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Abstract. We consider the pseudorelativistic Chandrasekhar/Herbst opera-

tor hH for the description of relativistic one-electron ions in a locally bounded

magnetic field. We show that for Coulomb potentials of strength γ < 2/π,
the spectrum of hH is discrete below m (the electron mass). For magnetic

fields in the class BA(x) = B · 1+τ
2

(|x1|τ + |x2|τ ) ez , the ground-state energy

of hH decreases according to B1/(2+τ) as B →∞ for 0 ≤ τ < τc where τc is
some critical value depending on γ.

1. Introduction

Relativistic one-electron ions are described by the Dirac operator. In the
presence of a Coulomb field V and a magnetic field BA generated by a vector
potential A this operator is given by (in relativistic units, ~ = c = 1)

DA = α (p− eA) + β m, V = −γ
x
. (1.1)

The particle mass is denoted by m, α and β are the Dirac matrices, p = −i∇
the momentum operator, x = |x| and γ = Ze2 the electric potential strength (Z
is the charge of the nucleus which is fixed at the origin and e2 ≈ 1/137.04 is the
fine structure constant).

In order to avoid dealing with the negative continuum which, in contrast to
the nonrelativistic case, causes the Dirac operator to be unbounded from below,
semibounded pseudorelativistic operators are often introduced. One way to obtain
such a semibounded operator is the restriction of the Dirac operator to the positive
spectral subspace of the free Dirac operator. When a vector potential is present one
has to include A in the projector onto the positive spectral subspace in order to
retain gauge invariance [14]. As a result one obtains the Brown-Ravenhall operator
[3, 14, 9], acting in the Hilbert space L2(R3)⊗ C2 [5],

hBR = EA − γAE

(
1
x

+
σpA

EA +m

1
x

σpA
EA +m

)
AE (1.2)
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with AE =
(
EA+m
2EA

)1/2

. The kinetic energy operator is given by

|DA| =: EA =
√

(σ(p− eA))2 +m2 ≥ m. (1.3)

Abbreviating p − eA = pA one can rewrite (σpA)2 = (pA)2 − eσBA where
BA = ∇ ×A and σ is the vector of Pauli spin matrices. For A ∈ L2,loc(R3) the

form domain Q(EA) = D(E
1
2
A) is the Sobolev space H 1

2
(R3)⊗ C2.

It was shown in [17] that hBR is bounded from below if A ∈ L∞loc(R3) and
γ < γBR := 2/(π2 + 2

π ). In the case of a constant magnetic field BA = Bez it could
be proven that the lower bound of hBR decreases proportional to B

1
2 and that the

ground-state energy behaves like −cB 1
2 for B → ∞ if γ < 2

π [11]. The advantage
of a constant magnetic field is the explicit knowledge of the eigenstates of the Pauli
operator (σpA)2 [20, p.196], respectively of EA. Since the potential part of hBR

depends nontrivially on EA, such eigenstates are crucial for the construction of
trial functions which are used to determine an upper bound for the ground-state
energy of hBR.

It is an open question how the asymptotic dependence of the ground-state
energy on the magnetic field will change if locally bounded, but nonconstant mag-
netic fields are considered. For such fields no exact eigenstates of the Pauli operator
are known, and the nonlocality of EA prohibits variational calculations.

Therefore we consider instead of hBR the pseudorelativistic Herbst operator
(also termed Chandrasekhar operator [2, 8]) which has a simpler structure and
also acts in the Hilbert space L2(R3)⊗ C2,

hH = EA + V. (1.4)

It retains the relativistic kinematics, but omits the EA-dependent factors, arising
from the projectors, in the potential. There are seminal works using the Herbst
operator for the determination of stability and spectral properties of multiparticle
systems (e.g. [16, 13]). Although giving less accurate estimates for the relativistic
atomic binding energies than hBR, it is shown below that hH has the same asymp-
totic B-dependence as hBR for a constant field. So we conjecture that our results
for locally bounded fields will hold in the case of related relativistic operators as
well.

The aim of the present work is to show the semiboundedness of hH , the
relative form boundedness of V and the localization of the essential spectrum of
hH for all locally bounded magnetic fields and γ < 2/π (Theorem 1; proof in
Section 3). Moreover, for a special class of unbounded magnetic fields, introduced
in Section 2, it is proven that a bound ground state of hH exists for subcritical
growth of BA(x) as x→∞, and that the ground-state energy scales asymptotically
with the magnetic field strength according to a power law (Theorem 2). This is
based on a scaling property of the Herbst operator which is derived in Section 4.
The existence of a discrete ground state is investigated by means of a variational
calculation (Section 5) and it is shown that it depends on the interplay between
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the growth of BA and the strength of V . The proof of Theorem 2 is completed in
Section 6.

2. Main results for the Herbst operator

It is well known from the field-free case (A = 0) that the Herbst operator is
semibounded for γ ≤ 2

π [8]. For locally bounded magnetic fields we have a similar
result.

Theorem 1. Let hH = EA+V be the Herbst operator for an electron in a magnetic
field BA ∈ L∞loc(R3) and in a central Coulomb field of strength γ < 2/π (Z ≤ 87).
Then for all m ≥ 0

(i) hH is bounded from below in the form sense on H1/2(R3)⊗ C2.
(ii) V is form bounded with respect to EA with form bound smaller than one.

Hence, by the KLMN theorem [19, p.167], hH can be extended to a self-
adjoint operator with form domain Q(EA).

(iii) For the essential spectrum of hH one has

σess(hH) = σess(EA) ⊂ [m,∞). (2.1)

As a consequence, all eigenstates of hH below m, if existing, are discrete.
Let us now consider the special class of locally bounded magnetic fields orig-

inating from the vector potentials

A(x) =
B

2
(−x2 |x2|τ , x1 |x1|τ , 0), τ > 0. (2.2)

A obeys ∇A = 0 (which simplifies the evaluation of (p− eA)2) and generates the
field BA = ∇×A,

BA(x) = B
1 + τ

2
(0, 0, |x1|τ + |x2|τ ) ∈ L∞loc(R3). (2.3)

For the limiting case τ = 0 we obtain the constant magnetic field BA = (0, 0, B).

Theorem 2. Let hH = EA+V be the Herbst operator for an electron in a magnetic
field BA of the class (2.3) and in a Coulomb field of strength 0.1 . γ < 2

π .

(i) For every field strength B > 2Z2B0 there exists a critical field growth
τc(γ,B) > 0 such that hH has a discrete ground state for every τ <
τc. (B0 = 2.35× 109 G is the unit field.)

(ii) For B →∞ and for τ < τc(γ), the ground-state energy Eg of hH behaves
like

Eg ∼ −c B
1

2+τ (2.4)

where c > 0 is some constant.
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3. General properties of the Herbst operator: proof of Theorem 1

3.1. Semiboundedness of hH .

When we represent a locally bounded field BA by the vector potential [7]

Ax0(x) =
∫ 1

0

t dt BA(x0 + t(x− x0)) ∧ (x− x0) (3.1)

which satisfies ∇ × Ax0 = BA for arbitrary x0 ∈ R3, it is obvious that Ax0 is
also locally bounded. Thus without restriction we can assume A ∈ L∞loc(R3) if
BA ∈ L∞loc(R3).

Following the ideas of [17] in the proof of the semiboundedness of the Brown-
Ravenhall operator for γ < γBR, we introduce smooth functions χ1, χ2 ∈ C∞(R3)
mapping to [0, 1] by

χ2(x) :=
{

0, x < R0

1, x ≥ R1
, χ2

1 + χ2
2 = 1, (3.2)

where R0 < R1 are some positive real numbers.
For the localization of the kinetic energy operator EA we use an estimate by

Lenzmann and Lewin [12, Proof of Lemma A.2],
1
2

(EAχ2
k + χ2

kEA) ≥ χk EA χk +
1

2π
Ik (3.3)

Ik :=
∫ ∞

0

1
s+ E2

A

[ [E2
A, χk], χk]

1
s+ E2

A

√
s ds,

which is based on the identity,

EA =
1
π

∫ ∞
0

E2
A

s+ E2
A

ds√
s
. (3.4)

Both relations, (3.3) and (3.4), in fact hold for arbitrary operators EA and χk.
Performing in (3.3) the sum over k = 1, 2 and using (3.2) we obtain for ψ ∈
H1/2(R3)⊗ C2,

(ψ, EA ψ) ≥
2∑
k=1

(χkψ, EA χkψ) +
1

2π
(ψ, (I1 + I2) ψ). (3.5)

In order to show the boundedness of the integrals Ik, k = 1, 2, we note that

[E2
A, χk] = [ (p− eA)2 − eσBA +m2, χk] = [ p2, χk] + 2i eA (∇χk). (3.6)

The last term in (3.6) is a bounded function since A ∈ L∞loc(R3) and ∇χk ∈
C∞0 (R3). It follows that [ [E2

A, χk], χk] = [ [p2, χk], χk] = −2(∇χk)2 which is
bounded.

Consider for m > 0,∥∥∥∥ 1
s+ E2

A

(∇χk)2
1

s+ E2
A

∥∥∥∥ = sup
‖ϕ‖=‖ψ‖=1

∣∣∣∣(ψ, 1
s+ E2

A

|∇χk| · |∇χk|
1

s+ E2
A

ϕ)
∣∣∣∣
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≤ sup
‖ϕ‖=‖ψ‖=1

∥∥∥∥ |∇χk|
1

s+ E2
A

ψ

∥∥∥∥ · ∥∥∥∥ |∇χk|
1

s+ E2
A

ϕ

∥∥∥∥ ≤ c2k
1

(s+m2)2
, (3.7)

where we have used that ck := max
x≤R1

|∇χk| and EA ≥ m. Thus the integrand

operator in Ik has an integrable bound which renders Ik finite, k = 1, 2.
In (3.5) we use EA ≥ 0 to estimate (χ2ψ, EA χ2ψ) ≥ 0. This leads to

(ψ,EA ψ) ≥ (χ1ψ, EA χ1ψ) − L (ψ,ψ) (3.8)

where L > 0 is the bound of 1
2π (I1 + I2).

For the potential we have the decomposition

(ψ, V ψ) = (ψ, χ1 V χ1 ψ) + (ψ, χ2 V χ2 ψ). (3.9)

Using that V is bounded except near x = 0 where χ2 vanishes, we can estimate

|(ψ, χ2 V χ2 ψ)| ≤ sup
x∈R3

(χ2 V χ2) · ‖ψ‖2 =: CV ‖ψ‖2 (3.10)

where CV is some finite constant.
Moreover, since χ1 ∈ C∞0 (R3) such that BAχ1 is bounded, χ1 V χ1 can be

estimated by χ1EAχ1 in the form sense like in the case of a constant magnetic
field. This is done with the help of the diamagnetic inequality (see e.g. [1]),

|(χ1 ψ,−
γ

x
χ1 ψ)| ≤ γπ

2
(χ1 ψ,

√
(p− eA)2 +m2 χ1 ψ). (3.11)

We use (p− eA)2 +m2 = E2
A + eσBA and have the estimate

(χ1ψ, (E2
A + eσBA) χ1ψ) ≤ (χ1ψ, E

2
A χ1ψ) + max

x≤R1
|eBA| (χ1ψ, χ1ψ). (3.12)

A consequence is the relative form boundedness,

(χ1ψ,
√

(p− eA)2 +m2 χ1ψ) ≤ (χ1ψ, EA χ1ψ) + C̃ (χ1ψ, χ1ψ), (3.13)

where C̃ > 0 is some constant. With ‖χ1ψ‖2 ≤ ‖ψ‖2 this leads to the estimate

(ψ, hH ψ) ≥ (1− γπ

2
) (χ1 ψ,EA χ1 ψ) − (L+ CV + CB) ‖ψ‖2 (3.14)

where we have abbreviated CB := γπ
2 C̃. Note that for CB to be finite, the form

bound in (3.13) has to be infinitesimally larger than one [19, p.169]. Thus for
subcritical potential strength, γ < 2/π, hH is form bounded from below, which
proves Theorem 1(i) for m 6= 0.

In order to cover the case m = 0 we introduce the operator hH− := hH −m
and note that when hH is bounded from below, this is also true for hH− .

The m-dependence of hH is the one of EA. We have from (1.3)

EA −m =
E2
A −m2

EA +m
=

(σ(p− eA))2

EA +m
(3.15)

which is monotonically decreasing with m. Moreover, EA − m is continuous in
m ≥ 0. In fact for ψ ∈ D(E

1
2
A), indicating explicitly the m-dependence of the
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operators,

|(ψ, (EA(m)− EA(m0)) ψ)| =
∣∣∣∣(ψ, m2 −m2

0

EA(m) + EA(m0)
ψ)
∣∣∣∣

≤ |m−m0| ‖ψ‖2. (3.16)
Let −Cm := −(L+ CV + CB) be the lower bound of hH at a given m > 0. Then

(ψ, hH(m = 0) ψ) ≥ (ψ, (hH(m)−m) ψ)

≥ (1− γπ

2
) (χ1ψ,EA(m)χ1 ψ) − (Cm +m) ‖ψ‖2 (3.17)

which shows the boundedness of hH from below when m = 0.

3.2. Relative form boundedness of the potential.

Without restriction we can assume m 6= 0 (if m = 0 we can use the mono-
tonicity of EA which gives (ψ,EA(m)ψ) ≤ (ψ,EA(0)ψ) + m(ψ,ψ) for any fixed
m). With (3.9) – (3.13) we have

|(ψ, V ψ)| ≤ γπ

2
(χ1ψ,EAχ1 ψ) + (CB + CV ) ‖ψ‖2. (3.18)

Using (3.8) we can estimate further

|(ψ, V ψ)| ≤ γπ

2
(ψ,EA ψ) + (

γπ

2
L+ CB + CV ) ‖ψ‖2. (3.19)

3.3. Discreteness of the spectrum of hH below m.

With EA ≥ m we have σ(EA) ⊂ [m,∞) and hence σess(EA) ⊂ [m,∞).
We note that for a suitable µ > 0, hH + µ > 0 from Theorem 1(i). We will

show that the difference Rµ of the resolvents of hH and EA is compact. Following
the corresponding proof for the Brown-Ravenhall operator [9] we decompose

Rµ :=
1

hH + µ
− 1
EA + µ

= −
{

1
EA + µ

V
1

(EA + µ)
1
2

} [
(EA + µ)

1
2

1
hH + µ

]
(3.20)

and establish compactness of the operator in curly brackets which we write in the
following way,

− 1
EA + µ

V
1

(EA + µ)
1
2

= γ

{
1

EA + µ

1
x

1
2

} [
1
x

1
2

1
(EA + µ)

1
2

]
(3.21)

The operator x−
1
2 (EA+µ)−1 is compact (see remark to [9, Lemma 2] and the proof

of [11, Lemma 1]), and hence also its adjoint. The operator in square brackets is
bounded since, from (3.19) with C̃m := π

2 L+ (CB + CV )/γ,

‖ 1
x

1
2

1
(EA + µ)

1
2
ψ‖2 ≤ π

2
(

1
(EA + µ)

1
2
ψ,EA

1
(EA + µ)

1
2
ψ)

+ C̃m ‖
1

(EA + µ)
1
2
ψ‖2 ≤

(
π

2
+ C̃m ‖

1
(EA + µ)

‖
)
‖ψ‖2. (3.22)
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The boundedness of the second factor in (3.20), (EA + µ)
1
2 (hH + µ)−

1
2 · Tµ with

Tµ := (hH +µ)−
1
2 bounded, follows also from the relative form boundedness of V .

In fact we have, with a constant c > 0 to be determined later and ϕ ∈ D(E
1
2
A),

c (ϕ, (hH + µ)ϕ) ≥ c (ϕ, (EA + µ) ϕ) − c |(ϕ, V ϕ)|

≥ c (ϕ, (EA + µ) ϕ) − c γπ
2

(ϕ,EA ϕ) − cγ C̃m ‖ϕ‖2. (3.23)

If we choose c ≥ 1
1−γπ/2 and µ ≥ 2C̃m

π then the rhs of (3.23) is ≥ (ϕ, (EA+µ) ϕ).

Setting ϕ := (hH + µ)−
1
2 ψ we derive the desired boundedness,

c ‖ψ‖2 ≥ ‖(EA + µ)
1
2

1
(hH + µ)

1
2
ψ‖2. (3.24)

As a result, Rµ is compact and consequently, σess(hH) = σess(EA).

4. Scaling property

Let us restrict ourselves to the class of locally bounded magnetic fields (2.3)
originating from the vector potentials (2.2).

In order to derive the scaling property of the Herbst operator which provides
an easy way for treating an arbitrarily large magnetic field strength, we set B =
µ0B0 with a dimensionless scaling parameter µ0. Then with B0 the unit field from
Theorem 2 and µ0 →∞ we have B →∞. Define the scaled coordinates x̃k := µδ0xk
and, correspondingly, the scaled momenta p̃k := µ−δ0 pk, k = 1, 2, 3, with δ > 0
yet to be determined. Then with µ0 > 0,

A(x) =
B0

2
µ

1−δ(1+τ)
0 (−x̃2 |x̃2|τ , x̃1 |x̃1|τ , 0) =: µ1−δ(1+τ)

0 A0(x̃)

E2
A =

[
2∑
k=1

(
p̃k − eµ1−δ(2+τ)

0 A0k(x̃)
)2

− eσ3
1 + τ

2
B0µ

1−δ(2+τ)
0 ( |x̃1|τ + |x̃2|τ )

]
(4.1)

· µ2δ
0 + p2

3 +m2.

A necessary condition for the scaling property to hold is 1 − δ(2 + τ) = 0. It is
satisfied for δ = 1

2+τ and we get

EA = µδ0 ẼA, (4.2)

ẼA :=
√

(p̃− eA0(x̃))2 − eσBA0(x̃) + m̃2, m̃ := m/µδ0.

If we write hH = µδ0 h̃
H with h̃H = ẼA− γ

x̃ and introduce the scaled ground-state
energy Ẽg = µ−δ0 Eg, the eigenvalue equation for hH turns into

hH ψg = Eg ψg ⇐⇒ h̃H ψg = Ẽg ψg. (4.3)

In the equation on the rhs of (4.3) the magnetic field strength enters only into the
mass parameter m̃.
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5. Existence of the ground state: Proof of Theorem 2(i)

Let us assume that BA and V are fixed fields, determined by τ, B and Z,
respectively, and let γ fulfil the condition of Theorem 2. We consider the operator
hH− = hH−m, define the ground-state energy without rest energy, Eg− := Eg−m,
and show that for subcritical τ there exists some trial function ψt ∈ L2(R3)⊗ C2

such that
(ψt, hH− ψt) < 0. (5.1)

Since one has Eg− = (ψg, hH− ψg) ≤ (ψt, hH− ψt), this guarantees the existence
of a discrete ground state. For further use we also define the scaled quantities
h̃H− := h̃H − m̃ and Ẽg− := Ẽg − m̃.

5.1. Variational determination of an upper bound.

We start by estimating the kinetic energy by an operator which allows for a
separation of variables and thus simplifies the variational calculation.

Lemma 1. If A ∈ L2,loc(R3) is independent of x3 and if A3 = 0, we have for

ψ ∈ D(E
1
2
A),

(ψ,EA ψ) ≤
√

(ψ,E2
xy ψ) + (ψ,

√
p2
3 +m2 ψ), (5.2)

E2
xy :=

2∑
k=1

(pk − eAk)2 − eσBA.

Proof. For any nonnegative operator O ≥ 0 and ‖ψ‖ = 1 we have

(ψ,Oψ) ≤ ‖ψ‖ ‖Oψ‖ =
√

(ψ,O2 ψ). (5.3)

Furthermore it is easily verified under the conditions of Lemma 1 that E2
A

can be decomposed into the two nonnegative operators

E2
A = E2

xy + (p2
3 +m2). (5.4)

Since Exy and p3 act on different coordinates they commute such that

(ψ,EA ψ) ≤ (ψ,Exy ψ) + (ψ,
√
p2
3 +m2 ψ) (5.5)

and (5.2) follows from applying (5.3) to the first term of (5.5). �

For the trial function ψt we make the ansatz, guided by [18],

ψt(x) = ψ⊥(%) ϕz(x3)
(

1
0

)
, % =

√
x2

1 + x2
2, (5.6)

ψ⊥(%) = Ñ e−s(eB)d%2 , Ñ =

√
2s
π

(eB)
d
2

and
ϕz(x3) = N1 e

−Z′
√
a2
0+x

2
3 , N1 =

1√
2a0K1(2a0Z ′)

. (5.7)
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Both ψ⊥ and ϕz are normalized to unity, and s > 0 and Z ′ > 0 are variational
parameters. K1 is a modified Bessel function. The power d of B in ψ⊥ has to be
chosen in a way that scaling is preserved, i.e. Bd%2 = Bd0 %̃

2, resulting in d = 2δ =
2

2+τ . Instead of taking ϕz to be the hydrogenic function (e−Z
′
√
%2+x2

3) used in
[18] we have replaced the %-dependence by the constant

a0 =
1

√
2s (eB)

1
2+τ

(5.8)

in (5.7). This choice is only meaningful if the magnetic field strength dominates the
strength of the Coulomb potential, i.e. for B � Z2B0 [15, 10]. In that case the mo-
tion of the electron perpendicular to BA is restricted to % ∼

(
s(eB)d

)−1/2 =
√

2a0.

Therefore, we have in our calculations considered field strengths B ∈ (2Z2B0,∞).
Now we calculate the rhs of (5.2) with ψ = ψt. With the help of the integral

[6, p.337,1064]∫ ∞
0

dx xq e−ax
2

=
Γ( q+1

2 )

2 a
q+1
2

, q > −1, a > 0, (5.9)

the first term is given by

(ψt, E2
xy ψt) = (ψ⊥

(
1
0

)
, E2

xy ψ⊥

(
1
0

)
) (5.10)

= (eB)
2

2+τ

(
2s +

Γ( 3
2 + τ)

√
π s1+τ22+τ

− (1 + τ)
Γ( τ+1

2 )
√
π (2s)τ/2

)
.

For the expectation value of the momentum operator we can use our previous
results [10]. For its numerical computation it is convenient to introduce a slightly
different, s-dependent scaling parameter ν. We define

ν :=
√

2s (eB)
1

2+τ , (5.11)

which has the same B-dependence as µδ0. Then we introduce the scaled quantities

Z̃ = Z ′/ν, ã0 = a0ν = 1, m̃s = m/ν, κ = k/ν. (5.12)

Working in Fourier space by using

e−Z
′
√
a2
0+x

2
3 =

∫ ∞
−∞

dk f̃(k) eikx3 ,

f̃(k) =
a0 Z

′

π
√
Z ′2 + k2

K1(a0

√
Z ′2 + k2 ) (5.13)

we have [10]

(ψt,
√
p2
3 +m2 ψt) = N1

∫ ∞
−∞

dk f̃(k)
√
k2 +m2

∫ ∞
−∞

dx3 ϕz(x3) eikx3 (5.14)

=
2
√

2sã0Z̃
2(eB)

1
2+τ

πK1(2ã0Z̃)

∫ ∞
0

dκ
1

Z̃2 + κ2
K2

1 (ã0

√
Z̃2 + κ2 )

√
κ2 + m̃2

s.



10 D. H. JAKUBASSA-AMUNDSEN

Finally we turn to the potential part of the Herbst operator. With the help of [6,
p.339],

2
∫ ∞

0

% d% e−ν
2%2 1√

%2 + x2
3

=
1
ν
E(ν |x3| ),

E(y) =
√
π ey

2
[1− φ(y)] (5.15)

where φ is the probability function,

φ(y) =
2√
π

∫ y

0

e−t
2
dt, (5.16)

we get the following expression,

(ψt,−
γ

x
ψt) = −2πγ (ÑN1)2

∫ ∞
0

dx3 e
−2Z′
√
a2
0+x

2
3

1
ν
E(ν x3)

= −γ
√

2s(eB)
1

2+τ

ã0K1(2ã0Z̃)

∫ ∞
0

dy E(y) e−2Z̃
√
ã2
0+y

2
, (5.17)

where the substitution y = νx3 was used. We remark that our previous choice of
ã = 1√

2
in place of ã0 [10] does not introduce any significant changes.

With the scaling (5.12), m̃s → 0 as B → ∞ since s is only weakly de-
pendent on B and remains nonzero (and finite) as B → ∞. In fact for τ > 0
fixed, (ψt, E2

xy ψt) → +∞ as s → 0 while the other contributions to EH [ψt] van-
ish. In the other limit, s → ∞, the upper bound for the kinetic energy increases
like s

1
2 . By using the estimate x−1 ≤ %−1 in the potential energy one has for

s → ∞,
√

(ψt, E2
xy ψt) − (ψt, γx ψt) ≥

√
2s(eB)

1
2+τ (1 − ε − γ

√
π), ε arbitrar-

ily small, which is positive for γ < π−
1
2 . Thus EH [ψt] tends to infinity both for

s = 0 and s → ∞, yielding the minimum at finite s (this follows by numerical
computation also for γ ≥ π− 1

2 ).
From Lemma 1 we obtain

(ψt, hH ψt) ≤ EH [ψt] :=
√

(ψt, E2
xy ψt) + (ψt,

√
p2
3 +m2 ψt) − (ψt,

γ

x
ψt)

=: (eB)
1

2+τ ẼH [ψt], (5.18)

where ẼH [ψt] depends only implicitly on B via m̃s. (Note that for obtaining
EH [ψt] in atomic units, the rhs of (5.18) has to be multiplied by 1/e2 ≈ 137.04,

and µ
1

2+τ
0 has to be substituted for (eB)

1
2+τ with B measured in units of B0.)

The desired upper bound of the scaled ground-state energy of hH is thus
given by

ẼHg := min
Z̃>0, s>0

ẼH [ψt], (5.19)

and again we set ẼH− [ψt] = ẼH [ψt]− m̃, ẼHg− = ẼHg − m̃.
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5.2. Dependence on the field parameters.

We start by proving that the Herbst operator has a discrete ground state for
τ = 0 when 0.1 . γ < 2/π.

Lemma 2. Let BA = (0, 0, B) be constant. Then for a trial function ψt of the
type (5.6) we have for m = 0,

(ψt, hH ψt) < (ψt, hBR ψt), (5.20)

where hBR is the Brown-Ravenhall operator.

Proof. In the massless case the potential part of the Brown-Ravenhall operator
hBR from (1.2) reduces to

V BR = −γ
2

(
1
x

+
σpA
|σpA|

1
x

σpA
|σpA|

)
. (5.21)

Representing ϕz in Fourier space and using the result of [10] for the expectation
value of the nonlocal part of V BR with a trial function of the type (5.6), we obtain

(ψt, V BR ψt) = −γ
2

∫ ∞
−∞

dk

∫ ∞
−∞

dk′ f̃(k) V̂0(k − k′)
(

1 +
kk′

|kk′|

)
f̃(k′) (5.22)

with f̃ from (5.13) and

V̂0(q) = 4sN2
1 (eB)

∫ ∞
−∞

dx3 e
−iqx3

∫ ∞
0

% d% e−2s(eB) %2 1√
%2 + x2

3

(5.23)

which is a positive symmetric function [11].
Using the same ψt, we have for the Coulomb potential instead

(ψt, V ψt) = −γ
∫ ∞
−∞

dk

∫ ∞
−∞

dk′ f̃(k) V̂0(k − k′) f̃(k′)

= −2γ
∫ ∞

0

dk

∫ ∞
0

dk′ f̃(k) f̃(k′)
[
V̂0(k − k′) + V̂0(k + k′)

]
(5.24)

= (ψt, V BR ψt) − 2γ
∫ ∞

0

dk

∫ ∞
0

dk′ f̃(k) f̃(k′) V̂0(k + k′).

Since the integrand of the last term is nonnegative, this proves (ψt, hH ψt) <
(ψt, hBR ψt) in the massless case, irrespective of γ. �

Now we prove a monotonicity result for the Herbst operator.

Lemma 3. Let τ ≥ 0 be fixed. Assume that to a given Z = Z0, m̃ = m̃0 ≥
0, there exists a minimizing trial function ψt(Z̃0, s0) of type (5.6) such that
ẼH− (Z0, m̃0)[ψt] < 0. Then ẼH− (Z0, m̃)[ψt] < 0 for all m̃ ≥ m̃0 and ẼH− (Z, m̃0)[ψt] <
0 for all Z ≥ Z0, guaranteeing the existence of a discrete ground state for Z ≥ Z0

and m̃ ≥ m̃0.
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Proof. Since by (3.15) EA −m is monotonically decreasing with m while the po-
tential is independent of m, we have (keeping Z0 and τ as well as the trial function
fixed)

(ψt, h̃H− (Z0, m̃) ψt) ≤ ẼH− (Z0, m̃)[ψt] < ẼH− (Z0, m̃0)[ψt] < 0 (5.25)

for all m̃ > m̃0. In a similar way (keeping m̃ ≥ 0 and τ fixed) one can profit from
the fact that the potential decreases linearly with Z. Therefore

(ψt, h̃H− (Z, m̃) ψt) ≤ ẼH− (Z, m̃)[ψt] < ẼH− (Z0, m̃)[ψt] < 0 (5.26)

for all Z > Z0. These inequalities hold also for the minimum ẼHg−. So if a ground
state exists for a set of parameters τ, m̃0 and Z0, it also exists for m̃ > m̃0 and
Z > Z0 if τ is the same. �

Since for τ = 0, m̃ = 0, it was shown [10, 11] that when γ ∈ (0.1, 2
π ) there

exists a ψt of the type (5.6) such that (ψt, hBR ψt) < 0, Lemma 2 guarantees the
existence of a discrete ground state of hH for m̃ = 0 and the above range of γ.
From Lemma 3 the ground state exists also for m̃ > 0 (when τ = 0).

We note that when τ = 0 the expectation value (5.10) of E2
xy vanishes for

s = 1
4 . In fact, the corresponding function ψ⊥ turns into an exact eigenfunction to

E2
xy, with zero as eigenvalue, a well-known result for constant magnetic fields [20,

p.196].
Table 1 gives the numerical upper bound of the ground-state energy at τ = 0

and m̃ = 0 for some nuclear charges Z. The corresponding variational parameters
are s = 1

4 and Z̃ as given in the Table. The comparison with the variational energies
for the Brown-Ravenhall operator shows that the Herbst energies are indeed much
lower.

Z Z̃ EHg /
√
µ0 EBRg /

√
µ0

20 0.034 -0.907 -0.072
40 0.137 -6.032 -1.425
60 0.261 -14.345 -4.777
80 0.394 -24.716 -9.868

Table 1. Scaled variational ground-state energy ẼHg (Z, 0) = EHg /
√
µ0 for a

constant magnetic field B = µ0B0 (where B0 = 1 [m2e3c/~3] = 2.35 × 109 G
and µ0 → ∞) and nuclear charge Z ranging from 20 to 80 together with the
parameter Z̃. The last column gives the corresponding results for the Brown-
Ravenhall operator [10] (in atomic units).

Table 2 compares the variational energies for finite constant magnetic fields
with the Brown-Ravenhall results as well as with an available numerical result for
the Dirac operator obtained by using elaborate trial functions [4]. In this context
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we recall that our trial function (5.6) does not provide an adequate bound for small
magnetic fields (µ0/Z

2 . 2) because the separation of coordinates in ψ⊥(%)·ϕz(x3)
is then no longer a good approximation. For Z = 20 and µ0/Z

2 = 2 relativistic
effects are small, and the Herbst operator and the Brown-Ravenhall operator give
nearly the same results.

Z = 20 Z = 80

λ EHg−/
√
µ0 EBRg− /

√
µ0 Eexg−/

√
µ0 EHg−/

√
µ0 EBRg− /

√
µ0

2 -12.74 -12.72 -14.48 -51.98 -50.86
102 -7.67 -7.49 -35.85 -30.88
104 -3.42 -2.93 -26.72 -15.62
106 -1.52 -0.89 -24.95 -10.84

Table 2. Ground-state energy (without rest energy) for electrons in a central
Coulomb field (Z = 20 and 80) and in a constant magnetic field B = µ0B0 (B0 =
2.35 × 109 G). λ := µ0/Z

2 gives the ratio of magnetic and electric force exerted
on the electron. Shown are the variational results for hH and hBR as well as an
accurate numerical result [4] (in atomic units).

When τ 6= 0, the τ -dependence of ẼH [ψt] is solely contained in the kinetic
term (5.10). Although this term does not exhibit any monotonicity for 0 < τ < 1 (if
s is fixed), we have shown numerically in the case m̃ = 0 that ẼHg increases strictly
monotonically with τ . When τ is above 1 (and s < 1

2 which is true for all Z ≤ 80
in the minimum of ẼH [ψt]) the kinetic energy and thus ẼH [ψt] increases strongly
with τ. As a result the variational principle guarantees the existence of a negative-
energy ground state only for sufficiently small τ (i.e. for a sufficiently weak increase
of BA at infinity). The ’critical’ τ = τc where ẼHg reaches zero increases with
nuclear charge Z (because, according to (5.26), a high Z lowers the energy). This
is demonstrated in Fig.1. The existence of a ground state for infinitely strong
magnetic fields and field parameters (Z, τ) to the right of the line shown in Fig.1
follows strictly from the monotonicity (5.26), since 0 = ẼHg (Z0, 0) > ẼHg (Z, 0)
for τ = τc(Z0) and Z > Z0.

When the mass parameter is increased (or, equivalently, when the field strength
B is reduced), τc increases too (according to (5.25)). Numerical results for the m̃-
dependence of τc are shown in Fig.2. As a consequence of the monotonicity in
m̃, Ẽg−(Z, m̃0) > Ẽg−(Z, m̃) for m̃ > m̃0 and fixed τ , a bound state exists for
all pairs (τ, m̃) to the right of the curve in Fig.2. In the two-dimensional parameter
space (Z, m̃) (respectively (Z,B)) τc thus spans a surface below which a ground
state of hH is guaranteed.



14 D. H. JAKUBASSA-AMUNDSEN

Fig.3 shows the B-dependence of EHg− = ẼHg− · (eB)1/(2+τ) for Z = 80 at
several values of τ . The higher τ , the lower is the critical B where EHg− reaches
zero. For e.g. τ = 4, the existence of a ground state of hH is only guaranteed for
B < 104 Z2B0 = 1.5× 1017 G.

6. High-field limit of the ground-state energy: proof of Theorem
2(ii)

From Theorem 2(i) we know that for fixed γ ∈ (0.1, 2
π ) there exists τc > 0

such that, when m̃ = 0, h̃H has a discrete ground state with energy Ẽg(0) < 0
for τ < τc. Moreover, there exists a sequence (m̃n)n∈N converging to zero which
generates a sequence (Ẽg−(m̃n))n∈N of ground-state energies for the same γ and
τ . In order to obtain the behaviour of the ground-state energy of hH we have to
prove that (Ẽg−(m̃n))n∈N converges to Ẽg(0), or equivalently, that there exists an
m0 > 0 such that

|Ẽg−(m̃)− Ẽg(0)| < ε for all m̃ < m0. (6.1)

In fact, since hH− (m) is monotonically decreasing with m according to (3.15), we
have hH− (m) ≤ hH(0) and hence Eg−(m) ≤ Eg(0). On the other hand it follows
from the definition (1.3) of EA that hH− (m)+m ≥ hH(0) such that Eg−(m)+m ≥
Eg(0). Combining the two inequalities, we have

−m ≤ Eg−(m)− Eg(0) ≤ 0, (6.2)

from which (6.1) is an immediate consequence. It then follows from the scaling
that

Ẽg(0) = lim
m̃→0

Ẽg−(m̃) = lim
µ0→∞

µ−δ0 Eg. (6.3)

With µ0 = B/B0 this leads to the asymptotic behaviour,

Eg ∼ µδ0 Ẽg(0) = −c Bδ, (6.4)

where c = |Ẽg(0)|B−δ0 and δ = 1
2+τ . We have c > 0 since the upper bound for

Ẽg(0) is negative when τ < τc.

Note that for τ = 0, Eg ∼ −c
√
B, which coincides with the behaviour of the

ground-state energy of the Brown-Ravenhall operator [11].
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[14] Lieb E.H., Siedentop H. and Solovej J.P., Stability of relativistic matter with magnetic fields,
Phys. Rev. Lett. 79, 1785-1788 (1997).

[15] Lieb E.H., Solovej J.P. and Yngvason J., Heavy atoms in the strong magnetic field of a

neutron star, Phys. Rev. Lett. 69, 749-752 (1992).
[16] Lieb E.H. and Yau H.-T., The stability and instability of relativistic matter, Commun. Math.

Phys. 118, 177-213 (1988).

[17] Matte O. and Stockmeyer E., On the eigenfunctions of no-pair operators in classical magnetic
fields, Integr. Equ. Oper. Theory 65, 255-283 (2009).

[18] Rau A.R.P., Mueller R.O. and Spruch L., Simple model and wave function for atoms in

intense magnetic fields, Phys. Rev. A 11, 1865-1879 (1975).
[19] Reed M. and Simon B., Fourier Analysis, Self-Adjointness, Methods of Mathematical

Physics Vol II (Academic, New York, 1975).
[20] Thaller B., The Dirac Equation (Springer, Berlin, 1992).



16 D. H. JAKUBASSA-AMUNDSEN

Figure Captions

Fig.1
Critical field growth τc providing an upper bound zero for the ground-state energy
at m̃ = 0 as a function of central charge Z.

Fig.2
Critical field growth τc for Z = 20 (− − −) and 80 (——-) as a function of the
mass parameter m̃. The end point to the right of each curve corresponds to λ = 2
(the minimum field strength considered).

Fig.3
Ground-state energy EHg− (in atomic units; without rest energy) as a function of
µ0/Z

2 for Z = 80 and τ = 0.5 (− − −), 2 (——-) and 4 (− · − · −). In order to
allow for a common display the energies corresponding to τ = 0.5 are divided by
10 in the plot.
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