10 Cardinal arithmetic

Addition and multiplication of cardinal numbers

Definition of a relation <* on On x On

(o, Bo) <* (a1, B1) & (o U By < a1 UpPr) V(aUpBy=a1UpB Aflag < a1V (ag =a1 A B < B1)])
Lemma 10.1. <* is a wellordering of On x On.

Proof:

1. linearity of <*: left to the reader.

2. (@, B ={(@,y: @, y) < (@B} C (y+1) x (y+1) with v := o U 3. Hence (o, §).- is a set.

3. Assume ) # u C On x On.

Let v := min{€Un : &, € u}, a :=min{{ : I(EUn=7yA & n € w)}, B:=min{n:aUn=7A(@,n) € u}.
Then (a, f) € w and (€, 1) € u((a, B) <* & m).

Definition.

Let T': On x On — On be the uniquely determined isomorphism from (On x On, <*) onto (On, <).
In other words, I" is the inverse of the ordering function of (On x On, <*).

Theorem 10.2. TR, x R,] =R, for all & € On.

Proof by induction on «:

One easily sees that for all 3 the following holds:

(1) T[B x 6] € On,

(2) T[8 x 8] = Ues TlE x €], i 6 € Lim,

(3)§<B = TExE <T[Bxp],

(4) B <T[Bx ]

So we have R, <T'[Nq x No] =g, I'[B x 8], and it remains to prove V3 <Ry (I'[8 x ] < Ny).
Case 1: 8 < Ng. Then 8 x 8 and thus also I'[ x ] is finite. So we get I'[3 x 8] < Ng < X,.
Case 2: Ng < 3 < N,.

Then |3] = ¢ with £ < a. By LH. we get Xe = T'[Re x X¢] ~ T'[8 x ], hence I'[8 x ] < N,.

Corollary. 0<[b| <|a| =N, = |aUb| =|a x b =X,.
Proof: Ny RaUb=<ax{0,1} <N, x N, ~ N, und Xy <ax b =N, X N,.

Definition. For x,p € Card let k+p = ({0} x k) U ({1} x p)| and k°p == |k x ).
Remark. If |a|,|b| € Card then (aNb= 0= |aUb| = |a|+|b]) and |a x b = |a|*|b|.

Theorem 10.3.

(a) ko € Kard\ {0} & w < kUp = ktp=rp=rUpu,
(b) k+0 =k & k°0 = 0,

() myn €w = min € w& m+(n+l) = (min)+1,

(

d) myn €w = mn € w& m*(n+1) = (m'n)+m.



Proof:

(a) follows from the above Corollary. (b) is trivial.

(c), (d) Since ({0} x m) U ({1} x n) and m x n are finite, we have m+n, m'n € w.

({0} x m)u ({1} x (n+1)) = ({0} x m) U ({1} x n) U{1,m)} ~ (m+n) U {m+n} = (m+n) + 1.
m x (n+1) = (m x n) U (m x {n}) ~ ({0} x (m*n))U ({1} x m) ~ (m*n)+m.

Lemma 10.4.

Fun(F) & Fun(H) & ¢ C dom(F) N dom(H) & |¢ € Card & § € On & Vree(H(x) : F(x)740) =
= |Usee F(@)] < |c[]0]-

Proof:

W.lo.g. ¢ € On. Definition: h: |, .. F(x) — ¢ %, h(y) := &, H()(y)) with £ :=min{z € c: y € F(x)}.

Obviously h is injective, which yields the assertion.

xree

Theorem 10.5 (AC)

Fun(F) & ¢ C dom(F) = |Uye, F(@)| < e sup,e, [F(2)].

Corollary (AC)

Fun(F) & ¢ C dom(F) & [e] < Ry &Vzec([F(z)] <No) = |Uyee F(2)] < Ry

Proof:

Let 6 := sup,¢, |F(z)|. Due to (AC) we have |¢| € Card and a function H : ¢ — V such that H(x) : F(x)ilns

for each = € ¢. Now the assertion follows from Lemma 10.4.

Theorem 10.6

la] <R, = |a<¥| < R, where a<% := {s: Fkt(s) A dom(s) € w Aran(s) C a}.
Proof:

W.olg: 0€aCR,. Let f:w—V, f(n):={s€a<“: dom(s) =n}, and
h:w—V, h(0):={0,0}, h(n+1) : f(n+1) — Ry, s — T(h(n)(s[n), s(n)).
By 10.4 we now obtain [a<¥| = |, f(z)] < wR, = N,.

TEW

Regular Cardinals

Definition

For a € Lim let cf(e) := min{|z| : # C a Asup(z) = a} (cofinality of «).
A limit number « is regular iff cf(a) = a.

Remark. w is regular.

Lemma 10.7. For every limit number « the following holds:
(a) cf(ar) = min{y : 3fry—a(a = sup f(Y])}

(b) w < cf(a) < a & cf(a) € Card

(c) o regular <= 'V < a¥f—a(sup f[1] < ).

Proof:

(a) “<”: fry—a&ka=supfh] = cfle) <|fH <<



> yi=cf(a) = |z| & 2 Ca & sup(z) = a = 3f : v — a(a =sup(z) = sup f[7]).
(b) x Ca € Lim & |z| <w = sup(z) < a; hence w < cf(a). |of < a & a Ca & sup(a) =a = cf(a) < a.
cf(a) € Card follows immediately from the definition.

(¢) cfla) =a e cf(a) > ae a<min{y:3f : v — ala =sup f[7])}.

Lemma 10.8. For every limit number « the following holds:

(a) There is an order preserving function f : cf(a) — « such that a = sup f[cf(a)].

(b) fiyv—a&a=supf] &V <n<y—f(§)<fn) = 7€ Lim&cf(y) = cf(a).
(c) cf(Ry) = cf(a).

(d)

Proof:

cf() is regular.

(a) Let g : cf(a)) — a such that o = sup g[cf(a)].

Def.: f: cf(a) — On, f(§) := g(§) Usup,¢(f(n)+1). Then V¢ < cf(a)(f(§) < «), f order preserving,
a = sup g[cf(a)] < sup flcf(a)] < a.

(b) v € Lim. [y =v+1 = sup f[y] = f(10) < o]

I cf(a) < cf(y): Let # C « with |z| = cf(y) and sup(z) = 5. Then |f[z]| < |z| and o = sup f[z].
P<a=d<f(§) forsomeé <y =0< f(&)&&<nforsomenecz =< f(§) < fln) e flz]]

IL. cf(y) < cf(). Def.: g:a — 7, g(8) :=min{€ € v: 46 < f(£)}.

Then we have (1) 69 < d1 — g(do) < g(61), and (2) sup,.,9(x) =7 [Yo <7v=0:= f(v) <a= f(yw)=
d < f(g(d)) = v < g(8)] From (1),(2) and I. it follows that cf(vy) < cf(«).

(c) follows from (b), since X, = sup,_,, N¢.

(d) Let 7 := cf(a). (a)= there is an order preserving f : v — « with a = sup f[v] ® cf(v) = cf(a) = .

Theorem 10.9 (AC)

No+1 is regular.

Proof:

Let v < Rop1 and f: 4 — Ryqq. Then |y < R, & Ve ev(|f(z)] < N, ), which by 10.5 implies |sup f[v]| =
|Uzey f(@)] < Ry, hence sup(f[y]) < Raqi.

Theorem 10.10.

|Usee f(@)] = Ra & fe] < cf(Ra) = Tz € c([f(2)] = Ra).

Proof:

Wlo.g U, f(x) = Ro. For x € clet h(z) : f(z) — 7(x) be the inverse of the ordering function of
(f(x),<); then 7(z) < N, for all x € c¢. Assumption: Vz € ¢(7(x) < R,). Since |c| < cf(R,), we then have
§ 1= sup,e. 7(z) < R, and thus (by 10.4) R, = U, . f(z) < [c[*[0] < R,. Contradiction. Hence 7(z) = R,
for some z € c. Since |7(x)| = | f(x)], this yields | f(x)] = N,.



Cardinal Exponantiation

For the rest of this section we assume (AC).

K, A, v denote cardinals.

Definition. x* := [{f : f:A—r}| = Mk

Proposition.

(1) [*al = |a|"

(2 ko <kK1 & A< AN = /{80 S/{i‘l

B =1&kl =k

Lemma 10.11.

(a) kM1 = Ao

(b) ¥ = (k)

)0<A<w<Kk = K=k

Proof:

(a) If aNb = then ““Pc~ % xbe[ fr (fla, fIb)].

(b) @ : 2(bc) — b, ®(f)((x,y)) = f(x)(y) is a bijection.

Theorem 10.11.

(a) la| < 2l = |P(a)]

(b) wU<lal = HzeP(a):|z| <A} = [z ePla): |2| = A} = |a*
Proof:

(a) *2 ~ P(a), a < P(a) and P(a) £ a.

(b) Let A > 0. If f € *a then f C A x @ and |f| = X\. Further we have A x a ~ a.
Hence *a < {z C Axa:|z|=A} ~{z €Pla): |z| =2} C{z € Pla): |z| <A} = {f[\ : f € a}U{D} = u.
Finally |u| < [*a U {0}| = |a|*.

Lemma 10.12.

(a)2<k = A< 2 < A< omA

b)2< k& wWUR <A = k=22,

Proof: (a) *k € P(\ x k) ~ ®**2. (b) follows from (a).

Theorem 10.13. [c| <A & f:c—V &Vzec(|f(2)] < k) = |U,e. f(2)| < K.

Proof:

Assumption: k* < |J f[c]|- Then °x =< | f[c] and consequently there exists a surjective F' : |J f[c] — k.
For z € clet s(x) := {g(z) : g € F[f(x)]}. Then s(x) C & & |s(z)| < |F[f(x)]] < |f(x)| < &, hence s(z) C k.
Therefore there exists a g € s with Vo € c(g(x) € s(x)), i.e. g € °k\ U,c. F[f(x)]. Contradiction.

Corollary
(a)2< k& w< A = \<cf(s).

b)w<kh = k< rKSE),



Proof:
(a) Let ¢ C x* and |c| < A. From Vz € ¢(|z| < &*) we get [sup(c)| = |U, e, 2| < (s} = £** = A

(b) Let ¢ C & with sup(c) = & and |¢| = cf(k). Then & = ||, x| < £,

ree

Theorem 10.14.

For w < A the following holds:

(a) Na/\+1 = Ro 1" RS

(b) R} = SUDg < Ng‘ ,if @ € Lim and A < cf(«).

Proof:

Abb.: k:=N,. Then kT = R, is regular.

(a) We have 't k* < (k).

Case 1: A\ < k. Since x* is regular, we have * (k) = Upg<rr AB and so (k)" < KT supg et B = kTR
Case 2: k < A. Then (k1) =2} = g* < kHoRA

(b) a € Lim & X\ < cf(a) = R, = Us<a e = NY < ol supe, NE)‘ = N} <sup,_, Ng‘

The Generalized Continuum Hypothesis
(GCH) Va(2R =R, 41)

Theorem 10.15.
Under (GCH) for all k, A\ > w the following holds:
kit A <cf(k)
/{)‘—{ff“' if cf(k) <A<k
AT oif k<A
Proof:
1. If cf(k) < XA < K then & < k%) < kA <282 = 2% = g+ and thus x* = kT,
2. If kK < A then k* = 2 = \T.

3. A < cf(k): Then *k = J,,, *a and therefore k* < k*sup,¢, ||*. It remains to prove Vo € x(|a|* < k):

a€r=MNal < k= o} <2V = (Xa))t < k.



11 Arithmetic of ordinal numbers

In the following, A\ always denotes a limit number.
Lemma 11.1.

(a) 0 # u C On & sup(u) € u = sup(u) € Lim.
(b

)a€ Lim < a#0& sup(a)=oa.
(¢) a successor number = a = sup(a)+1 & sup(a) = max(«).
)

(d) F': On — On order preserving (i.e., VaV§ < a(F(f8) < F(«))) = VYa(a < F(a)).
Proof:
(a) Let @ # u C On and « := sup(u) ¢ u. Then a # 0, and it remains to prove V3 < a(8+1 < «).

agu

f<a = fg<fforsomeécu = f+1<fandé<a = [+4+1<E<a,since a g u.

(b) “=": Trivially sup(a) < a. From sup(a) < a we would obtain sup(a)+1 € a and so sup(«) < sup(a).
Contradiction. “<”: sup(a) =a #0 = sup(a) € a # 0 @ sup(a) € Lim.

(¢c) a=p+1=pU{f} = B =max(a) = [ =sup(a).

(d) Induction on a: V€ < a(é < F(§)) = V¢ < alé < F(a)) = a < F(a).

Definition

1. A class A C On is closed iff Vu( # u C A = sup(u) € A).

2. A class A C On is club iff it is closed and unbounded.

3. A function F : On — On is continuous iff Yu(D # v C On = F(sup(u)) = sup(F[u])).

4. F : On — On is called a normal function iff F' is order preserving and continuous.

Lemma 11.2.

For each function F' : On — On holds:

F normal function < Va(F(a) < F(a+1)) & YA€ Lim(F(\) = sup(F[A]) ).

Proof:

‘=7 F(\) = F(sup(A) = sup(F[).

“<” 1. By induction on a we obtain V3 < a(F(8) < F(a)).

2. Let @ # v C On and « := sup(u). If @ € u, then F(a) = sup(F[u]), since F is order preserving.
If a ¢ u, then a € Lim and therefore F(«) = sup(F'[a]).

Further we have u C a & V€ < adneu(§ < n), which yields sup(F[a]) = sup(F[u]).

Lemma 11.3.

For each normal function F': On — On holds:
(a) F(a) =sup{F({+1): &€ a}, for all a > 0.
(b) A € Lim = F(\) € Lim.

(¢) Vy > F(0)Aa F(a) <y < Fla+1)).

(d)

Proof:

(a) From V€ < a(§ + 1 < a) we get v :=sup{F({+ 1) : { < a} < F(a).

G normal function = F o G normal function.
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If « =341, then F(a) € {F(§+1): & < a} and therefore F(a) < .

If & € Lim, then F(a) =sup Fla] <sup{F({+1): &< a}="1.

(b) Obviously 0 < F(0) < F(A).

From v < F(X) = sup F[A] we get 3¢ < Ay < F(£)) and then 3¢(y + 1 < F(&) < F(N)).

(¢) Let v > F(0). Since v < F(y) < F(y+1), there exists a :==min{{ : v < F({+1)}. Then v < F(a+1).
If =0, then F(a) = F(0) <~. If a > 0, then F(a) =sup{F({+1): { <a}and V§ < a(F(§+1) <7),
hence F(a) < 7.

(d) (F o G)(sup(u)) = F(sup(G[u])) = sup(F[Gu]]) = sup((F o G)[u]).

Lemma 11.4.

If F is the ordering function of A C On, then:

F'is a normal function < A is club.

Proof:

1. dom(F)=0n & A¢V < A unbounded.

2. Assume now that dom(F) = On.

“=” Let ) # u C A and v := F~1[u]. Then sup(u) = sup(F[v]) = F(sup(v)) € A.

“c” NeLim = F\|CA = ~v:=sup(F[\]) €A = y=min{z € A: V¢ < \(F(¢) < 2)} £ F(\).
Remark

The function « — X, is a normal function. (cf. 9.7 and 9.8a)

Lemma 11.5.
If F: On — On is a normal function, then the class {5 : F(3) = (8} of all fixpoints of F is club.
The ordering function of this class is denoted by F’.

F' satisfies: F'(0) = sup,,c,, F"(0), F'(B+ 1) = sup,,c,, F™ (F'(B) + 1).

Proof:

1. closed: Let § # u C On with Vneu(F(n) =n), and let 3 := sup(u).

Then F(3) = sup{F(n) : n € u} =sup{n:n€u}t =4

2. unbounded: For v € On let v* := sup, .., F™(y). We show v* = min{ : v < 8 = F(B)}. This also
yields the remaining two claims. — From vy < 3 = F(f) by induction on n we get Vn(F((y) < ), hence
y* < 3. On the other side we have v < F(y) < v* and F(vy*) = sup,,c,, F™"V(v) = 7*.

Lemma.

If A, B C On are club then also AN B is club.

Proof:

1. AN B closed: obvious.

2. Let v € On. Definition: «ag := By := 7, @pi1 := min{a € A : a,, B, < a}, Bny1 := min{f € B :
O, Bn < B}. Then a* :=sup{a, : 0 <n €w} € A, 8*:=sup{f,:0<n€w} e B and vy < a*. Further we
have o* < sup{f,+1:0 <n €w} = F* and as well 5* < a*; hence o* = * € AN B.



Definition (of a 4+ § by transfinite recursion on [3)

a+0:=a, a+f :=(@+p0), a+A:=sup{la+n:n<A}

[Detailed formulation of the definition: Let R := {((@,y), (@,2)): ,y,2 € On & y < z} and
G:(OnxO0n)xV =V, G(a,0),f) = a, G,f+ 1), f) := f(@,0) +1, G(a, N, f) := sup(ran(f)).
Then R is wellfounded and o + 8 = F((ov, §)) with F(z) := G(z, F|zg).]

Remark: Note that o/ = a+ 0’. Therefore the notation « + 1 for o’ is compatible with the definition of +.

Lemma 11.6.

(a) For every «, the mapping 8 +— « + [ is a normal function,
and {a+0:8€0n}={y: v>a}l.

(b) Bo < B1 = a+fo<a+fi.

(c) B<a+p.

(d) Vy > a3lB(a+ B =)

eag<a; = ap+8<a;+p.

() (a+B)+rv=a+(B+)

(g a,f<w = a+f=0F+a<w.

(h)

ho<k<w=ktktw=w<w+k.

Proof:

(a)—(d) By 11.2, 8 — a+0 is a normal function. This yields (b) and (c).

Further « = a4+ 0 < a+ (. By 11.3c we also get Vy > a3'B(a+ 8 <y <a+ (8+1) = (a+0)+1), ie
Vy > adlBla+ B =7).

(e) Induction on 3. (f) Induction on ~.

(g) Using 10.3c,d by induction on 3 we obtain: o, 3 <w = a+ 3 =a+f € w.
hw<k+w=sup{k+n:n<w}<w<w+k.

Remark.
Assume that (ag,79) and (a1, r1) are wellordered sets of order types ag, a1, respectively. Assume further that

ap Nay; = (. Then ag + a is the order type of the well ordering (ag U ay,r) with r := rq Ur; U agxay.

Proof: Let f; be the ordering function of (a;, r;), and define f : ag 4+ a1 — ag U a1 by
o= {5 Risw,
filn) if&=ao+n

Definition (of « - 8 by transfinite recursion on ().
a-0:=0,a-(B+1):=(a-0B)+a, a-X:=sup{a-n:n <A}
Lemma 11.7.

Then f is the ordering function of (ag U ay, ).

(a) For each e > 1, the mapping 8 +— « - 8 is a normal function.

(b)ag<ar = ap-B<ar-B

(c) (a-B)-v=a-(8-7)

(d)a-(B+7)=a-B+a-7.

(e) Let o > 1. Then for each « there is a unique pair (3, d) such that y =« -8+ § and § < a.

8



f)0-a=a-0=0&1-a=a-1=qa.
(g a,f<w = a =0 a<w.
h)2w=wv<wtw=w-2.

Remark.

Let «, 8 be given, and let r C (axf) x (a x 3) be defined by
(T0, Yo)T(T1,Y1) & o < T1 0or ko = 71 & Yo < Y1

Then (- « is the order type of the wellordering (ax 3, 7).

Proof: The function f:ax8 — - a, f(&,n) := 0 - &+ n is an isomorphism between (ax3,r) and § - a.

Definition (of o by transfinite recursion on 3)
a’:=1, o’ :=a” . a, o :=sup{a’: n < AL
Lemma 11.8

For a > 2 the following holds:

(a) B+ o is a normal function.
(b) a<y = of <4

(c) &P - a7 = ot

(d) (aﬁ)'v = af

(e) B> By > ...>Bn & b0,....0n < = o >a .55+ ..+ ab -5,
Proof of (e) by induction on n:

IH = oo >a% - §1+...4a% -6, = aP >afo-a>aP . f5+a >aP - §+...+a’ -6,

n

Remark. «” is the ordertype of "« ordered lexicographically.

Theorem 11.9.
(a) For a > 2 and v > 1 there are unique 3,8,7 with0 <d < a & v <’ &y =0a? -6+ .
(b) For @ > 2 and « > 1 there are unique 5y > ... > 3, and 0 < dy, ..., d,, < « such that

y=a% 5 +...+al -5, (Cantor Normal Form of v at base ).
Proof:
(a) Uniqueness: Let v = a0 - 5y +v9 = o™ - §; + v, with 0 < §; < a & v; < aP. Then o’ < v < of+! for
i =0,1. This yields 8y = 81. With 3 := 3y = 31 we also have o - 6§; <y < af - (6; +1) for i = 0,1, hence
8o = 61 =: 0. Finally, from v = o - 6§ +~; for i = 0, 1 it follows that v = ;.
Existence: By 11.3c there exists a 3 with o <y < ot ie. of-1 <y < a?-a. Again by 11.3 (essentially)
this yields o -6 <y < a? - (§+1) =a” - § + af with 0 < § < a. Therefore, by 11.6 there exists a 79 < af
such that v = af - § 4+ .

(b) follows from (a) and 11.8e by induction on .

Definition (Additive principal numbers)
v € On is an additive principal number iff v > 0 & VE,n < y(€+n < 7).

P := class of all additive principal numbers.



Lemma 11.10.

(a) a — w* is the ordering function of P.

(b)yeP & v>0&VE<y(E+vy=17).

Proof:

(a) 1. By induction on « we prove w® € P:

1.1. W% € P is trivial.

1.2. En<wtl = Enp<w-nforsomen <w = £+n<w* n+w* n=w* (n+n)<wtl
1.3. £, < w = &,n < w® for some a < A I£'€+77<w“ < wh.

2. v¢{w*: a€On} = v¢P.

Proof: Let 1 <y € {w*: a € On}. Then vy =w’ -n+7 with0 <n <w & v <w” and 1 < n oder 0 < 7.
For n:=wP - (n— 1)+~ we now have 0 < n < w?’-n <~vyand w’ <wl +n=7,ie v¢P.
(b)1. Let ye Pand £ <. Then E+y=sup{{+n+1:n<vy} <7,

since (,n <y = {+n<y=>E+n+1<7).

2.9>0&VE<y(E+r=7&En<y = E+n <&+ =7

Definition

a=nrog+..‘ta, & a=ay+..+a, &ag>..>a, &ag,...,a, € P.

Lemma 11.11.

(a) For each a > 0 there exists a unique tupel «q, ..., a;, such that @ =yp ap + ... + ap.
b)a=npag+..+a, &k<n = a+.Fap<a& g1+ ... +a, <a.

Proof:

(a) follows from 11.9 (for base o = w) and the equation w” - n = w? + ... + WP.

(b) The first part is trivial. For the second part we observe:
11.6e 11.6¢
Q41+ ... t+aoy, < o+ taopa <o+t a, < oa

Definition. For ag,...,a, € P let X(ao,...,an) := au) + ... + ap(,) Where p is a permutation of n+1

such that ap) > ... 2 app)-

It is intuitively clear that ¥(ao, ..., @) is well defined, i.e., if p, ¢ are permutations with ay,) > ... > apm)
and ag(gy > ... > Qg(n) then apey + ... + app) = gy + - - + Qgn)-

Formally this can be derived from the following Proposition.

Proposition.

If g > ... > a, and p is a permutation of n+1 such that ) > ... > app) then a; = a,;) for i =0,...,n.

Proof by induction on n:

Let & < n such that ay > g1 = ... = ap. Then appy > Qpet1) = - = Qp(n), and thus Vi < k(p(i) < k).
By IH we get a; = () for @ < k. Further we have ajy1 = ... = ap = qpq1) = - = Qpn)-
Remark.

Since X(ao, ..., ay,) is well defined, we have ¥(ao, ..., a,) = E(ag0); -+ Qq(n)) for any permutation g.
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Definition (Natural sum or Hessenberg sum)

a#0 := 0#a = a.

For a =np a9 + ... + a, and 8 =npr Bo + ... + B let a#0 := (g, .., an, Boy -y B ) -
Lemma 11.12.

a) a#f = P#a,

b) (a#P)#y = a#t(B#7),

c) If ag > ... > a, are additive principal numbers then ag + ... + @, = @o#... %oy,
d) <y = a#f <a#y,

e) a,f <w’ = a#f <w,

f) a+ 8 < a#p.

Proof:

(
(
(
(
(
(

(a),(b) are intuitively clear. Formally they can be derived from the above Remark:

Let o =nr a9+ ... +ap, B=nF Bo+ ... + By Y =NF Yo+ oo + Vi

aF# B = Z(, ooy Ay Bos ooy Brn) = (B0 oy By Qs vy i) = BH#r.

(a#B)H#y = Z(0y vy Ay B0y ooy B ) FY = Z(@0y oy Ay B0y ooy By Y0 o5 Vi) =

a#E(Bo, s Bms V0, -0 V) = aF(BH#7).

(¢) Induction on n: Let av:= ag + ... + @p—1. Then a + a,, = a#a, u (o#... #an_1)H#an.
(d) Due to (b),(c) it suffices to prove the claim for o € P. This is done by induction on +.
Let 8 =nF Bo + ... + Bn and v =nr Yo + ... + ¥m. Since § < v, we have By < 7o.

Case 1: a > 9. Then a#8 =a+ 0 < a+v=a#y.

Case 2: fBp,a < 9. Then a#8 < vo < a#y.

Fall 3: o < o = 0. Then a#3 = Bo+(a#0) & a#ty = Bo+(a#4) where Bi4..40n = f <4 = Y14 +Vm.
By I.H. we obtain a#B < a#4 and then a#[ < a#y.

(e) obvious.

(f) 1. If @ € P, then either a+ 8= < a#0 or a+ [ = a#p.

2. For arbitrary « the claim follows from 1. and (b).

Remark. f a =w" - kg +...+w™ - kyand B =w" - lg+ ... +w' -, with vg > ... >, and k;,[; > 0
then a#f = w - (ko+lo) + ... + W' - (kn+ly).

Multisets

Definition.

A multiset is a function M € V with ran(M) C w\ {0}. x is an element of the multiset M (written z € M),
if z € dom(M). For M a multiset and = ¢ dom(M) we define M (z) := 0.

Union U, intersection N and difference — of multisets are defined as follows:

dom(M U N) := dom(M) Udom(N) and (M U N)(z) := M(x) + N(z),

dom(M N N) := dom(M) Ndom(N) and (M M N)(z) := min{M (z), N(z)},

dom(M—N) :={z € dom(M) : N(z) < M(x)} and (M—N)(z) := M(x) = N(x).
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A multiset M is called finite, if dom(M) is finite. Every finite multiset is of the form {(zq, ko), ..., (@n—1, kn—1)}
with card{zg,...,xn_1} =n € w and ko, ..., kn—1 € w\ {0}.

Finite multisets can also be represented as equivalence classes of finite sequences. Loosely said, a multiset is a
finite sequence where the order does not matter. To make this precise we introduce the following equivalence

relation ~ between finite sequences, and a mapping ms from finite sequences to multisets.

Definition.
m = n and there is a permutation p of n

(@0, ++o; Am—1) ~ (bo, oo bn1) 1 { such that (ap(oy; -+, Gp(n—1)) = (bo, sy bp—1)

For each finite sequence (ao, ..., a,—1) we define a finite multiset ms(ag, ..., an—1) := M by
dom(M) :={ag, ..., an—1} and M(z) :=|{i <n:a; = x}|.
Lemma 11.13. a~b < ms(a) = ms(b).

Proof: “=": obvious.

“<”: Let a = (ag, -+, Gn—1), b = (bg, .., by—1) and ms(a) = M = ms(b). Then {ag,...,an_1} = dom(M) =
{boy.cesbm—1}. For k < m let p(k) := min{i < n : a; = by & ¢ & {p(0),...,p(k—1)}}. By induction on
k < m one proves that p(k) is defined: Assume that p(0), ..., p(k — 1) are defined. Then a,;) = b; for j < k.
Assumption: Vi < n(a; = by = i € {p(0),...,p(k—1)}). Then M(by) = {i <n:a; =br}| =|{j <k :apy) =
bt ={j <k:b; =be}| < |{j <m:b; =bx}| = M(bg). Contradiction. Hence p is an injective mapping
from m into n with a,(;) = b;. From this the claim follows, since n = 3", o (ar) M (z) = m.

Remark.

For multisets M, N we have (a) M = (M N N)U(M-N). (b) N=(M-(M-N))uU(N-M).

Proof: (a) min{M (z), N(z)} + (M (z) = N(z)) = M(x). (b) M(x) = (M(z) ~ N(z)) = min{M (z), N(z)}.
Definition.

Let < be a relation. The multiset ordering <, is defined by:

N < M & N #£M &Vo € N—-M3y €' M—N(z < y).

Lemma 11.14

Let < be a relation, and o : V' — On such that Vo, y(x < y — o(z) < o(y)).

For each finite multiset M = {(x1, k1), ..., (@n, kn)} let 6(M) := WO e HwEn) ke

(Remark. If M = ms((ay, ..., ay)) then 6(M) = w( @4 . Holam) )

Then for all finite multisets M, N we have:

(a) 6(MUN) =06(M)#6(N), (b) N <pmu M = 6(N) < 6(M).

Proof:

(a) obvious.

(b) By (a) 6(N) = 6(M 1 N)#6(N—M) and 6(M) = 6(M 1 N)#6(M—N).

It remains to prove 6(N—M) < 6(M—N).

Case 1: N—M = 0. Then 6(N—M) =0 and M—N #  (since N # M). Hence 0 < 6(M—N).

Case 22 N—M # (. Then also M—N # () (since N <, M), and for o := max{o(z) : z € N—M} and
B :=max{o(z) : € M—N} we have a < 3. Hence 6(N—M) < wo! < wPl < 6(M—N).
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Corollary

If < is wellfounded, then <,,,; restricted to the class of finite multisets is also wellfounded.

Proof: 1. N <y M = dom(N) € dom(M) UU,cqoman{y : ¥ <} Hence {N : N < M} is a set.
2. By <-recursion we define o(x) :=sup{o(y) +1: y < x}.

From this by 11.14b we obtain the wellfoundedness of <.

Supplement to §8

Axiom of Dependent Choice (DC)

If A#(isaset and R C A x A then the following holds:

(*) Ve € Ay € A(yRr) = 3f :w — A with Vn € w(f(n+1)Rf(n)).

Lemma 8.13. (AC) implies (DC).

Proof: For x € Alet xp := {y € A : yRx}. By (AC) there exists a function g : A — A such that
Vo € A(g(x) € xg). Take some ag € A and define f : w — A by recursion: f(0) := ag, f(n+1) := g(f(n)).
Remark. If the set A can be wellordered, then (*) holds without (AC).

Lemma 8.14. Let A be aset and R C A x A.

(a) R wellfounded = —3f : w — AVn(f(n+1)Rf(n)).

(b) (DC) implies the reverse direction of (a).

Proof:

(a) Assume f:w — A with Vn(f(n+1)Rf(n)). Then f[w] is a nonempty set without R-minimal element.
(b) Assume that R is not wellfounded. Then there exists a nonempty set X C A such that

Ve € X3y € X(yRz). By (DC) 3f : w — AVn(f(n+1)Rf(n)).

Definition

If R is wellfounded then |x|g (the rank of x w.r.t. R) is defined by R-recursion as follows:

|z| g := sup{|y|r+1 : yRx}.

|IR|| :==A{|z|r: z € V}.

Convention. For each class A C On we set sup(A) := |J A. Hence sup(A4) = On if A is a proper class.

Lemma 8.15.

Let R be wellfounded.

(a) ||R]| is transitive and thus ||R|| = sup{|z|g+1: 2 € V}.

(b) If RC AxA and A # 0 then |R|| = {|z|r : © € A} = sup{|z|r+1:z € A}.

(c) If Ris a wellordering on A # () then A > x — |x|g is the inverse of the ordering function of (A4, R), and
||R|| is the ordertype of (A, R).

Proof:

(a) By R-induction one shows Vz(|z|r C [|R||): B € |x|r = B < |y|r for some yRx Us B e ||R|.

(b) A# 0 = A has an R-minimal element g = 0= |zg|r € {|z|r : x € A}.
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If & Athen |z|g =0 € {|z|r: z € A}.
(c) We have to prove that x — |z|g is an isomorphism from (4, R) onto (|| R||, <). But this is obvious.

612 Inductive Definitions

Definition

Let M be a set and @ : P(M) — P(M).

We assume that ® is monotone, i.e., VX, Y e PIM)(X CY = &(X) CP(Y)).
Ig =({X eP(M):d(X)C X} (the intersection of all ®-closed subsets of M)
We say that the set I is inductively defined by ®.

Definitions of this kind are called (generalized) inductive definitions.

Theorem 12.1

(a) P(X)C X = I, C X, for each set X C M.

(b) @(Ig) = Ig-

So, I is the least ®-closed set and also the least fixpoint of ®.

Proof:

(a) trivial.

(b) HS: ®(I) C 1. Proof: Let Q :={X € P(M): ®(X) C X}. For each X € Q we have I, C X and thus
®(I;) € &(X) C X, since @ is monotone. Hence (1) C N Q = L.

Now let YV := ®(I;). By HS Y C I,. By monotonicity of ® this yields ®(Y) C ®(I;) = Y; hence
Iy CY = (1) by (a).

Remark. Theorem 12.1a comprises an important proof principle:
To show that a propotition A(x) holds for all x € I, it suffices to prove that
the set {x € M : A(x)} is ®-closed, i.e. P({zx € M : A(x)}) C{zx e M : A(x)}.

This principle is called induction on the (inductive) definition of 15 or briefly ®-induction.

Example 1

M := set of all finite strings (words) over the alphabet VARS U L, where L is a set of function symbols;
Lr:={feL:fisn-ary}.

O :P(M)—P(M), ®(X):=VARsSU{ft1..t, : neIN& fe Ll &t,.. t, € X}

By 12.1 I is the least set X C M such that ®(X) C X, i.e. the least set X satisfying:

1. Vars C X

2. If nelN, fe L™ and ty,...,t, € X, then ft;...t, € X.

This means that I is the set of all £-terms.

Induction on the definition of I in this case runs as follows:

From Va € VARS.A(z) and Vn € INVf € L"Viy,...,t, € M(A(t1) & ... & A(tn) = A(ft1...t0))
it follows that A(¢) holds for all ¢ € 1.

14



Example 2

Let M be an vector space over IR and B C M fixed.
O:P(M)—PM),®X):=BU{0U{z+y:z,ye X}U{az:2€ X & a € R}.

Then I, = ({X e P(M) : (X)) C X} =({X € P(M) : BC X & X subspace of M} = Span(B) is the
subspace generated by B

Lemma 12.2 (Modified Induction). ®(I;NX)C X = I, C X.

Proof:
Since ® is monotone, we have ®(I; N X) C <I>(Lb) I
Hence: (I, NX)C X = d(I,NnX)ClynX ¥ I, CI,NnXCX.

2.1b

For Example 1, the modified induction principle reads as follows:
From Vi € VARSA(z) and Vn € INVf € L™V, ...ty € Io(A(t1) & ... & A(t,) = A(ft1...10))
it follows that A(¢) holds for all ¢ € 1.

Definition. 1§ := ®(I5%) with I5* = J,_, I3 (a € On)

Theorem 12.3.

(a)a<f = I3 CIs ; (b) 15+ = 9(13) ;

(c) I3* =1 for some « € On ; (d) ¥ Ig* =13, then Ig* = | Iﬁi = Ig.
£eOn

Proof:

(a) trivial.

(b) 1271 = (15t @ p(19).

)
Otherwise F': On — P(M), a — I§ would be injective. But then P(M) would not be a set.
P
( ) 1. By induction on 3 we get Ty C I, for all 8: LH. = I3 C I, = Ty = ®(157) C ®(Iy) = I,
2. I3 =13 = o(I5%) = I, C I5“.

Definition. ® is continuous iff ®(X) C [J{P(Xy) : Xo C X & X finite} for all X € P(M).

Satz 12.4. If ® is continuous, then Iy = I5*.

Beweis:

Let J :=13“. By 12.3d J C L. On the other side ®(J) C [J{®(Xo) : Xo C J & X finite} C J,,c,, P(13) =
Unen Ig“ = J and therefore I, C J.

Remark. The operator ® from Example 1 is continuos.

Proof: t € ®(X) = ¢t € VARS or Indf € LTy, ....t, € X(t = ft1..tn) =
X, C X(XO finite & [t € VARS or EInEIf € LAty ..., t, € Xo(t = ftltn )])

Lemma 12.5 (Simultaneous inductive definitions)
For j=1,21let ®; : P(M) x P(M) — P(M) with
VX1, X0, Y1,Yo, e PIM)[ X1 CY1 & X2 C Yy = (X, Xz) C2;(Y1,Y2)].
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Then there are uniquely determined sets Z;,Zo C M such that

(a) ®;(Z1,T») = I, fir j = 1,2.

(b) VX1, Xo € P(M)[N\;=; 2(®;(X1, X2) C Xj) = A\;_15(Z; € X))

Proof:

Uniqueness follows immediately from (a) and (b). — Existence:

Definitions: M’ :={1,2} x M. 7j(X):={xe M :(j,z) e X}, for X C M".
O :P(M') — P(M'), ®(X) := U,y ,({7} x ®;(m(X), m2(X)))
For X C M’ we obviously have 7;(®(X)) = ®,(m (X), m2(X)).
® monotone: X CY = m(X) Cmi(Y) & m(X) Cma(Y) =

B, (1 (X), 72(X)) € @ (my (V) ma(Y)) fiix j = 1,2 = B(X) C B(Y),

By Theorem 12.1 there exists the least fixpoint I of ®. Let Z; := m;(I5) ( = 1,2).
(a) ®;(Z1,12) = ®j(m(Ip), m2(ly)) = m;(P(Ig)) = ;(Iy) = Z;

(b) Assume ®,;(X;,X5) C X, for j =1,2.

Let X := ;- »({s} x X;). Then m;(X) = X; and

o(X) = Uj:l,Z({j} x @;(X1, X)) C Uj:l,Z({j} x X;)=X.
Hence I C X and thus Z; = 7;(I3) C 7;(X) = X;.

Example.

Let M be the set of all finite words over the alphabet {x}.

Let @1 (X7, Xo) := {#} U{w*: w € X5} and (X7, Xs) := {w*: w € X3}

Claim: 7; = {w € M : lh(w) odd} =: O and Zy = {w € M : 0 < lh(w) even} =: E.

Proof: Obviously ®1(0, E) C O and ®3(0,F) C E; hence Z; C O and 7, C E.

For the other direction, by induction on lh(w) one shows: (w € O = w e Z;) & (w € E = w € I).

Definition.

For each relation R C MxM let ®p: P(M) — P(M), ®r(X):={zx € M :VyRz(y € X)}.
Acc(M,R) :=1g, (the accessible part of (M, R) )

(Acc(M,R) = ({XCM :VeeM(VyRz(y € X) =z € X)})

Theorem 12.6.

Let R be a binary relation on M, and Acc := Acc(M, R).

(a) Vz[z € M & VyRx(y € Acc) < x € Acc].

(b) Vz € Acc[VyRz(y € X) =z € X] = Acc C X, for every X C M. (R[Acc is wellfounded)
(¢) R wellfounded < M = Acc.

Proof:

(a) follows from 12.1b. (b) follows from “Ip, N ®(X) C X = I, C X”, which follows from 12.2.
(¢) “=": By (a) we have Vz € M (VyRz(y € Acc) = = € Acc).

By R-induction from this we get Vo € M (z € Acc).

“«<": follows from (b).
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Definition. For z € I let |z|¢ := min{a: z € I§}

Lemma 12.7. If ® = ®p then |z|e = sup{|y|o+1: yRa} for every z € Acc(M, R).
Proof:

r el & ued(I3”) & VyRe(y € I3%) < VyRz(|yle < ).

Hence |z|¢ = min{a : z € I3} = min{a : YyRz(ly|e < o)} = sup{|y|e+1 : yRx}
Theorem 12.8 (Recursion over an inductively defined set).

For each function G : I x V' — V there is a unique function F': I; — V such that

F(z) = G(x, FITg"*) for all z € 1.

Proof:

Let R C I x I be defined by R(y,z) & |ylo < |z|s.
<|z|q .

Then R is wellfounded and 2g = {y : z,y € I & |y|lo < |z]a} = {I{) Toifrely
0 otherwise

Definition (Trees)
Let M be a set.

M=<“ = {(zg, ..., Tn-1) :n € N& x0, ..., Ty—1 € M}
An M-tree is a subset T of M <% such that

i (0eT,

(i) if (zg,...,xn) € T then (xq,...,2p-1) € T.
Tar := set of all M-trees.
o C T :& o is a proper initial segment of 7 (i.e., Ip(r = o xp) & o £ 7).

T is wellfounded < ]T is wellfounded.

Definition
T, :={v:oxveT}
ST & Jx[(z) €T & S =T|w] (S is an immediate subtree of T')

Inductive Definition of WT
TeTy&VS<KT(SeWTy) = T eWTy,.

For T € WT s let hgt(T') := |T|¢ where ® is the operator of the inductive definition of WT ;.
So, hgt(T') = sup{hgt(S)+1: S <« T}. We call hgt(T) the height of T.

Theorem 12.9

VT € TM(T wellfounded & T € WT )

Proof:
“=7: Let T be wellfounded. By J|T-induction we get Vo € T(T|, € WT p1):

ceT&WeTwdo=T, eWTy) = Tlo €T &VS KT, (SEWT ) = Tl|o € WT .
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“<”: Assume VS < T'(S wellfounded) and let § # X C T.

We have to prove that there is a vy € X such that =30 € X (v C o).

Case 1: X = {()}. Trivial.

Case 2: (zg) *v € X. Let X' := {0 : (z9) *o € X}. Then § # X' C S := T|(,,). By assumption S is
wellfounded. Hence there is a vy € X’ such that =30 € X'(vy C o). From this we get (zg) * 9 € X and
—3r € X((zo) *xvo C 7).

Definition.

If T is a wellfounded tree and o € T then |o|r = |o|5)7.

Lemma 12.10. If T is a wellfounded tree then

(a) |o|r = sup{|o*(x)|r+1: ox(x) € T} for each o € T}

(b) hgt(T) = [0z

(c) hgt(T)+1 = || 21T

Proof:

(a) By definition |o|p = sup{|v|r+1: 0 Cv € T} (for all 0 € T). Hence Vo,7 € T(c C 7 = |7|r < |o|r}.
Since Vv(oc C v € T = Jx(o*(x) € T & ox(x) C v)), it follows that |o|r = sup{|o*(z)|r+1: ox(z) € T}.
(b) HS: If S = T'|(;) < T and o € S then |o|s = |(z)*0]|r.

Proof by induction on |o|s:

lo|s = sup{|v|s+1: 0V € S} & sup{|(z)*v|r+1: oCv € S} = sup{|7|r+1: (z)xoCT € T} = |(x)*0|r.

Now we prove the claim by induction over the definition of W7 ;:

hgt(T) = sup{hgt(S)+1: S < T} a sup{|()|s+1: S < T} s sup{|(z)|r+1: () € T} @ Olr-

() het(T) 2 1017 2 sup{lofr+1: ) C o €T} = hgt(T)+1 = sup{|o|r+1: o € T} *2 21T

Lemma 12.11. Assuming (DC) or “M can be wellordered”, the following holds for each T' € Ty;:
T wellfounded < —3(a;);enVn € N[ (ag, ..., an—1) € T'].

Proof:

Note that with M also M <% can be wellordered.

T wellfounded *&* —3f : IN = T'Vn[f(n) C f(n+1)] <

—3(a;)ienn[ (ag, ..., an-1) € T].
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§13 Elementary recursion theory

Definition.
An n-ary partial function is a function f with dom(f) C IN" and ran(f) C IN.
Notation: f : IN" PN,

For partial functions f, g we define:
f(@) =~ ¢(¢) & [d € dom(f)&c € dom(g) & f(@) = g(¢)] or [d@ ¢ dom(f) & ¢ ¢ dom(g)].

Similarly for more complex expressions containing (symbols for) partial functions.

Definition of the operations o, R, u for partial functions:
1. For h:IN™ 28 N and g1, ..., g : IN" 225 IN let (ohgy...gpm) : IN" 225 IN be defined by:
(ohg1.gm)(@) = b < Fby ... Fbp[h(b1, ..., b)) = b& g1(@) = b1 & . .. & G (@) = by
2. For g: IN" 222 IN and A : IN"*2 P28 N Jet (Rgh) : IN"*! 22X IN be defined by:
(Rgh)(@,0) =~ g(a),
(Rgh)(@,k+1) =b < 3Fc[(Rgh)(d, k) = c&h(d, k,c) =0b].
3. For g: N"*! PN let (ng) : IN™ PN be defined by:
(ng)(@) =b < ¢(@b) =0&Vi < bclc #0&g(a,i) = cl.
Abbreviation:
min{k : R(d,k)} if 3k R(a,k)

For R C IN"*' and @ € IN" let: uy.R(a, 1’1{ '
or R C and a et my-R(G,9) 2 | defined otherwise

In other words, @ — py.R(d,y) denotes the partial function (ug) with g(@,b) := 1 = 1g(d,b).
Definition

Let f:IN" P20 N,

f is partial-recursive :< Graph(f) is recursive enumerable.

f is total & dom(f)=IN".

P™ denotes the set of all n-ary partial recursive functions. P :=J,cnP".

Remark.

A function f: IN" PN s recursive if and only if it is partial-recursive and total.

Theorem 13.1
PP is the least set of functions containing the basic functions Cj, S, I and being closed under the operations

o (composition), R (primitive recursion), p (u-operator or minimization).
Proof: cf. proof of 4.15.

Corollary
If R C IN"™! is recursive, the function f defined by f(@) :~ py.R(d,y) is partial recursive.

Churchsch’s Thesis

A function f: IN" PN s computable in the intuitive sense iff it is partial recursive.

Lemma 13.2

A @Q CIN" is recursively enumerable iff @) = dom(f) for some n-ary partial recursive function f.
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Proof:
1. Let Q be recursively enumerable. Then Q = {@ : 3bg(@,b) = 0} for some g € PR"™. Hence Q =

dom((pg)) and (ug) € P.
2. If f € P, then Graph(f) is recursively enumerable, and hence dom(f) = {@: 3 (@,b) € f} is recursively

enumerable too.

Lemma. For every recursively enumerable relation R C IN™ there exists an n-ary arithmetic formula A
such that R={d € IN" : Q- A(@)}.

Proof: Let R(d) < 3bRy(d,b) with primitive recursive Ry. By Theorem 6.5 there exists an n+1-ary arith-
metic formula B such that (1) Ro(@,b) = QF B(@,b); (2) ~Re(d@,b) = QF —B(@,b). Since the standard
model A is a model of Q, it follows that Q is w-consistent (cf. §5, pg.34). Now we have:

R(@) = Ro(a@,b) forsome b & Q+ B(@,b) = QF JyB(@,y):

~R(d@) = —Ro(@b) forall b L QF —~B(@b) for all b =Y Q /3y B(@,y).

Theorem 13.3 (Kleene’s Normalform Theorem)

There is a primitive recursive function U and for each n > 1 a primitive recursive relation T", such that
P" = {{e}": e€ N}, where {e}":IN" pary IN, {e}™(@) :~ U(py.T"(e,a,y)).

The relations T™ (n > 1) are called Kleene’s T-predicates.

Proof:

Definition: Sby, ,(e) :=e, Sby(e,a,...,an) := Sub(Sby (€, ars1,..,an), "vp ', fag ).

Then Sbp(TAT ak,...,an) = A, 0, (Qhs oy an) 1.

Definition:

T"(e,ay, ..., an,c) = Priq(Sbi(e, (¢)o, a1, ..., an), (c)1)

Ule) := (¢)o,

{e}"(@) := U(py. T (e, d,y))-

Obviously U, T™ are primitive recursive. From this it follows immediately, that for each n > 1 the function

(e,d) — {e}"(a) is partial recursive. Hence for each e € IN and n > 1 the function {e}" is partial recursive.

Assume now that f : IN" PN s partial recursive. By the above Lemma we then have an n+1-ary

arithmetic formula A such that V@, b(f(d) =b < QF A(b,@)).

Let e := TA'. Then the following holds: f(a@) =b < 3d.Prig(TA(b,a)',d) < 3Id.Prfq(Sb{(e,b,d),d) <
Je[b = (c)o & Prfq(Sbg (e, (¢)o, @), (¢)1)] < Fe[b=U(c) & T™(e,a,c)].

From this we get dom(f) C dom({e}") and ({e}"(d) =b = f(@) =b), hence f = {e}".

Remark. The (n+1)-ary function (e, @) — {e}™(@) is partial recursive.

Abbreviation. W2 :=dom({e}") (={aeIN": JcT"(e,d,c)}).

Remark. By 13.2 and 13.3, {W[ : e € IN} is the set of all n-ary recursively enumerable relations.

Theorem 13.4 (Unsolvability of the halting problem)

K :={ee€ IN: e € W'} is recursively enumerabel but not recursive.
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Proof:
1. K isr.e., since (e € W} & JcT!(e,e,c)) and Tt prim. recursive.
2. Assumption: K recursive. Then also IN \ K is recursive (thence r.e.) and by 13.3 there exists ey with

IN\ K =W/} . Hence: ¢g € K < ¢g € W) & eg & K. Contradiction.

Remark.

Intuitively T™ has the following meaning;:
- e is the number of a program which on the
i . o :
(e:@, (b, k) = { input @ after k steps delivers the output b.

Then K is the set of all program numbers e such that the program with number e terminates on input e.

Theorem 13.5 (s-m-n Theorem)

For each m,n > 1 there is an (m+1)-ary primitive recursive function s”* such that the following holds for
alle,ce N, g€ N", b € N"

(a) T ™ (e,d@,b,c) < T"(s"(e,b),d,c),

(b) {e}™+m(a@,b) = {s}(e.5)}"(@).

Corollary. For each g € P"*™ there is an s € PR™, so daf$ ¢(a, b) ~ {s(b)}"(&) for all @ € N", b € IN™.
Proof: (a) We have:

Tt (e, @, b, c) < Prig(Sbyt™ (e, (¢)o, @, b), (¢)1) and

T"(s7'(e,b), @, ¢) < Prfq(Sbg (s} (e, b), (¢)o, @), (c)1).

Therefore we have to define s™ so that Sby™™ (e, ¢, @, b) = Sbl(s™ (e, b), ¢, @).

But for e = 'AT we have

Sy (e,¢,8,5) = "Aug, e (€G.B) = Auy i (b1 By g (€)= SO (SBRTT(e,D), . ).
Therefore we define: s7* = Sbl 1"

Claim: e N&be IN™ & k <n+1 = SbI ™ (e, ay, ..., an, b) = Sb}(Sb" i ™ (e,B), Ak oeny A ).

Proof by induction on n+1 — k: Abb.: e* := SbZﬂn(e, b).

L. Sbgi;"(e b) =e" =Sb; (")

2. Sb ™ (e, aky .oy ap, b )D—EfS b(Sbif 1" (e, Akt -.os an,b), w1, e, ) H
= Sub(Sby, (€%, apq1, .-y an), 'vr ', Tay, ") Def Sby (e*, agy ..y ).

Proof of the corollary: Take e such that g = {e}"*™. Then g(a@,b) = {s™(e,b)}"(a).

Theorem 13.6 (Recursion Theorem)

For each g € P"*! there exists an e € IN such that {e}"(&@) ~ g(e,a) for all @ € IN".

Proof:

By 13.3 there exists a k with {k}"*1(a@, e) ~ g(s} (e, e),a), for all @, e. — Let e := s’ (k, k).
Then {}(@) = {s}(k, k)}"(@) "= (k)@ k) = g(sh (k. k). ) = g(c,a).

Corollary

For each n > 1 und every l-ary recursive function f there exists an e € IN such that {f(e)}"™ = {e}™.

Proof: Let g(e, @) :~ {f(e)}"(@) and apply 13.6.
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Example to the Recursion Theorem

The Ackermann function A : IN? — IN is define by
k+1 ifm=0
A(m, k) := < A(m = 1,1) ifm>0&k=0.
A(m =1, A(m,k = 1)) otherwise
In order to prove that A is recursive we define a partial recursive function g by:
kE+1 ifm=0
gle,m, k) i~ {e}?(m = 1,1) itm>0&k=0.
{e}2(m = 1,{e}?(m,k = 1)) otherwise

By the Recursion Theorem there is an e such that {e}?(m, k) ~ g(e,m, k) for all m, k.
By main induction on m and side induction on k one proves {e}?(m, k) ~ A(m, k) for all k,m. Hence A is

recursive.

Theorem (Recursion Lemma).

Let <C INxIN be wellfounded, and R C IN" 2.

Assume that h € P"*2 with VeVaVa|Vy < z R(y,a, {e}(y,@)) — R(x,a, h(e,z,a)))].

Then there exists an f € P such that Vavz R(z, d, f(z, d@)).

Proof:

By the Recursion Theorem there is an e € IN such that {e}(x,d) ~ h(e, z, d@) for all z,d.
By =<-indcution on x we prove R(z,d, {e}(z,d)):

Yy <z R(y,d,{e}(y,a)) = R(z,ad,h(e,z,a)) = R(z,d,{e}(z,a)).

Theorem 13.7 (Rice)
If §#F S P, then the set {e € IN: {e}" € F} is not recursive.

Proof:

By assumption there are eg,e; € IN with {eg} ¢ F and {e;} € F.

Let R C IN be recursive. We prove R # {e: {e}" € F}.

{ep}"(a) ife€eR

{e1}"(a) ifeg R’

By the Recursion Theorem there exists an e with Va € IN"({e}"(a) ~ g(e, a)).

We define g € P+ by g(e,a) i~ {

Hence:
e € R = Va({e}"(a) = g(e,a) = {ep}"(a)) = {e}™ ={eo}™ = {e} & F.
e R = Va({e}"(a) = g(e,a) ~{e1}"(a)) = {e}" ={ei}" = {e} € F.
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Recursive ordinals, Kleene’s O

Definition
A wellordering (4, R) is called recursive if A C IN and R are recursive.

WiE = sup{||(A4, R)|| : (A, R) is a recursive wellordering} ,

where ||(A, R)|| is the ordertype of a (A, R) (cf. 8.15).

Obviously w{'X is the least ordinal which is not the ordertype of a recursive wellordering.

Definition For s,¢,e € IN:

sCt <= lh(s) <lh(t) & Vi <1lh(s)[(s); = (t)];

sCt : < sCtors=t.

B C N is called a tree iff Vs,t(s € B& tC s =t € B)

A tree B is called wellfounded iff J[B is wellfounded.

Lemma 13.8. A tree B C IN is wellfounded if and only if Vf : IN — INIn(f(n) ¢ B).
Proof: cf. 12.11.

Definition (Kleene-Brouwer ordering).

s<gpl i tCsordcablcx(a) Cs&cx(b) Tt&a<h).

Lemma 13.9.

(a) (IN, <p) is a primitive recursive linear ordering.

(b) For every tree B C IN: B is wellfounded <= (B, <yy[B) is a wellordering.
(c) If B C IN is a wellfounded tree then | 3[B|| < [|[<;z[B].

Proof:

(a) Obviously <y is primitive recursive.

Transitivity:

Lex{(a) Cr&ex (b)) Cs&a<b&t s: IftCc, then also t C r. Otherwise ¢ x (b) C t.
2cx(@)Cr&ex()Cs&a<b&d+x(@)Cs&dx(V)Tt&a <b:

21. cx(b)Cd: Thenalsoc* () Ct. 22. d=ca<b=a <. 23. dTc:d*{a’)CcCr.

(b) “<”: ¥n(f(n) € B) = (f(n))new is an infinite descending sequence in <[ B.

“=7: Assume g : IN — B with Vn(g(n+1) <5 g(n)).

By recursion on n define f(n) := min{a € IN : 3k(f(n) * (a) C g(k))}.

Claim: f(n) is defined for all n.

Proof by induction on n:

1. n = 0: Since g(1) <y 9(0) we have g(1) # 0 and there exists a such that (a) C ¢(0).

2. n — n+1: By LH. and definition we have 7 := f(n+1) C g(k) for some k.

If r © g(k) or r C g(k+1), we are done. Assume now r = g(k) iZ g(k+1). Since g(k+1) <.y g(k), there

exist ¢t,a,b with a < b & t* (a) C g(k+1) & t * (b) C g(k) = r = f(n+1).
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Hence there exists an m < n such that ¢ * (b) = f(m+1) and thus f(m) * (a) C g(k+1) & a < b = f(m),

which is in contradiction with the definition of f(m). This proves the claim.

Now Vn3k(f(n+1) C g(k)) and thus VYn(f(n) € B).

(c) Let Ry := OB and Ry :=<yg [B. Then ||R;)|| = sup{|s
Since Ry C Ry, by Ro-induction one obtains |s|r, < |s|g,:
|s|r, = sup{|t|r,+1: tRos} Ig sup{|t|r,+1 : tRos} < sup{|t|r,+1: tR18} = |s|R,-

R1+1 s e B}

Inductive Definition of O and of |a|p € On fir a € O

1. 0 € O und |0|p := 0.

2.0€0 = (1,a) € O and |[(1,a)|o := |alo + 1.

3. Vn({e}(n) € O) = (2,e) € O and [(2, e)|o = sup, e (|{e}(n)]o + 1).
Remark. |a|p = |ale where @ is the operator of the inductive definition of O.

Proof: Exercise.

Theorem 13.10. w{'X = sup{|a|o : a € O}.

Proof:

“>": Definition of a wellfounded tree B, C IN for each a € O:

By = {0}, B1.ay == {0} U{(0)s : s € By}, Bia,ey := {0} U, {(n)xs : s € Bioym }-

Claim: a € O = B, is wellfounded and |a|p = || B,||-

Proof: this follows essentially from 12..., since B, is the only immediate subtree of B 4y, and Bic}n)
(n € IN) are the immediate subtrees of By ).

Now we are going to show that there is a recursive function f such that, for each a € O, {f(a)}! = 1p,.
Then (B,, <y [Ba) is a recursive wellordering with ordertype > |alo.

[lalo +1=|Ball + 1 = [|3IBall < [|<gp!Bal I

We have to find f = {f} such that

1 ifs=0
- £1(b)}s if a={(1,b) & s = (0)xs’
() = h(e ) where e, 0) = 8 HERENE DL ) 3a 20 o e
0 otherwise

By the s-m-n Theorem there exists an h € PR with {(z,a)}(s) =~ h(z, a, s).

By the recursion theorem there exists f = {£} with f(z) = h(£,2). Then {f(a)}(s) ~ h(£,a, s).

“<”: Let R C INxIN be a recursive and wellfounded. Below we will show that there exists a recursive
function f such that for each n € IN: f(n) = (2,¢) with {e}(m) = {(J)c(m) ioftlrrlrz;]j\}ise'

Then (*) Vn e IN(f(n) € O & |n|r < |f(n)|o) and thus

b:=(2,f) € O and ||R|| = sup, e (|n[r+1) < sup,en(lf(n)lo+1) = |blo.

Proof of (*) by R-induction: LH. = VmRn( f(m) € O & |m|g < |f(m)|o) =

vm({e}(m) € O) & [n|r = sup,, g, (Im|r+1) < supen([{e}(m)lo+1) = |f(n)o-

Existence of f: Let h(f,m,n) :~ {éf}(m) it mEn .14 j € PR such that {h(£,n)}(m) ~ h(f,m,n).

otherwise A
By the Recursion Theorem there exists an £ with {f}(n) = (2, h(f,n)). Let f:= {f}.
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THE TURING MACHINE

The historical first abstract computing model is the Turing machine called so after the english logician
A.M. Turing. The Turing machine consists of a finite control, a tape that is divided into cells, and a tape
head that scans one cell of the tape at each time. The tape is infinite in both directions. Each cell of the
tape holds exactly one of a finite number of tape symbols. There is special symbol “blank” which is hold
by almost all cells. In one move the Turing machine, depending upon the symbol scanned by the tape head

and the state of the finite control will perform one of the following actions:

(1) print a symbol on the scanned tape cell, replacing what was written there,

(2) move the head one cell left or right.

Definitions

Let X be a fixed alphabet with ¥ N {0,L,R} = (.

Yo:=XU{0}, ¥:=3%9U{L,R}
Y#*i={p:p:Z— Yo & {i € Z: (i) # 0} finite }.

A Turing program is a finite function P : n x ¥y — (n+1) x 3.
0,...,n are called the states of P.

[(P) := n is called the length of P.

0 is the initial state of P.

stop(P) :=n is the final state of P.

For P we define a state transition function J0p : IN x Y# 5 IN x # as follows:
1.  Ifi>n, then dp(i, @) := (i, ).
2. Ifi<mnand P(i,p(0) = (j,z) € (n+1) x ¥y,
then dp (i, p) := (j,%), where 1) € 7 is defined as follows:
2.1. €%y ¥(0):=zund (i) := (i) fiir i # 0.
2.2. z=R: Y1) := p(i+1).
2.3. x =L ¥(i):= p(i—1).
Definition of a funktion [P] : ©%# P S # for each Turing program P
[P](¢) ~ 1 :& There is a k € IN such that 6g€)(0, @) = (stop(P), ).

Definition
We assume that ¥ contains the symbol 1.

For ai,...,an € IN let g, ... 4, denote the following ¢ € v#:
N1 ifi=a+...tar+Ek+jwithO<k<nandl<j<agq
p(i) = .
0 otherwise

For each Turing program P and n > 1 let
fpIN" part IN, fB(a1,...,an) = out([P)(@ay.....an)), Where out(y) := min{i > 0: ¥ (i + 1) = 0}.
Definition

part

f:IN"™ == IN is called Turing computable, if there exists a Turing program P with f = f} gibt.

Theorem

A partial function f : IN" PN is Turing computable iff it is partial recursive.
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§14 Proof theoretic analysis of the axiom system Z of arithmetic

Terg := set of all closed PR-terms.

If t € Tery then #V denotes the value of ¢ in the standard model A
Abbreviation: ug(n) := u,(n) for each PR-expression u and n € IN.

Let £y := PR. The language of Z is Lo(X) := Lo U {Xo, X1,...}, where Xy, X1, ... are unary predicate
symbols; we call them set variables. But note that they are not considered as variables in the proper sense
(e.g. FV(X;0) = (). We use X as syntactic variable for Xy, X1,... . TRUE (FALSE, resp.) denotes the set of
all Lo-sentences which are true (false, resp.) in the standard model N. TRUEq := {A € TRUE : A atomic},

FALSEg := {A € FALSE : A atomic},

The axioms of Z are the universal closures of the following Lo (X)-formulas:
—(Sz =~ 0),
Sx~ Sy —x~y,
LY.y Rk,
zy..x, =z,
(ohg1...gm)T1... Ty = AGI1T1... Ty - . . G T1... Ty,
(Rgh)xy..2,0 = gzq...2p,
(Rgh)xy...z,Sy = hxq..x,y(Rgh)zy...xny,
F,(0) = Va(F — F,(Sz)) — Fy(2), for each Lo(X)-formula F'

Definition

Let R be a 2-ary Ly-formula such that the relation

< :={(m,n) € N : N = R(m,n)} is wellfounded.

Abbreviations:

s <t := R(s,t), Vy=<tF(y) := Vy(y<t — F(y)),

|t|< = [tN|< for t € Terg,

Prog_(F') := Va(Vy<zF(y) — F(x)),

TIL(F,t) := Prog_(F) — VYa<tF(z), TIL(F):=Prog_(F)— VaF(x)
In this section we will show that transfinite induction up to £¢ is not provable in Z, more precisely we will
establish the following

Theorem ZF TIL(X) = || < | < eo.

Definition (rk(A))

1. 1k(A) := 0, for atomic A,

2. k(A — B) := max{rk(4),rk(B)} + 1,

3. tk(VzA) :=rk(A) + 1.

Corollary. tk(A(t)) = rk(A).

In the following, «, 3,7, 6, &, n always denote ordinals < ¢ := min{a : w* = a}.
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The infinitary proof system Z°

We use I' as syntactic variable for finite sets of closed formulas.

An expression of the form T' O C' is called a sequent (with antecedent T' and succedent C').

Notation. We write A, T for {A}UT, and T, TV for T UT”, etc.

Axioms and inference rules of Z>°
(Ax1) ' D C, if C € TRUEq or I' N FALSEq # ()

(Ax2) Xs,T D Xt ,if sV =tV
AT>B (W)...FjAz(n)...(ne]l\I)
' D A—B’ ' DVzA ’
(_)I)FDA B,I'>C ( )Ax(k),FDC'
A—B,I'>C ~ VAT DC’

rsb D, I'>C

roc ’

-C,I'D> L
(L) roc

A Z°°-derivation is a tree of sequents generated from the above axioms and rules.

(=)

(Cut)

(C atomic).

In other words: A Z°°-derivation d is a wellfounded tree of sequents being locally correct w.r.t. the above
axioms and rules, which means:

(i) the sequents at the top nodes of d are axioms,

(ii) every other sequent is obtained from the sequent(s) immediately above it by one of the rules.

The sequent at the root of a derivation d is called its endsequent.

d is called a derivation of I' D C' if I' D C'is its endsequent.

The cut-rank of a Z*°-derivation d is the least number m such that rk(D) < m for every cut-formula D of d.
Abb.: ¢ I' D C : <= there exists a Z*-derivation d of I' O C' with height < a and cut-rank < m.

Note that % T' O C implies 2, A,T' D C (just add A to each sequent in the derivation of I' O C).
Therefore the relation =, I' D C' can be characterized recursively as follows

l—; I' O C iff one of the following cases holds

(Ax1) C € TRUEg oder I' N FALSEq # 0,

(Ax2) C = Xtand Xs €T with sV =V,

(=r) C=A—-B&Fm ATDB&ag<a,

(Vr)  C=VzA& Fp' T D Ay(n) & a, < o (Vn € IN),

(=) (A=B)eT& Fm T DA& Fp B.TDC & ap < a,
(V) VzAeT & bFm Ay(k),T D C & ap < a,

(Cut) tk(D)<m& Fm T DD & b D,TDC & ap < a,
(1) C atomic & by =C,T' D L & ag < a.

In the following we will take this as the official definition of Y, I' D C.
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Lemma 14.1

(a) l—iFDC&FQFl&agal&mSml :H—zlll Iy oC.

(b) Fm A, T D C & A€ TRUE = Fp, T D C.

(¢) Fm T D A& A€ FALSE =+, I D C.

(@ Fm D Xs& sV =t =+, T DXt

(e) Fm ~Xs,TDC& N =tV = F,, -Xt,T D C.

Proof by induction on a:

(a) trivial.

(b) and (c) are proved simultaneously by induction on «. The proof is left to the reader.
(d) and (e) are proved simultaneously by induction on «:

(d) Assume l—?,f -Xs,I' D L & ag < a. Then IHe yields l_::;o -Xt,T D L, and by (L) we obtain k% I' D Xt.
The other cases are trivial or follow immediately from the I.H.

(e) The only nontrivial case is (—{) with principal part - Xs = Xs—_1.

In this case we have -Xs,I'DXs& o 1,-Xs,I' D C & ag < a. Then I.LH.d,e yields
o “Xt,I' DXt & o 1,-Xt,T' D C & ap < a, and by (—l) we obtain the claim.

In the following, applications of Lemma 14.1a will not be mentioned!
Lemma 14.2 (Inversion)

(a) Fm ' DA— B = tp AT D B,

(b) Fm [ DVzA = by, [' D Ay(n) for all n € IN.

Proof by induction on a: We only treat (b).

(Ax1) In this case I N FALSEg # 0, and T’ D A,(n) is an axiom (Ax1) too.
The remaining cases are (Vr), (—l), (V1), (Cut).

() B>CeT & Fm I DB& by C,T DVzA & g < o

By LH. b, C,T D A(n). From this together with -, I' D B we obtain b, I' D A,(n) by (—1).
(Cut) and (VI): analogous to (—l).

(V) b T D Ay(n) & oy < a for all n € IN:

Then also Fm I' D Ay (n).
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Lemma 14.3 (Reduction)

k(D) <m& FmT>D& o D.TSC = 0T

O C.
Proof by induction on G:

(Ax1) If D € FALSEq then the claim follows from Fm ' D D by 14.2c.
If D & FALSEq then I" D C' is also an axiom (Ax1).

(Ax2) If D = Xs & C = Xt with s =t then the claim follows from Fm I'D D by 14.2d.
Otherwise, I' D C is also an axiom (Ax2).

(o) AsBeD,.T & Fot DTS A& Ho B,D,T > C & fy < B

By LH. we obtain (1) Fn " ° TS A, (2) Fa 2™ BT 5 C.

If A—B €T, then the assertion follows from (1),(2) by (—l).

Assume now A—B = D. Then the Inversion Lemma (14.3b) yields (3) Fm A, T D B.
From (2) and (3) we obtain I—?,jwﬁl I' O B by (Cut).

Together with (2) and another (Cut) this yields the assertion.

(V) VeA € D,T & Hot Au(k),D,T > C & By < 5

Mit I.H. and inversion we obtain (1) l—;ﬁﬁo Az (k), I DC, (2) Fm IO Ay (k).

If VxA € T, then the assertion follows from (1) by (VI).

If VA = D, then the assertion follows from (1), (2) by (Cut) with A, (k) (note that rk(A,(k)) < rk(D) < m).
The remaining cases (—r), (Vr), (Cut), (L) are easy.

Lemma 14.4 (Cut Elimination)

FE T DC =Fm T 50

Proof by induction on «:

We only consider the case (Cut). All other cases are easy.

So we have b T D D& Fony DT D C & k(D) <m & ag < a.

By LH. then o T'> D and o D,T' S C. From this together with tk(D) < m we get o - > T'5 C.
But 3% 4 2. 3% < 3% 4 3% .2 = 3eotl < 3a

EMBEDDING

Lemma 14.5.

(2) oY 4L (s) o A1), if sV =

(b) |—§+3 (C—(A— B)),C — A,C DB, wobeik:=2max{rk(A),rk(B),rk(C)}.
(c) l—g -—A D A, if A is atomic.

(d) Fo ' Va(A — B),VoA D YaB, where k := 2max{rk(A), tk(B)}.

() FoN W A S AL ).

(f) l—i D(rry—A— Ar(Y))sy(m,n), for atomic A and = # y.
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Proof:
(a) Induction on A: 1. For atomic A this is an axiom.
2. From I—]g Az(t) D Az(s) and I—s B,(s) D B,(t) we obtain
ko' Au(s) = Ba(s) D Ax(t) — Ba(t) by (— 1) and (— 7).
3. Let A =VyB and wlo.g. y % . By LH. ks By(n)o(s) D By(n)(t) for all n.
I—lg By (s)y(n) D By(t)y(n) for all n.
I—SH VyBy(s) D YyBg(t) for all n.
(b)
FeADA | FeBOB
eosC | A~ B ASB
oS0 | A0 (A—B),C>B
e A0 (A~B),C>B
(c) 1. A € TRUEq: trivial.
2. A€TFALSE): g AD L& Fg LD A =D -A& g LDA =hg-A— 15 A

3. A=Xt: Fo-AD A& Fg LD L =Fy-A,-AD L =g -=AD A
(d) Fo A(n) > A(n) | ke B(n) > B(n)
Fo ' A(n) — B(n), A(n) > B(n)
ko' Va(A — B), A(n) > B(n)
Fo V(A — B),VzA S B(n), fir alle n
)s

‘”4 V(A — B),VzA S VaB.

2rk(A) 2rk(A)+1

(e) Let n:=tV. b Az(n) D Ay(t) implies Ve A D A.(t).

(f) Note that (z~y = A — A, (¥))zy(m,n) = mr=n — Ay (m,n) — A, 4(n,n), and
I—g m~n, Ay y(m,n) D Az y(n,n) holds for all m,n.

Lemma 14.6 (Induction Lemma)

ko A(0), Va(A(z) — A(Sz)) D Vo A(z).

Proof:

Let k := 2rk(A). By induction on n we prove: l—g+2” A(0),Vz(A(z) — A(Sz)) D A(n).
1. For n = 0 this follows from 14.5a.

2. T2 A(0), Ya(A(z) — A(Sz)) D A(n) | ke A(Sn) D A(Sn),
FePEL 4(0), Y2 (A(z) — A(Sz)), (A(n) — A(Sn)) D A(Sn),
FEP22 4(0), Y2 (A — A(Sz)) D A(Sn).

Theorem 14.7. (Embedding)
ZFC&FV(C) =0 = Fo™5 ¢ for some k,m € IN.
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Proof by induction on the derivation of C":

W.lo.g. we may assume that all formulas in the derivation of C' are closed (otherwise we replace all free
variables in the derivation by 0).

1. C has been derived from A and A — C. Then by L.H. there are k, m such that }—ijj A, I—:)nJrkD A—C,
and rk(A) < m. From I—:Jn+k3 A — C we obtain l—ifk A D C by Lemma 14.2a.

Now a (Cut) yields I—ﬁ:rkHD C.

2. Otherwise C' = Yyi1..Vy,A(y1, ..., yp), and F:HD A(nq,...,np) holds for all ny,...,n, (cf. Lemmata 14.5,

14.6). From this we get F;H—Hpi) Yyi..ypA.

Lemma 14.8.
FUAILT O Xt & T = {~Xt1, ..., ~Xt,} &
, 5 :
A C{Prog_ (X))} U{Vy=<sXy — Xs:seTero} & = |til< <a+2” for some i € {0, .., n}.
MC{Xs:|s|l<x <a}
Proof by induction on G:
(Ax1) Xs € IT with s = #)": Then |to|< = |s|< < o < a + 2°.
(L) Fo® AILT, =Xty 5 L: Lldde = H° AILT, =Xto 5 Xt 2 [t;]5 < a+ 2% for some i € {0, ..., n}.
(=01 Fo* AILT D Xt; with j € {1,..,n}: By LH., [t;| < < & + 2% for some i € {1, ..., n}.
(—1)2 Assume (1) Fo° A, Xs,ILT S Xto and (2) F2* A, ILT S Vy<sXy:
We further assume (3) o + 2% < |t;|- fori=1,...,n.

From (2) by L.14.2 and L.14.1b we obtain I—go AILT D Xm for all m < V. Hence, by LH. and (3),
Im|< < a+ 2% for all m < sV, ie., |s|5 < a4+ 2%,

From (1) and |s|<x < a + 2% by LH. we obtain |t;|< < (o + 2%) + 2% < o+ 28 for some i € {0, ...,n}.
) }—go Vy=<tXy — Xt,A,II,T D C: The claim follows immediately from the I.H.
As an immediate consequence from 14.8 we obtain

Theorem 14.9 (Boundedness). l—g ODTIL(X) = |<| <2°.

Proof:
I—g D Prog(X) — VeXz = l—g Prog_(X) D Xn foralln € IN 158 In|x <28 foralln e N = |<| <2°.

Theorem 14.10. ZF TIL(X) = ||<]| < &o.

Proof:
ZF TI (X) 22 H S T (X) for some 8 < e 22 |I<]| < 2° < <.
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Provability of transfinite induction in Z
In the following a, b, ¢, x, y, z denote natural numbers.

Definition of b <’ a
b <" a if, and only if, a = (ay, ..., a,) and one of the following cases holds
(i) b= {ag,...,ax—1) with k <mn,

ii) b = (ag, ..., Gx—1, bk, ..., by,) With & < min{m,n} and by <’ ay.
( ) < ) ) 5 ) ) > { 5 }

Lemma 14.11. Ztzax<'y—-y<' 22—z < 2.

Inductive Definition of a set OT of ordinal notations

1. 0€ OT,

2. ag,...,ap € 0T & a, %' ... <" a9 = (ag,...,an) € OT.

Definition b <a < a,be OT &b <"a

Abbreviation: F(y) := Vz(Vz<aF(2) — Vz=<xx(y) F(2))

Lemma 14.12. Zt Prog_(F) — Prog_(F)

Proof (in Z):

Assume (1) Prog_(F), (2) Vy<bF(y), (3) Vz<aF(z). We have to prove Vz< ax(b)F(z).

From (3) and (2) by induction (on n) we obtain (4) VaV{(y1, ..., yn) (Y1, .-y Un < b — Vz<ax{y1, ..., yn) F(2)).
Now let ¢ < ax(b). Then either ¢ < a or ¢ = ax(by,...,b,) with b, < ... < by < b.

1. ¢ < a: F(c) follows from (3).
2. ¢ = ax(by,....,b,) with b, < ... <b; < b: Since <’ is transitive (cf. 14.11), we get by, ...,b, < b and then
Vz < ¢ F(z) by (4). Hence F(c) by (1).

Lemma 14.13. ZF TIL(F,y) — TI<(F,(y)) .
Proof (in Z):

Assume Prog_(F) — Vz < yF(z) and Prog_(F). By Lemma 4.12 we get Prog_(F) A Vz < yF(z), hence
F(y), and from this Vz < (y)F(2), since Z I V2=(z < 0).

Theorem 14.14. Z+ TIL(F,a) , for each a € OT.
Proof:

Let ¢o := 0, ¢pmy1 := {¢m). Then a < ¢, for some m. By (meta-)induction on m we obtain Z - TIL(F, ¢;,).

[ Induction step: Z F TIL(F, ¢p) ESVASN® (F, cm1) |

Definition 0(0) := 0, o((ag, ..., a,)) 1= w°(@) 4 .. 4 wolar)
Lemma 4.15 o maps (OT, <) isomorphic onto (g9, <).

Proof:
1. From the definition of <’ we get by induction on a: a £’ a and Vb(b <" aVa=0bVa <'b).
2. Va(o(a) < gp): trivial.
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3. By induction on b we prove: b < a = o(b) < o(a).

3.1. If a = (ag, ...,an) and b = {(ag, ..., ar_1) with k& < n then o(b) < o(b) + w®@) 4 ... + wol@) = o(a).
3.2. If a = (ag, ..., an), b = {ag, ..., @r—1,bk, ..., byy) with & < min{m,n}, by < ax, then by IH o(b,,) < ... <
o(br) < o(ay,) and thus o(b) = w°(@) 4 4 wolar—1) 4 olbr) 4 4 olbm) < olao) 4 4 elar) < o(a).

<

4. From 1. and 3. it follows that o|or is injective, and that a,b € OT & o(b) < o(a) implies b < a.

5. By induction on « < gg we prove Ja € OT(o(a) = «): Let a # 0. By 11.10a, 11.11a there are ag > ... >
such that « = w® 4+ ... + w* and oy < « (the latter follows from ay < w* < a < gg). Now by IH there
are ag, ..., a, € OT with «; = o(a;). From «,, < ... < g we obtain a, < ... < ag by 4.

Hence a := (ag, ..., an) € OT and o(a) = a.

Corollary. < is wellfounded with |a|< = { o(a) ifae QT
0 otherwise

Proof of |a|< = o(a): If a € OT then |a|< = sup{|b|<+1:b < a} Z sup{o(b)+1:b < a} 1L o(a).

Result.
Provability of transfinite induction in 7 is characterized by the ordinal €j in the following way:
(I) If < is an arithmetical wellfounded relation such that Z - TI,(X) then || < || < &o.
(IT) For each a < g¢ there exists a primitive recursive wellordering <, of ordertype « such that
ZF TI; (X). (For example: m <4 n & m < n < a, where < is the above defined relation of

ordertype g, and a € OT with o(a) = a.)

The Hydra game
A hydra is a finite unlabelled tree. By 0 we denote the hydra consisting of only one node.

Let o be the rightmost head of a the hydra h # 0. If Hercules chops off this head the hydra h chooses an
arbitrary number n and transforms itself into a new hydra h[n] as follows (where 7 is the node immediately
below o, h~ is h without o, and h™|, is the subtree of h~ with root 7):
Case 1: If 7 is the root of h, then h[n] := h~.
Case 2: Otherwise h[n] arises from h~ by sprouting n replicas of h~|, from the node immediately below .
A hydra game is a finite or infinite sequence (h;);<q of hydras, such that Vi4+1 < a3n;(h;11 = hi[n]).
Theorem 14.16. Each hydra game terminates, i.e., YAV(n;)i<,3k(h[no][n1]...[nx] = 0).
Theorem 14.17.  Z I/ VYh¥(n;)i<wIk(h[no][n1]...[nk] = 0).
Proof of Theorem 14.16: To each hydra h we assign its Godel number 'h! as follows: Th'!:= (Tho',...,Th,—1 1)
where hg, ..., hy_1 are the immediate subtrees of h. Obviously the mapping h +— 'h' is a bijection from the
set of all hydras onto IN. Therefore from now on we identify hydras and natural numbers.
The above operation a — a[n] can be defined by primitive recursion as follows:
1. tp(0) :== 0, O[n] := 0.
2. If a = {aog, ..., @) with a,, = 0 then tp(a) := 1 and a[n] := (ag, ..., Gm—-1)-
3. If a = (ag, ..., am) with tp(a,,) = 1 then tp(a) := w and a[n] := {(ag, ..., Am—1, am[0], ..., a:n [0]).

n+1

4. If a = {ag, ..., am) with tp(a,,) = w then tp(a) := w and a[n] := (ag, ..., Gm—1,am[n]).
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Lemma 14.18. For each a # 0 one of the following two cases holds:
(i) tp(a) =1 & o(a) = o(a[n]) + 1 (for all n);
(i) tp(a) = w & o(a) = sup,,¢, o(a[n]) & Vn(o(a[n]) < o(a[n+1])).

From the Lemma it follows that o(a[n]) < o(a) for each a # 0. This proves 14.16.

Proof of Theorem 14.17 (Unprovability of termination of the hydra game)

Abbreviation: Let <« C INXIN be an arbitrary arithmetical relation.
WF(G) :=VaAlyG(z,y) — Tz, 20, 21(G(x, 20) A G(z+1,21) A 21 4 20),
WF (X)) := WF4(G) with G(z,y) := (z,y) € X.

TL,(F) := Prog (F) — VzF.

Lemma 14.19 Z+ WF(X) <= ZF TL(X)

Proof:
“=": Assume Z F WF((X); then also Z - WF(G) for each formula G(z,y).
Now we work “in Z”: Assumption: Prog (X) Aa & X.
For suitable G we prove “WF4(G), i.e. Vi3bG(i,b) A Vi, by, b1( G(i,bo) AN G(i+1,b1) — by <bg).
A(i,s) 1 Vi <i((8)j419(8); A (8)j+1 € X AV a(s)j[z < (s)j+1 — x € X]),
Go(i,b) = 3s((s)o =a A (s); =bA A(1, 9)).
(0) A(i,s) NA(i,8) A (s)o = (8)o = V5 <i(s); = (5);),
(1) G, is function: cf. (0).
(2) G, total: By induction on ¢ we prove 3b G, (3,b).
Induction step: Ga(i,bo) "5 bo & X T2 30 qbo(b ¢ X) = 3by Guli+1,by).
(3) Gali,bo) A Ga(i41,b1) = by <by.
Proof: 3s[(s)o =a A (s); =bo AN A%, )] ATS[(8)o = a A (8)it1 = b1 A A(i+1, 5)] o
= b1 = (8)i+1<(8)i = ()i = bo.
So we have proved Z F Prog (X) Aa & X — -WF(G,).
Hence Z + =(Prog(X)ANa & X) ,ie., ZF Prog (X) —a€ X.

“«=": Assume Z I TI4(X). Then also Z F TI4(F) for any F.

Let F(y) := 3z((z,y) € X) — B with B := 3z, 20, 21({x, 20) € X A (x+1,21) € X A —(21 < 20)).
Now we work “in Z”: Assume VazIy((z,y) € X) and Vz<yF(z) and (z,y) € X.

Then there exists z such that (z+1, z) € X.

If =(z <y) then (x,y) € X A (z+1,2) € X A =(z <y), thence B.

If z <y then F(z) and Jz1((z1,2) € X), thence B.

So we have proved: Z F Vzdy((x,y) € X) — Vy(Vz<yF(z) — F(y)).

Together with Z = TI (F) this yields Z F Va3y((z,y) € X) — YyF(y), i.e.,

ZEVaIy((z,y) € X) — FyIze((z,y) € X) — B.

This yields Z F Va3y((z,y) € X) — B, i.e., ZF WF(X).
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Definition b <; a = a # 0& Ji(b = ali])

Theorem 14.20

(a) =<1 is wellfounded and ||<1]|| = &o.

(b) Z 1 WE, (X).

Proof:

(a) From Va # 0¥n(o(a[n]) < o(a)), it follows that <; is wellfounded.

Now by <j-induction on a € IN we obtain o(a) = |a|<,: 0 # a S o(a) = sup,¢,(o(a[n])+1) H
sup, e, (Ja[n]|<,+1) = sup{|b|<,+1 : b <1 a} = |a|<,. Hence g9 = sup{ja|<,+1:a € IN} = ||<4].

(b) €0 = ll<u | 2 2 TI,, (X) 2 Z i WF_, (X).

Remark: Theorem 14.17 follows from 14.20b.

Va¥(n;)i<w3k(a[no][n1]...[nk] =0) <

V(ai)icw(Vi(ai = 0V aiy1 <1 a;) — Jk(ax =0)) <

VeIly((z,y) € X) AVe((x,0) € X VVzo,21({z,20) € XN (x+1,21) € X — 21 <1 20)) — Fz({x,0) € X).
By pure logic and Vy—(y <1 0) the latter implies WF_, (X):

Vaely((z,y) € X) — Tz ([(z,0) € X ATz, 21({x, 20) € X A {x+1,21) € X A (21 <1 20))] V {(2,0) € X),
VeIly((z,y) € X) — Iz, 20, 21({x, 20) € X A (x+1,21) € X A (21 <1 20)).
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15 Godel’s 2nd Incompleteness Theorem

Theorem (Gddel’s 2nd Incompleteness Theorem)
If T is a recursively axiomatizable, consistent theory with Z C T then T I/ =Provp('L1),

i.e., T does not prove its own consistency.

Here Provr(x) := 3y(Prfs(x,y) =~ 0), where @ is a primitive recursive axiom system of T', and Prf4 € PR?
is the function symbol implicitely defined in the proof of Theorem 5.3 such that
Prfs(a,b) =0 < (a,b) € Prfg.

We will obtain Gédel’s 2nd Incompleteness Theorem as a Corollary from Theorems 15.1, 15.2 below.
Let T be a recursively axiomatizable consistent theory and £ := L(T).
Let Z be the axiom system of arithmetic, as introduced in §14 but without set variables. So, L(Z) = £, = PR.

A 3i-formula is an Lo-formula of the form Jx(s a2 t). Note that Provr(x) is a 31-formula.

Convention. Within formulas we often write TA " instead of TA .

Theorem 15.1 (Godel-Lob)

Assume that Z C T, and that P is a l-ary L-formula satisfying the following derivability conditions for all
L-sentences A, B:

(D) THA = T+ P(TAY),

(D2) TH P(TA—B') — P(TA") — P('B1),

(D3) THP(TAY) — P(TP(TAT)T).

Then for every L-sentence A the following implication holds: T+ P(TA1) - A = T+ A.

Especially we have Tt/ -P(TL7).

Proof:

Abbreviation: OA := P(TA").

Let A be an L-sentence with 7'+ 0OA — A. Since every (primitive) recursive function is representable in
Z (cf. Theorem 6.5 or the proof of 15.2a), the Fixpoint Lemma (Theorem 5.8) applies, and there exist an
L-sentence C such that T+ C « (OC — A). Now we conclude:

(1) THOC — 0OC — OA, [ from - C — 0OC — A by (D1),(D2) ]
(2) THOC — OA, [ from (1) and (D3) FDOC — 0OC |
(3) THOC — A, [(2) and FOA — A ]
4 TkFC, [ from (3) and - (OC — A) — C']
(5) T+0OC, [ (4),(D1) ]
(6) T+ A. [(3).(5) ]

Theorem 15.2.

(a) Z F A, for each true Xi-sentence A.

(b) Z+ Provr("A—B1) — Provp("A') — Provp("B7) for all L-sentences A, B.
(¢) fZ C T then Z+ A — Provp(TA") for each X;-sentence A.
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Proof:

(a) Let A = 3z(s ~ t). Then there is an a € IN such that s,(a)V = t,(a)". By L.15.3(Corollary) we get
Zt s;(a) = t,(a) and then Z - Jz(s ~ t).

(b) One easily shows Z F Prfs("TA—B1,y) — Prf4(TA1,z) — Prio("B1,yxzx("B)).

This implies the assertion.

(¢) Roughly speaking, (¢) is obtained by formalizing the proof of (a) in Z.

Proof of Gddel’s 2nd Incompleteness Theorem:

Theorem 15.2 = T and P(x) := Provr(x) satisfy the conditions of Theorem 15.1 E t/ = Provr("L7).

Lemma 15.3

For each f e PR" and all ay,...,an,b € IN we have: f(ai,...,an) =b = ZF fai..an = .
Proof by induction on the definition of f:

1.S(a)=b = Sa=b = ZF Sa=b.

2. Ci(ar,..,an) =b=>k=b=7ZFClar..an = .

3. IM(a1,...,an) =b = a; =b = ZF1ai...an = D.

4. f = (ohgy...gm) und f(a) =b:

Then h(by, ..., by) = b with by := g1(a),. .., by := gm(a); and by LH. we have

ZEhby...byy = bAgia=bi A... A Ggna = by. From this we get ZF fa = hgia...gma =~ hby...b,, = b.
5. f = (Rgh): Side induction on the last argument of f.

5.1. f(a,0)=b = g(a)="b EaVAS fal ~ ga =~ b.

5.2. Let f(a,c+1) =b. Then h(a,c,d) = b with d := f(a,c). By L.H. and S.I.H. from this we get
ZFhacd~band Zt fac~d; hence ZF factl ~ faSc~ hac fac=b.

Corollary. If ¢ is a closed PR-term then ZFt~b for b:=tV.

A generalization of Gédel’s 2nd Incompleteness Theorem
Let T* be a recursively axiomatizable theory and £* := L(T™*). We do not require that Lo C L*.
Definition

An interpretation of Z in T* consists of a 1-ary £*-formula N and a mapping A — A", which assigns to

each Lo-formula A an £*-formula AV such that the following holds:

(1) IN=1, (A— BN =AN - BN (VzA)N =Vz(N(x) — AN); FV(AN) = FV(A);
(I2) ZFA & FV(A) =0 = T*+ AN,

The interpretation is called strong if in addition we have

(I3) Z + Provz("A1) — Provp-(TAN1), for each Ly-sentence A,

(I4) There is a primitive recursive function g such that g("A') = TAN 1 for each Ly-sentence A.

Theorem 15.4
If T* is a recursively axiomatizable, consistent theory, and A — AN a strong interpretation of Z in T*, then
T* i/ =Provp- (" LN,
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Proof:

Let T :={A: A an Ly-sentence with T* - AN} and P(x) := Provr-(gz).

(1) T A& A an Lo-sentence = T* - AN ie. AcT.

Proof: By assumption there are Ay, ..., A, € T with A; — ... — A,, — A is logically valid.

From this we get by (I1),(I12) T* - AN — ... — AN — AN and T* - AN (i =1,...,n), hence T* - AN.
9) T consistent. [Proof: TH L & 7 1N 1N = ]

3)ZCT. [Proof: A€Z ©

(

( T*+ AN & A Lo-sentence = A€ T. ]

O TFA X 7+ AN 122 71 pray,

(D2) From Z + Provp-("TAN—BN1) — Provp-(TAN ) — Provp-("TBN 1) [15.2b] and AN —=BN1 =
=(A-B)N1=g(TA—=B"), TAN 1= g(TA"), 'BN 1= g(TA") we get Z+ P("TA—B") — P(TA") — P('B").
(D3) B := P(TA") is a ¥y-sentence. Hence Z - B — Provz("B') (by 15.2¢), which by (I3) yields Z + B —
Provp-("TBN1) and then Z - B — P('B7) by (I4).

Theorem 15.1 = T/ =P('L") = =Provp-("L1) ¢ T = T*/ =Provp("L1)N.

Towards a proof of Theorem 15.2¢

For g € Lo U VARSU { L, —,V,~} let ¢ := SN(q).

For PR-terms tg, ..., t,—1 the PR-Term {(tg, ..., t,—1) is defined as follows:

{) =0, (to, .-y tn) 1= Smtodt1, ..., tn).

Note: For closed PR-terms to, ..., t,_1 we have (to,...,tn_1 )Y = (£, ..., tN ).
Let v € PR such that Z F 10 ~ (01 A vSz ~ (S, vz).

Then v(n) = 'n! for all n € IN.

Definition
A formula is called simple, if it is build up from atomic Ly-formulas and closed Lo-formulas of the shape

Vz A by means of —. Ly-terms and simple formulas are called simple expressions.

q is used as syntactic variable for symbols from Lo U {L, —, ~}.

Let Sub}, € PR™"? such that Sub’ (Tu!, %o, ..., "t 1) = Tpg.. 0, (Los ey tn) 1.

(Sub’ (a, ¢) shall be defined by recursion on a, similarly as Sub(a, ¢y, co) in §5.)

Definition of [u]

For each simple expression u we define a PR-term [u] as follows:
1. [x] :=va, 2. [qui..uy) = {4, [u1], ..., [un]), 3. [VxA] := VoAl
Remark: FV([u]) = FV(u).

Note:

If w is a simple expression with FV(u) C {vg, ..., v, } then [u]V[vo/ag, ..., vn/an] = My, 0, (G0, oy an) |-

Especially [u]V = Tu! if FV(u) = 0.
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The following Lemma is stated without proof.

Lemma 15.5.

(a) If u is a simple expression with FV(u) C {vo, ..., v, }, then
Z & [u] = SubTulvyg . .. vu,.

(b) Z+ Provr({=,z,y)) — Provr(z) — Provr(y).

(¢) ZF Provp(z) — Provp(Sublzvvg...vuy,).

Lemma 15.6. If u is a simple expression, and ¢ is a term k, = or Sz, then Z F [u, (¢)] & [u],(t).

Proof by induction on u:

1. u € VARS \ {y} or u = VzA: trivial.

2w =y [y (8] = [t] [l (1) = .

201, t=k: [V = k1 =v(k) "EE k] ~ (k) ~ vk
2.2. t = Sa: - [Sz] ~ (S, vz) ~ vS.

2.3. t=u: [x] = vz

3. u = qur.tin: - [(y/0)] % (G 01 (9/0)] o [n (/1) 0, 1] /1), o ) 9/0)) = [/,

Lemma 15.7. For simple formulas Ay, ..., 4,,, B:

Z-A —...— Ay —>B = ZF Provp([Ai1]) — ... — Provp([An]) — Provr([B])
Proof: Abbreviation: P(z) := Provr(z).

(1) Z+ A& A simple = Z F P([4)]).

Proof: ZFA = THA 2 72 P(TAT) '5° 7+ P(Sub’ ATy ... vw,) 2% Z+ P(A]).

(2) ZF P([A1 — ... — Ap — B]) — P([A1]) — ... — P([Am]) — P([B]) , for simple Ay, ..., A, B.

Proof by induction on m:

1. m = 0: trivial. 2. m > 0: Let C := Ay — ... — A,, — B.

By 15.5b we then have Z - P([A; — ... — A,, — B]) — P([A1]) — P([C]).
Further by LH.: Z+ P([C]) — P([A2]) — ... — P([A]) — P([B]).

Now the Lemma is obtained as follows:

ZFA—...—Ap—B ¥ 7+-PA, ... —4,-B) 2 ZFP(A4])— ... P([A.])—P((B]).

Lemma 15.8
Zt fxy..xn =y — Provp([fzy..x, = y]) , for each function symbol f € PR".

Proof by induction on the definition of f:

Lf=C

(1) b fE~E,

(2) FP([f7 = k), [ (1), 15.7 ]
B)Fkry— [ff=kl~[ff~yl,(k)~[fT~y] [15.6]
4) F fi~y—P(fT~y)) [(1):(2),(3) ]
2. f=I"as1
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1) F P([fx ~ Sxz))

(2) FSz~y — [fo~ S|~ [fr = y]y(Sz) = [fz ~ y]
4. f = (ohg1...gm)

D FP(nf=ul]) — ... = P(lgmT = ym]),

-gmT =y — P([fT =~ y]),
5 f= (Rgh)

Let t := [fZz ~ y]. We will prove - P(t, ,(0, f£0)) and - P(t, ,

= I T R Y — hyrym Ry — P([fZ = y)),

OT
\]

[ (1):(2),3)

[ (4) with ¢;@ in place of y;

7]
H.|
[ H.]
]
]

z, fZz)) — P(t,,,(Sz, f¥Sz)).

By (formal) induction from this we obtain F P(t, ,(2, fZz)) and then - fZz =~ y — P(?).

51 (1) FP([gZ ~ y]) — P([f70 = y]),

(2) Fgi~y — P([g7 = y]),

(3) F£2(0) =~ [f20 ~ y],

(4) F g~y — P(t:(0)),

(5) - P(t.,4(0, f£0)).

5.2. (1) P([hZzw = y]) — P([f%z = w]) — P([f%Sz = y]),
F hizw =y — P([hZzw = y]),

~ [fEz mw] At.(S2) & [fiSz ~ ],
thszyHP( y(w)) — P(t:(5z)),

FP(tey (2, f7z)) — P(t.,y(Sz, f2S2)).

Proof of 15.2¢ (Z+ A — Provp("A') , for each ¥;-sentence A):

Let g € PR! such that Z - 3z(gz ~ 0) < A.
N ZbFgr=0— A,
2) Z + P([gz=0]) — P([A]),
3) Z I [gz~0] = [gx~yl,(0),
4) Z+ gz ~ 0 — P([gz~yl,y(0)),
5) Z  gxr ~0— P([4]),

)

(
(
(
(
(
(6) Z + Jz(gz =~ 0) — P(TAY),
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5.6
[(1),(2),(3)
[ (4) with fZ0 in place of y
[15.7

[LH.

[15.6
[(17),(27),(3)

[(4°) with fZz, fZSz in place of w,y

[ (1), 15.7



