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Abstract. The localization of the essential spectrum of a relativistic two-

electron ion is provided. The analysis is performed with the help of the pseudo-
relativistic Brown-Ravenhall operator which is the restriction of the Coulomb-

Dirac operator to the electrons’ positive spectral subspace.

1. Introduction

We consider two interacting electrons in a central Coulomb field, generated
by a point nucleus of charge number Z and infinite mass. In contrast to the case
of a single electron in the central field, the additional electron-electron interaction
potential does not vanish at infinity if simultaneously, the distance between the
two electrons is kept fixed. Therefore, the determination of the essential spectrum
with the help of relative compactness arguments is not possible. In order to cope
with this difficulty, two-cluster decompositions of the involved particles (including
the nucleus) are made and a subordinate partition of unity is defined. This method
is described in [4, §3] and [21] for the Schrödinger case and is applied by Lewis,
Siedentop and Vugalter [13] to the scalar pseudo-relativistic Hamiltonian which
is obtained from the Schrödinger operator by replacing the single-particle kinetic
energy operator p2/2m with

√
p2 +m2 −m, p and m being the momentum and

mass of the electron, respectively, and which has been analyzed in [25] and [9].
Historically, the location of the essential spectrum of multiparticle Schrödinger
operators, called HVZ theorem, was provided by Hunziker (using diagrammatic
techniques [10]), van Winter [26] and Zhislin [28] (see e.g. [18, p.120,343]). Al-
ternative methods for the determination of the essential spectrum of generalized
Schrödinger operators involve C∗-algebra techniques (see e.g. [7] and references
therein).

The Brown-Ravenhall operator to be discussed below was introduced [2] as
projection of the Coulomb-Dirac operator onto the positive spectral subspace of
the free electrons, and was analyzed in a series of papers (e.g. [6, 23, 24, 1]). It also
emerges as the first-order term in unitary transformation schemes applied to the
Coulomb-Dirac operator [5, 11]. Such transformations allow for the decoupling of
the electon and positron spectral subspaces to arbitrary order n in the potential
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strength. The convergence of the resulting series of operators was shown only
recently [19].

Let (in relativistic units, ~ = c = 1)

H =
2∑
k=1

(D(k)
0 + V (k)) (1.1)

be the Dirac operator for two noninteracting electrons, where D(k)
0 := α(k)pk +

β(k)m (with p := −i∇x) is the free Dirac operator [22], and V (k) := − γ
xk

(with
γ = Ze2, e2 ≈ 1/137.04 the fine-structure constant and x := |x|) is the central
Coulomb potential for electron k. H acts in the Hilbert space A(L2(R3) ⊗ C4)2

(we shall use this notation as shorthand for A(
2⊗
k=1

(L2(R3) ⊗ C4)(k)) where A

denotes antisymmetrization of the two-electron function, and the form domain is
the subspace A(H1/2(R3)⊗ C4)2.

Let V (12) := e2

|x1−x2| be the electron-electron interaction. Then the (two-
particle) Brown-Ravenhall operator is defined by

HBR = Λ+,2 (H + V (12)) Λ+,2 (1.2)

=
1 + β(1)

2
1 + β(2)

2
U

(1)
0 U

(2)
0 (H + V (12)) (U (1)

0 U
(2)
0 )−1 1 + β(1)

2
1 + β(2)

2
where Λ+,2 = Λ(1)

+ Λ(2)
+ (as short-hand for Λ(1)

+ ⊗ Λ(2)
+ ) is the (tensor) product of

the single-particle projectors Λ(k)
+ onto the positive spectral subspace of D(k)

0 , and
the second equality results from the representation of a single-particle function
ϕ

(k)
+ in this subspace in terms of the Foldy-Wouthuysen transformation U

(k)
0 , viz.

ϕ
(k)
+ = U

(k)−1
0

(
u+
0

)
= U

(k)−1
0

1+β(k)

2

(
u+
u−

)
, with β =

(
I 0
0 −I

)
, I ∈ C2,2 the

unit matrix, u+, u− ∈ H1/2(R3)⊗ C2, and

U
(k)
0 := A(pk) + β(k)α(k)pk g(pk), (1.3)

A(p) :=
(
Ep +m

2Ep

)1/2

, g(p) :=
1√

2Ep(Ep +m)

where Ep = |D0| =
√
p2 +m2. The inverse U (k)−1

0 = A(pk) + α(k)pk g(pk)β(k).

Since HBR is sandwiched between the projectors 1+β(k)

2 it has a block-diagonal
form with one nonvanishing entry, hBR, defined by means of [6]

(φ+,H
BR φ+) = (u, hBR u) (1.4)

with φ+ ∈ Λ+,2(A(H1/2(R3)⊗C4)2) and u ∈ A(H1/2(R3)⊗C2)2, thus reducing
the single-particle spinor degrees of freedom from 4 to 2. One obtains (see e.g. [6])

hBR =
2∑
k=1

(T (k) + b
(k)
1m) + v(12) (1.5)
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T (k) := Epk , b
(k)
1m := − γ

(
A(pk)

1
xk

A(pk) + σ(k)pk g(pk)
1
xk

g(pk)σ(k)pk

)
where σ(k) is the vector of Pauli matrices, while v(12) results from the electron-
electron interaction term and is specified later (section 5).

We note that hBR is a well-defined (in the form sense), positive operator for
potential strengths γ ≤ γBR = 2

π/2+2/π ≈ 0.906 which relies on the estimates

(u,
∑2
k=1(T (k) + b

(k)
1m)u) ≥ 2m(1−γ)(u, u) [24] and V (12) ≥ 0. In particular from

the respective property of the single-particle operator [6] and using [3, 11] that
(φ+, V

(12)φ+) ≤ e2

2γBR
(φ+,

∑2
k=1 T

(k)φ+), the total potential V := b
(1)
1m + b

(2)
1m +

v(12) is (T (1) + T (2))-form bounded with form bound less than one for γ < γBR.
Thus hBR is a self-adjoint operator by means of the Friedrichs extension of the
restriction of hBR to A(C∞0 (R3)⊗ C2)2.

2. The HVZ theorem and the strategy of proof

We introduce the three two-cluster decompositions of our operator,

hBR = T + aj + rj , j = 0, 1, 2, (2.1)

where T := T (1) +T (2) and aj collects all interactions not involving particle j (j =
1, 2 denotes the two electrons and j = 0 refers to the nucleus which is fixed at the
origin). The remainder rj is supposed to vanish when particle j is moved to infinity
(respectively both electrons are moved to infinity in the case j = 0). Define for
j = 0, 1, 2,

Σ0 := min
j

inf σ(T + aj) = min {inf σ(T + b
(1)
1m), inf σ(T + v(12))} (2.2)

(note that the two electrons move in the same potential, such that b(1)
1m(x1) =

b
(2)
1m(x2)). Then we have

Theorem 1 (HVZ theorem).
Let hBR = T + b

(1)
1m + b

(2)
1m + v(12) be the two-electron Brown-Ravenhall operator

with potential strength γ < γBR, and let (2.1) be its two-cluster decompositions.
Then the essential spectrum of hBR is given by

σess(hBR) = [Σ0,∞). (2.3)

Physically this means that the bottom of the essential spectrum is given by
the ground state of the one-electron ion, increased by the rest mass of the second
electron.

The strategy of proof is based on Simon [20] (see also [4]) as well as on
Lieb and Yau [14] and Lewis et al [13]. We start by characterizing the essential
spectrum by means of a Weyl sequence, located outside a ball Bn(0) ⊂ R

6 of
radius n centered at the origin.
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Lemma 1. Let hBR = T + V, let V be relatively form bounded with respect to T .
Then λ ∈ σess(hBR) iff there exists a sequence of functions ϕn ∈ A(C∞0 (R6\Bn(0))
⊗ C4) with ‖ϕn‖ = 1 such that

‖(hBR − λ) ϕn‖ −→ 0 as n→∞. (2.4)

Recall that ϕn is a two-particle function, each particle being described by
a two-spinor. For Schrödinger operators, Lemma 1 is proven in [4, Thm 3.11].
We note that Lemma 1 holds also for the single-particle operators, h := T (1) or
h := T (1) + b

(1)
1m, with a proof closely following the one given in section 7.

Lemma 2 (Persson’s theorem).
Let hBR = T + V , let V be relatively form bounded with respect to T , and let
ϕ ∈ A(C∞0 (R6\BR(0))⊗ C4). Then

inf σess(hBR) = lim
R→∞

inf
‖ϕ‖=1

(ϕ, hBR ϕ). (2.5)

The proof given in [4, Thm 3.12] relies on Lemma 1 and on the min-max
principle [18, XIII.1], [12, p.60]. It also holds in our case.

Let us now introduce the Ruelle-Simon partition of unity (φj)j=0,1,2 ∈ C∞(R6)
which is subordinate to the cluster decomposition (2.1), see e.g. [4, p.33], [21]. It
is defined on the unit sphere and has the following properties,

2∑
j=0

φ2
j = 1, φj(λx) = φj(x) for x = 1 and λ ≥ 1,

suppφj ∩ R6\B1(0) ⊆ {x ∈ R6\B1(0) : |x1 − x2| ≥ Cx and xj ≥ Cx}, j = 1, 2,

suppφ0 ∩ R6\B1(0) ⊆ {x ∈ R6\B1(0) : xk ≥ Cx ∀ k ∈ {1, 2} }, (2.6)
where x = (x1,x2), x = |x| and C is a positive constant.

According to Lemma 2, we can always assume ϕ ∈ A(C∞0 (R6\BR(0))⊗C4) in
the following. For later use we introduce a smooth auxiliary function χ ∈ C∞(R6),
ran χ = [0, 1], which is unity on the support of ϕ. Then, χϕ = ϕ. Having in mind
(2.2) we aim at a localization formula for our operator. We write

(ϕ, hBRϕ) = (
2∑
j=0

φj χφj ϕ, h
BRϕ)

=
2∑
j=0

(φjϕ, hBRχφj ϕ) −
2∑
j=0

(φjϕ, [hBR, χφj ]ϕ) (2.7)

where [B,A] = BA − AB denotes the commutator. One can show that not only
the contribution of rj to the first term of (2.7) vanishes uniformly as R→∞, but
also the second term containing the commutator. More precisely, one has
Lemma 3. Let hBR = T + aj + rj , (φj)j=0,1,2 the Ruelle-Simon partition of
unity and ϕ ∈ A(C∞0 (R6\BR(0))⊗ C4) with R > 1. Then

|(φjϕ, rj φjϕ)| ≤ c

R
‖ϕ‖2, j = 0, 1, 2, (2.8)
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where c is some constant.
We call an operator O 1

R -bounded if O is bounded by c
R . Thus Lemma 3

states that φjrjφj is 1
R -bounded.

Lemma 4. Assume hBR, φj and ϕ as in Lemma 3, R > 2. Then

(a) |
2∑
j=0

(φjϕ, [T, φj ]ϕ)| ≤ c

R2
‖ϕ‖2

(b) |(φjϕ, [b(k)
1m, φj ]ϕ)| ≤ c

R
‖ϕ‖2 (2.9)

(c) |(φjϕ, [v(12), φj ]ϕ)| ≤ c

R
‖ϕ‖2

where c is a generic constant.
The proof of (a) in Lemma 4 is provided in [13].
With Lemmata 3 and 4, (2.7) turns into the localization formula

(ϕ, hBRϕ) =
2∑
j=0

(φjϕ, (T + aj)φjϕ) + O(
1
R

) ‖ϕ‖2 (2.10)

for R > 2. Using Persson’s theorem (Lemma 2), we obtain

inf σess(hBR) = lim
R→∞

inf
‖ϕ‖=1

2∑
j=0

(φjϕ, (T + aj)φjϕ). (2.11)

Recalling the definition (2.2) of Σ0 in terms of the smallest infimum of σ(T + aj),
we can estimate

inf
‖ϕ‖=1

2∑
j=0

(φjϕ, (T + aj)φjϕ) ≥
2∑
j=0

Σ0 (φjϕ, φjϕ) = Σ0 (2.12)

since
2∑
j=0

φ2
j = 1 = ‖ϕ‖. This proves the inclusion σess(hBR) ⊂ [Σ0,∞).

For the remaining inclusion, [Σ0,∞) ⊂ σess(hBR), in the literature called
the ’easy part’ of the proof of the HVZ theorem, we use the strategy of Weyl
sequences [4, 21].

Let λ ∈ [Σ0,∞). Consider the case that Σ0 = inf σ(T + aj) for j = 1, and
assume that λ ∈ σ(T +a1). (This assumption is proven in (2.16) where it is shown
that σ(T + a1) = σess(T + a1).) Since T + a1 = T (1) + (T (2) + b

(2)
1m) describes

two independent particles, we can decompose λ = λ1 + λ2 with λ1 ∈ σess(T (1))
and λ2 ∈ σ(T (2) + b

(2)
1m).

Let (ϕ(1)
n )n∈N be a Weyl sequence corresponding to λ1, i.e. ϕ(1)

n is character-
ized by

‖ϕ(1)
n ‖ = 1, ϕ(1)

n
w
⇀ 0, ‖(T (1) − λ1)ϕ(1)

n ‖ → 0 as n→∞. (2.13)

From Lemma 1 we can require ϕ
(1)
n ∈ C∞0 (R3\Bn(0)) ⊗ C2. Let (φ(2)

n )n∈N ∈
C∞0 (R3) ⊗ C2 be a defining sequence for λ2 according to [27, Thm 7.22] with
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‖φ(2)
n ‖ = 1. Since ‖(T (2) + b

(2)
1m − λ2)φ(2)

n ‖ → 0 as n→∞, for any given ε > 0
there exists N ∈ N such that

‖(T (2) + b
(2)
1m − λ2)φ(2)

N ‖ < ε. (2.14)

We define the sequence ψn := ϕ
(1)
n · φ(2)

N for n ∈ N and the antisymmetric
sequence Aψn := 1√

2
(ϕ(1)
n φ

(2)
N − ϕ

(2)
n φ

(1)
N ) and claim that a subsequence of Aψn

is a Weyl sequence for λ ∈ σess(hBR).

(i) The weak convergence, Aψn
w
⇀ 0, follows from

√
2 |(Aψn, f (1)g(2))| ≤ |(ϕ(1)

n , f (1))| · |(φ(2)
N , g(2))| + |(φ(1)

N , f (1))| · |(ϕ(2)
n , g(2))|

≤ |(ϕ(1)
n , f (1))| ‖φ(2)

N ‖ ‖g
(2)‖ + |(ϕ(2)

n , g(2))| ‖φ(1)
N ‖ ‖f

(1)‖ → 0 (2.15)

for all f (1), g(2) ∈ L2(R3)⊗ C2, since by (2.13) ϕ(1)
n

w
⇀ 0.

(ii) (ψn)n∈N obeys the Weyl criterion for λ ∈ σess(T + a1) since

‖(T (1) − λ1 + T (2) + b
(2)
1m − λ2) ψn‖ (2.16)

≤ ‖(T (1) − λ1)ϕ(1)
n ‖ ‖φ

(2)
N ‖ + ‖(T (2) + b

(2)
1m − λ2)φ(2)

N ‖ ‖ϕ
(1)
n ‖ < 2ε

for arbitrary ε and n sufficiently large because of (2.13) and (2.14).
(iii) Using that hBR is symmetric upon particle exchange, we have

‖(hBR − λ)Aψn‖ ≤ 2 ‖(hBR − λ)
1√
2
ϕ(1)
n φ

(2)
N ‖

≤
√

2 ‖(T + a1 − λ)ψn‖ +
√

2 ‖r1ψn‖ < 2
√

2 ε +
√

2 ‖b(1)
1mψn‖ +

√
2 ‖v(12)ψn‖

(2.17)
where (2.16) was used. One can show that the two remaining terms also
tend to zero as n→∞. More precisely, one has

Lemma 5. Let ϕ ∈ C∞0 (R3\BR(0))⊗ C2 and R > 1. Then for some constant c,

‖b(1)
1m ϕ‖ ≤

c

R
‖ϕ‖. (2.18)

Lemma 6. Let ψn as defined above. Then for all ϕ ∈ (C∞0 (R3)⊗ C2)2,

|(ϕ, v(12)ψn)| ≤ c

n
‖ϕ‖ ‖ψn‖ (2.19)

with some constant c.
With Lemma 5, one has ‖b(1)

1mψn‖ = ‖b(1)
1mϕ

(1)
n ‖ ‖φ(2)

N ‖ ≤
c
n ‖ϕ

(1)
n ‖ ‖φ(2)

N ‖.
Moreover, one has the equivalence for an essentially self-adjoint operator A and
ψ ∈ D(A) [16, p.260]

(i) ‖Aψ‖ ≤ c

n
‖ψ‖ (2.20)

(ii) |(ϕ,Aψ)| ≤ c

n
‖ϕ‖ ‖ψ‖ ∀ ϕ in the core of D(A).

Choosing A := v(12), ψ := ψn and ϕ ∈ (C∞0 (R3)⊗C2)2 and using Lemma 6, this
proves that the r.h.s. of (2.17) is smaller than 4ε for sufficiently large n.
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(iv) Concerning the normalizability of Aψn, we have

2 ‖Aψn‖2 = ‖ϕ(1)
n ‖ ‖φ

(2)
N ‖ + 2 Re (ϕ(1)

n φ
(2)
N , ϕ(2)

n φ
(1)
N ) + ‖ϕ(2)

n ‖ ‖φ
(1)
N ‖. (2.21)

Since φ(1)
N ∈ C∞0 (R3) ⊗ C2 there exists an R0 > 0 such that x1 < R0 on

suppφ(1)
N , and in addition, x1 > n on suppϕ(1)

n . Hence we have

(ϕ(1)
n φ

(2)
N , ϕ(2)

n φ
(1)
N ) =

∣∣∣∣∫
R3
dx1 ϕ

(1)
n φ

(1)
N

∣∣∣∣2 = 0 if n > R0. (2.22)

Thus ‖Aψn‖ = 1 for sufficiently large n. Therefore a subsequence of Aψn
is a Weyl sequence for λ, resulting in λ ∈ σess(hBR).

Due to the symmetry upon particle exchange, this proves the case j = 2
as well. Consideration of the case j = 0 can be omitted, since V (12) ≥ 0 and
hence v(12) ≥ 0 (whereas V (1) ≤ 0 and so b

(1)
1m ≤ 0). Thus inf σ(T + v(12)) ≥

inf σ(T + b
(1)
1m) such that one has Σ0 = inf σ(T + b

(1)
1m).

3. Ingredients for the proofs of the lemmata

The main difference in the proofs of Lemmata 1, 3, 5 and 6 as contrasted to
the proof of Lemma 4 lies in the fact that the momentum representation is used
for the former, whereas the proof of Lemma 4 is carried out in coordinate space.

An important estimate which holds in either space is the Lieb and Yau for-
mula (which is related to the Schur test for the boundedness of integral operators
and is easily derived from the Schwarz inequality), generalized to the two-particle
case [14, 11].

Lemma 7 (Generalized Lieb and Yau formula).
Let A be an essentially self-adjoint integral operator and kA(ξ, ξ′) its kernel, ξ ∈
R

3l with l ∈ {1, 2} denoting the number of particles. Then for ψ,ϕ ∈ D(A),

|(ψ,Aϕ)| = |
∫
dξ ψ(ξ)

∫
dξ′ kA(ξ, ξ′) ϕ(ξ′)|

≤
(∫

dξ |ψ(ξ)|2 I(ξ)
) 1

2

·
(∫

dξ′ |ϕ(ξ′)|2 J(ξ′)
) 1

2

(3.1)

with

I(ξ) :=
∫
dξ′ |kA(ξ, ξ′)| f(ξ)

f(ξ′)

J(ξ′) :=
∫
dξ |kA(ξ, ξ′)| f(ξ′)

f(ξ)
, (3.2)

where f(ξ) is a nonnegative convergence generating function and all integrals run
over R3l.
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If |kA| is symmetric in ξ, ξ′ then J(ξ′) = I(ξ′). Provided we can show that
I and J are 1

R -bounded functions (for all values of ξ and ξ′), then the uniform
1
R -boundedness of A follows from (3.1) and from the equivalence (2.20),

|(ψ,Aϕ)| ≤
(∫

dξ |ψ(ξ)|2 c

R

) 1
2
(∫

dξ′ |ϕ(ξ′)|2 c

R

) 1
2

=
c

R
‖ψ‖ ‖ϕ‖, (3.3)

with c a suitable constant.
Let us now consider the properties of the smooth auxiliary function χ ∈

C∞(R3l) where l = 2 denotes the two-particle and l = 1 the one-particle case. For
ϕ ∈ C∞0 (R3l\BR(0))⊗ C2l we define for x ∈ R3l

χ(
x
R

) :=
{

0, x < R/2
1, x ≥ R (3.4)

such that χ = 1 on suppϕ. Moreover, define

χ0(
x
R

) := 1 − χ(
x
R

) (3.5)

with χ0 ∈ S(R3l), S being the Schwartz space.
In our proofs we shall introduce commutators with χ, such that χ can be

replaced by χ0, viz. [B,χ] = −[B,χ0], and for the operator B we shall choose a
multiplication operator in momentum space. Then one can readily work in Fourier
space since the Fourier transform of the Schwartz function χ0 is again a Schwartz
function, making the resulting integrals converge. Marking the Fourier transform
with a hat, we have for p ∈ R3l,(

̂
χ0(
·
R

)
)

(p) =
1

(2π)3l/2

∫
R3l

dx e−ipx χ0(
x
R

)

=
1

(2π)3l/2
R3l

∫
R3l

dz e−ipRz χ0(z) = R3l χ̂0(pR). (3.6)

In Lemma 4 the commutator with the partition of unity, φj , is needed. As neither
φj nor 1− φj is a Schwartz (or even an L2) function, its Fourier transform is not
well defined. Therefore we work in coordinate space instead. The strategy we apply
is to construct commutators [B,φj ] where B is again a multiplication operator in
momentum space. Then its kernel kB factorizes, kB(p,p′) = B(p) δ(p−p′). Our
aim is to estimate this kernel in coordinate space and then apply the Lieb and
Yau formula.

Consider the one-particle case, p ∈ R3, and let B(p) := (σp)lg(p) where g
is spherically symmetric and l ∈ {0, 1}. The Fourier transformed kernel is defined
by

ǩB(x1,x′1) =
1

(2π)3

∫
R3
dp eipx1

∫
R3
dp′ e−ip

′x′1 (σp)l g(p) δ(p− p′)
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= (−iσ∇x1)l
1

(2π)3

∫
R3
dp eip(x1−x′1) g(p) (3.7)

= (−iσ∇x̃)l
4π

(2π)3

1
x̃

∫ ∞
0

p dp sin px̃ g(p)

where x̃ := x1 − x′1 is introduced. This integral can be estimated with the help of
complex and asymptotic analysis [15].

In the following we prove successively Lemma 5 (section 4), Lemma 6 (section
5), Lemma 3 (section 6), Lemma 1 (section 7) and Lemma 4 (section 8).

4. Proof of Lemma 5

According to the equivalence (2.20) we prove |(φ, b(1)
1mϕ)| ≤ c

R ‖φ‖ ‖ϕ‖ for
all φ ∈ C∞0 (R3)⊗ C2.

The operator b(1)
1m, defined in (1.5) with (1.3), is a sum of terms each of which

has the structure B(p) 1
xB(p) where the indices on p1 and x1 are suppressed and

B is an analytic (for m 6= 0), bounded multiplication operator in momentum space.
Hence one can apply the mean value theorem to find

B(p) = B(p′) + (p− p′) ∇pB(ξ0), ξ0 := λp + (1− λ) p′ (4.1)

for a suitable λ ∈ [0, 1]. Since B is bounded for all p, its derivative can be
estimated by

|∇pB(p)| ≤ c0
1 + p

(4.2)

with some constant c0. We introduce the auxiliary function χ from (3.4) (with l =
1) and estimate (by means of the triangle inequality) each term of b(1)

1m separately,

|(φ,B 1
x
B ϕ)| = |(Bφ, 1

x
Bχϕ)| ≤ |(φ̃, 1

x
χ ϕ̃)| + |(φ̃, 1

x
[B,χ] ϕ)| (4.3)

where we have abbreviated φ̃ := Bφ and ϕ̃ := Bϕ. Recalling that χ( x
R ) is nonva-

nishing only if x ≥ R/2 and ranχ ∈ [0, 1], the first contribution in (4.3) is easily
estimated by

|(φ̃, 1
x
χ ϕ̃)| ≤

∫
R3
dx |φ̃(x)| 1

x
χ(

x
R

) |ϕ̃(x)|

≤ 2
R
‖φ̃‖ ‖ϕ̃‖ ≤ c

R
‖φ‖ ‖ϕ‖ (4.4)

where ‖φ̃‖ ≤ ‖B‖ ‖φ‖ ≤ c1‖φ‖ was used (c := 2c21). In the second term we set
χ = 1− χ0 and note that 1

x [B,χ] = − 1
px · p [B,χ0] with 1

px a bounded operator
[12, p.307]. Transforming into Fourier space, we get with (3.6)(

p ̂[B,χ0]ϕ
)

(p) =
1

(2π)
3
2
p

∫
R3
dp′ R3 χ̂0((p− p′)R) (B(p)−B(p′)) ϕ̂(p′)

=:
∫
R3
dp′ kp[B,χ0](p,p′) ϕ̂(p′). (4.5)
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We define ψ := 1
px φ̃ and apply the Lieb and Yau formula (3.1) with l = 1, ξ := p

and f = 1. Using our kernel from (4.5) we can estimate with (4.1) and (4.2)

I(p) :=
∫
R3
dp′

R3

(2π)
3
2
p |χ̂0((p− p′)R| |p− p′| |∇pB(ξ0)|

≤ c0

(2π)
3
2

∫
R3
dy |χ̂0(y)| y 1

R
· p

1 + |p− (1− λ)y/R|
. (4.6)

The last factor is bounded for all p ≥ 0, and the integral is finite because χ̂0 ∈
S(R3). Thus I(p) is 1/R-bounded, i.e. I(p) ≤ c

R .
The second integral J(p′) in the Lieb and Yau formula can be estimated in the

same way. There, the last factor in (4.6) is replaced by |p′+y/R|/(1+|p′+λy/R|)
which is also bounded for all p′ ≥ 0. (In the limiting case m = 0, one has
B(p) := A(p) = 1√

2
which commutes with χ, and for B(p) := σp/p, one should

use the explicit result B(p)−B(p′) = p−p′

p (σ − (σp′/p′)(p + p′)/(p+ p′)) such
that the last factor in (4.6) is not present.)

Together with (3.3), this proves

|(φ̃, 1
x

[B,χ]ϕ)| ≤ c

R
‖ 1
px

B φ‖ ‖ϕ‖ ≤ c̃

R
‖φ‖ ‖ϕ‖, (4.7)

and thus the assertion of Lemma 5.

5. Proof of Lemma 6

We have to show that |(ϕ, v(12)ψn)| ≤ c
n ‖ϕ‖ ‖ψn‖ for ψn = ϕ

(1)
n φ

(2)
N with

ϕ
(1)
n ∈ C∞0 (R3\Bn(0))⊗ C2 and φ

(2)
N ∈ C∞0 (R3)⊗ C2.

For the definition of the auxiliary function χ we note that ∃R0 : suppψn ⊂
R

3\Bn(0) ∩ BR0(0). Choose n so large that R0 < n/2. Then, on suppψn :
|x1 − x2| ≥ x1 − x2 > n− n

2 = n/2. Define

χ12(
x1 − x2

n
) :=

{
0, |x1 − x2| < n/4
1, |x1 − x2| ≥ n/2

, (5.1)

a smooth function mapping to [0, 1] with the property ψnχ12 = ψn.
The operator v(12), defined in (1.2) - (1.5), reads explicitly (note that only

terms even in α(k) survive the projection by (1 + β(k))/2)

v(12) = A(p1)A(p2)
e2

|x1 − x2|
A(p1)A(p2) (5.2)

+A(p1)g(p2)σ(2)p2
e2

|x1 − x2|
A(p1)g(p2)σ(2)p2

+ A(p2)g(p1)σ(1)p1
e2

|x1 − x2|
g(p1)σ(1)p1A(p2)

+ g(p1)σ(1)p1 g(p2)σ(2)p2
e2

|x1 − x2|
g(p1)σ(1)p1 g(p2)σ(2)p2
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with A and g as in (1.3). For the present proof, we again need only the structure of
each term in v(12), B(p1,p2) e2

|x1−x2| B(p1,p2) with B(p1,p2) = B1(p1) ·B2(p2)
an analytic (for m 6= 0), bounded multiplication operator in momentum space. As
in the previous proof (cf. (4.3)) we decompose

|(ϕ, B 1
|x1 − x2|

B ψn)| (5.3)

≤ |(Bϕ, 1
|x1 − x2|

χ12B ψn)| + |(Bϕ, 1
|x1 − x2|pk

· pk [B,χ12]ψn)|

with k ∈ {1, 2}. We have |x1 − x2|−1 ≤ 4/n on suppχ12 such that the first
summand in (5.3) can be estimated by 4

n ‖Bϕ‖ ‖Bψn‖ ≤
c
n ‖ϕ‖ ‖ψn‖.

Consider now the second summand. The boundedness of (|x1 − x2|pk)−1 is
readily seen by considering e.g. k = 1 and defining ϕx2(y1) := ψ(y1 + x2,x2) for
ψ ∈ A(L2(R3) ⊗ C2)2. Keeping x2 fixed, we have with p1 =

√
−∇2

x1
and the

substitution y1 := x1 − x2,∣∣∣∣∫
R3
dx1

1
|x1 − x2|

ψ(x1,x2)
1
p1
ψ(x1,x2)

∣∣∣∣ =

∣∣∣∣∣∣
∫
R3
dy1

1
y1
ϕx2(y1)

1√
−∇2

y1

ϕx2(y1)

∣∣∣∣∣∣
≤ c

∫
R3
dy1 |ϕx2(y1)|2 (5.4)

according to Kato’s inequality. Hence, |(ψ, 1
|x1−x2|p1

ψ)| ≤ c
∫
R6 dx2dy1 |ϕx2(y1)|2

= c ‖ψ‖2.
Furtheron, we aim at a reduction of the commutator to the one-particle case

such that the proof of Lemma 5 can be mimicked.
First we note that χ12 depends only on the difference of variables such that,

defining χ12,0 := 1 − χ12, χ̂12,0 splits off a Dirac δ-function. Using l = 2 we get
upon substitution of z′1 := z1 − z2 for z1 from the second line of (3.6)(

̂

χ12,0(
◦ − ∗
n

)

)
(p1,p2) =

1
(2π)3

n6

∫
R6
dz1dz2 e

−ip1nz1 e−ip2nz2 χ12,0(z1 − z2)

(5.5)

(a) = n6

∫
R3

dz′1e
−ip1nz

′
1χ12,0(z′1)δ((p1 + p2)n) = n3(2π)

3
2 χ̂12,0(p1n)δ(p1 + p2)

(b) = n3(2π)
3
2 χ̂12,0(−p2n) δ(p1 + p2)

where line (b) is obtained from p1 = −p2.
Now we make use of the factorization of B(p1,p2) to write

pk [B1(p1)B2(p2), χ12] = −pk [B1(p1), χ12,0] B2 − B1 pk [B2(p2), χ12,0] (5.6)

such that the second summand in (5.3) can be split (via the triangle inequality)
into two parts for each of which pk is chosen independently (k = 1 for the first and
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k = 2 for the second term in (5.6)). Consider the kernel of the first part (cf. (4.5))

kp1[B1,χ12,0](p1,p2,p′1,p
′
2) (5.7)

= p1
n3

(2π)
3
2
χ̂12,0((p1 − p′1)n) δ(p1 − p′1 + p2 − p′2) (B1(p1)−B1(p′1))

where (a) is used for the Fourier transform of χ12,0. Insertion into the Lieb and
Yau formula (for l = 2) with f = 1 gives

I(p1,p2) :=
∫
R6
dp′1dp

′
2 |kp1[B1,χ12,0](p1,p2,p′1,p

′
2)|

= p1
n3

(2π)
3
2

∫
R3
dp′1 |χ̂12,0((p1 − p′1)n)| |B1(p1)−B1(p′1)| (5.8)

which is independent of p2 and has the identical form of (4.6) (note that the
operators B1 and B2 are the same as occurred in b

(1)
1m, and χ̂12,0 ∈ S(R3)).

Therefore, I (and also J) is 1
n -bounded by the proof of Lemma 5. The same holds

true for the second part of the second summand in (5.3) which corresponds to the
second term in (5.6). There, expression (b) in (5.5) has to be used. Thus, collecting
results,

|(B ϕ, 1
|x1 − x2|

[B,χ12]ψn)| ≤ |( 1
p1|x1 − x2|

B ϕ, p1 [B1, χ12,0]B2 ψn)|

+ |( 1
p2|x1 − x2|

B ϕ,B1 p2 [B2, χ12,0]ψn)| (5.9)

≤ c

n
‖ 1
p1|x1 − x2|

Bϕ‖ ‖B2ψn‖ +
c

n
‖B1

1
p2|x1 − x2|

Bϕ‖ ‖ψn‖ ≤
c̃

n
‖ϕ‖ ‖ψn‖

which completes the proof of Lemma 6.

6. Proof of Lemma 3

For j = 0, 1 and ϕ ∈ A(C∞0 (R6\BR(0))⊗C4) we have to show |(φjϕ, rj φjϕ)|
≤ c

R ‖ϕ‖
2. (The proof for j = 2 follows from the symmetry upon electron ex-

change.) The same strategy is used as in the previous proofs.

a) j = 1 : r1 = b
(1)
1m + v(12)

For the definition of the auxiliary function χ we recall that suppφ1ϕ ⊂
R

6\BR(0) ∩ {x ∈ R6 : x1 ≥ Cx}. Thus x =
√
x2

1 + x2
2 ≥ R and x1 ≥ CR. For

the estimate of b(1)
1m, we take

χ1(
x1

R
) :=

{
0, x1 < CR/2
1, x1 ≥ CR

(6.1)

such that φ1ϕχ1 = φ1ϕ, and we introduce χ1,0 := 1 − χ1 ∈ S(R3) as before.
Although we are dealing here with two-particle functions, all operators (b(1)

1m and
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χ1) act only on particle 1. This reduces the Lieb and Yau formula to the single-
particle case,

|(ψ,Aϕ)| = |
∫
R6
dp1dp2 ψ̂(p1,p2)

∫
R3
dp′1 kA(p1,p′1) ϕ̂(p′1,p2)|

≤
(∫

R6
dp1dp2 |ψ̂(p1,p2)|2 I(p1)

) 1
2
(∫

R6
dp′1dp2 |ϕ̂(p′1,p2)|2 J(p′1)

) 1
2

(6.2)

where I and J are given in (3.2) with ξ := p1. Therefore the proof of Lemma 5
can be copied to obtain

|(φ1 ϕ, b
(1)
1m φ1 ϕ)| ≤ c̃

R
‖φ1 ϕ‖2 ≤

c̃

R
‖ϕ‖2. (6.3)

For the estimate of v(12), we define χ in analogy to (5.1) by noting that
additionally, suppφ1ϕ ⊂ R6\BR(0) ∩ {x ∈ R6 : |x1 − x2| ≥ Cx}. Therefore,

χ12(
x1 − x2

R
) :=

{
0, |x1 − x2| < CR/2
1, |x1 − x2| ≥ CR

(6.4)

such that again, φ1ϕχ12 = φ1ϕ and χ12,0 := 1− χ12 ∈ S(R3). This enables us to
adopt the proof of Lemma 6 (with n replaced by R) to obtain

|(φ1 ϕ, v
(12) φ1 ϕ)| ≤ c

R
‖φ1 ϕ‖2 ≤

c

R
‖ϕ‖2. (6.5)

b) j = 0: r0 = b
(1)
1m + b

(2)
1m

In this case, the support of φjϕ obeys suppφ0ϕ ⊂ R6\BR(0) ∩ {x ∈ R6 :
x1 ≥ Cx and x2 ≥ Cx}. For the discussion of b(1)

1m, we define χ1(x1/R) as in (6.1)
and copy the corresponding proof from a). For b(2)

1m, we choose χ2(x2/R) according
to (6.1) with x1 replaced by x2. The proof is done along the same lines as for b(1)

1m.
Hence we obtain

|(φ0 ϕ, r0 φ0 ϕ)| ≤ |(φ0 ϕ, b
(1)
1m χ1 φ0 ϕ)| + |(φ0 ϕ, b

(2)
1m χ2 φ0 ϕ)|

≤ 2c1
R
‖φ0 ϕ‖2 ≤

2c1
R
‖ϕ‖2. (6.6)

7. Proof of Lemma 1

Assume we have a normalized sequence of functions (ϕn)n∈N localized outside
Bn(0) with the property (2.4) for hBR and the λ ∈ R under consideration. Since
the normalization constant of ϕn tends to zero as n→∞, for any φ ∈ C∞0 (R6) we
have |(φ, ϕn)| → 0 as n→∞, i.e. ϕn

w
⇀ 0. By the Weyl criterion it follows that

λ ∈ σess(hBR).
Conversely, let λ ∈ σess(hBR). Then there exists a Weyl sequence ψn ∈

A(C∞0 (R3)⊗C2)2, ‖ψn‖ = 1, with ψn
w
⇀ 0 and ‖(hBR− λ)ψn‖ → 0 as n→∞.
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Define a smooth symmetric (with respect to interchange of x1 and x2) func-
tion χ0 ∈ C∞0 (R6) mapping to [0, 1] by means of

χ0(
x
n

) =
{

1, x ≤ n
0, x > 2n (7.1)

and let χn(x) := 1 − χ0(x
n ), χn ∈ C∞(R6\Bn(0)). Then ϕn := ψnχn ∈

A(C∞0 (R6\Bn(0)) ⊗ C4) and we claim that a subsequence of (ϕn)n∈N satisfies
the requirements of Lemma 1.

a) ‖(hBR − λ)ϕn‖ → 0 as n→∞ :
We decompose

‖(hBR − λ)χnψn‖ ≤ ‖χn (hBR − λ)ψn‖ + ‖ [hBR, χ0]ψn‖, (7.2)

and use the equivalence (2.20) again. Concerning the first term in (7.2), we have
for any φ ∈ C∞0 (R6)⊗ C4,

|(φ, χn (hBR − λ)ψn)| ≤ ‖χn φ‖ ‖(hBR − λ)ψn‖ −→ 0 as n→∞ (7.3)

by assumption, since ‖χnφ‖ ≤ ‖φ‖ <∞.
In order to treat the single-particle contribution to the second term in (7.2),

T (k) and b
(k)
1m, we change again to Fourier space and introduce the 6-dimensional

Fourier transform of χ0 according to (3.6) with l = 2. Then the kernel of [T (1), χ0]
in momentum space reads

k[T (1),χ0](p1,p2,p′1,p
′
2) =

n6

(2π)3
χ̂0((p1 − p′1)n, (p2 − p′2)n) (Ep1 − Ep′1) (7.4)

and by the mean value theorem (4.1), using ∇pEp = ∇p

√
p2 +m2 = p/Ep,

|Ep1 − Ep′1 | = |p1 − p′1|
∣∣∣∣ ξEξ

∣∣∣∣ ≤ |p1 − p′1| (7.5)

for all ξ := λp1 + (1 − λ)p′1 with λ ∈ [0, 1]. For the integral I appearing in
the Lieb and Yau formula (3.1) we have with f = 1 and the substitution yk :=
(pk − p′k)n, k = 1, 2,

I(p1,p2) :=
∫
R6
dp′1 dp

′
2

n6

(2π)3
|χ̂0((p1 − p′1)n, (p2 − p′2)n)| |Ep1 − Ep′1 |

≤ 1
(2π)3

∫
R6
dy1 dy2 |χ̂0(y1,y2)| y1 ·

1
n
≤ c

n
(7.6)

since χ̂0 ∈ S(R6). In a similar way, J(p′1,p
′
2) ≤ c/n, and hence

|(φ, [T (1), χ0]ψn)| ≤ c

n
‖φ‖ ‖ψn‖ (7.7)

for all φ ∈ C∞0 (R6) ⊗ C4. For the operator b(1)
1m we can proceed as in the proof

of Lemma 5, because (according to (7.6)) the two-particle nature of χ0 does not
affect the convergence of the single-particle integrals.
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For the estimate of the remaining commutator, [v(12), χ0], we follow sec-
tion 5 to split it into commutators of χ0 with single-particle (bounded) operators
B1(p1), B2(p2). The only difference as compared to the proof of Lemma 6 lies in
the two-particle nature of χ0 (cf. (7.4) in place of (5.7)), but again this does not
affect the convergence of the integrals. Thus we get

|(φ, [hBR, χ0]ψn)| ≤
2∑
k=1

(
|(φ, [T (k), χ0]ψn)| + |(φ, [b(k)

1m, χ0]ψn)|
)

+ |(φ, [v(12), χ0]ψn)| ≤ c

n
‖φ‖ ‖ψn‖ (7.8)

with the generic constant c.

b) ‖ϕn‖ 6= 0 :
We show that for any ε > 0 there is an N0 ∈ N such that ‖χ0ψn‖ < ε for all

n ≥ N0. Then ‖(1−χn)ψn‖ = ‖ψn−ϕn‖ < ε. As a consequence, ‖ϕn‖ 6= 0 for
sufficiently large n > n0 ≥ N0 since ‖ψn‖ = 1 (i.e. one can choose a subsequence
of (ϕn)n∈N with normalizable elements).

Since hBR is a self-adjoint positive operator, hBR + 1 > 0 with a bounded
inverse. Then following [4] we estimate

‖χ0 ψn‖ = ‖χ0 (hBR + 1)−1 [(hBR − λ) + (1 + λ)]ψn‖

≤ ‖χ0 (hBR + 1)−1‖ ‖(hBR − λ)ψn‖ + |1 + λ| ‖χ0 (hBR + 1)−1 ψn‖. (7.9)

Since χ0 ∈ C∞0 (R6) and by assumption ∃N1 : ‖(hBR − λ)ψn‖ < ε̃ for n ≥ N1,
the first term is bounded by, say, c1ε̃ for n ≥ N1.

For the second term we show that the bounded function χ0 is relatively
compact with respect to hBR. We write

χ0 (hBR + 1)−1 = χ0 (T + 1)−
1
2 (T + 1)

1
2 (hBR + 1)−1 (7.10)

and note that (T+1)
1
2 (hBR+1)−

1
2 ·(hBR+1)−

1
2 is a product of bounded operators

since V is T -from bounded (with form bound < 1 for γ < γBR).
For the compactness of χ0 (T + 1)−

1
2 we apply a theorem ([22, p.115], [21,

Lemma 6.9] stating that for bounded functions f(x) and g(p) with f, g : [0,∞)→ C

and lim
x→∞

f(x) = 0 = lim
p→∞

g(p) the product K := gf is compact.

Clearly, both χ0 and (T + 1)−
1
2 = (

√
p2

1 +m2 +
√
p2

2 +m2 + 1)−
1
2 are

bounded functions, going to zero as x→∞ and p :=
√
p2

1 + p2
2 →∞, respectively.

Therefore, χ0 (hBR + 1)−1 is compact and maps the weakly convergent sequence
(ψn)n∈N into a strongly convergent sequence. So the second term in (7.9) can be
estimated by c2ε̃ for, say, n ≥ N2. This proves the assertion ‖χ0ψn‖ < ε :=
(c1 + c2)ε̃ for n ≥ N0 := max{N1, N2}.
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8. Proof of Lemma 4

We have to show that for ϕ ∈ A(C∞0 (R6\BR(0))⊗C4) and χ( x
R ) the auxiliary

function from (3.4) with l = 2, (φjϕ, [b
(1)
1m, φjχ]ϕ) as well as (φjϕ, [v(12), φjχ]ϕ)

are uniformly 1/R-bounded.
Let us denote φjχ =: ψj . We have suppφjχ ⊆ suppχ which is located

outside BR/2(0) such that the scaling holds,

ψj(x) = φj(x)χ(
x
R

) = φj(
x
R/2

)χ(
x
R

) (8.1)

for R ≥ 2. Since φj and χ are analytic functions in suppχ we can apply the mean
value theorem, with x = (x1,x2),

|ψj(x1,x2) − ψj(x′1,x2)| = |x1 − x′1| |(∇x1ψj)(ξ,x2)| (8.2)

with ξ some value on the line between x1 and x′1. Since from (3.5), χ′ = −χ′0 ∈
S(R6) is a bounded function, as is φ′j (because φj ∈ C∞(R6) is defined on the
compact unit sphere and is homogeneous of degree zero outside the unit ball), we
can estimate

|
(
∇x1 φj(

x
R/2

) χ(
x
R

)
)

(ξ,x2)| = |φj |
1
R
|χ′( ξ

R
,
x2

R
)| + |χ| 1

R/2
|φ′j(ξ,x2)| ≤ c0

R
(8.3)

(the prime refering to the derivative with respect to the first entry). c0 is a suitable
constant which can be chosen independently of j.

a) Using the explicit form (1.5) of b(1)
1m, we decompose the commutator in the

following way,

[b(1)
1m, ψj ] = −γ

{
[A,ψj ]

1
x1

A + [σ(1)p1 g, ψj ]
1
x1

gσ(1)p1

+ A
1
x1

[A,ψj ] + σ(1)p1 g
1
x1

[g σ(1)p1, ψj ]
}
. (8.4)

Since the two terms in the second line of (8.4) are (up to a sign) the hermitean
conjugate of the first line, and the interchange of φjϕ with ϕ in the quadratic form
plays no role, we need not discuss these terms separately.

The terms in the first line of (8.4) have the structure [O, ψj ] 1
x1
B with O

and B multiplication operators in momentum space and B bounded. Provided we
can show

|(ϕ, [O, ψj ]
1
x1

ψ)| ≤ c

R
‖ϕ‖ ‖ψ‖, (8.5)

we can estimate |(φjϕ, [O, ψj ] 1
x1
B ϕ)| ≤ c

R ‖φjϕ‖ ‖Bϕ‖ ≤
c1
R ‖ϕ‖

2 and we are
done. The proof of (8.5) is based on the following estimate of the kernel ǩO of O
in coordinate space,

|ǩO(x1,x′1)| ≤ c

|x1 − x′1|3
, (8.6)
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for our two operators of interest, A and σ(1)p1g. Assuming (8.6) to hold, we apply
the coordinate-space version of the Lieb and Yau formula (3.1) to the l.h.s. of (8.5),
identifying ξ with (x1,x2). Then we have to estimate the two integrals from (3.2),
I and J . For I we have

I(x1,x2) :=
∫
R6
dx′1dx

′
2 |ǩ[O,ψj ] 1

x1
(x1,x′1)| δ(x2 − x′2)

f(x1,x2)
f(x′1,x

′
2)

(8.7)

with the convergence generating function chosen to be f(x1,x2) = x
3/2
1 . The

delta function appears because the momentum operator O does not affect particle
2. With the help of (8.6) and the mean value theorem (8.2) and (8.3) we obtain

I(x1,x2) =
∫
R3
dx′1 |ǩO(x1,x′1)| |ψj(x1,x2)− ψj(x′1,x2)| 1

x′1
· x

3/2
1

x
′3/2
1

≤ c0c

R

∫
R3
dx′1

1
|x1 − x′1|3

|x1 − x′1|
x

3/2
1

x
′5/2
1

. (8.8)

Using spherical coordinates, the angular integration is performed by means of∫
S2

dω′ 1
|x1−x′1|2

= 2π
x1x′1

ln
∣∣∣x1+x′1
x1−x′1

∣∣∣ [8]. With the substitution x′1 =: x1z
′ we get for

the r.h.s. of (8.8),

I(x1,x2) ≤ 2πc0c
R

∫ ∞
0

dz′

z′3/2
ln
∣∣∣∣1 + z′

1− z′

∣∣∣∣ ≤ C

R
(8.9)

since the integral is convergent. For the integral J we use the identical estimates.
Then with x1 := x′1z,

J(x′1,x
′
2) :=

∫
R6
dx1dx2 |ǩ[O,ψj ] 1

x1
(x1,x′1)| δ(x2 − x′2)

x
′3/2
1

x
3/2
1

≤ 2πc0c
R

∫ ∞
0

dz

z1/2
ln
∣∣∣∣1 + z

1− z

∣∣∣∣ ≤ C̃

R
. (8.10)

From (8.9) and (8.10), the Lieb and Yau formula together with (3.3) provides the
desired result (8.5).

It remains to show the estimate (8.6) for the kernel of our operators. Let us
first consider the limiting case m = 0 as this is very simple.

For m = 0, σ(1)p1g = 1√
2
σ(1) p1

p1
, while A is a constant which need not be

considered. From (3.7), using the Fourier transform of the Coulomb potential,

ǩσ(1)p1g(x1,x′1) = −iσ(1)∇x1

1√
2

4π
(2π)3

1
|x1 − x′1|2

=
iσ(1)

√
2π2

x1 − x′1
|x1 − x′1|4

, (8.11)

such that the desired estimate (8.6) follows immediately.
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For m 6= 0, we have to consider the two functions g(p1) and A(p1) defined in
(1.3). Without loss of generality we can set m = 1 (otherwise, due to scaling, one
would have to consider mx̃ in place of x̃ in the integrand of (3.7)). Then

g(p1) =
1√
2

(
1

p2
1 + 1 +

√
p2

1 + 1

) 1
2

A(p1) =
1√
2

(
1 +

1√
p2

1 + 1

) 1
2

=
1√
2

+ g̃(p1), (8.12)

g̃(p1) :=
1√
2

1√
p2

1 + 1 +
√
p2

1 + 1 +
√
p2

1 + 1

where g̃(p1) ∼ 2−
3
2 /p1 for p1 →∞.

Both functions, if extended to the complex plane, have branch points at
p1 = ±i and are analytic in the strip {z ∈ C : |Im z| < 1} if the cuts are chosen
from i to ∞ and from −∞ to −i, respectively. According to a corollary of the
Paley-Wiener theorem [17, Thm IX.14], for x̃ := |x′1−x1| > 0, it follows that ǩg̃
and ǩg (if defined with convergence generating factors) are bounded continuous
functions decaying exponentially at x̃→∞, i.e. for any b < 1 and any δ > 0, there
exists a constant c1 > 0 :

|ǩg̃(x̃)| ≤ c1e−bx̃ for x̃ ≥ δ, (8.13)

and similarly for ǩg. Here and in the following we have to introduce the con-
vergence generating factors by means of replacing for ε > 0 the integral in (3.7)
by

lim
ε→0

1
x̃

∫ ∞
0

p1 dp1 sin p1x̃ g̃(p1) e−εp1 . (8.14)

In determining the behaviour of ǩg̃ near x̃ = 0, we apply two partial integra-
tions to (8.14) and obtain

1
x̃

∣∣∣∣∫ ∞
0

dp1 sin p1x̃
(
p1g̃ e

−εp1
)∣∣∣∣ =

1
x̃3

∣∣∣∣∫ ∞
0

dp1 sin p1x̃

{(
d2

dp2
1

p1g̃

)
e−εp1

− 2
1
p1

(
d

dp1
p1g̃

)
· [εp1 e

−εp1 ] +
g̃

p1
[(εp1)2 e−εp1 ]

}∣∣∣∣ ≤ c

x̃3
(8.15)

because the boundary terms vanish, | sin p1x̃| ≤ 1 and the term in curly brackets
is bounded by c

(p1+1)2 for all ε, which is an integrable function.
The continuity of ǩg̃ at x̃ > 0 together with (8.13) thus ensures the estimate

|ǩg̃(x̃)| ≤ c
x̃3 .

For the second kernel, ǩσ(1)p1g(x̃), we need more careful estimates due to the
presence of the derivative σ(1)∇x̃ in (3.7). First we prove analyticity of the kernel
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ǩg. We use (8.14) with g̃ replaced by g. Writing sin p1x̃ = 1
2i (e

ip1x̃ − e−ip1x̃),
substituting p1 = iy and using symmetry, (8.14) turns into

lim
ε→0

1
2ix̃

(∫ 0

−i∞
f̃(y) e−iεy dy +

∫ i∞

0

f̃(y) eiεy dy
)

f̃(y) := y e−x̃y
1√
2

(
1

1− y2 +
√

1− y2

) 1
2

(8.16)

Using analyticity of the integrands outside the cuts as well as their exponential
decay as Re(y) → ∞, we can use Cauchy’s integral theorem to deform the inte-
gration paths to the real axis. The resulting integrals are finite for all x̃ > 0 and
ε = 0 since the singularity at y = 1 is integrable. Thus (8.16) gives

1
x̃
√

2

∫ ∞
1

ydy e−x̃y Re

(
1

y2 − 1 + i
√
y2 − 1

) 1
2

(8.17)

with positive choice of the real part. Its derivative with respect to x̃ also converges
absolutely and hence (8.17) represents an analytic function for x̃ > 0.

For the large-x̃ behaviour we note that an expansion around the branch point
p1 = i provides, as outlined by Murray [15],

1
x̃

∫ ∞
0

p1dp1 sin p1x̃ g(p1) e−εp
4
1 ∼ z0

e−x̃

x̃7/4
e−ε as x̃→∞ (8.18)

with a constant z0.
For the estimate of ǩg near x̃ = 0, we separate the ’Coulombic’ tail from

g, g(p) = 1√
2p

+ (g(p)− 1√
2p

) and obtain with (8.11) and (3.7)

ǩg(x̃) =
1

2
√

2π2

(
1
x̃2
− lim

ε→0
Iε(x̃)

)
(8.19)

Iε(x̃) :=
1
x̃

∫ ∞
0

dp1 sin p1x̃
(1 +

√
p2

1 + 1)
1
2

(p2
1 + 1)

1
4 [p1 + (p2

1 + 1 +
√
p2

1 + 1 )
1
2 ]
e−εp1 .

The fraction multiplying sin p1x̃ decreases according to 1/p1 for p1 → ∞. With
one partial integration, we get

Iε(x̃) =
1
x̃2

+
1
x̃2

∫ ∞
0

dp1 cos p1x̃

{
(
d

dp1
[· · · ]) e−εp1 − [· · · ]

p1
(εp1 e

−εp1)
}

(8.20)

where the first term comes from the boundary at p1 = 0 and [· · · ] denotes the
fraction in (8.19). The integral is finite (and independent of x̃ for x̃ → 0) be-
cause the curly bracket can be estimated by c0

(1+p1)2 (independent of ε) which
is integrable. Hence, ǩg(x̃) ∼ c̃

x̃2 for x̃ → 0 with some constant c̃. Performing
the derivative inherent in σ(1)p1, we find ǩσ(1)p1g(x̃) ∼ 2ic̃ σ

(1)x̃
x̃4 (x̃ → 0) and
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∼ iz0
σ(1)x̃
x̃4 (x̃5/4 + 7

4 x̃
1/4) e−x̃ for x̃ → ∞. From the analyticity of ǩg we finally

obtain
|ǩσ(1)p1g(x̃)| ≤ c

x̃3
for all x̃ > 0. (8.21)

b) Let us now turn to the commutator with the two-body interaction v(12). Ac-
cording to the explicit expression (5.2) for v(12), we split [v(12), ψj ] =: e2

∑4
k=1Mk

into four contributions and write them in the following way (with the short-hand
notation Ak := A(pk), gk := g(pk), k = 1, 2).

M1 := [A1, ψj ]
1

|x1 − x2|
· |x1 − x2| A2

1
|x1 − x2|

A1A2

+ A1 [A2, ψj ]
1

|x1 − x2|
A1A2 − h.c.

M2 := [A1, ψj ]
1

|x1 − x2|
· |x1 − x2| g2σ

(2)p2
1

|x1 − x2|
A1g2σ

(2)p2

+ A1 [g2σ
(2)p2, ψj ]

1
|x1 − x2|

A1g2σ
(2)p2 − h.c. (8.22)

M4 := [g1σ
(1)p1, ψj ]

1
|x1 − x2|

· |x1 − x2| g2σ
(2)p2

1
|x1 − x2|

g1σ
(1)p1g2σ

(2)p2

+ g1σ
(1)p1 [g2σ

(2)p2, ψj ]
1

|x1 − x2|
g1σ

(1)p1g2σ
(2)p2 − h.c.

where h.c. denotes the hermitean conjugate, and M3 results from M2 upon inter-
changing p1,σ

(1) with p2,σ
(2) and therefore need not be considered separately.

In addition to estimate the commutators [O, ψj ] 1
|x1−x2| (with the same

operators O as in a) except for a possible particle exchange), we have to prove
boundedness of |x1 − x2| O 1

|x1−x2| which appears as a factor in the first contri-
bution to Mk, k = 1, ..., 4.

For the estimate of the commutators we proceed as in a) except for the choice
f(x1,x2) = |x1 − x2|3/2. With the inequality (8.6) for the kernel of O and the
mean value theorem (8.2) and (8.3) we obtain for I, defined as the integral over
the kernel of [O, ψj ] 1

|x1−x2| where O depends e.g. on p2,

I(x1,x2) :=
∫
R3
dx′2 |ǩO(x2,x′2)| |ψj(x1,x2)− ψj(x1,x′2)| 1

|x1 − x′2|
f(x1,x2)
f(x1,x′2)

≤ c0c

R

∫
R3
dx′2

1
|x2 − x′2|3

|x2 − x′2|
1

|x1 − x′2|
|x1 − x2|3/2

|x1 − x′2|3/2
. (8.23)

We abbreviate x0 := x2 − x1 and substitute x′2 − x1 = x0y. Then the second line
in (8.23) is written as (ex0 := x0/x0)

I(x1,x2) ≤ c0c

R

∫
R3
dy

1
|ex0 − y|2

1
y5/2

=
2πc0c
R

∫ ∞
0

dy

y3/2
ln
∣∣∣∣1 + y

1− y

∣∣∣∣ ≤ C

R
(8.24)
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with the same estimate as in (8.9) above. Likewise, the estimate (8.10) holds for
the second integral J.

Finally we have to show the boundedness of |x1 − x2| O 1
|x1−x2| . Since com-

mutators help to regularize integrals, we decompose

|x1 − x2| O
1

|x1 − x2|
= O + [ |x1 − x2|,O]

1
|x1 − x2|

. (8.25)

O is bounded so we can concentrate on the second term. The difference to the
commutators occurring in (8.22) is the replacement of ψj by |x1 − x2|. From the
mean value theorem we get (for O depending on p2)

| |x1 − x2| − |x1 − x′2| | =
∣∣∣∣(x2 − x′2)

ξ − x1

|ξ − x1|

∣∣∣∣ ≤ |x2 − x′2| (8.26)

with ξ some point between x2 and x′2. This means that the earlier estimates (8.24)
and (8.10) hold except for the factor c0/R from (8.3) which is not present now.
This proves the desired boundedness.

The operators in Mk, k = 1, .., 4 from (8.22) which are not yet consid-
ered, are all bounded. Applying the Lieb and Yau formula, this finally shows that
|(φjϕ, [v(12), ψj ]ϕ)| ≤ c

R ‖ϕ‖
2 and completes the proof of the HVZ theorem.
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