%!PS-Adobe-2.0 %%Creator: dvipsk 5.58f Copyright 1986, 1994 Radical Eye Software %%Title: /tmp/tmp7758.dvi %%Pages: 6 %%PageOrder: Ascend %%BoundingBox: 0 0 612 792 %%EndComments %DVIPSCommandLine: /usr/local/bin/dvips /tmp/tmp7758.dvi %DVIPSParameters: dpi=300, comments removed %DVIPSSource: TeX output 1998.04.18:1252 %%BeginProcSet: tex.pro /TeXDict 250 dict def TeXDict begin /N{def}def /B{bind def}N /S{exch}N /X{S N}B /TR{translate}N /isls false N /vsize 11 72 mul N /hsize 8.5 72 mul N /landplus90{false}def /@rigin{isls{[0 landplus90{1 -1}{-1 1} ifelse 0 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[matrix currentmatrix{dup dup round sub abs 0.00001 lt{round}if} forall round exch round exch]setmatrix}N /@landscape{/isls true N}B /@manualfeed{statusdict /manualfeed true put}B /@copies{/#copies X}B /FMat[1 0 0 -1 0 0]N /FBB[0 0 0 0]N /nn 0 N /IE 0 N /ctr 0 N /df-tail{ /nn 8 dict N nn begin /FontType 3 N /FontMatrix fntrx N /FontBBox FBB N string /base X array /BitMaps X /BuildChar{CharBuilder}N /Encoding IE N end dup{/foo setfont}2 array copy cvx N load 0 nn put /ctr 0 N[}B /df{ /sf 1 N /fntrx FMat N df-tail}B /dfs{div /sf X /fntrx[sf 0 0 sf neg 0 0] N df-tail}B /E{pop nn dup definefont setfont}B /ch-width{ch-data dup length 5 sub get}B /ch-height{ch-data dup length 4 sub get}B /ch-xoff{ 128 ch-data dup length 3 sub get sub}B /ch-yoff{ch-data dup length 2 sub get 127 sub}B /ch-dx{ch-data dup length 1 sub get}B /ch-image{ch-data dup type /stringtype ne{ctr get /ctr ctr 1 add N}if}B /id 0 N /rw 0 N /rc 0 N /gp 0 N /cp 0 N /G 0 N /sf 0 N /CharBuilder{save 3 1 roll S dup /base get 2 index get S /BitMaps get S get /ch-data X pop /ctr 0 N ch-dx 0 ch-xoff ch-yoff ch-height sub ch-xoff ch-width add ch-yoff setcachedevice ch-width ch-height true[1 0 0 -1 -.1 ch-xoff sub ch-yoff .1 sub]{ch-image}imagemask restore}B /D{/cc X dup type /stringtype ne{]} if nn /base get cc ctr put nn /BitMaps get S ctr S sf 1 ne{dup dup length 1 sub dup 2 index S get sf div put}if put /ctr ctr 1 add N}B /I{ cc 1 add D}B /bop{userdict /bop-hook known{bop-hook}if /SI save N @rigin 0 0 moveto /V matrix currentmatrix dup 1 get dup mul exch 0 get dup mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N /eop{SI restore userdict /eop-hook known{eop-hook}if showpage}N /@start{userdict /start-hook known{start-hook}if pop /VResolution X /Resolution X 1000 div /DVImag X /IE 256 array N 0 1 255{IE S 1 string dup 0 3 index put cvn put}for 65781.76 div /vsize X 65781.76 div /hsize X}N /p{show}N /RMat[1 0 0 -1 0 0]N /BDot 260 string N /rulex 0 N /ruley 0 N /v{/ruley X /rulex X V}B /V {}B /RV statusdict begin /product where{pop product dup length 7 ge{0 7 getinterval dup(Display)eq exch 0 4 getinterval(NeXT)eq or}{pop false} ifelse}{false}ifelse end{{gsave TR -.1 .1 TR 1 1 scale rulex ruley false RMat{BDot}imagemask grestore}}{{gsave TR -.1 .1 TR rulex ruley scale 1 1 false RMat{BDot}imagemask grestore}}ifelse B /QV{gsave newpath transform round exch round exch itransform moveto rulex 0 rlineto 0 ruley neg rlineto rulex neg 0 rlineto fill grestore}B /a{moveto}B /delta 0 N /tail {dup /delta X 0 rmoveto}B /M{S p delta add tail}B /b{S p tail}B /c{-4 M} B /d{-3 M}B /e{-2 M}B /f{-1 M}B /g{0 M}B /h{1 M}B /i{2 M}B /j{3 M}B /k{ 4 M}B /w{0 rmoveto}B /l{p -4 w}B /m{p -3 w}B /n{p -2 w}B /o{p -1 w}B /q{ p 1 w}B /r{p 2 w}B /s{p 3 w}B /t{p 4 w}B /x{0 S rmoveto}B /y{3 2 roll p a}B /bos{/SS save N}B /eos{SS restore}B end %%EndProcSet TeXDict begin 40258431 52099146 1000 300 300 (/tmp/tmp7758.dvi) @start /Fa 1 115 df<778098C098803000300030003000600060000A097D880E>114 D E /Fb 1 51 df<3E00418080C0C0C000C000C0018003000400084030407F80FF800A0D 7E8C0E>50 D E /Fc 1 89 df88 D E /Fd 8 120 df<00200060006000C000C000C0018001800180030003000300060006 000C000C000C00180018001800300030003000600060006000C000C000C0000B1D7E9511 >61 D<07FC1FC000E0060001C0080001C0100001C0600001C08000038100000386000003 8E0000039E0000076700000787000007038000070380000E01C0000E01C0000E00E0000E 00E0001C00F000FF83FC001A147F931C>75 D<07FC3F8000E01C0000F010000070200000 7040000038800000390000003E0000001C0000001E0000001E0000003F00000067000000 C7000001838000030380000603C0000401C0001C01E000FE07F80019147F931B>88 D<03C00C20187030E0600060006000C000C0004010602030C01F000C0D7F8C0F>99 D<06070600000000384C4C8C98181830323264643808147F930C>105 D<31E05A704C709C609800180018003000300030003000600060000C0D7F8C0F>114 D<0700188019C0318038001E000F0003804180E180C10082007C000A0D7E8C10>I<3818 204C18704C18208C302098302018302018302030604030604030604030608018B1000F1E 00140D7F8C18>119 D E /Fe 7 62 df<01020408103020606040C0C0C0C0C0C0C0C0C0 C040606020301008040201081E7E950D>40 D<80402010080C0406060203030303030303 030303020606040C0810204080081E7E950D>I<00600000600000600000600000600000 6000006000006000006000006000FFFFF0FFFFF000600000600000600000600000600000 600000600000600000600000600014167E9119>43 D<0F0030C0606060604020C030C030 C030C030C030C030C030C030C03040206060606030C00F000C137E9211>48 D<0C001C00EC000C000C000C000C000C000C000C000C000C000C000C000C000C000C000C 00FFC00A137D9211>I<1F0060C06060F070F030603000700070006000C001C001800200 04000810101020207FE0FFE00C137E9211>I<7FFFE0FFFFF00000000000000000000000 00000000000000FFFFF07FFFE0140A7E8B19>61 D E /Ff 17 121 df<0001F000061800080C00100C00200E00400E00800E00801C01001C01001801003802 0FF00210C0020FE00200300400300400300400380400380800700800700800700800E018 00E01800C0140180140300230E0020F80020000020000040000040000040000040000080 000080000017257F9C17>12 D<1E3E60C0C0C0C0C0603E1E070B7E930C>44 D<60F0F0701010101020204080040C7C830C>59 D<00010003000600060006000C000C00 0C0018001800180030003000300060006000C000C000C001800180018003000300030006 0006000C000C000C00180018001800300030003000600060006000C000C00010297E9E15 >61 DI<01FF FF80003C01E000380070003800380038001C0038001C0070001C0070001E0070001E0070 001E00E0001E00E0001E00E0001E00E0001E01C0003C01C0003C01C0003C01C000380380 007803800070038000F0038000E0070001C0070003800700070007001C000E007800FFFF C0001F1C7E9B22>68 D<01FFC3FF80003C00780000380070000038007000003800700000 38007000007000E000007000E000007000E000007000E00000E001C00000E001C00000E0 01C00000FFFFC00001C003800001C003800001C003800001C00380000380070000038007 00000380070000038007000007000E000007000E000007000E000007000E00000F001E00 00FFE1FFC000211C7E9B23>72 D<01FFC07F80003C001E00003800180000380020000038 0040000038008000007002000000700400000070080000007010000000E040000000E0C0 000000E1E0000000E2E0000001C470000001D070000001E038000001C038000003803800 0003801C000003801C000003800E000007000E000007000E000007000700000700070000 0F00078000FFE03FF000211C7E9B23>75 D<01FC00FF80001C001C00002E001800002E00 1000002E001000002700100000470020000043002000004380200000438020000081C040 000081C040000081C040000080E040000100E08000010070800001007080000100708000 02003900000200390000020039000002001D000004001E000004000E000004000E00000C 000E00001C00040000FF80040000211C7E9B21>78 D<0003F800000E0E000038038000E0 01C001C001C0038000E0070000E00F0000F01E0000F01C0000F03C0000F03C0000F07800 00F0780000F0780000F0F00001E0F00001E0F00001E0F00003C0F00003C0F0000380F000 0780F0000F00703C0E0070421C0038823800388270001C83C0000787810001FF01000003 03000003020000038E000003FC000003F8000001F8000001E0001C257E9C21>81 D<01FFC0FF80001E003C00001E003000000E002000000F00400000070080000007010000 000782000000038400000003C800000001D000000001F000000000E000000000E0000000 00F00000000170000000027000000004380000000838000000103C000000201C00000040 1E000000800E000001800E000003000F000006000700001E000F8000FF803FF000211C7F 9B22>88 D<3F00070007000E000E000E000E001C001C001C001C0039E03A303C18381870 18701C701C701CE038E038E038E030E070E060E0C061C023001E000E1D7E9C12>98 D<007180018B800307800607800E07000C07001C07001C0700380E00380E00380E00380E 00381C00381C00381C00183C0008F800073800003800003800007000607000F06000F0E0 00E180007E0000111A7F9114>103 D<01C003C003C00180000000000000000000000000 1C00270047004700870087000E000E001C001C001C003800388038807080710032001C00 0A1C7E9B0E>105 D<383C4E424687470F8E1E8E0C0E000E001C001C001C001C00380038 00380038007000300010127E9113>114 D<1C00C0802701C1C04701C1C04701C0C08703 8040870380400E0380400E0380401C0700801C0700801C0700801C070100180601001806 02001C0E02001C0F04000E13080003E1F0001A127E911E>119 D<07878008C84010F0C0 20F1E020E3C040E18000E00000E00001C00001C00001C00001C000638080F38080F38100 E5810084C60078780013127E9118>I E /Fg 9 83 df<0102040C1818303070606060E0 E0E0E0E0E0E0E0E0E060606070303018180C04020108227D980E>40 D<8040203018180C0C0E060606070707070707070707070606060E0C0C18183020408008 227E980E>I<0F8030E040708030C038E0384038003800700070006000C0018003000600 0C08080810183FF07FF0FFF00D157E9412>50 D<60307FE07FC044004000400040004000 4F8070E040700030003800384038E038E0388030406020C01F000D157E9412>53 D<40007FFE7FFC7FF8C008801080200040008000800100030003000200060006000E000E 000E000E000E0004000F167E9512>55 D<07E018302018600C600C700C78183E101F6007 C00FF018F8607C601EC00EC006C006C004600C38300FE00F157F9412>I<07C018303018 6018E00CE00CE00EE00EE00E601E301E186E0F8E000E000C001C70187018603020E01F80 0F157F9412>I68 D82 D E /Fh 13 89 df45 D<078018603030303060186018E01CE01CE01CE01CE01CE01CE01CE01CE01CE01CE01CE0 1C6018601870383030186007800E187E9713>48 D<03000700FF00070007000700070007 00070007000700070007000700070007000700070007000700070007000700FFF00C187D 9713>I<00300030007000F000F001700370027004700C7008701070307020704070C070 FFFF00700070007000700070007007FF10187F9713>52 D<30183FF03FE03FC020002000 20002000200027C03860203000380018001C001C401CE01CE01C80184038403030E00F80 0E187E9713>I<40007FFE7FFC7FFC400880108010802000400040008001800180010003 0003000300030007000700070007000700070002000F197E9813>55 D<000C0000000C0000000C0000001E0000001E0000003F00000027000000270000004380 0000438000004380000081C0000081C0000081C0000100E0000100E00001FFE000020070 000200700006007800040038000400380008001C0008001C001C001E00FF00FFC01A1A7F 991D>65 D<003F0201C0C603002E0E001E1C000E1C0006380006780002700002700002F0 0000F00000F00000F00000F00000F000007000027000027800023800041C00041C00080E 000803003001C0C0003F00171A7E991C>67 D73 D<007F000001C1C000070070000E0038001C001C003C001E0038000E0078 000F0070000700F0000780F0000780F0000780F0000780F0000780F0000780F0000780F0 00078078000F0078000F0038000E003C001E001C001C000E0038000700700001C1C00000 7F0000191A7E991E>79 D82 D<7FFFFF00701C0700401C0100401C0100C01C018080 1C0080801C0080801C0080001C0000001C0000001C0000001C0000001C0000001C000000 1C0000001C0000001C0000001C0000001C0000001C0000001C0000001C0000001C000000 1C0000001C000003FFE000191A7F991C>84 D<7FC0FF000F003C00070030000780200003 80600001C0400001E0800000E1800000710000007A0000003C0000001C0000001E000000 1E00000017000000278000004380000041C0000081E0000100E000010070000200780004 0038000C001C001E003E00FF80FFC01A1A7F991D>88 D E /Fi 44 122 df<78FCFCFEFE7A0202040408083040070E7D9C0D>39 D<78FCFCFEFE7A02020404 08083040070E7D850D>44 D<78FCFCFCFC7806067D850D>46 D<03F8000F1E001C07003C 07803803807803C07803C07803C0F803E0F803E0F803E0F803E0F803E0F803E0F803E0F8 03E0F803E0F803E0F803E0F803E07803C07803C03803803C07801C07000F1E0003F80013 1B7E9A18>48 D<00600001E0000FE000FFE000F3E00003E00003E00003E00003E00003E0 0003E00003E00003E00003E00003E00003E00003E00003E00003E00003E00003E00003E0 0003E00003E00003E0007FFF807FFF80111B7D9A18>I<000180000380000780000F8000 1F80003F80006F8000CF80008F80018F80030F80060F800C0F80180F80300F80600F80C0 0F80FFFFF8FFFFF8000F80000F80000F80000F80000F80000F8001FFF801FFF8151B7F9A 18>52 D<1801801FFF001FFE001FFC001FF8001FC00018000018000018000018000019F8 001E0E00180F801007800007C00007E00007E00007E07807E0F807E0F807E0F807C0F007 C0600F80381F001FFE0007F000131B7E9A18>I<007E0003FF000781800F03C01E07C03C 07C03C0380780000780000F80000F8F800FB0E00FA0780FC0380FC03C0F803E0F803E0F8 03E0F803E07803E07803E07803C03C03C03C07801E0F0007FE0003F800131B7E9A18>I< 6000007FFFE07FFFE07FFFC07FFF807FFF80E00300C00600C00C00C01800003000003000 00600000E00000E00001E00001C00003C00003C00003C00003C00007C00007C00007C000 07C00007C00007C000038000131C7D9B18>I<03F8000FFE001E0F003C07807807807803 C0F803C0F803C0F803E0F803E0F803E0F803E07807E03807E03C0BE00E1BE003E3E00003 E00003C00003C03807C07C07807C0700780F00383C001FF8000FE000131B7E9A18>57 D<78FCFCFCFC7800000000000078FCFCFCFC7806127D910D>I<78FCFCFCFC7800000000 000070F8FCFCFC7C0404080808102040061A7D910D>I66 D<001FE02000FFF8E003F80FE007C003E00F8001E01F0000E03E0000E03E0000607E0000 607C000060FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC0000 007C0000607E0000603E0000603E0000C01F0000C00F80018007C0030003F80E0000FFFC 00001FE0001B1C7D9B22>III75 D77 D80 D82 D<07F8201FFEE03C07E07801E07000E0F000E0F00060F00060F80000FE0000FFE0007FFE 003FFF003FFF800FFFC007FFE0007FE00003F00001F00000F0C000F0C000F0C000E0E000 E0F001C0FC03C0EFFF0083FC00141C7D9B1B>I<7FFFFFE07FFFFFE0781F81E0701F80E0 601F8060E01F8070C01F8030C01F8030C01F8030C01F8030001F8000001F8000001F8000 001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000 001F8000001F8000001F8000001F800007FFFE0007FFFE001C1C7E9B21>I<7FFFFC7FFF FC7E01F87803F87003F0E007E0E007E0C00FC0C01FC0C01F80003F00007F00007E0000FC 0000FC0001F80003F80603F00607E0060FE0060FC00E1F800E1F801C3F001C7F003C7E00 FCFFFFFCFFFFFC171C7D9B1D>90 D<0FF8001C1E003E0F803E07803E07C01C07C00007C0 007FC007E7C01F07C03C07C07C07C0F807C0F807C0F807C0780BC03E13F80FE1F815127F 9117>97 DI<03FC000E0E001C1F00 3C1F00781F00780E00F80000F80000F80000F80000F80000F800007800007801803C0180 1C03000E0E0003F80011127E9115>I<000FF0000FF00001F00001F00001F00001F00001 F00001F00001F00001F00001F001F9F00F07F01C03F03C01F07801F07801F0F801F0F801 F0F801F0F801F0F801F0F801F07801F07801F03C01F01C03F00F0FFE03F9FE171D7E9C1B >I<01FC000F07001C03803C01C07801C07801E0F801E0F801E0FFFFE0F80000F80000F8 00007800007C00603C00601E00C00F038001FC0013127F9116>I<007F0001E38003C7C0 0787C00F87C00F83800F80000F80000F80000F80000F8000FFF800FFF8000F80000F8000 0F80000F80000F80000F80000F80000F80000F80000F80000F80000F80000F80000F8000 7FF8007FF800121D809C0F>I104 D<1E003F003F003F003F001E00000000000000000000000000FF00FF001F001F001F001F 001F001F001F001F001F001F001F001F001F001F00FFE0FFE00B1E7F9D0E>I107 DIII<01FC000F07801C01C0 3C01E07800F07800F0F800F8F800F8F800F8F800F8F800F8F800F87800F07800F03C01E0 1E03C00F078001FC0015127F9118>II114 D<1FD830786018E018E018F000FF807FE0 7FF01FF807FC007CC01CC01CE01CE018F830CFC00E127E9113>I<030003000300030007 0007000F000F003FFCFFFC1F001F001F001F001F001F001F001F001F001F0C1F0C1F0C1F 0C0F08079803F00E1A7F9913>IIII121 D E /Fj 7 51 df0 D<003F800000C46000030418000404040008040200100401002004008020040080400400 4040040040800400208004002080040020FFFFFFE0800400208004002080040020800400 20400400404004004020040080200400801004010008040200040404000304180000C460 00003F80001B1C7E9720>8 D<0003FE0000000FFF8000003C01E00000F000780001C000 1C00030000060006000003000C0000018018000000C018000000C0300000006030000000 60600000003060000000306000000030C000000018C000000018C000000018C000000018 C000000018C000000018C000000018C000000018C0000000186000000030600000003060 000000303000000060300000006018000000C018000000C00C0000018006000003000300 00060001C0001C0000F0007800003C01E000000FFF80000003FE000025277E9D2A>13 D21 D<007FFF8003FFFF80078000000C00000018000000300000003000000060000000600000 00C0000000C0000000C0000000C0000000C0000000C0000000C0000000C0000000600000 00600000003000000030000000180000000E0000000780000001FFFF80007FFF80191A7D 9620>26 D<00000030000000003000000000180000000018000000000C000000000C0000 000006000000000300000000038000000001C0FFFFFFFFF8FFFFFFFFF800000001C00000 000380000000030000000006000000000C000000000C0000000018000000001800000000 3000000000300025167E942A>33 D<007FF801FFF80780000E0000180000300000300000 600000600000C00000C00000C00000FFFFF8FFFFF8C00000C00000C00000600000600000 3000003000001800000E000007800001FFF8007FF8151A7D961C>50 D E /Fk 23 124 df<0001F03C00071C47000C1CC7000C19C6001C0180001C0380001803 800038038000380380003807000038070003FFFFF000700700007007000070070000700E 0000700E0000E00E0000E00E0000E00E0000E01C0000E01C0001C01C0001C01C0001C01C 0001C0380001C03800038038000380380003803000030070000300700007006000C630E0 00E638C000CC318000781E00002025819C19>11 D<01FFFF00003C03C0003800E0003800 E000380070003800700070007800700038007000380070007800E0007800E0007800E000 7800E0007801C000F001C000F001C000F001C000E0038001E0038001C0038003C0038003 800700070007000E0007001C00070038000E00E000FFFF80001D1C7E9B1F>68 D<0003F020001E0C60003002E000E003C001C001C0038001C0070000C00E0000801E0000 801C0000803C0000803C000000780000007800000078000000F0000000F0000000F001FF 80F0001E00F0001C00F0001C00F0001C00F0001C00700038007000380038003800180078 000C0090000707100001F800001B1E7A9C20>71 D<003FF80003C0000380000380000380 000380000700000700000700000700000E00000E00000E00000E00001C00001C00001C00 001C00003800003800003800003800607000E07000C0600080E00081C0004380003E0000 151D7C9B16>74 D<01FFC07F80003C001E00003800180000380020000038004000003800 8000007002000000700400000070080000007010000000E040000000E0C0000000E1C000 0000E2E0000001C4E0000001D070000001E070000001C070000003803800000380380000 038018000003801C000007001C000007000E000007000E000007000E00000F000F0000FF E07FC000211C7E9B20>I<01FE0001FE003E0001E0002E0003C0002E0005C0002E0005C0 002E0009C0004E000B80004E001380004E00238000470023800087004700008700470000 8700870000870107000107010E000107020E000107040E000107040E000207081C000203 881C000203901C000203A01C000403A038000403C038000403C038000C038038001C0300 7800FF8307FF00271C7E9B25>77 D<01FFFE00003C0780003801C0003801E0003800E000 3800E0007001E0007001E0007001E0007003C000E0038000E0070000E01C0000FFE00001 C0300001C0180001C01C0001C01C0003801C0003801C0003801C0003801C0007003C0007 003C2007003C2007003C200F003C40FFE01E8000000F001B1D7E9B1E>82 D<01E307170C0F180F380E300E700E700EE01CE01CE01CE01CE039E039E0396079319A1E 0C10127C9115>97 D<00F803040E041C0E181C300070007000E000E000E000E000E000E0 046008601030600F800F127C9113>99 D<00F807040C0418023804300470087FF0E000E0 00E000E000E00060046008301030600F800F127C9113>101 D<0FC00001C00001C00003 80000380000380000380000700000700000700000700000E3E000EC3000F03800E03801E 03801C03801C03801C0380380700380700380700380E00700E40700E40701C40701C80E0 0C80600700121D7E9C15>104 D<01800380010000000000000000000000000000001C00 2600470047008E008E000E001C001C001C0038003800710071007100720072003C00091C 7C9B0D>I<0FC00001C00001C00003800003800003800003800007000007000007000007 00000E07800E08800E11C00E21C01C41801C80001D00001E00003FC00038E00038700038 7000707100707100707100707200E03200601C00121D7E9C13>107 D<1F800380038007000700070007000E000E000E000E001C001C001C001C003800380038 0038007000700070007000E200E200E200E40064003800091D7D9C0B>I<1C1E07802663 18C04683A0E04703C0E08E0380E08E0380E00E0380E00E0380E01C0701C01C0701C01C07 01C01C070380380E0388380E0388380E0708380E0710701C0320300C01C01D127C9122> I<383E004CC3004D03804E03809E03809C03801C03801C0380380700380700380700380E 00700E40700E40701C40701C80E00C8060070012127C9117>I<00F800030C000E06001C 0300180300300300700380700380E00700E00700E00700E00E00E00E00E01C0060180060 300030E0000F800011127C9115>I<1C3C2642468747078E068E000E000E001C001C001C 001C0038003800380038007000300010127C9112>114 D<01F006080C080C1C18181C00 1F001FC00FF007F0007800386030E030C030806060C01F000E127D9111>I<0300070007 0007000E000E000E000E00FFE01C001C001C0038003800380038007000700070007000E0 80E080E100E100660038000B1A7C990E>I<1C062E0E4E064E068E028E021C021C023804 380438043808300830083010382018400F800F127C9113>118 D<1E0183270387470387 4703838707018707010E07010E07011C0E021C0E021C0E021C0E04180C04181C04181C08 1C1E080C263007C3C018127C911C>I123 D E /Fl 81 125 df6 D<007E1F0001C1B1800303E3C00703C3C0 0E03C1800E01C0000E01C0000E01C0000E01C0000E01C0000E01C000FFFFFC000E01C000 0E01C0000E01C0000E01C0000E01C0000E01C0000E01C0000E01C0000E01C0000E01C000 0E01C0000E01C0000E01C0000E01C0000E01C0000E01C0007F87FC001A1D809C18>11 D<007E0001C1800301800703C00E03C00E01800E00000E00000E00000E00000E0000FFFF C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01 C00E01C00E01C00E01C00E01C07F87F8151D809C17>I<007FC001C1C00303C00703C00E 01C00E01C00E01C00E01C00E01C00E01C00E01C0FFFFC00E01C00E01C00E01C00E01C00E 01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C07F CFF8151D809C17>I<003F07E00001C09C18000380F018000701F03C000E01E03C000E00 E018000E00E000000E00E000000E00E000000E00E000000E00E00000FFFFFFFC000E00E0 1C000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C 000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C00 0E00E01C007FC7FCFF80211D809C23>I<6060F0F0F8F868680808080808081010101020 20404080800D0C7F9C15>34 D<0003018000030180000301800006030000060300000603 000006030000060300000C0600000C0600000C0600000C060000180C007FFFFFF8FFFFFF FC0030180000301800003018000030180000603000006030000060300000603000FFFFFF FC7FFFFFF800C060000180C0000180C0000180C0000180C0000301800003018000030180 00030180000603000006030000060300001E257E9C23>I<60F0F8680808081010204080 050C7C9C0C>39 D<004000800100020006000C000C001800180030003000700060006000 6000E000E000E000E000E000E000E000E000E000E000E000E00060006000600070003000 3000180018000C000C00060002000100008000400A2A7D9E10>I<800040002000100018 000C000C000600060003000300038001800180018001C001C001C001C001C001C001C001 C001C001C001C001C0018001800180038003000300060006000C000C0018001000200040 0080000A2A7E9E10>I<0006000000060000000600000006000000060000000600000006 0000000600000006000000060000000600000006000000060000FFFFFFE0FFFFFFE00006 000000060000000600000006000000060000000600000006000000060000000600000006 00000006000000060000000600001B1C7E9720>43 D<60F0F0701010101020204080040C 7C830C>II<60F0F06004047C830C>I<03C00C301818300C300C 700E60066006E007E007E007E007E007E007E007E007E007E007E007E007E00760066006 700E300C300C18180C3007E0101D7E9B15>48 D<030007003F00C7000700070007000700 070007000700070007000700070007000700070007000700070007000700070007000700 0F80FFF80D1C7C9B15>I<07C01830201C400C400EF00FF80FF807F8077007000F000E00 0E001C001C00380070006000C00180030006010C01180110023FFE7FFEFFFE101C7E9B15 >I<07E01830201C201C781E780E781E381E001C001C00180030006007E00030001C001C 000E000F000F700FF80FF80FF80FF00E401C201C183007E0101D7E9B15>I<000C00000C 00001C00003C00003C00005C0000DC00009C00011C00031C00021C00041C000C1C00081C 00101C00301C00201C00401C00C01C00FFFFC0001C00001C00001C00001C00001C00001C 00001C0001FFC0121C7F9B15>I<300C3FF83FF03FC020002000200020002000200023E0 24302818301C200E000E000F000F000F600FF00FF00FF00F800E401E401C2038187007C0 101D7E9B15>I<00F0030C06040C0E181E301E300C700070006000E3E0E430E818F00CF0 0EE006E007E007E007E007E007600760077006300E300C18180C3003E0101D7E9B15>I< 4000007FFF807FFF007FFF00400200800400800400800800001000001000002000006000 00400000C00000C00001C000018000018000038000038000038000038000078000078000 078000078000078000078000030000111D7E9B15>I<03E00C301008200C200660066006 60067006780C3E083FB01FE007F007F818FC307E601E600FC007C003C003C003C0036002 6004300C1C1007E0101D7E9B15>I<03C00C301818300C700C600EE006E006E007E007E0 07E007E0076007700F300F18170C2707C700060006000E300C780C78187010203030C00F 80101D7E9B15>I<60F0F0600000000000000000000060F0F06004127C910C>I<60F0F060 0000000000000000000060F0F0701010101020204080041A7C910C>I<7FFFFFC0FFFFFF E00000000000000000000000000000000000000000000000000000000000000000FFFFFF E07FFFFFC01B0C7E8F20>61 D<000600000006000000060000000F0000000F0000000F00 000017800000178000001780000023C0000023C0000023C0000041E0000041E0000041E0 000080F0000080F0000180F8000100780001FFF80003007C0002003C0002003C0006003E 0004001E0004001E000C001F001E001F00FF80FFF01C1D7F9C1F>65 DI<001F808000E061800180198007000780 0E0003801C0003801C00018038000180780000807800008070000080F0000000F0000000 F0000000F0000000F0000000F0000000F0000000F0000000700000807800008078000080 380000801C0001001C0001000E000200070004000180080000E03000001FC000191E7E9C 1E>IIII<001F808000E0618001801980070007800E000380 1C0003801C00018038000180780000807800008070000080F0000000F0000000F0000000 F0000000F0000000F0000000F000FFF0F0000F8070000780780007807800078038000780 1C0007801C0007800E00078007000B800180118000E06080001F80001C1E7E9C21>II I<1FFF00F800780078007800780078007800780078007800780078007800780078007800 780078007800787078F878F878F878F0F040E021C01F00101D7F9B15>IIIII<003F800000E0E0000380380007001C000E000E001C0007003C000780380003807800 03C0780003C0700001C0F00001E0F00001E0F00001E0F00001E0F00001E0F00001E0F000 01E0F00001E0700001C0780003C0780003C0380003803C0007801C0007000E000E000700 1C000380380000E0E000003F80001B1E7E9C20>II82 D<07E0801C1980300580700380600180E0 0180E00080E00080E00080F00000F800007C00007FC0003FF8001FFE0007FF0000FF8000 0F800007C00003C00001C08001C08001C08001C0C00180C00180E00300D00200CC0C0083 F800121E7E9C17>I<7FFFFFC0700F01C0600F00C0400F0040400F0040C00F0020800F00 20800F0020800F0020000F0000000F0000000F0000000F0000000F0000000F0000000F00 00000F0000000F0000000F0000000F0000000F0000000F0000000F0000000F0000000F00 00000F0000001F800003FFFC001B1C7F9B1E>IIII89 D91 D<08081010202040404040808080808080B0B0F8F87878 30300D0C7A9C15>II<1FC000307000783800781C00301C00 001C00001C0001FC000F1C00381C00701C00601C00E01C40E01C40E01C40603C40304E80 1F870012127E9115>97 DI<07E00C 301878307870306000E000E000E000E000E000E00060007004300418080C3007C00E127E 9112>I<003F000007000007000007000007000007000007000007000007000007000007 0003E7000C1700180F00300700700700600700E00700E00700E00700E00700E00700E007 00600700700700300700180F000C370007C7E0131D7E9C17>I<03E00C301818300C700E 6006E006FFFEE000E000E000E00060007002300218040C1803E00F127F9112>I<00F801 8C071E061E0E0C0E000E000E000E000E000E00FFE00E000E000E000E000E000E000E000E 000E000E000E000E000E000E000E000E007FE00F1D809C0D>I<00038003C4C00C38C01C 3880181800381C00381C00381C00381C001818001C38000C300013C00010000030000018 00001FF8001FFF001FFF803003806001C0C000C0C000C0C000C06001803003001C0E0007 F800121C7F9215>II<18003C003C 0018000000000000000000000000000000FC001C001C001C001C001C001C001C001C001C 001C001C001C001C001C001C001C00FF80091D7F9C0C>I<00C001E001E000C000000000 000000000000000000000FE000E000E000E000E000E000E000E000E000E000E000E000E0 00E000E000E000E000E000E000E000E060E0F0C0F1C061803E000B25839C0D>III II<03F0000E1C0018060030 0300700380600180E001C0E001C0E001C0E001C0E001C0E001C060018070038030030018 06000E1C0003F00012127F9115>II<03C1000C3300180B 00300F00700700700700E00700E00700E00700E00700E00700E00700600700700700300F 00180F000C370007C700000700000700000700000700000700000700000700003FE0131A 7E9116>II<1F9030704030C010C010E010F8007F803FE00FF000F88038 8018C018C018E010D0608FC00D127F9110>I<04000400040004000C000C001C003C00FF E01C001C001C001C001C001C001C001C001C001C101C101C101C101C100C100E2003C00C 1A7F9910>IIII<7F8FF00F03800F0300 07020003840001C80001D80000F00000700000780000F800009C00010E00020E00060700 0403801E07C0FF0FF81512809116>II<7FFC7038603840 7040F040E041C003C0038007000F040E041C043C0C380870087038FFF80E127F9112>I< FFFFF01401808B15>II E end %%EndProlog %%BeginSetup %%Feature: *Resolution 300dpi TeXDict begin %%EndSetup %%Page: 1 1 1 0 bop 69 -114 a Fl(Results)14 b(from)e(MathSciNet:)18 b Fk(Mathematic)n(al)c(R)n(eviews)i Fl(on)e(the)g(W)m(eb)174 -66 y(c)162 -65 y Fj(\015)g Fl(Cop)o(yrigh)o(t)e(American)h (Mathematical)f(So)q(ciet)o(y)i(1998)p 0 -15 1254 2 v 0 83 a Fi(96e:57019)36 b Fh(57R40)21 b Fg(57R55)f(57R57)f(57R95)g (58D27)0 141 y Fi(Kronheimer,)8 b(P)l(.)g(B.)386 138 y Fg(\()400 141 y Fh(4-O)o(X)490 138 y Fg(\))507 141 y Fi(;)17 b(Mro)o(wk)m(a,)11 b(T.)e(S.)838 138 y Fg(\()851 141 y Fh(1-CAIT)982 138 y Fg(\))0 197 y Fi(Em)o(b)q(edded)f(surfaces)h (and)h(the)f(structure)f(of)i(Donaldson's)0 247 y(p)q(olynomial)d(in)o (v)m(arian)o(ts.)0 303 y Fk(J)p Fl(.)h Fk(Di\013er)n(ential)k(Ge)n(om)p Fl(.)i Fi(41)g Fl(\(1995\),)g Fk(no)p Fl(.)8 b(3,)14 b(573)p Fk({)p Fl(734.)0 353 y(FEA)m(TURED)f(REVIEW.)42 403 y(Since)21 b(1982,)f(most)g(of)g(the)h(progress)h(in)e (four-dimensional)e(di\013eren)o(tial)0 452 y(top)q(ology)d(has)h (arisen)h(from)d(the)j(applications)e(of)g(gauge)h(theory)h(pioneered)0 502 y(b)o(y)12 b(S.)h(K.)f(Donaldson.)j(In)e(particular,)f(Donaldson's) g(p)q(olynomial)d(in)o(v)n(arian)o(ts)0 552 y(ha)o(v)o(e)16 b(b)q(een)h(used)f(to)g(pro)o(v)o(e)g(a)f(v)n(ariet)o(y)h(of)f(results) i(ab)q(out)f(the)g(top)q(ology)f(and)0 602 y(geometry)k(of)h (four-manifol)o(ds.)h(The)g(pap)q(er)g(under)g(review)f(is)g(one)h(of)e (the)0 652 y(pinnacles)e(of)g(this)g(dev)o(elopmen)o(t.)j(It)d(giv)o (es)g(a)g(conceptual)g(framew)o(ork)f(and)0 702 y(an)k(organizing)e (principle)i(for)g(some)f(of)g(the)i(disparate)f(observ)n(ations)g(and) 0 751 y(calculations)d(of)h(Donaldson)f(in)o(v)n(arian)o(ts)g(that)h (had)g(b)q(een)h(made)e(earlier,)i(it)0 801 y(rev)o(eals)13 b(a)f(deep)h(structure)i(enco)q(ded)f(in)e(the)h(Donaldson)e(in)o(v)n (arian)o(ts)g(whic)o(h)i(is)0 851 y(related)k(to)f(em)o(b)q(edded)h (surfaces)g(in)f(four-manifolds,)e(and)i(it)g(has)g(b)q(een)i(the)0 901 y(p)q(oin)o(t)13 b(of)h(departure)h(and)f(the)g(motiv)n(ating)d (example)h(for)i(imp)q(ortan)o(t)e(further)0 951 y(dev)o(elopmen)o(ts,) 22 b(most)f(sp)q(ectacularly)h(for)f(Witten's)h(in)o(tro)q(duction)f (of)g(the)0 1000 y(so-called)13 b(Seib)q(erg-Witten)i(in)o(v)n(arian)o (ts.)42 1050 y(Let)h Ff(X)k Fl(b)q(e)d(a)f(smo)q(oth)f(closed)i(orien)o (ted)g(four-manifol)o(d)c(with)j Ff(b)1080 1056 y Fe(1)1099 1050 y Fl(\()p Ff(X)s Fl(\))11 b(=)f(0.)0 1100 y(Recall)h(that)i (Donaldson's)e(p)q(olynomial)e(in)o(v)n(arian)o(ts)i(are)h(de\014ned)i (b)o(y)d(ev)n(aluat-)0 1150 y(ing)16 b(certain)h(tautological)d (cohomology)g(classes)k(on)e(the)h(compacti\014cations)0 1200 y(of)d(mo)q(duli)f(spaces)k(of)d(\(smo)q(oth\))g(an)o (ti-self-dual)g(connections)i(on)f(SU\(2\)-)g(or)0 1249 y(SO\(3\)-bundles)g(o)o(v)o(er)f Ff(X)s Fl(.)19 b(If)13 b Ff(b)491 1232 y Fe(+)491 1261 y(2)519 1249 y Fl(\()p Ff(X)s Fl(\))d Ff(>)g Fl(1,)j(the)i(in)o(v)n(arian)o(ts)e(are)h (di\013eren)o(tiable)0 1299 y(in)o(v)n(arian)o(ts)c(of)h Ff(X)s Fl(;)h(they)g(do)f(not)g(dep)q(end)i(on)e(the)h(c)o(hoice)f(of)g (Riemannian)e(met-)0 1349 y(ric)14 b(used)h(to)f(write)g(do)o(wn)f(the) i(an)o(ti-self-dualit)o(y)c(equation.)18 b(It)c(is)f(con)o(v)o(enien)o (t)0 1399 y(to)20 b(think)f(of)h(the)g(in)o(v)n(arian)o(ts)f(as)h(an)f (in\014nite)h(sequence)i(of)d(graded)i(homo-)0 1449 y(geneous)c(p)q (olynomial)o(s)c(on)j Ff(H)484 1455 y Fe(0)502 1449 y Fl(\()p Ff(X)q(;)7 b Fi(R)p Fl(\))g Fj(\010)h Ff(H)706 1455 y Fe(2)724 1449 y Fl(\()p Ff(X)q(;)f Fi(R)p Fl(\),)16 b(where)h Ff(H)1031 1455 y Fd(i)1060 1449 y Fl(is)e(assigned)0 1499 y(degree)21 b(4)7 b Fj(\000)i Ff(i)p Fl(.)23 b(This)c(is)g(a)g (sligh)o(t)g(generalisation)g(of)f(Donaldson's)g(original)0 1548 y(de\014nition,)g(whic)o(h)g(used)h(only)f Ff(H)554 1554 y Fe(2)572 1548 y Fl(\()p Ff(X)q(;)7 b Fi(R)p Fl(\).)21 b(This)d(generalisation)g(is)g(one)g(of)0 1598 y(the)c(k)o(eys)h(to)e (the)h(w)o(ork)g(under)h(review.)42 1648 y(Although)k(these)j(in)o(v)n (arian)o(ts)d(are)i(hard)g(to)f(calculate,)h(they)g(w)o(ere)h(used)0 1698 y(successfully)14 b(from)d(the)j(v)o(ery)f(b)q(eginning)f(to)h (distinguish)f(4-manifol)o(ds)f(whic)o(h)0 1748 y(are)18 b(homeomorphic)d(but)i(not)h(di\013eomorphic.)h(Usually)e(this)h (required)g(the)0 1797 y(calculation)c(of)h(one)h(or)f(t)o(w)o(o)g(co)q (e\016cien)o(ts)h(of)f(a)g(particular)g(p)q(olynomial,)d(and)0 1847 y(more)i(complete)h(calculations)g(w)o(ere)h(nev)o(er)h(done|and)e (indeed)h(they)g(could)0 1897 y(not)21 b(b)q(e)h(done.)k(Nev)o (ertheless,)f(w)o(ork)o(ers)d(in)f(the)h(\014eld)g(observ)o(ed)g(that)g (the)0 1947 y(in)o(v)n(arian)o(ts)11 b(did)h(not)g(app)q(ear)g(to)g(b)q (e)h(completely)e(indep)q(enden)o(t)i(of)f(eac)o(h)g(other.)0 1997 y(There)17 b(w)o(ere)g(restrictions)g(on)f(the)h(parit)o(y)e(of)h (the)g(v)n(alues,)g(and)g(more)f(subtle)0 2046 y(relations)i(b)q(et)o (w)o(een)i(them)e(w)o(ere)i(observ)o(ed)g(in)e(sp)q(eci\014c)i (examples,)e(lik)o(e)g(the)0 2096 y Ff(K)s Fl(3)d(surfaces.)42 2146 y(Another)19 b(imp)q(ortan)o(t)e(problem)h(ab)q(out)g (4-manifolds,)f(b)q(esides)j(their)g(dif-)p eop %%Page: 2 2 2 1 bop 69 -114 a Fl(Results)14 b(from)e(MathSciNet:)18 b Fk(Mathematic)n(al)c(R)n(eviews)i Fl(on)e(the)g(W)m(eb)174 -66 y(c)162 -65 y Fj(\015)g Fl(Cop)o(yrigh)o(t)e(American)h (Mathematical)f(So)q(ciet)o(y)i(1998)p 0 -15 1254 2 v 0 83 a(feomorphism)j(classi\014cation,)j(is)f(to)g(determine)h(the)g (minim)o(al)c(gen)o(us)k(of)f(a)0 133 y(smo)q(othly)13 b(em)o(b)q(edded)j(surface)g(in)f(a)g(giv)o(en)f(class)i(in)f Ff(H)899 139 y Fe(2)917 133 y Fl(\()p Ff(X)q(;)7 b Fi(Z)p Fl(\).)19 b(\(It)c(is)g(clear)0 183 y(that)f(the)g(gen)o(us)g(of)f(suc) o(h)h(a)g(surface)g(is)g(un)o(b)q(ounded)g(ab)q(o)o(v)o(e)f(b)q(ecause) j(one)d(can)0 232 y(alw)o(a)o(ys)h(add)i(homologi)o(cally)c(trivial)i (handles.\))19 b(When)d Ff(X)j Fl(is)c(a)g(complex)g(al-)0 282 y(gebraic)i(surface,)h(and)f(\006)g(is)g(homologous)d(to)j(a)f(smo) q(oth)g(reduced)j(complex)0 332 y(curv)o(e,)13 b(then)h(the)f (so-called)f(Thom)f(conjecture)k(asserts)f(that)f(the)g(gen)o(us)h(of)e (\006)0 382 y(is)g(at)g(least)h(that)f(of)g(the)h(complex)e(curv)o(e,)i (whic)o(h)f(is)g(giv)o(en)g(b)o(y)g(the)h(adjunction)0 432 y(form)o(ula)e(to)j(b)q(e)g(1)7 b(+)331 415 y Fe(1)p 331 422 17 2 v 331 446 a(2)353 432 y Fl(\()p Ff(K)404 438 y Fd(X)435 432 y Fl(\(\006\))g(+)g(\006)573 417 y Fe(2)592 432 y Fl(\),)14 b(where)h Ff(K)789 438 y Fd(X)834 432 y Fl(is)f(the)g(canonical)f(class.)42 482 y(The)e(initial)e (attempts)h(to)h(apply)f(Donaldson's)f(p)q(olynomials)f(to)j(the)g (Thom)0 531 y(conjecture)24 b(pro)q(duced)g(disapp)q(oin)o(tingly)d(w)o (eak)i(results)h([see,)h(e.g.,)f(S.)e(K.)0 581 y(Donaldson,)g(Inst.)j (Hautes)e(Etudes)f(Sci.)j(Publ.)g(Math.)g(No.)g(68)c(\(1988\),)0 631 y(91{97)i(\(1989\);)k(MR)d(90k:57041].)h(It)f(seemed)g(that)g(the)g (in)o(v)n(arian)o(ts)f(did)0 681 y(not)f(capture)h(the)g(information)c (ab)q(out)i(the)i(minim)o(al)18 b(gen)o(us,)25 b(but)d(migh)o(t)0 731 y(instead)12 b(b)q(e)g(related)h(to)e(knotting)g(phenomena.)k(In)c (particular,)h(the)g(fact)g(that)0 780 y(homologous)e(em)o(b)q(eddings) j(of)f(\006)h(are)g(not)g(necessarily)h(isotopic)f(app)q(eared)h(as)0 830 y(an)g(obstacle)i(in)e(some)g(of)g(the)h(prop)q(osed)h(argumen)o (ts.)h(In)e(his)f(lecture)i(at)f(the)0 880 y(1990)e(ICM,)g(Kronheimer)h ([in)f(Pro)q(ceedings)i(of)e(the)h(In)o(ternational)g(Congress)0 930 y(of)20 b(Mathematicians,)g(V)m(ol.)j(I,)d(I)q(I)h(\(Ky)o(oto,)h (1990\),)e(529{539,)g(Math.)25 b(So)q(c.)0 980 y(Japan,)c(T)m(oky)o(o,) f(1991;)i(MR)d(93d:57066])f(suggested)j(an)f(approac)o(h,)h(using)0 1029 y(connections)e(singular)e(along)f(\006,)i(to)g(pro)o(ving)e(that) i(if)f Ff(X)k Fl(has)d(a)f(non)o(trivial)0 1079 y(Donaldson)10 b(in)o(v)n(arian)o(t,)g(then)i(the)g(minim)o(al)c(gen)o(us)k (satis\014es)g Ff(g)q Fl(\(\006\))e Fj(\025)g Fl(1)c(+)1172 1063 y Fe(1)p 1172 1070 V 1172 1094 a(2)1193 1079 y Fl(\006)1223 1064 y Fe(2)1242 1079 y Fl(,)0 1129 y(unless)14 b(\006)f(is)h(an)f (inessen)o(tial)g(sphere)i(or)f(a)f(sphere)i(of)d(self-in)o(tersection) j(=)9 b Fj(\000)p Fl(1.)0 1179 y(He)k(carried)g(out)g(this)f(approac)o (h)h(in)f(join)o(t)f(w)o(ork)h(with)g(Mro)o(wk)n(a)g([T)m(op)q(ology)e (32)0 1229 y(\(1993\),)h(no.)k(4,)c(773{826;)f(MR)h(94k:57048;)f(T)m (op)q(ology)f(34)i(\(1995\),)g(no.)k(1,)c(37{)0 1279 y(97;)g(MR)g(96b:57038],)d(th)o(us)k(pro)o(ving)e(the)i(Thom)d (conjecture)k(for)e Ff(K)s Fl(3)g(surfaces)0 1328 y(\(for)j(whic)o(h)g Ff(K)234 1334 y Fd(X)275 1328 y Fl(=)c(0\).)18 b(Although)13 b(this)h(represen)o(ted)j(tremendous)e(progress,)0 1378 y(the)22 b(result)g(w)o(as)f(still)f(far)h(from)e(optimal)g(for)h (other)i(manifolds,)e(and)h(the)0 1428 y(metho)q(d)14 b(of)h(pro)q(of)f(still)g(seemed)i(ill-adapted)d(to)i(the)h(problem.)h (Subsequen)o(t)0 1478 y(w)o(ork)12 b(of)g(Kronheimer)g([Bull.)j(Amer.)h (Math.)g(So)q(c.)g(\(N.S.\))c(29)g(\(1993\),)f(no.)16 b(1,)0 1528 y(63{69;)c(MR)i(94b:57037])d(impro)o(v)o(ed)i(the)h(ab)q(o) o(v)o(e)g(b)q(ound,)g(again)f(through)h(the)0 1577 y(use)j(of)f (singular)g(connections,)h(and)g(this)f(pro)o(v)o(ed)h(some)e(more)h (instances)h(of)0 1627 y(the)d(Thom)e(conjecture.)42 1677 y(A)o(t)17 b(a)g(tec)o(hnical)h(lev)o(el,)g(the)g(pap)q(er)g (under)h(review)f(dev)o(elops)g(further)g(the)0 1727 y(same)e(ideas)h(ab)q(out)g(singular)g(connections)h(that)f(w)o(ere)h (used)g(in)f(the)g(earlier)0 1777 y(w)o(ork)22 b(of)h(the)g(authors)g ([op.)j(cit.].)f(In)e(addition,)g(they)h(use)f(a)g(complete,)0 1826 y(cylindrical)12 b(end)h(metric)f(on)h(the)h(complemen)o(t)c(of)j (\006)f(in)h Ff(X)j Fl(to)d(de\014ne)h(relativ)o(e)0 1876 y(Donaldson)i(in)o(v)n(arian)o(ts,)f(whic)o(h,)i(under)g(suitable) g(h)o(yp)q(otheses,)h(tak)o(e)f(v)n(alues)0 1926 y(in)24 b(the)h(homology)d(of)h(the)i(mo)q(duli)e(space)i(of)f(\015at)g (connections)i(on)e(the)0 1976 y(circle)f(bundle)g(o)o(v)o(er)f(\006)g (whic)o(h)h(is)f(the)h(cross-section)h(of)e(the)h(end.)k(\(This)0 2026 y(part)17 b(uses)i(earlier)e(w)o(ork)g(of)f(C.)h(H.)g(T)m(aub)q (es)g(and)g(of)g(J.)g(W.)f(Morgan,)h(T.)g(S.)0 2076 y(Mro)o(wk)n(a)12 b(and)g(D.)g(Rub)q(erman.\))j(The)e(authors)g(sho)o(w)g(that)f(under)i (fa)o(v)o(ourable)0 2125 y(circumstances)22 b(the)h(Donaldson)d(in)o(v) n(arian)o(ts)g(of)h Ff(X)k Fl(can)d(b)q(e)g(expressed)i(in)p eop %%Page: 3 3 3 2 bop 69 -114 a Fl(Results)14 b(from)e(MathSciNet:)18 b Fk(Mathematic)n(al)c(R)n(eviews)i Fl(on)e(the)g(W)m(eb)174 -66 y(c)162 -65 y Fj(\015)g Fl(Cop)o(yrigh)o(t)e(American)h (Mathematical)f(So)q(ciet)o(y)i(1998)p 0 -15 1254 2 v 0 83 a(terms)e(of)f(the)h(in)o(v)n(arian)o(ts)f(deriv)o(ed)h(from)f (the)h(singular)f(connections)i(b)o(y)f(using)0 133 y(the)17 b(relativ)o(e)e(in)o(v)n(arian)o(ts)g(as)h(an)g(in)o(termediary)m(.)i (An)e(inheren)o(t)h(symmetry)d(in)0 183 y(the)g(in)o(v)n(arian)o(ts)e (deriv)o(ed)i(from)d(singular)i(connections,)h(already)f(exploited)g (in)0 232 y(the)f(earlier)g(w)o(ork,)f(then)h(giv)o(es)f(univ)o(ersal)g (relations)h(b)q(et)o(w)o(een)h(the)f(Donaldson)0 282 y(in)o(v)n(arian)o(ts)f(of)g Ff(X)s Fl(.)16 b(These)d(relations)f(dep)q (end)h(on)f Ff(X)j Fl(and)d(\006)g(only)f(through)h(the)0 332 y(gen)o(us)h(of)f(\006)g(and)h(its)f(homology)e(class.)17 b(In)12 b(particular,)g(there)i(is)f(no)f(anno)o(ying)0 382 y(dep)q(endence)23 b(on)d(the)h(isotop)o(y)f(class)h(of)f(the)h(em) o(b)q(edding)f(\006)11 b Ff(,)-7 b Fj(!)12 b Ff(X)s Fl(.)24 b(These)0 432 y(univ)o(ersal)16 b(relations)g(hold)g(for)g(all)f(smo)q (oth)g(4-manifolds)f Ff(X)20 b Fl(with)c Ff(b)1114 414 y Fe(+)1114 443 y(2)1141 432 y Fl(\()p Ff(X)s Fl(\))11 b Ff(>)0 482 y Fl(1.)20 b(Ev)o(en)d(if)f(one)h(started)g(out)g(lo)q (oking)e(only)h(at)g(the)h(Donaldson)f(in)o(v)n(arian)o(ts)0 531 y(ev)n(aluated)e(on)f(classes)i(in)e Ff(H)458 537 y Fe(2)476 531 y Fl(\()p Ff(X)q(;)7 b Fi(R)p Fl(\),)14 b(the)g(relations)f(in)o(v)o(olv)o(e)g Ff(H)1038 537 y Fe(0)1056 531 y Fl(\()p Ff(X)q(;)7 b Fi(Z)p Fl(\).)42 581 y(A)o(t)15 b(this)h(p)q(oin)o(t)e(t)o(w)o(o)h(crucial)h(new)g (ideas)f(in)o(terv)o(ene.)20 b(Firstly)m(,)15 b(the)h(authors)0 631 y(pac)o(k)n(age)c(all)f(the)i(Donaldson)e(in)o(v)n(arian)o(ts)g (arising)g(from)g(SO\(3\)-bundles)i(with)0 681 y(a)g(\014xed)h(second)h (Stiefel-Whitney)e(class)h(in)o(to)e(a)i(single)f(formal)e(p)q(o)o(w)o (er)j(series.)0 731 y(Secondly)m(,)19 b(they)g(observ)o(e)h(that)e(if)g Ff(x)11 b Fj(2)g Ff(H)685 737 y Fe(0)703 731 y Fl(\()p Ff(X)q(;)c Fi(Z)p Fl(\))19 b(is)f(the)h(generator,)h(then,)0 780 y(for)14 b(a)g(large)g(class)h(of)e(manifolds,)f(this)i(p)q(o)o(w)o (er)g(series)i(is)e(in)o(v)n(arian)o(t)f(under)i(the)0 830 y(substitution)e Ff(x)254 815 y Fe(2)282 830 y Fl(=)c(4.)16 b(Manifolds)c(satisfying)g(this)h(condition)f(are)i(said)e(to)h(b)q(e)0 880 y(of)k(simple)f(t)o(yp)q(e.)22 b(The)c(remark)n(able)e(fact)i(is)f (that)h(for)f(manifolds)e(of)i(simple)0 930 y(t)o(yp)q(e)23 b(the)h(univ)o(ersal)e(relations)h(discussed)h(ab)q(o)o(v)o(e)e (simplify)e(dramatically)0 980 y(and)k(b)q(ecome)g(computable.)j(This)e (leads)f(to)g(a)g(closed)h(form)o(ula)d(for)i(the)0 1029 y(formal)12 b(p)q(o)o(w)o(er)j(series)h(enco)q(ding)f(the)g(Donaldson)f (in)o(v)n(arian)o(ts.)j(In)d(a)h(suitable)0 1079 y(normalisation,)10 b(this)k(form)o(ula)d(reads)0 1185 y(\(1\))153 b Ff(D)241 1168 y Fd(w)277 1185 y Fl(=)10 b(exp\()p Ff(Q=)p Fl(2\))518 1133 y Fd(s)496 1146 y Fc(X)496 1233 y Fd(r)q Fe(=1)556 1185 y Fl(\()p Fj(\000)p Fl(1\))641 1168 y Fe(\()p Fd(w)679 1155 y Fb(2)695 1168 y Fe(+)p Fd(K)748 1172 y Fa(r)765 1168 y Fd(w)q Fe(\))p Fd(=)p Fe(2)838 1185 y Ff(\014)861 1191 y Fd(r)887 1185 y Fl(exp)q(\()p Ff(K)1002 1191 y Fd(r)1020 1185 y Fl(\))p Ff(;)0 1295 y Fl(where)19 b Ff(Q)f Fl(is)g(the)h(in)o(tersection)g(form)e(of)g Ff(X)22 b Fl(though)o(t)c(of)f(as)i(an)f(elemen)o(t)f(of)0 1345 y(Sym)80 1327 y Fe(2)98 1345 y Fl(\()p Ff(H)149 1351 y Fe(2)167 1345 y Fl(\()p Ff(X)q(;)7 b Fi(R)p Fl(\)\),)13 b Ff(w)h Fl(is)e(the)i(Stiefel-Whitney)e(class)h(of)f(the)i (SO\(3\)-bundles)0 1395 y(under)19 b(consideration,)h(the)f Ff(K)505 1401 y Fd(r)535 1395 y Fj(2)11 b Ff(H)612 1380 y Fe(2)630 1395 y Fl(\()p Ff(X)q(;)c Fi(Z)p Fl(\))19 b(are)g(c)o(haracteristic)h(elemen)o(ts)0 1445 y(for)g Ff(Q)h Fl(and)g(the)g Ff(\014)313 1451 y Fd(r)352 1445 y Fl(are)h(rational)d(n)o(um)o(b)q(ers.)24 b(The)d Ff(K)907 1451 y Fd(r)947 1445 y Fl(ha)o(v)o(e)f(the)i(further)0 1495 y(prop)q(ert)o(y)d(that)g(for)f(ev)o(ery)i(homologi)o(cally)15 b(non-trivial)i(em)o(b)q(edded)i(surface)0 1545 y(\006)9 b Fj(\032)h Ff(X)17 b Fl(with)c(non-negativ)o(e)h(self-in)o(tersection) g(n)o(um)o(b)q(er,)f(the)h(gen)o(us)h(satis\014es)0 1594 y(2)p Ff(g)q Fl(\(\006\))6 b Fj(\000)g Fl(2)k Fj(\025)f Fl(\006)250 1579 y Fe(2)275 1594 y Fl(+)d Ff(K)348 1600 y Fd(r)367 1594 y Fl(\(\006\).)15 b(The)e(authors)f(also)f(pro)o(v)o(e) h(that)g(if)f Ff(X)16 b Fl(is)c(of)f(simple)0 1648 y(t)o(yp)q(e)16 b(then)h(so)f(is)f Ff(X)s Fl(#)p 360 1612 82 2 v Fi(C)p Fl(P)422 1636 y Fe(2)458 1648 y Fl(and)g(their)i(Donaldson)d(series)k (are)e(related)g(b)o(y)g(a)0 1698 y(simple)c(form)o(ula)f(in)o(v)o (olving)h(trigonometric)g(functions.)42 1748 y(These)20 b(remark)n(able)e(results)j(and)e(their)h(pro)q(ofs)f(clarify)g(man)o (y)e(observ)o(ed)0 1797 y(prop)q(erties)25 b(and)d(sp)q(ecial)i (calculations)e(of)h(Donaldson)f(in)o(v)n(arian)o(ts.)j(They)0 1847 y(sho)o(w)14 b(that,)f(at)g(least)h(for)g(manifolds)d(of)i(simple) f(t)o(yp)q(e,)i(the)g(in\014nite)f(sequence)0 1897 y(of)c(p)q (olynomial)e(in)o(v)n(arian)o(ts)i(is)h(in)f(fact)h(determined)g(b)o(y) g(\014nitely)g(man)o(y)e(rational)0 1947 y(n)o(um)o(b)q(ers)17 b(and)h(\014nitely)f(man)o(y)f(cohomology)f(classes,)k(and)e(that)h(to) g(a)f(large)0 1997 y(degree)g(the)g(in)o(v)n(arian)o(ts)e(determine,)h (and)f(are)i(determined)f(b)o(y)m(,)f(the)i(smo)q(oth)0 2046 y(em)o(b)q(eddings)c(of)g(surfaces)i(in)f Ff(X)s Fl(.)42 2096 y(The)21 b(ab)q(o)o(v)o(e)h(results)g(are)g(more)f (general)g(than)h(those)g(the)g(authors)g(an-)0 2146 y(nounced)g(earlier)f([Bull.)i(Amer.)h(Math.)g(So)q(c.)h(\(N.S.\))c(30) f(\(1994\),)h(no.)j(2,)p eop %%Page: 4 4 4 3 bop 69 -114 a Fl(Results)14 b(from)e(MathSciNet:)18 b Fk(Mathematic)n(al)c(R)n(eviews)i Fl(on)e(the)g(W)m(eb)174 -66 y(c)162 -65 y Fj(\015)g Fl(Cop)o(yrigh)o(t)e(American)h (Mathematical)f(So)q(ciet)o(y)i(1998)p 0 -15 1254 2 v 0 83 a(215{221;)e(MR)h(94k:57046],)d(and)k(the)g(pro)q(ofs)g(are)g (more)f(self-con)o(tained.)42 133 y(Com)o(bining)c(the)j(Donaldson)f (in)o(v)n(arian)o(ts)g(in)o(to)g(a)h(formal)d(p)q(o)o(w)o(er)k(series,) g(the)0 183 y(Donaldson)18 b(series,)i(ma)o(y)d(not)i(seem)f(a)g(v)o (ery)h(deep)h(idea,)f(but)g(it)f(is)h(crucial)0 232 y(in)f(unco)o(v)o (ering)g(the)h(structure)h(in)e(the)g(in)o(v)n(arian)o(ts,)g(as)g(is)g (the)h(in)o(v)o(olv)o(emen)o(t)0 282 y(of)g Ff(x)11 b Fj(2)h Ff(H)163 288 y Fe(0)181 282 y Fl(\()p Ff(X)q(;)7 b Fi(Z)p Fl(\))20 b(and)f(the)h(simple)f(t)o(yp)q(e)h(condition.)i(The) f(authors)f(sho)o(w)0 332 y(that)12 b(man)o(y)f(smo)q(oth)g(4-manifol)o (ds,)f(in)i(particular)g(man)o(y)e(algebraic)i(surfaces,)0 382 y(are)20 b(of)e(simple)g(t)o(yp)q(e,)i(and)f(they)h(giv)o(e)e(some) h(su\016cien)o(t)g(conditions)g(for)g(an)0 432 y(algebraic)f(surface)i (of)e(simple)f(t)o(yp)q(e)i(to)g(ha)o(v)o(e)g(the)g(canonical)f(class)h Ff(K)1166 438 y Fd(X)1217 432 y Fl(as)0 482 y(one)c(of)g(the)h(basic)f (classes)i Ff(K)473 488 y Fd(r)491 482 y Fl(.)i(When)c(this)h(is)f(the) h(case,)g(the)g(ab)q(o)o(v)o(e)e(results)0 531 y(pro)o(v)o(e)21 b(the)g(Thom)e(conjecture)k(for)d(em)o(b)q(edded)h(surfaces)h(of)e (non-negativ)o(e)0 581 y(self-in)o(tersection)15 b(n)o(um)o(b)q(er.)42 631 y(The)j(structure)j(theorem)d(for)f(the)i(Donaldson)f(in)o(v)n (arian)o(ts)f(of)g(manifolds)0 681 y(of)k(simple)f(t)o(yp)q(e)i (discussed)h(ab)q(o)o(v)o(e)e(has)h(led)f(to)h(the)g(rapid)f (consolidation)0 731 y(of)14 b(m)o(uc)o(h)g(w)o(ork)g(in)g(gauge)g (theory)m(.)19 b(F)m(or)14 b(simply)f(connected)j(4-manifolds,)c(R.)0 780 y(Fin)o(tushel)f(and)g(R.)f(J.)h(Stern)h([J.)f(Di\013eren)o(tial)f (Geom.)j(42)e(\(1995\),)f(no.)15 b(3,)c(577{)0 830 y(633])k(ha)o(v)o(e) h(giv)o(en)g(an)g(alternativ)o(e)g(pro)q(of)g(of)g(the)h(structure)i (theorem)d(whic)o(h)0 880 y(is)g(tec)o(hnically)g(simpler)f(than)h(the) g(argumen)o(t)f(in)h(the)h(pap)q(er)g(under)g(review.)0 930 y(Instead)c(of)f(connections)h(singular)f(in)g(co)q(dimension)f(2,) h(Fin)o(tushel)g(and)h(Stern)0 980 y(use)f(only)f(smo)q(oth)f (connections.)17 b(They)11 b(\014nd)h(univ)o(ersal)f(relations)h(among) d(the)0 1029 y(Donaldson)16 b(in)o(v)n(arian)o(ts)f(not)i(b)o(y)f (considering)h(em)o(b)q(edded)g(surfaces)h(of)e(large)0 1079 y(gen)o(us,)d(but)f(b)o(y)h(considering)f(immersed)f(spheres.)18 b(This)12 b(means)g(that)g(instead)0 1129 y(of)d(estimating)f(the)j (minim)o(al)6 b(gen)o(us)11 b(of)e(an)h(em)o(b)q(edded)g(surface,)h (they)f(can)g(only)0 1179 y(estimate)g(the)h(minim)o(al)c(n)o(um)o(b)q (er)j(of)f(p)q(ositiv)o(e)i(double)f(p)q(oin)o(ts)g(of)g(an)g(immersed) 0 1229 y(sphere)20 b(in)e(terms)f(of)h(its)g(homology)d(class.)23 b(More)18 b(imp)q(ortan)o(tly)m(,)e(Fin)o(tushel)0 1279 y(and)f(Stern)i([\\The)e(blo)o(wup)g(form)o(ula)e(for)j(Donaldson)e(in) o(v)n(arian)o(ts",)h(Ann.)k(of)0 1328 y(Math.,)c(to)h(app)q(ear])g(ha)o (v)o(e)g(generalised)g(the)h(Kronheimer-Mro)o(wk)n(a)d(form)o(ula)0 1382 y(relating)e(the)h(in)o(v)n(arian)o(ts)e(of)h Ff(X)s Fl(#)p 528 1346 82 2 v Fi(C)p Fl(P)590 1370 y Fe(2)622 1382 y Fl(to)g(those)h(of)f Ff(X)s Fl(.)17 b(The)c(Fin)o(tushel-Stern)0 1432 y(form)o(ula,)k(v)n(alid)f(for)i(ev)o(ery)i Ff(X)s Fl(,)f(not)g(necessarily)g(of)f(simple)f(t)o(yp)q(e,)j(in)o(v)o(olv)o (es)0 1482 y(elliptic)c(functions)h(whic)o(h,)g(when)h Ff(X)i Fl(is)d(of)f(simple)g(t)o(yp)q(e,)i(sp)q(ecialise)f(to)g(the)0 1531 y(trigonometric)12 b(functions)i(found)g(in)f(the)h(pap)q(er)h (under)f(review.)42 1581 y(Giv)o(en)21 b(the)i(blo)o(wup)e(form)o(ula)e (for)j(arbitrary)g Ff(X)s Fl(,)i(one)e(can)h(try)f(to)g(pin)0 1631 y(do)o(wn)c(the)i(univ)o(ersal)e(relations)g(discussed)j(ab)q(o)o (v)o(e.)h(Unpublished)d(w)o(ork)f(of)0 1681 y(Kronheimer)k(and)g(Mro)o (wk)n(a)f(and)h(of)f(Fin)o(tushel)h(and)g(Stern)h(go)q(es)g(a)f(long)0 1731 y(w)o(a)o(y)e(in)g(this)g(direction.)25 b(They)20 b(ha)o(v)o(e)h(deriv)o(ed)g(a)f(closed)h(form)o(ula)d(for)i(the)0 1780 y(Donaldson)15 b(series)i(of)f(an)o(y)f Ff(X)s Fl(,)i(not)f (necessarily)h(of)f(simple)e(t)o(yp)q(e,)j(in)o(v)o(olving)0 1830 y(v)o(ersions)k(of)e(the)i(elliptic)e(functions)h(app)q(earing)g (in)g(the)g(blo)o(wup)g(form)o(ula.)0 1880 y(Ho)o(w)o(ev)o(er,)k(once)f (again)f(all)f(the)i(information)c(reduces)24 b(to)f(\014nitely)e(man)o (y)0 1930 y(cohomology)15 b(classes)k(and)e(\014nitely)g(man)o(y)f (rational)g(n)o(um)o(b)q(ers.)21 b(This)c(w)o(ork,)0 1980 y(the)i(details)g(of)f(whic)o(h)h(ha)o(v)o(e)f(not)h(b)q(een)h (written)f(do)o(wn,)g(suggests)h(that)f(all)0 2029 y(smo)q(oth)13 b(4-manifol)o(ds)f(with)i Ff(b)483 2012 y Fe(+)483 2041 y(2)510 2029 y Fl(\()p Ff(X)s Fl(\))c Ff(>)g Fl(1)k(and)g Ff(b)765 2035 y Fe(1)783 2029 y Fl(\()p Ff(X)s Fl(\))d(=)e(0)14 b(are)h(of)e(\014nite)i(t)o(yp)q(e,)0 2079 y(meaning)e(that)h(their)h (Donaldson)e(series)j(v)n(anish)e(when)h(ev)n(aluated)f(on)g(\()p Ff(x)1196 2064 y Fe(2)1221 2079 y Fj(\000)0 2129 y Fl(4\))37 2114 y Fd(r)69 2129 y Fl(for)f(some)g(su\016cien)o(tly)h(large)f Ff(r)i Fl(dep)q(ending)f(on)g Ff(X)s Fl(.)p eop %%Page: 5 5 5 4 bop 69 -114 a Fl(Results)14 b(from)e(MathSciNet:)18 b Fk(Mathematic)n(al)c(R)n(eviews)i Fl(on)e(the)g(W)m(eb)174 -66 y(c)162 -65 y Fj(\015)g Fl(Cop)o(yrigh)o(t)e(American)h (Mathematical)f(So)q(ciet)o(y)i(1998)p 0 -15 1254 2 v 42 83 a(The)j(w)o(ork)g(of)f(Fin)o(tushel)h(and)g(Stern)h(inspired)f(b) o(y)g(the)h(pap)q(er)f(under)h(re-)0 133 y(view)13 b(has)h(pro)q(duced) h(further)g(su\016cien)o(t)f(conditions)f(for)g(manifolds)e(to)j(b)q(e) g(of)0 183 y(simple)g(t)o(yp)q(e.)20 b(In)15 b(particular,)g(they)h(ha) o(v)o(e)f(describ)q(ed)j(v)o(ery)d(general)h(surgical)0 232 y(pro)q(cedures,)j(called)d(rational)f(blo)o(wdo)o(wns,)h(whic)o(h) h(construct)h(new)f(smo)q(oth)0 282 y(4-manifolds)12 b(from)h(old)i(ones)g(preserving)i(the)e(simple)f(t)o(yp)q(e)i (condition.)i(Ap-)0 332 y(plications)d(of)h(rational)f(blo)o(wdo)o(wns) g(ha)o(v)o(e)h(led)g(to)g(the)h(statemen)o(t)f(that)g(\\all)0 382 y(kno)o(wn)j(4-manifolds")e(with)i Ff(b)505 364 y Fe(+)505 393 y(2)544 382 y Ff(>)12 b Fl(1)19 b(are)h(of)g(simple)e(t)o (yp)q(e.)24 b(On)c(the)g(other)0 432 y(hand,)13 b(the)i(review)o(er)g (and)e(P)m(.)h(Lisca)g([Math.)j(Ann.)g(303)c(\(1995\),)g(no.)k(2,)d (345{)0 482 y(371])e(ha)o(v)o(e)i(sho)o(wn)f(that)h Fi(C)p Fl(P)460 466 y Fe(2)493 482 y Fl(is)f(not)g(of)g(simple)f(t)o(yp)q(e,)i (and)f(L.)g(Gottsc)o(he)h(has)0 531 y(giv)o(en)j(a)g(conjectural)h (generalization)f(to)g(sho)o(w)g(that)h Fi(C)p Fl(P)952 516 y Fe(2)988 531 y Fl(is)f(not)h(of)e(\014nite)0 581 y(t)o(yp)q(e.)i(\(In)c(this)g(case)h(the)f(Donaldson)f(in)o(v)n(arian)o (ts)f(are)i(w)o(ell)g(de\014ned,)g(but)g(the)0 631 y(criteria)h(for)g (simple)f(t)o(yp)q(e)h(of)g(Kronheimer)g(and)g(Mro)o(wk)n(a)f(and)h(of) f(Fin)o(tushel)0 681 y(and)g(Stern)g(are)g(not)g(applicable)f(b)q (ecause)i Ff(b)701 663 y Fe(+)701 692 y(2)729 681 y Fl(\()p Fi(C)p Fl(P)807 666 y Fe(2)826 681 y Fl(\))10 b(=)f(1.\))42 731 y(P)o(erhaps)18 b(the)h(most)e(profound)g(and)h(exciting)g(dev)o (elopmen)o(t)f(arising)g(out)0 780 y(of)c(the)h(w)o(ork)f(under)i (review)f(is)g(the)g(ab)q(elian)f(Seib)q(erg-Witten)h(gauge)f(theory)m (.)0 830 y(While)19 b(trying)h(to)g(understand)h(form)o(ula)c(\(1\))j (from)f(the)h(p)q(oin)o(t)g(of)f(view)h(of)0 880 y(quan)o(tum)j (\014eld)j(theory)m(,)h(and)e(using)g(ideas)g(from)e(his)i(join)o(t)f (w)o(ork)h(with)0 930 y(Seib)q(erg)19 b(on)f Ff(N)d Fl(=)d(2)17 b(sup)q(ersymmetric)h(Y)m(ang-Mills)e(theory)m(,)j(Witten)f(found)0 980 y(what)g(are)h(no)o(w)f(called)g(the)h(Seib)q(erg-Witten)g (equations.)j(In)d(fact,)g(Witten)0 1029 y(sa)o(ys)11 b(the)h(equations)e(are)i(implicit)c(in)i(his)h(pap)q(ers)h(with)f (Seib)q(erg,)g(though)g(they)0 1079 y(did)k(not)g(app)q(ear)g(in)g (prin)o(t)f(un)o(til)g(Witten's)h(pap)q(er)h([E.)e(Witten,)h(Math.)k (Res.)0 1129 y(Lett.)h(1)c(\(1994\),)f(no.)k(6,)c(769{796;)g(MR)g (96d:57035].)i(The)f(Seib)q(erg-Witten)0 1179 y(equations)11 b(are)h(part)g(of)f(a)g(\014eld)h(theory)g(that)f(is)h(in)f(some)f (sense)j(dual)e(to)h(Y)m(ang-)0 1229 y(Mills)i(theory;)h(under)g(this)g (dualit)o(y)e(they)i(corresp)q(ond)i(to)d(the)h(an)o(ti-self-dual)0 1279 y(Y)m(ang-Mills)d(equations)i(used)g(in)g(Donaldson)e(theory)m(.) 18 b(Muc)o(h)c(lik)o(e)f(the)i(Y)m(ang-)0 1328 y(Mills)f(equations,)h (the)h(Seib)q(erg-Witten)g(equations)f(ha)o(v)o(e)h(mo)q(duli)c(spaces) 17 b(of)0 1378 y(solutions)k(whic)o(h)g(lead)g(to)g(di\013eren)o (tiable)h(in)o(v)n(arian)o(ts)e(of)h(4-manifol)o(ds.)i(In)0 1428 y(fact,)18 b(one)f(can)h(imitate)d(Donaldson's)h(construction)i (of)f(in)o(v)n(arian)o(ts,)f(except)0 1478 y(that)22 b(it)f(is)g(simpler)f(to)i(carry)g(through)f(in)g(the)h(con)o(text)h (of)e(Seib)q(erg)h(and)0 1528 y(Witten.)42 1577 y(The)14 b(Seib)q(erg-Witten)h(in)o(v)n(arian)o(ts)e(of)h(a)g(smo)q(oth)f (4-manifold)e(are)k(indexed)0 1627 y(b)o(y)i(the)g(Spin)216 1609 y Fd(c)250 1627 y Fl(structures)i(of)e(the)g(manifold.)h(The)f (information)e(con)o(tained)0 1677 y(in)e(them)g(is)g(a)g(priori)g (\014nite,)g(in)g(that)h(eac)o(h)g(smo)q(oth)e(4-manifol)o(d)f(has)i (at)h(most)0 1727 y(\014nitely)22 b(man)o(y)f(Spin)351 1709 y Fd(c)391 1727 y Fl(structures)k(with)d(non-trivial)f(in)o(v)n (arian)o(ts.)26 b(Witten)0 1777 y(conjectured)f(that)e(the)g(\014rst)h (Chern)g(classes)g(of)e(these)j(Spin)1033 1759 y Fd(c)1073 1777 y Fl(structures)0 1826 y(are)d(precisely)h(the)g(basic)f(classes)h Ff(K)622 1832 y Fd(r)663 1826 y Fl(app)q(earing)f(in)f(\(1\),)j(and)e (that)g(the)0 1876 y(n)o(umerical)12 b(in)o(v)n(arian)o(ts)h(attac)o (hed)i(to)e(them)g(coincide)i(with)e(the)i(n)o(um)o(b)q(ers)e Ff(\014)1223 1882 y Fd(r)1242 1876 y Fl(,)0 1926 y(suitably)19 b(normalized.)k(Witten's)d(reason)g(for)g(making)e(this)i(conjecture)i (is)0 1976 y(a)d(ph)o(ysical)g(argumen)o(t)f(related)i(to)g(the)g (dualit)o(y)e(b)q(et)o(w)o(een)j(the)f(Donaldson)0 2026 y(and)13 b(Seib)q(erg-Witten)i(theories.)j(His)c(argumen)o(t)e(in)o(v)o (olv)o(es)h(elliptic)g(functions)0 2076 y(whic)o(h)i(ma)o(y)e(w)o(ell)h (b)q(e)h(related)h(to)f(those)g(app)q(earing)g(in)f(the)i(blo)o(wup)e (form)o(ula)0 2125 y(for)23 b(Donaldson)g(in)o(v)n(arian)o(ts.)j(Moreo) o(v)o(er,)h(there)e(is)e(an)h(in)o(terpretation)g(of)p eop %%Page: 6 6 6 5 bop 69 -114 a Fl(Results)14 b(from)e(MathSciNet:)18 b Fk(Mathematic)n(al)c(R)n(eviews)i Fl(on)e(the)g(W)m(eb)174 -66 y(c)162 -65 y Fj(\015)g Fl(Cop)o(yrigh)o(t)e(American)h (Mathematical)f(So)q(ciet)o(y)i(1998)p 0 -15 1254 2 v 0 83 a(the)19 b(simple)e(t)o(yp)q(e)i(condition)e(in)h(this)h(setting,) g(and)f(again)f(it)h(leads)h(to)f(the)0 133 y(reduction)13 b(of)e(the)i(general)f(elliptic)f(functions)h(to)g(elemen)o(tary)f (trigonometric)0 183 y(functions.)21 b(The)e(fact)e(that)h(eac)o(h)g (manifold)d(has)j(only)f(\014nitely)g(man)o(y)f(non-)0 232 y(trivial)c(Seib)q(erg-Witten)i(in)o(v)n(arian)o(ts)f(is)g(a)h (\014nite)g(t)o(yp)q(e)g(condition)f(whic)o(h)h(ma)o(y)0 282 y(b)q(e)g(equiv)n(alen)o(t)f(to)h(the)g(\014nite)g(t)o(yp)q(e)h (condition)e(in)g(Donaldson)g(theory)m(.)42 332 y(Witten's)18 b(conjecture)i(concerning)g(equation)e(\(1\))g(has)h(b)q(een)h(v)o (eri\014ed)f(b)o(y)0 382 y(direct)f(calculations)e(for)h(large)g (classes)h(of)e(manifolds,)f(for)h(example)g(for)h(all)0 432 y(elliptic)10 b(surfaces)i(and)f(their)g(blo)o(wups,)f(and)h(man)o (y)e(manifolds)f(obtained)i(from)0 482 y(these)15 b(b)o(y)e(rational)e (blo)o(wdo)o(wns)i([R.)f(Fin)o(tushel)h(and)g(R.)f(J.)h(Stern,)h (\\Rational)0 531 y(blo)o(wdo)o(wns)g(of)f(smo)q(oth)g(4-manifolds",)e (Preprin)o(t,)k(1995;)e(p)q(er)i(revr.].)j(There)0 581 y(are)11 b(also)g(some)f(v)o(ery)i(promising)d(attempts)h(to)h(pro)o(v) o(e)g(Witten's)g(conjecture)i(in)0 631 y(general)h(through)f(em)o(b)q (edding)g(the)h(mo)q(duli)e(spaces)j(of)e(b)q(oth)g(the)i(Donaldson)0 681 y(and)j(Seib)q(erg-Witten)g(theories)h(in)o(to)e(a)h(larger)f(mo)q (duli)f(space)j(of)e(solutions)0 731 y(to)h(suitable)h(coupled)g (equations.)j(This)c(should)g(also)g(shed)i(ligh)o(t)d(on)h(cases)0 780 y(not)24 b(directly)g(co)o(v)o(ered)h(b)o(y)f(Witten's)g (conjecture,)k(suc)o(h)c(as)h(the)f(case)h(of)0 830 y(manifolds)16 b(with)j Ff(b)311 812 y Fe(+)311 841 y(2)350 830 y Fl(=)11 b(1.)23 b(F)m(or)18 b(example,)h(the)g(basic)g(case)h(of)e Fi(C)p Fl(P)1101 815 y Fe(2)1140 830 y Fl(is)h(still)0 880 y(not)13 b(understo)q(o)q(d.)19 b(All)12 b(the)i(Seib)q(erg-Witten) g(in)o(v)n(arian)o(ts)e(of)h Fi(C)p Fl(P)1031 865 y Fe(2)1064 880 y Fl(are)g(trivial,)0 930 y(b)q(ecause)h Fi(C)p Fl(P)214 915 y Fe(2)245 930 y Fl(admits)d(metrics)h(of)f(p)q(ositiv)o(e)h (scalar)g(curv)n(ature;)h(on)f(the)h(other)0 980 y(hand)h(the)i (structure)g(of)e(its)h(Donaldson)e(in)o(v)n(arian)o(ts)h(is)g (extremely)g(complex.)0 1029 y(Witten)20 b(has)f(suggested)i(that)f(in) f(order)i(to)e(understand)i(the)f(relationship)0 1079 y(b)q(et)o(w)o(een)c(the)f(t)o(w)o(o)f(theories)h(for)f(manifolds)e (with)i Ff(b)833 1062 y Fe(+)833 1090 y(2)870 1079 y Fl(=)c(1,)k(one)g(has)h(to)f(come)0 1129 y(to)j(grips)g(with)f(the)i (elliptic)e(functions)h(o)q(ccurring)g(in)g(the)g(ph)o(ysical)g(dualit) o(y)0 1179 y(argumen)o(ts.)g(No)c(reduction)i(to)e(elemen)o(tary)g (functions)h(should)g(b)q(e)g(p)q(ossible.)42 1229 y(The)i(Seib)q (erg-Witten)g(in)o(v)n(arian)o(ts)e(ha)o(v)o(e)i(b)q(een)h(used)f(to)g (pro)o(v)o(e)g(the)g(Thom)0 1279 y(conjecture)f(for)e(all)f(em)o(b)q (edded)h(surfaces)i(of)d(non-negativ)o(e)h(self-in)o(tersection.)0 1328 y(In)f(spite)g(of)g(what)f(w)o(as)h(said)g(ab)q(o)o(v)o(e)f(ab)q (out)h(the)g(trivialit)o(y)e(of)i(these)h(in)o(v)n(arian)o(ts)0 1378 y(for)k Fi(C)p Fl(P)129 1363 y Fe(2)149 1378 y Fl(,)h(the)h(Thom)d (conjecture)j(for)f Fi(C)p Fl(P)714 1363 y Fe(2)751 1378 y Fl(can)g(b)q(e)g(deduced)i(from)c(fairly)0 1428 y(formal)d(prop)q (erties)k(of)d(the)i(in)o(v)n(arian)o(ts)e(on)h(a)g(blo)o(wup)g(of)g Fi(C)p Fl(P)994 1413 y Fe(2)1028 1428 y Fl([P)m(.)f(B.)h(Kron-)0 1478 y(heimer)d(and)g(T.)g(S.)g(Mro)o(wk)n(a,)f(Math.)16 b(Res.)h(Lett.)f(1)d(\(1994\),)e(no.)16 b(6,)c(797{808;)0 1528 y(MR)h(96a:57073].)42 1577 y(While)h(the)j(pap)q(er)f(under)h (review)f(w)o(as)g(a)g(ma)r(jor)e(conceptual)i(adv)n(ance)g(in)0 1627 y(our)d(understanding)h(of)f(Donaldson)f(theory)m(,)h(these)i(adv) n(ances)f(are)f(not)h(b)q(eing)0 1677 y(pursued)21 b(m)o(uc)o(h,)f (except)i(where)f(they)g(relate)f(to)g(Seib)q(erg-Witten)h(theory)m(.)0 1727 y(There)15 b(is)f(a)f(lot)g(more)g(to)g(b)q(e)i(explored)f(here.) 723 1777 y Fk(Dieter)c(Kotschick)15 b Fl(\(CH-BASL\))p eop %%Trailer end userdict /end-hook known{end-hook}if %%EOF