
ANTIBINDING OF ATOMIC ELECTRONS IN STRONG
INHOMOGENEOUS MAGNETIC FIELDS

D. H. JAKUBASSA-AMUNDSEN

Abstract. The ground-state energy of heavy one-electron ions in an inhomo-
geneous locally bounded magnetic field is estimated by the variational princi-

ple. The ions are described by means of the pseudorelativistic Herbst/Chandra-

sekhar operator. Two classes of magnetic fields are considered which model
a field-free region around the central charge. It is shown that for a certain

size of this region the ground-state energy becomes positive and increases

strongly with the magnetic field strength. This behaviour is in contrast to
the two-dimensional case where electrons can be bound by such a field-free

region.

1. Introduction

The interest in electrons subject to inhomogeneous magnetic fields was re-
vived by the preparation of graphene monolayers which give rise to a purely two-
dimensional electronic motion. It was suggested by Egger and coworkers to apply
a static magnetic field, oriented perpendicular to the monolayer, which is constant
outside a cylinder of radius r0 and zero inside (Fig.1a). In a rigorous theoretical
approach, based on the two-dimensional Dirac-Weyl equation, it was shown that
an electron gets bound in such a field-free disk, the number of bound states increas-
ing with r0 [1, 2]. In accord with the experimental spectrum the electron mass is
thereby set equal to zero [1]. Also a mathematical analysis of the two-dimensional
confinement by this magnetic field was provided for the case of interacting massless
multi-fermions [3].

In the three-dimensional atomic case where the confinement in the x3-direction
(the field direction) is achieved by a fixed central Coulomb potential, a massless
particle can be simulated by an appropriate magnetic field of very large strength. A
magnetic field which shows this feature was introduced in [4] and is of asymptotic
growth but has also a depleted interior region (Fig.1b). In the presence of such a
field the Herbst operator, used to model relativistic atomic systems [5], exhibits
a scaling property which reduces the mass term, the more so, the larger the field
strength B.

In the present work the question is addressed whether for magnetic fields of
the type discussed above the binding of the electron increases with the size of the
depleted region as in the two-dimensional case. Taken into consideration that the
influence of magnetic fields in two and three dimensions is often quite different

1



2 D. H. JAKUBASSA-AMUNDSEN

(e.g. the ground-state binding of the atomic electron in a homogeneous magnetic
field increases with B; see e.g. the review by Lai [6]), the answer is not easily
predictable.

Rather than progressing with a fully relativistic approach we estimate the
ground-state energy of the electron by means of a more transparent variational
calculation. A trial function which is suitable in a wide range of magnetic fields
was introduced by Rau and coworkers [7] in the context of Schrödinger operators.
It was shown for homogeneous magnetic fields that this trial function not only
provides the correct limits for B → 0 and B →∞, but that also for intermediate
field strengths it is able to reproduce the binding energies from accurate numerical
calculations [8]. Slightly modified trial functions were used in the context of the
pseudorelativistic Brown-Ravenhall operator [9, 10] and the Herbst operator [4].
However, restriction was made to the presence of very strong magnetic fields.

The paper is organized as follows. For the two types of magnetic fields dis-
cussed above the ground-state energy of the Herbst operator is estimated in Sec-
tions 2.1 and 2.2, respectively (using the trial function from [7]), and its dependence
on the field parameters B, τ and r0 is investigated for the fixed central charge
Z = 80. In Sections 3 and 4 the stability of these results is tested by choosing
different types of trial functions, including such which mimick relativistic effects.
A short conclusion is given in Section 5.

2. Variational principle for the Herbst operator

Relativistic one-electron ions are conventionally described by the Dirac op-
erator H [11]. In the presence of a Coulomb field V and a magnetic field BA

generated by a vector potential A, this operator is given by (in relativistic units,
~ = c = 1)

H = DA + V, DA = α (p− eA) + β m, V = −γ
x
. (2.1)

In this expression α and β are the Dirac matrices, p = −i∇ is the momentum
operator, x = |x| and γ = Ze2 is the electric potential strength (Z is the charge
of the point-like nucleus which is fixed at the origin and e2 ≈ 1/137.036 is the fine
structure constant).

One way to avoid dealing with the negative continuum, which, in contrast to
the nonrelativistic case, causes the Dirac operator to be unbounded from below, is
the introduction of semibounded pseudorelativistic operators such as the Herbst
operator [5]. This operator was originally put forth by Chandrasekhar (see e.g.
[12]) and acts in the Hilbert space L2(R3)⊗ C2,

hH = EA + V,

EA = |DA| =
√

(σ(p− eA))2 +m2, (2.2)

where σ is the vector of Pauli spin matrices. For A ∈ L2,loc(R3) the form domain
of EA is the Sobolev space H1/2(R3)⊗C2. It was shown in [4] that hH is bounded
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from below if γ < 2
π (Z ≤ 87) and if BA is locally bounded. Under these conditions

hH can be extended to a self-adjoint operator.
In the following we assume that the field BA is generated by a two-dimensional

vector potential A = (A1, A2, 0) taken to be independent of x3 and obeying
∇ ·A = 0. Then the kinetic energy can be decomposed in the following way,

E2
A = E2

xy + (p2
3 +m2), E2

xy =
2∑
k=1

(pk − eAk)2 − eσ3BA. (2.3)

For a given trial function ψt ∈ H1/2(R3) ⊗ C2, normalized to unity, we have by
the Schwarz inequality the estimate for the ground-state energy Eg of the Herbst
operator,

Eg ≤ (ψt, hH ψt) ≤
√

(ψt, E2
A ψt) + (ψt, V ψt) =: EH [ψt]. (2.4)

We wish to discuss the Herbst operator for two classes of locally bounded
magnetic fields BA, the first being of asymptotic growth,

BA1(x) = B
1 + τ

2
(0, 0, |x1|τ + |x2|τ ), (2.5)

characterized by the parameters B and τ ≥ 0, where τ = 0 corresponds to a
constant magnetic field of strength B in the direction of the x3-axis. For this class
of fields it was proven (for 0.1 . γ < 2

π and large B) that a bound ground state
exists when τ is subcritical, τ < τc, where τc depends on Z as well as on B [4].

The suppression of the magnetic force around the origin (being the stronger
the larger τ) can also be described by the (simpler) second class of magnetic
fields. This class was introduced by Egger and coworkers in the context of the
two-dimensional electronic motion [1],

BA2(x) = B θ(%− r0) e3, % =
√
x2

1 + x2
2, (2.6)

where θ is Heaviside’s step function. It is parametrized by the field strength B
and the radius r0 of the field-free region. The constant magnetic field is included
in the class (2.6) for r0 = 0. The energy functionals pertaining to the fields (2.5)
and (2.6) will be denoted by EH1[ψt] and EH2[ψt], respectively.

As trial function we take, following Rau et al [7],

ψt(x) = Nt e
−ν2%2/2 e−Z

′x

(
1
0

)
, (2.7)

Nt =
[
ν4

Z ′π

1
ψ(2, 2, Z ′2/ν2)

] 1
2

,

where the spin direction is taken parallel to BA. In the normalization constant
Nt, ψ(n, k, ξ) is the irregular confluent hypergeometric function which is readily
expressed in terms of the integral representation [13, p.1058],

ψ(n, k, ξ) =
1

Γ(n)

∫ ∞
0

dt e−ξt
tn−1

(1 + t)n+1−k . (2.8)
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In (2.7), ν =
√

2s(eB)d/2 measures the inverse extension of the electron orbit
perpendicular to BA, where d > 0 is a field-specific constant. Besides the effective
charge Z ′ we have introduced s as a second variational parameter (s = 1

4 for
constant magnetic fields). Thus the trial function mimicks an eigenstate for the
lowest Landau level (in the case of vanishing scalar potential and constant magnetic
field) as well as the hydrogenic ground state (in the case of zero magnetic field).

The ground-state energy is estimated by the infimum of the energy functional
EH [ψt],

EHg := inf
Z′>0,s>0

EH [ψt]. (2.9)

It is easy to show that for vanishing magnetic field EHg agrees with the exact
Dirac ground-state energy. Since for BA = 0 the trial function reduces to ψt(x) =
(Z

′3/2/π
1
2 ) e−Z

′x
(
1
0

)
, we get

EH [ψt] =
√

(ψt, (p2 +m2) ψt) − γ (ψt,
1
x
ψt)

=
√
Z ′2 +m2 − γ Z ′. (2.10)

From ∂EH/∂Z ′ = 0 we obtain Z ′ = mγ/
√

1− γ2 and thus

EHg (BA = 0) = inf
Z′>0

EH [ψt](BA = 0) = m
√

1− γ2, (2.11)

which is equal to the exact Dirac energy.
Moreover, the variationally determined ground-state energy for a constant

magnetic field compares well with the available results for Z > 10 from elaborate
relativistic calculations [14, 15]. Thereby it is advantageous to subtract the rest
energy of the electron, i.e. to consider EHg− = EHg −m. Table 1 gives the comparison
for Z = 20. For λ = B/Z2 ≥ 10, the reference values are obtained from the
Schrödinger scaling (see below) of the exact results.

λ EHg− Eexg− Eexsg−

0.025 -205.90 -205.98
0.25 -244.61 -244.95

2 -407.65 -409.55
10 -690.89 -699.16
20 -871.44 -886.16
200 -1841.75 -1890.85
500 -2436.99 -2502.81
2000 -3635.26 -3721.84

Table 1. Ground-state energy (rest energy subtracted, in atomic units) for
Z = 20 as a function of λ = B/Z2 for a constant magnetic field of strength B.
The second column gives the results from the present calculation, the third column
comprises the exact results [14, 15]. Eexsg− is obtained from the Schrödinger scaling
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of the exact result for Z = 5 at λ = 10 [16] and for Z = 1 when λ ≥ 20 [14]. B is
given in units of B0 = 2.35× 109 G.

There is one additional exact calculation for uranium (Eexg− = −4861.61 a.u.
[15] but for a very small field, B = 1 (relating to λ = 1.182 × 10−4), where the
numerical inaccuracy of our result (EHg− = −4860.05 a.u.) is quite large (∼ 2 a.u.).

2.1. Magnetic fields with asymptotic growth.

Magnetic fields of the class (2.5) are generated by the vector potentials

A1(x) =
B

2
(−x2|x2|τ , x1|x1|τ , 0) , τ ≥ 0. (2.12)

In the trial function (2.7) we take d = 2
2+τ . This choice preserves the scaling

property of the Herbst operator [4]. We decompose

(ψt, E2
A ψt) = Man + M (1)

num, (2.13)

where Man is the analytic part,

Man = 2ν2 − Z
′2 +m2 − ν4 (ψt, %2 ψt) − 2ν2Z ′ (ψt,

%2

x
ψt) + 2Z ′ (ψt,

1
x
ψt),

(2.14)
while M (1)

num is the B-dependent part to be evaluated numerically,

M (1)
num =

(
eB

2

)2

(ψt, ( |x1|2+2τ + |x2|2+2τ ) ψt)

− eB 1 + τ

2
(ψt, ( |x1|τ + |x2|τ ) ψt). (2.15)

Using the cylindrical symmetry of ψt and spherical coordinates (x, ϑ, ϕ) we
have

(ψt, |x1|τ ψt) = (ψt, |x2|τ ψt) = 2N2
t

∫ ∞
0

dx x2 e−2Z′x

·
∫ 1

0

d(cosϑ) e−ν
2x2 sin2 ϑ xτ (sinϑ)τ

∫ π

−π
dϕ | cosϕ|τ . (2.16)

With the substitution y = sin2 ϑ we obtain [13, p.318,369]

(ψt, (|x1|τ+|x2|τ )ψt) = 8πN2
t

1
1 + τ

∫ ∞
0

dxx2+τe−2Z′xe−ν
2x2

1F1(
1
2
,

3 + τ

2
, ν2x2)

(2.17)
where 1F1(a, b, z) is the (regular) confluent hypergeometric function.

The matrix elements in (2.14) are evaluated in a similar way. With the help
of xe−2Z′x = − 1

2
d
dZ′ (e−2Z′x) we find [13, p.867] (see also [7])

(ψt, %2 ψt) = −Z
′

ν6
πN2

t ψ
′(2, 1,

Z
′2

ν2
), (ψt,

%2

x
ψt) =

1
ν4

πN2
t ψ(2, 1,

Z
′2

ν2
)

(2.18)
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and

(ψt,
1
x
ψt) =

π

ν2
N2
t ψ(1, 1,

Z
′2

ν2
) (2.19)

which also determines the potential energy, (ψt,−γx ψt). The derivative ψ′(n, k, ξ)
with respect to ξ is readily obtained from the integral representation (2.8).

For the discussion of the Z- andB-dependence of the variationally determined
ground-state energy it is convenient to introduce the parameter λ = B/Z2. In the
case of a constant magnetic field λ provides the ratio between the magnetic and
electric field strengths acting on the electron [7]. For Schrödinger operators there
is an exact scaling which allows to express the ground-state energy divided by Z2

just in terms of λ [17, 14]. Also for relativistic systems this scaling is satisfied quite
well up to λ ∼ 103 [9]. Therefore the basic physics can be displayed with a single
choice of Z.

Fig.2a shows the ground-state energy EH1
g− for Z = 80 as a function of the

asymptotic growth τ . Clearly, for a constant magnetic field (τ = 0) EH1
g− is

decreasing with B. At large τ , on the other hand, the variational ground-state
energy tends to the exact Dirac energy in the absence of a magnetic field (i.e. (2.11),
with rest energy subtracted). This can readily be explained by the fact that large τ
correspond to a near-zero magnetic field in an extended region around the nucleus.
Note that for small magnetic field strengths EH1

g− approaches this asymptotic value
from below, while at the higher B a maximum evolves, such that eventually the
asymptotic energy is approached from above.

When one introduces (for B 6= 0) the scaled parameters Z̃ = Z ′/ν and
m̃s = m/ν one can show that the energy functional EH1[ψt] scales with the field
strength B according to ν ∼ Bd/2. In particular, with d = 2

2+τ , the variationally
determined ground-state energy can be written in the following way,

EH1
g− = EH1

g −m = ν (ẼH1
g − m̃s) ∼ B

1
2+τ ẼH1

g− , (2.20)

where ẼH1
g− depends on B only through the scaled mass m̃s. In turn, m̃s influences

the optimized parameters Z̃ and s (which, since m̃s → 0 as B → ∞, tend to
constant values as B → ∞). Based on the existence of a bound ground state
(for small τ) it was proven in [4] that also the exact ground-state energy of hH

decreases with B according to B
1

2+τ when B →∞.
Fig.2b depicts the scaled ground-state energies EH1

g− /λ
1

2+τ of Fig.2a, includ-
ing the limiting case m̃s = 0 (which corresponds to B = ∞). It can be strictly
proven [4] and is verified in the figure that the scaled energy increases with B
(i.e. decreases with m/B1/(2+τ)). All curves show a maximum near τ = 1.5
which becomes positive when λ > 106 (corresponding to B > 106 Z2B0 with
B0 = 2.35 × 109 G the unit field). For λ fixed and τ → ∞ the scaled energy
approaches the Dirac energy too (since lim

τ→∞
EH1
g− /λ

1
2+τ = lim

τ→∞
EH1
g− ).
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2.2. Egger-type magnetic fields.

In this section we consider a magnetic field which is constant outside a cylin-
der of radius r0 centered around the x3-axis, and zero inside. This field, given by
(2.6), is generated by the vector potential [3]

A2(x) =
B

2

(
1− r20

%2

)
θ(%− r0) (−x2, x1, 0). (2.21)

In order to preserve the scaling property we have to set d = 1 (corresponding to
τ = 0 in the field A1), such that in the trial function (2.7), ν =

√
2s eB.

The field-dependent part of the energy functional EH2[ψt] is most readily
evaluated when cylindrical coordinates (%, ϕ, x3) are used. With the help of the
integral ∫ ∞

−∞
dx3 e

−2Z′
√
%2+x2

3 = 2% K1(2%Z ′), (2.22)

where K1 is a modified Bessel function, we get

M (2)
num = 4πN2

t

∫ ∞
r0

d% e−ν
2%2 K1(2%Z ′)

[(
eB

2

)2

(%2 − r20)2 − eB%2

]
. (2.23)

Thus, with (2.4) and (2.13),

EH2[ψt] =
√
Man +M

(2)
num + (ψt, V ψt). (2.24)

In Fig.3a the ground-state energy EH2
g− , resulting from the infimum of (2.24)

with respect to Z ′ and s, is plotted for fixed λ as a function of d̃ = r0
√
λ. In this

representation the curves are very similar to those shown in Fig.2a. In particular,
the maximum (which appears for sufficiently high field strengths) is also at a fixed
position, d̃ ≈ 3. Again, the field-free Dirac energy is approached when d̃→∞.

When the scaling with ν is introduced, such that % is replaced by %̃ = %ν, the
hole diameter r0 changes into r0ν which increases according to B

1
2 . Thus d̃ from

Fig.3a can be interpreted as the scaled hole diameter in units of the K-shell radius,
1/Z. Fig.3b displays the scaled energy EH2

g− /λ
1
2 for a wide range of λ as a function

of d̃. Again, this r0-dependence resembles the τ -dependence of EH1
g− /λ

1
1+τ from

Fig.2b, with two minor exceptions: The maximum becomes positive for λ > 48.9
which is much lower than the corresponding value in Fig.2b (λ > 106). Also,
the behaviour for B → ∞ is different. While the curves for λ = 108 and λ = ∞
nearly coincide in Fig.3b, they differ considerably in Fig.2b. This is related to
the additional B-dependence of the abscissa in Fig.3b. The range 0 ≤ d̃ ≤ 30
corresponds to a nearly homogeneous field (r0 ≈ 0) for λ & 106 such that the
convergence with λ → ∞ mimicks the fast converence of the scaled ground-state
energy with m̃s → 0 for r0 = 0. The convergence proof from [4], based on the
continuity of EA as a function of m, holds for any τ > 0. However, when the
depleted region is large (Fig.2b), the convergence with m̃s becomes slow. In this
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context we also note that the scaled energy EH2
g− /λ

1/2 tends to a constant (for
r0 →∞) which, in contrast to EH1

g− /λ
1/(2+τ) (for τ →∞), decreases with λ.

3. Comparison with previous results for B →∞

When the strength of a homogeneous magnetic field is very large (λ � 1),
the confinement of the electron in the direction perpendicular to BA is given by

the cyclotron radius a0 =
√

2
eB (see e.g. [7]). Assuming that this is also true for

small τ we have in our earlier work [4] taken a separable trial function where in
the hydrogenic part ϕz the coordinate % is replaced by a0 = 1/ν = 1√

2s(eB)2/(2+τ)
,

ψ
(1)
t (x) =

ν√
π
e−ν

2%2 ϕz(x3)
(

1
0

)
, (3.1)

ϕz(x3) = (2a0K1(2a0Z
′))−

1
2 e−Z

′
√
a2
0+x

2
3 .

Consequently, a separable kinetic energy functional was taken, based on the in-
equality

(ψ,EA ψ) ≤
√

(ψ,E2
xy ψ) + (ψ,

√
p2
3 +m2 ψ) =: Esep[ψ] (3.2)

for any normalized ψ ∈ H1/2(R3)⊗ C2. The estimate for the ground-state energy
was obtained from minimizing the energy functional

EH1
sep[ψ

(1)
t ] := Esep[ψ

(1)
t ] + (ψ(1)

t , V ψ
(1)
t ) (3.3)

relating to the field BA1 , with respect to Z ′ and s. For large τ this functional
is expected to be inferior to EH1[ψt] from Section 2, because BA1 contains an
extended depleted region where ψ(1)

t fails. This is confirmed for the limiting case
m̃s = 0 (i.e. B =∞) in Fig.4 where the scaled energies from the two functionals
are compared for τ . 10. The two curves cross near τ = 0.25, and EH1[ψt] provides
indeed the smaller energy estimate for all τ that exceed this value.

Since, however, two different functionals are used for the kinetic energy, both
being upper bounds for (ψ,EA ψ), one may ask how the results will change when
these functionals are interchanged while keeping the trial function fixed. Corre-
spondingly, we define the two additional energy functionals EH1

sep[ψt] with ψt from

(2.7) as well as EH1[ψ(1)
t ] with the kinetic energy estimate from (2.4). The mini-

mization of EH1
sep[ψt] proves to be inferior at all τ investigated (see Fig.4), whereas

the use of a separable trial function together with the non-separable energy func-
tional indeed provides the lowest energy estimate when τ > 0.2. Thus a separable
trial function (together with an appropriate energy functional) is the best choice
at B →∞ for all values of τ . We note that this remains true for finite (but high)
field strengths, provided τ is not too large (see Fig.2b).

With the help of the functional EH1[ψ(1)
t ] the critical field growth τc below

which the energy estimate is negative (hence guaranteeing the existence of a bound
ground state) can be improved from τc = 0.602 [4] to τc = 0.943 (for Z = 80).
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4. Stability of antibinding for modified trial functions

The infimum EHg of the energy functional provides only an upper bound
to the exact ground-state energy of the Herbst operator. In order to assure that
the ground-state energy is indeed positive in a certain parameter range we apply
trial functions of different type and study their influence on the variational energy
in the case of the Egger-type field (2.6). Guided by the fact that for B = 0
the variationally determined ground-state energy of the related Brown-Ravenhall
operator is lowered when the trial function accounts for the relativistic contraction
[9], we consider the energy functional EH [ψ(2)

t ] from (2.4) with

ψ
(2)
t (x) = N2 e

−ν2%2/2 xγ̃ e−Z
′x

(
1
0

)
, γ̃ =

√
1− (Z ′e2)2 − 1, (4.1)

where ν =
√

2s eB as before. The normalization constant can be calculated along
the lines of (2.16) and (2.17),

N2 =
(

4π
∫ ∞

0

dx x2+2γ̃ e−2Z′x e−ν
2x2

1F1(
1
2
,

3
2
, ν2x2)

)− 1
2

. (4.2)

As an alternative to γ̃ determined by Z ′, we have also considered γ̃ of the form
γ̃(ζ) =

√
1− (ζe2)2 −1, related to an independent variational parameter ζ (besides

Z ′ and s).
Our results from the variation with respect to Z ′ and s are displayed in Fig.5a.

We have plotted the scaled energies EH2
g− /
√
λ, obtained from the functions ψt and

ψ
(2)
t , respectively, versus the true hole diameter r0 = d̃/

√
λ. In this representation

it becomes clear that the maximum of the energy shifts to smaller r0 when the
field strength increases. For the test cases λ = 102 and 104, relating to a positive
maximum, the energy derived from the function (4.1) is always higher than the
energy obtained in section 2.2. This fact remains unchanged when ζ is introduced
as a third variational parameter: Only for weak fields (such as λ = 2 and d̃ & 3) is
the energy slightly lower when ζ > 0 (the deviation from the ζ = 0 results being
below 1 percent).

When the field is switched off completely and correspondingly the factor
exp(−ν2%2/2) omitted from the trial function (4.1) (such that the normalization
constant reduces to N2 = (2Z ′)

3
2+γ̃/

√
4πΓ(3 + 2γ̃) ), the energy functional is given

by

EH− [ψ(2)
t ] =

(
m2 +

Z
′2

1 + 2γ̃

) 1
2

−m − γ
Z ′

1 + γ̃
. (4.3)

It turns out that its minimum is again higher than if γ̃ is set equal to zero (for
Z = 80, one gets EHg− = −3382.98 a.u. as compared to −3532.19 a.u.). When ζ is
treated as independent variational parameter, the minimum is obtained for γ̃ = 0.

We have also considered the case where a positive power of the radial coor-
dinate is introduced into the trial function. In fact, when the scalar potential is
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absent (Z = 0) and the magnetic field homogeneous, the ground state of the elec-
tron is infinitely degenerate with eigenstates relating to different powers of % [11].
When the magnetic field is kept homogeneous but the scalar potential is turned
on the degeneracy is lifted, the energy increasing with increasing power of % [7, 6].
For the investigation in the case of inhomogeneous fields we use the following trial
function,

ψ
(3)
t (x) = N3 e

−ν2%2/2 (%eiϕ)l e−Z
′x

(
1
0

)
, (4.4)

N3 =

(
− πZ ′Γ2(l + 1)

ν2l+4
ψ′(l + 1, 1,

Z
′2

ν2
)

)− 1
2

where N3 is the normalization constant, ν =
√

2s eB and ψ′ the derivative of the
irregular confluent hypergeometric function.

The B-independent part of the energy functional (2.4) can for ψ(3)
t still be

evaluated analytically [7], whereas the B-dependent part is given by (2.23), modi-
fied by the additional factor %2l in the integrand, plus a nonvanishing contribution
from the cross term,

(ψ(3)
t , (−2eA1p1 − 2eA2p2) ψ(3)

t )

= −4π l eB N2
3

∫ ∞
r0

d% %2le−ν
2%2(%2 − r20) K1(2%Z ′). (4.5)

If l > 0 is fixed, the minimum of this energy functional, EH2[ψ(3)
t ], is indeed

higher than in the case of the variational function ψt from (2.7) and increases
with l. The effect is particularly large when l is restricted to integers like in the
degenerate Z = r0 = 0 eigenstates. For l = 0.1 and 1 this is shown in Fig.5b where
the scaled energy near its maximum (at d̃ = 3) is plotted as a function of the field
strength. Included are the l = 0 results for Z = 20 to display the Z-dependent
monotonous increase of the scaled energy with λ at fixed d̃ up to saturation for
λ & 108.

5. Conclusion

We have studied the ground-state energy of an atomic electron in an in-
homogeneous magnetic field which is described by two parameters, the size of a
field-free area around the nucleus and the field strength. Irrespective of the partic-
ular choice of the magnetic field the variational estimate of the ground-state energy
of the Herbst operator, used to model the relativistic electron, becomes positive
for a certain limited size of this field-free region if the field strength is larger than
some critical value. The lowest energy estimate is obtained for a trial function
which combines an eigenfunction of the lowest Landau level with a nonrelativistic
hydrogenic function. The only exceptions are ultrastrong fields, including the limit
B →∞, where a trial function, which is separable in the coordinates parallel and
perpendicular to the magnetic field, is more appropriate.
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Our conjecture that the antibinding of the electron in a particular parameter
range is real and not an artefact due to an inappropriate choice of the trial function
is supported by two facts. First, a positive maximum of the variational ground-
state energy is obtained for all trial functions investigated. Second, this maximum
increases with a positive power of the field strength. Thus we have established the
possibility of static ionization of a heavy ion by means of an appropriately chosen
strong inhomogeneous magnetic field.
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Figure Captions

Fig.1
(a) Cylindrically symmetric Egger-type magnetic field, % =

√
x2

1 + x2
2.

(b) Magnetic field with asymptotic growth in the special case of cylindrical sym-
metry (τ = 2).

Fig.2
Ground-state energy (without rest energy) for Z = 80 and the magnetic field (2.5)
as a function of τ . The parameter λ labelling the curves relates to the field strength
according to B = λZ2 (in units of B0 = 2.35× 109 G).
(a) Unscaled energy EH1

g− (in atomic units) for λ = 100 (——–), 106 (−−−−−)
and 108 (− ·− ·−). The asymptotic value is the Dirac energy for B = 0, −3532.19
a.u.
(b) Scaled energy EH1

g− /λ
1/(2+τ) for λ = 100 (———-), 106 (− − −−), 1010(− ·

− · −) and ∞ (———-, uppermost curve). Included are results using the energy
functional EH1[ψ(1)

t ] (∗, see Section 3).

Fig.3
Ground-state energy (without rest energy) for Z = 80 and the Egger field (2.6) as
a function of the scaled hole diameter d̃ = r0

√
λ (in units of the K-shell radius,

1/Z a.u.).
(a) Unscaled energy EH2

g− (in atomic units) for λ = 2 (−−−−−), 30 (———–)
and 100 (−·−·−). The horizontal line marks the Dirac energy for B = 0, −3532.19
a.u.
(b) Scaled energy EH2

g− /λ
1/2 for λ = 2 (− − − − −), 30 (————), 100 (− ·

− · −), 104(· · · · · · ) and 108 (————, uppermost curve). Included are results for
λ =∞ (×).

Fig.4
Scaled ground-state energy EH1

g− /λ
1/(2+τ) (without rest energy) for the magnetic

field (2.5) of infinite strength (B =∞) and Z = 80 as a function of τ . Results are
shown for different trial functions and kinetic energy operators: ψt with (2.4), see
also Fig.2b (———–); ψ(1)

t with (3.2) (− − − − −); ψt with (3.2) (×) and ψ
(1)
t

with (2.4) (∗).

Fig.5
Scaled ground-state energy EH2

g− /λ
1/2 (without rest energy) for the Egger field

(2.6) and the kinetic energy estimate from (2.4) with different trial functions.
(a) for Z = 80 as a function of the hole diameter r0 (in units of the K-shell radius,
1/Z a.u.): ψt for λ = 100 (————) and λ = 104 (− · − · −); ψ

(2)
t with γ̃ from

(4.1) for λ = 100 (−−−−−) and λ = 104 (×).
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(b) for d̃ = 3 as a function of λ for ψt and Z = 80 (————–), Z = 20 (−·− ·−),
as well as for ψ(3)

t and Z = 80 for l = 0.1 (−−−−−) and l = 1 (×).
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