ is also given by $[0, \infty)$. Accordingly, $\sigma_{\mathrm{ess}}\left(D_{A}^{2}\right)=\left[m^{2}, \infty\right)$, and therefore

$$
\begin{equation*}
\sigma_{\mathrm{ess}}\left(E_{A}\right)=[m, \infty) \tag{6.6}
\end{equation*}
$$

In fact, let $\lambda^{2} \in\left[m^{2}, \infty\right)$ and $\lambda>0$. Then, there exists a normalized sequence $\varphi_{n} \in$ $C_{0}^{\infty}\left(\mathbb{R}^{3}\right) \otimes \mathbb{C}^{2}$ with $\varphi_{n} \xrightarrow{w} 0$ such that $\left\|\left(E_{A}-\lambda\right)\left(E_{A}+\lambda\right) \varphi_{n}\right\| \rightarrow 0$ as $\rightarrow \infty$. Let $\phi \in$ $C_{0}^{\infty}\left(\mathbb{R}^{3}\right) \otimes \mathbb{C}^{2}$ and note that $C_{0}^{\infty} \subset H_{2} \subset H_{1} \subset L_{2}$. Then, $\left(E_{A}+\lambda\right) \phi \in H_{1}\left(\mathbb{R}^{3}\right) \otimes \mathbb{C}^{2}=\mathcal{D}\left(E_{A}\right)$ and $\left(\phi,\left(E_{A}+\lambda\right) \varphi_{n}\right)=\left(\left(E_{A}+\lambda\right) \phi, \varphi_{n}\right) \rightarrow 0$ (since $\left.\varphi_{n} \xrightarrow{w} 0\right)$ as $\rightarrow \infty$. Moreover, $\lim \inf _{n \rightarrow \infty}\left\|\left(E_{A}+\lambda\right) \varphi_{n}\right\| \geqslant \liminf _{n \rightarrow \infty}\left\|(m+\lambda) \varphi_{n}\right\|=m+\lambda>0$, which shows that $\tilde{\varphi}:=\left(E_{A}+\lambda\right) \varphi_{n} \stackrel{w}{\nu} 0$, such that $\lambda \in \sigma_{\mathrm{ess}}\left(E_{A}\right)$ [34, theorem 7.24, p 191].

In order to derive $\sigma_{\text {ess }}\left(D_{A}\right)$ from (6.6), we note that $\sigma_{\text {ess }}\left(-E_{A}\right)=(-\infty,-m]$. Moreover, since a unitary transformation does not change the essential spectrum, we have from (1.7)

$$
\begin{align*}
\sigma_{\mathrm{ess}}\left(D_{A}\right) & =\sigma_{\mathrm{ess}}\left(U_{0} D_{A} U_{0}^{-1}\right)=\sigma_{\mathrm{ess}}\left(\beta E_{A}\right) \\
& =\sigma_{\mathrm{ess}}\left(\begin{array}{ll}
E_{A} & \\
& 0
\end{array}\right) \cup \sigma_{\mathrm{ess}}\left(\begin{array}{ll}
0 & \\
& -E_{A}
\end{array}\right)=[m, \infty) \cup(-\infty,-m] . \tag{6.7}
\end{align*}
$$

It was proven earlier [11, theorem 1.4] that $\sigma_{\text {ess }}\left(D_{A}\right)=(-\infty,-m] \cup[m, \infty)$ under somewhat stronger assumptions (e.g., $\mathbf{B}(\mathbf{x}) \rightarrow 0$ as $\mathbf{x} \rightarrow \infty$), the proof being similar to the one given in [5, p 117] for the Schrödinger case.

From the decomposition of D_{A} into its (disjoint) positive and negative part, $D_{A}=$ $\Lambda_{A,+} D_{A} \Lambda_{A,+}+\Lambda_{A,-} D_{A} \Lambda_{A,-}$, we get $\sigma_{\text {ess }}\left(\Lambda_{A,+} D_{A} \Lambda_{A,+}\right)=\sigma_{\text {ess }}\left(E_{A}\right)=[m, \infty)$.

Together with theorem 2 we have thus proven
Theorem 3. Let $H^{(2)}$ be the 'magnetic' Jansen-Hess operator, let the vector potential $\mathbf{A} \in L_{2, \text { loc }}\left(\mathbb{R}^{3}\right)$, let the magnetic field obey $N_{B}(\mathbf{x}) \rightarrow 0$ for $\mathbf{x} \rightarrow \infty$ with finite field energy E_{f}. Then for a Coulomb potential with strength $\gamma<\tilde{\gamma}_{c}$, the essential spectrum is given by

$$
\begin{equation*}
\sigma_{\mathrm{ess}}\left(H^{(2)}\right)=[m, \infty)+E_{f}, \tag{6.8}
\end{equation*}
$$

where $\tilde{\gamma}_{c}$ is defined in theorem 2.

Acknowledgments

I would like to thank H Kalf, J Yngvason, H Siedentop and E Stockmeyer for valuable comments. Support by the EU Network Analysis and Quantum (contract HPRN-CT-200200277) is gratefully acknowledged.

References

[1] Avron J, Herbst I and Simon B 1978 Duke Math. J. 45 847-83
[2] Baumgartner B, Solovej J P and Yngvason J 2000 Commun. Math. Phys. 212 703-24
[3] Bjorken J D and Drell S D 1964 Relativistic Quantum Mechanics (New York: Mc Graw-Hill)
[4] Brummelhuis R, Siedentop H and Stockmeyer E 2002 Doc. Math. 7 167-82
[5] Cycon H L, Froese R G, Kirsch W and Simon B 1987 Schrödinger Operators with Application to Quantum Mechanics and Global Geometry (Text and Monographs in Physics) 1st edn (Berlin:Springer)
[6] De Vries E 1970 Fortschr. Phys. 18 149-82
[7] Douglas M and Kroll N M 1974 Ann. Phys., NY 82 89-155
[8] Erdös L 2005 Recent developments in quantum mechanics with magnetic fields Preprint math-ph/0510055
[9] Fröhlich J, Lieb E H and Loss M 1986 Commun. Math. Phys. 104 251-70
[10] Griesemer M and Tix C 1999 J. Math. Phys. 40 1780-91
[11] Helffer B, Nourrigat J and Wang X P 1989 Ann. Sci. Éc. Norm. Sup. 22 515-33
[12] Iantchenko A and Jakubassa-Amundsen D H 2003 Ann. Henri Poincaré 4 1-17
[13] Ikebe T and Kato T 1962 Arch. Ration. Mech. Anal. 9 77-92
[14] Jakubassa-Amundsen D H 2002 Math. Phys. Electron. J. 8 (3) 1-30
[15] Jakubassa-Amundsen D H 2005 Doc. Math. 10 331-56
[16] Jansen G and Hess B A 1989 Phys. Rev. A 39 6016-7
[17] Jörgens K 1967 Math. Z. 96 355-72
[18] Kato T 1980 Perturbation Theory for Linear Operators (Berlin: Springer)
[19] Landau L D and Lifschitz E M 1974 Lehrbuch der Theoretischen Physik: III. Quantenmechanik (Berlin: Akademie-Verlag)
[20] Leinfelder H 1983 J. Operator Theory 9 163-79
[21] Lieb E H 1984 Commun. Math. Phys. 92 473-80
[22] Lieb E H, Siedentop H and Solovej J P 1997 Phys. Rev. Lett. 79 1785-8
[23] Lieb E H, Siedentop H and Solovej J P 1997 J. Stat. Phys. 89 37-59
[24] Lieb E H and Yau H-T 1988 Commun. Math. Phys. 118 177-213
[25] Loss M and Yau H-T 1986 Commun. Math. Phys. 104 283-90
[26] Rau A R P, Mueller R O and Spruch L 1975 Phys. Rev. A 11 1865-79
[27] Reed M and Simon B 1980 Functional Analysis (Methods of Modern Mathematical Physics vol I) (New York: Academic)
[28] Reed M and Simon B 1975 Fourier Analysis, Self-Adjointness (Methods of Modern Mathematical Physics vol II) (New York: Academic)
[29] Siedentop H and Stockmeyer E 2005 Phys. Lett. A 341 473-8
[30] Siedentop H and Stockmeyer E 2006 Ann. Henri Poincaré 7 45-58
[31] Teschl G 2005 Lecture Notes on Mathematical Methods in Quantum Mechanics with Application to Schrödinger Operators, section 11 (http://www.mat.univie.ac.at//gerald/ftp/index.html)
[32] Udim T 1986 Abh. Math. Sem. Univ. Hamburg 56 49-73
[33] Udim T 1988 Abh. Math. Sem. Univ. Hamburg 58 125-37
[34] Weidmann J 1976 Lineare Operatoren in Hilberträumen (Stuttgart: Teubner)
[35] Wolf A, Reiher M and Hess B A 2002 J. Chem. Phys. 117 9215-26
[36] Yngvason J 2006 Private communication

[^0]: ${ }^{1}$ In conventional units, $B=1 m^{2} e^{3} c / \hbar^{3}=2.35 \times 10^{9} \mathrm{G}$.

