%!PS-Adobe-2.0 %%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software %%Title: main.dvi %%Pages: 97 %%PageOrder: Ascend %%BoundingBox: 0 0 596 842 %%DocumentFonts: XYATIP10 XYBTIP10 XYDASH10 %%EndComments %DVIPSWebPage: (www.radicaleye.com) %DVIPSCommandLine: dvips main.dvi %DVIPSParameters: dpi=600, compressed %DVIPSSource: TeX output 2003.02.11:1526 %%BeginProcSet: texc.pro %! /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[ matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{ statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0] N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin /FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array /BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2 array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get }B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub} B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr 1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3 1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx 0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{ rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B /chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{ /cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{ A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse} ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17 {2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{ 1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop} forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn /BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put }if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{ bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{ SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{ userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X 1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4 index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N /p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{ /Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT) (LaserWriter 16/600)]{A length product length le{A length product exch 0 exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot} imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M} B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{ p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end %%EndProcSet %%BeginProcSet: texps.pro %! TeXDict begin/rf{findfont dup length 1 add dict begin{1 index/FID ne 2 index/UniqueID ne and{def}{pop pop}ifelse}forall[1 index 0 6 -1 roll exec 0 exch 5 -1 roll VResolution Resolution div mul neg 0 0]/Metrics exch def dict begin Encoding{exch dup type/integertype ne{pop pop 1 sub dup 0 le{pop}{[}ifelse}{FontMatrix 0 get div Metrics 0 get div def} ifelse}forall Metrics/Metrics currentdict end def[2 index currentdict end definefont 3 -1 roll makefont/setfont cvx]cvx def}def/ObliqueSlant{ dup sin S cos div neg}B/SlantFont{4 index mul add}def/ExtendFont{3 -1 roll mul exch}def/ReEncodeFont{CharStrings rcheck{/Encoding false def dup[exch{dup CharStrings exch known not{pop/.notdef/Encoding true def} if}forall Encoding{]exch pop}{cleartomark}ifelse}if/Encoding exch def} def end %%EndProcSet %%BeginProcSet: special.pro %! TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N /vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N /rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N /@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{ /hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B /@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{ /urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known {userdict/md get type/dicttype eq{userdict begin md length 10 add md maxlength ge{/md md dup length 20 add dict copy def}if end md begin /letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{ itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack} if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1 -1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{ noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop 90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr 1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr 2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4 -1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{ Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale }if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState save N userdict maxlength dict begin/magscale true def normalscale currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts /psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{ psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2 roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict begin/SpecialSave save N gsave normalscale currentpoint TR @SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{ CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR }{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N /@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end} repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N /@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X /yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0 1 startangle endangle arc savematrix setmatrix}N end %%EndProcSet %%BeginFont: XYDASH10 %!PS-AdobeFont-1.1: XYDASH10 001.104 %%CreationDate: 1997 Jul 20 21:19:18 %%RevisionDate: 1997 Aug 28 05:34:12 %%RevisionDate: 1997 Sep 18 10:23:31 % % XYDASH10: line segments for Xy-pic at 10 point % % Original Metafont design Copyright (C) 1991-1997 Kristoffer H. Rose. % PostScript adaptation Copyright (C) 1994-1997 Ross Moore. % Hinting and ATM compatibility Copyright (C) 1997 Y&Y, Inc. % % This file is part of the Xy-pic macro package. % Xy-pic Copyright (c) 1991-1997 Kristoffer H. Rose % % The Xy-pic macro package is free software; you can redistribute it % and/or modify it under the terms of the GNU General Public License % as published by the Free Software Foundation; either version 2 % of the License, or (at your option) any later version. % % The Xy-pic macro package is distributed in the hope that it will % be useful, but WITHOUT ANY WARRANTY; without even the implied % warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. % See the GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this macro package; if not, write to the % Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 11 dict begin /FontInfo 9 dict dup begin /version (001.104) readonly def /Notice (Copyright (C) 1996, 1997 Ross Moore and Y&Y, Inc.) readonly def /FullName (XYDASH10) readonly def /FamilyName (XYDASH) readonly def /Weight (Medium) readonly def /ItalicAngle 0 def /isFixedPitch false def /UnderlinePosition -300 def /UnderlineThickness 150 def end readonly def /FontName /XYDASH10 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 107 /d107 put readonly def /FontBBox{-40 -520 503 520}readonly def /UniqueXX 5092844 def currentdict end currentfile eexec 80347982ab3942d930e069a70d0d48311d743b8793c40476b99911a1be6c93ca a7ffc9533764a6a2a3ebcf0bebc6668e399d80ad8b0e5e21d556d8fa71b95a1e 01e6689c74f977a4bbec6795aec114d8507f237839f414ee4fbf8162c865260f 923a63721852c7bff69703f7e0ab99c3b85e83c62c13ea99442890e370376cce 7133ce8f3de2f4c1dc78fb55dff4eb737c195d266281adef5d56fbbc3b785b1b 59d6efeab3b93e713f4b9105cf1594c83472177c0f2b04c840760c92c094a0b9 2a720e4c7b03708d225531ac69324547d65009965f1c52d2be3112c67b6002b1 3d5f2c82505b7f0136cc926ff2bda0b53691b13e816817e913048ad033e0ff31 9d18776c4be80936c7449f316ff7f9026e5eeb9984867fc558bb18773e9a5390 d4490fb8e63a0ce175f52732043cba9d379d01ef25fc4be056d3206186b53195 63ee3d03fa580efa0ad7d3162f77878d348a841432fabedfebc8559530f6cbc1 59df0a77aacfa9f0974542a736680e064ac101c646442b0ca133c4701c206de9 6b70d341f9558a800520c2d32be3628b6df05a19538ec2596d2334f05d54e742 a1a18ebbc12f04c45b899f667d9e6f3a4eaa1854562506d0da4057c4bbfbbacc c1c208cc47b76226ef6d4d3da7d976b7a21a2cc7aa7cf0602fbd2a46022f7894 c0667e19a31cc10ca33811f882ca5cc140bd49eb62545ffe3f418e8cb9b223e3 b2630b486a3b948c74751c414e84334424a1eee8f20b1bd4eab9a0e0545c9bf2 f8cda548feb88b89e369f29f5318ee43b25672b275b05016b635dc656bca5b14 a28e91c516e3f5e99609f5a37a696fbb39379b8374a044e2fe6d4a193d5360d4 31229d74455ff8645ba7462da11460be68629c6a2b1b4b4f409c806cdaec4d3f 941ec5e5a1a6aaaf2c72de027d73b6d446b29f4a0504dfa9e100f273e0b8f54f 707a5a7e1e5f5f3734783960d641ff957f220cdff18bb2d536a406abc54e557f a1e9728df44ca1a17c233e052e050fcd4d771fc5fa346a74f34ae0b8c9debfd2 7ea2f8c787b67f6e081fc6e690af3e0089d66466ae0ca30438dcbe463fe7dfce 138823ea2259db7e1c315708fe6c234e1fd8d5783c876ac95931ffa9c6df49cf ee87d09444a49ea1ab572691870d220d8baf7db4369a270a24249f21b615e586 aff991ef2840f1ee3e3a5e62a31ba37436ce7899aad0beb353461f1f8ca382eb b2e697ce850d9996c634205bf858981a90ef970245a259ac8dd3c9ac15188361 5c4b7ef4efd82b043f67268d11a4bfebfd62651c6116c5e3a9681397d87dd2b0 fe46a593776bd3dcec0d4970778c08bd64cf632e82d603f458f92a47f41e301d f1bbbd0f45ba9cfb3c6e04283d2a 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: XYBTIP10 %!PS-AdobeFont-1.1: XYBTIP10 001.104 %%CreationDate: 1997 Jul 20 21:19:18 %%RevisionDate: 1997 Sep 14 19:58:47 % % XYBTIP10: lower arrow tips for Xy-pic at 10 point "technical style". % % Original Metafont design Copyright (C) 1991-1997 Kristoffer H. Rose. % PostScript adaptation Copyright (C) 1994-1997 Ross Moore. % Hinting and ATM compatibility Copyright (C) 1997 Y&Y, Inc. % % This file is part of the Xy-pic macro package. % Xy-pic Copyright (c) 1991-1997 Kristoffer H. Rose % % The Xy-pic macro package is free software; you can redistribute it % and/or modify it under the terms of the GNU General Public License % as published by the Free Software Foundation; either version 2 % of the License, or (at your option) any later version. % % The Xy-pic macro package is distributed in the hope that it will % be useful, but WITHOUT ANY WARRANTY; without even the implied % warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. % See the GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this macro package; if not, write to the % Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 11 dict begin /FontInfo 9 dict dup begin /version (001.104) readonly def /Notice (Copyright (C) 1996, 1997 Ross Moore and Y&Y, Inc.) readonly def /FullName (XYBTIP10) readonly def /FamilyName (XYBTIP) readonly def /Weight (Medium) readonly def /ItalicAngle 0 def /isFixedPitch false def /UnderlinePosition -276 def /UnderlineThickness 138 def end readonly def /FontName /XYBTIP10 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 15 /d15 put dup 47 /d47 put dup 53 /d53 put readonly def /FontBBox{-542 -542 542 542}readonly def /UniqueXX 5092839 def currentdict end currentfile eexec 80347982ab3942d930e069a70d0d48311d725e830d1c76fba12e12486e989c98 74c2b527f0925722787027f44470d484262c360cdfdddf3657533a57bb16f730 48bfbbfcb73a650484015441fdc837add94ac8fbd2022e3ec8f115d4b4bb7b7f 15388f22cc6198efe768bd9fceb3446ee4a8dc27d6cd152485384ef5f59381ff da43f2d20c8fb08aa27ab2015b774db10dacfdcd33e60f178c461553146ab427 bdd7da12534ba078ad3d78041987a409a2d06b6b3057738213cee08cd789eeaa 097caceb2738a78b2f437638f0d63dd9e45ce613ae94486e726c4ed202501d61 51965c5c865a24933f21e0b1c67ff0d74bea0b8003496a2b1c9e3cde218dfa02 7343f1561243c5419412a440b6d4682c4dd92bf310718d73d28f47559a653346 c8fa6a8e3ec0a68d6661b293a71328a0bd0521249f1263070e67d0c20ca4a48d 221bcd864852e33289496155416b7cc05e73dd2b7f9ba0977ab328be862ac7e0 139c8eef1237e57525cbc853d7cbe3c9a8b54c378e8af02257a8daa736c3d9ae fb18fd198a33681c334984d81e2d783d32adf54549f5bea0bf351b1016032908 81685bde8d44703654d97063c8ebfb896e029b2383f5754d467163ec07f3398a d88196c720fd98b9a2260de8d7d3aa6453f831ce18233cfbf6cb098bc3ca2cd1 495386a279ced386537228ec08f3b3e400cc040ab2e763b0cd93c9a2c5ee0436 f0a2f033ba5d3e4231aacc9b0aa820f7ad72a3cec593a1153ee5527693ad3bc8 eaef55ac2f52fdf27146c04dcc825181a275e632e75a94cb9b3d3f7d17c1c08b 83bbf5c681f864e234d10b0f7c64839aa1671931f39a001e4134030b91d9a473 6c7d5e101e04feb20a04907ab46ab24902c1844b018beefd9014c8b629674e57 f1f0d63ad79dfa8ce4d1fffabeb4315386d494a3ab66cc9f291a714ef0ee4f9f 1687f0ecbcd2acea0e98dd5f94dfd700e546599e58d1f25bc54ef6ec0f12b91e 6690287b7c527a51724cea71da655f2b2974633ba5484cc6c2300ba28dff89e2 0c37542986ec1e4613cc8a16521e5c2720d88fa18111a1083dcee82df6d7bd86 de7966fd33841c6817312852b15016eb751633809d42b6d22e3e4ea5a1ae3b64 fa207170d6798eba6bb9a9416104aeb0cf2ed2238cd3236e2b37a4ab0459311a 59082132a8cf54dd6a12ea48c502fe3fee85c66288154a49d1e302dd3bf3c8fd ff921ed41b0de0bc4240497afa210f55ae9720a6ae82fbab2a5291b90d482704 63dad9a8071b42348ed18549fac10fb39bec4971a4e3449d9f24a62b6f30a9a5 1e95f16e90a23cebd0598adeac2a65c04e2b5ef4af7170cb5fdc6fa40b8b813d 94c3b961ed3bebe32a8cc174c0c0cb5b7038a3859751e9b9efeaecb7458250f5 b5a208ab197e297952db16e76a88043a33c11b70c411315d39d7a485a083eb88 5fcf32a2b5fbd95424543ef5e751c5388349720b143410ce99b73a686c26481d ff06fb6176726af059935b6ad196d23f88bd8c7537763949df743564472a9b6d f0df9e96291c019dfb4ae6587b0a121288b5f2ab4ff56529e61f32939bed8348 35f287e9f2e48f2fa77a0172ac8eec1450204a28471f1ea526a53630a6d08e4d 371bdb954a73493af40d5298dd780270fc96103b33723beb797f6919bc735d2b 4c565516c8193949b4d24f3a3c06c207c07c3fbe7cfd5bdb4d4ef67d1116a7 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: XYATIP10 %!PS-AdobeFont-1.1: XYATIP10 001.104 %%CreationDate: 1997 Jul 20 21:19:17 %%RevisionDate: 1997 Sep 14 19:58:47 % % XYATIP10: upper arrow tips for Xy-pic at 10 point "technical style". % % Original Metafont design Copyright (C) 1991-1997 Kristoffer H. Rose. % PostScript adaptation Copyright (C) 1994-1997 Ross Moore. % Hinting and ATM compatibility Copyright (C) 1997 Y&Y, Inc. % % This file is part of the Xy-pic macro package. % Xy-pic Copyright (c) 1991-1997 Kristoffer H. Rose % % The Xy-pic macro package is free software; you can redistribute it % and/or modify it under the terms of the GNU General Public License % as published by the Free Software Foundation; either version 2 % of the License, or (at your option) any later version. % % The Xy-pic macro package is distributed in the hope that it will % be useful, but WITHOUT ANY WARRANTY; without even the implied % warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. % See the GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this macro package; if not, write to the % Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 11 dict begin /FontInfo 9 dict dup begin /version (001.104) readonly def /Notice (Copyright (C) 1996, 1997 Ross Moore and Y&Y, Inc.) readonly def /FullName (XYATIP10) readonly def /FamilyName (XYATIP) readonly def /Weight (Medium) readonly def /ItalicAngle 0 def /isFixedPitch false def /UnderlinePosition -276 def /UnderlineThickness 138 def end readonly def /FontName /XYATIP10 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 15 /d15 put dup 47 /d47 put dup 53 /d53 put readonly def /FontBBox{-542 -542 542 542}readonly def /UniqueXX 5092838 def currentdict end currentfile eexec 80347982ab3942d930e069a70d0d48311d725e830d1c76fba12e12486e989c98 74c2b527f0925722787027f44470d484262c360cdfdddf3657533a57bb16f730 48bfbbfcb73a650484015441fdc837add94ac8fbd2022e3ec8f115d4b4bb7b7f 15388f22cc6198efe768bd9fceb3446ee4a8dc27d6cd152485384ef5f59381ff da43f2d20c8fb08aa27ab2015b774db10dacfdcd33e60f178c461553146ab427 bdd7da12534ba078ad3d78041987a409a2d06b6b3057738213cee08cd789eeaa 097caceb2738a78b2f437638f0d63dd9e45ce613ae94486e726c4ed202501d61 51965c5c865a24933f21e0b1c67ff0d74bea0b8003496a2b1c9e3cde218dfa02 7343f1561243c5419412a440b6d4682c4dd92bf310718d73d28f47559a653346 c8fa6a8e3ec0a68d6661b293a71328a0bd0521249f1263070e67d0c20ca4a48d 221bcd864852e33289496155416b7cc05e73dd2b7f9ba0977ab328be862ac7e0 139d5cb0db6f50b26bd8ab173859c9c94db82970311d7eb0a02bee1be5f0d126 f9079e67107eda14b460e46b03b0422eb45a4f4afa382841c35b0bc0c8639b73 43c819afc69838ce781c2de7d22bf503ef6eec27c83cfd52a77bbc754b4f2050 55341700991f3ef4b5b5a54c21283034b38c8b6a6e65abccc94c0c26836806ec 4df8d8c64f595841395072f8a2d289b7fe5497bc0e061810b16a1e48653bb092 42ffa3ef0bba4e37a5aa4ddc31f3138aaf10998fd66f3817b77012eac677ed2d 7447908c771fbaba4dfcfeca5374a6b87e5657809a82f0ae068c5384c12f4653 2a82645a512212140d815e80ec76b3370c382e9f6d29ec6afc178a622249fda7 775d4f6a554f04748ed4210257fa6e376188a175db3c00f88421820b063a985c 07ad665eff7e2d32a27015c528227c2805aa8df134f4abad9958b841aa4263ec 9ec6d907308b0a5a51049de002cfe60ef35bf33fc863ba14ff361749554abd65 47426fbf3958ddb506ea3e303c932edec2896d3017a57913cde60cbdafeddbd3 cd5ef6dd49299783a92fe9deafb24e7f74a6ca6c0198b2fcda46b512f519f6ca 942c8ba43f2b7fa8136090060198b503bce2bf87e8e19b44293677bdba948e17 d1a0a2ffcc7f647bf2fd924f3f9a87d9d9cddb7aeccf7ff4df580fe81790c4f6 857c123a7482ece18561d34d58a0bd4bd28b2eea039a8918ddce63148b32ff05 3727937c51e4fb303c4dbc8cc3add1f0766bf2d1036fa5e755965fc6ed91e7ce 48b397aa8a4415d396720a58173db7b7ff3933d0847c61ff6a4716e8351679ca aa584294dd5389e3b4d686253d27bff237b04662e6d8b21805ce745adfcc4a94 81ad2e4b0eb0b1ad48ab77d0e369b4bb14bc12fd6ead2fc4593f25fd8d099024 e33a6b1ed7b66bcaba0c6743c341c65be6a0d559f906cac041a4de30bcd42df6 20b513c4e48d1063f59aad5fc7912c4237dea4f021329f5e4b6820263434498b 1596f4ab6cc3ec26dd77268012afef4388f95c1deb6fee7c4986dd86fd773b3c a9872e20ebb86dc68ea28b9090af7d63303788d707c247d6947fe5fcb1b5d268 b717dca9842f30ba05be5c007df4fbd19b343f777e7a2c49486ca34c95262f3f 004f627de62b741e1e1c5333454f79cd4fb1a82bd35f97c3f577af7008064457 d70f04ec64739951e1e93c6c7a 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont TeXDict begin 39158280 55380996 1000 600 600 (main.dvi) @start %DVIPSBitmapFont: Fa cmbx12 20.74 9 /Fa 9 118 df76 D<92383FFFF80207B612E0027F15FC49B87E010717E0 011F83499026F0007F13FC4948C7000F7F90B502036D7E486E6D806F6D80727F486E6E7F 8486727FA28684A26C5C72806C5C6D90C8FC6D5AEB0FF8EB03E090CAFCA70507B6FC041F B7FC0303B8FC157F0203B9FC021FECFE0391B612800103ECF800010F14C04991C7FC017F 13FC90B512F04814C0485C4891C8FC485B5A485B5C5A5CA2B5FC5CA360A36E5DA26C5F6E 5D187E6C6D846E4A48806C6D4A4814FC6C6ED90FF0ECFFFC6C02E090263FE07F14FE0001 9139FC03FFC06C91B6487E013F4B487E010F4B1307010303F01301D9003F0280D9003F13 FC020101F8CBFC57507ACE5E>97 D<903801FFFCB6FCA8C67E131F7FB3ADF0FFFC050FEB FFE0057F14FE0403B77E040F16E0043F16F84CD9007F13FE9226FDFFF001077F92B500C0 01018094C86C13E004FC6F7F4C6F7F04E06F7F4C6F7F5E747F93C915804B7014C0A27414 E0A21DF087A21DF8A31DFC87A41DFEAF1DFCA4631DF8A31DF098B5FC1DE0A25014C0A26F 1980501400705D705F704B5B505B704B5B04FC4B5BDBE7FE92B55A9226C3FF8001035C03 8101E0011F49C7FC9226807FFC90B55A4B6CB712F04A010F16C04A010393C8FC4A010015 F84A023F14C090C9000301F0C9FC5F797AF76C>I<93387FFF80030FB512FC037FECFF80 4AB712E0020716F8021F16FE027FD9F8077F49B5D8C000804991C7003F13E04901FC020F 7F49496E7F49498049496E7F49496E7F90B55A48727E92C914804884485B1BC048841BE0 485BA27313F05AA25C5AA21BF885A2B5FCA391BAFCA41BF002F8CCFCA67EA3807EA47E80 6CF103F0F207F86C7F1A0F6C6E17F06C191F6F17E06C6E163F6D6DEE7FC06D6D16FF6D6D 4B13806D6D4B13006D6D6CEC0FFE6D02E0EC3FFC6D02F8ECFFF86D9126FFC00F5B023F91 B65A020F178002034CC7FC020016F8031F15E0030392C8FCDB000F13E04D507BCE58> 101 DI<903801FFFCB6FCA8C67E131F7FB3B3B3B3B3ABB812C0A8 2A7879F735>108 D<902601FFF891380FFFE0B692B512FE05036E7E050F15E0053F15F8 4D81932701FFF01F7F4CD900077FDC07FC6D80C66CDA0FF06D80011FDA1FC07F6D4A4882 4CC8FC047E6F7F5EEDF9F85E03FB707F5E15FF5EA25EA293C9FCA45DB3B3A6B8D8E003B8 1280A8614E79CD6C>110 D<912603FFFCEB0780027F9039FFE00FC00103B6EAF83F010F EDFEFF013F92B5FC49EB000F2601FFF01300480180143F4890C8120F4848814848814981 123F83485A187FA212FF6D163FA37F7F6DEE1F8002C092C7FC14F014FEECFFF06CECFF80 16FEEEFFE06C16FC6C16FF18C06C836C17F86C836C836C83013F17806D17C0010717E001 0117F0EB003F020716F8EC001F030015FC1607EE007F051F13FE1707007E82B482836D16 7FA2183F7F181FA27F19FC7FA26D163F6D17F86D167F19F06D16FF6E4A13E002E04A13C0 6E4A138002FE023F1300913AFFC003FFFE01E790B65A01C316F0018016C026FE003F92C7 FC48010714F80070D9007F90C8FC3F507ACE4C>115 D117 D E %EndDVIPSBitmapFont /Fb 148[42 107[{}1 83.022 /XYDASH10 rf /Fc 202[0 5[0 31[0 15[{}3 83.022 /XYBTIP10 rf /Fd 202[0 5[0 31[0 15[{}3 83.022 /XYATIP10 rf %DVIPSBitmapFont: Fe cmtt12 12 73 /Fe 73 127 df<00085B003EEB07C0007FEB0FE0A24814F0A26C14E0B3A2007E1307003E 14C0A20008EB01001C1E75BD33>34 D<1438147C14FCA5903803FF80011F13F0017F13FC 48B6FC4815804815C0260FFEFD13E0391FF0FC3FD83FC0EB1FF00180EB07F8EA7F00007E 140316FC481401A21503A46CEC01F8ED0060007F15001380EA3FC013F0EA1FFCEA0FFF6C 7F6CEBFFC06C14F06C14FC013F7F01077F0100148016C09138FC7FE0ED1FF0150FED07F8 15031501003C15FC127EB41400A45AA26CEC01F87E15030180EB07F0D83FC0130F01E0EB 1FE0D81FF0EB3FC0390FFEFDFF6CB612806C15006C14FC6C5C011F13E0010390C7FCEB00 FCA5147C1438264D7AC433>36 DI<140F EC3F80147F14FF491300495AEB07F8495A495A495A495A49C7FC5B12015B485A12075B12 0F5B121F5BA2123F5BA2127F90C8FCA45A5AAD7E7EA47F123FA27F121FA27F120F7F1207 7F12036C7E7F12007F6D7E6D7E6D7E6D7E6D7EEB03FE6D7E6D1380147F143FEC0F00194D 6FC433>40 D<127812FE7E7F6C7E6C7EEA0FF06C7E6C7E6C7E6C7E6D7E133F80131F6D7E 801307801303801301A2801300A28080A41580143FAD147F1500A45C5CA213015CA21303 5C13075C130F5C495A133F5C137F49C7FC485A485A485A485AEA3FE0485A485A90C8FC5A 1278194D78C433>I<14F0497EA8007015E000F8EC01F000FE140700FF140F01C1133F01 F113FF263FF9F913C0000FB61200000314FCC614F06D5B011F1380D907FEC7FC90381FFF 80017F13E090B57E000314FC000F14FF263FF9F913C026FFF1F813F001C1133F0101130F 00FE140700F814010070EC00E000001500A86D5A242B79B333>I<141FA24A7EB0007FB7 1280A2B812C0A36C1680A2C7D83F80C7FCB06EC8FCA22A2B7CB333>II<007FB612FEA2B8FCA36C15FEA228077BA133>I< 121FEA3F80EA7FC0EAFFE0A5EA7FC0EA3F80EA1F000B0B6C8A33>I<167816F8ED01FCA2 1503A2ED07F8A2ED0FF0A2ED1FE0A216C0153FA2ED7F80A2EDFF00A24A5AA25D1403A24A 5AA24A5AA24A5AA25D143FA24A5AA24AC7FCA2495AA25C1303A2495AA2495AA25C131FA2 495AA2495AA249C8FCA25B1201A2485AA2485AA2485AA25B121FA2485AA2485AA248C9FC A25AA2127CA2264D7AC433>I<14FF010313C0010F13F0497F497F497F9038FF81FF3A01 FE007F804848EB3FC049131F4848EB0FE0A24848EB07F0A24848EB03F8A24848EB01FCA3 48C812FEA4007E157E00FE157FAE6C15FF6C15FEA46D1301003F15FCA26D1303001F15F8 A26C6CEB07F0A26C6CEB0FE06D131F6C6CEB3FC0A26CB4EBFF806C018113006DB45A6D5B 6D5B6D5B010313C0010090C7FC283F7BBD33>III<903801FF C0010F13F8013F13FE90B67E48814881489038807FF03A0FFC000FF801F06D7E48481303 6F7EA21500A26C5A6C5AC9FC15015EA215034B5A150F4B5A4B5A913803FFC00103B55A49 91C7FC5D8116C06D8090C76C7EED0FF8ED03FC6F7E6F7E821780163FA2EE1FC0A3123C12 7EB4FCA2163F1780167F6C16006D5C6D495A6C6C1303D81FF8EB0FFC3A0FFF807FF86C90 B55A6C5D6C15806C6C91C7FC010F13FC010113C02A3F7CBD33>I<15FF4A7F5C5CA25C5C 15DFEC3F9FA2EC7F1F14FEA2EB01FCA2EB03F8EB07F0A2EB0FE0EB1FC0A2EB3F80A2EB7F 0013FEA2485A12035B485AA2485A485AA2485AA248C7FC12FEB812E017F0A46C16E0C838 1F8000AC021FB512804A14C04A14E0A26E14C06E14802C3E7DBD33>I<0007B612F04815 F85AA316F001C0C8FCB0ECFFC001C713F801DF7F90B6FC168016C0028013E09039FC001F F001F0EB0FF849130749EB03FC6C4813016CC713FEC9FCA216FF167FA41218127EA2B415 FF16FEA24814016C15FC6C14036DEB07F86D130F6C6CEB1FF06C6CEB7FE09039FE03FFC0 6CB612806C150000015C6C14F8013F13E0010390C7FC283E7BBC33>II<127CB8128017C0A4178048C813004B5A4B5A007C4A5AC8485A5E151F 4B5A4B5A93C7FC5D5D4A5A14035D14075D140F5D141F5D143F5DA24AC8FCA25C5CA21301 5CA3495AA413075CA5130F5CAA6D5A6D5A2A3F7CBD33>II<49B47E010F13E0013F13F84913FE90B6FC00 03158048018113C09038FC007F4848EB1FE04848EB0FF0485A49EB07F84848130390C7FC ED01FC5A5A16FE1500A416FFA37E7E6D5BA26C6C5B6D5B6C6C5B6C6C5BD807FE137F90B7 FC6C157F6C14FC6C6CEBF8FF6DEBE0FE010F1380903800200091C7FC150116FCA2150316 F8150716F0000F140F486CEB1FE0486C133F16C0EDFF804A13004A5A381FF01F90B512F8 6C5C6C5C6C1480C649C7FCEB3FF0283F7BBD33>I<121FEA3F80EA7FC0EAFFE0A5EA7FC0 EA3F80EA1F00C7FCB3A3121FEA3F80EA7FC0EAFFE0A5EA7FC0EA3F80EA1F000B2B6CAA33 >II<161E167E16FF15035DED1FFE157FEDFFF8020313F0 4A13C0021F138091383FFE00ECFFF8495B010713C0495BD93FFEC7FC495A3801FFF0485B 000F13804890C8FCEA7FFC5BEAFFE05B7FEA7FF87FEA1FFF6C7F000313E06C7F38007FFC 6D7E90380FFF806D7F010113F06D7FEC3FFE91381FFF80020713C06E13F0020013F8ED7F FE151FED07FF811500167E161E28337BB733>I<007FB71280A2B812C0A36C16806C1600 CBFCA9003FB7FC481680B812C0A36C1680A22A177CA933>I<1278127EB4FC13C07FEA7F F813FEEA1FFF6C13C000037F6C13F86C6C7EEB1FFF6D7F010313E06D7F9038007FFC6E7E 91380FFF806E13C0020113F06E13F8ED3FFE151FED07FF815DED1FFE153FEDFFF84A13F0 020713C04A138091383FFE004A5A903801FFF0495B010F13804990C7FCEB7FFC48485A48 13E0000F5B4890C8FCEA7FFE13F8EAFFE05B90C9FC127E127828337BB733>I64 DI<91391FE00780DAFFFC13C00103EBFF0F010F148F49 14FF5B90387FF81F9038FFC00748497E4848487E497F485A167F485A49143F121F5B003F 151F5BA2127F90C8EA0F8093C7FCA25A5AAD7E7EA36DEC0F80003FED1FC0A27F121F7F00 0F153F6D15806C7E167F6C6CECFF007F3A01FF8003FE6C6D485A90397FF81FF86DB55A6D 5C6D5C010391C7FC010013FCEC1FE02A3F7CBD33>67 D<003FB712E04816F0B8FCA27E7E D801FCC71207A8EE03E093C7FCA6151F4B7EA490B6FCA69038FC003FA46FC7FC92C8FCA8 17F8EE01FCA9003FB7FC5AB8FCA27E6C16F82E3D7EBC33>69 D<003FB712E04816F0B8FC A27E7ED801FCC71207A8EE03E093C7FCA7151F4B7EA490B6FCA69038FC003FA46FC7FC92 C8FCB1383FFFF8487FB57EA26C5B6C5B2C3D7DBC33>I<003FB612804815C0B712E0A26C 15C06C1580260003F8C7FCB3B3AD003FB612804815C0B712E0A26C15C06C1580233D78BC 33>73 D75 D<387FFFF8B57E80A25C6C5B D801FCC9FCB3B3A3EE03E0EE07F0A9007FB7FCB8FCA46C16E02C3D7DBC33>III< 003FB512FC48ECFF80B712E016F86C816C813A01FC000FFF030313801500EE7FC0163FEE 1FE0160FA217F01607A6160F17E0A2161FEE3FC0167FEEFF801503030F130090B65A5E5E 16E0168003FCC7FC01FCC9FCB3383FFFE0487FB57EA26C5B6C5B2C3D7EBC33>80 D<90381FFFF890B6FC000315C0000F15F0A24815F83A3FFC003FFC01F0130F01C0130348 48EB01FEA290C8FCA54815FF48157FB3AA143F6C90387F80FF6C15FEEC3FC0A2EC1FE0A2 9038800FF1A23A3FC007FBFC01F013FFEBFC036CB612F86C15F0A2000315C0C61500011F 148090C7EA7FC0153F16E0151F16F0150F16F8150716FC150316FE1501ED00FC284C7BBD 33>I<007FB57EB612F815FE81826C812603F8007FED3FF0ED0FF815076F7E1501A26F7E A74B5AA215034B5A150FED3FF0EDFFE090B65A5E93C7FC5D8182D9F8007F153F6F7E150F 821507AA173E177FA416F8030313FF267FFFC014FEB538E001FF17FC81EE7FF86C49EB3F F0C9EA0FC0303E7EBC33>II<003FB712F84816FCB8FCA43AFE00 0FE001A8007CED00F8C71500B3B3A40107B512C049804980A26D5C6D5C2E3D7EBC33>I< D87FFF903803FFF8B56C4813FCA46C496C13F8D807F09038003F806D147F00031600A36D 5C00015DA46C6C495AA46D13036D5CA3EC8007013F5CA3ECC00F011F5CA46D6C485AA46D 6C485AA4010391C7FC6E5AA30101137EA2ECFCFEA201005BA5EC7FF8A46E5AA26E5A6E5A 2E3E7EBC33>86 DI94 D<007FB612FEA2B8FCA36C15FEA228077B7D 33>I97 DIIIIIII<14E0EB03F8A2497EA36D5AA2EB00 E091C8FCAA383FFFF8487FA47EEA0001B3AD007FB612C0B712E016F0A216E06C15C0243E 78BD33>I107 D<383FFFFC487FB5FCA27E 7EC7FCB3B3AD003FB612F84815FCB712FEA26C15FC6C15F8273D7ABC33>I<02FC137E3B 7FC3FF01FF80D8FFEF01877F90B500CF7F15DF92B57E6C010F13872607FE07130301FC01 FE7F9039F803FC01A201F013F8A401E013F0B3A53C7FFE0FFF07FF80B548018F13C0A46C 486C01071380322C80AB33>I<4AB4FC263FFC0713C0267FFE1F13F000FF017F7F91B5FC 6CB67E6CEC07FEC6EBF801ECF0004A7F4A7F5CA291C7FCA35BB3A43B3FFFF80FFFFC486D 4813FEB56C4813FFA26C496C13FE6C496C13FC302C7FAB33>III<02FF137C0107EBE0FE011F13F0017F13FC90B5 12FE4814FF4813C03907FE003F4848131F01F0130F484813071503485A491301127F90C7 FC15005A5AA97E7E15017F123F6D130315076C7E6C6C130F6D131FD807FE137F3903FF81 FF6CEBFFFE6C14FC6D13F86D13F0010F13C0903801FE0090C8FCAF92387FFFFC92B512FE A46F13FC2F427CAB33>II<90381FFE0F90B5EA8F80000314FF120F5A5AEB F007387F800190C7FC00FE147F5A153FA37E007FEC1F0001C090C7FCEA3FF8EBFFC06C13 FF6C14E0000314F8C680011F13FF01001480020713C0EC007FED1FE0007C140F00FEEC07 F01503A27EA27F15076D14E06D130F6DEB3FC09038FE01FF90B61280160000FD5C00FC14 F8D8F83F13E0D8780790C7FC242E79AC33>III<3B3FFFC00FFFF0486D4813 F8B56C4813FCA26C496C13F86C496C13F0D801F8C7EA7E006D14FE00005DA26D1301017E 5CA2017F13036D5CA2EC8007011F5CA2ECC00F010F5CA36D6C485AA3ECF03F010391C7FC A26E5A0101137EA2ECFCFE01005BA214FF6E5AA36E5AA26E5A6E5A2E2B7EAA33>I<3B7F FF8007FFF8B56C4813FC6E5AA24A7E6C496C13F8D80FC0C7EA0FC06D141F00071680A56D 143F00031600A3EC0FC0EC1FE0A23A01F83FF07EA3EC7FF8147CA20000157C9039FCFCFC FCA3ECF87CA2017C5C017D137EECF03EA2017F133FA26D486C5AA3ECC00F90390F8007C0 2E2B7EAA33>I<3B3FFFC07FFF80486DB512C0B500F114E0A26C01E014C06C496C13803B 00FE000FE000017F495AEB3F804B5A6D6C48C7FC90380FE07E903807F0FEECF1FC903803 FBF8EB01FF6D5B5D6E5A143F6E5A143F814A7E14FF903801FBF0ECF9F8903803F1FCEB07 E0157E90380FC07F011F6D7E90383F801F02007F496D7E01FE6D7E484813033B7FFFC03F FFE0B56C4813F0A46C496C13E02C2B7DAA33>I<3B7FFF801FFFE0B56C4813F06E4813F8 A24A6C13F06C496C13E0D803F8C7EAFC00000114015E7F000014036D5C137EA2017F495A 7FA26E485A131FA26D6C485AA214E0010749C7FCA214F01303157EEB01F8A2157C010013 FC14FC5D147C147DEC3FF0A36E5AA36E5AA2141F5DA2143F92C8FCA3147EA214FE003F5B 1301387F81F81383EB87F0139FEBFFE06C5B5C6C90C9FCEA0FFCEA03F02D427DAA33>I< 000FB712804816C05AA317800180C713004B5A4B5A4B5A4B5A6CC7485AC8485A4B5A4BC7 FC4A5A4A5A4A5A4A5A4A5A4A5A4A5A4AC8FC495A495A495A495A495A495A495A49C7EA0F 804848EC1FC0485A485A485A485A485A48B7FCB8FCA46C16802A2B7DAA33>II125 D<013E13079039FF800F8000039038C01FC048EBE03F48EBF07F489038F9FF803A7FE7FF FE00D8FF835B01015B486C5B007CEB7FC00038011FC7FC220C78BC33>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Ff cmti8 8 2 /Ff 2 117 df<131FEA03FFA2EA003FA2133EA2137EA2137CA213FCA25BA21201147E90 38F3FF809038F787C03903FE03E013FC13F8A2EA07F013E0A213C0000F130715C01380A2 001F130F15801300141F481406150E003E133F143E007E141EEC7E1C007C137CEC3C3812 FC157048EB1FE00070EB07801F2F7BAD24>104 D<131C133EA2137EA2137CA213FCA25B A21201A2B512E0A23803F000A25BA21207A25BA2120FA25BA2121FA290C7FCA24813C013 01123E130314801307003C1300130E131E6C5AEA0FF0EA07C0132B7AA918>116 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fg cmmi7 7 1 /Fg 1 100 df99 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fh cmmi10 10 3 /Fh 3 120 df<0103B7FC4916E018F8903B0007F80007FC4BEB00FE187F020FED3F80F0 1FC05DA2021F16E0A25DA2143FF03FC05DA2027FED7F80A292C8130018FE4A4A5A604AEC 07F04D5A0101ED3FC04CB4C7FC91B612FC17E0D903FCCAFCA25CA21307A25CA2130FA25C A2131FA25CA2133FA25CA2137FA291CBFC497EB6FCA33B397DB835>80 D104 D<01F816F0D803FE9138E001F8D8070F903801F003000ED9800314FC121C121800380207 13010030EDE000D8701F167C1260030F143CD8E03F163800C001005B5BD8007E131F1830 01FE5C5B033F1470000117604991C7FCA218E000034A14C049137E17011880170318005F 03FE1306170E000101015C01F801BF5B3B00FC039F8070903A7E0F0FC0E0903A1FFC03FF C0902703F0007FC7FC36267EA43B>119 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fi cmti10 10 22 /Fi 22 122 df44 D<120EEA3F80127F12FFA31300 127E123C0909778819>46 D<15181538157815F0140114031407EC0FE0141F147FEB03FF 90383FEFC0148FEB1C1F13001580A2143FA21500A25CA2147EA214FEA25CA21301A25CA2 1303A25CA21307A25CA2130FA25CA2131FA25CA2133FA291C7FC497EB61280A31D3877B7 2A>49 D<14F8EB07FE90381F871C90383E03FE137CEBF801120148486C5A485A120FEBC0 01001F5CA2EA3F801403007F5C1300A21407485C5AA2140F5D48ECC1C0A2141F15831680 143F1587007C017F1300ECFF076C485B9038038F8E391F0F079E3907FE03FC3901F000F0 222677A42A>97 D<133FEA1FFFA3C67E137EA313FE5BA312015BA312035BA31207EBE0F8 EBE7FE9038EF0F80390FFC07C013F89038F003E013E0D81FC013F0A21380A2123F1300A2 14075A127EA2140F12FE4814E0A2141F15C05AEC3F80A215005C147E5C387801F8007C5B 383C03E0383E07C0381E1F80D80FFEC7FCEA01F01C3B77B926>I<147F903803FFC09038 0FC1E090381F0070017E13784913383901F801F83803F003120713E0120FD81FC013F091 C7FC485AA2127F90C8FCA35A5AA45AA3153015381578007C14F0007EEB01E0003EEB03C0 EC0F806CEB3E00380F81F83803FFE0C690C7FC1D2677A426>II<147F903803FFC0 90380FC1E090383F00F0017E13785B485A485A485A120F4913F8001F14F0383F8001EC07 E0EC1F80397F81FF00EBFFF891C7FC90C8FC5A5AA55AA21530007C14381578007E14F000 3EEB01E0EC03C06CEB0F806CEB3E00380781F83803FFE0C690C7FC1D2677A426>IIIII108 D110 D<147F903803FFC090380FC1F090381F00F8017E137C5B4848137E4848133E0007143F5B 120F485AA2485A157F127F90C7FCA215FF5A4814FEA2140115FC5AEC03F8A2EC07F015E0 140F007C14C0007EEB1F80003EEB3F00147E6C13F8380F83F03803FFC0C648C7FC202677 A42A>I<3903C003F0390FF01FFC391E783C0F381C7C703A3C3EE03F8038383FC0EB7F80 0078150000701300151CD8F07E90C7FCEAE0FE5BA2120012015BA312035BA312075BA312 0F5BA3121F5BA3123F90C9FC120E212679A423>114 D<14FE903807FF8090380F83C090 383E00E04913F00178137001F813F00001130313F0A215E00003EB01C06DC7FC7FEBFFC0 6C13F814FE6C7F6D13807F010F13C01300143F141F140F123E127E00FE1480A348EB1F00 12E06C133E00705B6C5B381E03E06CB45AD801FEC7FC1C267AA422>II<13F8D803FEEB01C0D8078FEB03E0390E0F 8007121E121C0038140F131F007815C01270013F131F00F0130000E015805BD8007E133F A201FE14005B5D120149137EA215FE120349EBFC0EA20201131E161C15F813E0163CD9F0 03133814070001ECF07091381EF8F03A00F83C78E090393FF03FC090390FC00F00272679 A42D>I<01F0130ED803FC133FD8071EEB7F80EA0E1F121C123C0038143F49131F007014 0FA25BD8F07E140000E08013FEC6485B150E12015B151E0003141C5BA2153C000714385B 5DA35DA24A5A140300035C6D48C7FC0001130E3800F83CEB7FF8EB0FC0212679A426>I< 01F01507D803FC903903801F80D8071E903907C03FC0D80E1F130F121C123C0038021F13 1F49EC800F00701607A249133FD8F07E168000E0ED000313FEC64849130718000001147E 5B03FE5B0003160E495BA2171E00070101141C01E05B173C1738A217781770020314F05F 0003010713016D486C485A000190391E7C07802800FC3C3E0FC7FC90393FF81FFE90390F E003F0322679A437>I<13F0D803FCEB01C0D8071EEB03E0D80E1F1307121C123C003814 0F4914C01270A249131FD8F07E148012E013FEC648133F160012015B5D0003147E5BA215 FE00075C5BA214015DA314035D14070003130FEBF01F3901F87FE038007FF7EB1FC7EB00 0F5DA2141F003F5C48133F92C7FC147E147C007E13FC387001F8EB03E06C485A383C1F80 D80FFEC8FCEA03F0233679A428>121 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fj msbm10 14.4 1 /Fj 1 91 df<48BA12E04819F0A3903DC07FFC000FC003E09026C1FF8091388007C02607 C3FCC7EA1F00D9CFF0EE0F80D99FC0023E131F01BFC8007E140001FE037C133E495D495F 494A4813FC4902035C4D485A4848EC07C04E5A4991380F8007041F5C4D485A90C8123E4E C7FC4C5BC900FC133E4C5B4B5A60923803E00103075C4C485AED0F804D5A92381F000F4B 5C033E49C8FC5D173E4B137E0201147C4B5B4A5A0207495AEDC003DA0F805B4C5AEC1F00 4A495A023E131F4A91C9FC163E5C01014A15064A01FC150F49485B4B5AD907C0171F010F 495AEC8007D91F0049153E4B5A133E017E49C9127E017C5B49013E16FE4B1501485A0003 4A1503D9E001EE07FCD807C049150F4A48ED1FBCD80F80EF3F3C001F4948157ED9000F16 FC003E4AEC03F84AC8380FF07C48EF7FC000FC013E913907FF8078BB12F8A31AF048527C D14D>90 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fk cmmib10 10 2 /Fk 2 116 df<017EEB03FC3B01FF801FFF800007D9E07F13E03B0F8FF0FC1FF0903A0F F3E00FF83A1E07FFC007003E1480D83C0F01007F5C00785B5C160FD8F81F5D00F05B1200 161F013F5D5CA2163F017F5D5C167F5F01FF14FF4AEC8078A24B14F848EE00F014004BEB 01E0EEFE0348020114C0491507EF0F800300EB3F0049EC7FFC496E5AC648EC0FE035277E A53B>110 D115 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fl cmbx10 10 2 /Fl 2 52 df50 DI E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fm cmmib10 14.4 5 /Fm 5 113 df61 D<1AFE4F7E61A26161A24F7FA26161A296B5FC60876060 A26060A24E8060854E7E18FEEF01FC05038118F8EF07F0170F4E7E171FEF3FC006808017 7FEFFF005F0401804C5A5F0407825F4C5A161F4D7F163F4C5A94C7805E4B5A5E0303814B 5A5E030F8393B9FC5D5DA25D92BAFC4BC800018014014A5A5D0207824A5A5D021F854A5A 5D147F92CA7E14FE13014A851307EB3FFE007FB500FC0203B712FC81B65DA36C4A6E16F8 5E557BD468>65 D<020FB912FE4AF0FFE01CFC1CFF1DC089DA000149C86C13F84B050F7F 874D6F7F874B85875F1E805DA25FA25D1E004D5DA24B61634D5F634B61515B4D4B5B515B 92B54C5B98B5C7FC94C800035B080F13F84A053F13E00703B5128094B748C8FC1BF05C1B FE757E04FCC8003F13E04A050F13F808037F4C6F7FA24A717F894C82A24A86A25EA25CA2 5EA24A95B5FC655E6291B596C7FC6293C95C624962505B4B5E505B494E5B4FB55A4B4B5C 070F49C8FC4994B55A007FBB12F0BC5A98C9FC1AFC1AE007FCCAFC61527BD168>I<9526 1FFFC0141C0507B500FC147E057F02FF14FC0407B7EAC001041FEEF00393B8EAF80F0303 913BFE003FFC1FF8030F02C0903807FE3F4B49C70001B5FC037F01F06E7E92B500C06F13 F0020391C97E4A01FC824A4982023F01E018E04A498291B55A4991CA7E494919C0495B4B 835B49491980495BA2495B90B5481900A24891CCFC5A4A615A1C7E484996C7FCA3485BA2 5A5CA35A5CA3B5FC5CA3067FB712E095B8FC5C5FA27117C095C7EC800061A299C7FCA26C 60A263806C60A26E607E616C7F6C6D606E5E7E6C01FF4C5B6C6E5D6D01E04AB5FC6D01F8 14076D01FFDA1FFD5B010702F89038FFF87F6D91B6EAF03F0100EFC00F023F93380007C0 020703FC1301DA007F02E090C9FC030301FCCBFC5F5679D36A>71 D112 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fn cmbx12 14.4 43 /Fn 43 128 df12 D<151E153E157E15FCEC01F8EC07F0EC0FE0EC1FC01580143F EC7F0014FE1301495A5C1307495AA2495A133F5C137FA2495AA24890C7FCA25A5BA21207 A2485AA3121F5BA3123FA25BA3127FA55B12FFB3A3127F7FA5123FA37FA2121FA37F120F A36C7EA21203A27F7EA26C7FA26D7EA2133F80131F6D7EA26D7E1303806D7E1300147FEC 3F80141F15C0EC0FE0EC07F0EC01F8EC00FC157E153E151E1F7973D934>40 D<127012F8127C127E7EEA1FC06C7E6C7E12037F6C7E6C7E7F6D7E133F806D7EA26D7E80 130780A26D7EA26D7EA215807FA215C0A2EC7FE0A315F0143FA315F8A2141FA315FCA514 0F15FEB3A315FC141FA515F8A3143FA215F0A3147F15E0A3ECFFC0A21580A25B1500A249 5AA2495AA25C130F5C495AA2495A5C137F49C7FC5B485A485A5B1207485A485A48C8FC12 7E127C5A12701F7979D934>I45 DI<157815FC14031407141F14FF130F 0007B5FCB6FCA2147F13F0EAF800C7FCB3B3B3A6007FB712FEA52F4E76CD43>49 DI<91380FFFC091B512FC0107ECFF80011F15E09026 3FF8077F9026FF800113FC4848C76C7ED803F86E7E491680D807FC8048B416C080486D15 E0A4805CA36C17C06C5B6C90C75AD801FC1680C9FC4C13005FA24C5A4B5B4B5B4B13C04B 5BDBFFFEC7FC91B512F816E016FCEEFF80DA000713E0030113F89238007FFE707E701380 7013C018E07013F0A218F8A27013FCA218FEA2EA03E0EA0FF8487E487E487EB57EA318FC A25E18F891C7FC6C17F0495C6C4816E001F04A13C06C484A1380D80FF84A13006CB44A5A 6CD9F0075BC690B612F06D5D011F1580010302FCC7FCD9001F1380374F7ACD43>I<177C 17FEA2160116031607160FA2161F163F167FA216FF5D5DA25D5DED1FBFED3F3F153E157C 15FCEC01F815F0EC03E01407EC0FC01580EC1F005C147E147C5C1301495A495A5C495A13 1F49C7FC133E5B13FC485A5B485A1207485A485A90C8FC123E127E5ABA12C0A5C96C48C7 FCAF020FB712C0A53A4F7CCE43>III<121F7F7FEB FF8091B81280A45A1900606060A2606060485F0180C86CC7FC007EC95A4C5A007C4B5A5F 4C5A160F4C5A484B5A4C5A94C8FC16FEC812014B5A5E4B5A150F4B5AA24B5AA24B5A15FF A24A90C9FCA25C5D1407A2140FA25D141FA2143FA4147F5DA314FFA55BAC6D5BA2EC3FC0 6E5A395279D043>I<007FBD1280A2BE12C0A36C1C806C1C00D1FCB3A3003FBDFC481C80 BE12C0A36C1C80A25A2379AE69>61 D<932601FFFCEC01C0047FD9FFC013030307B600F8 1307033F03FE131F92B8EA803F0203DAE003EBC07F020F01FCC7383FF0FF023F01E0EC0F F94A01800203B5FC494848C9FC4901F8824949824949824949824949824990CA7E494883 A2484983485B1B7F485B481A3FA24849181FA3485B1B0FA25AA298C7FC5CA2B5FCAE7EA2 80A2F307C07EA36C7FA21B0F6C6D1980A26C1A1F6C7F1C006C6D606C6D187EA26D6C606D 6D4C5A6D6D16036D6D4C5A6D6D4C5A6D01FC4C5A6D6DEE7F806D6C6C6C4BC7FC6E01E0EC 07FE020F01FEEC1FF80203903AFFE001FFF0020091B612C0033F93C8FC030715FCDB007F 14E0040101FCC9FC525479D261>67 DI72 D76 D78 D80 D<91260FFF80130791B500F85B010702FF5B011FEDC03F49EDF07F9026FFFC006D5A 4801E0EB0FFD4801800101B5FC4848C87E48488149150F001F824981123F4981007F82A2 8412FF84A27FA26D82A27F7F6D93C7FC14C06C13F014FF15F86CECFF8016FC6CEDFFC017 F06C16FC6C16FF6C17C06C836C836D826D82010F821303010082021F16801400030F15C0 ED007F040714E01600173F050F13F08383A200788200F882A3187FA27EA219E07EA26CEF FFC0A27F6D4B13806D17006D5D01FC4B5A01FF4B5A02C04A5A02F8EC7FF0903B1FFFC003 FFE0486C90B65AD8FC0393C7FC48C66C14FC48010F14F048D9007F90C8FC3C5479D24B> 83 D<003FBC1280A59126C0003F9038C0007F49C71607D87FF8060113C001E08449197F 49193F90C8171FA2007E1A0FA3007C1A07A500FC1BE0481A03A6C994C7FCB3B3AC91B912 F0A553517BD05E>I97 DI<913801FFF8021FEBFF8091B612F0010315FC010F9038C00FFE903A1F FE0001FFD97FFC491380D9FFF05B4817C048495B5C5A485BA2486F138091C7FC486F1300 705A4892C8FC5BA312FFAD127F7FA27EA2EF03E06C7F17076C6D15C07E6E140F6CEE1F80 6C6DEC3F006C6D147ED97FFE5C6D6CEB03F8010F9038E01FF0010390B55A01001580023F 49C7FC020113E033387CB63C>I<4DB47E0407B5FCA5EE001F1707B3A4913801FFE0021F 13FC91B6FC010315C7010F9038E03FE74990380007F7D97FFC0101B5FC49487F4849143F 484980485B83485B5A91C8FC5AA3485AA412FFAC127FA36C7EA37EA26C7F5F6C6D5C7E6C 6D5C6C6D49B5FC6D6C4914E0D93FFED90FEFEBFF80903A0FFFC07FCF6D90B5128F0101EC FE0FD9003F13F8020301C049C7FC41547CD24B>I<913803FFC0023F13FC49B6FC010715 C04901817F903A3FFC007FF849486D7E49486D7E4849130F48496D7E48178048497F18C0 488191C7FC4817E0A248815B18F0A212FFA490B8FCA318E049CAFCA6127FA27F7EA218E0 6CEE01F06E14037E6C6DEC07E0A26C6DEC0FC06C6D141F6C6DEC3F806D6CECFF00D91FFE EB03FE903A0FFFC03FF8010390B55A010015C0021F49C7FC020113F034387CB63D>IIII<13 7F497E000313E0487FA2487FA76C5BA26C5BC613806DC7FC90C8FCADEB3FF0B5FCA51201 7EB3B3A6B612E0A51B547BD325>I107 DIII<913801FFE0021F13FE91B612C0010315F0010F 9038807FFC903A1FFC000FFED97FF86D6C7E49486D7F48496D7F48496D7F4A147F488348 90C86C7EA24883A248486F7EA3007F1880A400FF18C0AC007F1880A3003F18006D5DA26C 5FA26C5F6E147F6C5F6C6D4A5A6C6D495B6C6D495B6D6C495BD93FFE011F90C7FC903A0F FF807FFC6D90B55A010015C0023F91C8FC020113E03A387CB643>I<903A3FF001FFE0B5 010F13FE033FEBFFC092B612F002F301017F913AF7F8007FFE0003D9FFE0EB1FFFC60280 6D7F92C76C7F4A824A6E7F4A6E7FA2717FA285187F85A4721380AC1A0060A36118FFA261 5F616E4A5BA26E4A5B6E4A5B6F495B6F4990C7FC03F0EBFFFC9126FBFE075B02F8B612E0 6F1480031F01FCC8FC030313C092CBFCB1B612F8A5414D7BB54B>I<90397FE003FEB590 380FFF80033F13E04B13F09238FE1FF89139E1F83FFC0003D9E3E013FEC6ECC07FECE780 14EF150014EE02FEEB3FFC5CEE1FF8EE0FF04A90C7FCA55CB3AAB612FCA52F367CB537> 114 D<903903FFF00F013FEBFE1F90B7FC120348EB003FD80FF81307D81FE0130148487F 4980127F90C87EA24881A27FA27F01F091C7FC13FCEBFFC06C13FF15F86C14FF16C06C15 F06C816C816C81C681013F1580010F15C01300020714E0EC003F030713F015010078EC00 7F00F8153F161F7E160FA27E17E07E6D141F17C07F6DEC3F8001F8EC7F0001FEEB01FE90 39FFC00FFC6DB55AD8FC1F14E0D8F807148048C601F8C7FC2C387CB635>I<143EA6147E A414FEA21301A313031307A2130F131F133F13FF5A000F90B6FCB8FCA426003FFEC8FCB3 A9EE07C0AB011FEC0F8080A26DEC1F0015806DEBC03E6DEBF0FC6DEBFFF86D6C5B021F5B 020313802A4D7ECB34>II119 D121 D127 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fo cmmi6 6 17 /Fo 17 120 df<90B612F0A2903807C001ED0070495AA21630A249C7FCA4013E1400A45B A45BA4485AA4485AA31207B57E91C8FC24227CA125>0 D<127812FCA212FEA2127E1206 A3120CA2121C121812301260124007107A8513>59 D73 D78 D<90B512FEEDFFC0903907C007F0 ED01F890380F800016FC167CA249C712FCA316F8013E1301ED03F016E0ED0FC049EB3F00 90387FFFFC15E0017CC8FC5BA4485AA4485AA31207EAFFFEA226227CA127>80 D83 D99 D<1338137CA2137813701300A7EA0780EA1FC0EA38E01230EA60F0EAC1E0A3EA03C0A3EA 0780A2EA0F0013041306EA1E0CA21318121CEA1E70EA0FE0EA07800F237DA116>105 D<1418143C147CA214381400A7EB0780EB1FE01338EB60F013C0A2EA0180A2380001E0A4 EB03C0A4EB0780A4EB0F00A4131EA21238EA783CEAF8381378EA70F0EA7FC0001FC7FC16 2D81A119>I<13F8EA0FF0A21200A2485AA4485AA43807801E147FEB81C3EB8387380F06 0F495A1318EB700E4848C7FCA213FCEA1E7EEA3C0F80EB0781158039780F0300A21402EB 070600F0138CEB03F8386000F019247CA221>II<000F017E13FC3A1F81FF83FF3B31C383C707803A61EE03CC039026EC01F813C0D8C1 F813F013F001E013E00003903903C0078013C0A2EE0F003907800780A2EE1E041706270F 000F00130C163C1718A2001E011EEB1C70EE1FE0000C010CEB07802F177D9536>I<000F 13FC381FC3FF3931C707803861EC0301F813C0EAC1F0A213E03903C00780A3EC0F00EA07 80A2EC1E041506D80F00130C143C15181538001EEB1C70EC1FE0000CEB07801F177D9526 >I<3801E01F3903F07FC0390639C1E0390C3F80F0EB3E00001814F8013C137815F8C65A A49038F001F0A3EC03E0D801E013C0EBF00715809038F80F003803DC3CEBCFF8EBC7E001 C0C7FC485AA448C8FCA2EA7FF012FF1D20809520>112 DI<133013785BA4 485AA4485AB51280A23803C000485AA448C7FCA4121EA25B1480383C03001306A25BEA1C 38EA0FF0EA07C011217D9F18>116 D119 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fp cmmib10 17.28 4 /Fp 4 114 df65 D<037FBA12F892BC12C04A1BF81EFF1FC08B6E1CF8DB000391C8 0001804CDD003F7F4E707F1D0720804C844E7014C0A34C1BE04E82A35E4E5EA34C1BC060 65208093B5FC4E5E2000535B5D4E4C5B535B535B4B6395CAB55A0A035C5291C7FC4B4E13 FC4D043F5B99B512E0090714804B4CB500FCC8FC94B912E09AC9FC1DE04B19FE777E05F8 C914E00A3F13F84B060F7F4D707F767F8B4B72805F7680A292B5865FA35C5FA35C94CBFC A2644A645E64675C4C4D5C649CC7FC4A4F5B4C5F66525B4A96B55A4C04035C515C091F5C 4A4E91C8FC4C4BB55A081F14F8003FBD5A481CC09AC9FCBD12F81CC06C50CAFC1B807362 7AE17C>I<962603FFFEED03C04EB600E0EC07E0061F03FC141F4DB8EC3FC0050F05C013 7F057F9438F001FF4CB9EAFC030407DBE0016D481380041F02F8C7381FFF1F047F028002 0313BF4BB500FCC86C90B5FC4B02F06F6C1400030F0280824B91CA7E037F01FC8392B500 F0715B4A4A83020714804A91CB7E4A49624A49844A5B91B548197F494A625B4C193F495C 4991CD5B5B5D495B49655D90B5FC485C67485C785A489AC8FC5D5A5DA25A92D1FCA25A5C A25AA25CA2B5FCA25CA54A040FB812FC4F83A26167856796C7000302C0C7FCA263A266A2 6C62A29BC8FC806C62A26E627E6E607E6C6D626F5F7E6C6E94B5FC6C6E4C5C816D01FC5E 011F6D160F6DD9FFC04B5C6D02F0157F010102FE913803FFF36DDAFFF8013F13E1023F91 B700805B020FF0003F020305FC131F020005E01307031F0480EB01C0030103F8CCFCDB00 0791CDFC736678E37F>71 D113 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fq cmmib10 12 3 /Fq 3 118 df97 DI117 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fr eusm8 8 1 /Fr 1 83 df<15C0140391B512E0010F14FE903A3F0FC07F8001F8EC07C0D801E06E7ED8 03C06E7EEA0780D80F0081001E1500A2123EA3123FA25F001E1501000C5EC714035F4C5A 4CC7FC163C16F8EDFFC05E158FED87C0A2ED83E015036F7EA291380E00F8A2021E137C02 1C137E163E4A133F00784990381F80C000FC01F0ECC0806C4848EB0FE3267F0780903807 FF0001FFC75BD83FFC6E5AD80FE0EC00F832307EAF34>82 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fs eufm10 12 9 /Fs 9 118 df<4A7E020716384AC91278021C5E4AED03E002784B5A4A151F4948153F49 484B5A0107ED01FF130F495A013F94C7FCA2137FA213FF80A28380A26D7EA2133F80131F 80130F801307A26D7EA27FA26D7FA2147FA3143FA392C8FCA3143E5C8514785C4A5C495A 49484A7F49C8FC495D011E4B7F017E151E2601FFF091393C7FF0084801FC0278EBF83848 D9FF809039F03FFFF09226F003E014E0489127FE0FC01F13804891B500801400D8383F03 005BD860034AEB0FF848C64A5C021F496D5AC700034914809126003F806DC7FC92C81202 454882C440>85 D<497E497E903807F06090380FFFC04913804913005C495A13E1D801E0 C7FCA2487E12071203A27FA27F1201A27FA36C7EA47F14C0003FB512F04814E0B612C039 007F8000B3B3A291C7FCA4137EA25BA25B12015B5BA2485AA25BA248C8FCA21C597CC221 >102 D<5CDA078013C091381FF00391393FFC078091B512DF010314FF5B131F497ED9FF 0F14004848C6FC1503ED007FA25B1203A35EB07F15036D491380EC801FECC03EECE0F891 39F1F07FC06CEBFFE06C148015006D4814E0D93FF8133F6D5A6D5A4A14F04A14E0011EC7 13C04915805B01FC1500D803FE143E486C143C4801C01338486D5B4801F813F0489038FF 03E000E3ECFFC000015D6C6C91C7FC6D5B010F5B01035B9038007FF0EC0FC02C447EAE32 >I108 D<01200118140C01F0017E141F0001DAFF80EB3FC0486C4801E0EBFFF0486C48D9 F80113FE260FFE0FD9FF076D7E001F495C007F495C00F701FD147C27C3FFF03FEBF00F00 01D9C007EBC003DA800149C6FC49C790C7127FA5193F000081B0197F866D8171ECE0C06E 01FF15F36E6EECFF806E6E90B51200486D705A6C70EB3FF86D486D485C4A02C06D5A6DC7 6C486D5A013E6EC75B011C021E6EC7FC0118020C91C8FC4A317FAE4C>I<1410143C14FF 4913C04913F0010F13FE49EBFFC0017F14E048B6FCEA03E1380FE03F383FC007EC003F49 131F127FA216F0A290C7FCA216E0A45AA86D133F16C0A37F6D137F6D14806DEBFF006D5B 9038FE01F8397FFF83E06CEBF7C06C01FFC7FC6C13FC6C13F06C13C0C690C8FC137C1320 24337AAF31>111 D<132013705BA2485A1203000714086D131C000F143F486C497EEDFF E0263FF80313F86C6C4813FF6D481480000F133F00075BECF83F3903FFE0076CEBC00191 C7FC5B167FB11700A35EA300035D3807FFF048EBFE01489038FF81F8007FECE1F000F9EC FBE000C1ECFFC000015D9026FE3FFEC7FCEC0FFCEC03F86E5AEC006092C8FCA81203A65B 13F05BEA0180294B7EB532>I<1403EC07C0DA0FF01340DA3FF813C091397FFE038049B5 EA0F004914FE010F5CD91F9F5BD97F075B49C66C5AED078092C8FCA616C0ED03F0913880 0FF8ED3FFC9138C1FFFE14C791B5FCECFE0F90387FF807ECF00390383FC0011400131C90 C7FCA6017F5C3801FFE04813F04813FC48EBFE03489038FF83F8D83C1FEBC3E0D87007EB F780D8C00101FEC7FC486C13F8C7EA3FE0EC1F80020EC8FC2A3281AF2C>115 D<134001E0EC01C0486C1407486CEC1F80486C147FD81FFE14FF123F127F12E712C31203 120194C7FCA31200AC5BA31201A34981A300038201FE0103EBC1809026FF800F13E748D9 E03EEBFF009139F8F87FFE48D9FFE05B6C9138C03FF0000102005B6C6C486D5AD91FF85C D907F06DC7FC6D48130E6D48130431317EAE34>117 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Ft eusm6 6 1 /Ft 1 73 df<171FD90FFFEC7F80D9FFFC14FF2603E078EB0187D807009138030300000C 4BC7FC001C150E12180038151E161C123C163CA21218C75CA291387FFFF8A29138700078 A21638A3146014E0A25CA2495A163CD87803C7EA1C02D8F8061506D87C18EC1E0CD87FF0 6E5AD81F80EC07F0C9EA03C031247CA238>72 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fu cmsy6 6 2 /Fu 2 49 df0 D48 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fv eusm10 12 5 /Fv 5 90 df<4B7E1503150F0207B512FC027FECFFC00103B712FC90270FF83F80EBFF80 D93F80020313E0D9FE009138007FF8D801F8EE0FFCD803E0EE03FF484870138048487013 C048C7EE7FE048183FF11FF0007EF00FF8A2F107FC12FE6C18031AFEA21901A21AFF7E00 7E841238C8FCAA93C912FEA21901A21AFCA2153EF103F8157EA2037CED07F0A21AE00378 ED0FC015F84BED1F80F13F005D0201167E4A485D4B4A5A4AC8485A021FED0FE0023EED3F C002FC03FFC7FCD903F8EC07FED91FF0ECFFF80003B812E01880484CC8FC17F0484BC9FC 48477BC653>68 D<0207B5EE1F80027FF07FE00103B500FCED01FF010F02F04B13F09027 3FF80FE0150FD97F0019E001FCF01E0FD801F095383C03C048484EC7FC000719704918F0 484860001F1801A24F5A123F190762A2190F7FA297C8FC001F60A26C5A6CC7FCC85EA393 B612FEA404E0C7127EA619FEA25EA2151FA45EA34BC8FCA285153E037E81157CA200385C 007E4AEE800300FE0101043F5B6C495A4A48EEC00E6D4848031F5B021EC9EBE03C267FE0 7C706C5AD9FFF8EFFFF06C01E0705B000F0180701380D803FCCB48C7FC54467CC459>72 D<162016E015034AB512FE023FECFFF091B712FE903C07FE0FE00FFF80D90FE002007FD9 3F80ED3FE0D97E00151F49707ED803F883491607485A000F84491603121FA3123FA37FA2 61001F17075B6C485F6CC7FCC84B5AA24E5A4E5A96C7FC18FEEF01F8EF07F0EF1FC093B5 C8FC17F88316E116E08316C0177FA28384EE801F84151F4C6C7EA21707031E80033E6D7E A2033C80037C1301003C02786E1310007E02F86D6C1330007F4948158048494891387FC0 706D484816606C6C484891383FF1E0D9E07FC8EBFFC0D9FFFE816C01F86F13806C496F13 006C01C06F5AD803FEC9EA01F844487DC648>82 DI<01 781504D801FE151E0003163E486C15FE5A5A5AEA3C7F127812E012C01200A317FCA8137E A41601A2017F14031607160F161F163E167C6E13F89138C003F090393FE007E09138F83F C06DB512806DEBFE006D13F86D13E00100EB000191C71203160F163F167EED01F0ED03E0 ED0F80ED1E00157C5D913801E001DA03C013F8EC0780EC0F00141E143E4A14F05C010114 035C494814E013074A1307010F15C0A24948EB0F80A21700013F5C161E5E163816785E6D 6C485A4B5ADAF007C7FC90380FF81E903807FFF86D13E0D9007FC8FC2F547DC53B>89 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fw cmex10 12 39 /Fw 39 126 df0 D<12E07E12787E7E7E7F6C7E6C7E7F12016C7E7F137C137E7FA26D7EA26D7EA26D7EA36D 7EA2801301A2801300A280A2147EA2147FA4801580A7EC1FC0B3A5EC3F80A715005CA414 7EA214FEA25CA213015CA213035CA2495AA3495AA2495AA249C7FCA2137E137C13FC5B48 5A12035B485A485A90C8FC121E5A5A5A5A1A777C832E>II I<16F01501ED03E0ED07C0ED0F80ED1F005D157E5D5D14014A5A4A5A4A5AA24A5A143F92 C7FC147EA25C13015C13035C13075C130F5C131FA2495AA349C8FCA213FEA312015BA212 035BA21207A25BA2120FA25BA2121FA45BA2123FA55B127FA990C9FC5AB3AA7E7FA9123F 7FA5121FA27FA4120FA27FA21207A27FA21203A27F1201A27F1200A3137FA26D7EA36D7E A2130F801307801303801301801300147EA28081141F6E7EA26E7E6E7E6E7E140081157E 8181ED0F80ED07C0ED03E0ED01F0150024B26E833B>16 D<12F07E127C7E7E6C7E7F6C7E 6C7E12017F6C7E137E7FA26D7E80130F6D7EA26D7E80130180130080147E147F8081A26E 7EA36E7EA26E7EA3811403A2811401A281A21400A281A281A21680A4153FA216C0A5151F 16E0A9150F16F0B3AA16E0151FA916C0153FA51680A2157FA41600A25DA25DA21401A25D A214035DA214075DA34A5AA24A5AA34A5AA292C7FC5C147E14FE5C13015C13035C495AA2 495A131F5C49C8FCA2137E5B485A5B1203485A485A5B48C9FC123E5A5A5A24B27C833B> I<171E173E177C17F8EE01F0EE03E0EE07C0160FEE1F80EE3F00167E167C16FC4B5A4B5A 15075E4B5A4B5A153F93C7FC5D15FE5D14015D14034A5AA24A5AA24A5AA24A5AA24AC8FC A214FEA213015C13035C1307A25C130F5C131FA25C133FA3495AA349C9FCA35A5BA31203 5BA31207A25BA2120FA35BA3121FA35BA3123FA55BA2127FAB485AB3B06C7EAB123FA27F A5121FA37FA3120FA37FA31207A27FA21203A37F1201A37F7EA36D7EA36D7EA3131F80A2 130F80130780A21303801301801300A2147FA26E7EA26E7EA26E7EA26E7EA26E7E140181 140081157F8182151F6F7E6F7E8215036F7E6F7E167C167E82EE1F80EE0FC01607EE03E0 EE01F0EE00F8177C173E171E2FEE6B8349>I<12F07E127C7E7E6C7E6C7E7F6C7E6C7E6C 7E137C137E7F6D7E80130F6D7E6D7E801301806D7E147E147F80816E7EA26E7EA26E7EA2 6E7EA26E7EA26E7EA2818182153F82A2151F82150F82A2150782A36F7EA36F7EA38281A3 1780167FA317C0A2163FA217E0A3161FA317F0A3160FA317F8A51607A217FCABEE03FEB3 B0EE07FCAB17F8A2160FA517F0A3161FA317E0A3163FA317C0A2167FA21780A316FF1700 A35D5EA34B5AA34B5AA35E150FA25E151F5E153FA25E157F93C7FC5D5DA24A5AA24A5AA2 4A5AA24A5AA24A5AA24A5A92C8FC5C147E14FE495A5C13035C495A495A131F5C49C9FC13 7E137C13FC485A485A485A5B485A48CAFC123E5A5A5A2FEE7C8349>III[51 298 104 131 79 32 D[<12F87E127E7E7F121F6C7E6C7E7F6C7E12016C7E7F137F7F806D7E6D7EA26D 7E8013036D7EA26D7E808081143F81141F816E7EA26E7EA26E7EA26E7EA36E7EA26F7EA2 82153FA282151F82150FA2821507A282150382A3150182A28183A3707EA4707EA483161F A483160FA383A31607A383A31603A383A582A21880A882A218C0AD177F18E0B3B3A618C0 17FFAD1880A25EA81800A25EA55FA31607A35FA3160FA35FA3161F5FA4163F5FA44C5AA4 4C5AA394C7FC5DA25E1503A35E15075EA2150F5EA2151F5E153F5EA2157F5EA24BC8FCA2 4A5AA34A5AA24A5AA24A5AA24A5A5D143F5D147F92C9FC5C5C495AA2495A13075C495AA2 495A495A91CAFC5B13FE5B485A1203485A5B485A485A123F90CBFC127E5A5A>51 298 125 131 79 I[29 298 101 131 58 I[29 298 127 131 58 I[51 298 114 131 80 40 D<187C18FCEF01F8A2EF03F0EF07E0EF0FC0171F1880EF3F005F17 7E17FE4C5A5F16034C5AA24C5A4C5AA24C5A167F94C7FC5E5E15015E15034B5AA24B5AA2 4B5AA24B5AA2157F5E15FF93C8FCA24A5AA214035D14075DA2140F5D141FA25D143FA24A 5AA34A5AA34990C9FCA35B5CA213075CA3130F5CA2131FA25CA2133FA35C137FA4495AA5 485BA55A91CAFCA55A5BA5120FA35BA4121FA55BA4123FA75BA4127FAF5BA212FFB3A836 B3638257>48 D<12F87E127EA27E6C7E6C7E7F12076C7E7F12017F6C7E137E137F6D7EA2 6D7E6D7EA26D7E801303801301801300806E7EA26E7EA26E7EA26E7EA2811407811403A2 6E7EA2818082157FA282153F82A2151F82A26F7EA36F7EA36F7EA38281A28381A383167F A283A2163FA283A3161F83A4707EA5707EA58382A5188082A518C0A382A418E0A5177FA4 18F0A7173FA418F8AF171FA218FCB3A836B37D8257>III<12FEB3B3 B3B3B3B3B3B3B3A9B7FCA720B2608342>I<157FB3B3B3B3B3B3B3B3B3A9B7FCA720B27F 8342>I<12FEB3B3B3A8073E608042>I<12FEB3B3B3A8073E668042>II58 D<913807FF80B3B3B04A1300A55D141FA35D143F5DA2147F5D14FF5DA2495B5D5B4990C7 FC5C130F5C495A495A495AA2495A485B4890C8FCEA07FC485A485AEA7FE0EAFF8090C9FC 12FCB4FC7FEA7FE0EA1FF06C7E6C7E6CB4FC6C7F6C7F6D7EA26D7E6D7E6D7E801307806D 7F7F816D7FA281147F81143FA281141F81A3140F81A56E1380B3B3B021B56F8059>60 D62 D64 DIII80 D<007C193EA200FE197FB3B3B3AE6C19FFA26C19FEA26D1701A26C6CEF03FCA2001F19F8 6D17076D170F000F19F06C6CEF1FE06D173F6C6CEF7FC06C6CEFFF806E5D6C01E0030713 006D6C4B5AD93FFCED3FFC6DB4EDFFF86D01E001075B6D01FE017F5B010190B712806D94 C7FC023F15FC020F15F002011580DA003F01FCC8FC030313C048647B7F53>83 D88 DI122 DI<12F87E7EA27E6C7E6C7E7F6C7E 6C7E7F6C7E6C6C7E6C7F6C13F014FC6DB4FC6D13E0010F13FC6DEBFFC06D14FF6DEDFF80 7F143F80140714016E7E151F15071500160FEE007F312183A02D>II E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fx cmsy8 8 12 /Fx 12 107 df0 D<130C131EA50060EB01800078130739FC0C 0FC0007FEB3F80393F8C7F003807CCF83801FFE038007F80011EC7FCEB7F803801FFE038 07CCF8383F8C7F397F0C3F8000FCEB0FC039781E078000601301000090C7FCA5130C1A1D 7C9E23>3 D<140381B3A3B812FCA3C7D80380C7FCB3B812FCA32E2F7CAD37>6 D20 D<12E012F812FEEA3F80EA0FE0EA03F8EA00FEEB3F80EB0FE0EB03F8EB00FC143FEC 0FC0EC07F0EC01FCEC007FED1FC0ED07F0ED01FCED007FEE1FC01607161FEE7F00ED01FC ED07F0ED1FC0037FC7FCEC01FCEC07F0EC0FC0023FC8FC14FCEB03F8EB0FE0EB3F8001FE C9FCEA03F8EA0FE0EA3F80007ECAFC12F812E0CBFCAD007FB71280B812C0A22A3B7AAB37 >I<137813FE1201A3120313FCA3EA07F8A313F0A2EA0FE0A313C0121F1380A3EA3F00A3 123E127E127CA35AA35A0F227EA413>48 D<91B512C01307131FD97F80C7FC01FCC8FCEA 01F0EA03C0485A48C9FC120E121E5A123812781270A212F05AA3B712C0A300E0C9FCA37E 1270A212781238123C7E120E120F6C7E6C7EEA01F0EA00FCEB7F80011FB512C013071300 222B7AA52F>50 D66 DI<013E15 0748B4150E0007163E121FD83C7F157CEA703FEA003E17F8A25BEE01F0A249140317E016 07485AEE0FC05B0003151F49EC3F801207167F484814FF170090C75A485C5E003EEC07BE ED0F3EED1E7E007EEC3E7C007C143C1578EDF0FC00FCEB01E04A485AEC0780EC0F006CEB 1E0114386C13F0D983C0EBFC40267FFF80EBFFC0D9FE001400D83FF85CD81FC0EB00F030 2E81AC2C>85 D88 D<12E0B3B3B3AD034378B114>106 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fy cmr6 6 10 /Fy 10 55 df<130C1338137013E0EA01C0EA038013005A120EA25AA25AA312781270A3 12F0AB1270A312781238A37EA27EA27E7E1380EA01C0EA00E013701338130C0E317AA418 >40 D<12C012707E7E7E7E7E1380EA01C0A2EA00E0A21370A313781338A3133CAB1338A3 13781370A313E0A2EA01C0A2EA038013005A120E5A5A5A12C00E317CA418>I<1438B2B7 12FEA3C70038C7FCB227277C9F2F>43 D<13FF000313C0380781E0380F00F0001E137848 133CA248131EA400F8131FAD0078131EA2007C133E003C133CA26C13786C13F0380781E0 3803FFC0C6130018227DA01E>48 D<13E01201120712FF12F91201B3A7487EB512C0A212 217AA01E>II<13FF000313C0380F03E0381C 00F014F8003E13FC147CA2001E13FC120CC712F8A2EB01F0EB03E0EB0FC03801FF00A238 0003E0EB00F01478147C143E143F1230127812FCA2143E48137E0060137C003813F8381E 03F0380FFFC00001130018227DA01E>I<14E01301A213031307A2130D131D1339133113 6113E113C1EA01811203EA07011206120C121C12181230127012E0B6FCA2380001E0A6EB 03F0EB3FFFA218227DA11E>I<00101330381E01F0381FFFE014C01480EBFE00EA1BF000 18C7FCA513FE381BFF80381F03C0381C01E0381800F014F8C71278A2147CA21230127812 F8A214784813F8006013F0387001E01238381E07803807FF00EA01F816227CA01E>II E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fz msbm10 10 1 /Fz 1 125 df124 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: FA cmr10 10 49 /FA 49 123 df<133C137EA213FE1201EA03FC13F0EA07E0EA0FC0EA1F80EA1E005A5A5A 12C00F0F6FB92A>19 D<146014E0EB01C0EB0380EB0700130E131E5B5BA25B485AA2485A A212075B120F90C7FCA25A121EA2123EA35AA65AB2127CA67EA3121EA2121F7EA27F1207 7F1203A26C7EA26C7E1378A27F7F130E7FEB0380EB01C0EB00E01460135278BD20>40 D<12C07E12707E7E7E120F6C7E6C7EA26C7E6C7EA21378A2137C133C133E131EA2131F7F A21480A3EB07C0A6EB03E0B2EB07C0A6EB0F80A31400A25B131EA2133E133C137C1378A2 5BA2485A485AA2485A48C7FC120E5A5A5A5A5A13527CBD20>I<121C127FEAFF80A213C0 A3127F121C1200A412011380A2120313005A1206120E5A5A5A12600A19798817>44 DI<121C127FEAFF80A5EA7F00121C0909798817>I48 D I51 D<007FB812F8B912FCA26C17F8CCFCAE007FB812F8B912FCA26C17 F836167B9F41>61 D<1538A3157CA315FEA34A7EA34A6C7EA202077FEC063FA2020E7FEC 0C1FA2021C7FEC180FA202387FEC3007A202707FEC6003A202C07F1501A2D901807F81A2 49C77F167FA20106810107B6FCA24981010CC7121FA2496E7EA3496E7EA3496E7EA213E0 707E1201486C81D80FFC02071380B56C90B512FEA3373C7DBB3E>65 DI<913A01FF800180020FEBE003027F13F8903A01FF807E07903A03 FC000F0FD90FF0EB039F4948EB01DFD93F80EB00FF49C8127F01FE153F12014848151F48 48150FA248481507A2485A1703123F5B007F1601A35B00FF93C7FCAD127F6DED0180A312 3F7F001F160318006C7E5F6C7E17066C6C150E6C6C5D00001618017F15386D6C5CD91FE0 5C6D6CEB03C0D903FCEB0F80902701FF803FC7FC9039007FFFFC020F13F002011380313D 7BBA3C>I70 D72 DI75 D80 D82 DI<003FB812E0A3D9C003EB001F273E0001FE 130348EE01F00078160000701770A300601730A400E01738481718A4C71600B3B0913807 FF80011FB612E0A335397DB83C>I87 D91 D93 D97 DIIII<147E9038 03FF8090380FC1E0EB1F8790383F0FF0137EA213FCA23901F803C091C7FCADB512FCA3D8 01F8C7FCB3AB487E387FFFF8A31C3B7FBA19>IIII107 DI<2703F00FF0EB 1FE000FFD93FFCEB7FF8913AF03F01E07E903BF1C01F83803F3D0FF3800FC7001F802603 F70013CE01FE14DC49D907F8EB0FC0A2495CA3495CB3A3486C496CEB1FE0B500C1B50083 B5FCA340257EA445>I<3903F00FF000FFEB3FFCECF03F9039F1C01F803A0FF3800FC038 03F70013FE496D7EA25BA35BB3A3486C497EB500C1B51280A329257EA42E>II<3903F01FE000FFEB7FF89038F1E07E9039F3801F803A0FF7000FC0D803FEEB07 E049EB03F04914F849130116FC150016FEA3167FAA16FEA3ED01FCA26DEB03F816F06D13 076DEB0FE001F614C09039F7803F009038F1E07E9038F0FFF8EC1FC091C8FCAB487EB512 C0A328357EA42E>II<3807E01F00FFEB7FC09038E1E3E09038E387F0380FE707EA03 E613EE9038EC03E09038FC0080491300A45BB3A2487EB512F0A31C257EA421>II<1318A51338A313 78A313F8120112031207001FB5FCB6FCA2D801F8C7FCB215C0A93800FC011580EB7C0301 7E13006D5AEB0FFEEB01F81A347FB220>III< B53A1FFFE03FFEA3260FF8009038000FF86C48017EEB03E018C00003023EEB0180A26C6C 013FEB0300A36C6CEC8006156FA2017E9038EFC00C15C7A2D93F016D5A15830281EBF038 D91F831430150102C3EBF87090260FC6001360A2D907E66D5A02EC137CA2D903FCEB7F80 4A133FA2010192C7FC4A7FA20100141E4A130E0260130C37257EA33C>III<003FB512FCA2EB8003D83E0013F800 3CEB07F00038EB0FE012300070EB1FC0EC3F800060137F150014FE495AA2C6485A495AA2 495A495A495AA290387F000613FEA2485A485A0007140E5B4848130C4848131CA2484813 3C48C7127C48EB03FC90B5FCA21F247EA325>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: FB cmr7 7 4 /FB 4 53 df<13381378EA01F8121F12FE12E01200B3AB487EB512F8A215267BA521>49 D<13FF000313E0380E03F0381800F848137C48137E00787F12FC6CEB1F80A4127CC7FC15 005C143E147E147C5C495A495A5C495A010EC7FC5B5B903870018013E0EA018039030003 0012065A001FB5FC5A485BB5FCA219267DA521>I<13FF000313E0380F01F8381C007C00 30137E003C133E007E133FA4123CC7123E147E147C5C495AEB07E03801FF8091C7FC3800 01E06D7E147C80143F801580A21238127C12FEA21500485B0078133E00705B6C5B381F01 F03807FFC0C690C7FC19277DA521>I<1438A2147814F81301A2130313071306130C131C 131813301370136013C012011380EA03005A120E120C121C5A12305A12E0B612E0A2C7EA F800A7497E90383FFFE0A21B277EA621>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: FC cmsy10 12 31 /FC 31 107 df<007FB912E0BA12F0A26C18E03C04789A4D>0 D<121FEA3F80EA7FC0EA FFE0A5EA7FC0EA3F80EA1F000B0B789E1C>I<0060160600F8160F6C161F007E163F6C16 7E6C6C15FC6C6CEC01F86C6CEC03F06C6CEC07E06C6CEC0FC06C6CEC1F80017EEC3F006D 147E6D6C5B6D6C485A6D6C485A6D6C485A6D6C485A6D6C485ADA7E3FC7FCEC3F7E6E5A6E 5A6E5AA24A7E4A7EEC3F7EEC7E3F4A6C7E49486C7E49486C7E49486C7E49486C7E49486C 7E49C7127E017E8049EC1F804848EC0FC04848EC07E04848EC03F04848EC01F84848EC00 FC48C9127E007E163F48161F48160F00601606303072B04D>I<16C04B7EB3AC007FBA12 80BB12C0A26C1980C8D801E0C9FCB3A9007FBA1280BB12C0A26C198042427BC14D>6 D8 D10 D<49B4FC010F13E0013F13F8497F3901FF01FF3A 03F8003F80D807E0EB0FC04848EB07E04848EB03F090C71201003EEC00F8A248157CA200 78153C00F8153EA248151EA56C153EA20078153C007C157CA26C15F8A26CEC01F06D1303 6C6CEB07E06C6CEB0FC0D803F8EB3F803A01FF01FF0039007FFFFC6D5B010F13E0010190 C7FC27277BAB32>14 D<49B4FC010F13E0013F13F8497F48B6FC4815804815C04815E048 15F0A24815F8A24815FCA3B712FEA96C15FCA36C15F8A26C15F0A26C15E06C15C06C1580 6C15006C6C13FC6D5B010F13E0010190C7FC27277BAB32>I<007FBA1280BB12C0A26C19 80CEFCB0007FBA1280BB12C0A26C1980CEFCB0007FBA1280BB12C0A26C1980422C7BAE4D >17 D<037FB612E00207B712F0143F91B812E0010301C0C9FCD907FCCAFCEB0FE0EB3F80 49CBFC13FC485A485A485A5B485A121F90CCFC123EA2123C127CA2127812F8A25AA87EA2 1278127CA2123C123EA27E7F120F6C7E7F6C7E6C7E6C7E137E6D7EEB1FE0EB07FC6DB47E 010090B712E0023F16F01407020016E092CAFCB0001FB912E04818F0A26C18E03C4E78BE 4D>I<19E0F003F0180FF03FE0F0FF80943803FE00EF0FF8EF3FE0EFFF80DC03FEC7FCEE 0FF8EE3FE0EEFF80DB03FEC8FCED1FF8ED7FE0913801FF80DA07FEC9FCEC1FF0EC7FC049 48CAFCEB07FCEB1FF0EB7FC04848CBFCEA07FCEA1FF0EA7FC048CCFCA2EA7FC0EA1FF0EA 07FCEA01FF38007FC0EB1FF0EB07FCEB01FF9038007FC0EC1FF0EC07FC913801FF809138 007FE0ED1FF8ED07FE923800FF80EE3FE0EE0FF8EE03FE933800FF80EF3FE0EF0FF8EF03 FE943800FF80F03FE0F00FF01803F000E01900B0007FB912E0BA12F0A26C18E03C4E78BE 4D>20 D<127012FCB4FCEA7FC0EA1FF0EA07FCEA01FF38007FC0EB1FF0EB07FCEB01FF90 38007FC0EC1FF0EC07FC913801FF809138007FE0ED1FF8ED07FE923800FF80EE3FE0EE0F F8EE03FE933800FF80EF3FE0EF0FF8EF03FE943800FF80F03FE0F00FF0A2F03FE0F0FF80 943803FE00EF0FF8EF3FE0EFFF80DC03FEC7FCEE0FF8EE3FE0EEFF80DB03FEC8FCED1FF8 ED7FE0913801FF80DA07FEC9FCEC1FF0EC7FC04948CAFCEB07FCEB1FF0EB7FC04848CBFC EA07FCEA1FF0EA7FC048CCFC12FC1270CDFCB0007FB912E0BA12F0A26C18E03C4E78BE4D >I<037FB612E00207B712F0143F91B812E0010301C0C9FCD907FCCAFCEB0FE0EB3F8049 CBFC13FC485A485A485A5B485A121F90CCFC123EA2123C127CA2127812F8A25AA87EA212 78127CA2123C123EA27E7F120F6C7E7F6C7E6C7E6C7E137E6D7EEB1FE0EB07FC6DB47E01 0090B712E0023F16F01407020016E03C3A78B54D>26 D<1AF0A3861A78A21A7C1A3CA21A 3E1A1E1A1F747EA2747E747E87747E747E1B7E87757EF30FE0F303F8007FBC12FEBE1280 A26CF3FE00CEEA03F8F30FE0F31F8051C7FC1B7E63505A505A63505A505AA250C8FC1A1E 1A3E1A3CA21A7C1A78A21AF862A359347BB264>33 D39 D<92B6FC02071580143F91B7120001030180C8FCD907FCC9FCEB1FE0EB3F80017E CAFC5B485A485A485A5B485A121F90CBFC123EA2123C127CA2127812F8A25AA2B9FC1880 A2180000F0CBFCA27EA21278127CA2123C123EA27E7F120F6C7E7F6C7E6C7E6C7E137E6D 7EEB1FE0EB07FC6DB47E010090B6FC023F1580140702001500313A78B542>50 D<1706170F171FA2173EA2177CA217F8A2EE01F0A2EE03E0A2EE07C0A2EE0F80A2EE1F00 A2163EA25EA25EA24B5AA24B5AA24B5AA24B5AA24BC7FCA2153EA25DA25DA24A5AA24A5A A24A5AA24A5AA24AC8FCA2143EA25CA25CA2495AA2495AA2495AA2495AA249C9FCA2133E A25BA25BA2485AA2485AA2485AA2485AA248CAFCA2123EA25AA25AA25A1260305C72C600 >54 D<0060171800F0173C6C177CA200781778007C17F8A2003C17F0003E1601A26CEE03 E0A26C17C06D1507A2000717806D150FA26C6CED1F00A20001161E6D153EA20000163C90 B712FCA26D5DA2013CC85A013E1401A2011E5D011F1403A26D5D6E1307A26D6C495AA201 0392C7FC6E5BA20101141E6E133EA26D6C5BA202781378027C13F8A2023C5BEC3E01A26E 485AA2020F5B1587A202075B15CFA26EB4C8FCA26E5AA36E5AA315781530364780C437> 56 D<190E193E19FE18011803A21807A2180FA2181FA2183F183B187B187318F318E317 0118C31703188317071803170F171EA2173CA21778A217F0EE01E0A2EE03C0A2DC07807F 160F1700161E043E7F163C167C5E5E15014B5A5E15074B5A041FB67EED1F7F4BB7FCA25D 92B8FC03F0C8FC14014A48824A5A140F00305C007049C9127F4A8300F8137E6C5B6C4848 8326FF87F0043F133001FFF0F8F04AEFFFE04A7013C04A188091CAEBFE006C48EF0FF86C 48EF07C06C4894C8FCEA07E04C4D7DC750>65 DII<031FB512C00203B7FC021F16E091B812F80103 17FE010F717E90283FE07FC03F80D9FE00020080D801F8041F7FD803E04A01077F484816 01000F716C7E4848717E003F02FF151F007F180F90C7707E00FE92C8FC488400F01A8000 8084C75AA24B81A414035DA21B00A24A5AA24F5AA24A5A621903624A5A4F5AA24B4B5A02 3F5F191F4B5E027F4CC7FC197E92C9127C4A5E4E5A4A4B5A01014C5AF01F804A033EC8FC 01035E4A4A5AEF07E00107ED1FC04A02FFC9FC010FEC07FC4AEBFFF091B612C0017F4ACA FC90B612F04815804802F8CBFC4891CCFC49447EC34D>I75 D83 D<027E1718D907FF17F8011F1701017F6D1503 48B5EE07F00007180FEA0FC148C6EF1FE0123CC790C913C0193FA24A17800101177FA24A EEFF001303A24A4B5A13074A150361010F16075C011F160F4A4B5AA24948153F61017F16 7F91C9FC494C5A495DA248485D4D5B1203495D00075E495FEF3F7F000F167E5B001F4C48 C7FC4C5A494A5A003F5E933807E1FEEE0FC14848EC1F81EE3F0193383E03FC167C00FF15 F8ED01F0923803E007ED07C0DB0F805B6DEB1F00153E15FC9026E001F0130F397FF007E0 9026FC0FC0153090B5C7EBFDF06C01FCEDFFE04A5E6C01E093C7FC6C90C86C5AD803F016 F8CAEA03C0454781C33E>85 D88 D<0060170C00F0171EB3B3A66C173EA2 0078173C007C177C007E17FC003E17F86CEE01F06D15036C6CED07E06C6CED0FC0D803F8 ED3F80D801FEEDFF0026007FC0EB07FCD93FFCEB7FF8010FB612E001031580D9007F01FC C7FC020713C0373D7BBA42>91 D<913807FFC0027F13FC0103B67E010F15E0903A3FFC00 7FF8D97FC0EB07FCD801FEC8B4FCD803F8ED3F80D807E0ED0FC04848ED07E04848ED03F0 90C91201003EEE00F8007E17FC007C177C0078173C00F8173EA248171EB3B3A60060170C 373D7BBA42>I102 D<12FEEAFFE0EA07F8EA00FEEB7F806D7E6D7E130F6D7EA26D7EB3AD6D7EA26D7E 806E7E6E7EEC0FE0EC03FC913800FFE0A2913803FC00EC0FE0EC3FC04A5A4AC7FC5C495A A2495AB3AD495AA2495A131F495A495A01FEC8FCEA07F8EAFFE048C9FC236479CA32>I< 126012F0B3B3B3B3B3A81260046474CA1C>106 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: FD cmbx12 17.28 45 /FD 45 122 df<94387FFF80041FB512F04BB612FC030F81037F6F7E4AB5D8E0077F4A49 C76C7E020F01F0EC1FF04A01C0147F4A90C8487E4A485C4A484A7F49495C495BA2495B4E 7F49705B5DA3725B725B725B735A96C9FCAB0503B512FEBBFCA6D8000F01E0C7120184B3 B3AF003FB6D8F803B71280A651657DE45A>12 D14 D45 DI<16F04B7E1507151F153FEC01FF1407147F010FB5FCB7 FCA41487EBF007C7FCB3B3B3B3007FB91280A6395E74DD51>49 D<913801FFF8021FEBFF C091B612F8010315FF010F16C0013F8290267FFC0114F89027FFE0003F7F4890C7000F7F 48486E7FD807F86E148048486E14C048486E14E048486F13F001FC17F8486C816D17FC6E 80B56C16FE8380A219FFA283A36C5BA26C5B6C90C8FCD807FC5DEA01F0CA14FEA34D13FC A219F85F19F04D13E0A294B512C019804C14004C5B604C5B4C5B604C13804C90C7FC4C5A 4C5A4B13F05F4B13804B90C8FC4B5AED1FF84B5A4B5A4B48143F4A5B4A48C8FC4A5A4A48 157E4A5A4A5AEC7F8092C9FC02FE16FE495A495A4948ED01FCD90FC0150749B8FC5B5B90 B9FC5A4818F85A5A5A5A5ABAFCA219F0A4405E78DD51>I<92B5FC020F14F8023F14FF49 B712C04916F0010FD9C01F13FC90271FFC00077FD93FE001017F49486D8049C86C7F4848 83486C6F7F14C0486D826E806E82487FA4805CA36C5E4A5E6C5B6C5B6C495E011FC85A90 C95CA294B55A614C91C7FC604C5B4C5B4C5B4C5B047F138092260FFFFEC8FC020FB512F8 17E094C9FC17F817FF91C7003F13E0040713F8040113FE707F717F7113E085717FA2717F 85A285831A80A31AC0EA03FCEA0FFF487F487F487FA2B57EA31A80A34D14005C7E4A5E5F 6C495E49C8485BD81FF85F000F5ED807FE92B55A6C6C6C4914806C01F0010791C7FC6C90 26FF803F5B6D90B65A011F16F0010716C001014BC8FCD9001F14F0020149C9FC426079DD 51>II<01C0 EE01C0D801F8160F01FF167F02F0EC07FFDAFF8090B5FC92B71280190060606060606060 95C7FC17FC5F17E0178004FCC8FC16E09026FC3FFCC9FC91CBFCADED3FFE0203B512F002 0F14FE023F6E7E91B712E001FDD9E00F7F9027FFFE00037F02F801007F02E06EB4FC0280 6E138091C8FC496F13C04917E07113F0EA00F090C914F8A219FC83A219FEA419FFA3EA03 F0EA0FFC487E487E487FA2B57EA319FEA35C4D13FC6C90C8FC5B4917F8EA3FF001804B13 F06D17E0001F5E6C6C17C06D4B1380D807FC92B512006C6C4A5B6C6C6C01075B6C01E001 1F5BD97FFE90B55A6DB712C0010F93C7FC6D15FC010115F0D9003F1480020301F0C8FC40 6078DD51>II65 D<4DB5ED03C0057F02F014070407B600FE140F047FDBFFC0131F4BB800F0133F030F05FC 137F033F9127F8007FFE13FF92B6C73807FF814A02F0020113C3020702C09138007FE74A 91C9001FB5FC023F01FC16074A01F08291B54882490280824991CB7E4949844949844949 8449865D49498490B5FC484A84A2484A84A24891CD127FA25A4A1A3F5AA348491A1FA448 99C7FCA25CA3B5FCB07EA380A27EA2F50FC0A26C7FA37E6E1A1F6C1D80A26C801D3F6C6E 1A00A26C6E616D1BFE6D7F6F4E5A7F6D6D4E5A6D6D4E5A6D6D4E5A6D6E171F6D02E04D5A 6E6DEFFF806E01FC4C90C7FC020F01FFEE07FE6E02C0ED1FF8020102F8ED7FF06E02FF91 3803FFE0033F02F8013F1380030F91B648C8FC030117F86F6C16E004071680DC007F02F8 C9FC050191CAFC626677E375>67 DII<4DB5ED03C0057F02F014070407B600FE140F047FDBFFC0131F4BB800F0133F 030F05FC137F033F9127F8007FFE13FF92B6C73807FF814A02F0020113C3020702C09138 007FE74A91C9001FB5FC023F01FC16074A01F08291B54882490280824991CB7E49498449 498449498449865D49498490B5FC484A84A2484A84A24891CD127FA25A4A1A3F5AA34849 1A1FA44899C8FCA25CA3B5FCB07E071FB812F880A37EA296C70001ECC000A26C7FA37E80 7EA26C80A26C80A26C807F6D7F816D7F7F6D7F6D6D5F6D14C06D6E5E6E7F6E01FC5E020F 01FF5E6E02C0ED7FEF020102F8EDFFC76E02FF02071383033F02FC013F1301030F91B638 FC007F03014D131F6F6C04E01307040704801301DC007F02F8CAFC050191CBFC6D6677E3 7F>71 DI76 D78 D83 D<001FBEFCA64849C79126E0000F148002E0180091C8171F498601F81A034986 4986A2491B7FA2491B3F007F1DC090C9181FA4007E1C0FA600FE1DE0481C07A5CA95C7FC B3B3B3A3021FBAFCA663617AE070>I89 D<000FBB12FE87A54BC86C5B03C0 5F4AC9B5FC4801F84B5C02E0604A5D4A4B5C91C95D495E494C5C4996C7FC60494C5B4960 95B5FC4D5C49605F4D5C4960003F5E4D5C97C8FC90C95A4D5B6194B5FC4C5CC95D5E4C5C 615E4C5C96C9FC5E4C5B6093B5FC4B5C605D604B5C5D605D4B91CAFC5F5D92B55A5F5C4A 4AED1F805F5C4A5C5F5C4A91C9FC4C163F5C91B55A4C17005B495C4C5E5B495C4C5E5B49 91CAFC4B5E5B90B5485E4B5E5A484A5E4B5E4861484A5E4B4BB5FC4806075B4891C9121F 4A93B5FC48171FBCFCA57E516277E163>I<913803FFFE027FEBFFF00103B612FE010F6F 7E4916E090273FFE001F7FD97FE001077FD9FFF801017F486D6D7F717E486D6E7F85717F A2717FA36C496E7FA26C5B6D5AEB1FC090C9FCA74BB6FC157F0207B7FC147F49B6120701 0F14C0013FEBFE004913F048B512C04891C7FC485B4813F85A5C485B5A5CA2B55AA45FA2 5F806C5E806C047D7F6EEB01F96C6DD903F1EBFF806C01FED90FE114FF6C9027FFC07FC0 1580000191B5487E6C6C4B7E011F02FC130F010302F001011400D9001F90CBFC49437CC1 4E>97 D<903807FF80B6FCA6C6FC7F7FB3A8EFFFF8040FEBFF80047F14F00381B612FC03 8715FF038F010014C0DBBFF0011F7FDBFFC001077F93C76C7F4B02007F03F8824B6F7E4B 6F13804B17C0851BE0A27313F0A21BF8A37313FCA41BFEAE1BFCA44F13F8A31BF0A24F13 E0A24F13C06F17804F1300816F4B5A6F4A5B4AB402075B4A6C6C495B9126F83FE0013F13 C09127F00FFC03B55A4A6CB648C7FCDAC00115F84A6C15E091C7001F91C8FC90C8000313 E04F657BE35A>I<92380FFFF04AB67E020F15F0023F15FC91B77E01039039FE001FFF49 01F8010113804901E0010713C04901804913E0017F90C7FC49484A13F0A2485B485B5A5C 5A7113E0485B7113C048701380943800FE0095C7FC485BA4B5FCAE7EA280A27EA2806C18 FCA26C6D150119F87E6C6D15036EED07F06C18E06C6D150F6D6DEC1FC06D01E0EC7F806D 6DECFF00010701FCEB03FE6D9039FFC03FFC010091B512F0023F5D020F1580020102FCC7 FCDA000F13C03E437BC148>II<92380FFFC04AB512FC020FECFF80023F15E091B712F80103 D9FE037F499039F0007FFF011F01C0011F7F49496D7F4990C76C7F49486E7F4849804884 4A804884485B727E5A5C48717EA35A5C721380A2B5FCA391B9FCA41A0002C0CBFCA67EA3 80A27EA27E6E160FF11F806C183F6C7FF17F006C7F6C6D16FE6C17016D6C4B5A6D6D4A5A 6D01E04A5A6D6DEC3FE0010301FC49B45A6D9026FFC01F90C7FC6D6C90B55A021F15F802 0715E0020092C8FC030713F041437CC14A>III<903807FF80B6FC A6C6FC7F7FB3A8EF1FFF94B512F0040714FC041F14FF4C8193267FE07F7F922781FE001F 7FDB83F86D7FDB87F07FDB8FC0814C7F039FC78015BE03BC8003FC825DA25DA25DA45DB3 B2B7D8F007B71280A651647BE35A>II<903807FF80B6FCA6C6FC7F7FB3A90503B61280A6DD003FEB80 00DE0FFCC7FCF01FF04E5AF0FFC04D5B4D90C8FCEF07FC4D5AEF3FF04D5A4D5A4C90C9FC 4C5AEE0FFC4C5A4C5AEE7FC04C7E03837F03877F158F039F7F03BF7F92B5FC838403FC80 4B7E03F0804B6C7F4B6C7F1580707F707F707FA270807080717FA2717F717F717FA2717F 717F83867180727F95B57EB7D8E00FECFFF0A64C647BE355>107 D<903807FF80B6FCA6C6FC7F7FB3B3B3B3ADB712E0A623647BE32C>I<902607FF80D91F FFEEFFF8B691B500F00207EBFF80040702FC023F14E0041F02FF91B612F84C6F48819326 7FE07F6D4801037F922781FE001F9027E00FF0007FC6DA83F86D9026F01FC06D7F6DD987 F06D4A487F6DD98FC0DBF87EC7804C6D027C80039FC76E488203BEEEFDF003BC6E4A8003 FC04FF834B5FA24B5FA24B94C8FCA44B5EB3B2B7D8F007B7D8803FB612FCA67E417BC087 >I<902607FF80EB1FFFB691B512F0040714FC041F14FF4C8193267FE07F7F922781FE00 1F7FC6DA83F86D7F6DD987F07F6DD98FC0814C7F039FC78015BE03BC8003FC825DA25DA2 5DA45DB3B2B7D8F007B71280A651417BC05A>I<923807FFE092B6FC020715E0021F15F8 027F15FE494848C66C6C7E010701F0010F13E04901C001037F49496D7F4990C87F49486F 7E49486F7E48496F13804819C04A814819E048496F13F0A24819F8A348496F13FCA34819 FEA4B518FFAD6C19FEA46C6D4B13FCA36C19F8A26C6D4B13F0A26C19E06C6D4B13C0A26C 6D4B13806C6D4B13006D6C4B5A6D6D495B6D6D495B010701F0010F13E06D01FE017F5B01 0090B7C7FC023F15FC020715E0020092C8FC030713E048437CC151>I<902607FF80EBFF F8B6010FEBFF80047F14F00381B612FC038715FF038F010114C09227BFF0003F7FC6DAFF C0010F7F6D91C76C7F6D496E7F03F86E7F4B6E7F4B17804B6F13C0A27313E0A27313F0A2 1BF885A21BFCA3851BFEAE4F13FCA41BF861A21BF0611BE0611BC06F92B512801B006F5C 6F4A5B6F4A5B03FF4A5B70495B04E0017F13C09226CFFC03B55A03C7B648C7FC03C115F8 03C015E0041F91C8FC040313E093CBFCB3A3B712F0A64F5D7BC05A>I114 D<913A3FFF8007800107B5EAF81F011FECFE7F017F91B5FC48 B8FC48EBE0014890C7121FD80FFC1407D81FF0801600485A007F167F49153FA212FF171F A27F7F7F6D92C7FC13FF14E014FF6C14F8EDFFC06C15FC16FF6C16C06C16F06C826C826C 826C82013F1680010F16C01303D9007F15E0020315F0EC001F1500041F13F81607007C15 0100FC81177F6C163FA2171F7EA26D16F0A27F173F6D16E06D157F6D16C001FEEDFF806D 0203130002C0EB0FFE02FCEB7FFC01DFB65A010F5DD8FE0315C026F8007F49C7FC48010F 13E035437BC140>II<902607FFC0ED3FFEB60207B5FCA6C6EE00076D826D82B3B3A260A360A2607F60 183E6D6D147E4E7F6D6D4948806D6DD907F0ECFF806D01FFEB3FE06D91B55A6E1500021F 5C020314F8DA003F018002F0C7FC51427BC05A>III< 007FB600C0017FB512F8A6D8001F01F8C70007EBF0006D040190C7FC6D6D5D6D6D4A5A6D 6D4A5A70495A6D4C5A6E7F6E6D495A6E6D495A7049C8FC6E4A5A6E6D485A6E6D485A6E13 FFEF8FF06EEC9FE06FEBFFC06F5C6F91C9FC5F6F5B816F7F6F7F8481707F8493B57E4B80 5D4B80DB0FF37FDB1FE17F04C080153F4B486C7F4B486C7F4A486D7F4A486D7F4A5A4B6D 7F020F6E7F4A486D7F4A486D804A5A4AC86C7F49486F7F4A6F7F0107707FEB3FFFB600F0 49B7FCA650407EBF55>II E %EndDVIPSBitmapFont %DVIPSBitmapFont: FE cmti12 12 71 /FE 71 128 df<4CB414FC040F9039C003FF80933B3F81F00783C0933B7C00781F01E04C 9038F83F03923C01F001FC3E07F003030103EB7E0F922607E007EB7C1F19FCDB0FC001F8 14E0943A03F0F80FC0DD01E1EB0780031FD9000190C7FC5E180361153F93C7FCA2180761 5D157EA2180F6115FE91B912F0A3DA00FCC7D81F80C7FC1401A25D183F96C8FCA214035D A260187E14075DA218FE60140F5DA2170160141F5DA2170360143F92C7FCA21707605C14 7EA2170F6014FE5CA24D5AA2495A95C9FC5F5C0103153E177E001CEBE038007F02FE137C 26FF07E114FC02C15C4C5AEB0F8100FE903901FC03E0D8F81F9038F007C03B701E00E00F 80D8783CD9F83ECAFCD81FF0EB3FF8D807C0EB0FE04C5A83C53C>11 DI14 D19 D<01F013783903F801FC3907FC03FE000F1307A6 3903CC01E639001C000E0118130CA20138131C01301318A2017013384913704913600001 14E04913C0000313013907000380000EEB070048130E485B485B485B4813601F1D6FC432 >34 D<167016E0ED01C0ED0380ED0700150E153C5D15F85D4A5A4A5A4A5A140F4AC7FC14 1E143E5C147814F8495A5C1303495AA2495AA249C8FCA25B133E137E137CA25BA212015B A212035BA212075BA2120FA25BA2121FA290C9FCA25AA2123EA3127EA2127CA65AAB1278 A6127C123CA47EA2120E120FA27E6C7EA26C7EA26C7E1360246472CA28>40 D<1560A2157081A281151E150E150FA2811680A3ED03C0A516E0A21501A71503A91507A2 16C0A4150FA21680A2151FA21600A25DA2153EA2157EA2157C15FCA25D1401A25D14035D A214075D140F5DA24AC7FCA2143EA25C147814F8495AA2495A5C1307495A91C8FC131E13 3E5B13785B485A485A485A48C9FC121E5A5A12E05A23647FCA28>I<13F0EA03FC1207A2 EA0FFEA4EA07FCEA03CCEA000C131C1318A2133813301370136013E0EA01C013801203EA 0700120E5A5A5A5A5A0F1D7A891E>44 D<007FB5FCB6FCA214FEA21805789723>I<120F EA3FC0127FA212FFA31380EA7F00123C0A0A76891E>I 48 D<16C01501A215031507ED0F80151F153F157F913801FF005C140F147F903807FCFE EB0FF0EB0700EB00015DA314035DA314075DA3140F5DA3141F5DA3143F5DA3147F92C7FC A35C5CA313015CA313035CA313075CA2130FA2131F133FB612FCA25D224276C132>II II<026014 300278EB01F091397F801FE091B612C01780170016FC4914F016C0DACFFEC7FC02C0C8FC 13035CA3130791C9FCA35B130EA3131E90381C07F8EC3FFE9138F80F8090393DC007C0D9 3F807F90383E0003013C80496D7E1370A290C7FC82A41503A415075E120E123F486C130F 00FF5DA390C7485A5A00F84A5A12E04B5A93C7FC15FE14016C5C0070495A0078495A6CEB 1FC0003E495A261F80FEC8FC6CB45A000313E0C66CC9FC2C4476C132>I<9026380FC013 1C9038787FE0902671FFF0133C01F3157801EF15F090B5FC4801E0EB01E09139007003C0 4848EB380701F8EC1F804848EB1C3F4990381FFF004848EB07DF49EB001E48C85A121E5E 4815F800385D0078140100705D00F01403485D1507C8485AA24BC7FCA25D153E157E157C 15FC5D1401A24A5AA214075D140F5D141FA25D143FA24AC8FCA314FEA21301A25C1303A2 5C1307A35C130FA35C5C6D5A2E4472C132>55 DI<130FEB1FC0133FEB7FE013FFA214C0EB7F801400 131E90C7FCB3A5120FEA3FC0127FA212FFA35B6CC7FC123C132B76AA1E>58 D65 D<91B712FCF0FF8019E00201903980001FF06E90C7EA07F84A6F7E727E4B8184 1A800203167F5DA314075D19FFA2020F17004B5C611803021F5E4B4A5A180F4E5A023F4B 5A4BEC7F804EC7FCEF03FC027FEC0FF84BEBFFC092B6C8FC18E0913AFF800007F892C7EA 01FC717E187F49834A6F7EA30103835CA313075CA3010F5F4A157FA24E5A131F4A4A90C7 FC601703013F4B5A4A4A5A4D5A017F4B5A4D5A4A4948C8FC01FFEC0FFEB812F817C04CC9 FC41447AC345>II<91B712F818FF19C00201903980003FF06E90C7EA0FF84AED03FCF000FE4B157FA2 F13F800203EE1FC05DF10FE0A214074B16F01907A2140F5D1AF8A2141F5DA2190F143F5D 1AF0A2147F4B151FA302FF17E092C9123FA34918C04A167F1A80A2010317FF4A1700A24E 5A13074A4B5A611807010F5F4A4B5A181F61011F4C5A4A4BC7FC18FE4D5A013F4B5A4A4A 5A4D5A017FED3FC005FFC8FC4AEB03FE01FFEC1FF8B812E094C9FC16F845447AC34A>I< 91B91280A30201902680000713006E90C8FC4A163FA24B81A30203160E5DA314074B151E 191CA2140F5D17075F021F020E90C7FC5DA2171E023F141C4B133CA2177C027F5CED8003 92B5FCA291B65AED00071601A2496E5A5CA2160101035D5CA2160301075D4A90CAFCA313 0F5CA3131F5CA3133F5CA2137FA313FFB612E0A341447AC340>70 DI<91 B6D8803FB512E0A302010180C7387FE0006E90C86C5A4A167FA24B5EA219FF14034B93C7 FCA26014074B5DA21803140F4B5DA21807141F4B5DA2180F143F4B5DA2181F147F92B75A A3DAFF80C7123F92C85BA2187F5B4A5EA218FF13034A93C8FCA25F13074A5DA21703130F 4A5DA21707131F4A5DA2170F133F4A5DA2017F151FA24A5D496C4A7EB6D8803FB512E0A3 4B447AC348>I<027FB512E091B6FCA20200EBE000ED7F8015FFA293C7FCA35C5DA31403 5DA314075DA3140F5DA3141F5DA3143F5DA3147F5DA314FF92C8FCA35B5CA313035CA313 075CA3130F5CA3131F5CA2133FA25CEBFFE0B612E0A25D2B447BC326>I<91B66C90383F FFF8A302010180C7000F13006E90C8EA07FC4A17F01AC04B4B5A4FC7FC193C02035E4B5D F003E0F0078002074BC8FC4B141E6018F8020F4A5A4BEB03C04D5A4DC9FC021F141E4B13 7C17F04C5A023F495A4B487E161F163F027F497EED80FFED81EF923883CFF89138FF8F8F ED1E07033C7F157849EBF00303E07F15C092380001FF495A5C707FA213074A6E7EA2173F 010F825C171F84131F4A140F84A2013F6F7E5CA2017F6F7EA24A4A7E496C4A7FB66C90B5 12FC5E614D447AC34B>75 D<91B612F0A25F020101C0C7FC6E5B4A90C8FCA25DA314035D A314075DA3140F5DA3141F5DA3143F5DA3147F5DA314FF92C9FCA35B5CA3010316104A15 38A21878010716705C18F018E0010F15015C18C01703011F15074A1580170FA2013FED1F 004A5C5F017F15FE16034A130F01FFEC7FFCB8FCA25F35447AC33D>I<91B56C93387FFF C08298B5FC02014DEBC0006E614A5FA203DF4C6CC7FC1A0E63912603CFE05D038F5F1A38 1A711407030FEEE1FCA2F101C3020FEE0383020E60F107036F6C1507021E160E021C6019 1CF1380F143C023804705BA2F1E01F0278ED01C091267003F85EF003801A3F02F0ED0700 02E0030E5CA24E137F130102C04B91C8FC606201036D6C5B02805F4D5A94380380011307 0200DA07005BA2050E1303495D010E606F6C5A1907011E5D011C4B5CA27048130F133C01 384B5C017892C7FC191F01F85C486C027E5DD807FE027C4A7EB500F00178013FB512C0A2 16705A447AC357>I<91B56C49B512E0A28202009239000FFC00F107F0706E5A4A5F15DF 705D1907EC03CFDB8FF892C7FCA203875D02077F0303150EA270141EEC0F01020E161C82 6F153C141E021C6E1338167F1978023C800238013F1470A27113F00278131F02705E8304 0F130102F014F84A5E1607EFFC0313014A01035C17FE1807010314014A02FF90C8FCA270 5B0107168F91C8138E177F18DE5B010EED3FDC18FCA2011E151F011C5EA2170F133C0138 6F5A1378A201F81503486C5EEA07FEB500F01401A2604B447AC348>II<91B712F0 18FEF0FF800201903980007FE06E90C7EA1FF04AED07F818034B15FCF001FE1403A24B15 FFA21407A25DA2140FF003FE5DA2021F16FC18074B15F8180F023F16F0F01FE04B15C0F0 3F80027FED7F0018FE4BEB03FCEF0FF002FFEC7FC092B6C7FC17F892CAFC5BA25CA21303 A25CA21307A25CA2130FA25CA2131FA25CA2133FA25CA2137FA25C497EB67EA340447AC3 42>II<91B77E18F818FE020190398001FF806E90C7EA3FC04AED1FE0F00FF04BEC07F818 0319FC14034B15FEA314075DA3020FED07FC5DA2F00FF8141F4B15F0F01FE0F03FC0023F 16804BEC7F0018FEEF03F8027F4A5A4BEB1FC04CB4C7FC92B512F891B612E092380003F8 EE00FE177F496F7E4A6E7EA28413034A140FA2171F13075CA2173F130F5CA24D5A131F5C A3013F170E5CA2017FEE801E191C4A163C496C1638B66C90383FC070051F13F094380FE1 E0CA3803FF80943800FE003F467AC347>II<48B912F85AA2913B0007FC001FF0D807F84A130701E0010F140349160148 485C90C71500A2001E021F15E05E121C123C0038143F4C1301007818C0127000F0147F48 5DA3C800FF91C7FC93C9FCA35C5DA314035DA314075DA3140F5DA3141F5DA3143F5DA314 7F5DA314FF92CAFCA35B5CA21303A21307497E007FB612C0A25E3D446FC346>I<001FB5 00F090383FFFFCA326003FF0C7000113806D48913800FE00013F167C18785C187018F001 7F5E5CA2170101FF5E91C8FCA21703485F5BA21707000394C7FC5BA25F0007160E5BA217 1E120F49151CA2173C121F491538A21778123F491570A217F0127F495DA2160100FF5E90 C8FCA216035F16074893C8FC5E160E161E5E007E1538007F15785E6C4A5A6D495A001F4A 5A6D49C9FC6C6C133E6C6C13F83903FC07F0C6B512C0013F90CAFCEB07F83E466DC348> III<007FB54AB51280B65CA2000101E09139007F F0006C49ED3FC04A93C7FC6D6C153E601878013F5E6E4A5A604D5A6D6C4AC8FC5F171E01 0F151C6E5C5F010715F06E495A5F4C5A6D6C49C9FC5E161E0101141C6E5B5E16F06DEB81 E05EED8380DA7F87CAFC15CF15DEEC3FDC15F85DA26E5A5D143FA35D147FA392CBFC5CA3 5C1301A35C1303A3495AA3497E000FB512F8A341446DC348>89 D91 D<010C1306011C130E49131C491338491370484813E04913C000 0313013907000380000EEB0700000C1306001C130E0018130C0038131C00301318007013 3800601330A200E0137000CFEB678039FFC07FE0A6018013C0397F003F80003CEB1E001F 1D65C432>II97 DIIIII< 15FCEC03FF91390F83838091393E01CFC091387C00EF4A13FF4948137F01031580494813 3F495A131F4A1400133F91C75A5B167E13FE16FE1201495CA215011203495CA21503A249 5CA21507A25EA2150F151F5E0001143F157F6C6C13FF913801DF8090387C039F90383E0F 3FEB0FFCD903F090C7FC90C7FC5DA2157EA215FEA25DA2001C495A127F48495A14074A5A 485C023FC8FC00F8137E387C01F8381FFFE0000390C9FC2A407BAB2D>I<14FE137FA3EB 01FC13001301A25CA21303A25CA21307A25CA2130FA25CA2131FA25C157F90393F83FFC0 91388F81F091381E00F802387F4948137C5C4A137EA2495A91C7FCA25B484814FE5E5BA2 000314015E5BA2000714035E5B1507000F5DA249130F5E001F1678031F1370491480A200 3F023F13F0EE00E090C7FC160148023E13C01603007E1680EE070000FEEC1E0FED1F1E48 EC0FF80038EC03E02D467AC432>I<143C147E14FE1301A3EB00FC14701400AE137C48B4 FC3803C780380703C0000F13E0120E121C13071238A21278EA700F14C0131F00F0138012 E0EA003F1400A25B137EA213FE5B12015BA212035B141E0007131C13E0A2000F133CEBC0 38A21478EB807014F014E0EB81C0EA0783EBC7803803FE00EA00F8174378C11E>I<16F0 ED03F8A21507A316F0ED01C092C7FCAEEC01F0EC07FCEC1E1EEC380F0270138014E01301 14C0EB03800107131F1400A2130E153F131E011C140090C7FC5DA2157EA215FEA25DA214 01A25DA21403A25DA21407A25DA2140FA25DA2141FA25DA2143FA292C7FCA25C147EA214 FE001C5B127F48485A495AA248485A495AD8F81FC8FCEA707EEA3FF8EA0FC0255683C11E >I<14FE137FA3EB01FC13001301A25CA21303A25CA21307A25CA2130FA25CA2131FA25C 167E013F49B4FC92380783C09138000E07ED3C1F491370ED603F017E13E0EC01C09026FE 03801380913907000E00D9FC0E90C7FC5C00015B5C495AEBF9C03803FB8001FFC9FCA214 F03807F3FCEBF07F9038E01FC06E7E000F130781EBC003A2001F150FA20180140EA2003F 151E161C010013E0A2485DA2007E1578167000FE01015B15F1489038007F800038021FC7 FC2A467AC42D>IIIIII<91381F800C91387FE01C903901F0703C9039 07C0387890390F801CF890381F001D013E130F017E14F05B48481307A2484814E012075B 000F140F16C0485AA2003F141F491480A3007F143F90C71300A35D00FE147EA315FE5DA2 007E1301A24A5A1407003E130FA26C495A143B380F80F33807C3E73901FF87E038007E07 1300140F5DA3141F5DA3143F92C7FCA25CA25C017F13FEA25D263F76AB2D>III<1470EB01F8A313035CA313 075CA3130F5CA3131F5CA2007FB512E0B6FC15C0D8003FC7FCA25B137EA313FE5BA31201 5BA312035BA312075BA3120F5BA2EC0780001F140013805C140E003F131EEB001C143C14 385C6C13F0495A6C485AEB8780D807FEC7FCEA01F81B3F78BD20>I<137C48B414072603 C780EB1F80380703C0000F7F000E153F121C0107150012385E1278D8700F147E5C011F14 FE00F05B00E05DEA003FEC0001A2495C137E150313FE495CA215071201495CA2030F1338 0003167849ECC070A3031F13F0EE80E0153F00011581037F13C06DEBEF83000001011480 90397C03C787903A3E0F07C70090391FFE01FE903903F000782D2D78AB34>I<017C1438 48B414FC3A03C78001FE380703C0000F13E0120E001C14000107147E1238163E1278D870 0F141E5C131F00F049131C12E0EA003F91C7123C16385B137E167801FE14705BA216F000 0115E05B150116C0A24848EB0380A2ED0700A2150E12015D6D5B000014786D5B90387C01 E090383F0780D90FFFC7FCEB03F8272D78AB2D>I<017CEE038048B4020EEB0FC02603C7 80013FEB1FE0380703C0000E7F5E001C037E130F01071607123804FE130300785DEA700F 4A1501011F130100F001804914C012E0EA003FDA000314034C14805B137E0307140701FE 1700495CA2030F5C0001170E495CA260A24848495A60A2601201033F5C7F4B6C485A0000 02F713036D9039E7E0078090267E01C349C7FC903A1F0781F81E903A0FFF007FF8D901FC EB0FE03B2D78AB41>I<02F8133FD907FEEBFFE0903A0F0F83C0F0903A1C07C780F89039 3803CF03017013EE01E0EBFC07120101C013F8000316F00180EC01C000074AC7FC130014 07485C120EC7FC140F5DA3141F5DA3143F92C8FCA34AEB03C01780147EA202FEEB070012 1E003F5D267F81FC130E6E5BD8FF83143CD903BE5B26FE079E5B3A7C0F1F01E03A3C1E0F 83C0271FF803FFC7FC3907E000FC2D2D7CAB2D>I<137C48B414072603C780EB1F803807 03C0000F7F000E153F001C1600130712385E0078157EEA700F5C011F14FE00F0495B12E0 EA003FEC00015E5B137E150301FE5C5BA2150700015D5BA2150F00035D5BA2151F5EA215 3F12014BC7FC6D5B00005BEB7C0390383E0F7EEB1FFEEB03F090C712FE5DA214015D121F 397F8003F0A24A5A4848485A5D48131F00F049C8FC0070137E007813F8383801F0381E07 C06CB4C9FCEA01FC294078AB2F>I<027C130749B4130F49EB800E010F141E49EBC03CED E03890393F03F07890397C00FDF00178EB3FE00170EB03C001F0148049130790C7EA0F00 151E5D5D5D4A5A4A5A4A5A4AC7FC141E5C5C5C495A495A495A49C8FC011E14F04914E05B 491301485A4848EB03C0D807B0130701FEEB0F80390FCF801F3A1F07E07F00393E03FFFE D83C015B486C5B00705C00F0EB7FC048011FC7FC282D7BAB28>I<000FEB0780393F801F C0397FC03FE000FF137FA4018013C0397F003F80003CEB1E001B0A66C232>127 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: FF msbm10 12 4 /FF 4 125 df<922601FFE01330033F01FC13784AB6FC020FEDC0F8023F9038C07FF891 3AFFFE000FFF4901F81303902607FBF07F90260FE7E0EB007F90261F87C0EC3F78494848 141FD97E1FED0FF801FC90C8FC2601F83E1507D803F0160348485A01C01601380F807802 F81500EA1F004A1678EA3E01A2003C5B007C183019001278130312F85C12F0AC12F8A200 787FA2EA7C01A2123C003E7FA2EA1F00A26C6C7E19062607C07C160F01E0171F6C6C6C16 3FD801F8177E6C6C6C167C017E6D15FCD93F0FED01F890261F87C0EC07F090260FE7E0EC 0FE0902607FBF8EC3FC0902601FFFE903801FF806D903AFFC00FFE00023F90B55A020F15 F0020115C0DA003F49C7FC030113F040487CC52E>67 D<007FB54AB512C0B66C4914E081 6C6E6D14C02707F003F09039000FF8002601F801ED03F000006D7E017C6D6E5A017E137E 017F133E8102807FECC00F6E6C7E017B80903979F003F0ECF801903978FC00F8027C7F6E 137E023F133E6E6C7E020F1480913907C00FC0EDE007913903F003E0020114F0913900F8 01F8EDFC00037E137C033E137E6F133EEE801FDB0FC013810307EB0FC1923803E0079338 F003E1DB01F813F1923900FC01F9EE7C0070137D043F137F93381F803F040F131F933807 C00F17E0933803F00704011303933800F80117FC177E173E171F1881EF0FC11707EF03E1 18F1EF01F91700187D01FC167F183FD803FF161F007F01F8150FB57E18076C491503CB12 01725A43467DC339>78 D<0003B812FE4883A301879039000F803ED98FF0011F137ED9BF C0EC007C01FFC7003E5B13FC48484A485A49ECFC034902F85B4B48485A5B494948485A03 07131F04C090C7FC90C7380F803EA24B485A00064A13FCC8003E5B4B485AA24B485A0201 130703F05B4A48485AA24A4848C8FC5E91380F803E021F5B1500023E5B1501027C5B9138 FC03E014F84948485AA24948485A0107011F156002C090C812F090380F803EA249484814 014913FC013E5B494848EC03E0A249484814070001130701F049140F48484848141FA248 4848C8EA3FC0000F49157FD9803E15FF484848EC01FBEF07F3003E49EC0FE7D87E01ED7F 87007C49903903FF0780BAFCA36C18003C447DC345>90 D<387FFFC0B57EA27EEA1F01EA 0F81A21207AF030FB5FC4B1480A26F1400923803E7F8923801EFE0EEFF8094C7FC16FC4B 5A5E4B5A4B5A4B5A4BC8FC157E5D14E1ECE7FEECEFFFECFF9FED0F8002FE7F6E6C7E1503 ED81F09138EFC1F89138E7E0FC02E3137C9138E1F03EEDF83F02E06D7EED7C0F92387E07 C0033F7FED1F0392380F81F0EEC1F8923807C0FC000F9039F003E07C83271F00F801133F 277FFFFE0FB512C0B64814E0A26C496C14C033447EC346>124 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: FG cmmi8 8 38 /FG 38 123 df11 D<147C49B4FC903803C78090380783C090381F03 E0EB1E01133E017C13F013F8A2EA01F0120313E01207A2EA0FC01403A2EA1F80A2140700 3F14E0130090B5FCA2397F000FC0127EA2141F1580127C00FC14005CA2147EA248137C14 FC00785B495AA2387C03E0383C07C0495A001C90C7FCEA1E3EEA0FF8EA03E01C307DAE21 >18 D<90B612F812035A4815F03A1E0380C000003C130000701301130700E05CEAC00638 000E03A3131CA2133C140713381378A201F07FA21201A2D803E07FA20007130313C0A26C 486C5A251E7E9C29>25 DI<0103B512F0131F137F90B612E03A01FC1F80003903 F00FC03807C00748486C7E121F1300123EA25AA2140700FC5C5AA2140F5D141F92C7FC14 3E0078133C147C007C5B383C01E0381F07C0D807FFC8FCEA01F8241E7D9C28>I31 D<123C127EB4FCA21380A2127F123D1201A312031300A25A1206120E5A5A5A126009 157A8714>59 DI<15C0140114 031580A214071500A25C140EA2141E141CA2143C143814781470A214F05CA213015CA213 035C130791C7FCA25B130EA2131E131CA2133C1338A21378137013F05BA212015BA21203 5BA2120790C8FC5A120EA2121E121CA2123C1238A212781270A212F05AA21A437CB123> I<92387FC003913903FFF80791391FC03E0F91397E00071FD901F8EB03BF4948EB01FED9 0FC013004948147E49C8FC017E157C49153C485A120348481538485AA2485A1730484815 00A2127F90CAFCA35A5AA292381FFFFCA29238003FC0EE1F80163F1700A2127E5E167E7E A26C6C14FE000F4A5A6C7E6C6C1307D801F8EB1E3CD8007EEBFC3890391FFFE018010390 C8FC302F7CAD37>71 D<90383FFFFCA2903800FE00A25CA21301A25CA21303A25CA21307 A25CA2130FA25CA2131FA25CA2133FA291C7FCA25BA2137EA213FEA25BA21201A25BA212 03B512E0A21E2D7DAC1F>73 D 77 DI<013FB6FC17E0903A00FE0007F0EE01FC4AEB007EA2010181A25C 1880010316005F5CA2010715FEA24A5C4C5A010F4A5A4C5A4AEB1F8004FFC7FC91B512F8 4914C00280C9FCA3133F91CAFCA35B137EA313FE5BA312015BA21203B512E0A2312D7DAC 2D>80 D<913807F00691383FFE0E9138F80F9E903903E001FE903807800049C7127C131E 49143CA2491438A313F81630A26D1400A27FEB7F8014F86DB47E15F06D13FC01077F0100 7F141F02011380EC003F151F150FA215071218A3150F00381500A2151EA2007C5C007E5C 007F5C397B8003E039F1F00F8026E07FFEC7FC38C00FF0272F7CAD2B>83 D97 D<13F8121FA21201A25BA21203A25BA21207A25BA2120FEBC7E0EB9FF8EBB83C381FF01E EBE01F13C09038800F80EA3F00A2123EA2007E131FA2127CA2143F00FC14005AA2147EA2 147C14FC5C387801F01303495A383C0F806C48C7FCEA0FFCEA03F0192F7DAD1E>II<151FEC03FFA2EC003FA2153EA2157EA2157CA215FCA215 F8A21401EB07E190381FF9F0EB7C1DEBF80FEA01F03903E007E0EA07C0120FEA1F8015C0 EA3F00140F5A007E1480A2141F12FE481400A2EC3F021506143E5AEC7E0E007CEBFE0C14 FC0101131C393E07BE18391F0E1E38390FFC0FF03903F003C0202F7DAD24>I<14FCEB03 FF90380F839C90381F01BC013E13FCEB7C005B1201485A15F8485A1401120F01C013F0A2 1403121F018013E0A21407A215C0A2000F130F141F0007EB3F80EBC07F3803E1FF3800FF 9F90383E1F0013005CA2143EA2147E0038137C00FC13FC5C495A38F807E038F00F80D87F FEC7FCEA1FF81E2C7E9D22>103 D<131FEA03FFA2EA003FA2133EA2137EA2137CA213FC A25BA21201143F9038F1FFC09038F3C1F03803FF0001FC7F5BA2485A5BA25B000F13015D 1380A2001F13035D1300140748ECC04016C0003E130F1580007E148191381F0180007C14 03ED070000FCEB0F06151E48EB07F80070EB01E0222F7DAD29>I<1307EB0F80EB1FC0A2 EB0F80EB070090C7FCA9EA01E0EA07F8EA0E3CEA1C3E123812301270EA607EEAE07C12C0 13FC485A120012015B12035BA21207EBC04014C0120F13801381381F01801303EB0700EA 0F06131EEA07F8EA01F0122E7EAC18>I<15E0EC01F01403A3EC01C091C7FCA9147CEB03 FE9038078F80EB0E07131C013813C01330EB700F0160138013E013C0EB801F13001500A2 5CA2143EA2147EA2147CA214FCA25CA21301A25CA21303A25CA2130700385BEAFC0F5C49 C7FCEAF83EEAF0F8EA7FF0EA1F801C3B81AC1D>I<131FEA03FFA2EA003FA2133EA2137E A2137CA213FCA25BA2120115F89038F003FCEC0F0E0003EB1C1EEC387EEBE07014E03807 E1C09038E3803849C7FC13CEEA0FDC13F8A2EBFF80381F9FE0EB83F0EB01F81300481404 150C123EA2007E141C1518007CEBF038ECF83000FC1470EC78E048EB3FC00070EB0F801F 2F7DAD25>I<137CEA0FFCA21200A213F8A21201A213F0A21203A213E0A21207A213C0A2 120FA21380A2121FA21300A25AA2123EA2127EA2127CA2EAFC08131812F8A21338133012 F01370EAF860EA78E0EA3FC0EA0F000E2F7DAD15>I<27078007F0137E3C1FE01FFC03FF 803C18F0781F0783E03B3878E00F1E01263079C001B87F26707F8013B00060010013F001 FE14E000E015C0485A4914800081021F130300015F491400A200034A13076049133E170F 0007027EEC8080188149017C131F1801000F02FCEB3F03053E130049495C180E001F0101 EC1E0C183C010049EB0FF0000E6D48EB03E0391F7E9D3E>I<3907C007E0391FE03FF839 18F8783E393879E01E39307B801F38707F00126013FEEAE0FC12C05B00815C0001143E5B A20003147E157C5B15FC0007ECF8081618EBC00115F0000F1538913803E0300180147016 E0001F010113C015E390C7EAFF00000E143E251F7E9D2B>II<90387C01F89038FE07FE3901CF8E0F3A03879C0780 D907B813C0000713F000069038E003E0EB0FC0000E1380120CA2D8081F130712001400A2 49130F16C0133EA2017EEB1F80A2017C14005D01FC133E5D15FC6D485A3901FF03E09038 FB87C0D9F1FFC7FCEBF0FC000390C8FCA25BA21207A25BA2120FA2EAFFFCA2232B829D24 >I<903807E03090381FF87090387C1CF0EBF80D3801F00F3903E007E0EA07C0000F1303 381F800715C0EA3F00A248130F007E1480A300FE131F481400A35C143E5A147E007C13FE 5C1301EA3E07EA1F0E380FFCF8EA03F0C7FC13015CA313035CA21307A2EBFFFEA21C2B7D 9D20>I<3807C01F390FF07FC0391CF8E0E0383879C138307B8738707F07EA607E13FC00 E0EB03804848C7FCA2128112015BA21203A25BA21207A25BA2120FA25BA2121FA290C8FC 120E1B1F7E9D20>II<130E131F A25BA2133EA2137EA2137CA213FCA2B512F8A23801F800A25BA21203A25BA21207A25BA2 120FA25BA2001F1310143013001470146014E0381E01C0EB0380381F0700EA0F0EEA07FC EA01F0152B7EA919>II119 D<013F137C9038FFC1FF3A01C1E383803A0380F703C0390700F60F 000E13FE4813FC12180038EC0700003049C7FCA2EA200100005BA313035CA301075B5D14 C000385CD87C0F130600FC140E011F130C011B131C39F03BE038D8707113F0393FE0FFC0 260F803FC7FC221F7E9D28>II<011E1330EB3F809038FFC07048EBE0E0ECF1C03803C0FF9038803F 80903800070048130EC75A5C5C5C495A495A49C7FC131E13385B491340484813C0485A38 070001000EEB0380380FE007391FF81F0038387FFF486C5A38601FFC38E00FF038C003C0 1C1F7D9D21>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: FH cmr8 8 19 /FH 19 127 df<013FB5FCA29038007F806EC8FCA6903801FFE0011F13FE90397F3F3F80 D801F8EB07E0D807E0EB01F8D80FC06D7ED81F80147ED83F0080481680A2007E151F00FE 16C0A5007E1680007F153FA26C1600D81F80147ED80FC05CD807E0495AD801F8EB07E0D8 007FEB3F8090261FFFFEC7FC010113E0D9003FC8FCA64A7E013FB5FCA22A2D7CAC33>8 D<123C127E12FFA7127EA9123CAA1218A41200A7123C127E12FFA4127E123C082F7AAE14 >33 D<13031307130E131C1338137013F0EA01E013C01203EA0780A2EA0F00A2121EA35A A45AA512F8A25AAB7EA21278A57EA47EA37EA2EA0780A2EA03C0120113E0EA00F0137013 38131C130E1307130310437AB11B>40 D<12C07E12707E7E7E120FEA0780120313C0EA01 E0A2EA00F0A21378A3133CA4131EA5131FA2130FAB131FA2131EA5133CA41378A313F0A2 EA01E0A2EA03C013801207EA0F00120E5A5A5A5A5A10437CB11B>I43 D48 D<130C133C137CEA03FC12FFEAFC7C1200B3B113FE387FFFFEA2172C7AAB23>III<140EA2141E143EA2147E14FEA2EB01BE1303143E13 06130E130C131813381330136013E013C0EA0180120313001206120E120C5A123812305A 12E0B612FCA2C7EA3E00A9147F90381FFFFCA21E2D7EAC23>I<000CEB0180380FC01F90 B512005C5C14F014C0D80C7EC7FC90C8FCA8EB1FC0EB7FF8380DE07C380F801F01001380 000E130F000CEB07C0C713E0A2140315F0A4127812FCA448EB07E012E0006014C0007013 0F6C14806CEB1F006C133E380780F83801FFE038007F801C2D7DAB23>II<1230123C003FB512F8A215F05A15E039700001C00060 1480140348EB0700140E140CC7121C5C143014705C495AA2495AA249C7FCA25B130E131E A2133EA3133C137CA413FCA913781D2E7CAC23>I61 D99 D104 D111 D<1360A413E0A312011203A21207121FB512F0 A23803E000AF1418A714383801F03014703800F860EB3FE0EB0F80152A7FA81B>116 D<38078008380FE01C381FF838383FFFF038707FE038E01FC03840078016077AAC23> 126 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: FI cmmi12 12 70 /FI 70 123 df<91B912C0A302009038C000016F489038003F8003FF150FA293C81207A2 19035C5DA3020317005DA314075DA3020F93C7FC5DA3141F5DA3143F5DA3147F5DA314FF 92CBFCA35B5CA313035CA313075CA3130F5CA3131F5CA2133FA313FFB612F8A342447CC3 3C>0 D11 DI I<1578913807FFE0021F13FC91383C7FFEEC7007EC6003ECE0004A13381600A280A380A2 80147CA2147E143E143F816E7EA26E7E81140781EC3FFC14FF903803E1FEEB07C190381F 00FF133E49EB7F805B0001143F485A484814C049131F120F485AA248C7FC150F5A127EA3 00FEEC1F805AA316005A5DA2153E157E157CA26C5C127C4A5A6C495AA26C495A6C6C485A 6C6C48C7FC3803E07C3800FFF0EB1FC027487CC62B>I<01F8EB03FCD803FEEB1FFFD807 1F90387C0FC03B0E0F80E007E0001C9038C3C003271807C70013F002CE1301003801DC14 F8003013D8EB0FF800705B00605BA200E0491303D8C01F15F05C12001607133F91C713E0 A2160F5B017E15C0A2161F13FE491580A2163F1201491500A25E120349147EA216FE1207 495CA21501120F495CEA0380C81203A25EA21507A25EA2150FA25EA2151FA25EA2153FA2 93C7FC150E2D417DAB30>17 D<157E913801FF80913807C3E091381F01F0EC3E004A13F8 14FC4948137C495A5C0107147E495A131F5C133F49C7127FA213FEA212015B12034914FF 1207A25B000F15FE1501A2485AA21503003F15FC5B90B6FCA24815F89038800007A2150F 00FF15F090C7FCA2ED1FE0A25AED3FC0A21680157F16005A15FEA24A5AA25D14035D4A5A 007C495AA24A5A007E49C7FC003E133E5C001E5B6C485A380783C06CB4C8FCEA00FC2847 7CC52D>I<131C133E137EA313FE5BA312015BA312035BA312075BA2120F5BA3121F5BA2 123F90C8FCEC0380481400127E00FE5B481306140E140C141C485B5C5C495A38780780D8 7C1EC7FCEA1FF8EA07E0192D7AAB22>I21 D<147002F8140E0101153FA301035DA24A 147EA2010715FEA24A5CA2010F1401A24A5CA2011F1403A24A5CA2013F1407A291C75BA2 49140FA2017E5DA201FE021F1318183849ED8030A20001033F13701860EE7F005E486C16 E0DB01DF13C09238039F016DD9071F1380489039801E0F83903BF7C078078700903AE1FF E003FE903AE07F8000F8000F90CAFCA25BA2121FA25BA2123FA290CBFCA25AA2127EA212 FEA25A123835417DAB3B>I<1560A7ED7FFF92B512C0913807F80191381FDFFF91397F87 FE004AC8FCEB03FC495A130F5C495A133F5C137F5C13FFA291C9FCA57F80A2133F6D7E90 390FE3FF806DB512E0903901FC006049B512E0D90F8F1380011EC9FC5B13F8485A5B485A 485A48CAFCA2121E123E123C127C1278A312F8A47EA27E127F7FEA3FE013F86CB4FC6C13 C0000313F86C13FE39007FFFC0010F13F0010313FC9038007FFF021F7F02037F1400151F 150F1507A401025C903803800FD901C090C7FC903800F83EEC3FF8EC07E02A597EC42B> 24 D<010FB712E0013F16F05B48B812E04817C02807E0060030C7FCEB800EEA0F00001E 010C13705A0038011C13605A0060011813E000E013381240C7FC5C4B5AA214F014E01301 150314C01303A3EB078082130FA2EB1F00A34980133E137EA24980A2000114015BA26C48 EB00E0342C7EAA37>I I<0203B612E0021F15F091B7FC4916E0010716C090270FF80FF8C7FC90381FC00349486C 7E017EC7FC49147E485A4848143E0007153F5B485AA2485AA2123F90C8FC5E48157E127E A216FE00FE5D5A15015EA24B5A007C5D15074B5A5E6C4AC8FC153E6C5C5D390F8003F039 07C007C02601F03FC9FC38007FFCEB1FE0342C7DAA37>I<010FB612FC013F15FE5B48B7 12FC4816F82707E001C0C7FC01805B380F0003121E121C5A4849C8FC126012E000405BC7 FC140E141EA45CA3147CA2147814F8A4495AA31303A25C1307A3130FA25C6D5A2F2C7EAA 2A>I<137E48B46C150626078FE0150E260607F0151C260E03F81538000C6D1570D81C01 16E000006D15C0010015016EEC03806EEC0700170E6E6C5B5F5F6E6C136017E04C5A6E6C 485A4CC7FC0207130E6F5A5E1630913803F8705EEDF9C06EB45A93C8FC5D6E5A81A2157E 15FF5C5C9138073F80140E141C9138181FC014381470ECE00FD901C07FEB038049486C7E 130E130C011C6D7E5B5B496D7E485A48488048C8FC000681000E6F137048EE806048033F 13E04892381FC0C048ED0FE348923803FF00CA12FC37407DAB3D>31 D34 D<177F0130913803FFC00170020F13E0494A13F048484A13F84848EC7F0190C838F8007C 484A48133C00064A48131C000E4B131E000C4A48130E001C92C7FC0018140E150C003802 1C1406003014185D180E00704A140C1260154003C0141C00E017184A5A4817386C17304A C8127018E01260007049EC01C0EF03800078010614070038EE0F00003C010E141E6C167C D81F805D6C6C48EB03F0D807F0EC0FE0D803FEEC3FC02801FFFC03FFC7FC6C6CB55A6D14 F8010F14E0010114809026007FF8C8FC02F8C9FCA25CA21301A3495AA31307A25C130FA4 131F5C6DCAFC37417BAB40>39 D<121EEA7F80A2EAFFC0A4EA7F80A2EA1E000A0A78891B >58 D<121EEA7F8012FF13C0A213E0A3127FEA1E601200A413E013C0A312011380120313 005A1206120E5A5A5A12600B1D78891B>II<161816 3C167CA2167816F8A216F01501A216E01503A216C01507A21680150FA2ED1F00A2151E15 3EA2153C157CA2157815F8A25D1401A24A5AA25D1407A25D140FA292C7FC5CA2141E143E A2143C147CA25CA25C1301A25C1303A25C1307A25C130FA291C8FC5BA2133EA2133C137C A2137813F8A25B1201A25B1203A2485AA25B120FA290C9FC5AA2121E123EA2123C127CA2 127812F8A25A126026647BCA31>I<127012FCB4FCEA7FC0EA1FF0EA07FCEA01FF38007F C0EB1FF0EB07FE903801FF809038007FE0EC1FF8EC03FE913800FF80ED3FE0ED0FF8ED03 FF030013C0EE3FF0EE0FFCEE01FF9338007FC0EF1FF0EF07FCEF01FF9438007FC0F01FE0 A2F07FC0943801FF00EF07FCEF1FF0EF7FC04C48C7FCEE0FFCEE3FF0EEFFC0030390C8FC ED0FF8ED3FE0EDFF80DA03FEC9FCEC1FF8EC7FE0903801FF80D907FECAFCEB1FF0EB7FC0 4848CBFCEA07FCEA1FF0EA7FC048CCFC12FC12703B3878B44C>I<15C0A54A7EA84A7EA5 00FCEE0FC0D87FE0913801FF80D81FFF91383FFE0000079039FBF7FFF8000190B612E0D8 003F92C7FC010F14FC010314F0010014C0023F90C8FC6E5AA24A7E4A7FA29138FF3FC0EC FE1F49486C7EECF80749486C7E49486C7EECC0004948137C91C7123C49143E011E141E49 80013880496E7E01601401323081B031>I<1830187018F0A217011703A24D7EA2170F17 1FA21737A2176717E717C793380187FCA2EE0307EE07031606160CA21618163816300460 7FA216C0030113011680ED0300A21506150E150C5D845D03707F15605DA24A5A4AB7FCA2 5C0206C87F5C021C157F14185CA25C14E05C495A8549C9FC49163F1306130E5B133C137C 01FE4C7ED807FFED01FF007F01F0027FEBFFC0B5FC5C42477DC649>65 D<91B87E19F019FC02009039C00003FF6F480100138003FFED3FC01AE093C8121FF10FF0 A24A17F84B1507A314035D190FA2020717F04B151F1AE0193F020F17C04BED7F80F1FF00 4E5A021F4B5A4B4A5AF01FF0F03FC0023F4AB4C7FC4BEB1FFC92B612F018FEDA7FC0C7EA 7F804BEC1FC0F00FF0727E02FF6F7E92C8FC727EA249835CA313035CA301075F4A1503A2 4E5A130F4A4B5A4E5AA2011F4C5A4A4B5A4D485A013F4B48C7FCEF0FFC4AEC3FF801FF91 3801FFE0B9128005FCC8FC17C045447CC34A>I<4CB46C1318043F01F013384BB512FC03 07D9007E1378DB1FF090380F80F0DB7F80EB03C1DA01FEC7EA01C34A48EC00E7DA0FF0ED 7FE04A48153F4A5A02FFC9121F494817C04948160F495A130F4A178049481607495A137F 4948170091CAFC5A485A1906485AA2485A96C7FC121F5BA2123F5BA3127F5BA4485AA419 C0A2180161127F180396C7FC6018066C6C160E601818001F17386D5E000F5F6D4B5A6C6C 4B5A00034CC8FC6C6C150E6C6C153C017F5DD93FC0EB01E0D91FF0EB0FC0D907FE017FC9 FC0101B512FCD9003F13E0020790CAFC45487CC546>I<91B87E19F019FC02009039C000 07FF6F489038007FC003FFED1FE0737E93C86C7E737E19014A707E5D1A7FA20203EF3F80 5DA21BC014075DA3140F4B17E0A3141F4B17C0A3143F4B167FA3027F18804B16FFA302FF 180092C95A62A24917034A5F19076201034D5A5C4F5A620107173F4A5F4FC7FC19FE010F 4C5A4A15034E5AF00FE0011F4C5A4A4B5A06FFC8FC013FED01FCEF0FF84AEC3FE001FF91 3803FF80B848C9FC17F094CAFC4B447CC351>I<91B912FCA3020001C0C7123F6F48EC03 F803FF1501190093C91278A21A385C5DA3020317305DA314074B1460A218E0020F4B1300 5DA21701021F5D4B13031707170F023F027FC8FC92B6FCA391397FC0007E4B131EA2170E 02FF140C92C7FCA2171C49031813035C611906010392C7FC4A160E190C191C010717184A 163819301970130F4A5E180161011F16034A15074E5A013F163F4EC7FC4AEC03FF01FFED 3FFEB9FCA26046447CC348>I<91B912F8A3020001C0C7123F6F48EC07F003FF15031901 93C9FCA21A705C5DA3020317605DA314075D18C01701020F4B13005DA21703021F92C8FC 4B5BA25F023F141E4B13FE92B5FCA24A5CED8000173CA202FF141892C7FCA21738491530 5CA21770010315604A91C9FCA313075CA3130F5CA3131F5CA2133FA313FFB612F8A34544 7CC33F>I<4CB46C1318043F01F013384BB512FC0307D9007E1378DB1FF090380F80F0DB 7F80EB03C1DA01FEC7EA01C34A48EC00E7DA0FF0ED7FE04A48153F4A5A02FFC9121F4948 17C04948160F495A130F4A178049481607495A137F4948170091CAFC5A485A1906485AA2 485A96C7FC121F5BA2123F5BA3127F5BA4485A4CB612805EA293C7EBE000725AA3007F60 A218FF96C7FCA26C7E5F606C7EA2000F16036D5E6C6C15070003160F6C6C151F6C6CED3D F8D97F8014786D6CEB01E0D91FF0903807C078D907FE90387F00700101B500FC1330D900 3F01F090C8FC020790CAFC45487CC54D>I<91B6D8E003B61280A3020001E0C70003EB80 00DB7F806E48C7FC03FF1503A293C85BA219075C4B5EA2190F14034B5EA2191F14074B5E A2193F140F4B5EA2197F141F4B5EA219FF143F92B8C8FCA3DA7FC0C712014B5DA2180314 FF92C85BA218075B4A5EA2180F13034A5EA2181F13074A5EA2183F130F4A5EA2187F131F 4A5EA2013F16FFA24A93C9FCD9FFE002037FB6D8E003B67EA351447CC351>I<027FB512 F8A217F09139007FF000ED3FC0157FA25EA315FF93C7FCA35C5DA314035DA314075DA314 0F5DA3141F5DA3143F5DA3147F5DA314FF92C8FCA35B5CA313035CA313075CA3130F5CA2 131FA25CEB7FF0007FB512F0B6FCA22D447DC32B>I<031FB512FC5D18F89239000FFE00 705AA35FA2160FA25FA2161FA25FA2163FA25FA2167FA25FA216FFA294C7FCA25DA25EA2 1503A25EA21507A25EA2150FA25EA2151FA25EA2153FA25EEA0F80D83FE0137F5E127FA2 4BC8FC485A4A5A1300006C495A0060495A0070495A0030495A0038EB3F806C49C9FC380F 81FC3803FFF038007F80364679C336>I<91B600E049B512C0A3020001E0C8383FF800DB 7F80ED1FE003FF94C7FC1A3E93C9127862F101C04A4C5A4B4BC8FC191C6102035E4B5DF0 03804EC9FC0207150E4B14386060020F4A5A4B0107CAFC170E5F021F14784B13F84C7E16 03023F130F4B487E163BEEE1FF91387FC1C1DB83807FED8700159CDAFFB86D7E5D03C06D 7E5D4990C7FC4A6E7EA2717E13034A811707A201076F7E5C717EA2130F4A6E7FA2727E13 1F5C727E133F854A82D9FFE04B7EB600E0010FB512E05FA252447CC353>I<91B612F8A3 020001E0C8FC6F5A4B5AA293C9FCA35C5DA314035DA314075DA3140F5DA3141F5DA3143F 5DA3147F5DA314FF92CAFCA35B4A16C0A21801010317804A15031900A201075E4A150618 0E181E010F161C4A153C18381878011F16F84A4A5A1703013F150F4D5A4A14FF01FF0207 5BB9FCA2603A447CC342>I<91B500C0933803FFFE63630200F1FE00DB6FE0EE1BF803EF 171F1B3703CFEF67F0A21BCF0201EF018F038F60DB87F0ED030F1B1F020317060307040C 5BA2F2183F020717300206616F6C15601B7F020E17C0020CDC018090C7FCA24F485A021C 16060218606F6C5C1A0102381618023004305BA2F16003027016C00260606F6CEB01801A 0702E0ED03004A03065CA24E130F01015E4A60047F5B1A1F01035E91C74A5CA24D48133F 494BC7FC010661EE3F861A7F010E158C010C039892C8FCA205B05C011C15E00118600138 6E5A190101785D01FC92C75BD803FFEF07FEB500F8011E0107B512FE161C160C5F447BC3 5E>I<91B500C0020FB5128082A2DA007F9239007FE00070ED1F8074C7FCDBEFF8150E15 CF03C7160C70151C1401DB83FE1518A2DB81FF1538140303001630831A704A6D7E020617 60163F7114E0140E020C6D6C5CA2706C1301141C021801075D83190302386D7E023094C8 FC1601715B147002606DEB8006A294387FC00E14E04A023F130C18E0191C0101ED1FF04A 1618170FF0F838130391C83807FC30A2943803FE705B01060301136018FF19E0010E8101 0C5F187FA2131C0118705A1338181F137801FC70C9FCEA03FFB512F884180651447CC34E >I<91B712FEF0FFE019F802009039C0000FFE6F48EB01FF03FF9138007F80F13FC093C8 EA1FE0A24AEE0FF0A25D1AF81403A25DA21407F11FF05DA2020FEE3FE0A24B16C0197F02 1F1780F1FF004B4A5A4E5A023F4B5A4E5A4BEC3FC006FFC7FC027FEC07FC92B612F01880 0380CAFC14FFA292CBFCA25BA25CA21303A25CA21307A25CA2130FA25CA2131FA25CA213 3FA25CEBFFE0B612E0A345447CC33F>80 DI< 9339FF8001800307EBF003033F13FC9239FF007E07DA01F8EB0F0FDA07E09038079F004A 486DB4FC4AC77E023E804A5D187E5C495A183C495AA213074A1538A3130F183080A295C7 FC806D7E8014FF6D13E015FC6DEBFFC06D14FC6E13FF6E14C0020F80020314F8EC003F03 077F9238007FFE160F1603707E8283A283A21206A4000E163EA2120C177E001E167CA25F 5F003F15014C5A6D4A5A4C5A486C4AC8FC6D143ED87CF85CD8787E495A3AF01FC00FE0D8 E007B51280010149C9FC39C0003FF039487BC53C>83 D<48BA12C05AA291C7D980001380 D807F092C7121F4949150F0180170748C75B1903120E48020316005E1218123800301407 4C5C00701806126000E0140F485DA3C8001F92C7FC5EA3153F5EA3157F5EA315FF93CAFC A35C5DA314035DA314075DA3140F5DA3141F5DA3143F5DA2147FA214FF01037F001FB612 FCA25E42447EC339>I<003FB500F80103B512E0A326003FF8C8381FF800D91FE0ED07E0 013F705A615C96C7FC60017F16065CA2180E01FF160C91C9FCA2181C4817185BA2183800 0317305BA21870000717605BA218E0120F495EA21701121F495EA21703123F4993C8FCA2 5F127F491506A2170E00FF160C90C9FC171CA21718173817304816705F6C5E6C15014C5A 4CC9FC6C150E6D141E001F5D6D5C6C6CEB01E06C6C495A6C6CEB1F80C6B401FECAFC9038 7FFFF8011F13E0010190CBFC43467AC342>I<007FB56C91381FFFF8B65DA2000101E0C8 000313006C0180ED01FCF000F0614E5AA2017F4C5A96C7FC1806A2606E5DA2013F5E1870 186060A24D5A6E4AC8FCA2011F1506170E170C5FA26E5C5FA2010F5D16015F4CC9FCA26E 13065EA201075C5EA25E16E06E5B4B5A13034BCAFC1506A25D151CECFE185D13015D5DA2 6E5AA292CBFC5C13005C5CA25CA25C45467BC339>I<020FB812C05C1A80932680000113 0003F8C7FCDA3FE04A5A03804A5A92C8485A027E4B5A027C4B5A02784B5A4A4B5AA24A4A 90C7FC4A4A5A01014B5A4D5A4A4A5A01034B5A91C8485A4D5AA290C84890C8FC4C5A4C5A 4C5A4C5A4C5A4C5A4C5AA24B90C9FC4B5A4B5A4B5A4B5A4B5A4B5AA24B5A4A90CAFC4A5A 4A4814064A5A4A5A4A48140E4A48140CA24A48141C4990C8121849481538495A49485D49 5A494815F049485D1701494814034890C8485A4848150F4848151F48484B5A484815FF48 481403043F90C8FC48B8FCB9FC5F42447BC343>90 D97 DIIIII<157E913803FF8091390FC1E0E091391F0073F0027E13334A133F4948131F01 0315E04948130F495AA2494814C0133F4A131F137F91C713805B163F5A491500A25E1203 49147EA216FEA2495CA21501A25EA21503150700015D150F0000141F6D133F017CEB77E0 90383E01E790381F078F903807FE0FD901F85B90C7FC151FA25EA2153FA293C7FCA2001C 147E007F14FE485C4A5A140348495AEC0FC000F8495A007C01FEC8FC381FFFF8000313C0 2C407EAB2F>I<14FE137FA3EB01FC13001301A25CA21303A25CA21307A25CA2130FA25C A2131FA25CED3FC090393F81FFF0913887C0FC91380E007E023C133ED97F70133F4A7F4A 14805C13FF91C7FC5BA24848143F17005BA200035D167E5BA2000715FE5E5B1501000F5D A24913035E001F1607030713064914E0150F003FEDC00E170C90C7141CEE801848163817 30007E167017E000FE91380781C0EEC38048913801FF000038EC007C30467BC438>I<14 1E143F5C5CA3147E143891C7FCAE133EEBFF803801C3C0380781E0380601F0120E121CEA 180312381230A2EA700700605BA2EAE00F00C05BEA001F5CA2133F91C7FCA25B137E13FE 5BA212015BEC03800003140013F01207495A1406140E140CEBC01C141814385C00035BEB E1C0C6B45A013EC7FC19437DC121>I<163C16FEA21501A316FCED00701600AE15FCEC03 FF91380F0780021C13C091383803E0147014E014C01301EC8007130314005B0106130F13 0E010C14C090C7FC151FA21680A2153FA21600A25DA2157EA215FEA25DA21401A25DA214 03A25DA21407A25DA2140FA25DA2141F5DA2143F001C91C7FC127F48137E5CA248485AEB 03E038F807C038781F80D83FFEC8FCEA07F0275681C128>I<14FE137FA3EB01FC130013 01A25CA21303A25CA21307A25CA2130FA25CA2131FA25C163F013FECFFC0923803C0E091 38000703ED1E0F491338ED701F017E13E0EC01C001FE018013C00203EB07004948C8FC14 0E00015B5C495A5C3803FBC001FFC9FC8014F83807F1FE9038F03F809038E00FE06E7E00 0F130381EBC001A2001FED01C017801380A2003F15031700010013F05E481506160E007E 150C161C00FE01005BED787048EC3FE00038EC0F802B467BC433>II<01F8D903FCEC7F80D803FED91FFF903803FFE0D8071F903B7C0F C00F81F83E0E0F80E007E01C00FC001C9026C3C0030178137C271807C700D9F0E0137E02 CE902601F1C0133E003801DCDAFB80133F003001D892C7FCD90FF814FF0070495C006049 5CA200E04949485CD8C01F187E4A5C1200040715FE013F6091C75BA2040F14014960017E 5D1903041F5D13FE494B130762043F160E0001060F130C4992C713C0191F4CED801C0003 1A1849027E1638F2003004FE167000071A60494A16E0F201C0030192380F0380000FF187 00494AEC03FED80380D90070EC00F84F2D7DAB55>I<01F8EB03FCD803FEEB1FFFD8071F 90387C0FC03B0E0F80E007E03A0C07C3C003001CD9C7007F001801CE1301003801DC8000 3013D8EB0FF800705B00605BA200E0491303D8C01F5D5C12001607013F5D91C7FCA2160F 495D137E161F5F13FE49143F94C7FC187000014B136049147E16FE4C13E0000317C04915 0104F81380170300071700495D170EEE781C000FED7C3849EC1FF0D80380EC07C0342D7D AB3A>I112 D<91380FC00391383FF0079138F83C0F903903E00E1E90390FC0063E 90381F800790393F00037E4914FC01FE1301485AA2484814F812075B000F140316F0485A A2003F14074914E0A3007F140F4914C0A3151F90C713805AA2153F6C1500A2127E5D007F 14FE6C1301A214036C6C485A000F131E3807C0383803E0F13901FFC1F838003F01130014 035DA314075DA3140F5DA2141FA2143F011FB51280A21600283F7DAB2B>I<01F8EB0FC0 D803FEEB7FF0D8070FEBF038000E903883C07C3A0C07C701FC001C13CE0018EBDC030038 13D8003013F8D90FF013F800709038E000E0006015005C12E0EAC01F5C1200A2133F91C8 FCA35B137EA313FE5BA312015BA312035BA312075BA3120F5BEA0380262D7DAB2C>II<141C147EA314FE5CA313015CA313 035CA313075CA2007FB512FCB6FC15F839000FC000A2131F5CA3133F91C7FCA35B137EA3 13FE5BA312015BA312035BA21570000714605B15E015C0000F130101C013801403EC0700 00071306140E5C6C6C5A000113F03800FFC0013FC7FC1E3F7EBD23>I<133ED9FF8014E0 2603C3C0EB03F0380703E0380601F0000E1507121CD818035D12380030150FA2D870075D 00605B161FEAE00F00C0495CEA001F4A133FA2013F92C7FC91C7FC5E5B017E147EA216FE 13FE495CA20301EB01801703484802F81300A25F0303130616F000001407030F130E6D01 0D130C017C011D131C033913186D9038F0F838903A1F03C07870903A07FF803FE0903A01 FC000F80312D7DAB38>I<013E140ED9FF80EB3F802603C3C0137F380703E0380601F012 0E121CD81803143F0038151F0030150FA2D87007140700605BA2D8E00F150000C0497FEA 001F4A5B1606133F91C7FC160E49140C137EA2161C01FE14185B16381630167048481460 16E05E150100005D15036D49C7FC1506017C130E017E5B6D137890380F81E06DB45AD900 FEC8FC292D7DAB2F>I<013E1738D9FF80D901C013FC2603C3C0903907E001FE380703E0 380601F0000E150F001C16C0D8180316000038187E0030031F143E00705ED86007171E5C 163FD8E00F92C7121C00C049160CEA001F4A49141C047E1418133F91C7FC04FE14384917 30017E5CA20301157001FE1760495C19E019C0A24949481301198018031900606D010714 0670130E017C010F5C017E010C1418013ED91CFC13386DD9387E13F0903B0FC0F01F01C0 903B03FFC00FFF809028007F0001FEC7FC3F2D7DAB46>I<02FCEB07E0903A03FF801FFC 903A0F07C0781E903A1C03E0E01F903A3801F1C07FD9700013804901FB13FF4848EBFF00 495B000316FE90C71438484A130012061401000E5C120CC7FC14035DA314075DA3140F5D A3021F143817305D1770023F1460121E003F16E0267F807FEB01C0026F148000FF01EF13 03D901CFEB070000FE903887C00E267C03835B3A3C0F01E0783A1FFC00FFE0D803F0EB3F 80302D7EAB37>I<133ED9FF8014E02603C3C0EB03F0380703E0380601F0000E1507001C 16E0EA180312380030150F007016C0EA60075C161FD8E00F158000C05BEA001F4A133F17 00133F91C7FC5E49147E137EA216FE01FE5C5BA215015E485AA215035EA200001407150F 6D5C017C131F153F6D13FF90391F03CFC0903807FF8F903801FC0F90C7121F5EA2153F93 C7FCD807C05BD81FE0137E5DA24848485A4A5A01805B39380007C00018495A001C49C8FC 6C137C380781F83803FFE0C66CC9FC2C407DAB30>I<027CEB018049B413034901801300 010F6D5A49EBE00E6F5A90393F03F838903978007EF80170EB1FF00160EB01E001E05C49 495A90C748C7FC150E5D5D5D5D4A5A4A5A4AC8FC140E5C5C5C5CEB03C049C9FC130E4914 1C4914185B49143848481430491470D8039014F048B4495A3A0FEFC007C0391E03F01FD8 1C01B55A486C91C7FC485C00606D5A00E0EB3FF048EB0FC0292D7CAB2D>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: FJ cmbx12 12 60 /FJ 60 128 df40 D<12F07E127E7E6C7E6C7E6C7E7F6C7E6C7E12007F137F80133F806D7EA26D7EA26D7EA2 801303A2801301A280A27F1580A4EC7FC0A615E0A2143FAE147FA215C0A6ECFF80A41500 5BA25CA213035CA213075CA2495AA2495AA2495A5C137F91C7FC13FE5B1201485A485A5B 485A485A48C8FC127E12F85A1B647ACA2C>I45 DI< EE01C0EE03E01607A2160F17C0161F1780A2163F17005E167EA216FE5E15015EA215035E A215075E150F5EA2151F5E153F93C7FCA25D157E15FE5DA214015D14035DA214075D140F 5DA2141F5D143F92C8FCA25C147EA214FE5C13015CA213035C13075CA2130F5C131F5CA2 133F91C9FC5B137EA213FE5B12015BA212035BA212075B120F5BA2121F5B123F90CAFCA2 5A127E12FE5AA25A12782B647ACA38>IIIII<163FA25E5E5D5DA25D5D5D5DA25D92B5FCEC01F7EC03E7140715 C7EC0F87EC1F07143E147E147C14F8EB01F0EB03E0130714C0EB0F80EB1F00133E5BA25B 485A485A485A120F5B48C7FC123E5A12FCB91280A5C8000F90C7FCAC027FB61280A53141 7DC038>I<0007150301E0143F01FFEB07FF91B6FC5E5E5E5E5E16804BC7FC5D15E092C8 FC01C0C9FCAAEC3FF001C1B5FC01C714C001DF14F09039FFE03FFC9138000FFE01FC6D7E 01F06D13804915C0497F6C4815E0C8FC6F13F0A317F8A4EA0F80EA3FE0487E12FF7FA317 F05B5D6C4815E05B007EC74813C0123E003F4A1380D81FC0491300D80FF0495AD807FEEB FFFC6CB612F0C65D013F1480010F01FCC7FC010113C02D427BC038>I<4AB47E021F13F0 027F13FC49B6FC01079038807F8090390FFC001FD93FF014C04948137F4948EBFFE04849 5A5A1400485A120FA248486D13C0EE7F80EE1E00003F92C7FCA25B127FA2EC07FC91381F FF8000FF017F13E091B512F89039F9F01FFC9039FBC007FE9039FF8003FF17804A6C13C0 5B6F13E0A24915F0A317F85BA4127FA5123FA217F07F121FA2000F4A13E0A26C6C15C06D 4913806C018014006C6D485A6C9038E01FFC6DB55A011F5C010714C0010191C7FC903800 3FF02D427BC038>I<121E121F13FC90B712FEA45A17FC17F817F017E017C0A248168000 7EC8EA3F00007C157E5E00785D15014B5A00F84A5A484A5A5E151FC848C7FC157E5DA24A 5A14035D14074A5AA2141F5D143FA2147F5D14FFA25BA35B92C8FCA35BA55BAA6D5A6D5A 6D5A2F447AC238>IIII65 DIII70 DI73 D<0107B7FCA590C7001F1300B3B3A9EA1FE0487E487EA2487EA44B5A A26C48495A495C6C4813FF6C48485B260FFC0713C06CB65A6C4AC7FCC66C13F8010F1380 30457DC33A>I76 DII<923807FFC092B512FE0207ECFFC0021F15F091267FFE0013FC90 2601FFF0EB1FFF01070180010313C04990C76C7FD91FFC6E6C7E49486F7E49486F7E01FF 8348496F7E48496F1380A248496F13C0A24890C96C13E0A24819F04982003F19F8A3007F 19FC49177FA400FF19FEAD007F19FC6D17FFA3003F19F8A26D5E6C19F0A26E5D6C19E0A2 6C6D4B13C06C19806E5D6C6D4B13006C6D4B5A6D6C4B5A6D6C4B5A6D6C4A5B6D01C00107 5B6D01F0011F5B010101FE90B5C7FC6D90B65A023F15F8020715C002004AC8FC030713C0 47467AC454>II<923807FFC092B512FE0207ECFFC002 1F15F091267FFE0013FC902601FFF0EB1FFF010701C0010713C04990C700017F49486E7F 49486F7E49486F7E49486F7E48496F7E48496F1380A248496F13C0A24819E091C97E4819 F0A248487013F8A3007F19FCA249177FA300FF19FEAD007F19FCA36D17FF003F19F8A300 1F19F06D5EA26C19E06E01FE5B6C912603FF8014C06C6D486D4813804B13E06C9028E01F 83F00F13006C903BF01E00F81FFE90267FF83E90387C3FFC90263FFC3C6D485AD91FFE91 381EFFF0D90FFF021F5B6D01FE5D010194C7FC6D6D6CB45A023F90B512F8020703E01302 02006F1307030713C792C7EA07F8716C130F72131F9538FF80FF96B5FC7114FEA3831AFC A27213F81AF0847213E07213C0721300F001FC48587AC454>III<003FBA12E0A59026FE000FEB8003D87FE09338003FF049171F 90C71607A2007E1803007C1801A300781800A400F819F8481978A5C81700B3B3A20107B8 FCA545437CC24E>I<001FB812FEA59126F8000113FC028015F801FCC75A494A13F04916 E0495C494A13C0484816805E90C84813005F003E15FF4B5B5F003C5C4B5B5F5D4B5BC85C 4B90C7FC5D5E4B5A5C5E4A5B5C5E4A5B5C5E4A90C8FC5C5D4A48140F5B5D495B5B494914 1F5D49161E495B92C8FC49163E495A5C48177E485B4A15FE481601484914034A14074816 0F4849143F91C8EAFFFC48150FB9FCA538447AC344>90 D<903801FFE0011F13FE017F6D 7E48B612E03A03FE007FF84848EB1FFC6D6D7E486C6D7EA26F7FA36F7F6C5A6C5AEA00F0 90C7FCA40203B5FC91B6FC1307013F13F19038FFFC01000313E0000F1380381FFE00485A 5B127F5B12FF5BA35DA26D5B6C6C5B4B13F0D83FFE013EEBFFC03A1FFF80FC7F0007EBFF F86CECE01FC66CEB8007D90FFCC9FC322F7DAD36>97 DIIIIIII<137C48B4FC4813804813C0A24813E0A56C 13C0A26C13806C1300EA007C90C7FCAAEB7FC0EA7FFFA512037EB3AFB6FCA518467CC520 >I 107 DI<90277F8007FEEC0FFC B590263FFFC090387FFF8092B5D8F001B512E002816E4880913D87F01FFC0FE03FF8913D 8FC00FFE1F801FFC0003D99F009026FF3E007F6C019E6D013C130F02BC5D02F86D496D7E A24A5D4A5DA34A5DB3A7B60081B60003B512FEA5572D7CAC5E>I<90397F8007FEB59038 3FFF8092B512E0028114F8913987F03FFC91388F801F000390399F000FFE6C139E14BC02 F86D7E5CA25CA35CB3A7B60083B512FEA5372D7CAC3E>II<90397FC00FF8B590B57E02C314E002CF14F89139DFC03F FC9139FF001FFE000301FCEB07FF6C496D13804A15C04A6D13E05C7013F0A2EF7FF8A4EF 3FFCACEF7FF8A318F017FFA24C13E06E15C06E5B6E4913806E4913006E495A9139DFC07F FC02CFB512F002C314C002C091C7FCED1FF092C9FCADB67EA536407DAC3E>II<90387F807FB53881FFE002 8313F0028F13F8ED8FFC91389F1FFE000313BE6C13BC14F8A214F0ED0FFC9138E007F8ED 01E092C7FCA35CB3A5B612E0A5272D7DAC2E>I<90391FFC038090B51287000314FF120F 381FF003383FC00049133F48C7121F127E00FE140FA215077EA27F01E090C7FC13FE387F FFF014FF6C14C015F06C14FC6C800003806C15806C7E010F14C0EB003F020313E0140000 F0143FA26C141F150FA27EA26C15C06C141FA26DEB3F8001E0EB7F009038F803FE90B55A 00FC5CD8F03F13E026E007FEC7FC232F7CAD2C>II< D97FC049B4FCB50103B5FCA50003EC000F6C81B3A85EA25EA25E7E6E491380017FD901F7 13FE9138F807E76DB512C7010F1407010313FE9026007FF0EBFC00372E7CAC3E>I IIII<001FB71280 A49026FC001F130001E0495A5B49495A90C7485A48495B123E4A5B4A5B003C495BA24A90 C7FC4A5A4A5AC7FC4A5A495B495BA2495B499038800780491300A2495A4948130F494814 00A2485B48495B485BA248495B4890C75A48485C15034848EB1FFEB7FCA4292C7DAB32> I127 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: FK cmbx12 24.88 40 /FK 40 123 df45 D[82 135 111 262 116 49 D[<93381FFFF00303B612E0033F15FC4AB812 C0020717F0021F17FC027F17FF49BA12C0010719F049DA800F814901F8C715FE4901C002 1F804948C800078149486F814801F00300814849708048018070804890CA6C806E708048 13F002FC7080486D70158080486E6F15C0817315E081B6836F19F0A3861DF8A56C5CA26C 5CA26C5C6C91CAFC6C5B000113F826007FE01AF090CCFC62A21DE0A297B6FC1DC0A24F15 80A24F150064A24F5C64614F5C644F5C644F91C7FC96B55A4E5C634E5C4E5C4E5C634E49 C8FC4E5B4E5B95B55A4D14C0624D91C9FC4D13FC4D5B4D5B4D13C04D5B94B5CAFC4C13FC 4C5B4C5B4C49ED0FF84C13804C90C9FC4C5A4C48EE1FF04B5B4B13E04B5B4B5B4B90CAFC DB3FFC173F4B4818E04B5A4A5B4A49177F4A90CBFC4A4818FF5D4A485F4A48053F13C04A BBFC91BCFC5B5B5B5B491B805B5B90BDFC5A5A5A5A481C005A5ABEFCA464A4>93 135 117 262 116 I[<933807FFFE93B612F80307EDFF80033F16F092B812FE0203717E 020F18E0023F844A9026FE003F14FC91B500C0010780010301FCC70001804901F06E6C14 C04901C06F8092C97E4948708049488590267FFFC06F808190B500F8846F816F845A81A2 486F1880A285A282A24C5CA37E1D0093C8FC7E6D5B6D494B5C6D5B6D5B010301C060D900 7EC95A91CA5DA24F5C6461644F5C96B6C7FC634E5C4E5C4E14E04E5C063F5C95B548C8FC 050314F80407B612E00307B712804B4BC9FC19F885F1FFC01AF86F16FF92C86C14C00607 14F0060114FC7280073F6D7E738073807314F888738085881D807315C0A21DE0861DF0A2 1DF8A27414FCA4D93FF01AFEEBFFFC000313FF4880488048804880A24880A2B67EA21DFC A45014F8A34B19F07E97B612E05D6C4A19C0A24B4B15806C5C6C49C948150002F84C5C6C 01C0616C6D4C5C6C01F84C5C6C01FE4C5C6D6C6C4B5C6D01F04AB65A6D01FF020792C7FC 6D02F8017F14FC010391B85A010019E0023F1880020F4DC8FC020117F0DA003F16800303 03F8C9FCDB000F49CAFC>95 137 118 262 116 I[103 136 122 263 116 I[<010E1AE0D91FC0F007F002F0183F02FFEF01FF03E0160F03FF4B B5FC04FE91B65A93B95AA26499C7FC6363636363636398C8FC1AFC621AE06297C9FC19FC 19F019C04ECAFC18F0DAF87F49CBFC92CEFCB3A394B5FC041F14F84BB77E030716E0031F 16FC037F16FF02F9B912C002FBDA001F8091B500E0010314F893C88003FC6F7F03F0031F 7F03C06F804B844AC96C804A70804A854A7080A24A856D5A90CC80A21D80A21DC0A27414 E0A41DF0A41DF8A3EBFFC0000313F04813FC487F487F4880A24880A2B6FC81A21DF0A44B 19E0A297B6FC6C4A19C0A292CAFC4A1A806C495E02F01A006C13C001F8CA5D6C6C4D5C7F 00074E5C6D626C6D4C5C6C01E04C5C6C6D4C5C6E4C91C7FCD97FFE93B55A6D6C6C02035C 6D01E0020F5C010701FC023F5C6D9026FFE003B612C06D91B8C8FC6D6C17FC021F17F002 0717C0020194C9FC6E6C15F0030F92CAFCDB007F13C0>93 137 117 262 116 I[<95380FFFE00503B6FC053F15C04CB712F8040782043F16FF93B97E4B8403 079126FE003F7F031F02E001037F4B91C87F92B500FCED3FFC4A02F06F7E4A02C0150F4A 4A92B5FC4A91C812034A01FC5D4A494B14804A495D91B5FC494A4B14C0495C494A5DA249 91C9FC5B5D5B5D5B90B57114805D48731400A2745B484A705B745B48070013E098C8FCA2 485CA35AA35AA34B903807FFE0053FEBFF80484BB612F04C15FC040F15FF4C16C04C16F0 93267FF803809327FF80003F13FEB600C190C7000F7FDBC3FC6E80DBC7F86E804C6E80DB CFE06E804C6F7FDBDF806F7F03FF8493C96C7F5D1D804B7014C0A21DE05D1DF0A25D7414 F8A34B19FCA47E1DFE5DA77EA56C80A46C1CFCA37EA21DF87E81626C1CF0A26C1CE0A26D 6D19C0626D1B806D6D1900626D6D606D6D4C5B705F6D95B55A6D6E4A5C6D6E4A5C6E01F8 4A5C6E6D021F91C7FC6E01FF027F5B0207DAF007B55A6E91B712F00200606F1780031F4C C8FC030316F8030016C0041F4AC9FC04001480>95 137 118 262 116 I[158 145 120 272 175 65 D[143 142 120 269 165 I[<0803B500C0EE01F00703B600FEEE03F8077FDBFFE015070607B800FC150F 063F05FF151F4DBA00E0143F050F07F8147F053F07FE14FF94BC5B04039326F8000FECC0 03040F4BC86CEBF007043F03C0030F6D5A93B648C900036D5A4B03F09339007FFF3F0307 03C0051F90B5FC4B92CB7E033F02FC18034B02F08492B648844A0380193F4A92CD7E4A4A 864A4A864A02F0864A4A864A8991B65A494B874992CF7E4C885B494A885E498B494A88A2 495C8D90B65A8D5A5E48217FA24892D1FC223FA25A5DA248211FA3485CFA0FF09FC7FCA2 5AA45DA3B6FCB27EA381A47EA46C80FA07F0FA0FF87EA2817EA36C6F1D1F23F07E827E22 3F6D6E1EE0A26D6E1D7F23C06D6E1DFF7F705213806D806D55130070646D6F646D6F515A 6E6E1B1F6E6E515A6E6E515A6E6E1BFF6E6E505B6E6E505B6E6F4F5B6E03E04F90C7FC6F 6EF13FFE6F02FC4F5A030F02FF4E485A6F03C005075B030103F0051F5B6F03FE057F1380 043FDAFFE00303B5C8FC040F03FE033F13FC0403DBFFF80107B55A040093B812E0053F1A 80050F4FC9FC050119F8DD003F18C0060795CAFCDE007F16F0070393CBFCDF000314C0> 141 146 115 271 168 I[156 142 120 269 178 I[127 141 120 268 146 70 D[<0803B500C0EE01F00703B600FE4C7E077FDBFFE015070607B8 00FC150F063F05FF151F4DBA00E0143F050F07F8147F053F07FE14FF94BC5B04039326F8 000FECC003040F4BC86CEBF007043F03C0030F6D5A93B648C900036D5A4B03F09339007F FF3F030703C0051F90B5FC4B92CB7E033F02FC18034B02F08492B648844A0380193F4A92 CD7E4A4A864A4A864A02F0864A4A864A8991B65A494B874992CF7E4C885B494A885E498B 494A88A2495C8D90B65A8D5A5E48217FA24892D1FC223FA25A5DA248211FA3485C7C5A9F C9FCA25AA45DA3B6FCB27EA381A20A0FBB12F8A27EA46C80A36C98C96C02F8C7FCA2817E A36C81A27E827E827FA26D80A26D806D80A26D806D80A26D816D816E806E806E806E6E97 B6FC6E806E806E03C0606E816F02F8606F02FE60030F6E606F03E0173F030103F85F6F03 FF933801FFFC043F03E00307497E040F03FF033F497E040304FC0107B5EAE00F040093B8 487E053FF20001050F07FCEB007F050107F0141FDD003F06C01407060795C81201DE007F 04F8ED00700703048093C8FCDF000302E0CDFC>157 146 115 271 183 I[74 142 122 269 87 73 D[121 142 120 269 140 76 D[203 142 120 269 220 I[<97B512F0077FECFFE00607B7 12FE067FEEFFE00503B912FC051FF0FF80057F19E00403BB12FC040F9226E0007F14FF04 3F4AC7000715C04C02E0DA007F804BB60080031F14F803074AC9000714FE4B02F8040180 4B02E0706C80037F0280051F14E092B6CB6C804A4A72804A4A72804A02F00600804A4A73 7F4A8B4A4A73804A4A738091B6CD6C80494A7480A2494A7480494A7480498C4C86498D4C 87498D494A7580A290B6487580A2488E93CF7E488EA24B88488EA3484A7680A3482380A2 4B884823C0A54823E0A34B88A4B621F0B36C23E0A46F64A36C23C0A56C23806F64A26C23 00A36C6E525CA36C6E525CA26C6AA26C6F515CA26D6E515CA26DDE07FE617092263FFFC0 5D6D95B500F06070020302FC92B6FC6D6E020F6E4A92C7FC6D4D6E6C5E704A6F5B6D9426 7FFC036D5E6D6E9227E0007FF0495C6D6EDAFF80D91FF8495C6E6E4890C700074A5C6E4C 6E6C5E05C0496F5B6EDAE0036F6C495C6E02F0496E91B6C8FC6E02F806815C020102FCDD 7FC314F86E02FF06CF5C6F028370B65A6F02E362030FDAF3FC6F92C9FC6F02FD610301DA FFFE18F86F6F037F5C043F03C00103B612C0040F03F0017F92CAFC040392B812FC04001A F0051F198005071EF0DD007F72ED01F8060F84DE007F15E30700DAF0037F97C880776D15 03A279150779150F7702C0141F7A147F0EF8903803FFF00EFF133F9EB6FC8AA2A112E0A2 8AA2A112C08AA2A112808AA112008A6B8A6B8A6B785E795D6B795D7992C7FC795C0D035C 7914F0E5003F13C0E607FEC8FC>149 184 115 271 175 81 D[<000FC312F8A6488EA3 04C0C7001F4AC7120103F8C8F0000F03C01C0192C9737E02FC1E1F4A1E0702E08A4A8A4A 8A4890CA757EA249203F49201FA349200FA2492007A4492003007F8EA4498CA848487A13 80A6CC99C7FCB3B3B3B3AA030FBD12FCA9>145 140 120 267 162 84 D<93B512FC037FECFFF00207B8FC023F17E091B912F84918FE0107727E499126C000 7F14E04901E0C7000F80496D020380496D020014FE6F6F7F90B570806F6F8085486E6F80 7380A27380A28885886C5CA26D4982886D5B6D5B010713C0010190CAFC90CCFCA90603B7 FC050FB8FC0403B9FC167F0307BAFC153F4AB7EA807F020FEDE000023F02FCC7FC91B612 E0010392C8FC4914FC011F14F04914C0495C90B548C9FC485C485C485C485C5A5D485CA2 4891CAFCA3B6FC5CA397B6FCA461806C60F107EF6C6E150F6F16CF6C183F6FDB7F8F806C 6EDBFF0F14E06C02FCDA03FE15FE6C6E91260FFC0791B5FC6C6E6CD93FF817806C923AF8 03FFF003013F91B6487E010FEF8000010394C77E010004FC141F021F03F0140702010380 DA007F1400DA000701F8CDFC695F79DD71>97 D[113 144 121 270 129 I<94387FFFF0041FB612E093 B712FE0307707E031F17F092B97E4A18FE020784021F9126F8000F14804A0280010014C0 4A49C74814E049B500F85C494A17F0494A5C495C494A4A14F84991C8FC5D495B90B5FC5D 5A485C7314F05A4B6F14E05A7314C0487214804B93383FFE00F20FF84896C8FCA4485CA5 B6FCB07EA281A37EA36C80A37E6F18FE6CF201FFA26C6E5F1CFE6C801B076C6EEF0FFC6D 7F70EE1FF86DF13FF06D6E167F6D6EEEFFE06D02F84B13C06D6E5D6D02FF030F13806D03 C0023F1300023F02F0903801FFFC6E9126FF801F5B020792B65A6E18C0020060033F4CC7 FC030716F8030016C0041F4AC8FCDC007F13C0585F78DD67>I[113 144 120 270 129 I<94387FFFC0040FB6FC93B712E00307 16FC031F16FF037F17C04AB912F00207DAF80380021F912680003F13FE4A49C7000F7F4A 01F802038049B5486E804902C06E6C7F494A6F7F4991C9FC49727F4949707F4B84498490 B548707F5A4B198048855D481CC086481CE05D5A871DF05AA25D5AA21DF887A2B6FCA392 BBFCA51DF00380CDFCA77EA4817EA37EA2817EA26CF307F06FF00FF87E816C1B1F6F19F0 6C1B3F6D6DF07FE06D7FF4FFC06D6E4C13806D6E5E6D02F04C13006D6EEE1FFE6D6E4C5A 6D6C01FFEEFFF86E02E002035B6E02FC021F5B02079126FFC003B55A6E92B7C7FC020060 033F17F8030F17E003011780DB003F03FCC8FC040315C0DC000F01F8C9FC5D5F7ADD6A> I[<95383FFF80050FB512F094B612FE040781041F16C0047F824BB87E0307DAF8077F03 1FDAC00F7F4B49C6487F4B495B92B500F0814A4A5B4A5C4A93B612805F4A91C7FC5C5E5C 5E5C731400A24C6E5B91B56F5BA2735B070313E00700138097C8FCB3A4BA12F8A9C702FC CBFCB3B3B3B3A2003FB9FCA9>81 144 121 271 71 I I[114 143 119 270 129 I[49 144 119 271 65 I[112 143 121 270 123 107 D[50 143 119 270 65 III<94381FFFF00407B6 12C0047F15FC0303B87E030F17E0037F17FC4ABAFC4A9126FC007F80020F02C0010714E0 4A49C880027F01F8033F13FC91B5486F7F4902C003077F494A6F804991C96C8049497080 4949717F49874949717FA290B548717F48884B83481D80A2481DC04B83481DE0A2481DF0 A3484A7114F8A4481DFCA5B61BFEAF6C1DFCA56C6E4D14F8A36C1DF0A36C1DE06F5F6C1D C0A26C6E4D1480A26C1D006F5F6C646D6D4D5B6F94B5FC6D636D6D4C5C6D6E4B5C6D6E4B 5C6D02F0031F5C6D6E4B91C7FC6D6C01FE92B512FC6ED9FFC001075C6E02FC017F5C0207 91B812C0020196C8FC6E6C17FC031F17F003031780DB007F03FCC9FC040715C0DC001F01 F0CAFC675F7ADD74>I I114 D<92261FFFF814F80203B638C001FC023FEDFC0791B8121F01 0317FF130F013F9038F8001F4990C8FCD9FFF8153F4801E0150F484915034849814890CA FC197F4848173F191F485AA2007F180FA31907487EA27FA28002E0705A6E93C8FC14FC14 FF15F06CECFF8016FCEEFFF06CEEFF8018F06C17FE727E6C18E0856C18FC6C846C727E6C 856D84011F846D841303010084023F83140F020183EC001FDB007F16801603DC000F15C0 1700183F060F14E0007F1703486C82727E857F85857FA2857F1BC07FA27F1B806D5F7F1B 006E5E6E5F6E163F6E4C5A02FC4C5A6E03035B6E6C4A5B03F0023F5B03FF0107B55A01F9 91B7C7FCD9F07F16FCD9E01F16F0D9800716C0D9000193C8FC48D9003F14F8007C020349 C9FC4B5F78DD5C>I[72 132 124 258 90 II<007FB86C49 B712FEA9C792C9000F02C0C7FC6E6E030101F0C8FC715F6E6E4B5B6E6E4B5B6E4E90C9FC 6E6E5E71151F6E6E4B5A6E6E4B5A6E4E5A6F6E495B72495B6F6E495B6F806F6E4990CAFC 6F4C5A72495A6F6E495A6F6E495A6F03815B705E7014C307E75B7091B5CBFC705D705D70 5D6282705D715C8386718071807180837180864D814D815F4D81874D814D81DDFFF3804C 13E14C01C1804C0180814E6C804C6E804C487F4C48824C486D804C486D804B496D804B49 7F73804B49834B90C86C804B486F804B48814B486F804B48844C6F804A71804A496F804A 49814A90CA814A487180023F7280010FB500E07080B8031FB812E0A9735C7CDB7B>120 D<007FB800C04AB71280A9D800034ACA000791C7FC6D080013F0775A6D6E4E5AA26E6E60 64836E4F90C8FC836E4F5A836E4F5AA26E6E4C5AA26E6E5F1C3F6E6E5F1C7F836E4F5A84 6F4D5B846F4D90C9FCA26F6E4A5AA26F6E5D1B0F846F4D5A846F4D5A846F4D5AA26F6E4A 5AA2706E5C627002C091CAFC6219E0704B5A19F0704B5AA2706E485AA2706E485AA27002 FE5B1A7F19FF704B5AA2715DA27192CBFCA2715CA2715CA3715CA2715CA2715CA2715CA2 725BA27290CCFCA3725AA2725AA24E5AA24E5AA261187FA24E5AA24D5B13FE2603FF804A 90CDFC000F13E0486D4A5A487F486D4A5AA260B56C141F4D5AA24D5A17FF604C5B4A4990 CEFC6C5D4C5A6C49EB3FFC4A495A6C4948485A9026FE80075B270FFFC03F5B6C90B6CFFC 6C5D6C15F86C6C5C011F14C0010749D0FC9038007FE071857CDB7B>I<0003BC12F81CFC A51CF80480C7123F03F0C84814F048028018E04AC9B612C04A5D02F04B15804A19004E5C 4A5D4A4B5C6391C9485C604993B65A634D5D495D98C7FC4D5C4D5C000F5E62494B5C4D5C 94B6FC624C5D4C92C8FC5EC95D4C5C5E4C5C614C5C93B6FC4B5D614B92C9FC5D4B5C604B 5C5D4B4AEC07FC6092B65A5C604A92C8EA0FF84A5C5C5F4A5C4A5C4A181F5F91B65A495D 491AF094C9123F495C5B494A167F5E494A16FF496090B65A4C5D484B5D484F13E04892C9 5A4B5E484A93B5FC481803484A151F4B0203B6FC4891BAFCBDFCA21CC0A47E565C7ADB67 >I E %EndDVIPSBitmapFont %DVIPSBitmapFont: FL cmr12 12 95 /FL 95 128 df<1618163CA2167EA216FFA24B7FA24B6C7EA29238063FE0A24B6C7EA24B 6C7EA292383807FC153092387003FE15609238E001FF15C002016D7F5D02036E7E92C7FC 4A6E7E1406020E6E7E140C021C6E7E141802386E7E143002706E7E146002E06E7E5C0101 6F7F5C0103707E91C9FC183F010683181F4983180F49831807498318034983A249707EA2 4848701380A248CBEA7FC0A20006F03FE0A248F01FF0A2001FBA12F8A24819FCA24819FE A2BCFC48477CC651>1 D7 D<0103B612FCA390C701F0C8FC6F5A6F5AA8913801FFF0023FEBFF80903A01FF3FDFF0D9 07F0EBC1FCD91FC0EBC07FD93F00EC1F8001FEED0FE048486F7E48486F7E48486F7E4848 6F7E001F834982003F1880007F18C0A249163F00FF18E0A8007F18C06D167FA2003F1880 001F18006D5E000F5F6C6C4B5A6C6C4B5A6C6C4B5A6C6C4B5A013FED1F80D91FC0027FC7 FCD907F0EBC1FCD901FFEBDFF0D9003FB51280020101F0C8FC9138003FC0A84B7E4B7E01 03B612FCA33B447BC346>I<9239FFC001FC020F9038F80FFF913B3F803E3F03C0913BFC 00077E07E0D903F890390FFC0FF0494890383FF81F4948EB7FF0495A494814E049C7FCF0 0FE04991393FC0038049021F90C7FCAFB912F0A3C648C7D81FC0C7FCB3B2486CEC3FF000 7FD9FC0FB512E0A33C467EC539>11 D<4AB4FC020F13E091387F80F8903901FC001C4948 7FD907E0130F4948137F011FECFF80495A49C7FCA25B49EC7F00163E93C7FCACEE3F80B8 FCA3C648C7FC167F163FB3B0486CEC7FC0007FD9FC1FB5FCA330467EC536>I<913801FF C0020FEBFB8091387F803F903801FC00494813FFEB07E0EB1FC0A2495A49C7FC167F4914 3F5BAFB8FCA3C648C7123FB3B2486CEC7FC0007FD9FC1FB5FCA330467EC536>II<131F1480133F137FA2EBFF00485A485A5B485A485A138048 C7FC123E123C5A12E0124011126CC431>19 D<00C01430A46C147000601460007014E0A2 6CEB01C0003C13036CEB07806CEB0F00EBE07F3807FFFE000113F86C5BEB1F801C1176C4 31>21 D25 D<121EEA7F80EAFFC0A9EA7F80ACEA3F00AB121E AC120CA5C7FCAA121EEA7F80A2EAFFC0A4EA7F80A2EA1E000A4778C61B>33 D<001EEB03C0397F800FF000FF131F01C013F8A201E013FCA3007F130F391E6003CC0000 EB000CA401E0131C491318A3000114384913300003147090C712604814E0000614C0000E 130148EB038048EB070048130E0060130C1E1D7DC431>I<043014C00478497EA204F813 03A24C5CA203011407A24C5CA20303140FA24C91C7FCA203075CA24C131EA2030F143EA2 93C7123CA24B147CA2031E1478A2033E14F8A2033C5CA2037C1301007FBA12F8BB12FCA2 6C19F8C72801F00007C0C7FC4B5CA30203140FA24B91C8FCA402075CA24B131EA3020F14 3E007FBA12F8BB12FCA26C19F8C7003EC700F8C8FC023C5CA2027C1301A202785CA202F8 1303A24A5CA201011407A24A5CA20103140FA24A91C9FCA201075CA24A131EA2010F143E A291C7123CA249147CA2011E1478A2010C143046587BC451>I37 D<121EEA7F8012FF13C0A213E0A3127FEA1E601200A413E013C0A31201 1380120313005A1206120E5A5A5A12600B1D78C41B>39 D<140C141C1438147014E0EB01 C01303EB0780EB0F00A2131E5BA25B13F85B12015B1203A2485AA3485AA348C7FCA35AA2 123EA2127EA4127CA312FCB3A2127CA3127EA4123EA2123FA27EA36C7EA36C7EA36C7EA2 12017F12007F13787FA27F7FA2EB0780EB03C01301EB00E014701438141C140C166476CA 26>I<12C07E12707E7E7E120F6C7E6C7EA26C7E6C7EA21378137C133C133E131E131FA2 EB0F80A3EB07C0A3EB03E0A314F0A21301A214F8A41300A314FCB3A214F8A31301A414F0 A21303A214E0A3EB07C0A3EB0F80A3EB1F00A2131E133E133C137C13785BA2485A485AA2 485A48C7FC120E5A5A5A5A5A16647BCA26>I<16C04B7EB3AB007FBAFCBB1280A26C1900 C8D801E0C9FCB3AB6F5A41407BB84C>43 D<121EEA7F8012FF13C0A213E0A3127FEA1E60 1200A413E013C0A312011380120313005A1206120E5A5A5A12600B1D78891B>II<121EEA7F80A2EAFFC0A4EA7F80A2EA1E000A0A78891B>I<1618163C16 7CA2167816F8A216F01501A216E01503A216C01507A21680150FA2ED1F00A2151E153EA2 153C157CA2157815F8A25D1401A24A5AA25D1407A25D140FA292C7FC5CA2141E143EA214 3C147CA25CA25C1301A25C1303A25C1307A25C130FA291C8FC5BA2133EA2133C137CA213 7813F8A25B1201A25B1203A2485AA25B120FA290C9FC5AA2121E123EA2123C127CA21278 12F8A25A126026647BCA31>I<14FF010713E090381F81F890383E007C01FC133F4848EB 1F8049130F4848EB07C04848EB03E0A2000F15F0491301001F15F8A2003F15FCA390C8FC 4815FEA54815FFB3A46C15FEA56D1301003F15FCA3001F15F8A26C6CEB03F0A36C6CEB07 E0000315C06D130F6C6CEB1F806C6CEB3F00013E137C90381F81F8903807FFE0010090C7 FC28447CC131>I<143014F013011303131F13FFB5FC13E713071200B3B3B0497E497E00 7FB6FCA3204278C131>II<49B4FC01 0F13E0013F13FC9038FE01FE3A01F0007F80D803C0EB3FC048C7EA1FE0120EED0FF0EA0F E0486C14F8A215077F5BA26C48130FEA03C0C813F0A3ED1FE0A2ED3FC01680ED7F0015FE 4A5AEC03F0EC1FC0D90FFFC7FC15F090380001FCEC007FED3F80ED1FC0ED0FE016F0ED07 F816FC150316FEA2150116FFA3121EEA7F80487EA416FE491303A2007EC713FC00701407 003015F80038140F6C15F06CEC1FE06C6CEB3FC0D803E0EB7F803A01FE01FE0039007FFF F8010F13E0010190C7FC28447CC131>II<000615C0D807C0130701FCEB7F80 90B612005D5D5D15E0158026063FFCC7FC90C9FCAE14FF010713C090381F01F090383800 FC01F0137ED807C07F49EB1F8016C090C7120F000615E0C8EA07F0A316F81503A216FCA5 123E127F487EA416F890C712075A006015F0A20070140F003015E00038EC1FC07E001EEC 3F806CEC7F006C6C13FE6C6C485A3901F807F039007FFFE0011F90C7FCEB07F826447BC1 31>II<121CA2EA1F8090B712C0A3481680A217005E 0038C8120C0030151C00705D0060153016705E5E4814014B5A4BC7FCC81206150E5D1518 15385D156015E04A5AA24A5A140792C8FC5CA25C141E143EA2147E147CA214FCA21301A3 495AA41307A6130FAA6D5AEB01C02A457BC231>I<14FF010713E0011F13F890387F00FE 01FC133FD801F0EB1F804848EB0FC049EB07E00007EC03F048481301A290C713F8481400 A47FA26D130116F07F6C6CEB03E013FC6C6CEB07C09039FF800F806C9038C01F006CEBF0 3EECF87839007FFEF090383FFFC07F01077F6D13F8497F90381E7FFFD97C1F1380496C13 C02601E00313E048486C13F000079038007FF84848EB3FFC48C7120F003EEC07FE150148 140016FF167F48153FA2161FA56C151E007C153EA2007E153C003E157C6C15F86DEB01F0 6C6CEB03E06C6CEB07C0D803F8EB1F80C6B4EBFF0090383FFFFC010F13F0010113802844 7CC131>I<14FF010713E0011F13F890387F80FC9038FC007E48487F4848EB1F804848EB 0FC0000FEC07E0485AED03F0485A16F8007F140190C713FCA25AA216FE1500A516FFA46C 5CA36C7E5D121F7F000F5C6C6C130E150C6C6C131C6C6C5BD8007C5B90383F01E090390F FF80FE903801FE0090C8FC150116FCA4ED03F8A216F0D80F801307486C14E0486C130F16 C0ED1F80A249EB3F0049137E001EC75A001C495A000F495A3907E01FE06CB51280C649C7 FCEB1FF028447CC131>I<121EEA7F80A2EAFFC0A4EA7F80A2EA1E00C7FCB3A5121EEA7F 80A2EAFFC0A4EA7F80A2EA1E000A2B78AA1B>I<121EEA7F80A2EAFFC0A4EA7F80A2EA1E 00C7FCB3A5121E127FEAFF80A213C0A4127F121E1200A512011380A3120313005A120612 0E120C121C5A5A12600A3E78AA1B>I<007FBAFCBB1280A26C1900CEFCB0007FBAFCBB12 80A26C190041187BA44C>61 D63 DI<16C04B7EA34B7EA34B7EA34B7EA3ED19FEA3ED30FFA203707FED607FA2 03E07FEDC03FA2020180ED801FA2DA03007F160FA20206801607A24A6D7EA34A6D7EA34A 6D7EA20270810260147FA202E08191B7FCA249820280C7121FA249C87F170FA201068217 07A2496F7EA3496F7EA3496F7EA201788313F8486C83D80FFF03037FB500E0027FEBFFC0 A342477DC649>IIIIIIIII<010FB512FEA3D9000313806E130080B3B3AB123F487E487EA44A5A138013 00006C495A00705C6C13076C5C6C495A6CEB1F802603E07FC7FC3800FFFCEB1FE027467B C332>IIIII III< B712E016FF17C000019039C0003FF86C6C48EB03FCEE00FF717E717E717E717E717EA284 170384A760A21707604D5AA24D5A4D5A4DC8FCEE01FEEE07F8EE3FE091B6C9FC16FC9139 80007F80EE0FE0707EEE03FC707E160083717EA2717EA784A71A6084171FA21AE0716C13 C02601FFE002071301B600C01680943801FC03943900FE0700CBEA3FFEF007F843467CC3 48>I<49B41303010FEBE007013F13F89039FE00FE0FD801F8131FD807E0EB079F49EB03 DF48486DB4FC48C8FC4881003E81127E82127C00FC81A282A37E82A27EA26C6C91C7FC7F 7FEA3FF813FE381FFFE06C13FE6CEBFFE06C14FC6C14FF6C15C0013F14F0010F80010180 D9001F7F14019138001FFF03031380816F13C0167F163F161F17E000C0150FA31607A37E A36C16C0160F7E17806C151F6C16006C5D6D147ED8FBC05CD8F9F0495AD8F07C495A9039 3FC00FE0D8E00FB51280010149C7FC39C0003FF02B487BC536>I<003FB912F8A3903BF0 001FF8001F01806D481303003EC7150048187C0078183CA20070181CA30060180CA54818 06A5C81600B3B3A54B7EED7FFE49B77EA33F447DC346>IIII<003FB500E0011FB5FCA3C691C7000713 E0D93FFC020190C7FC6D4815FC010F6F5A6D6C15E0A26D6C4A5A6D6C5D4DC8FC6D6D5B6E 6C13065F6E6C131C6E6C13185F6E6C13706E6C13605F913803FE01DA01FF5B4CC9FC6E13 87ED7FC616CCED3FFC6F5A5E6F7E6F7EA26F7E82A203067F150E92380C7FC04B6C7E1538 9238301FF04B6C7E15E04B6C7E4A486C7E14034B6C7E02066D7F140E020C6E7E4A6E7E14 3802306E7E4A6E7E14E04A6E7E49486E7E130349C86C7E496F7F5B496C8201FF83000701 E0020313F8B500F8021FEBFFF0A344447EC349>II<001FB81280A391268000 01130001FCC7FC01F04A5A01C04A5A5B90C8485A121E4C5A484B5AA200384B5A4C5AA24B 90C7FC00304A5AA24B5AA24B5AC8485AA24B5A4B5AA24B5A5C93C8FC4A5AA24A5A4A5AA2 4A5A4A5AA24A5A14FF5D4990C9FCEF0180495A495AA2495A494814031800495AA2495A49 5A5F4890C8FC485A5F485A48485D5F48485D17FE484814034848140F16FFB8FCA331447B C33C>II<01C013180001143848 48137048C712E0000EEB01C0000C1480001C13030018140000385B003013060070130E00 60130CA300E0131C481318A400CFEB19E039FFC01FF801E013FCA3007F130FA2003F1307 01C013F8390F0001E01E1D71C431>II<130C131E133F497EEBF3C03801E1E03803C0F03807807848487E001E7F487F00 70EB038048EB01C00040EB00801A0E75C331>I97 DII<167FED3FFFA31501 8182B3EC7F80903803FFF090380FC07C90383F000E017E1307496D5AD803F87F48487F5B 000F81485AA2485AA2127FA290C8FC5AAB7E7FA2123FA26C7EA2000F5D7F6C6C5B00035C 6C6C9038077F806C6C010E13C0013F011C13FE90380FC0F8903803FFE09026007F001300 2F467DC436>IIIIII<143C14FFA24913 80A46D1300A2143C91C7FCADEC7F80EB3FFFA31300147F143FB3B3AA123E127F39FF807F 00A2147EA25C6C485A383C01F06C485A3807FF80D801FEC7FC195785C21E>IIII<3901FC01FE00FF903807 FFC091381E07F091383801F8000701707F0003EBE0002601FDC07F5C01FF147F91C7FCA2 5BA35BB3A8486CECFF80B5D8F83F13FEA32F2C7DAB36>II<3901FC03FC00FF90380FFF8091383C07E091387001F83A07FDE000FE00 030180137FD801FFEC3F8091C7EA1FC04915E049140F17F0160717F8160317FCA3EE01FE ABEE03FCA3EE07F8A217F0160F6D15E0EE1FC06D143F17806EEB7E00D9FDC05B9039FCF0 03F891383C0FE091381FFF80DA03FCC7FC91C9FCAE487EB512F8A32F3F7DAB36>I<9138 7F8003903903FFE00790380FE07890393F801C0F90387E000E496D5AD803F8EB039F0007 EC01BF4914FF48487F121F5B003F81A2485AA348C8FCAB6C7EA3123F7F121F6D5C120F6D 5B12076C6C5B6C6C497E6C6C130E013F131C90380FC0F8903803FFE09038007F0091C7FC AEEEFF80033F13FEA32F3F7DAB33>I<3903F803F000FFEB1FFCEC3C3EEC707F0007EBE0 FF3803F9C000015B13FBEC007E153C01FF13005BA45BB3A748B4FCB512FEA3202C7DAB26 >I<90383FE0183901FFFC383907E01F78390F0003F8001E1301481300007C1478127800 F81438A21518A27EA27E6C6C13006C7E13FC383FFFE06C13FC6C13FF6C14C06C14E0C614 F0011F13F81300EC0FFC140300C0EB01FE1400157E7E153EA27EA36C143C6C147C15786C 14F86CEB01F039F38003E039F1F00F8039E07FFE0038C00FF01F2E7DAC26>I<1306A513 0EA4131EA3133E137EA213FE12011207001FB512F0B6FCA2C648C7FCB3A4150CAA017E13 1C017F1318A26D133890381F8030ECC070903807E0E0903801FFC09038007F001E3E7EBC 26>II IIII<003FB612E0A290 38C0003F90C713C0003CEC7F800038ECFF00A20030495A0070495AA24A5A0060495AA24A 5A4A5AA2C7485A4AC7FC5B5C495A13075C495A131F4A1360495A495AA249C712C0485AA2 485A485A1501485A48481303A24848EB07804848131F00FF14FF90B6FCA2232B7DAA2B> I<01F81302D803FE13073907FF800E48EBE01C391F1FF8F8393807FFF0D8700113E039E0 007FC00040EB1F00200978C131>126 D<001EEB0780007FEB0FE039FF801FF0EBC03FA4 EB801F397F000FE0001EEB07801C0A76C231>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: FM cmr17 20.74 8 /FM 8 117 df68 D<913803FF80021F13F891B512FE903A03FC01FF80903A07E0003FE0D91F80EB0FF8013E C76C7E496E7E01F06E7E48486E7F717E4848153F4982D807A06F7E13FC487E6D6F7E80A2 717EA46C90C8FC6C5A6C5ACAFCA6EE07FF0303B5FC157F913903FFFE07021F138091387F F800903801FFC0010790C7FCEB1FFCEB3FF0EBFFE0485B485B4890C8FC5B485A485AA248 5A1A0E485AA312FF5B170FA4171FA26D153F007F163B177B6DDBF1FE131C003F16E16C6C 14016C6C912603C0FF13386C6CEC0F806C6C6C903A1F007F80706C6D017CECE1E028007F F803F8EB3FFF011FB500E06D1380010391C7000713009026003FF8EC01FC474D79CB4F> 97 D<191FF07FFF051FB5FCA5EF001F180784A284B3B0ED07FE92387FFFC00203B512F0 91390FFC01FC91393FE0001FDAFF80EB07814990C7EA03E1D903FCEC01F14948EC0079D9 1FF0153D4948151D4A151F49488101FF824890C9FC48835B0007835B120F5B121FA2123F 5BA2127FA35BA212FFAE127FA27FA3123FA36C7EA36C7EA200075F7F00035F6C7E606C6D 5D6D6C153D013F16396D6C03797F6D6C15F16D6CDA03E17FD903FEDA078113F0D900FFDA 1F01EBFFF0DA7FC0137E91391FF803F80207B512E0020114809127001FF800EC80004C79 7AF758>100 D I<131EEB7F80497E487F487FA66C5B6C5B6D5A011EC7FC90C8FCB3A7EB01F0EA07FFB5FC A51201EA007F133FA2131FB3B3B3A3497EEBFFFEB612FCA51E727AF12A>105 D108 D110 D<1407A85CA65CA35CA35CA25CA25BA25B5B5B5B5B5B48B712FE 120FB8FCA3D8000190C9FCB3B3A2EF01C0B0EF03806D7FA3027FEC0700815F6E6C130E02 1F141E6F131C6E6C5B6E6C13F8913901FF01F09139007FFFC0031F5BDB03FCC7FC326B7E E93D>116 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: FN cmr12 14.4 29 /FN 29 128 df<120FEA3FC0EA7FE012FF13F0A213F8A3127F123FEA0F381200A5137813 70A313F013E0A2120113C0120313801207EA0F00121EA25A5A12300D23768B21>44 DI70 D73 D76 D I83 D85 D97 D99 D<17FF4BB5FCA4ED0007160182B3A6EC0FF8EC7FFF49B512E0903907FC03 F090391FE0007C49487F49C7120F01FE80484880485A000781484880A2485AA2485AA212 7FA35B12FFAB127FA27FA2123FA27F121FA26C6C5C00075D7F6C6C5C6C6C5C6C6C021E7F 6D6C017C13E0D91FC049EBFF8090390FF807E00103B512800100495ADA1FF091C7FC3954 7CD241>II<157F913803FFE0020F13F091383FC0F8 91387F01FC903901FE03FE903803FC0714F81307EB0FF0A290391FE003FCED01F892C7FC 495AB3B612FEA426003FC0C7FCB3B3A580EBFFF0007FEBFFF8A427547DD324>III<1378EA01FE487E487FA6 6C90C7FC6C5AEA007890C8FCB0EB7F80B5FCA41203C6FC137FB3B3A43801FFE0B61280A4 19507CCF21>I107 DI<01FFD907 FEEC03FFB590261FFFC0010F13E0037F01F0013F13F8912701F80FFC9038FC07FE913D03 C003FE01E001FF000390260700019038038000C6010E6D6C48C76C7E6D48DA7F8E6E7E4A 159CA24ADA3FF86E7E02605D14E04A5DA34A5DB3AD2601FFE0DAFFF0EC7FF8B6D8C07F90 26FFE03FB512F0A45C347CB363>I<01FFEB07FCB590383FFF8092B512E0913901F00FF8 913903C007FC000349C66C7EC6010E13016D486D7E5C143002706E7E146014E05CA35CB3 AD2601FFE0903801FFE0B600C0B612C0A43A347CB341>I I<01FFEB1F80B5EB7FF0913801FFF8913803E1FC91380783FE0003EB0F07C6131EEB7F1C 1438143091387003FC91386000F0160014E05CA45CB3AA8048487EB612F0A427347DB32E >114 DIIIII<007FB5D8800FB51280A4C69026FC0003EB F000D93FF86D1380011F4BC7FC010F15F801075D6D6C5C6E495A6D6C5C6D14076E6C48C8 FCEDC01E6E6C5A021F133891380FF0786F5A913807FDE002035BEC01FF5E80157F6F7E82 4B7E15FFEDE7F802017F913803C3FEEC07814AC67E020E80021E6D7E4A133F4A6D7E4A80 707E4948130749486D7E010781010F6E7E013F8201FF8200076D010713F0B500F8011FEB FFE0A43B337FB23E>I<000F143CD83FC013FF007F1580486C4813C0A56C486C1380003F 1500000FC7123C220B74CF3B>127 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: FO cmr17 17.28 9 /FO 9 117 df68 D97 D101 D<133C13FF487F487FA66C5B6C90C7FC133C90C8FCB3A2EB03C0EA07FF127FA412 01EA007FA2133FB3B3AC497E497EB612E0A41B5F7DDE23>105 D110 DI<9039078003F8D807FFEB0FFFB5013F13C092387C0FE091 3881F01F9238E03FF00001EB838039007F8700148FEB3F8E029CEB1FE0EE0FC00298EB03 0002B890C7FCA214B014F0A25CA55CB3B0497EEBFFF8B612FCA42C3F7CBE33>114 D<9139FFE00180010FEBFC03017FEBFF073A01FF001FCFD803F8EB03EFD807E0EB01FF48 487F4848147F48C8123F003E151F007E150F127CA200FC1507A316037EA27E7F6C7E6D91 C7FC13F8EA3FFE381FFFF06CEBFF806C14F86C14FF6C15C06C6C14F0011F80010714FED9 007F7F02031480DA003F13C01503030013E0167F00E0ED1FF0160F17F86C15071603A36C 1501A37EA26C16F016037E17E06D14076DEC0FC06D1580D8FDF0141FD8F8F8EC7F00013E 14FC3AF01FC00FF80107B512E0D8E001148027C0003FF8C7FC2D417DBF34>I<1438A714 78A414F8A31301A31303A21307130F131FA2137F13FF1203000F90B6FCB8FCA3260007F8 C8FCB3AE17E0AE6D6CEB01C0A316036D6C148016076D6C14006E6C5A91383FC01E91381F F07C6EB45A020313E09138007F802B597FD733>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: FP cmr17 24.88 25 /FP 25 122 df[93 145 125 272 103 12 D45 D[124 141 117 268 146 68 D[120 141 117 268 143 72 D[100 141 117 268 119 76 D[129 184 118 271 149 81 D97 D[93 145 122 270 106 I[<1B7E96380FFFFE0603B5FCA6F00003F1007F1A3F1A1FA21A0FB3B3A3EE0FFE4BB512 E0030F14FC033F14FF9226FFFC0013C0020301E0EB0FE0020F90C7EA03F8DA1FFCEC00FC 4A48153EDAFFE0151F4949ED0F8F4949ED07CF4990C9EA03EF4948EE01FF494882133F4A 177F4948173F13FF4A171F5A4849170FA2485BA25A91CBFC5AA3485AA4127FA25BA312FF AF127FA37FA3123FA3121F7FA27EA26C7FA21A1F6C7F6C193F806C197F80017F18FF6D6C 5E6D6C17EF6D6C1603963807CFFF6D6CEE0F8F6D6DDB1F0F7F6D6D037E809026007FF003 FC14F86E6CDA01F8ECFFF8DA1FFEEC07E0912607FF80EB3FC002019039F003FF006E6CB5 12FC031F14F003030280EDFE009226003FF8C701C0C7FC>93 145 122 270 106 100 DI[61 145 124 272 57 II[93 143 121 270 106 I[37 137 121 264 52 I[91 143 122 270 100 107 D[39 143 121 270 52 I<023F912601FFE0933807FF800003B5021F01FE047F13F8B6027FD9 FFC04AB6FC4CB600F0020715C0932607FC0101FC91261FF00713F093280FC0003FFE4AC7 7F4CC7D80FFF027CEC3FFC047E02036D4848EC0FFEC603F86E9026C003E06E7E011F4948 704848826D4A6E4B806D49486F6C48C86C7F4B48171E6D49C96C6C486F7FA2031E60031C 93261FFC70707E033C18F0033860037817FD037070B448707E15F04B60A44B95CAFCA44B 5FB3B3B0496D4C6C4D7E496D4C6D4C7E013F01F893B500E003036D7EB700FE0103B700F8 010FB712E0A6935B79DAA0>I<023F913801FFE00003B5021F13FEB6027FEBFFC04CB612 F0932607FC0113FC933A0FC0003FFE4CC7EA0FFF047E02037FC603F86E7F011F4948826D 4A806D49486F7E4B5A6D49C96C7EA2151E031C707E153C153815780370707E15F05DA45D A45DB3B3B0496D4C7E496D4C7F013F01F893B512E0B700FE0103B712F8A65D5B79DA6A> III<023FEC0FF00003B5EC7FFEB649B5 1280040714E093391FF00FF093383F803F93397E007FF85EC6DA01F0EBFFFC011F5C6D13 036D495A5E6D49C7FCF07FF8151EF01FE04BEC078095C7FC5DA2157015F0A25DA45DA65D B3B3AB815B497F013F13FCB812C0A63E5B7ADA49>114 DI<15F0A91401A6 1403A41407A4140FA2141FA2143FA2147FA214FF5B5B5B5B5B137F90B9FC120FBAFCA4C7 D87FF0C9FCB3B3AAF001E0B218036E6C15C0A418076E6C1580A2020FED0F008102075D6F 141E6E6D5B6E6D137C6E6D5B6F6C485A92393FFC07E06FB55A03075C030049C7FCEE1FF0 3B817DFE49>II121 D E %EndDVIPSBitmapFont end %%EndProlog %%BeginSetup %%Feature: *Resolution 600dpi TeXDict begin %%PaperSize: A4 %%EndSetup %%Page: 1 1 1 0 bop 785 1122 a FP(Link)-11 b(able)60 b(Dynkin)i(diagrams)1723 1460 y(and)1049 1798 y(Quasi-isomorphisms)663 2136 y(for)g(\014nite)f (dimensional)e(p)5 b(oin)-5 b(ted)1309 2474 y(Hopf)61 b(algebras)1530 3436 y FO(Dissertation)292 3800 y FN(an)38 b(der)h(F)-10 b(akult\177)-59 b(at)37 b(f)s(\177)-62 b(ur)38 b(Mathematik,)d(Informatik)g(und)k(Statistik)d(der)797 3949 y(Ludwig-Maximilians-Univ)m(er)o(sit)o(\177)-59 b(at)32 b(M)s(\177)-62 b(unc)m(hen)1493 4510 y(eingereic)m(h)m(t)36 b(v)m(on)1471 4876 y FM(Daniel)54 b(Didt)1177 5211 y FL(M)s(\177)-51 b(unc)m(hen,)34 b(den)f(8.)g(No)m(v)m(em)m(b)s(er)g (2002)p eop %%Page: 1 2 1 1 bop 404 4296 a FL(1.)43 b(Gutac)m(h)m(ter:)h(Herr)33 b(Prof.)43 b(Dr.)g(H.-J.)33 b(Sc)m(hneider)404 4417 y(2.)43 b(Gutac)m(h)m(ter:)h(Herr)33 b(Priv.-Doz.)43 b(Dr.)g(P)-8 b(.)32 b(Sc)m(hauen)m(burg)404 4597 y(T)-8 b(ag)32 b(des)i(Rigorosums:) 42 b(10.)32 b(F)-8 b(ebruar)32 b(2003)p eop %%Page: 1 3 1 2 bop 257 1138 a FK(Con)-6 b(ten)g(ts)257 1688 y FJ(1)91 b(In)m(tro)s(duction)2417 b(3)257 1906 y(2)91 b(Basics)2731 b(6)404 2026 y FL(2.1)99 b(Coalgebras)33 b(.)50 b(.)g(.)g(.)g(.)g(.)g (.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.) g(.)g(.)g(.)g(.)214 b(6)404 2147 y(2.2)99 b(Hopf)32 b(algebras)68 b(.)50 b(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.) g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)214 b(8)404 2267 y(2.3)99 b(Y)-8 b(etter-Drinfeld)31 b(mo)s(dules)86 b(.)49 b(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g (.)g(.)214 b(9)404 2387 y(2.4)99 b(Lie)32 b(algebras)65 b(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.) g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)166 b(11)404 2508 y(2.5)99 b(Deformation)30 b(b)m(y)k(co)s(cycles)74 b(.)49 b(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.) g(.)g(.)g(.)166 b(13)404 2628 y(2.6)99 b FI(q)t FL(-Calculus)56 b(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.) g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)166 b(14)257 2846 y FJ(3)91 b(The)37 b(Lifting)g(Metho)s(d)2003 b(15)404 2967 y FL(3.1)99 b(General)32 b(o)m(v)m(erview)77 b(.)50 b(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g (.)g(.)g(.)g(.)g(.)g(.)166 b(15)404 3087 y(3.2)99 b(Nic)m(hols)32 b(algebras)41 b(.)50 b(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g (.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)166 b(16)404 3207 y(3.3)99 b(Lifting)58 b(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g (.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.) g(.)g(.)166 b(19)404 3328 y(3.4)99 b(Examples)89 b(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g (.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)166 b(23)628 3448 y(3.4.1)111 b(Classi\014cation)31 b(of)i(p)s(oin)m(ted)f(Hopf)g (algebras)g(of)g(dimension)f FI(p)3240 3412 y FH(3)3398 3448 y FL(23)628 3568 y(3.4.2)111 b(Classi\014cation)31 b(of)i(p)s(oin)m(ted)f(Hopf)g(algebras)g(of)g(dimension)f FI(p)3240 3532 y FG(n)3398 3568 y FL(24)628 3689 y(3.4.3)111 b(Lifting)31 b(of)h(Nic)m(hols)g(algebras)g(of)g(t)m(yp)s(e)h FI(A)2495 3704 y FG(n)2575 3689 y FL(and)f FI(B)2838 3704 y FH(2)2974 3689 y FL(.)50 b(.)g(.)g(.)166 b(24)628 3809 y(3.4.4)111 b(Classi\014cation)36 b(of)g(p)s(oin)m(ted)h(Hopf)f (algebras)h(with)f(coradical)940 3930 y(\()p FF(Z)p FI(=)p FL(\()p FI(p)p FL(\)\))1259 3893 y FG(s)1359 3930 y FL(.)50 b(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h (.)g(.)g(.)g(.)g(.)g(.)g(.)166 b(25)257 4148 y FJ(4)91 b(The)37 b(structure)g(of)h(link)-6 b(able)36 b(Dynkin)h(diagrams)884 b(26)404 4268 y FL(4.1)99 b(The)34 b(\014nite)e(case)f(.)50 b(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f (.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)166 b(27)404 4388 y(4.2)99 b(The)34 b(a\016ne)f(case)97 b(.)50 b(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g (.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)166 b(36)404 4509 y(4.3)99 b(The)34 b(excluded)f(cases)70 b(.)50 b(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.) g(.)g(.)g(.)g(.)g(.)g(.)166 b(38)404 4629 y(4.4)99 b(Examples)89 b(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.) g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)166 b(38)404 4749 y(4.5)99 b(Generalisations)77 b(.)50 b(.)g(.)g(.)g(.)g(.)f(.)h(.)g (.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)166 b(39)628 4870 y(4.5.1)111 b(The)34 b(order)e(of)h(the)g(diagonal)d (elemen)m(ts)82 b(.)50 b(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)166 b(39)628 4990 y(4.5.2)111 b(Self-linkings)55 b(.)50 b(.)g(.)g(.)f(.)h (.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.) 166 b(43)628 5111 y(4.5.3)111 b(Link-disconnected)33 b(diagrams)77 b(.)50 b(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g (.)166 b(44)404 5231 y(4.6)99 b(Self-linkings)30 b(in)i(the)h(rank)g(2) f(diagrams)54 b(.)c(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.) 166 b(44)628 5351 y(4.6.1)111 b FI(A)1013 5366 y FH(2)1085 5351 y FL(for)32 b FI(p)c FL(=)g(3)49 b(.)h(.)g(.)g(.)f(.)h(.)g(.)g(.)g (.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)166 b(44)1852 5637 y(1)p eop %%Page: 2 4 2 3 bop 628 573 a FL(4.6.2)111 b FI(B)1014 588 y FH(2)1086 573 y FL(for)32 b FI(p)c FL(=)f(5)49 b(.)h(.)g(.)g(.)f(.)h(.)g(.)g(.)g (.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)166 b(46)628 693 y(4.6.3)111 b FI(G)1017 708 y FH(2)1089 693 y FL(for)32 b FI(p)c FL(=)f(7)46 b(.)k(.)g(.)g(.)f(.)h(.)g(.)g(.)g (.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)166 b(46)257 911 y FJ(5)91 b(Group)37 b(realization)2115 b(50)404 1032 y FL(Pro)s(of)32 b(P)m(art)g(\(a\))j(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)g (.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)166 b(51)404 1152 y(Pro)s(of)32 b(P)m(art)g(\(b\))e(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g (.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.) g(.)g(.)g(.)g(.)166 b(55)404 1272 y(Pro)s(of)32 b(P)m(art)g(\(c\))41 b(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.) g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)166 b(57)257 1490 y FJ(6)91 b(Quasi-isomorphisms)2000 b(60)404 1611 y FL(6.1)99 b(The)34 b(linking)c(case)35 b(.)50 b(.)g(.)g(.)g(.)g(.)f (.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.) g(.)166 b(61)404 1731 y(6.2)99 b(A)33 b(sp)s(ecial)e(ro)s(ot)h(v)m (ector)i(case)94 b(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h (.)g(.)g(.)g(.)g(.)g(.)g(.)166 b(65)404 1851 y(6.3)99 b(The)34 b(mixed)e(case)67 b(.)50 b(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g (.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)166 b(70)257 2069 y FJ(A)62 b(F)-9 b(elix)36 b(programs)2250 b(78)404 2190 y FL(A.1)75 b(Listing)31 b(for)h(self-linking)e(of)i FI(A)1782 2205 y FH(2)1897 2190 y FL(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g(.)g (.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)166 b(79)404 2310 y(A.2)75 b(Listing)31 b(for)h(self-linking)e(of)i FI(B)1783 2325 y FH(2)1897 2310 y FL(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f (.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)166 b(80)404 2430 y(A.3)75 b(Listing)31 b(for)h(self-linking)e(of)i FI(G)1786 2445 y FH(2)1897 2430 y FL(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.) g(.)g(.)g(.)g(.)g(.)g(.)166 b(84)257 2648 y FJ(Bibliograph)m(y)2496 b(87)257 2866 y(Summary/Zusammenfassung)1714 b(92)257 3458 y FK(List)77 b(of)h(Figures)404 3911 y FL(Figure)29 b(2.1)99 b(Dynkin)30 b(diagrams)f(of)h(\014nite)g(dimensional)e(simple) g(Lie)i(alge-)628 4031 y(bras)91 b(.)49 b(.)h(.)g(.)g(.)g(.)g(.)g(.)g (.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.) g(.)g(.)g(.)g(.)g(.)166 b(12)404 4151 y(Figure)31 b(4.1)100 b(Example)32 b(of)g(a)g(link)-5 b(able)30 b(Dynkin)j(diagram)78 b(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g(.)166 b(29)404 4272 y(Figure)31 b(4.2)100 b(P)m(ossible)32 b(exotic)h(linkings)50 b(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)166 b(40)404 4392 y(Figure)31 b(4.3)100 b(Imp)s(ossible)31 b(exotic)h(linkings)95 b(.)50 b(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g (.)g(.)g(.)g(.)166 b(40)404 4512 y(Figure)31 b(4.4)100 b(Relations)31 b(for)h FI(B)1589 4527 y FH(2)1667 4512 y FL(.)50 b(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g (.)g(.)g(.)g(.)g(.)166 b(47)404 4633 y(Figure)31 b(4.5)100 b(Relations)31 b(for)h FI(G)1592 4648 y FH(2)1667 4633 y FL(.)50 b(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g (.)g(.)g(.)g(.)g(.)166 b(49)1852 5637 y(2)p eop %%Page: 3 5 3 4 bop 257 1237 a FK(Chapter)78 b(1)257 1652 y(In)-6 b(tro)6 b(duction)257 2105 y FL(Hopf)37 b(algebras)f(are)g(named)g (after)h(Heinz)f(Hopf,)i(who)f(in)m(tro)s(duced)f(suc)m(h)i(ob)5 b(jects)38 b(in)257 2225 y(1941)33 b([Hop])h(to)f(settle)h(a)f (question)h(in)f(homology)f(theory)i(whic)m(h)g(w)m(as)h(p)s(osed)f(to) g(him)257 2345 y(b)m(y)f(Cartan.)44 b(The)33 b(\014rst)f(textb)s(o)s (ok)g(on)g(Hopf)g(algebras)g([Sw)m(e)q(])g(came)g(out)g(in)f(1969)g (and)257 2466 y(in)g(spite)h(of)f(man)m(y)g(in)m(teresting)h(results,)g (the)g(n)m(um)m(b)s(er)g(of)f(p)s(eople)g(studying)h(this)f(\014eld)257 2586 y(w)m(as)j(small.)404 2707 y(This)c(c)m(hanged)h(dramatically)26 b(with)k(the)g(in)m(v)m(en)m(tion)g(of)g(Quan)m(tum)g(Groups)g(in)f (the)257 2827 y(mid-80s.)40 b(Suddenly)-8 b(,)29 b(starting)d(with)g (examples)h(b)m(y)g(Drinfeld)e(and)i(Jim)m(b)s(o)e([Dri)o(,)i(Jim)n(],) 257 2947 y(there)49 b(w)m(as)h(a)e(v)-5 b(ast)48 b(class)g(of)g (non-comm)m(utativ)m(e)f(and)i(non-co)s(comm)m(utativ)m(e)d(Hopf)257 3068 y(algebras)32 b(coming)f(from)g(deformations)f(of)i(the)h(en)m(v)m (eloping)f(algebras)g(of)f(semisimple)257 3188 y(Lie)45 b(algebras)g([FR)-8 b(T].)82 b(The)46 b(original)d(ideas)i(came)g(from) f(the)i(ph)m(ysical)g(theory)g(of)257 3308 y(in)m(tegrable)34 b(systems)h(and)g(there)g(w)m(ere)h(lots)d(of)h(attempts)g(to)g(apply)g (the)h(new)h(theory)257 3429 y(to)c(dev)m(elop)g(a)f(new)h(quan)m(tum)g (or)f FI(q)t FL(-ph)m(ysics.)44 b(F)-8 b(or)31 b(this,)g(quan)m(tum)h (spaces)h(had)f(to)f(b)s(e)257 3549 y(constructed)36 b(and)e(symmetries)f(quan)m(tized)i([CSSW1,)f(CSSW2)q(,)g(MM)q(].)47 b(Di\013eren)m(tial)257 3670 y(structures)j(for)d(the)i(new)f(spaces)i (had)e(to)f(b)s(e)h(de\014ned)h([KS)q(,)i(P)m(art)d(IV])h(and)f(ev)m (en)257 3790 y(exp)s(erimen)m(tal)30 b(evidence)i(w)m(as)g(lo)s(ok)m (ed)e(for)h([A)m(CM)q(].)43 b(Kreimer)29 b(found)i(a)g(Hopf)f(algebra) 257 3910 y(that)44 b(can)g(b)s(e)h(used)g(to)e(explain)g(the)i (renormalization)40 b(pro)s(cess)46 b(of)d(quan)m(tum)h(\014eld)257 4031 y(theories)g(in)g(mathematical)c(terms)k([CK)q(].)77 b(After)44 b(a)g(decade)h(of)f(fruitful)d(researc)m(h,)257 4151 y(most)29 b(of)f(the)i(ph)m(ysics)g(comm)m(unit)m(y)e(ho)m(w)m(ev) m(er,)33 b(started)c(con)m(v)m(erting)h(to)e(String)h(theory)-8 b(.)404 4271 y(This)33 b(highly)e(activ)m(e)i(p)s(erio)s(d)f(brough)m (t)h(lots)f(of)h(new)g(notions)f(and)h(constructions,)257 4392 y(explicit)28 b(computations)g(and)h(some)g(fundamen)m(tal)f (structural)g(results)i(to)e(the)i(theory)257 4512 y(of)j(Hopf)h (algebras,)f(and)h(a)f(ma)5 b(jor)33 b(mo)m(v)m(emen)m(t)h(to)f (classify)g(\014nite)g(dimensional)e(Hopf)257 4633 y(algebras)22 b(w)m(as)h(started.)41 b(Nic)m(hols)22 b(and)g(Zo)s(eller)e(pro)m(v)m (ed)k(a)e(freeness)i(theorem)f([NZ)o(],)i(Zh)m(u)257 4753 y(sho)m(w)m(ed)38 b(that)e(a)f(Hopf)g(algebra)g(of)g(dimension)g FI(p)g FL(is)g(necessarily)i(the)f(group)f(algebra)257 4873 y(of)43 b(the)h(group)f(with)g FI(p)g FL(elemen)m(ts)g([Zh)m(u)q (].)75 b(Recen)m(tly)-8 b(,)47 b(Ng)c([Ng])g(w)m(as)h(able)f(to)g(pro)m (v)m(e)257 4994 y(that)31 b(the)g(only)g(Hopf)f(algebras)g(of)h (dimension)e FI(p)2078 4958 y FH(2)2148 4994 y FL(are)i(group)g (algebras)f(and)h(the)g(T)-8 b(aft)257 5114 y(algebras)28 b([T)-8 b(af])29 b(in)m(tro)s(duced)f(in)g(1971.)41 b(Man)m(y)30 b(lo)m(w-dimensional)25 b(Hopf)j(algebras)g(ha)m(v)m(e)257 5235 y(b)s(een)45 b(classi\014ed.)76 b(F)-8 b(or)42 b(the)i(case)g(of)f (semisimple)e(Hopf)j(algebras,)h(whic)m(h)f(con)m(tains)257 5355 y(all)h(group)i(algebras,)i(considerable)e(progress)g(w)m(as)h (made)e(b)m(y)i(translating)d(lots)h(of)1852 5637 y(3)p eop %%Page: 4 6 4 5 bop 257 573 a FL(pro)s(ofs)31 b(and)f(results)h(from)e(group)i (theory)g(in)m(to)f(this)g(situation.)41 b(F)-8 b(or)30 b(an)g(o)m(v)m(erview)i(w)m(e)257 693 y(suggest)42 b([Mon2,)e(Som)o(].) 67 b(Etingof)39 b(and)h(Gelaki)f(w)m(ere)i(successful)h(in)d (classifying)g(all)257 814 y(\014nite)33 b(dimensional)d(triangular)g (Hopf)i(algebras)g([EG2].)404 934 y(The)40 b(represen)m(tation)g (theory)f(of)g(Quan)m(tum)g(groups)g(turned)h(out)f(to)g(b)s(e)h (closely)257 1054 y(related)g(to)f(the)h(classical)e(theory)j(of)e(Lie) g(algebras)g(in)g(the)h(cases)i(when)e(the)h(defor-)257 1175 y(mation)e(parameter)i FI(q)k FL(is)c(not)g(a)f(ro)s(ot)h(of)f (unit)m(y)-8 b(.)69 b(In)42 b(an)f(attempt)f(to)h(examine)g(the)257 1295 y(case)j(when)g FI(q)i FE(is)k FL(a)43 b(ro)s(ot)e(of)h(unit)m(y) -8 b(,)46 b(Lusztig)c(found)h(an)f(imp)s(ortan)m(t)f(class)h(of)g (\014nite)257 1416 y(dimensional)32 b(Hopf)j(algebras)e([Lus1)q(,)h (Lus2)q(].)49 b(The)36 b(represen)m(tation)f(theory)g(of)f(these)257 1536 y(new)g(examples)f(is)f(related)g(to)h(that)f(of)g(semisimple)f (groups)i(o)m(v)m(er)h(a)e(\014eld)h(of)f(p)s(ositiv)m(e)257 1656 y(c)m(haracteristic)26 b(and)g(of)g(Kac-Mo)s(o)s(dy)g(algebras.)40 b(Lusztig)26 b(w)m(as)h(ev)m(en)h(able)d(to)h(in)m(terpret)257 1777 y(these)h(new)g(Quan)m(tum)e(groups)h(as)g(k)m(ernels)h(of)e(a)g (\\Quan)m(tum)g(F)-8 b(rob)s(enius")25 b(map,)i(whic)m(h)257 1897 y(coined)33 b(the)g(term)f(F)-8 b(rob)s(enius-Lusztig)31 b(k)m(ernels.)404 2017 y(The)e(area)g(this)f(thesis)h(is)f(concerned)i (with)f(is)f(p)s(oin)m(ted)g(Hopf)g(algebras,)h(whic)m(h)g(in-)257 2138 y(cludes)i(all)d(the)j(newly)f(found)g(quan)m(tized)h(en)m(v)m (eloping)f(algebras)g(of)f(Lie)h(algebras)f(and)257 2258 y(the)j(\014nite)f(dimensional)d(F)-8 b(rob)s(enius)31 b(Lusztig)g(k)m(ernels.)44 b(F)-8 b(or)30 b(p)s(oin)m(ted)h(Hopf)g (algebras,)257 2379 y(the)g(so-called)f(coradical)e(whic)m(h)k(for)e (semisimple)e(Hopf)i(algebras)g(is)g(the)h(whole)g(alge-)257 2499 y(bra,)h(is)e(just)i(a)f(group)g(algebra.)42 b(Substan)m(tial)30 b(results)h(in)g(this)g(case)h(w)m(ere)g(established)257 2619 y(with)f(the)g(help)g(of)g(the)g(lifting)d(metho)s(d)i(of)h (Andruskiewitsc)m(h)i(and)e(Sc)m(hneider)h([AS5].)404 2740 y(Go)s(o)s(d)h(in)m(tro)s(ductions)i(to)f(Hopf)h(algebras)g(and)g (related)f(topics)h(can)h(b)s(e)f(found)g(in)257 2860 y(an)m(y)40 b(of)e(the)h(textb)s(o)s(oks)h([CP)q(,)f(Kas,)g(KS,)g (Lus3,)g(Ma)5 b(j2,)39 b(Mon1],)h(the)g(surv)m(ey)h(article)257 2980 y([And)q(])k(on)g(\014nite)g(dimensional)d(Hopf)j(algebras,)j(and) d([MSRI)q(].)81 b(The)46 b(pro)s(ceedings)257 3101 y([W)-8 b(ar])49 b(feature)g(a)g(nice)f(series)i(of)e(in)m(tro)s(ductory)h (lectures)g(on)g(v)-5 b(arious)48 b(asp)s(ects)i(of)257 3221 y(non-comm)m(utativ)m(e)37 b(geometry)-8 b(,)39 b(including)d(new)j(dev)m(elopmen)m(ts)g(on)f(generalisations)257 3342 y(of)32 b(the)h(theory)h(of)e(Quan)m(tum)g(groups)h(to)f (non-compact)g(groups.)404 3582 y(In)65 b(this)g(thesis)h(w)m(e)g(w)m (an)m(t)g(to)f(con)m(tribute)g(to)g(some)g(classi\014cation)f(results) 257 3703 y(for)53 b(p)s(oin)m(ted)g(Hopf)g(algebras)g(with)g(ab)s (elian)f(coradical)f(found)j(recen)m(tly)g(b)m(y)g(An-)257 3823 y(druskiewitsc)m(h)45 b(and)f(Sc)m(hneider)g([AS1,)g(AS3,)f(AS5,)g (AS6].)76 b(Their)44 b(lifting)c(metho)s(d)257 3944 y(pro)s(duces)34 b(new)g(classes)f(of)g(Hopf)f(algebras.)43 b(These)34 b(algebras)e(are)h(constructed)h(from)257 4064 y(a)i(linking)e(datum)h (consisting)h(of)f(a)h(group,)h(a)e(Dynkin)h(diagram,)f(some)h(linking) e(pa-)257 4184 y(rameters)43 b(and)f(a)g(n)m(um)m(b)s(er)g(of)g(group)g (elemen)m(ts)g(and)g(c)m(haracters)i(ful\014lling)39 b(certain)257 4305 y(compatibilit)m(y)31 b(conditions.)45 b(These)36 b(conditions)c(are)i(rather)g(implicit)29 b(and)34 b(hence)h(an)257 4425 y(explicit)c(description)g(of)h(these)h (Hopf)e(algebras)h(is)f(often)h(not)g(easy)-8 b(.)44 b(In)32 b(this)f(w)m(ork)i(w)m(e)257 4545 y(treat)g(v)-5 b(arious)32 b(asp)s(ects)h(of)g(suc)m(h)h(a)e(description)g(in)g (detail.)404 4666 y(One)24 b(of)g(our)g(main)f(con)m(tributions)h(is)g (the)g(clari\014cation)e(of)i(the)h(concept)g(of)f(linking.)257 4786 y(Based)33 b(on)f(the)g(original)c(w)m(ork)33 b([AS3],)f(w)m(e)h (\014rst)f(in)m(tro)s(duce)g(some)f(suitable)g(terminol-)257 4907 y(ogy)-8 b(,)27 b(De\014nitions)d(3.3-3.7.)39 b(Then)26 b(w)m(e)g(giv)m(e)f(an)g(easily)g(applicable)e(criterion,)i(Theorem)257 5027 y(4.2,)h(that)e(helps)h(in)e(deciding)h(whic)m(h)h(linkings)e(can) h(pro)s(duce)h(\014nite)f(dimensional)e(Hopf)257 5147 y(algebras)31 b(and)g(what)g(p)s(ossible)g(restrictions)f(ha)m(v)m(e)i (to)f(b)s(e)g(imp)s(osed)f(on)h(the)h(coradical.)257 5268 y(This)37 b(in)m(v)m(olv)m(es)h(simply)e(coun)m(ting)g(certain)h (ob)5 b(jects)38 b(in)e(graphs)h(and)g(computing)f(the)257 5388 y(so-called)d(gen)m(us)h(from)f(this)g(data.)46 b(W)-8 b(e)34 b(extend)h(this)f(result)f(to)h(treat)f(a\016ne)h(Dynkin) 1852 5637 y(4)p eop %%Page: 5 7 5 6 bop 257 573 a FL(diagrams)37 b(as)h(w)m(ell,)h(Theorem)f(4.5.)59 b(Examples)38 b(of)g(\\exotic")f(linkings)g(are)h(giv)m(en)g(in)257 693 y(Figure)h(4.2.)65 b(Some)39 b(exceptional)h(cases)h(that)f (usually)f(ha)m(v)m(e)i(to)e(b)s(e)h(excluded)h(from)257 814 y(classi\014cation)35 b(results)i(come)f(from)f(setups)i(w)m(e)h (call)c(self-linkings.)52 b(W)-8 b(e)37 b(presen)m(t)h(the)257 934 y(protot)m(yp)s(es)33 b(of)f(Hopf)g(algebras)f(arising)f(from)h (suc)m(h)i(situations)e(in)g(Section)h(4.6.)43 b(The)257 1054 y(new)34 b(Hopf)f(algebras)f(deriv)m(ed)i(from)e(the)h(diagram)e FI(B)2272 1069 y FH(2)2311 1054 y FI(;)i FL(whic)m(h)h(w)m(e)g(compute) f(using)f(a)257 1175 y(Computer)h(algebra)e(program,)h(are)g(giv)m(en)h (in)f(Figure)f(4.4.)404 1295 y(Another)i(op)s(en)h(question)f(concerns) i(the)f(compatibilit)m(y)c(of)i(the)i(groups)f(and)h(the)257 1416 y(Dynkin)g(diagrams)f(in)g(a)h(linking)e(datum.)48 b(Although)33 b(a)h(general)g(answ)m(er)h(seems)g(out)257 1536 y(of)46 b(reac)m(h,)51 b(w)m(e)c(are)g(able)e(to)h(con)m(tribute)h (an)f(answ)m(er)i(for)e(the)h(groups)f(\()p FF(Z)p FI(=)p FL(\()p FI(p)p FL(\)\))3331 1500 y FH(2)3414 1536 y FL(in)257 1656 y(Theorem)33 b(5.1.)43 b(W)-8 b(e)32 b(pro)m(v)m(e)i(that)e(apart) g(from)f(a)h(few)g(exceptions,)i(all)c(diagrams)h(with)257 1777 y(at)37 b(most)f(four)g(v)m(ertices)i(can)f(b)s(e)g(used)g(for)f (the)h(construction)g(of)f(\014nite)h(dimensional)257 1897 y(p)s(oin)m(ted)c(Hopf)f(algebras)g(with)g(these)i(groups)f(as)g (the)g(coradical.)404 2017 y(Finally)-8 b(,)50 b(the)g(last)e(ma)5 b(jor)48 b(topic)g(of)g(this)h(thesis)h(is)e(the)i(in)m(v)m(estigation) d(of)i(the)257 2138 y(relation)36 b(b)s(et)m(w)m(een)k(the)f(new)f (Hopf)g(algebras)f(constructed)j(b)m(y)f(the)f(lifting)d(metho)s(d.)257 2258 y(It)60 b(turns)g(out)f(that)g(di\013eren)m(t)h(linking)d (parameters)j(lead)e(to)h(quasi-isomorphic)257 2379 y(Hopf)42 b(algebras,)h(Theorem)e(6.1.)70 b(All)40 b(Hopf)h(algebras)g(that)g (arise)g(from)f(the)i(lifting)257 2499 y(metho)s(d)30 b(using)g(only)g(Dynkin)h(diagrams)d(of)i(t)m(yp)s(e)i FI(A)2234 2514 y FG(n)2311 2499 y FL(displa)m(y)e(the)h(same)f(b)s(eha) m(viour,)257 2619 y(Theorem)54 b(6.6.)106 b(This)53 b(means)h(that)f (all)e(the)j(\014nite)f(dimensional)e(p)s(oin)m(ted)i(Hopf)257 2740 y(algebras)63 b(constructed)j(in)d(this)g(w)m(a)m(y)-8 b(,)73 b(whic)m(h)64 b(only)f(di\013er)g(in)g(their)h(c)m(hoice)g(of) 257 2860 y(parameters)52 b(are)h(2-co)s(cycle)e(deformations)g(of)h (eac)m(h)h(other.)102 b(Our)52 b(pro)s(of)f(should)257 2980 y(b)s(e)46 b(easily)g(adaptable)f(to)g(the)h(Hopf)g(algebras)f (asso)s(ciated)h(with)f(the)i(other)f(t)m(yp)s(es)257 3101 y(of)g(\014nite)h(Dynkin)f(diagrams,)j(once)e(all)d(parameters)j (ha)m(v)m(e)h(b)s(een)f(determined)g(for)257 3221 y(these)37 b(algebras)d(explicitly)-8 b(.)49 b(This)35 b(raises)g(the)g(hop)s(e)g (that)g(Masuok)-5 b(a's)36 b(conjecture)g(in)257 3342 y([Mas1)q(])f(can)g(b)s(e)g(sa)m(v)m(ed)i(in)d(spite)h(of)f(the)i(coun) m(ter-example)f(in)f([EG])h(b)m(y)h(sp)s(ecializing)257 3462 y(it)c(sligh)m(tly)f(\(page)h(60\).)404 3703 y(In)40 b(Chapter)h(2,)g(to)e(\014x)i(notation)d(and)i(presen)m(t)i(some)e(imp) s(ortan)m(t)e(terminology)-8 b(,)257 3823 y(w)m(e)43 b(in)m(tro)s(duce)f(some)g(basic)g(de\014nitions)g(and)g(results.)72 b(In)43 b(Chapter)f(3)g(w)m(e)h(giv)m(e)f(an)257 3944 y(o)m(v)m(erview)h(of)d(the)i(lifting)c(metho)s(d)i(and)i(some)e(imp)s (ortan)m(t)g(applications.)66 b(Here)42 b(w)m(e)257 4064 y(adapt)26 b(the)g(presen)m(tation)h(to)e(suit)h(our)g(needs)h(and)f (co)m(v)m(er)h(only)f(the)g(asp)s(ects)h(related)f(to)257 4184 y(this)32 b(thesis.)43 b(Chapter)33 b(4)e(then)h(deals)g(extensiv) m(ely)h(with)e(all)f(the)i(asp)s(ects)h(concerning)257 4305 y(linkings.)49 b(The)35 b(result)g(for)f(the)h(group)g (realization)d(is)i(presen)m(ted)j(in)d(Chapter)i(5)e(and)257 4425 y(the)46 b(last)d(c)m(hapter)j(con)m(tains)f(all)e(the)i(results)g (connected)h(to)e(quasi-isomorphisms.)257 4545 y(The)28 b(programs)d(used)j(for)e(determining)f(the)h(relations)g(of)f(the)i (algebras)f(from)f(Section)257 4666 y(4.6)33 b(are)f(listed)g(in)g(the) h(App)s(endix)g(together)f(with)h(some)f(do)s(cumen)m(tation.)404 4907 y(I)45 b(w)m(ould)g(lik)m(e)f(to)h(thank)h(Prof.)80 b(H.-J.)45 b(Sc)m(hneider)i(for)d(his)h(guidance,)j(the)e(ref-)257 5027 y(eree)39 b(of)f([D1)o(])g(for)g(some)g(useful)g(remarks,)h(m)m(y) f(family)e(for)h(moral)f(supp)s(ort)j(and)f(the)257 5147 y(Graduiertenk)m(olleg)44 b(\\Mathematik)h(im)f(Bereic)m(h)j(ihrer)e(W) -8 b(ec)m(hselwirkung)47 b(mit)d(der)257 5268 y(Ph)m(ysik")36 b(for)e(pro)m(viding)g(me)g(with)h(the)g(scien)m(ti\014c)g(en)m (vironmen)m(t)g(and)g(\014nancial)e(sup-)257 5388 y(p)s(ort)f(that)h (enabled)f(me)h(to)f(carry)h(out)f(this)h(researc)m(h.)1852 5637 y(5)p eop %%Page: 6 8 6 7 bop 257 1237 a FK(Chapter)78 b(2)257 1652 y(Basics)257 2105 y FL(In)42 b(this)f(c)m(hapter)h(w)m(e)h(w)m(an)m(t)f(to)f(presen) m(t)i(most)d(of)h(the)h(basic)f(ingredien)m(ts)g(that)g(will)257 2225 y(b)s(e)f(used)g(in)e(the)i(rest)g(of)e(this)h(w)m(ork.)64 b(Muc)m(h)41 b(of)d(the)i(material)c(here)k(is)f(mean)m(t)g(only)257 2345 y(as)48 b(a)f(quic)m(k)i(reference)g(for)e(displa)m(ying)f(our)h (con)m(v)m(en)m(tions,)53 b(and)48 b(helps)f(to)g(presen)m(t)257 2466 y(this)c(w)m(ork)h(in)e(a)h(self)f(con)m(tained)h(fashion.)74 b(There)45 b(are)e(n)m(umerous)g(textb)s(o)s(oks)h(and)257 2586 y(nice)g(exp)s(ositions)g(treating)f(the)i(v)-5 b(arious)43 b(sections)i(in)f(m)m(uc)m(h)g(more)g(depth,)k(giving)257 2707 y(motiv)-5 b(ations)39 b(and)i(historical)d(commen)m(ts.)69 b(W)-8 b(e)41 b(will)e(p)s(oin)m(t)h(to)g(some)h(references)i(in)257 2827 y(appropriate)32 b(places)h(and)g(suggest)g([Mon1])g(for)f(the)h (\014rst)g(t)m(w)m(o)g(sections.)257 3159 y FD(2.1)161 b(Coalgebras)257 3378 y FL(A)35 b(Hopf)f(algebra,)f(the)i(main)d(ob)5 b(ject)35 b(of)f(this)g(w)m(ork,)h(is)f(\014rst)h(an)f(asso)s(ciativ)m (e)f(algebra)257 3498 y(o)m(v)m(er)d(a)d(base)i(\014eld,)g(that)f(w)m (e)h(will)d(denote)j(b)m(y)g FF(|)2014 3462 y FH(1)2047 3498 y FL(.)42 b(So)28 b(it)f(is)h(a)g FF(|)-9 b FL(-v)m(ector)23 b(space)29 b(together)257 3618 y(with)34 b(a)g(m)m(ultiplication)29 b(and)34 b(a)g(unit.)47 b(But)35 b(at)e(the)i(same)f(time)e(it)h(is)h (a)f(coasso)s(ciativ)m(e)257 3739 y(coalgebra,)f(whic)m(h)h(is)f(a)h (dualized)e(v)m(ersion)i(of)g(an)f(asso)s(ciativ)m(e)g(algebra.)257 3936 y FJ(Def)10 b(inition)36 b(2.1)98 b FE(A)46 b(c)-5 b(o)g(asso)g(ciative)52 b FL(coalgebra)45 b FE(is)h(a)g FF(|)-8 b FE(-)o(ve)j(ctor)40 b(sp)-5 b(ac)g(e)46 b FC(C)52 b FE(to)-5 b(gether)501 4056 y(with)35 b(two)g FF(|)-9 b FE(-line)j(ar)29 b(maps)1133 4269 y FL(\001)f(:)g FC(C)34 b(\000)-16 b(!)27 b(C)h(\012)23 b(C)205 b FE(and)216 b FI(")27 b FL(:)h FC(C)34 b(\000)-16 b(!)27 b FF(|)-9 b FI(;)501 4482 y FE(c)k(al)5 b(le)-5 b(d)46 b(the)55 b FL(com)m(ultiplication)43 b FE(and)j(the)55 b FL(counit)p FE(.)81 b(The)47 b(c)-5 b(o)g(asso)g(ciativity)46 b(c)-5 b(on-)501 4602 y(str)g(aint)35 b(r)-5 b(e)g(quir)g(es)1395 4722 y FL(\(\001)16 b FC(\012)h FL(id\))22 b FC(\016)g FL(\001)28 b(=)f(\(id)16 b FC(\012)h FL(\001)q(\))22 b FC(\016)g FL(\001)p FI(;)501 4894 y FE(and)35 b(the)f(c)-5 b(ounit)35 b(has)g(to)g(ful\014l)5 b(l)1316 5106 y FL(\()p FI(")16 b FC(\012)h FL(id)o(\))22 b FC(\016)g FL(\001)28 b(=)g(id)f(=)g(\(id)16 b FC(\012)h FI(")p FL(\))22 b FC(\016)g FL(\001)17 b FI(:)p 257 5197 1296 4 v 370 5258 a FB(1)407 5289 y FA(W)-7 b(e)37 b(assume,)i(unless)e(stated)h (otherwise,)g(that)g Fz(|)20 b FA(is)37 b(of)h(c)n(haracteristic)d(0)i (and)g(algebraically)257 5388 y(closed.)1852 5637 y FL(6)p eop %%Page: 7 9 7 8 bop 404 573 a FL(T)-8 b(o)30 b(b)s(e)h(able)f(to)g(do)h (calculations)d(in)i(coalgebras)g(more)g(easily)-8 b(,)30 b(a)h(certain)f(con)m(v)m(en-)257 693 y(tion)40 b(of)h(notation)f(is)g (no)m(w)i(widely)e(used.)70 b(It)42 b(is)e(based)i(on)f(an)g(original)d (v)m(ersion)j(b)m(y)257 814 y(Sw)m(eedler)31 b(and)f(Heyneman)g(and)g (helps)g(to)f(denote)h(the)g(com)m(ultiplication.)38 b(Applying)257 934 y(\001)e(to)f(an)g(elemen)m(t)g FI(c)g FL(of)g(a)g(coalgebra)f(leads)i(to)e(an)i(elemen)m(t)f(in)f(the)i (tensor)g(pro)s(duct)257 1054 y(of)e(the)h(coalgebra)e(with)h(itself.) 48 b(This)34 b(tensor)h(pro)s(duct)f(elemen)m(t)h(is)e(normally)f(a)i (sum)257 1175 y(of)g(simple)e(tensors.)48 b(T)-8 b(o)34 b(facilitate)d(notation,)h(one)i(lea)m(v)m(es)h(out)f(the)g(summation)e (sign)257 1295 y(and)c(indicates)f(the)h(tensor)g(comp)s(onen)m(ts)g (with)f(sub-indices)g(in)g(brac)m(k)m(ets.)44 b(This)27 b(leads)257 1416 y(to)33 b(the)g(follo)m(wing)c(notation)1512 1536 y(\001\()p FI(c)p FL(\))f(=)g FI(c)1885 1551 y Fy(\(1\))1989 1536 y FC(\012)23 b FI(c)2131 1551 y Fy(\(2\))2213 1536 y FI(:)404 1708 y FL(Coalgebras)h(with)g(the)h(prop)s(ert)m(y)g FI(\034)17 b FC(\016)6 b FL(\001)27 b(=)h(\001)p FI(;)d FL(where)g FI(\034)36 b FL(denotes)26 b(the)f(\015ip)f(op)s(erator)257 1829 y(that)34 b(simply)f(exc)m(hanges)k(tensor)e(factors,)f(are)h (called)e FE(c)-5 b(o)g(c)g(ommutative)p FL(.)47 b(Elemen)m(ts)35 b FI(g)257 1949 y FL(with)j(\001\()p FI(g)t FL(\))d(=)h FI(g)29 b FC(\012)d FI(g)41 b FL(and)d FI(")o FL(\()p FI(g)t FL(\))e(=)g(1)h(are)g(called)g FE(gr)-5 b(oup-like)44 b FL(and)38 b(elemen)m(ts)g FI(x)g FL(with)257 2069 y(\001)q(\()p FI(x)p FL(\))28 b(=)f FI(g)12 b FC(\012)c FI(x)g FL(+)g FI(x)g FC(\012)g FI(h;)28 b FL(where)f FI(g)i FL(and)d FI(h)g FL(are)g(group-lik)m(e,)g(are)f(called)g(\()p FI(g)t(;)17 b(h)p FL(\))p FE(-primitive)p FL(.)257 2190 y(The)36 b(set)g(of)e(group-lik)m(e)g(elemen)m(ts)h(of)f(a)h(coalgebra) f FC(C)41 b FL(is)34 b(denoted)i(b)m(y)g FI(G)p FL(\()p FC(C)6 b FL(\))35 b(and)g(the)257 2310 y(set)f(of)e(\()p FI(g)t(;)17 b(h)p FL(\)-primitiv)m(es)29 b(b)m(y)34 b FI(P)1434 2325 y FG(g)r(;h)1534 2310 y FL(\()p FC(C)6 b FL(\).)404 2431 y(Standard)30 b(examples)g(of)g(coalgebras)g(are)g (group)g(algebras)g(where)h(ev)m(ery)h(elemen)m(t)257 2551 y(of)47 b(the)h(group)f(is)g(considered)h(group-lik)m(e,)h(and)f (the)f(en)m(v)m(eloping)h(algebras)e(of)h(Lie)257 2671 y(algebras.)63 b(Here)39 b(the)h(elemen)m(ts)f(of)g(the)g(Lie)f (algebra)g(are)h(\(1)p FI(;)17 b FL(1\)-primitiv)m(e)36 b(and)j(the)257 2792 y(counit)e(ev)-5 b(aluates)37 b(to)g(zero.)57 b(Also,)38 b(the)g(dual)e(of)h(ev)m(ery)i(\014nite)e(dimensional)d (algebra)257 2912 y(is)43 b(a)g(coalgebra.)74 b(The)44 b(dual)e(of)h(a)g(co)s(comm)m(utativ)m(e)f(coalgebra)g(is)g(a)h(comm)m (utativ)m(e)257 3032 y(algebra.)404 3153 y(W)-8 b(e)31 b(note)g(that)g(a)g(group-lik)m(e)e(elemen)m(t)i(spans)h(a)f(one)g (dimensional)e(sub)s(coalgebra)257 3273 y(and)h FF(|)-8 b FI(G)o FL(\()p FC(C)6 b FL(\))24 b(is)29 b(another)h(example)f(of)h (a)f(sub)s(coalgebra.)42 b(W)-8 b(e)30 b(call)e(a)i(coalgebra)e FE(simple)257 3394 y FL(if)c(it)g(con)m(tains)g(no)h(prop)s(er)f(sub)s (coalgebras)h(and)g FE(c)-5 b(osemisimple)30 b FL(if)23 b(it)h(is)g(a)h(direct)f(sum)h(of)257 3514 y(simple)g(sub)s (coalgebras.)41 b(The)27 b(sum)g(of)e(all)f(the)j(simple)d(sub)s (coalgebras)j(of)e(a)h(coalgebra)257 3634 y FC(C)i FL(is)22 b(denoted)g(b)m(y)h FC(C)959 3649 y FH(0)1021 3634 y FL(and)f(called)e(the)i FE(c)-5 b(or)g(adic)g(al)p FL(.)39 b(Hence)23 b FC(C)28 b FL(is)21 b(cosemisimple)f(i\013)h FC(C)34 b FL(=)27 b FC(C)3428 3649 y FH(0)3468 3634 y FL(.)404 3755 y(A)38 b(\014rst)h(fundamen)m(tal)e(fact)h(ab)s(out)g (coalgebras)g(is)f(that)h(ev)m(ery)i(simple)d(sub)s(coal-)257 3875 y(gebra)j(is)f(\014nite)h(dimensional.)62 b(If,)42 b(moreo)m(v)m(er,)g(ev)m(ery)f(simple)d(sub)s(coalgebra)i(is)f(one)257 3996 y(dimensional,)34 b(then)i(the)g(coalgebra)e(is)h(called)g FE(p)-5 b(ointe)g(d)p FL(.)51 b(In)36 b(this)f(case)h(the)g(coradical) 257 4116 y(is)c(necessarily)i(the)f(group)f(coalgebra)g(of)g(the)h (group-lik)m(e)e(elemen)m(ts.)404 4236 y(F)-8 b(or)31 b(ev)m(ery)k(coalgebra)c FC(C)39 b FL(w)m(e)34 b(de\014ne)g(inductiv)m (ely)e(for)g FI(n)c FC(\025)g FL(1)p FI(;)977 4452 y FC(C)1029 4467 y FG(n)1104 4452 y FL(:=)g FC(f)p FI(x)g FC(2)g(C)34 b FL(:)28 b(\001\()p FI(x)p FL(\))g FC(2)g(C)1989 4467 y FH(0)2051 4452 y FC(\012)23 b(C)28 b FL(+)22 b FC(C)28 b(\012)23 b(C)2561 4467 y FG(n)p Fx(\000)p FH(1)2699 4452 y FC(g)p FI(:)257 4667 y FL(According)33 b(to)f([Mon1,)h(Theorem)g (5.2.2])f(w)m(e)h(ha)m(v)m(e)h(for)e(ev)m(ery)j FI(n)28 b FC(\025)g FL(0)p FI(;)403 4866 y FC(\017)48 b(C)553 4881 y FG(n)628 4866 y FC(\022)29 b(C)786 4881 y FG(n)p FH(+1)956 4866 y FL(and)j FC(C)i FL(=)1335 4792 y Fw(S)1418 4895 y FG(n)p Fx(\025)p FH(0)1572 4866 y FC(C)1624 4881 y FG(n)1671 4866 y FI(;)403 5068 y FC(\017)48 b FL(\001)17 b FC(C)651 5083 y FG(n)726 5068 y FC(\022)831 4994 y Fw(P)937 5020 y FG(n)937 5097 y(i)p FH(=0)1072 5068 y FC(C)1124 5083 y FG(i)1174 5068 y FC(\012)23 b(C)1326 5083 y FG(n)p Fx(\000)p FG(i)1452 5068 y FI(:)257 5268 y FL(These)38 b(prop)s(erties)d(are)h(exactly)g(the)g(ones)g (de\014ning)g(a)f(coalgebra)f(\014ltration.)51 b(So)35 b(w)m(e)257 5388 y(see)28 b(that)e(the)i(coradical)c FC(C)1234 5403 y FH(0)1301 5388 y FL(is)i(the)h(b)s(ottom)e(piece)i(of) f(suc)m(h)i(a)f(\014ltration)d(and)j(all)d FC(C)3291 5403 y FG(n)3365 5388 y FL(are)1852 5637 y(7)p eop %%Page: 8 10 8 9 bop 257 573 a FL(sub)s(coalgebras)33 b(of)f FC(C)6 b FL(.)45 b(W)-8 b(e)33 b(call)e(this)h(\014ltration)f(the)i FE(c)-5 b(or)g(adic)g(al)34 b(\014ltr)-5 b(ation)p FL(.)44 b(Moreo)m(v)m(er,)257 693 y(it)28 b(can)g(b)s(e)h(pro)m(v)m(ed)g(that)f (the)h(lo)m(w)m(est)g(term)e(of)h FE(any)37 b FL(coalgebra)27 b(\014ltration)f(con)m(tains)j(the)257 814 y(coradical.)404 934 y(T)-8 b(o)35 b(ev)m(ery)i(\014ltered)e(coalgebra)f(one)h(can)g (asso)s(ciate)g(a)g(graded)g(coalgebra)f(gr)16 b FC(C)41 b FL(b)m(y)257 1054 y(setting)33 b(gr)16 b FC(C)34 b FL(:=)28 b FC(\010)975 1069 y FG(n)p Fx(\025)p FH(0)1112 1054 y FC(C)6 b FL(\()p FI(n)p FL(\))p FI(;)33 b FL(where)790 1274 y FC(C)6 b FL(\()p FI(n)p FL(\))28 b(:=)g FC(C)1193 1289 y FG(n)1240 1274 y FI(=)p FC(C)1341 1289 y FG(n)p Fx(\000)p FH(1)1479 1274 y FI(;)114 b FL(for)32 b FI(n)c FC(\025)g FL(1)p FI(;)212 b FL(and)97 b FC(C)6 b FL(\(0\))28 b(:=)f FC(C)2895 1289 y FH(0)2935 1274 y FI(;)257 1494 y FL(and)32 b(extending)g(the)f(structure)i(maps)e(from)f FC(C)2010 1509 y FH(0)2081 1494 y FL(in)g(a)h(natural)g(w)m(a)m(y)-8 b(.)44 b(F)-8 b(or)30 b(a)h(coalgebra)257 1615 y(to)i(b)s(e)f(graded)h (w)m(e)h(ha)m(v)m(e)g(to)e(ha)m(v)m(e)403 1818 y FC(\017)48 b(C)34 b FL(=)28 b FC(\010)768 1833 y FG(n)p Fx(\025)p FH(0)905 1818 y FC(C)6 b FL(\()p FI(n)p FL(\))131 b(and)403 2022 y FC(\017)48 b FL(\001)17 b FC(C)6 b FL(\()p FI(n)p FL(\))28 b FC(\022)924 1947 y Fw(P)1030 1973 y FG(n)1030 2051 y(i)p FH(=0)1164 2022 y FC(C)6 b FL(\()p FI(i)p FL(\))23 b FC(\012)g(C)6 b FL(\()p FI(n)22 b FC(\000)h FI(i)p FL(\))p FI(;)212 b(")16 b FC(j)2130 2037 y Fx(C)t FH(\()p FG(n)p FH(\))2300 2022 y FL(=)28 b(0)k(for)g FI(n)c(>)g FL(0)p FI(:)257 2225 y FL(Here)34 b FC(C)6 b FL(\()p FI(n)p FL(\))33 b(is)f(not)g(usually)g(a)g(sub)s(coalgebra.) 257 2558 y FD(2.2)161 b(Hopf)54 b(algebras)257 2777 y FJ(Def)10 b(inition)36 b(2.2)98 b FE(A)35 b FL(Hopf)d(algebra)i Fv(H)h FE(is)617 2980 y FC(\017)49 b FE(an)34 b(asso)-5 b(ciative)34 b(algebr)-5 b(a)34 b(with)h(unit)g FL(1)p FE(,)617 3142 y FC(\017)49 b FE(a)41 b(c)-5 b(o)g(asso)g(ciative)40 b(c)-5 b(o)g(algebr)g(a)40 b(with)i(a)f(c)-5 b(omultiplic)g(ation)40 b FL(\001)i FE(and)f(a)g(c)-5 b(ounit)716 3262 y FI(")p FE(,)34 b(which)g(ar)-5 b(e)35 b(b)-5 b(oth)35 b(algebr)-5 b(a)34 b(maps,)g(i.e.)44 b(satisfying)1219 3482 y FL(\001)q(\()p FI(ab)p FL(\))28 b(=)f(\001)q(\()p FI(a)p FL(\))17 b(\001\()p FI(b)p FL(\))p FI(;)216 b(")p FL(\()p FI(ab)p FL(\))28 b(=)f FI(")p FL(\()p FI(a)p FL(\))17 b FI(")o FL(\()p FI(b)p FL(\))p FI(;)304 b FL(\(2.1\))617 3723 y FC(\017)49 b FE(e)-5 b(quipp)g(e)g(d)29 b(with)g(a)g(line)-5 b(ar)29 b(map)g Fv(S)p FE(,)i(c)-5 b(al)5 b(le)-5 b(d)28 b(the)i(antip)-5 b(o)g(de,)30 b(fr)-5 b(om)29 b Fv(H)h FE(to)g(itself,)716 3844 y(ful\014l)5 b(ling)1444 3964 y Fv(S)p FL(\()p FI(a)1587 3979 y Fy(\(1\))1670 3964 y FL(\))p FI(a)1759 3979 y Fy(\(2\))1869 3964 y FL(=)28 b FI(")p FL(\()p FI(a)p FL(\)1)f(=)h FI(a)2377 3979 y Fy(\(1\))2476 3964 y Fv(S)p FL(\()p FI(a)2619 3979 y Fy(\(2\))2702 3964 y FL(\))p FI(:)257 4192 y FL(Here)j(the)f(tensor)g(pro)s(duct)g Fv(H)16 b FC(\012)g Fv(H)30 b FL(is)f(considered)i(as)f(an)f(algebra)f (with)i(comp)s(onen)m(t-)257 4313 y(wise)j(m)m(ultiplication.)38 b(A)32 b(basic)g(prop)s(ert)m(y)h(of)e(the)i(an)m(tip)s(o)s(de)e(is)g (that)h Fv(S)g FL(is)f(an)h(algebra)257 4433 y(an)m(tihomomorphism.)404 4553 y(As)41 b(examples)h(of)e(Hopf)h(algebras)g(w)m(e)h(again)e(ha)m (v)m(e)j(group)e(algebras)f(where)j(the)257 4674 y(an)m(tip)s(o)s(de)f (on)h(a)g(group)g(elemen)m(t)f FI(g)k FL(is)d(de\014ned)h(b)m(y)g Fv(S)p FL(\()p FI(g)t FL(\))g(:=)i FI(g)2685 4638 y Fx(\000)p FH(1)2778 4674 y FI(;)d FL(and)g(en)m(v)m(eloping)257 4794 y(algebras)f(of)g(Lie)g(algebras)g(where)i(w)m(e)g(set)f Fv(S)p FL(\()p FI(x)p FL(\))i(:=)f FC(\000)p FI(x)g FL(for)e(the)h (elemen)m(ts)g(of)f(the)257 4915 y(Lie)31 b(algebra.)42 b(A)31 b(sligh)m(tly)e(more)i(in)m(teresting)f(class)h(are)g(the)h FE(T)-7 b(aft)33 b(algebr)-5 b(as)38 b FI(T)14 b FL(\()p FI(\030)5 b FL(\))p FI(:)30 b FL(F)-8 b(or)257 5035 y FI(\030)32 b FC(2)d FF(|)-9 b FL(,)27 b(a)32 b(ro)s(ot)f(of)i(1)f(of)g (order)h FI(N)10 b FL(,)33 b(w)m(e)g(set)873 5255 y FI(T)14 b FL(\()p FI(\030)5 b FL(\))27 b(:=)g FF(|)13 b FI(<)28 b(g)t(;)17 b(x)27 b FL(:)h FI(g)t(x)f FL(=)h FI(\030)5 b(xg)t(;)17 b(g)2130 5214 y FG(N)2223 5255 y FL(=)27 b(1)p FI(;)17 b(x)2474 5214 y FG(N)2569 5255 y FL(=)28 b(0)f FI(>)h(:)1852 5637 y FL(8)p eop %%Page: 9 11 9 10 bop 257 573 a FL(This)30 b(is)f(a)h(Hopf)f(algebra)g(where)i(the)f (co-structures)h(are)f(determined)f(b)m(y)i(the)f(com)m(ul-)257 693 y(tiplication)f(on)k(the)g(generators)977 907 y(\001\()p FI(g)t FL(\))27 b(:=)h FI(g)d FC(\012)e FI(g)t(;)211 b FL(\001\()p FI(x)p FL(\))28 b(:=)g FI(g)d FC(\012)e FI(x)f FL(+)g FI(x)h FC(\012)g FL(1)p FI(:)404 1121 y FL(A)35 b(Hopf)f(algebra)g(is)g FE(c)-5 b(osemisimple)40 b FL(or)35 b FE(p)-5 b(ointe)g(d)p FL(,)35 b(if)e(its)i(underlying)f (coalgebra)g(is)257 1241 y(so.)404 1361 y(The)49 b(asso)s(ciated)f (graded)g(coalgebra)f(of)h(a)g(coalgebra)f(\014ltration)f(of)i(the)g (Hopf)257 1482 y(algebra)36 b Fv(H)q FI(;)f FL(is)h(again)f(a)h(Hopf)g (algebra)f(if)g(the)i(\014ltration)d(is)i(a)g(Hopf)g(\014ltration.)53 b(F)-8 b(or)257 1602 y(this)33 b(w)m(e)h(need)g(also)e(that)h Fv(H)1317 1617 y FG(n)1363 1602 y Fv(H)1452 1617 y FG(m)1546 1602 y FC(\022)28 b Fv(H)1740 1617 y FG(n)p FH(+)p FG(m)1937 1602 y FL(and)33 b Fv(S)p FL(\()p FI(A)2292 1617 y FG(n)2339 1602 y FL(\))28 b FC(\022)h FI(A)2584 1617 y FG(n)2631 1602 y FI(;)k FL(for)f(all)f FI(n;)17 b(m)28 b FC(\025)h FL(0)p FI(:)k FL(In)257 1722 y(the)27 b(case)f(of)g(the)g(coradical)e (\014ltration)g(this)i(condition)e(is)h(equiv)-5 b(alen)m(t)26 b(to)g(the)g(coradical)257 1843 y Fv(H)346 1858 y FH(0)415 1843 y FL(b)s(eing)j(a)h(Hopf)g(subalgebra)g(of)f Fv(H)q FL(.)42 b(Therefore,)32 b(for)d(a)h(p)s(oin)m(ted)g(Hopf)g(algebra)f (the)257 1963 y(graded)39 b(coalgebra)e(asso)s(ciated)h(with)g(the)h (coradical)e(\014ltration)f(is)i(a)g(Hopf)g(algebra,)257 2084 y(b)s(ecause)29 b(the)e(coradical)e(is)i(the)g(group)g(algebra)f (of)g(the)i(group-lik)m(e)d(elemen)m(ts)i(and)h(this)257 2204 y(is)k(a)h(Hopf)f(subalgebra.)404 2324 y(P)m(oin)m(ted)24 b(Hopf)g(algebras)f(comprise)g(a)g(large)g(class)h(of)f(Hopf)h (algebras.)40 b(Apart)23 b(from)257 2445 y(group)k(algebras)f(and)h(en) m(v)m(eloping)f(algebras)g(of)h(Lie)f(algebras,)h(ev)m(ery)h(co)s(comm) m(utativ)m(e)257 2565 y(Hopf)33 b(algebra)f(o)m(v)m(er)i(an)f (algebraically)c(closed)k(\014eld)g(is)f(p)s(oin)m(ted.)45 b(In)33 b(addition,)e(when)257 2686 y(the)i(base)g(\014eld)f(has)g(c)m (haracteristic)g(0,)g(the)h(classic)f(Cartier-Kostan)m(t-Milnor-Mo)s (ore)257 2806 y(theorem)h(states)h(that)e(an)m(y)i(co)s(comm)m(utativ)m (e)d(Hopf)i(algebra)f(is)g(just)h(the)h(semi-direct)257 2926 y(pro)s(duct)f(of)f(a)h(group)f(algebra)f(and)i(the)g(en)m(v)m (eloping)g(algebra)e(of)h(a)h(Lie)e(algebra.)404 3047 y(An)i(in)m(teresting)f(asp)s(ect)i(of)e(the)h(recen)m(t)i(w)m(ork)e (on)g(p)s(oin)m(ted)g(Hopf)f(algebras)g(is)h(the)257 3167 y(somewhat)28 b(con)m(v)m(erse)j(statemen)m(t)d(that)g(large)e (classes)j(of)f(p)s(oin)m(ted)f(Hopf)h(algebras)f(can)257 3287 y(b)s(e)35 b(obtained)e(from)g(a)h(group)g(algebra)f(and)h(a)g FE(deforme)-5 b(d)43 b FL(v)m(ersion)35 b(of)f(the)g(en)m(v)m(eloping) 257 3408 y(algebra)e(of)g(a)g(Lie)g(algebra.)257 3740 y FD(2.3)161 b(Y)-13 b(etter-Drinfeld)52 b(mo)t(dules)257 3959 y FL(The)34 b(exp)s(osition)e(in)f(this)i(section)f(follo)m(ws)g (closely)g([AS5,)g(Section)h(2].)404 4079 y(A)k(\(left\))f FE(mo)-5 b(dule)44 b FL(o)m(v)m(er)38 b(an)f(algebra)e FC(A)i FL(is)g(a)f FF(|)-8 b FL(-)o(v)m(ector)32 b(space)38 b FI(M)48 b FL(and)37 b(an)g(action)257 4199 y FI(:)28 b FL(:)g FC(A)22 b(\012)g FI(M)39 b FC(\000)-16 b(!)27 b FI(M)5 b(;)33 b FL(suc)m(h)h(that)e(for)g FI(a;)17 b(b)28 b FC(2)g(A)k FL(and)h FI(m)28 b FC(2)g FI(M)44 b FL(w)m(e)33 b(ha)m(v)m(e)1029 4413 y(\()p FI(ab)p FL(\))p FI(:m)c FL(=)e FI(a:)p FL(\()p FI(b:m)p FL(\))196 b(and)g(1)p FI(:m)27 b FL(=)h FI(m)23 b(:)257 4627 y FL(Analogously)-8 b(,)32 b(the)h(dual)g(notion)e(is)i(de\014ned.)46 b(A)33 b(\(left\))f FE(c)-5 b(omo)g(dule)39 b FL(for)32 b(a)h(coalgebra)f FC(C)257 4747 y FL(is)g(a)h FF(|)-9 b FL(-v)m(ector)27 b(space)34 b FI(M)43 b FL(and)33 b(a)f(coaction)g FI(\032)c FL(:)g FI(M)38 b FC(\000)-16 b(!)27 b(C)i(\012)22 b FI(M)5 b(;)33 b FL(suc)m(h)h(that)f(w)m(e)g(ha)m(v)m(e)710 4961 y(\(\001)17 b FC(\012)g FL(id)o(\))22 b FC(\016)g FI(\032)28 b FL(=)g(\(id)16 b FC(\012)p FI(\032)p FL(\))23 b FC(\016)f FI(\032)195 b FL(and)g(\()p FI(")16 b FC(\012)h FL(id\))22 b FC(\016)g FI(\032)28 b FL(=)f(id)16 b FI(:)257 5174 y FL(W)-8 b(e)33 b(extend)h(the)f(Sw)m(eedler)h(notation)d(to)i(como)s (dules)e(b)m(y)j(writing)1439 5388 y FI(\032)p FL(\()p FI(m)p FL(\))28 b(=)f FI(m)1866 5403 y Fy(\()p Fu(\000)p Fy(1\))2019 5388 y FC(\012)c FI(m)2204 5403 y Fy(\(0\))2287 5388 y FI(:)1852 5637 y FL(9)p eop %%Page: 10 12 10 11 bop 257 573 a FL(The)37 b(negativ)m(e)f(indices)f(stand)h(for)f (the)h(coalgebra)f(comp)s(onen)m(ts)h(and)g(the)g(\(0\))f(index)257 693 y(alw)m(a)m(ys)f(denotes)f(the)g(como)s(dule)f(comp)s(onen)m(t.)404 814 y(A)23 b(\(left\))e FE(Y)-7 b(etter-Drinfeld)25 b(mo)-5 b(dule)30 b FI(V)44 b FL(o)m(v)m(er)24 b(a)f(Hopf)f(algebra)g Fv(H)h FL(is)f(sim)m(ultaneously)257 934 y(a)36 b(mo)s(dule)e(and)i(a)g (como)s(dule)e(o)m(v)m(er)j Fv(H)q FL(,)f(where)h(the)g(action)e(and)g (coaction)g(ful\014ll)f(the)257 1054 y(follo)m(wing)c(compatibilit)m(y) f(condition:)765 1249 y FI(\032)p FL(\()p FI(h:v)t FL(\))f(=)g FI(h)1213 1264 y Fy(\(1\))1295 1249 y FI(v)1342 1264 y Fy(\()p Fu(\000)p Fy(1\))1490 1249 y Fv(S)p FL(\()p FI(h)1638 1264 y Fy(\(3\))1720 1249 y FL(\))22 b FC(\012)h FI(h)1936 1264 y Fy(\(2\))2019 1249 y FI(:v)2093 1264 y Fy(\(0\))2176 1249 y FI(;)211 b(v)32 b FC(2)c FI(V)5 b(;)17 b(h)28 b FC(2)g Fv(H)q FI(:)404 1445 y FL(The)j(category)992 1408 y Ft(H)992 1469 y(H)1052 1445 y Fv(YD)f FL(of)g(Y)-8 b(etter-Drinfeld)28 b(mo)s(dules)h(is)g(a)h(braided)g(monoidal)d(cat-) 257 1565 y(egory)-8 b(,)29 b(i.e.)41 b(there)27 b(exists)h(a)f(tensor)g (pro)s(duct)h(op)s(eration)d(and)i(a)g(natural)f(isomorphism)257 1685 y FI(c)299 1700 y FG(M)s(;N)495 1685 y FL(:)38 b FI(M)f FC(\012)27 b FI(N)48 b FC(\000)-16 b(!)38 b FI(N)f FC(\012)26 b FI(M)50 b FL(for)38 b(all)e FI(M)5 b(;)17 b(N)49 b FC(2)2152 1649 y Ft(H)2152 1710 y(H)2213 1685 y Fv(YD)p FI(;)39 b FL(called)e(the)i(braiding.)60 b(It)39 b(is)257 1806 y(giv)m(en)33 b(b)m(y)792 2001 y FI(c)834 2016 y FG(M)s(;N)991 2001 y FL(\()p FI(m)23 b FC(\012)f FI(n)p FL(\))28 b(:=)g FI(m)1576 2016 y Fy(\()p Fu(\000)p Fy(1\))1707 2001 y FI(:n)22 b FC(\012)h FI(m)1999 2016 y Fy(\(0\))2082 2001 y FI(;)212 b(m)28 b FC(2)g FI(M)5 b(;)17 b(n)28 b FC(2)g FI(N)5 b(:)257 2196 y FL(The)38 b(tensor)f(pro)s(duct)f(of)g(t)m(w)m(o)h(Y)-8 b(etter-Drinfeld)35 b(mo)s(dules)g(is)h(just)h(the)g(v)m(ector)g(space)257 2316 y(tensor)23 b(pro)s(duct)f(with)f(the)h(usual)g(tensor)g(pro)s (duct)g(mo)s(dule)e(and)i(como)s(dule)f(structure.)257 2437 y(F)-8 b(or)32 b(the)h(compatibilit)m(y)c(condition)i(w)m(e)j(c)m (hec)m(k)h(for)d FI(m)c FC(2)g FI(M)43 b FL(and)33 b FI(n)28 b FC(2)g FI(N)5 b(;)429 2632 y(\032)p FL(\()p FI(h:)p FL(\()p FI(m)23 b FC(\012)g FI(n)p FL(\)\))28 b(=)f FI(\032)p FL(\()p FI(h)1255 2647 y Fy(\(1\))1338 2632 y FI(:m)c FC(\012)f FI(h)1628 2647 y Fy(\(2\))1711 2632 y FI(:n)p FL(\))1008 2777 y(=)27 b FI(\032)p FL(\()p FI(h)1255 2792 y Fy(\(1\))1338 2777 y FI(:m)p FL(\))1488 2792 y Fy(\()p Fu(\000)p Fy(1\))1619 2777 y FI(\032)p FL(\()p FI(h)1763 2792 y Fy(\(2\))1846 2777 y FI(:n)p FL(\))1969 2792 y Fy(\()p Fu(\000)p Fy(1\))2122 2777 y FC(\012)c FL(\()p FI(\032)p FL(\()p FI(h)2404 2792 y Fy(\(1\))2486 2777 y FI(:m)p FL(\))2636 2792 y Fy(\(0\))2741 2777 y FC(\012)g FI(\032)p FL(\()p FI(h)2985 2792 y Fy(\(2\))3068 2777 y FI(:n)p FL(\))3191 2792 y Fy(\(0\))3274 2777 y FL(\))1008 2922 y(=)k FI(h)1167 2937 y Fy(\(1\))1250 2922 y FI(m)1335 2937 y Fy(\()p Fu(\000)p Fy(1\))1482 2922 y Fv(S)p FL(\()p FI(h)1630 2937 y Fy(\(3\))1713 2922 y FL(\))p FI(h)1807 2937 y Fy(\(4\))1890 2922 y FI(n)1948 2937 y Fy(\()p Fu(\000)p Fy(1\))2095 2922 y Fv(S)p FL(\()p FI(h)2243 2937 y Fy(\(6\))2326 2922 y FL(\))22 b FC(\012)g FL(\()p FI(h)2579 2937 y Fy(\(2\))2662 2922 y FI(:m)2774 2937 y Fy(\(0\))2879 2922 y FC(\012)h FI(h)3035 2937 y Fy(\(5\))3117 2922 y FI(:n)3202 2937 y Fy(\(0\))3285 2922 y FL(\))1008 3068 y(=)k FI(h)1167 3083 y Fy(\(1\))1250 3068 y FL(\()p FI(m)1373 3083 y Fy(\()p Fu(\000)p Fy(1\))1504 3068 y FI(n)1562 3083 y Fy(\()p Fu(\000)p Fy(1\))1692 3068 y FL(\))17 b Fv(S)p FL(\()p FI(h)1895 3083 y Fy(\(4\))1978 3068 y FL(\))22 b FC(\012)g FL(\()p FI(h)2231 3083 y Fy(\(2\))2314 3068 y FI(:m)2426 3083 y Fy(\(0\))2531 3068 y FC(\012)h FI(h)2687 3083 y Fy(\(3\))2769 3068 y FI(:n)2854 3083 y Fy(\(0\))2937 3068 y FL(\))1008 3213 y(=)k FI(h)1167 3228 y Fy(\(1\))1250 3213 y FL(\()p FI(m)1373 3228 y Fy(\()p Fu(\000)p Fy(1\))1504 3213 y FI(n)1562 3228 y Fy(\()p Fu(\000)p Fy(1\))1692 3213 y FL(\))17 b Fv(S)p FL(\()p FI(h)1895 3228 y Fy(\(3\))1978 3213 y FL(\))22 b FC(\012)g FI(h)2193 3228 y Fy(\(2\))2276 3213 y FI(:)p FL(\()p FI(m)2426 3228 y Fy(\(0\))2531 3213 y FC(\012)h FI(n)2689 3228 y Fy(\(0\))2772 3213 y FL(\))1008 3358 y(=)k FI(\032)p FL(\()p FI(h)1255 3373 y Fy(\(1\))1338 3358 y FL(\()p FI(m)c FC(\012)f FI(n)p FL(\))1679 3373 y Fy(\()p Fu(\000)p Fy(1\))1810 3358 y FL(\))17 b Fv(S)o FL(\()p FI(h)2012 3373 y Fy(\(3\))2095 3358 y FL(\))22 b FC(\012)h FI(h)2311 3373 y Fy(\(2\))2393 3358 y FI(:)p FL(\()p FI(m)g FC(\012)g FI(n)p FL(\))2762 3373 y Fy(\(0\))2844 3358 y FI(:)257 3553 y FL(The)47 b(\014rst)f(step)h(is)e(the)h(tensor)g(mo)s(dule)e(form)m(ula)g(and)h (the)i(second)f(is)g(the)g(tensor)257 3674 y(como)s(dule)d(form)m(ula.) 77 b(In)44 b(the)h(third)e(step)j(w)m(e)f(used)g(the)g(compatibilit)m (y)c(condition)257 3794 y(for)e FI(M)49 b FL(and)39 b FI(N)50 b FL(separately)-8 b(.)62 b(The)40 b(fourth)f(step)h(is)e(the)h (de\014nition)f(of)h(the)g(an)m(tip)s(o)s(de)257 3914 y(together)c(with)f(the)h(counit)f(axiom,)f(and)i(the)g(last)e(t)m(w)m (o)i(steps)h(are)f(again)e(the)i(tensor)257 4035 y(form)m(ulas.)42 b(In)32 b(this)f(example)g(w)m(e)h(get)g(a)f(glimpse)e(of)i(the)h (usefulness)h(of)e(the)h(Sw)m(eedler)257 4155 y(notation.)257 4276 y(F)-8 b(or)44 b(further)h(references)i(ab)s(out)d(braided)h (categories)f(w)m(e)i(suggest)g([JS])f(and)g([Kas,)257 4396 y(Chapters)34 b(XI)f(and)g(XI)s(I)s(I].)404 4516 y(The)c(notion)e(of)g(a)h(Hopf)g(algebra)e(still)g(mak)m(es)j(sense)g (in)f(a)f(braided)h(category)-8 b(.)42 b(The)257 4637 y(tensor)32 b(pro)s(duct)e(allo)m(ws)g(one)g(to)h(de\014ne)g(algebras)f (and)h(coalgebras)f(in)g(the)h(same)f(w)m(a)m(y)257 4757 y(as)k(w)m(e)h(ha)m(v)m(e)g(done)f(ab)s(o)m(v)m(e.)47 b(The)35 b(compatibilit)m(y)30 b(condition)i(\(2.1\))i(of)f(m)m (ultiplication,)257 4878 y(here)h(denoted)f(b)m(y)h Fs(m)p FL(,)f(and)f(com)m(ultiplication)c(usually)k(in)m(v)m(olv)m(es)i(a)e (\015ip)g(op)s(eration)f FI(\034)6 b(;)842 5073 y FL(\001)17 b FC(\016)p Fs(m)p FL(\()p FI(a)23 b FC(\012)f FI(b)p FL(\))28 b(=)g(\()p Fs(m)22 b FC(\012)h Fs(m)p FL(\))f FC(\016)g FL(\(id)16 b FC(\012)p FI(\034)34 b FC(\012)23 b FL(id)o(\))f FC(\016)g FL(\(\001)17 b FC(\012)g FL(\001\))p FI(:)257 5268 y FL(In)28 b(braided)f(categories)h(w)m(e)g(just)g(ha)m (v)m(e)h(to)e(replace)h(the)f(\015ip)g(op)s(erator)g FI(\034)39 b FL(b)m(y)29 b(the)f(braid-)257 5388 y(ing)k FI(c)g FL(and)h(the)g(rest)g(remains)f(as)h(b)s(efore.)1828 5637 y(10)p eop %%Page: 11 13 11 12 bop 404 573 a FL(As)50 b(an)h(example)e(for)h(suc)m(h)i(a)d(Hopf) h(algebra)g(w)m(e)h(giv)m(e)f(the)h(algebra)e(of)g(coin-)257 693 y(v)-5 b(arian)m(ts)50 b(of)g(a)g(Hopf)f(algebra)g(surjection.)97 b(Let)50 b Fv(H)h FL(and)f Fv(H)2653 708 y FH(0)2742 693 y FL(b)s(e)g(Hopf)g(algebras)257 814 y(and)28 b FI(\031)k FL(:)c Fv(H)g FC(\000)-16 b(!)27 b Fv(H)978 829 y FH(0)1045 814 y FL(and)h FI(\023)g FL(:)g Fv(H)1436 829 y FH(0)1502 814 y FC(\000)-16 b(!)27 b Fv(H)i FL(Hopf)e(algebra)g(homomorphisms)f (suc)m(h)j(that)257 934 y FI(\031)t(\023)f FL(=)g(id)16 b FI(:)32 b FL(Then)i(the)f(algebra)f(of)g(coin)m(v)-5 b(arian)m(ts)31 b(is)i(de\014ned)h(as)887 1146 y Fv(R)28 b FL(:=)g Fv(H)1208 1105 y FH(co)11 b FG(\031)1360 1146 y FL(:=)28 b FC(f)p FI(h)f FC(2)i Fv(H)f FL(:)f(\(id)16 b FC(\012)p FI(\031)t FL(\))h(\001)q(\()p FI(h)p FL(\))27 b(=)h FI(h)22 b FC(\012)h FL(1)p FC(g)p FI(:)257 1358 y Fv(R)45 b FL(is)f(a)h(braided)f(Hopf)h(algebra)e(in)1672 1309 y Ft(H)1728 1324 y Fy(0)1672 1375 y Ft(H)1728 1390 y Fy(0)1767 1358 y Fv(YD)p FL(.)80 b(The)46 b(mo)s(dule)d(structure)j (is)e(giv)m(en)h(b)m(y)257 1479 y FI(g)t(:r)30 b FL(:=)e FI(\023)p FL(\()p FI(g)659 1494 y Fy(\(1\))741 1479 y FL(\))p FI(r)s(\023)p FL(\()p Fv(S)p FL(\()p FI(g)1037 1494 y Fy(\(2\))1120 1479 y FL(\)\))p FI(;)h FL(for)g FI(g)i FC(2)d Fv(H)1659 1494 y FH(0)1728 1479 y FL(and)h FI(r)i FC(2)d Fv(R)p FI(:)i FL(The)g(coaction)f(is)g(\()p FI(\031)20 b FC(\012)c FL(id\))h(\001)g FI(:)30 b FL(As)257 1599 y(an)37 b(algebra,)f Fv(R)h FL(is)f(just)h(a)f(subalgebra)g(of)h Fv(H)q FI(:)f FL(The)h(com)m(ultiplication)32 b(is)k(de\014ned)i(b)m(y) 257 1720 y(\001)339 1735 y Fr(R)395 1720 y FL(\()p FI(r)s FL(\))27 b(:=)h FI(r)720 1735 y Fy(\(1\))802 1720 y FI(\023\031)21 b Fv(S)p FL(\()p FI(r)1048 1735 y Fy(\(2\))1131 1720 y FL(\))h FC(\012)h FI(r)1335 1735 y Fy(\(3\))1417 1720 y FI(;)33 b FL(for)f(all)e FI(r)h FC(2)d Fv(R)p FI(:)404 1840 y FL(Starting)33 b(with)g(a)h(braided)g(Hopf)g(algebra)f Fv(R)h FL(in)2249 1791 y Ft(H)2305 1806 y Fy(0)2249 1857 y Ft(H)2305 1872 y Fy(0)2344 1840 y Fv(YD)g FL(one)g(can)h(reconstruct) g(an)257 1960 y(ordinary)27 b(Hopf)g(algebra)f Fv(H)i FL(lik)m(e)f(the)g(one)h(ab)s(o)m(v)m(e.)42 b(F)-8 b(or)27 b(this)g(w)m(e)h(consider)g(the)g(bipro)s(d-)257 2081 y(uct,)j(or)f FE(b)-5 b(osonization)36 b Fv(R)p FL(#)p Fv(H)1367 2096 y FH(0)1436 2081 y FL([Rad,)30 b(Ma)5 b(j1])30 b(of)f Fv(R)h FL(and)g Fv(H)2460 2096 y FH(0)2499 2081 y FI(:)g FL(This)g(is)g(a)f(Hopf)h(algebra)257 2201 y(with)j(underlying)g(v)m(ector)i(space)g Fv(R)22 b FC(\012)i Fv(H)1806 2216 y FH(0)1844 2201 y FI(;)34 b FL(with)f(m)m (ultiplication)c(and)k(com)m(ultiplica-)257 2322 y(tion)f(giv)m(en)h(b) m(y)721 2534 y(\()p FI(r)s FL(#)p FI(h)p FL(\)\()p FI(s)p FL(#)p FI(g)t FL(\))27 b(=)h FI(r)s FL(\()p FI(h)1507 2549 y Fy(\(1\))1589 2534 y FI(:s)p FL(\)#)p FI(h)1837 2549 y Fy(\(2\))1920 2534 y FI(g)t(;)211 b(r)m(;)17 b(s)28 b FC(2)g Fv(R)p FI(;)44 b(g)t(;)17 b(h)27 b FC(2)h Fv(H)2966 2549 y FH(0)3005 2534 y FI(;)893 2679 y FL(\001\()p FI(r)s FL(#)p FI(h)p FL(\))g(=)g(\()p FI(r)1451 2638 y Fy(\(1\))1533 2679 y FL(#\()p FI(r)1699 2638 y Fy(\(2\))1781 2679 y FL(\))1819 2694 y Fy(\()p Fu(\000)p Fy(1\))1950 2679 y FI(h)2006 2694 y Fy(\(1\))2088 2679 y FL(\))22 b FC(\012)h FL(\(\()p FI(r)2371 2638 y Fy(\(2\))2453 2679 y FL(\))2491 2694 y Fy(\(0\))2574 2679 y FL(#)p FI(h)2711 2694 y Fy(\(2\))2794 2679 y FL(\))p FI(:)257 2891 y FL(Here)40 b(w)m(e)g(used)g(the)g(Sw)m (eedler)g(notation)e(with)g(upp)s(er)i(indices)f(to)f(indicate)g(the)i (co-)257 3012 y(m)m(ultiplication)32 b(in)k Fv(R)g FL(in)f(order)i(to)f (distinguish)f(it)g(from)g(the)i(coaction)e(of)h Fv(H)3209 3027 y FH(0)3284 3012 y FL(on)g Fv(R)257 3132 y FL(whic)m(h)d(is)g (denoted)g(b)m(y)h(lo)m(w)m(er)e(indices.)404 3252 y(In)41 b(the)g(case)g(where)h(the)f(Hopf)f(algebra)g Fv(H)2075 3267 y FH(0)2154 3252 y FL(is)g(the)h(group)g(algebra)e(of)h(a)g (\014nite)257 3373 y(ab)s(elian)c(group)h FI(\000)s(;)g FL(the)h(structure)g(theory)g(for)f(Y)-8 b(etter-Drinfeld)35 b(mo)s(dules)i(b)s(ecomes)257 3493 y(v)m(ery)h(easy)-8 b(.)55 b(F)-8 b(or)36 b(a)f(\014nite)h(dimensional)e FI(V)55 b FC(2)1999 3444 y Ft(H)2055 3459 y Fy(0)1999 3510 y Ft(H)2055 3525 y Fy(0)2094 3493 y Fv(YD)36 b FL(there)h(exist)f (a)g(basis)g FI(x)3142 3508 y FH(1)3182 3493 y FI(;)17 b(:)g(:)g(:)f(;)h(x)3456 3508 y FG(\022)257 3627 y FL(of)38 b FI(V)5 b(;)39 b FL(elemen)m(ts)g FI(g)954 3642 y FH(1)993 3627 y FI(;)17 b(:)g(:)g(:)f(;)h(g)1259 3642 y FG(\022)1335 3627 y FC(2)38 b FI(\000)52 b FL(and)39 b(c)m(haracters)g FI(\037)2277 3642 y FH(1)2317 3627 y FI(;)17 b(:)g(:)g(:)f(;)h(\037) 2597 3642 y FG(\022)2673 3627 y FC(2)2798 3602 y FL(^)2777 3627 y FI(\000)d(;)39 b FL(suc)m(h)h(that)e(the)257 3748 y(action)32 b(and)h(coaction)e(on)i FI(V)54 b FL(tak)m(e)33 b(the)g(form)587 3960 y FI(h:x)725 3975 y FG(i)782 3960 y FL(=)27 b FI(\037)946 3975 y FG(i)974 3960 y FL(\()p FI(h)p FL(\))p FI(x)1161 3975 y FG(i)1288 3960 y FL(and)97 b FI(\032)p FL(\()p FI(x)1685 3975 y FG(i)1714 3960 y FL(\))28 b(=)f FI(g)1930 3975 y FG(i)1980 3960 y FC(\012)c FI(x)2135 3975 y FG(i)2164 3960 y FI(;)211 b FC(8)p FI(h)29 b FC(2)f FI(\000)s(;)17 b FL(1)27 b FC(\024)h FI(i)g FC(\024)g FI(\022)s(:)257 4172 y FL(The)34 b(braiding)d(can)i(then)g(b) s(e)f(expressed)k(b)m(y)464 4384 y FI(c)p FL(\()p FI(x)599 4399 y FG(i)650 4384 y FC(\012)22 b FI(x)804 4399 y FG(j)841 4384 y FL(\))28 b(=)f FI(b)1051 4399 y FG(ij)1112 4384 y FI(x)1167 4399 y FG(j)1226 4384 y FC(\012)c FI(x)1381 4399 y FG(i)1410 4384 y FI(;)114 b FL(where)99 b Fq(b)27 b FL(=)h(\()p FI(b)2160 4399 y FG(ij)2221 4384 y FL(\))2259 4399 y FH(1)p Fx(\024)p FG(i;j)t Fx(\024)p FG(\022)2547 4384 y FL(:=)f(\()p FI(\037)2776 4399 y FG(j)2813 4384 y FL(\()p FI(g)2898 4399 y FG(i)2926 4384 y FL(\)\))3002 4399 y FH(1)p Fx(\024)p FG(i;j)t Fx(\024)p FG(\022)3262 4384 y FI(:)404 4597 y FL(F)-8 b(or)31 b(more)h(detailed)g(exp)s (ositions)g(w)m(e)i(refer)e(to)h([A)m(G].)257 4928 y FD(2.4)161 b(Lie)54 b(algebras)257 5147 y FL(Lie)26 b(algebras)g(are)h (already)f(a)h(classic)f(sub)5 b(ject.)43 b(Ha)m(ving)27 b(b)s(een)g(in)m(tro)s(duced)g(more)f(than)257 5268 y(a)i(h)m(undred)i (y)m(ears)f(ago,)f(they)h(no)m(w)g(app)s(ear)f(in)f(man)m(y)h(branc)m (hes)i(of)e(mathematics)e(and)257 5388 y(ph)m(ysics.)45 b(Their)32 b(connection)g(with)f(Hopf)h(algebras)f(b)s(ecame)h(really)e (apparen)m(t)j(in)e(the)1828 5637 y(11)p eop %%Page: 12 14 12 13 bop 384 2073 a @beginspecial 0 @llx 0 @lly 597 @urx 320 @ury 3582 @rwi @setspecial %%BeginDocument: lie.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: lie.eps %%Creator: fig2dev Version 3.2 Patchlevel 3c %%CreationDate: Thu Sep 19 15:52:29 2002 %%For: dani@marvin (Daniel Didt) %%BoundingBox: 0 0 597 320 %%Magnification: 0.6000 %%EndComments /$F2psDict 200 dict def $F2psDict begin $F2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save newpath 0 320 moveto 0 0 lineto 597 0 lineto 597 320 lineto closepath clip newpath -58.0 335.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def $F2psBegin %%Page: 1 1 10 setmiterlimit 0.03600 0.03600 sc % % Fig objects follow % /Times-Bold ff 360.00 scf sf 14400 5700 m gs 1 -1 sc (E) col0 sh gr /Times-Bold ff 360.00 scf sf 14700 5850 m gs 1 -1 sc (8) col0 sh gr 30.000 slw % Ellipse n 13200 5400 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 13200 6600 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 12000 6600 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 10800 6600 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 14400 6600 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 15600 6600 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 16800 6600 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 18000 6600 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 10800 6600 m 18000 6600 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 13200 5400 m 13200 6600 l gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 10800 4200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 12000 4200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 13200 4200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 14400 4200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 15600 4200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 16800 4200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 13200 3000 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 10800 4200 m 16800 4200 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 13200 3000 m 13200 4200 l gs 0.00 setgray ef gr gs col0 s gr /Times-Bold ff 360.00 scf sf 14400 3300 m gs 1 -1 sc (E) col0 sh gr /Times-Bold ff 360.00 scf sf 14700 3450 m gs 1 -1 sc (7) col0 sh gr % Ellipse n 10800 1800 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 12000 1800 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 13200 1800 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 14400 1800 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 15600 1800 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 13200 600 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 10800 1800 m 15600 1800 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 13200 600 m 13200 1800 l gs 0.00 setgray ef gr gs col0 s gr /Times-Bold ff 360.00 scf sf 14400 900 m gs 1 -1 sc (E) col0 sh gr /Times-Bold ff 360.00 scf sf 14700 1050 m gs 1 -1 sc (6) col0 sh gr % Ellipse n 10800 8400 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 12000 8400 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 13200 8400 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 14400 8400 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 10800 8400 m 12000 8400 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 13200 8400 m 14400 8400 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 12000 8325 m 13200 8325 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 12000 8475 m 13200 8475 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 12300 8100 m 12750 8400 l 12300 8700 l gs col0 s gr /Times-Bold ff 360.00 scf sf 13500 9000 m gs 1 -1 sc (F) col0 sh gr /Times-Bold ff 360.00 scf sf 13650 9150 m gs 1 -1 sc (4) col0 sh gr /Times-Bold ff 360.00 scf sf 17400 9150 m gs 1 -1 sc (G) col0 sh gr /Times-Bold ff 360.00 scf sf 17700 9300 m gs 1 -1 sc (2) col0 sh gr % Ellipse n 16800 8400 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 18000 8400 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 16800 8400 m 18000 8400 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 16875 8475 m 18075 8475 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 16875 8325 m 18075 8325 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 17100 8100 m 17550 8400 l 17100 8700 l gs col0 s gr % Polyline [90] 0 sd n 4800 1200 m 5550 1200 l gs col0 s gr [] 0 sd % Polyline [90] 0 sd n 6600 1200 m 5850 1200 l gs col0 s gr [] 0 sd % Polyline [90] 0 sd n 4800 3600 m 5550 3600 l gs col0 s gr [] 0 sd % Polyline [90] 0 sd n 6600 3600 m 5850 3600 l gs col0 s gr [] 0 sd % Polyline [90] 0 sd n 4800 6000 m 5550 6000 l gs col0 s gr [] 0 sd % Polyline [90] 0 sd n 6600 6000 m 5850 6000 l gs col0 s gr [] 0 sd % Polyline [90] 0 sd n 4800 8400 m 5550 8400 l gs col0 s gr [] 0 sd % Polyline [90] 0 sd n 6600 8400 m 5850 8400 l gs col0 s gr [] 0 sd /Times-Bold ff 360.00 scf sf 5400 6600 m gs 1 -1 sc (C) col0 sh gr /Times-Bold ff 360.00 scf sf 5700 6750 m gs 1 -1 sc (n) col0 sh gr /Times-Bold ff 360.00 scf sf 5400 9000 m gs 1 -1 sc (D) col0 sh gr /Times-Bold ff 360.00 scf sf 5700 9150 m gs 1 -1 sc (n) col0 sh gr /Times-Bold ff 360.00 scf sf 5700 4350 m gs 1 -1 sc (n) col0 sh gr /Times-Bold ff 360.00 scf sf 5400 4200 m gs 1 -1 sc (B) col0 sh gr % Ellipse n 1800 1200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3000 1200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 4200 1200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 7200 1200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 8400 1200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 1800 3600 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3000 3600 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 4200 3600 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 7200 3600 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 8400 3600 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 1800 6000 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3000 6000 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 4200 6000 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 7200 6000 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 8400 6000 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 1800 8400 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3000 8400 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 4200 8400 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 7200 8400 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 8400 7800 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 8400 9000 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 6600 1200 m 8400 1200 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1800 1200 m 4800 1200 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1800 3600 m 4800 3600 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 6600 3600 m 7200 3600 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 7275 3525 m 8475 3525 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 7275 3675 m 8475 3675 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 7500 3300 m 7950 3600 l 7500 3900 l gs col0 s gr % Polyline n 1800 6000 m 4800 6000 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 6600 6000 m 7200 6000 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 7200 5925 m 8400 5925 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 7200 6075 m 8400 6075 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 7950 5700 m 7500 6000 l 7950 6300 l gs col0 s gr % Polyline n 1800 8400 m 4800 8400 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 6600 8400 m 7200 8400 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 7200 8400 m 8400 7800 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 7200 8400 m 8400 9000 l gs 0.00 setgray ef gr gs col0 s gr /Times-Bold ff 360.00 scf sf 5700 1950 m gs 1 -1 sc (n) col0 sh gr /Times-Bold ff 360.00 scf sf 5400 1800 m gs 1 -1 sc (A) col0 sh gr /Times-Bold ff 360.00 scf sf 6000 6600 m gs 1 -1 sc (, n>2) col0 sh gr /Times-Bold ff 360.00 scf sf 6000 9000 m gs 1 -1 sc (, n>3) col0 sh gr /Times-Bold ff 360.00 scf sf 6000 1800 m gs 1 -1 sc (, n>0) col0 sh gr /Times-Bold ff 360.00 scf sf 6000 4200 m gs 1 -1 sc (, n>1) col0 sh gr $F2psEnd rs %%EndDocument @endspecial 387 2277 a FL(Figure)31 b(2.1:)44 b(Dynkin)32 b(diagrams)f(of)h(\014nite)g(dimensional)e(simple)h(Lie)h(algebras)257 2562 y(mid)j(1980s)h(with)g(the)h(in)m(v)m(en)m(tion)g(of)f(Quan)m(tum) g(groups.)56 b(In)36 b(con)m(trast)h(to)g(the)f(usual)257 2682 y(en)m(v)m(eloping)i(algebras)g(of)f(Lie)g(algebras,)i(Quan)m(tum) f(groups,)h(b)s(eing)f(generally)f(non-)257 2802 y(comm)m(utativ)m(e)k (and)h(non-co)s(comm)m(utativ)m(e,)h(pro)m(vided)g(Hopf)e(algebras)h (with)f(a)h(v)-5 b(ast)257 2923 y(class)33 b(of)f(non-trivial)e (examples.)404 3043 y(A)e(v)m(ery)h(go)s(o)s(d)e(textb)s(o)s(ok)h(on)g (Lie)f(algebras)g(is)g([Hum])h(and)g(for)f(a\016ne)i(Lie)e(algebras)257 3164 y(w)m(e)34 b(refer)f(to)f([Kac].)257 3392 y FJ(Def)10 b(inition)36 b(2.3)98 b FE(A)26 b FL(Lie)c(algebra)j FE(is)h(a)f FF(|)-8 b FE(-v)o(e)j(ctor)20 b(sp)-5 b(ac)g(e)25 b Fs(g)h FE(with)g(a)g(biline)-5 b(ar)25 b(op)-5 b(er)g(ation)501 3512 y FL([)p FC(\001)p FI(;)17 b FC(\001)p FL(])36 b(:)h Fs(g)26 b FC(\002)g Fs(g)37 b FC(\000)-16 b(!)36 b Fs(g)p FI(;)k FE(c)-5 b(al)5 b(le)-5 b(d)39 b(a)47 b FL(Lie-brac)m(k)m(et)p FE(,)42 b(which)d(satis\014es)g FL([)p FI(a;)17 b(a)p FL(])37 b(=)f(0)k FE(and)501 3633 y(the)g FL(Jacobi)30 b(iden)m(tit)m(y)i([)p FI(a;)17 b FL([)p FI(b;)g(c)p FL(]])h(+)f([)p FI(b;)g FL([)p FI(c;)g(a)p FL(]])h(+)f([)p FI(c;)g FL([)p FI(a;)g(b)p FL(]])28 b(=)g(0)p FI(;)k FE(for)h(al)5 b(l)32 b FI(a;)17 b(b;)g(c)28 b FC(2)g Fs(g)p FI(:)501 3753 y FE(Note)36 b(that)f(the)g(Lie)f(br)-5 b(acket)35 b(is)g(usual)5 b(ly)35 b(non-asso)-5 b(ciative.)404 3981 y FL(The)29 b(classi\014cation)e(of)h(\014nite)g(dimensional)e (semisimple)g(Lie)i(algebras)g(b)m(y)h(Killing)257 4102 y(and)44 b(Cartan)g(is)g(a)g(gem)f(of)g(mathematics.)76 b(Semisimple)42 b(Lie)h(algebras)g(are)h(direct)257 4222 y(sums)29 b(of)e(simple)f(ones,)k(whic)m(h)f(in)e(turn)h(are)g(non-ab)s (elian)d(algebras)j(that)f(do)h(not)g(ha)m(v)m(e)257 4343 y(an)m(y)34 b(non-trivial)29 b(ideals.)404 4463 y(Ev)m(ery)48 b(simple)c(\014nite)i(dimensional)e(Lie)h(algebra)g (corresp)s(onds)j(to)e(one)g(of)g(the)257 4583 y(diagrams)34 b(in)h(Figure)f(2.1.)51 b(These)37 b(diagrams)d(are)h(named)g(after)h (Dynkin.)51 b(The)37 b(four)257 4704 y(in\014nite)c(series)i(corresp)s (ond)g(to)e(the)i(classical)d(examples)i(of)g Fs(sl)p FL(\(n\))p FI(;)17 b Fs(so)o FL(\(n\))34 b(and)g Fs(sp)p FL(\(n\))p FI(;)257 4824 y FL(and)g(then)f(there)h(are)f(5)g (exceptional)g(Lie)g(algebras.)44 b(Instead)34 b(of)f(this)g (diagrammatic)257 4944 y(w)m(a)m(y)-8 b(,)32 b(there)e(is)f(also)g(the) h(description)g(b)m(y)g(Cartan)g(matrices.)42 b(F)-8 b(or)28 b(a)i(Dynkin)f(diagram)257 5065 y FC(D)h FL(with)e FI(\022)i FL(v)m(ertices)f(one)f(tak)m(es)g(the)g(\()p FI(\022)14 b FC(\002)e FI(\022)s FL(\)-matrix)27 b Fq(a)h FL(=)f(\()p FI(a)2487 5080 y FG(ij)2548 5065 y FL(\))g(with)g(diagonal) f(en)m(tries)257 5185 y(equal)33 b(to)f(2.)257 5306 y(When)i(t)m(w)m(o) f(v)m(ertices)h FI(i)f FL(and)f FI(j)39 b FL(in)32 b FC(D)j FL(are)1828 5637 y(12)p eop %%Page: 13 15 13 14 bop 403 573 a FC(\017)48 b FL(not)33 b(directly)f(connected)i(b)m (y)f(a)g(line,)e(w)m(e)j(set)f FI(a)2260 588 y FG(ij)2348 573 y FL(=)28 b FI(a)2503 588 y FG(j)t(i)2591 573 y FL(=)g(0)p FI(;)403 771 y FC(\017)48 b FL(connected)34 b(b)m(y)g(a)e(single)g (line,)f(w)m(e)j(set)f FI(a)2003 786 y FG(ij)2091 771 y FL(=)28 b FI(a)2246 786 y FG(j)t(i)2334 771 y FL(=)g FC(\000)p FL(1)p FI(;)403 968 y FC(\017)48 b FL(connected)58 b(b)m(y)f(a)e(double)h(line)f(with)g(the)i(arro)m(w)f(p)s(oin)m(ting)e (at)i FI(j)6 b FL(,)61 b(w)m(e)c(set)501 1089 y FI(a)552 1104 y FG(ij)641 1089 y FL(=)27 b FC(\000)p FL(1)p FI(;)45 b(a)993 1104 y FG(j)t(i)1081 1089 y FL(=)28 b FC(\000)p FL(2)p FI(;)403 1287 y FC(\017)48 b FL(connected)62 b(b)m(y)g(a)e (triple)f(line)g(with)h(the)h(arro)m(w)f(p)s(oin)m(ting)f(at)h FI(j)6 b FL(,)67 b(w)m(e)61 b(set)501 1407 y FI(a)552 1422 y FG(ij)641 1407 y FL(=)27 b FC(\000)p FL(1)p FI(;)45 b(a)993 1422 y FG(j)t(i)1081 1407 y FL(=)28 b FC(\000)p FL(3)p FI(:)404 1593 y FL(There)33 b(is)e(a)h(so-called)e(ro)s(ot)h (system)i(asso)s(ciated)e(with)h(ev)m(ery)h(semisimple)d(Lie)h(al-)257 1714 y(gebra)c(and)g(hence)h(Dynkin)e(diagram.)39 b(The)28 b(elemen)m(ts)f(of)f(the)h(ro)s(ot)e(system)j(are)e(called)257 1834 y(ro)s(ots)32 b(and)f(come)h(in)e(t)m(w)m(o)j(classes:)44 b(p)s(ositiv)m(e)31 b(and)h(negativ)m(e)f(ro)s(ots.)43 b(F)-8 b(or)31 b(ev)m(ery)i(v)m(ertex)257 1955 y(of)c(the)g(Dynkin)g (diagram)d(w)m(e)k(ha)m(v)m(e)g(one)f(simple)f(p)s(ositiv)m(e)g(ro)s (ot.)41 b(Ev)m(ery)31 b(p)s(ositiv)m(e)d(ro)s(ot)257 2075 y(is)35 b(a)f(sum)h(of)f(simple)f(p)s(ositiv)m(e)h(ro)s(ots.)50 b(The)36 b(n)m(um)m(b)s(er)f(of)f(summands)h(in)f(this)g(presen-)257 2195 y(tation)f(is)g(called)g(the)h FE(height)43 b FL(of)34 b(the)g(ro)s(ot.)46 b(The)35 b(n)m(um)m(b)s(er)f(of)g(p)s(ositiv)m(e)f (and)h(negativ)m(e)257 2316 y(ro)s(ots)27 b(is)g(the)g(same,)i(and)e (the)g(dimension)f(of)h(the)g(Lie)g(algebra)f(is)h(exactly)g(the)h(n)m (um)m(b)s(er)257 2436 y(of)38 b(ro)s(ots)g(plus)g(the)g(n)m(um)m(b)s (er)h(of)f(v)m(ertices)h(of)f(the)g(corresp)s(onding)g(Dynkin)g (diagram.)257 2557 y(W)-8 b(e)33 b(denote)h(the)f(set)g(of)f(p)s (ositiv)m(e)g(ro)s(ots)g(b)m(y)i(\010)1985 2520 y FH(+)2044 2557 y FL(.)404 2677 y(F)-8 b(or)43 b(a\016ne)i(Lie)f(algebras)f(w)m(e) j(ha)m(v)m(e)f(a)f(similar)d(c)m(haracterization)j(and)g(refer)h(to)257 2797 y([Kac])33 b(for)f(more)g(details.)257 3127 y FD(2.5)161 b(Deformation)53 b(b)l(y)g(co)t(cycles)257 3346 y FL(There)39 b(is)e(a)f(nice)i(deformation)d(op)s(eration)h(on)h(Hopf)g(algebras)g (that)f(can)i(pro)m(vide)f(a)257 3467 y(Hopf)c(algebra)e(with)h(a)h (new)g(m)m(ultiplication.)39 b(F)-8 b(or)32 b(this)g(w)m(e)i(need)f(a)g (co)s(cycle.)257 3653 y FJ(Def)10 b(inition)36 b(2.4)98 b FE(A)72 b FL(2-co)s(cycle)g FI(\033)k FE(for)c(the)g(Hopf)g(algebr)-5 b(a)71 b Fv(H)i FE(is)e(a)h(line)-5 b(ar,)501 3774 y(c)g (onvolution-invertible)33 b(map)i FI(\033)c FL(:)d Fv(H)23 b FC(\012)f Fv(H)28 b FC(\000)-16 b(!)28 b FF(|)20 b FE(ful\014l)5 b(ling)927 3974 y FI(\033)t FL(\()p FI(x)1079 3989 y Fy(\(1\))1162 3974 y FI(;)17 b(y)1254 3989 y Fy(\(1\))1335 3974 y FL(\))p FI(\033)t FL(\()p FI(x)1525 3989 y Fy(\(2\))1608 3974 y FI(y)1656 3989 y Fy(\(2\))1738 3974 y FI(;)g(z)t FL(\))28 b(=)g FI(\033)t FL(\()p FI(y)2146 3989 y Fy(\(1\))2228 3974 y FI(;)17 b(z)2317 3989 y Fy(\(1\))2400 3974 y FL(\))p FI(\033)t FL(\()p FI(x;)g(y)2682 3989 y Fy(\(2\))2764 3974 y FI(z)2809 3989 y Fy(\(2\))2892 3974 y FL(\))365 b(\(2.2\))1240 4119 y FE(and)199 b FI(\033)t FL(\(1)p FI(;)17 b FL(1\))26 b(=)i(1)p FI(;)216 b FE(for)34 b(al)5 b(l)35 b FI(x;)17 b(y)t(;)g(z)31 b FC(2)d Fv(H)q FI(:)225 b FL(\(2.3\))501 4319 y FE(Convolution-invertible)45 b(me)-5 b(ans)46 b(that)i(ther)-5 b(e)46 b(is)h(another)f(line)-5 b(ar)47 b(map)f FI(\033)3324 4283 y Fx(\000)p FH(1)3468 4319 y FL(:)501 4440 y Fv(H)23 b FC(\012)f Fv(H)29 b FC(\000)-17 b(!)28 b FF(|)20 b FE(such)35 b(that)g(for)g(al)5 b(l)34 b FI(x;)17 b(y)31 b FC(2)d Fv(H)q FI(;)566 4640 y(\033)e(?)c(\033)777 4599 y Fx(\000)p FH(1)871 4640 y FL(\()p FI(x;)17 b(y)t FL(\))27 b(:=)h FI(\033)t FL(\()p FI(x)1408 4655 y Fy(\(1\))1491 4640 y FI(;)17 b(y)1583 4655 y Fy(\(1\))1664 4640 y FL(\))p FI(\033)1761 4599 y Fx(\000)p FH(1)1856 4640 y FL(\()p FI(x)1949 4655 y Fy(\(2\))2032 4640 y FI(;)g(y)2124 4655 y Fy(\(2\))2205 4640 y FL(\))28 b(=)g FI(")o FL(\()p FI(x)p FL(\))17 b FI(")p FL(\()p FI(y)t FL(\))27 b(=)g FI(\033)2931 4599 y Fx(\000)p FH(1)3048 4640 y FI(?)21 b(\033)t FL(\()p FI(x;)c(y)t FL(\))p FI(:)3295 4761 y FL(\(2.4\))404 4947 y(No)m(w,)36 b(giv)m(en)e(a)h(2-co)s(cycle)f(for)g(the)h(Hopf)g (algebra)e Fv(H)i FL(w)m(e)h(can)f(form)e(a)i(new)g(Hopf)257 5067 y(algebra)d Fv(H)688 5082 y FG(\033)767 5067 y FL(whic)m(h,)i(as)g (a)e(coalgebra,)h(is)f(the)i(same)f(as)g Fv(H)h FL(but)f(has)h(a)e(new) i(m)m(ultipli-)257 5188 y(cation)e(denoted)i(b)m(y)f FC(\001)1082 5203 y FG(\033)1151 5188 y FI(;)1043 5388 y(x)23 b FC(\001)1149 5403 y FG(\033)1217 5388 y FI(y)31 b FL(:=)d FI(\033)t FL(\()p FI(x)1579 5403 y Fy(\(1\))1662 5388 y FI(;)17 b(y)1754 5403 y Fy(\(1\))1835 5388 y FL(\))p FI(x)1928 5403 y Fy(\(2\))2011 5388 y FI(y)2059 5403 y Fy(\(2\))2141 5388 y FI(\033)2200 5347 y Fx(\000)p FH(1)2295 5388 y FL(\()p FI(x)2388 5403 y Fy(\(3\))2471 5388 y FI(;)g(y)2563 5403 y Fy(\(3\))2645 5388 y FL(\))p FI(:)585 b FL(\(2.5\))1828 5637 y(13)p eop %%Page: 14 16 14 15 bop 404 573 a FL(Giv)m(en)25 b(t)m(w)m(o)i(2-co)s(cycles)f FI(\033)n(;)17 b(\034)38 b FL(for)25 b Fv(H)q FI(;)g FL(the)h(con)m(v)m(olution)g(pro)s(duct)g FI(\034)19 b(?)8 b(\033)2981 537 y Fx(\000)p FH(1)3102 573 y FL(is)25 b(again)f(a)257 693 y(2-co)s(cycle,)29 b(but)e(for)g(the)h(Hopf)f (algebra)f Fv(H)1836 708 y FG(\033)1882 693 y FI(:)i FL(The)g(pro)s(of)f(of)g(this)g(is)g(a)g(straigh)m(tforw)m(ard)257 814 y(calculation.)39 b(By)25 b(using)f(\(2.2\))h(and)f(\(2.4\))h (appropriately)e(w)m(e)j(\014rst)f(obtain)f(the)h(co)s(cycle)257 934 y(condition)32 b(for)g FI(\033)894 898 y Fx(\000)p FH(1)988 934 y FI(;)673 1154 y(\033)732 1113 y Fx(\000)p FH(1)826 1154 y FL(\()p FI(x)919 1169 y Fy(\(1\))1002 1154 y FI(y)1050 1169 y Fy(\(1\))1132 1154 y FI(;)17 b(z)t FL(\))p FI(\033)1322 1113 y Fx(\000)p FH(1)1417 1154 y FL(\()p FI(x)1510 1169 y Fy(\(2\))1593 1154 y FI(;)g(y)1685 1169 y Fy(\(2\))1766 1154 y FL(\))28 b(=)g FI(\033)1995 1113 y Fx(\000)p FH(1)2089 1154 y FL(\()p FI(x;)17 b(y)2274 1169 y Fy(\(1\))2356 1154 y FI(z)2401 1169 y Fy(\(1\))2484 1154 y FL(\))p FI(\033)2581 1113 y Fx(\000)p FH(1)2675 1154 y FL(\()p FI(y)2761 1169 y Fy(\(2\))2843 1154 y FI(;)g(z)2932 1169 y Fy(\(2\))3015 1154 y FL(\))p FI(:)257 1374 y FL(And)30 b(then)f(w)m(e)h(use)f (\(2.5\))f(to)h(write)f(do)m(wn)i(\(2.2\))e(for)g FI(\034)e(?)14 b(\033)2398 1338 y Fx(\000)p FH(1)2521 1374 y FL(more)28 b(explicitly)e(and)j(get)257 1494 y(the)k(result)g(b)m(y)g(using)g(the) g(co)s(cycle)g(conditions)e(for)h FI(\034)44 b FL(and)33 b FI(\033)2542 1458 y Fx(\000)p FH(1)2636 1494 y FI(:)257 1827 y FD(2.6)161 b Fp(q)5 b FD(-Calculus)257 2046 y FL(W)-8 b(e)33 b(w)m(an)m(t)h(to)e(collect)g(some)g(basic)g (de\014nitions)g(and)h(results.)257 2250 y FJ(Def)10 b(inition)36 b(2.5)98 b FE(F)-7 b(or)33 b(every)i FI(q)d FC(2)c FF(|)20 b FE(we)35 b(de\014ne)e(for)i FI(n;)17 b(i)28 b FC(2)g FF(N)50 b FE(the)617 2453 y FC(\017)f FI(q)t FL(-n)m(um)m(b)s(ers)35 b(\()p FI(n)p FL(\))1325 2468 y FG(q)1391 2453 y FL(:=)1531 2409 y FH(1)p Fx(\000)p FG(q)1655 2386 y Fo(n)p 1531 2430 167 4 v 1553 2487 a FH(1)p Fx(\000)p FG(q)1736 2453 y FL(=)27 b(1)22 b(+)g FI(q)k FL(+)c FI(q)2222 2417 y FH(2)2283 2453 y FL(+)g FC(\001)17 b(\001)g(\001)k FL(+)h FI(q)2665 2417 y FG(n)p Fx(\000)p FH(1)2824 2453 y FI(;)617 2625 y FC(\017)49 b FI(q)t FL(-factorials)32 b(\()p FI(n)p FL(\)!)1379 2640 y FG(q)1445 2625 y FL(:=)c(\()p FI(n)p FL(\))1710 2640 y FG(q)1764 2625 y FC(\001)17 b(\001)g(\001)e FL(\(2\))2022 2640 y FG(q)2060 2625 y FL(\(1\))2185 2640 y FG(q)2245 2625 y FI(;)617 2801 y FC(\017)49 b FI(q)t FL(-binomial)28 b(co)s(e\016cien)m(ts)1692 2720 y Fw(\000)1738 2757 y FG(n)1747 2836 y(i)1781 2720 y Fw(\001)1826 2840 y FG(q)1892 2801 y FL(:=)2139 2752 y FH(\()p FG(n)p FH(\)!)2256 2760 y Fo(q)p 2033 2778 364 4 v 2033 2836 a FH(\()p FG(n)p Fx(\000)p FG(i)p FH(\)!)2229 2844 y Fo(q)2263 2836 y FH(\()p FG(i)p FH(\)!)2361 2844 y Fo(q)2434 2801 y FI(:)257 3014 y FL(Note)33 b(that)f(for)g FI(q)g FL(=)c(1)k(these)i(are)e(the)h (usual)f(notions.)404 3134 y(F)-8 b(or)31 b FI(q)t FL(-comm)m(uting)f (elemen)m(ts)j FI(x)g FL(and)f FI(y)k FL(in)31 b(an)i(algebra)e(with)h FI(xy)f FL(=)d FI(q)t(y)t(x)j FL(w)m(e)j(ha)m(v)m(e)257 3255 y(the)f(quan)m(tum)g(binomial)c(form)m(ula)925 3545 y(\()p FI(x)22 b FL(+)g FI(y)t FL(\))1228 3504 y FG(n)1302 3545 y FL(=)1456 3421 y FG(n)1405 3451 y Fw(X)1420 3660 y FG(i)p FH(=0)1566 3405 y Fw(\022)1639 3478 y FI(n)1652 3614 y(i)1697 3405 y Fw(\023)1771 3644 y FG(q)1809 3545 y FI(y)1861 3504 y FG(i)1888 3545 y FI(x)1943 3504 y FG(n)p Fx(\000)p FG(i)2264 3545 y FL(for)33 b(all)d FI(n)e FC(2)g FF(N)9 b FI(:)473 b FL(\(2.6\))1828 5637 y(14)p eop %%Page: 15 17 15 16 bop 257 1237 a FK(Chapter)78 b(3)257 1652 y(The)g(Lifting)e (Metho)6 b(d)257 2105 y FL(W)-8 b(e)42 b(w)m(an)m(t)g(to)f(giv)m(e)h (an)f(o)m(v)m(erview)i(of)d(the)i(so-called)e(lifting)e(metho)s(d)j (dev)m(elop)s(ed)h(b)m(y)257 2225 y(H.-J.)d(Sc)m(hneider)i(and)e(N.)g (Andruskiewitsc)m(h.)65 b(The)41 b(metho)s(d)d(is)h(v)m(ery)i(general,) f(but)257 2345 y(most)27 b(of)g(the)h(results)g(so)g(far)f(concern)h (\014nite)g(dimensional)d(algebras.)41 b(F)-8 b(or)27 b(this)g(reason)257 2466 y(w)m(e)48 b(will)c(limit)e(ourselv)m(es)48 b(mainly)c(to)i(this)g(case.)86 b(The)47 b(idea)e(is)h(to)g(break)h(up) g(the)257 2586 y(classi\014cation)d(of)h(\014nite)h(dimensional)d(p)s (oin)m(ted)i(Hopf)g(algebras)g(in)m(to)g(manageable)257 2707 y(stages.)257 3035 y FD(3.1)161 b(General)54 b(o)l(v)l(erview)257 3254 y FL(W)-8 b(e)35 b(start)f(with)g(a)g(\014nite)g(dimensional)d(p)s (oin)m(ted)j(Hopf)g(algebra)f Fv(H)i FL(and)f(consider)h(its)257 3374 y(coradical)29 b(\014ltration.)41 b(The)31 b(asso)s(ciated)f (graded)g(coalgebra)g(gr)16 b Fv(H)31 b FL(is)f(again)e(a)i(p)s(oin)m (ted)257 3495 y(Hopf)44 b(algebra)e(with)h(the)h FE(same)51 b FL(coradical,)44 b(b)s(ecause)h(the)f(coradical)e(is)h(the)h(group) 257 3615 y(algebra)32 b(of)g(a)g(group)h FI(\000)46 b FL(and)33 b(hence)h(a)e(Hopf)g(subalgebra.)404 3736 y(The)i(algebra)e Fv(R)i FL(of)e(coin)m(v)-5 b(arian)m(ts)33 b(of)g(the)h(pro)5 b(jection)33 b FI(\031)g FL(:)c(gr)16 b Fv(H)30 b FC(\000)-16 b(!)28 b Fv(H)3094 3751 y FH(0)3162 3736 y FL(=)h FF(|)-9 b FI(\000)42 b FL(is)257 3856 y(a)35 b(braided)f(Hopf)h(algebra)e(in)h (the)h(category)g(of)f(Y)-8 b(etter-Drinfeld)33 b(mo)s(dules)h(o)m(v)m (er)i FF(|)-9 b FI(\000)s(;)257 3976 y FL(whic)m(h)32 b(w)m(e)g(will)c(simply)h(denote)j(b)m(y)1616 3940 y Fo(\000)1616 4001 y(\000)1665 3976 y Fv(YD)p FL(.)43 b(By)31 b(the)h(pro)s(cess)g(of)e(b)s(osonization)f(w)m(e)j(can)257 4097 y(reconstruct)i(gr)17 b Fv(H)33 b FL(as)f Fv(R)p FL(#)p Fv(H)1354 4112 y FH(0)1393 4097 y FI(:)h FL(W)-8 b(e)33 b(will)d(call)h Fv(R)h FL(the)h FE(diagr)-5 b(am)39 b FL(of)33 b Fv(H)q FL(.)404 4217 y(The)26 b(classi\014cation)f(of)g (\014nite)g(dimensional)e(p)s(oin)m(ted)j(Hopf)f(algebras)g(with)h (certain)257 4338 y(prop)s(erties)33 b(can)g(no)m(w)g(b)s(e)g (addressed)h(in)e(the)h(follo)m(wing)d(three)j(steps.)377 4516 y(1.)48 b(Decide)38 b(what)g(group)g(can)g(b)s(e)h(c)m(hosen)g(as) g(the)f(coradical,)g(so)g(that)g(it)f(is)g(com-)501 4637 y(patible)31 b(with)i(the)g(prop)s(ert)m(y)g(in)f(question.)377 4832 y(2.)48 b(Find)24 b(all)f(\014nite)h(dimensional)e(braided)i(Hopf) h(algebras)f(with)g(the)h(desired)h(prop-)501 4952 y(ert)m(y)34 b(in)e(the)h(Y)-8 b(etter-Drinfeld)30 b(category)j(of)f(the)h (coradical.)377 5147 y(3.)48 b(Find)j(all)e(\014nite)i(dimensional)e(p) s(oin)m(ted)i(Hopf)g(algebras)g(whose)h(asso)s(ciated)501 5268 y(graded)42 b(v)m(ersion)g(is)f(a)g(b)s(osonization)f(of)h(the)g (ingredien)m(ts)h(found)f(in)g(the)h(\014rst)501 5388 y(t)m(w)m(o)34 b(steps.)1828 5637 y(15)p eop %%Page: 16 18 16 17 bop 257 573 a FL(The)26 b(last)d(step)j(is)e(the)g(actual)g FE(lifting)33 b FL(where)25 b(w)m(e)h(ha)m(v)m(e)g(to)e(\014nd)h (\\complicated")d(ob)5 b(jects)257 693 y(o)m(v)m(er)34 b(a)e(fairly)f(easy)j(one.)404 814 y(In)c(most)g(applications)f(of)h (this)g(metho)s(d,)g(the)h(extra)g(prop)s(ert)m(y)g(is)f(c)m(hosen)i (in)e(suc)m(h)257 934 y(a)i(w)m(a)m(y)h(as)f(to)g(simplify)d(either)j (step)h(1)f(or)f(2)h(of)f(the)i(ab)s(o)m(v)m(e)f(pro)s(cedure.)45 b(F)-8 b(or)31 b(instance,)257 1054 y(when)g(w)m(e)g(\014x)g(the)f (coradical)e(of)h(the)i(Hopf)e(algebras)g(in)g(question,)i(step)g(1)f (is)f(ob)m(vious.)257 1175 y(If)36 b(w)m(e)g(\014x)g(the)g(dimension)e (of)h(the)h(Hopf)f(algebra,)g(then)h(the)g(order)f(of)g(the)h (coradical)257 1295 y(m)m(ust)f(divide)f(it)g(and)h(th)m(us,)h(the)g(c) m(hoice)f(of)f(p)s(ossible)g(groups)h(is)f(again)g(v)m(ery)i(limited.) 257 1416 y(Another)28 b(approac)m(h)h(is)e(to)g(\014x)h(the)g(diagram)e Fv(R)h FL(and)h(hence)h(step)g(2.)41 b(Then)29 b(w)m(e)g(need)g(to)257 1536 y(decide)i(for)f(whic)m(h)h(groups)g(the)g(diagram)d Fv(R)j FL(is)f(actually)f(a)h(Y)-8 b(etter-Drinfeld)29 b(mo)s(dule.)257 1656 y(Generally)-8 b(,)27 b(the)g(lifting)d(metho)s (d)i(alw)m(a)m(ys)i(con)m(tains)f(a)f(part)h(that)f(is)h(completely)e (group)257 1777 y(theoretic.)404 1897 y(Step)35 b(2)f(is)g(normally)e (v)m(ery)k(di\016cult.)48 b(The)36 b(biggest)e(progress)h(w)m(as)h (made)e(for)g(the)257 2017 y(case)g(where)g(the)f(coradical)e(is)h(ab)s (elian.)41 b(W)-8 b(e)33 b(will)e(detail)f(this)j(in)f(the)h(next)g (section.)404 2138 y(F)-8 b(or)37 b(step)j(3)e(it)f(is)h(a)h(priori)d (unclear)i(ho)m(w)i(to)e(tac)m(kle)h(it.)60 b(But)38 b(it)g(turns)h(out)f(that)257 2258 y(in)33 b(the)i(cases)g(where)g (step)g(2)e(can)i(b)s(e)f(dealt)f(with)g(satisfactorily)-8 b(,)32 b(this)i(step)h(b)s(ecomes)257 2379 y(manageable)c(to)s(o.)43 b(W)-8 b(e)33 b(presen)m(t)h(the)f(results)g(for)f(this)h(in)e(Section) i(3.3.)257 2711 y FD(3.2)161 b(Nic)l(hols)54 b(algebras)257 2930 y FL(W)-8 b(e)33 b(in)m(tro)s(duce)g(a)f(k)m(ey)i(concept.)257 3134 y FJ(Def)10 b(inition)36 b(3.1)98 b FE(L)-5 b(et)46 b FC(S)53 b FE(b)-5 b(e)46 b(any)f(gr)-5 b(ade)g(d)45 b(br)-5 b(aide)g(d)45 b(Hopf)h(algebr)-5 b(a)45 b(in)3036 3085 y Ft(H)3092 3100 y Fy(0)3036 3150 y Ft(H)3092 3165 y Fy(0)3131 3134 y Fv(YD)g FE(with)501 3254 y FC(S)7 b FL(\(0\))28 b(=)g FF(|)17 b FE(and)32 b FC(S)7 b FL(\(1\))28 b(=)g FI(P)14 b FL(\()p FC(S)7 b FL(\))p FI(;)32 b FE(the)g(sp)-5 b(ac)g(e)32 b(of)f FL(\(1)p FI(;)17 b FL(1\))p FE(-primitive)31 b(elements.)43 b(The)501 3375 y(Hopf)48 b(sub)-5 b(algebr)g(a)47 b(of)h FC(S)55 b FE(gener)-5 b(ate)g(d)48 b(as)f(an)h(algebr)-5 b(a)47 b(by)h FI(V)73 b FL(:=)52 b FC(S)7 b FL(\(1\))48 b FE(wil)5 b(l)48 b(b)-5 b(e)501 3495 y(denote)g(d)39 b FC(B)s FL(\()p FI(V)22 b FL(\))39 b FE(and)f(c)-5 b(al)5 b(le)-5 b(d)39 b(the)46 b FL(Nic)m(hols)37 b(algebra)f(of)h FI(V)22 b FE(.)57 b(The)39 b(dimension)f(of)501 3615 y FI(V)57 b FE(wil)5 b(l)34 b(b)-5 b(e)35 b(c)-5 b(al)5 b(le)-5 b(d)34 b(the)42 b FL(rank)35 b FE(of)g FC(S)7 b FE(.)257 3819 y FL(An)48 b(imp)s(ortan)m(t)d(consequence)51 b(of)c(the)g(requiremen)m(t)h(that)f(the)h(generators)g(of)f(the)257 3939 y(Nic)m(hols)40 b(algebra)e(are)i FE(al)5 b(l)50 b FL(the)40 b(primitiv)m(e)d(elemen)m(ts)k(is)e(an)h(alternativ)m(e)f (description)257 4059 y(of)k FC(B)s FL(\()p FI(V)22 b FL(\).)75 b(W)-8 b(e)44 b(just)f(tak)m(e)h(the)f(free)h(Hopf)f(algebra) f(generated)i(b)m(y)g FI(V)65 b FL(so)43 b(that)g(the)257 4180 y(generators)f(are)e(primitiv)m(e)f(and)i(divide)f(out)h(all)d (other)j(primitiv)m(e)e(elemen)m(ts.)68 b(This)257 4300 y(allo)m(ws)32 b(us)h(to)f(de\014ne)i(Nic)m(hols)e(algebras)g(for)g(an) m(y)h(Y)-8 b(etter-Drinfeld)31 b(mo)s(dule.)404 4421 y(These)e(algebras)e(app)s(eared)h(\014rst)g(in)f(the)h(w)m(ork)g(of)g (Nic)m(hols)e([Nic])i(as)g(the)g(in)m(v)-5 b(arian)m(t)257 4541 y(part)33 b(of)g(his)g(\\bialgebras)f(of)g(part)h(one",)h(whic)m (h)g(in)e(turn)h(are)h(the)f(b)s(osonization)f(of)g(a)257 4661 y(Nic)m(hols)k(algebra)g(with)g(the)i(group)e(algebra.)55 b(W)-8 b(orono)m(wicz)37 b(used)h(the)f(term)f(\\quan-)257 4782 y(tum)j(symmetric)f(algebra")g(in)h([W)-8 b(or],)41 b(and)e(in)f(Lusztig)h([Lus3)q(])g(the)h(algebras)e Fs(f)h FL(are)257 4902 y(examples)33 b(of)f(Nic)m(hols)g(algebras.)404 5023 y(The)26 b(diagram)d Fv(R)28 b FC(2)1163 4986 y Fo(\000)1163 5047 y(\000)1212 5023 y Fv(YD)d FL(of)g(a)g(p)s(oin)m(ted) g(Hopf)h(algebra)e Fv(H)h FL(inherits)g(the)h(gradation)257 5143 y(from)33 b(gr)17 b Fv(H)q FI(;)34 b FL(where)h Fv(R)p FL(\()p FI(n)p FL(\))c(=)f(gr)17 b Fv(H)q FL(\()p FI(n)p FL(\))22 b FC(\\)i Fv(R)p FI(:)35 b FL(Because)g Fv(R)g FL(comes)f(from)f(the)i(coradical)257 5263 y(\014ltration)h(of)h Fv(H)q FL(,)h(w)m(e)g(can)g(deduce)h(from)d(a)h(Theorem)h(of)f(T)-8 b(aft)37 b(and)h(Wilson)e([Mon1,)1828 5637 y(16)p eop %%Page: 17 19 17 18 bop 257 573 a FL(Theorem)23 b(5.4.1])f(that)g Fv(R)p FL(\(1\))27 b(=)h FI(P)14 b FL(\()p Fv(R)p FL(\))21 b(and)h(hence)i(w)m (e)f(can)g(de\014ne)g(the)g(Nic)m(hols)e(algebra)257 693 y FC(B)s FL(\()p FI(V)h FL(\))33 b(with)f FI(V)49 b FL(=)28 b FI(P)14 b FL(\()p Fv(R)p FL(\))p FI(:)32 b FL(W)-8 b(e)33 b(note)f(that)h FI(V)54 b FL(is)32 b(a)g(Y)-8 b(etter-Drinfeld)31 b(submo)s(dule)h(of)g Fv(R)p FI(:)404 814 y FL(A)i(Hopf)h(algebra)e(generated)i(as)g(an)f(algebra)g(b)m(y)h (primitiv)m(e)d(and)j(group-lik)m(e)e(ele-)257 934 y(men)m(ts)g(is)f(p) s(oin)m(ted.)43 b(This)33 b(is)f(an)g(easy)i(statemen)m(t.)43 b(The)34 b(con)m(v)m(erse)h(ho)m(w)m(ev)m(er,)g(at)d(least)257 1054 y(for)25 b(\014nite)f(dimensional)f(Hopf)h(algebras)g(in)g(c)m (haracteristic)h(0,)h(is)f(the)g(main)e(conjecture)257 1175 y(of)36 b(Andruskiewitsc)m(h)i(and)f(Sc)m(hneider,)h(cf.)55 b([AS2,)37 b(Conjecture)g(1.4].)55 b(F)-8 b(or)35 b(the)i(cases)257 1295 y(where)d(the)f(conjecture)h(is)e(true,)h(w)m(e)h(ha)m(v)m(e)g Fv(R)27 b FL(=)h FC(B)s FL(\()p FI(V)22 b FL(\))p FI(:)404 1416 y FL(So)34 b(w)m(e)i(see)g(that)f(for)f(step)h(2)g(of)f(the)h (lifting)d(metho)s(d)i(w)m(e)i(can)f(limit)c(ourselv)m(es)37 b(to)257 1536 y(the)30 b(in)m(v)m(estigation)d(of)i(the)g(question)g (as)g(to)g(when)h(the)f(Nic)m(hols)g(algebra)e(of)i FI(V)50 b FL(is)28 b(\014nite)257 1656 y(dimensional)34 b(and)j(is)f (compatible)f(with)h(the)h(desired)g(prop)s(ert)m(y)-8 b(.)56 b(F)-8 b(or)36 b(this,)h FI(V)58 b FL(m)m(ust)257 1777 y(necessarily)33 b(b)s(e)g(\014nite)g(dimensional.)404 1897 y(F)-8 b(rom)37 b(no)m(w)j(on)f(the)h(coradical)d(of)i Fv(H)h FL(is)e(the)i(group)f(algebra)f FF(|)-9 b FI(\000)48 b FL(with)38 b FI(\000)53 b FL(\014nite)257 2017 y(and)41 b(ab)s(elian.)67 b(Then)42 b(w)m(e)f(kno)m(w)h(that)f FI(V)62 b FL(has)42 b(a)e(basis)h FI(x)2448 2032 y FH(1)2488 2017 y FI(;)17 b(:)g(:)g(:)e(;)i(x)2761 2032 y FG(\022)2841 2017 y FL(and)41 b(there)h(exist)257 2138 y FI(g)304 2153 y FH(1)344 2138 y FI(;)17 b(:)g(:)g(:)e(;)i(g)609 2153 y FG(\022)675 2138 y FC(2)29 b FI(\000)14 b FL(,)30 b FI(\037)962 2153 y FH(1)1002 2138 y FI(;)17 b(:)g(:)g(:)f(;)h(\037) 1282 2153 y FG(\022)1348 2138 y FC(2)1463 2113 y FL(^)1442 2138 y FI(\000)44 b FL(suc)m(h)32 b(that)e(the)g(action)g(and)g (coaction)f(of)h Fv(H)3196 2153 y FH(0)3262 2138 y FL(=)e FF(|)-9 b FI(\000)257 2258 y FL(tak)m(e)34 b(the)f(form)487 2446 y FI(h:x)625 2461 y FG(i)681 2446 y FL(=)28 b FI(\037)846 2461 y FG(i)874 2446 y FL(\()p FI(h)p FL(\))p FI(x)1061 2461 y FG(i)1187 2446 y FL(and)98 b FI(\032)p FL(\()p FI(x)1585 2461 y FG(i)1614 2446 y FL(\))28 b(=)f FI(g)1830 2461 y FG(i)1880 2446 y FC(\012)c FI(x)2035 2461 y FG(i)2063 2446 y FI(;)212 b FC(8)p FI(h)28 b FC(2)g FI(\000)s(;)17 b FL(1)28 b FC(\024)g FI(i)g FC(\024)g FI(\022)s(:)230 b FL(\(3.1\))257 2635 y(On)26 b(the)h(other)f(hand,)h(giv)m(en)f (elemen)m(ts)g FI(g)1775 2650 y FG(i)1829 2635 y FL(and)g FI(\037)2073 2650 y FG(i)2127 2635 y FL(as)g(ab)s(o)m(v)m(e,)i(w)m(e)f (can)f(de\014ne)i(a)d(Y)-8 b(etter-)257 2755 y(Drinfeld)23 b(mo)s(dule)g FI(V)49 b FC(2)1166 2719 y Fo(\000)1166 2780 y(\000)1216 2755 y Fv(YD)24 b FL(with)g(basis)h FI(x)1883 2770 y FG(i)1936 2755 y FL(b)m(y)g(\(3.1\))f(and)h(form)e (the)i(Nic)m(hols)f(algebra)257 2875 y FC(B)s FL(\()p FI(V)e FL(\))p FI(:)404 2996 y FL(An)33 b(imp)s(ortan)m(t)d(role)i(is)g (pla)m(y)m(ed)h(b)m(y)h(the)f FE(br)-5 b(aiding)33 b(matrix)1057 3184 y Fq(b)27 b FL(=)h(\()p FI(b)1319 3199 y FG(ij)1380 3184 y FL(\))1418 3199 y FH(1)p Fx(\024)p FG(i;j)t Fx(\024)p FG(\022)1873 3184 y FL(with)97 b FI(b)2201 3199 y FG(ij)2290 3184 y FL(:=)27 b FI(\037)2481 3199 y FG(j)2518 3184 y FL(\()p FI(g)2603 3199 y FG(i)2631 3184 y FL(\))p FI(:)257 3548 y FJ(Def)10 b(inition)36 b(3.2)98 b FE(A)35 b(br)-5 b(aiding)34 b(matrix)g Fq(b)h FE(is)g(of)617 3743 y FC(\017)49 b FJ(Cartan)38 b(t)m(yp)s(e)d FE(if)1252 3931 y FI(b)1293 3946 y FG(ii)1374 3931 y FC(6)p FL(=)27 b(1)35 b FE(is)g(a)f(r)-5 b(o)g(ot)35 b(of)g(unity)g(and)826 b FL(\(3.2\))1142 4076 y FI(b)1183 4091 y FG(ij)1244 4076 y FI(b)1285 4091 y FG(j)t(i)1374 4076 y FL(=)27 b FI(b)1518 4022 y FG(a)1555 4032 y Fo(ij)1518 4102 y FG(ii)1715 4076 y FE(with)34 b FI(a)1977 4091 y FG(ij)2066 4076 y FC(2)28 b FF(Z)k FE(for)j(al)5 b(l)34 b FL(1)28 b FC(\024)g FI(i;)17 b(j)34 b FC(\024)28 b FI(\022)s(:)226 b FL(\(3.3\))716 4265 y FE(The)35 b(inte)-5 b(gers)35 b FI(a)1330 4280 y FG(ij)1426 4265 y FE(ar)-5 b(e)36 b(uniquely)f(determine)-5 b(d)35 b(by)h(r)-5 b(e)g(quiring)35 b FI(a)3070 4280 y FG(ii)3152 4265 y FL(=)28 b(2)36 b FE(and)716 4385 y FL(0)g FC(\025)i FI(a)967 4400 y FG(ij)1064 4385 y FI(>)f FC(\000)17 b FL(ord)g FI(b)1470 4400 y FG(ii)1562 4385 y FE(for)40 b FI(i)d FC(6)p FL(=)f FI(j:)41 b FE(Then)e FL(\()p FI(a)2361 4400 y FG(ij)2421 4385 y FL(\))h FE(is)g(a)f(gener)-5 b(alize)g(d)39 b(Cartan)716 4505 y(matrix,)34 b(cf.)45 b([Kac)o(].)617 4778 y FC(\017)k FJ(Finite)i(Cartan)i(t)m(yp)s(e)47 b FE(if)g(it)h(is)e(of)h(Cartan)g(typ)-5 b(e)47 b(wher)-5 b(e)47 b(the)g(Cartan)716 4899 y(matrix)28 b(c)-5 b(orr)g(esp)g(onds)28 b(to)h(a)f(\014nite)h(dimensional)e(semisimple)g(Lie)h(algebr)-5 b(a.)617 5052 y FC(\017)49 b FJ(FL-t)m(yp)s(e)30 b FE(if)f(it)g(is)g (of)f(Cartan)h(typ)-5 b(e)29 b(with)g(Cartan)g(matrix)f FL(\()p FI(a)2976 5067 y FG(ij)3037 5052 y FL(\))h FE(and)f(ther)-5 b(e)716 5172 y(exist)35 b(a)f FI(q)e FC(2)c FF(|)20 b FE(and)34 b(p)-5 b(ositive)34 b(inte)-5 b(gers)35 b FI(d)2240 5187 y FH(1)2279 5172 y FI(;)17 b(:)g(:)g(:)f(;)h(d)2549 5187 y FG(\022)2622 5172 y FE(such)35 b(that)g(for)g(al)5 b(l)34 b FI(i;)17 b(j)1336 5360 y(b)1377 5375 y FG(ij)1465 5360 y FL(=)28 b FI(q)1616 5319 y FG(d)1652 5329 y Fo(i)1678 5319 y FG(a)1715 5329 y Fo(ij)1974 5360 y FE(and)199 b FI(d)2379 5375 y FG(i)2406 5360 y FI(a)2457 5375 y FG(ij)2546 5360 y FL(=)27 b FI(d)2700 5375 y FG(j)2737 5360 y FI(a)2788 5375 y FG(j)t(i)2848 5360 y FI(:)1828 5637 y FL(17)p eop %%Page: 18 20 18 19 bop 617 573 a FC(\017)49 b FJ(Lo)s(cal)k(FL-t)m(yp)s(e)d FE(if)d(any)h(princip)-5 b(al)47 b FL(2)31 b FC(\002)h FL(2)48 b FE(submatrix)g(of)f FL(\()p FI(b)3151 588 y FG(ij)3212 573 y FL(\))h FE(is)g(of)716 693 y(FL-typ)-5 b(e.)404 897 y FL(The)39 b(c)m(haracterization)e(of)h(\014nite)f (dimensional)f(Nic)m(hols)h(algebras)h(o)m(v)m(er)h(ab)s(elian)257 1017 y(groups)33 b(is)f(giv)m(en)h(b)m(y)h(the)f(main)d(result)j(of)f ([AS2].)257 1220 y FJ(Theorem)37 b(3.1)98 b FE([AS2,)33 b(The)-5 b(or)g(em)31 b(1.1.])43 b(L)-5 b(et)32 b Fq(b)g FE(b)-5 b(e)32 b(a)g(br)-5 b(aiding)31 b(of)h(Cartan)f(typ)-5 b(e)33 b(and)501 1341 y(assume)h(that)i FI(b)1083 1356 y FG(ii)1170 1341 y FE(has)f(o)-5 b(dd)34 b(or)-5 b(der)34 b(for)h(al)5 b(l)35 b FI(i)p FE(.)587 1544 y(1.)49 b(If)34 b Fq(b)h FE(is)g(of)f(\014nite)h(Cartan)f(typ)-5 b(e,)35 b(then)g FC(B)s FL(\()p FI(V)22 b FL(\))35 b FE(is)f(\014nite)h (dimensional.)587 1706 y(2.)49 b(Assume)38 b(that)h Fq(b)f FE(is)g(of)g(lo)-5 b(c)g(al)37 b(FL-typ)-5 b(e)38 b(and)g(that)g(for)g (al)5 b(l)38 b FI(i)p FE(,)h(the)g(or)-5 b(der)38 b(of)716 1826 y FI(b)757 1841 y FG(ii)848 1826 y FE(is)g(r)-5 b(elatively)38 b(prime)g(to)g(3)g(whenever)g FI(a)2346 1841 y FG(ij)2440 1826 y FL(=)c FC(\000)p FL(3)39 b FE(for)f(some)g FI(j;)h FE(and)e(is)716 1947 y(di\013er)-5 b(ent)34 b(fr)-5 b(om)35 b(3,)f(5,)h(7,)f(11,)h(13,)f(17.)716 2067 y(If)g FC(B)s FL(\()p FI(V)22 b FL(\))35 b FE(is)g(\014nite)f(dimensional,)f (then)i Fq(b)f FE(is)h(of)g(\014nite)f(Cartan)h(typ)-5 b(e.)257 2271 y FL(With)39 b(this)h(result,)h(the)f(determination)e(of) h(all)e(\014nite)i(dimensional)e(diagrams)h Fv(R)i FC(2)257 2355 y Fo(\000)257 2416 y(\000)307 2391 y Fv(YD)g FL(reduces,)45 b(in)40 b(man)m(y)g(cases,)k(to)c(\014nding)h(elemen)m(ts)g FI(g)2466 2406 y FG(i)2535 2391 y FC(2)h FI(\000)54 b FL(and)41 b FI(\037)3016 2406 y FG(i)3085 2391 y FC(2)3214 2366 y FL(^)3193 2391 y FI(\000)55 b FL(suc)m(h)257 2511 y(that)27 b(the)g(corresp)s(onding)g(braiding)e(matrix)g(is)i(of)f (\014nite)h(Cartan)g(t)m(yp)s(e.)42 b(This)27 b(is)g(again)257 2632 y(partly)39 b(a)h(group)f(theoretic)h(question.)65 b(W)-8 b(e)40 b(will)d(deal)i(with)h(a)f(sp)s(eci\014c)h(problem)f(of) 257 2752 y(this)33 b(sort)f(in)g(Chapter)h(5.)404 2873 y(W)-8 b(e)26 b(also)f(ha)m(v)m(e)i(a)e(complete)g(description)g(of)h FC(B)s FL(\()p FI(V)21 b FL(\))26 b(when)h(the)f(braiding)e(is)h(of)g (\014nite)257 2993 y(Cartan)k(t)m(yp)s(e.)43 b(Let)29 b FI(V)50 b FL(b)s(e)28 b(a)h(Y)-8 b(etter-Drinfeld)26 b(mo)s(dule)i(o)m(v)m(er)h FI(\000)43 b FL(de\014ned)30 b(b)m(y)f(\(3.1\))f(and)257 3113 y Fq(b)p FI(;)38 b FL(the)g(corresp)s (onding)g(braiding)e(matrix,)h(is)g(of)g(\014nite)h(Cartan)g(t)m(yp)s (e.)59 b(This)38 b(means)257 3234 y(that)30 b Fq(b)f FL(is)g(asso)s(ciated)h(to)f(a)g(Cartan)h(matrix)e(\()p FI(a)2029 3249 y FG(ij)2089 3234 y FL(\))i(and)f(hence)i(to)f(a)f (Dynkin)g(diagram)257 3354 y FI(D)39 b FL(of)d(a)g(semisimple)e(Lie)i (algebra.)54 b(W)-8 b(e)37 b(assume)f(that)h FI(N)2440 3369 y FG(i)2468 3354 y FI(;)f FL(the)h(order)g(of)e FI(b)3117 3369 y FG(ii)3170 3354 y FI(;)h FL(is)g(o)s(dd)257 3474 y(and)43 b(not)g(divisible)d(b)m(y)k(3)e(if)g FI(i)h FL(b)s(elongs)f(to)g(a)h(connected)h(comp)s(onen)m(t)f(of)f(t)m(yp)s(e) i FI(G)3429 3489 y FH(2)3468 3474 y FL(.)257 3595 y(Here,)g FI(i)c FL(is)g(used)i(sim)m(ultaneously)d(as)h(a)g(v)m(ertex)i(in)e (the)h(Dynkin)f(diagram)e(and)j(the)257 3715 y(corresp)s(onding)36 b(index)g(in)g(the)g(braiding)e(matrix.)52 b(Let)36 b FC(X)51 b FL(b)s(e)36 b(the)g(set)h(of)f(connected)257 3836 y(comp)s(onen)m(ts)42 b(of)e(the)h(Dynkin)f(diagram)f FI(D)s(:)h FL(If)h(v)m(ertices)h FI(i)e FL(and)h FI(j)47 b FL(are)40 b(in)g(the)h(same)257 3956 y(comp)s(onen)m(t)33 b FI(I)j FC(2)29 b(X)15 b FI(;)33 b FL(then)g(the)g(orders)h FI(N)1838 3971 y FG(i)1899 3956 y FL(and)f FI(N)2167 3971 y FG(j)2236 3956 y FL(of)g(the)g(corresp)s(onding)g(braiding)257 4076 y(matrix)j(en)m(tries)i(are)f(equal,)h(due)g(to)f(the)h(symmetry)f (of)g(\(3.3\).)57 b(Hence)38 b FI(N)3072 4091 y FG(I)3148 4076 y FL(:=)d FI(N)3364 4091 y FG(i)3430 4076 y FL(is)257 4197 y(w)m(ell)e(de\014ned.)48 b(W)-8 b(e)34 b(de\014ne)h(an)e(adjoin)m (t)g(action)f(and)i(a)f(braided)g(comm)m(utator)f(on)i(the)257 4317 y(free)f(algebra)f(of)g FI(V)54 b FL(b)m(y)1095 4537 y(\(ad)16 b FI(x)1307 4552 y FG(i)1336 4537 y FL(\))p FI(x)1429 4552 y FG(j)1493 4537 y FL(:=)28 b([)p FI(x)1706 4552 y FG(i)1735 4537 y FI(;)17 b(x)1834 4552 y FG(j)1870 4537 y FL(])28 b(:=)g FI(x)2111 4552 y FG(i)2139 4537 y FI(x)2194 4552 y FG(j)2254 4537 y FC(\000)22 b FI(b)2394 4552 y FG(ij)2455 4537 y FI(x)2510 4552 y FG(j)2547 4537 y FI(x)2602 4552 y FG(i)2631 4537 y FI(:)637 b FL(\(3.4\))257 4757 y(In)33 b([Lus1)q(,)f(Lus2)q(])g(Lusztig)h(de\014ned)h FE(r)-5 b(o)g(ot)35 b(ve)-5 b(ctors)p FL(.)257 4878 y(F)d(or)30 b(ev)m(ery)i(simple)d(p)s(ositiv)m(e)g(ro)s(ot)h FI(\013)g FL(corresp)s(onding)h(to)f(the)g(v)m(ertex)i FI(i)f FL(of)f(the)g (Dynkin)257 4998 y(diagram,)g(w)m(e)k(de\014ne)f(the)g(ro)s(ot)e(v)m (ector)i FI(x)1811 5013 y FG(\013)1889 4998 y FL(:=)27 b FI(x)2074 5013 y FG(i)2103 4998 y FI(:)32 b FL(The)h(ro)s(ot)f(v)m (ectors)h(corresp)s(onding)257 5118 y(to)f(all)d(the)k(other)e(p)s (ositiv)m(e)h(ro)s(ots)f(are)h(no)m(w)g(de\014ned)h(as)f(iterated)f (braided)h(comm)m(uta-)257 5239 y(tors.)53 b(The)37 b(n)m(um)m(b)s(er)f (of)f(comm)m(utators)g(equals)h(the)g(heigh)m(t)g(of)f(the)h(ro)s(ot)f (min)m(us)g(one.)257 5359 y(The)e(en)m(tries)e(of)g(the)h(braided)f (comm)m(utators)f(are)h(just)h(the)g FI(x)2557 5374 y FG(i)2617 5359 y FL(corresp)s(onding)f(to)g(the)1828 5637 y(18)p eop %%Page: 19 21 19 20 bop 257 573 a FL(simple)37 b(ro)s(ots,)i(whic)m(h)g(form)d(the)j (summands)f(of)f(the)i(p)s(ositiv)m(e)e(ro)s(ot.)59 b(The)39 b(order)g(of)257 693 y(the)31 b(comm)m(utators)d(is)h(the)i(same)e(as)h (in)f(Lusztig's)h(w)m(ork,)h(where)g(this)f(construction)g(is)257 814 y(done)38 b(for)f(a)g(sp)s(ecial)g(braiding.)56 b(In)38 b(the)g(second)h(half)d(of)h(the)h(in)m(tro)s(duction)e(to)h([Rin)o(]) 257 934 y(an)c(explicit)e(construction)i(metho)s(d)f(is)g(giv)m(en.)404 1054 y(As)i(an)h(example)e(w)m(e)j(giv)m(e)e(the)g(ro)s(ot)g(v)m (ectors)i(of)d FI(G)2320 1069 y FH(2)2394 1054 y FL(explicitly)-8 b(.)46 b(W)-8 b(e)35 b(assume)g(the)257 1175 y(arro)m(w)40 b(p)s(oin)m(ts)e(at)h(v)m(ertex)i(1,)f(so)f FI(a)1558 1190 y FH(12)1672 1175 y FL(=)g FC(\000)p FL(3)g(and)g FI(a)2199 1190 y FH(21)2313 1175 y FL(=)f FC(\000)p FL(1.)63 b(W)-8 b(e)40 b(ha)m(v)m(e)g(the)g(simple)257 1295 y(ro)s(ots)27 b FI(\013)561 1310 y FH(1)600 1295 y FI(;)17 b(\013)706 1310 y FH(2)772 1295 y FL(and)27 b(the)h(p)s(ositiv)m(e)e(ro)s(ots)g FI(\013)1777 1310 y FH(1)1827 1295 y FL(+)11 b FI(\013)1976 1310 y FH(2)2015 1295 y FI(;)27 b FL(2)p FI(\013)2180 1310 y FH(1)2230 1295 y FL(+)11 b FI(\013)2379 1310 y FH(2)2418 1295 y FI(;)27 b FL(3)p FI(\013)2583 1310 y FH(1)2633 1295 y FL(+)11 b FI(\013)2782 1310 y FH(2)2847 1295 y FL(and)27 b(3)p FI(\013)3142 1310 y FH(1)3192 1295 y FL(+)11 b(2)p FI(\013)3390 1310 y FH(2)3429 1295 y FI(:)3456 1259 y FH(1)257 1416 y FL(The)34 b(corresp)s(onding)e(ro)s (ot)g(v)m(ectors)i(are)f(no)m(w)977 1636 y FI(x)1032 1651 y FG(\013)1077 1660 y Fy(1)1144 1636 y FL(:=)28 b FI(x)1330 1651 y FH(1)1370 1636 y FI(;)212 b(x)1664 1651 y FG(\013)1709 1660 y Fy(2)1776 1636 y FL(:=)27 b FI(x)1961 1651 y FH(2)2001 1636 y FI(;)1267 b FL(\(3.5\))842 1781 y FI(x)897 1796 y FG(\013)942 1805 y Fy(1)978 1796 y FH(+)p FG(\013)1078 1805 y Fy(2)1144 1781 y FL(:=)28 b([)p FI(x)1357 1796 y FH(2)1397 1781 y FI(;)17 b(x)1496 1796 y FH(1)1535 1781 y FL(])p FI(;)1706 b FL(\(3.6\))807 1926 y FI(x)862 1941 y FH(2)p FG(\013)942 1950 y Fy(1)978 1941 y FH(+)p FG(\013)1078 1950 y Fy(2)1144 1926 y FL(:=)28 b([)p FI(x)1357 1941 y FG(\013)1402 1950 y Fy(1)1437 1941 y FH(+)p FG(\013)1537 1950 y Fy(2)1576 1926 y FI(;)17 b(x)1675 1941 y FH(1)1715 1926 y FL(])28 b(=)f([[)p FI(x)1982 1941 y FH(2)2022 1926 y FI(;)17 b(x)2121 1941 y FH(1)2161 1926 y FL(])p FI(;)g(x)2287 1941 y FH(1)2326 1926 y FL(])p FI(;)915 b FL(\(3.7\))807 2071 y FI(x)862 2086 y FH(3)p FG(\013)942 2095 y Fy(1)978 2086 y FH(+)p FG(\013)1078 2095 y Fy(2)1144 2071 y FL(:=)28 b([)p FI(x)1357 2086 y FH(2)p FG(\013)1437 2095 y Fy(1)1473 2086 y FH(+)p FG(\013)1573 2095 y Fy(2)1612 2071 y FI(;)17 b(x)1711 2086 y FH(1)1750 2071 y FL(])28 b(=)f([[[)p FI(x)2044 2086 y FH(2)2085 2071 y FI(;)17 b(x)2184 2086 y FH(1)2223 2071 y FL(])p FI(;)g(x)2349 2086 y FH(1)2389 2071 y FL(])p FI(;)g(x)2515 2086 y FH(1)2555 2071 y FL(])p FI(;)686 b FL(\(3.8\))772 2217 y FI(x)827 2232 y FH(3)p FG(\013)907 2241 y Fy(1)942 2232 y FH(+2)p FG(\013)1077 2241 y Fy(2)1144 2217 y FL(:=)28 b([)p FI(x)1357 2232 y FG(\013)1402 2241 y Fy(1)1437 2232 y FH(+)p FG(\013)1537 2241 y Fy(2)1576 2217 y FI(;)17 b(x)1675 2232 y FH(2)p FG(\013)1755 2241 y Fy(1)1791 2232 y FH(+)p FG(\013)1891 2241 y Fy(2)1930 2217 y FL(])27 b(=)h([[)p FI(x)2197 2232 y FH(2)2237 2217 y FI(;)17 b(x)2336 2232 y FH(1)2376 2217 y FL(])p FI(;)g FL([[)p FI(x)2556 2232 y FH(2)2595 2217 y FI(;)g(x)2694 2232 y FH(1)2734 2217 y FL(])p FI(;)g(x)2860 2232 y FH(1)2900 2217 y FL(]])p FI(:)314 b FL(\(3.9\))257 2437 y(W)-8 b(e)36 b(denote)h(the)f(set)h(of)e(p)s(ositiv)m(e)g(ro)s(ots)g(corresp) s(onding)h(to)f(the)h(comp)s(onen)m(t)g FI(I)41 b FC(2)34 b(X)257 2557 y FL(b)m(y)g(\010)463 2516 y FH(+)463 2584 y FG(I)522 2557 y FI(:)257 2785 y FJ(Theorem)j(3.2)98 b FE([AS3,)33 b(The)-5 b(or)g(em)31 b(4.5.])43 b(The)32 b(Nichols)f(algebr)-5 b(a)32 b FC(B)s FL(\()p FI(V)22 b FL(\))32 b FE(is)g(pr)-5 b(esente)g(d)501 2906 y(by)35 b(gener)-5 b(ators)34 b FI(x)1156 2921 y FG(i)1185 2906 y FI(;)17 b FL(1)27 b FC(\024)h FI(i)g FC(\024)h FI(\022)s(;)35 b FE(and)f(r)-5 b(elations)1195 3126 y FL(\()p FI(adx)1390 3141 y FG(i)1419 3126 y FL(\))1457 3085 y FH(1)p Fx(\000)p FG(a)1584 3095 y Fo(ij)1643 3126 y FI(x)1698 3141 y FG(j)1763 3126 y FL(=)27 b(0)p FI(;)216 b(i)28 b FC(6)p FL(=)g FI(j;)856 b FL(\(3.10\))1584 3282 y FI(x)1639 3240 y FG(N)1695 3251 y Fo(I)1639 3306 y FG(\013)1763 3282 y FL(=)27 b(0)p FI(;)216 b(\013)28 b FC(2)h FL(\010)2413 3240 y FH(+)2413 3309 y FG(I)2472 3282 y FI(;)17 b(I)35 b FC(2)28 b(X)15 b FI(:)445 b FL(\(3.11\))501 3502 y FE(The)31 b(elements)f FI(x)1149 3465 y FG(n)1192 3474 y Fy(1)1149 3526 y FG(\013)1194 3535 y Fy(1)1234 3502 y FI(x)1289 3465 y FG(n)1332 3474 y Fy(2)1289 3526 y FG(\013)1334 3535 y Fy(2)1390 3502 y FI(:)17 b(:)g(:)f(x)1576 3465 y FG(n)1619 3476 y Fo(P)1576 3526 y FG(\013)1621 3537 y Fo(P)1708 3502 y FE(with)31 b FL(0)d FC(\024)g FI(n)2156 3517 y FG(i)2212 3502 y FI(<)g(N)2394 3517 y FG(I)2434 3502 y FI(;)j FE(if)g FI(\013)2645 3517 y FG(i)2701 3502 y FC(2)d FL(\010)2865 3460 y FH(+)2865 3529 y FG(I)2925 3502 y FI(;)j FE(form)g(a)g(b)-5 b(asis)501 3622 y(of)38 b FC(B)s FL(\()p FI(V)22 b FL(\))p FI(:)39 b FE(Her)-5 b(e)39 b FI(P)52 b FE(is)38 b(the)g(total)h(numb)-5 b(er)38 b(of)g(p)-5 b(ositive)38 b(r)-5 b(o)g(ots)39 b(and)f(the)g(pr)-5 b(o)g(duct)501 3742 y(involves)34 b(al)5 b(l)34 b(r)-5 b(o)g(ot)35 b(ve)-5 b(ctors.)45 b(Henc)-5 b(e)34 b(the)h(dimension)e(of)i FC(B)s FL(\()p FI(V)22 b FL(\))35 b FE(is)1498 3980 y FL(dim)15 b FC(B)s FL(\()p FI(V)22 b FL(\))28 b(=)2039 3885 y Fw(Y)2031 4097 y FG(I)5 b Fx(2X)2191 3980 y FC(j)p FL(\010)2289 3939 y FH(+)2289 4007 y FG(I)2348 3980 y FC(j)2376 3939 y FG(N)2432 3950 y Fo(I)2471 3980 y FI(:)257 4551 y FD(3.3)161 b(Lifting)257 4771 y FL(F)-8 b(or)24 b(a)h(more)f(detailed)g(exp)s (osition)g(of)g(the)h(material)d(in)i(this)h(section)g(w)m(e)g(refer)g (to)g([AS5,)257 4891 y(Sections)33 b(6.2.-6.4.].)p 257 4959 1296 4 v 370 5020 a FB(1)407 5050 y FA(There)27 b(is)g(a)g(sligh)n(t)g(discrepancy)f(in)i(the)g(notation)e(compared)h (to)g(some)g(literature)f(lik)n(e)h([Hum)q(].)257 5150 y(F)-7 b(or)27 b(the)g(ro)r(ots)f(to)g(b)r(e)i(the)f(same,)g(w)n(e)f(w) n(ould)g(ha)n(v)n(e)g(to)h(w)n(ork)e(with)j(the)f(transp)r(osed)f (Cartan)g(matrix.)257 5250 y(This)31 b(is)f(caused)g(b)n(y)h(the)g (Serre)e(relations)h(\(3.10\),)g(whic)n(h)h(w)n(e)f(w)n(an)n(t)g(to)g (ha)n(v)n(e)g(in)h(the)g(same)f(form)g(as)257 5349 y(in)e(the)g(w)n (orks)e(of)i(Andruskiewitsc)n(h)f(and)g(Sc)n(hneider)g(or)g([Kac)o(].) 1828 5637 y FL(19)p eop %%Page: 20 22 20 21 bop 404 573 a FL(W)-8 b(e)35 b(again)f(limit)d(ourselv)m(es)37 b(to)e(p)s(oin)m(ted)g(Hopf)f(algebras)h Fv(H)g FL(with)g(\014nite)g (ab)s(elian)257 693 y(coradical)29 b FF(|)-9 b FI(\000)14 b FL(.)37 b(According)30 b(to)g(the)g(considerations)g(of)g(the)g(last) g(section,)g(the)h(asso)s(ci-)257 814 y(ated)36 b(graded)f(Hopf)f (algebra)g(gr)17 b Fv(H)35 b FL(is,)g(in)f(man)m(y)h(cases,)i(just)e (the)h(b)s(osonization)d(of)h(a)257 934 y(group)i(algebra)e(and)i(a)f (Nic)m(hols)g(algebra)g(of)g(the)h(form)e(giv)m(en)i(in)f(Theorem)h (3.2.)52 b(W)-8 b(e)257 1054 y(will)31 b(giv)m(e)h(an)h(explicit)e (description.)404 1175 y(W)-8 b(e)43 b(\014x)h(a)e(presen)m(tation)i FI(\000)59 b FL(=)p FI(<)45 b(h)1761 1190 y FH(1)1846 1175 y FI(>)g FC(\010)17 b(\001)g(\001)g(\001)e(\010)46 b FI(<)f(h)2494 1190 y FG(t)2569 1175 y FI(>)e FL(and)g(denote)g(b)m(y) h FI(M)3452 1190 y FG(k)257 1295 y FL(the)39 b(order)f(of)g FI(h)864 1310 y FG(k)907 1295 y FI(;)g FL(1)f FC(\024)h FI(k)j FC(\024)c FI(t)p FL(.)61 b(Then)40 b(gr)16 b Fv(H)39 b FL(can)f(b)s(e)h(presen)m(ted)h(b)m(y)f(generators)g FI(y)3426 1310 y FG(k)3468 1295 y FI(;)257 1416 y FL(1)28 b FC(\024)g FI(k)j FC(\024)d FI(t;)33 b FL(and)f FI(x)965 1431 y FG(i)994 1416 y FI(;)h FL(1)27 b FC(\024)h FI(i)g FC(\024)g FI(\022)s(;)33 b FL(with)f(de\014ning)h(relations)942 1636 y FI(y)994 1590 y FG(M)1062 1602 y Fo(k)990 1663 y FG(k)1131 1636 y FL(=)27 b(1)p FI(;)114 b(y)1472 1651 y FG(k)1514 1636 y FI(y)1562 1651 y FG(l)1616 1636 y FL(=)27 b FI(y)1767 1651 y FG(l)1793 1636 y FI(y)1841 1651 y FG(k)1883 1636 y FI(;)236 b FL(1)27 b FC(\024)h FI(k)s(;)17 b(l)30 b FC(\024)e FI(t)p FL(;)595 b(\(3.12\))929 1781 y FI(y)977 1796 y FG(k)1019 1781 y FI(x)1074 1796 y FG(i)1131 1781 y FL(=)27 b FI(\037)1295 1796 y FG(i)1323 1781 y FL(\()p FI(h)1417 1796 y FG(k)1460 1781 y FL(\))p FI(x)1553 1796 y FG(i)1582 1781 y FI(y)1630 1796 y FG(k)1672 1781 y FI(;)447 b FL(1)27 b FC(\024)h FI(k)j FC(\024)d FI(t;)17 b FL(1)28 b FC(\024)g FI(i)g FC(\024)g FI(\022)s FL(;)230 b(\(3.13\))487 1926 y(\()p FI(adx)682 1941 y FG(i)711 1926 y FL(\))749 1885 y FH(1)p Fx(\000)p FG(a)876 1895 y Fo(ij)935 1926 y FL(\()p FI(x)1028 1941 y FG(j)1065 1926 y FL(\))28 b(=)f(0)p FI(;)836 b FL(1)27 b FC(\024)h FI(i)g FC(6)p FL(=)g FI(j)33 b FC(\024)c FI(\022)s FL(;)500 b(\(3.14\))952 2082 y FI(x)1007 2041 y FG(N)1063 2052 y Fo(I)1007 2107 y FG(\013)1131 2082 y FL(=)27 b(0)p FI(;)836 b(\013)28 b FC(2)g FL(\010)2400 2041 y FH(+)2400 2109 y FG(I)2460 2082 y FI(;)17 b(I)35 b FC(2)28 b(X)15 b FI(;)457 b FL(\(3.15\))257 2327 y(where)34 b(the)f(Hopf)g(algebra)e (structure)j(is)e(determined)g(b)m(y)856 2572 y(\001\()p FI(y)1023 2587 y FG(k)1065 2572 y FL(\))c(=)f FI(y)1282 2587 y FG(k)1347 2572 y FC(\012)22 b FI(y)1494 2587 y FG(k)1536 2572 y FI(;)583 b FL(1)27 b FC(\024)h FI(k)j FC(\024)d FI(t)p FL(;)670 b(\(3.16\))862 2717 y(\001\()p FI(x)1036 2732 y FG(i)1065 2717 y FL(\))28 b(=)f FI(x)1289 2732 y FG(i)1340 2717 y FC(\012)c FL(1)e(+)h FI(g)1655 2732 y FG(i)1705 2717 y FC(\012)h FI(x)1860 2732 y FG(i)1889 2717 y FI(;)230 b FL(1)27 b FC(\024)h FI(i)g FC(\024)g FI(\022)s(:)678 b FL(\(3.17\))404 2937 y(F)-8 b(rom)39 b(the)i(results)g(presen)m(ted)i(in)d(Section)g(6)h(of)f(the)h(surv)m (ey)i(article)c([AS5],)k(w)m(e)257 3057 y(kno)m(w)36 b(that)f(apart)f(from)g(a)h(few)g(exceptional)g(cases)h(all)d(\014nite) h(dimensional)e(p)s(oin)m(ted)257 3178 y(Hopf)h(algebras)f Fv(H)q FL(,)g(with)g(gr)16 b Fv(H)33 b FL(as)g(ab)s(o)m(v)m(e,)g(can)g (b)s(e)g(describ)s(ed)g(in)f(a)h(similar)c(w)m(a)m(y)-8 b(,)34 b(i.e.)257 3298 y(with)39 b(the)g(same)g(generators)h(and)f (similar)d(relations.)61 b(The)40 b(only)e(c)m(hanges)j(p)s(ossible)257 3419 y(are)35 b(in)e(the)i(\\quan)m(tum)f(Serre")h(relations)e (\(3.14\))g(and)i(in)e(the)i(ro)s(ot)e(v)m(ector)j(relations)257 3539 y(\(3.15\).)65 b(Before)40 b(w)m(e)h(giv)m(e)f(an)g(explicit)e (form)m(ulation,)h(w)m(e)i(need)g(some)f(fundamen)m(tal)257 3659 y(terminology)-8 b(.)257 3888 y FJ(Def)10 b(inition)36 b(3.3)98 b FE(L)-5 b(et)27 b FL(\()p FI(a)1284 3903 y FG(ij)1345 3888 y FL(\))g FE(b)-5 b(e)27 b(a)g(gener)-5 b(alize)g(d)25 b FL(\()p FI(\022)8 b FC(\002)d FI(\022)s FL(\))p FE(-Cartan)28 b(matrix)e(\(cf.)42 b([Kac]\).)501 4008 y(The)35 b(c)-5 b(orr)g(esp)g(onding)33 b(Dynkin)h(diagr)-5 b(am)34 b(with)h(a)g(numb)-5 b(er)34 b(of)h(additional)f(e)-5 b(dges,)501 4128 y(dr)g(awn)31 b(as)h(dotte)-5 b(d)32 b(e)-5 b(dges)30 b(that)j(do)e(not)h(shar)-5 b(e)31 b(vertic)-5 b(es,)32 b(wil)5 b(l)31 b(b)-5 b(e)31 b(denote)-5 b(d)31 b FI(D)k FE(and)501 4249 y(c)-5 b(al)5 b(le)-5 b(d)36 b(a)44 b FL(link)-5 b(able)32 b(Dynkin)i(diagram)p FE(.)47 b(Two)36 b(vertic)-5 b(es)36 b FI(i)h FE(and)e FI(j)i FC(6)p FL(=)31 b FI(i)36 b FE(c)-5 b(onne)g(cte)g(d)501 4369 y(by)35 b(such)g(dotte)-5 b(d)35 b(e)-5 b(dges)34 b(ar)-5 b(e)35 b(c)-5 b(al)5 b(le)-5 b(d)44 b FL(link)-5 b(able)p FE(.)42 b(This)35 b(is)f(written)h FI(i)17 b FC(\001)g(\001)g(\001)e FI(j:)257 4598 y FJ(Def)10 b(inition)36 b(3.4)98 b FE(A)30 b FL(link)-5 b(able)25 b(braiding)g(matrix)g(of)i FI(D)s FL(-Cartan)f(t)m(yp)s(e)31 b FE(for)f(a)f(linkable)501 4718 y(Dynkin)g(diagr)-5 b(am)28 b FI(D)33 b FE(is)c(a)g FL(\()p FI(\022)13 b FC(\002)d FI(\022)s FL(\))30 b FE(matrix)g FL(\()p FI(b)2183 4733 y FG(ij)2244 4718 y FL(\))f FE(with)g(the)h(fol) 5 b(lowing)28 b(pr)-5 b(op)g(erties)1090 4938 y FI(b)1131 4953 y FG(ii)1211 4938 y FC(6)p FL(=)28 b(1)p FI(;)1855 b FL(\(3.18\))979 5083 y FI(b)1020 5098 y FG(ij)1081 5083 y FI(b)1122 5098 y FG(j)t(i)1211 5083 y FL(=)28 b FI(b)1356 5029 y FG(a)1393 5039 y Fo(ij)1356 5109 y FG(ii)1452 5083 y FI(;)1767 b FL(\(3.19\))839 5249 y FI(b)880 5195 y FH(1)p Fx(\000)p FG(a)1007 5205 y Fo(ij)880 5277 y FG(k)r(i)1067 5249 y FI(b)1108 5264 y FG(k)r(j)1211 5249 y FL(=)28 b(1)p FI(;)116 b(k)30 b FL(=)e(1)p FI(;)17 b(:)g(:)g(:)f(;)h(\022)s(;)68 b FE(if)34 b FI(i)h FE(is)g(linkable)f (to)h FI(j:)338 b FL(\(3.20\))1828 5637 y(20)p eop %%Page: 21 23 21 22 bop 257 573 a FJ(Def)10 b(inition)36 b(3.5)98 b FE(A)48 b(linkable)f(br)-5 b(aiding)47 b(matrix)g FL(\()p FI(b)2314 588 y FG(ij)2375 573 y FL(\))h FE(is)g(c)-5 b(al)5 b(le)-5 b(d)57 b FL(realizable)45 b(o)m(v)m(er)501 693 y(the)28 b(ab)s(elian)e(group)i FI(\000)44 b FE(if)30 b(ther)-5 b(e)31 b(ar)-5 b(e)30 b(elements)f FI(g)2307 708 y FH(1)2347 693 y FI(;)17 b(:)g(:)g(:)e(;)i(g)2612 708 y FG(\022)2679 693 y FC(2)28 b FI(\000)44 b FE(and)30 b(char)-5 b(acters)501 814 y FI(\037)562 829 y FH(1)602 814 y FI(;)17 b(:)g(:)g(:)f(\037)838 829 y FG(\022)904 814 y FC(2)1019 788 y FL(^)999 814 y FI(\000)48 b FE(such)35 b(that)1271 994 y FI(b)1312 1009 y FG(ij)1401 994 y FL(=)27 b FI(\037)1565 1009 y FG(j)1602 994 y FL(\()p FI(g)1687 1009 y FG(i)1715 994 y FL(\))p FI(;)250 b FE(for)35 b(al)5 b(l)34 b FI(i;)17 b(j)141 b FE(and)508 b FL(\(3.21\))1259 1160 y FI(\037)1320 1106 y FH(1)p Fx(\000)p FG(a)1447 1116 y Fo(ij)1320 1185 y FG(i)1507 1160 y FI(\037)1568 1175 y FG(j)1632 1160 y FL(=)28 b(1)p FI(;)250 b FE(whenever)34 b FI(i)17 b FC(\001)g(\001)g(\001)e FI(j:)509 b FL(\(3.22\))257 1343 y FJ(Def)10 b(inition)36 b(3.6)98 b FE(A)37 b FL(linking)32 b(datum)i(of)h(Cartan)f(t)m(yp)s(e)k FE(is)f(a)f(c)-5 b(ol)5 b(le)-5 b(ction)36 b(of)h(the)g(fol-)501 1463 y(lowing)d(ingr)-5 b(e)g(dients:)617 1655 y FC(\017)49 b FE(an)34 b(ab)-5 b(elian)34 b(gr)-5 b(oup)35 b FI(\000)14 b FE(,)617 1805 y FC(\017)49 b FE(elements)34 b FI(h)1173 1820 y FH(1)1213 1805 y FI(;)17 b(:)g(:)g(:)e(h)1443 1820 y FG(t)1501 1805 y FC(2)29 b FI(\000)s(;)35 b FE(such)g(that)g FI(\000)42 b FL(=)p FI(<)28 b(h)2480 1820 y FH(1)2548 1805 y FI(>)g FC(\010)g FI(<)g(h)2917 1820 y FH(2)2985 1805 y FI(>)g FC(\010)17 b FI(:)g(:)g(:)f FC(\010)28 b FI(<)716 1926 y(h)772 1941 y FG(t)829 1926 y FI(>)p FE(,)35 b FI(M)1064 1941 y FG(k)1135 1926 y FL(:=)27 b(ord\()p FI(h)1500 1941 y FG(k)1543 1926 y FL(\))p FE(,)35 b FI(k)30 b FL(=)e(1)p FI(;)17 b(:)g(:)g(:)f(;)h(t)p FE(,)617 2076 y FC(\017)49 b FE(a)41 b(linkable)e(Dynkin)i(diagr)-5 b(am)39 b FI(D)44 b FE(with)d FI(\022)j FE(vertic)-5 b(es)41 b(and)f(Cartan)h(matrix)716 2197 y FL(\()p FI(a)805 2212 y FG(ij)866 2197 y FL(\))p FE(,)617 2347 y FC(\017)49 b FE(a)44 b(linkable)g(br)-5 b(aiding)43 b(matrix)i(of)f FI(D)s FE(-Cartan)g(typ)-5 b(e,)47 b(which)d(is)g(r)-5 b(e)g(alizable)716 2467 y(over)34 b FI(\000)49 b FE(with)35 b(elements)f(and)g(char)-5 b(acters)34 b FI(g)2357 2482 y FG(i)2413 2467 y FC(2)28 b FI(\000)s(;)35 b(\037)2693 2482 y FG(i)2749 2467 y FC(2)2864 2442 y FL(^)2843 2467 y FI(\000)14 b(;)35 b(i)28 b FL(=)g(1)p FI(;)17 b(:)g(:)g(:)e(;)i(\022) s(;)617 2618 y FC(\017)49 b FE(p)-5 b(ar)g(ameters)39 b FI(\025)1276 2633 y FG(ij)1373 2618 y FC(2)e FF(|)-9 b FI(;)34 b FL(1)i FC(\024)h FI(i)g FC(6)p FL(=)g FI(j)42 b FC(\024)37 b FI(\022)s(;)j FE(such)g(that)g FI(\025)2779 2633 y FG(ij)2876 2618 y FL(=)c(0)j FE(if)h FI(i)g FE(is)f(not)716 2738 y(linkable)34 b(to)h FI(j)40 b FE(and)35 b FI(\025)1514 2753 y FG(ij)1602 2738 y FL(=)27 b FC(\000)p FI(\037)1843 2753 y FG(j)1881 2738 y FL(\()p FI(g)1966 2753 y FG(i)1993 2738 y FL(\))p FI(\025)2088 2753 y FG(j)t(i)2184 2738 y FE(when)34 b FI(a)2484 2753 y FG(ij)2572 2738 y FL(=)28 b(0)p FI(:)501 2930 y FE(V)-7 b(ertic)i(es)41 b FI(i)g FE(and)f FI(j)46 b FE(with)41 b FI(\025)1510 2945 y FG(ij)1609 2930 y FC(6)p FL(=)d(0)i FE(ar)-5 b(e)41 b(c)-5 b(al)5 b(le)-5 b(d)50 b FL(link)m(ed)p FE(.)62 b(If)40 b FI(i)h FE(and)f FI(j)47 b FE(ar)-5 b(e)40 b(linke)-5 b(d)501 3051 y(and)42 b(lie)g(in)g(the)g(same)f(c)-5 b(onne)g(cte)g(d)41 b(c)-5 b(omp)g(onent)41 b(of)h(the)g(Dynkin)g(diagr)-5 b(am,)43 b(we)501 3171 y(talk)30 b(of)g(a)38 b FL(self-linking)p FE(.)i(A)31 b FL(linking)25 b(datum)i(of)g(\014nite)g(Cartan)g(t)m(yp)s (e)k FE(is)f(a)g(linking)501 3291 y(datum)41 b(wher)-5 b(e)41 b(the)g(diagonal)f(elements)h(of)g(the)g(br)-5 b(aiding)40 b(matrix)h(have)g(\014nite)501 3412 y(or)-5 b(der)39 b(and)g(the)g(Cartan)g(matrix)g(is)g(of)g(\014nite)g(typ)-5 b(e,)41 b(i.e.)57 b(it)40 b(c)-5 b(orr)g(esp)g(onds)38 b(to)h(a)501 3532 y(\014nite)c(dimensional)e(semisimple)g(Lie)i(algebr) -5 b(a.)257 3715 y FJ(Remark:)49 b FL(The)33 b(notion)e(of)g FE(linkable)j(vertic)-5 b(es)40 b FL(is)31 b(simpler)g(and)h(hence)h (more)f(general)501 3835 y(than)37 b(the)g(one)g(giv)m(en)g(in)f([AS3,) i(De\014nition)d(5.1.].)55 b(Ho)m(w)m(ev)m(er,)40 b(the)e(notions)e FE(do)501 3956 y FL(mainly)31 b(coincide)i(when)h(w)m(e)h(require)e (the)h(existence)h(of)d(a)h(linking)e(datum)i(and)501 4076 y(demand)g(that)f(link)-5 b(able)31 b(v)m(ertices)j(lie)d(in)h (di\013eren)m(t)h(connected)h(comp)s(onen)m(ts)g(of)501 4196 y(the)46 b(Dynkin)f(diagram.)79 b(W)-8 b(e)46 b(note)f(that)g(a)g (link)-5 b(able)43 b(braiding)g(matrix)h(of)g(a)501 4317 y(linking)26 b(datum)h(of)g(\014nite)h(Cartan)g(t)m(yp)s(e)g(is)g(a)f (braiding)f(matrix)g(of)h(Cartan)h(t)m(yp)s(e)501 4437 y(as)38 b(de\014ned)h(in)e(De\014nition)f(3.2,)j(and)e(the)h(t)m(w)m(o) h(notions)e(coincide)g(when)h(there)501 4557 y(are)33 b(no)f(link)-5 b(able)31 b(v)m(ertices.)257 4740 y FJ(Def)10 b(inition)36 b(3.7)98 b FE(The)32 b(algebr)-5 b(a)33 b Fs(U)p FL(\()p FC(D)s FL(\))g FE(for)g(a)g(linking)f(datum)i FC(D)i FE(of)d(Cartan)g(typ)-5 b(e)33 b(is)501 4860 y(given)h(by)h (gener)-5 b(ators)35 b FI(y)1404 4875 y FG(k)1446 4860 y FI(;)g FL(1)27 b FC(\024)h FI(k)j FC(\024)d FI(t;)35 b(x)2028 4875 y FG(i)2057 4860 y FI(;)g FL(1)27 b FC(\024)i FI(i)f FC(\024)g FI(\022)s(;)35 b FE(and)f(r)-5 b(elations)1095 5040 y FI(y)1147 4994 y FG(M)1215 5006 y Fo(k)1143 5068 y FG(k)1283 5040 y FL(=)28 b(1)p FI(;)116 b(y)1627 5055 y FG(k)1669 5040 y FI(y)1717 5055 y FG(l)1771 5040 y FL(=)27 b FI(y)1922 5055 y FG(l)1948 5040 y FI(y)1996 5055 y FG(k)2038 5040 y FI(;)172 b FL(1)27 b FC(\024)h FI(k)s(;)17 b(l)30 b FC(\024)e FI(t)p FL(;)504 b(\(3.23\))1082 5186 y FI(y)1130 5201 y FG(k)1172 5186 y FI(x)1227 5201 y FG(i)1283 5186 y FL(=)28 b FI(\037)1448 5201 y FG(i)1476 5186 y FL(\()p FI(h)1570 5201 y FG(k)1613 5186 y FL(\))p FI(x)1706 5201 y FG(i)1735 5186 y FI(y)1783 5201 y FG(k)1825 5186 y FI(;)385 b FL(1)27 b FC(\024)h FI(k)j FC(\024)d FI(t;)17 b FL(1)28 b FC(\024)g FI(i)g FC(\024)g FI(\022)s FL(;)139 b(\(3.24\))640 5352 y(\()p FI(adx)835 5367 y FG(i)863 5352 y FL(\))901 5311 y FH(1)p Fx(\000)p FG(a)1028 5321 y Fo(ij)1088 5352 y FL(\()p FI(x)1181 5367 y FG(j)1218 5352 y FL(\))27 b(=)h FI(\025)1444 5367 y FG(ij)1504 5352 y FL(\(1)22 b FC(\000)h FI(g)1764 5298 y FH(1)p Fx(\000)p FG(a)1891 5308 y Fo(ij)1760 5378 y FG(i)1950 5352 y FI(g)1997 5367 y FG(j)2033 5352 y FL(\))p FI(;)139 b FL(1)27 b FC(\024)h FI(i)g FC(6)p FL(=)g FI(j)33 b FC(\024)c FI(\022)s(:)409 b FL(\(3.25\))1828 5637 y(21)p eop %%Page: 22 24 22 23 bop 501 573 a FE(So)35 b(far,)f FL(ad)h FE(is)g(only)f(a)h(symb) -5 b(ol)34 b(and)h(has)f(the)h(fol)5 b(lowing)33 b(explicit)i(form:)632 888 y FL(\(ad)17 b FI(x)845 903 y FG(i)874 888 y FL(\))912 847 y FH(1)p Fx(\000)p FG(a)1039 857 y Fo(ij)1098 888 y FL(\()p FI(x)1191 903 y FG(j)1228 888 y FL(\))28 b(:=)1424 753 y FH(1)p Fx(\000)p FG(a)1551 763 y Fo(ij)1443 794 y Fw(X)1451 1006 y FG(k)r FH(=0)1607 888 y FL(\()p FC(\000)p FL(1\))1809 847 y FG(k)1851 748 y Fw(\022)1925 821 y FL(1)22 b FC(\000)g FI(a)2146 836 y FG(ij)2039 957 y FI(k)2207 748 y Fw(\023)2237 987 y FG(q)2269 997 y Fo(i)2299 888 y FI(q)2346 829 y FL(\()2384 790 y Fo(k)2386 847 y Fy(2)2418 829 y FL(\))2342 914 y FG(i)2460 888 y FI(b)2501 847 y FG(k)2501 913 y(ij)2562 888 y FI(x)2617 834 y FH(1)p Fx(\000)p FG(a)2744 844 y Fo(ij)2800 834 y Fx(\000)p FG(k)2617 914 y(i)2898 888 y FI(x)2953 903 y FG(j)2990 888 y FI(x)3045 847 y FG(k)3045 913 y(i)3088 888 y FI(;)131 b FL(\(3.26\))501 1199 y FE(wher)-5 b(e)30 b FI(q)815 1214 y FG(i)871 1199 y FL(:=)e FI(b)1043 1214 y FG(ii)1123 1199 y FL(=)g FI(\037)1288 1214 y FG(i)1316 1199 y FL(\()p FI(g)1401 1214 y FG(i)1429 1199 y FL(\))p FI(:)j FE(The)f(gr)-5 b(oup)31 b(elements)f FI(g)2428 1214 y FG(i)2486 1199 y FE(ar)-5 b(e)31 b(interpr)-5 b(ete)g(d)30 b(as)h(wor)-5 b(ds)501 1319 y(in)35 b(the)g(gener)-5 b(ators)34 b FI(y)1304 1334 y FG(k)1346 1319 y FI(:)501 1481 y FE(Now)f(let)g FC(D)i FE(b)-5 b(e)32 b(a)h(linking)e(datum)i(of)f(\014nite)g(Cartan)h (typ)-5 b(e.)44 b(We)33 b(de\014ne)e(the)i(r)-5 b(o)g(ot)501 1601 y(ve)g(ctors)41 b FI(x)890 1616 y FG(\013)981 1601 y FE(for)f(al)5 b(l)41 b(p)-5 b(ositive)40 b(r)-5 b(o)g(ots)41 b FI(\013)f FC(2)f FL(\010)2166 1565 y FH(+)2267 1601 y FE(in)h(the)h(same)g(way)f(as)h(sketche)-5 b(d)501 1722 y(on)33 b(p)-5 b(age)32 b(18.)44 b(Given)33 b(a)g(family)f Fq(u)c FL(=)g(\()p FI(u)1984 1737 y FG(\013)2032 1722 y FL(\))p FI(;)34 b FE(wher)-5 b(e)32 b FI(u)2460 1737 y FG(\013)2542 1722 y FE(is)h(an)g(expr)-5 b(ession)31 b(in)i(the)501 1842 y(gener)-5 b(ators)29 b FI(x)1024 1857 y FG(i)1053 1842 y FI(;)17 b(y)1145 1857 y FG(k)1216 1842 y FE(for)30 b(every)f(p)-5 b(ositive)29 b(r)-5 b(o)g(ot)30 b FI(\013)q(;)f FE(we)h(de\014ne)e(the)i(algebr)-5 b(a)29 b Fs(u)p FL(\()p FC(D)s FI(;)17 b Fq(u)p FL(\))501 1962 y FE(in)35 b(the)g(same)f(way)h(as)f Fs(U)p FL(\()p FC(D)s FL(\))p FE(,)h(but)g(with)g(the)g(extr)-5 b(a)34 b(r)-5 b(elations)1362 2182 y FI(x)1417 2141 y FG(N)1473 2152 y Fo(I)1417 2207 y FG(\013)1540 2182 y FL(=)28 b FI(u)1700 2197 y FG(\013)1749 2182 y FI(;)216 b(\013)28 b FC(2)g FL(\010)2246 2141 y FH(+)2246 2209 y FG(I)2306 2182 y FI(;)17 b(I)35 b FC(2)28 b(X)15 b FI(:)611 b FL(\(3.27\))501 2402 y FC(X)61 b FE(is)46 b(again)f(the)h(set)g(of)g(c)-5 b(onne)g(cte)g(d)45 b(c)-5 b(omp)g(onents)45 b(of)h(the)g(Dynkin)f (diagr)-5 b(am,)501 2523 y(and)43 b FI(N)777 2538 y FG(I)861 2523 y FE(denotes)g(the)h(c)-5 b(ommon)42 b(or)-5 b(der)43 b(of)g(those)h(diagonal)e(elements)h(of)g(the)501 2643 y(br)-5 b(aiding)41 b(matrix)h(that)h(c)-5 b(orr)g(esp)g(ond)41 b(to)i(the)f(c)-5 b(omp)g(onent)41 b FI(I)8 b FE(.)67 b(We)42 b(c)-5 b(al)5 b(l)42 b Fq(u)g FL(ro)s(ot)501 2764 y(v)m(ector)34 b(parameters)p FE(.)257 2992 y FJ(Remark:)49 b FL(When)33 b FI(a)1060 3007 y FG(ij)1149 2992 y FL(=)27 b(0,)33 b(\(3.25\))e(simpli\014es)g(to)1297 3212 y FI(x)1352 3227 y FG(i)1381 3212 y FI(x)1436 3227 y FG(j)1495 3212 y FC(\000)23 b FI(\037)1656 3227 y FG(j)1692 3212 y FL(\()p FI(g)1777 3227 y FG(i)1805 3212 y FL(\))p FI(x)1898 3227 y FG(j)1935 3212 y FI(x)1990 3227 y FG(i)2046 3212 y FL(=)28 b FI(\025)2207 3227 y FG(ij)2267 3212 y FL(\(1)22 b FC(\000)h FI(g)2523 3227 y FG(i)2551 3212 y FI(g)2598 3227 y FG(j)2634 3212 y FL(\))p FI(:)547 b FL(\(3.28\))501 3432 y(When)48 b(there)f(are)g(no)f(self-linkings,)i(then)f FE(al)5 b(l)56 b FL(relations)46 b(\(3.25\))f(with)i(non-)501 3552 y(v)-5 b(anishing)32 b(righ)m(t)f(hand)i(side)g(are)f(of)h(the)g (form)e(\(3.28\).)257 3781 y FJ(Prop)s(osition)36 b(3.3)98 b FE(Ther)-5 b(e)48 b(exists)g(a)g(unique)h(Hopf)f(algebr)-5 b(a)48 b(structur)-5 b(e)49 b(on)f Fs(U)p FL(\()p FC(D)s FL(\))501 3901 y FE(determine)-5 b(d)34 b(by)1002 4121 y FL(\001\()p FI(y)1169 4136 y FG(k)1212 4121 y FL(\))27 b(=)h FI(y)1429 4136 y FG(k)1493 4121 y FC(\012)23 b FI(y)1641 4136 y FG(k)1683 4121 y FI(;)853 b FL(1)28 b FC(\024)g FI(k)j FC(\024)d FI(t)p FL(;)252 b(\(3.29\))1009 4266 y(\001\()p FI(x)1183 4281 y FG(i)1212 4266 y FL(\))27 b(=)h FI(g)1428 4281 y FG(i)1478 4266 y FC(\012)22 b FI(x)1632 4281 y FG(i)1683 4266 y FL(+)g FI(x)1836 4281 y FG(i)1887 4266 y FC(\012)h FL(1)p FI(;)500 b FL(1)28 b FC(\024)g FI(i)g FC(\024)g FI(\022)s(:)260 b FL(\(3.30\))501 4486 y FE(If)39 b(vertic)-5 b(es)38 b(ar)-5 b(e)38 b(only)h(linke)-5 b(d)38 b(when)g(they)h(lie)g(in)f(di\013er)-5 b(ent)39 b(c)-5 b(onne)g(cte)g(d)37 b(c)-5 b(omp)g(o-)501 4607 y(nents,)27 b(then)e Fs(u)p FL(\()p FC(D)s FI(;)17 b FJ(0)p FL(\))24 b FE(is)h(also)g(a)g(Hopf)g(algebr)-5 b(a)24 b(with)h(the)h(same)e(c)-5 b(omultiplic)g(ation)501 4727 y(as)35 b(ab)-5 b(ove.)257 4955 y FL(F)d(or)33 b Fs(U)p FL(\()p FC(D)s FL(\))h(the)g(pro)s(of)f(that)h(the)g(relations)f (de\014ne)i(a)e(Hopf)h(ideal)f(is)g(mostly)g(an)h(exer-)257 5076 y(cise.)44 b(Only)31 b(the)h(\\quan)m(tum)g(Serre")g(relations)f (\(3.25\))g(need)h(sp)s(ecial)f(atten)m(tion.)43 b(One)257 5206 y(has)34 b(to)g(sho)m(w)g(that)g(b)s(oth)f(sides)h(of)f(\(3.25\))g (are)h(\()p FI(g)2122 5152 y FH(1)p Fx(\000)p FG(a)2249 5162 y Fo(ij)2118 5231 y FG(i)2308 5206 y FI(g)2355 5221 y FG(j)2391 5206 y FI(;)17 b FL(1\)-primitiv)m(e.)43 b(F)-8 b(or)33 b(the)h(left)257 5326 y(hand)f(side)g(one)g(can)g(use,)g (for)f(instance,)h([AS2,)g(Lemma)e(A.1.].)1828 5637 y(22)p eop %%Page: 23 25 23 24 bop 257 573 a FL(The)34 b(statemen)m(t)g(ab)s(out)e Fs(u)p FL(\()p FC(D)s FI(;)17 b FJ(0)p FL(\))32 b(when)i(all)c(the)k FI(u)2146 588 y FG(\013)2228 573 y FL(are)f(zero)g(is)f(exactly)h([AS3) q(,)g(The-)257 693 y(orem)f(5.17.].)404 814 y(W)-8 b(e)39 b(w)m(an)m(t)h(to)f(sho)m(w)h(ho)m(w)f(these)i(new)e(Hopf)g(algebras)g (are)g(connected)h(with)f(the)257 934 y(usual)33 b(quan)m(tized)g (Kac-Mo)s(o)s(dy)f(Hopf)g(algebras)g FI(U)2172 949 y FG(q)2211 934 y FL(\()p Fs(g)p FL(\))p FI(:)257 1054 y FL(W)-8 b(e)26 b(start)f(with)f(the)h(direct)g(sum)g(of)f(t)m(w)m(o)i (copies)f(of)f(the)i(giv)m(en)f(symmetrizable)e(Cartan)257 1175 y(matrix.)41 b(In)27 b(the)h(asso)s(ciated)f(Dynkin)g(diagram)e(w) m(e)j(connect)h(corresp)s(onding)e(v)m(ertices)257 1295 y(b)m(y)e(dotted)f(lines.)39 b(This)24 b(is)f(our)h(link)-5 b(able)21 b(Dynkin)j(diagram.)38 b(W)-8 b(e)24 b(n)m(um)m(b)s(er)g(the) g(v)m(ertices)257 1416 y(of)44 b(one)g(cop)m(y)h(of)f(the)g(original)d (diagram)h(from)g(1)i(to)g FI(N)54 b FL(and)44 b(the)h(remaining)c (ones)257 1536 y(from)d FI(N)f FL(+)26 b(1)38 b(to)h(2)p FI(N)49 b FL(in)37 b(the)j(same)e(order.)62 b(The)40 b(group)e FI(\000)53 b FL(is)38 b(simply)f FF(Z)3048 1500 y FG(N)3113 1536 y FI(:)i FL(F)-8 b(or)38 b(the)257 1656 y FI(g)304 1671 y FG(i)332 1656 y FI(;)53 b FL(1)36 b FC(\024)h FI(i)f FC(\024)h FI(N)5 b(;)38 b FL(w)m(e)g(tak)m(e)h(the)f (canonical)e(basis)h(of)g FI(\000)14 b FL(,)39 b(set)g FI(g)2618 1671 y FG(N)7 b FH(+)p FG(i)2800 1656 y FL(:=)36 b FI(g)2986 1671 y FG(i)3051 1656 y FL(and)i(de\014ne)257 1777 y(c)m(haracters)k FI(\037)790 1792 y FG(j)826 1777 y FL(\()p FI(g)911 1792 y FG(i)939 1777 y FL(\))f(:=)f FI(q)1208 1741 y FG(d)1244 1751 y Fo(i)1270 1741 y FG(a)1307 1751 y Fo(ij)1367 1777 y FI(;)17 b(\037)1472 1792 y FG(N)7 b FH(+)p FG(i)1658 1777 y FL(:=)41 b FI(\037)1863 1735 y Fx(\000)p FH(1)1863 1802 y FG(i)1957 1777 y FI(;)f FL(where)i FI(d)2365 1792 y FG(i)2392 1777 y FI(a)2443 1792 y FG(ij)2545 1777 y FL(=)e FI(d)2712 1792 y FG(j)2748 1777 y FI(a)2799 1792 y FG(j)t(i)2860 1777 y FI(:)g FL(As)h(a)e(link)-5 b(able)257 1897 y(braiding)27 b(matrix)g(of)h(the)h(giv)m(en)g(Cartan)f (t)m(yp)s(e)i(w)m(e)f(can)g(no)m(w)g(tak)m(e)h FI(b)2777 1912 y FG(ij)2866 1897 y FL(=)d FI(\037)3030 1912 y FG(j)3067 1897 y FL(\()p FI(g)3152 1912 y FG(i)3180 1897 y FL(\))p FI(:)h FL(Then)257 2017 y(\()p FI(b)336 2032 y FG(ij)397 2017 y FL(\))c(is)f(ev)m(en)i(of)e(FL-t)m(yp)s(e.)40 b(W)-8 b(e)24 b(set)g FI(\025)1633 2033 y FG(i)p FH(\()p FG(N)7 b FH(+)p FG(i)p FH(\))1886 2017 y FL(:=)28 b(1)p FI(;)44 b FL(1)27 b FC(\024)h FI(i)g FC(\024)g FI(N)5 b(;)24 b FL(and)g(all)d(other)j FI(\025)3228 2032 y FG(ij)3316 2017 y FL(:=)j(0)257 2138 y(when)i FI(i)f(<)g(j)6 b FL(,)29 b(so)f(there)g(is)g(no)f(self-linking.)39 b(The)29 b(Hopf)f(algebra)f Fs(U)p FL(\()p FC(D)s FL(\))g(obtained)g(from)257 2258 y(this)34 b(linking)e(datum)h FC(D)j FL(is)e(the)g(quan)m(tized)h (Kac-Mo)s(o)s(dy)e(algebra.)46 b(T)-8 b(o)34 b(see)h(this,)f(one)257 2379 y(sets)g FI(K)531 2394 y FG(i)587 2379 y FL(:=)28 b FI(g)765 2394 y FG(i)793 2379 y FI(;)17 b(K)927 2337 y Fx(\000)p FH(1)920 2404 y FG(i)1048 2379 y FL(:=)28 b FI(g)1230 2337 y Fx(\000)p FH(1)1226 2404 y FG(i)1324 2379 y FI(;)17 b(E)1440 2394 y FG(i)1495 2379 y FL(:=)28 b FI(x)1681 2394 y FG(i)1710 2379 y FI(;)17 b(F)1817 2394 y FG(i)1872 2379 y FL(:=)28 b(\()p FI(q)2088 2342 y Fx(\000)p FG(d)2179 2352 y Fo(i)2232 2379 y FC(\000)22 b FI(q)2378 2342 y FG(d)2414 2352 y Fo(i)2445 2379 y FL(\))2483 2342 y Fx(\000)p FH(1)2577 2379 y FI(x)2632 2394 y FG(N)7 b FH(+)p FG(i)2779 2379 y FI(g)2830 2337 y Fx(\000)p FH(1)2826 2404 y FG(i)2923 2379 y FI(;)34 b FL(1)27 b FC(\024)h FI(i)g FC(\024)g FI(N)5 b(:)404 2499 y FL(A)40 b(linking)e(datum)h FC(D)k FL(where)f(all)c(the)i FI(\025)1948 2514 y FG(ij)2049 2499 y FL(are)g(zero)h(is)e(denoted)i(b) m(y)h FC(D)3135 2514 y FH(0)3174 2499 y FI(:)e FL(So)g(w)m(e)257 2619 y(see)45 b(that)e(the)g(Hopf)g(algebras)g(gr)16 b Fv(H)44 b FL(giv)m(en)f(at)g(the)h(b)s(eginning)d(of)i(this)g (section)g(b)m(y)257 2740 y(\(3.12\)-\(3.15\))37 b(are)h(simply)e(of)i (the)h(form)d Fs(u)p FL(\()p FC(D)2005 2755 y FH(0)2044 2740 y FI(;)17 b FJ(0)p FL(\).)60 b(The)39 b(lifting)c(metho)s(d)j (seems)h(to)257 2860 y(indicate)29 b(no)m(w)g(that)g(apart)g(from)f(a)h (few)h(exceptions,)h(all)c(p)s(oin)m(ted)i(\014nite)g(dimensional)257 2980 y(Hopf)41 b(algebras)f Fv(H)h FL(with)f(gr)17 b Fv(H)42 b FC(')g Fs(u)p FL(\()p FC(D)1773 2995 y FH(0)1811 2980 y FI(;)17 b FJ(0)p FL(\))41 b(are)g(of)f(the)h(form)e Fs(u)p FL(\()p FC(D)s FI(;)17 b Fq(u)p FL(\).)67 b(Ho)m(w)m(ev)m(er,) 257 3101 y(the)36 b(complete)e(list)f(of)h(p)s(ossibilities)e(for)j (the)g(ro)s(ot)f(v)m(ector)i(parameters)e FI(u)3037 3116 y FG(\013)3121 3101 y FL(has)h(b)s(een)257 3221 y(found)e(only)f(in)g (a)g(few)h(cases.)257 3554 y FD(3.4)161 b(Examples)257 3773 y FL(W)-8 b(e)29 b(w)m(an)m(t)h(to)e(presen)m(t)i(some)e(examples) g(of)g(the)h(successful)h(application)c(of)i(the)h(lifting)257 3893 y(metho)s(d.)257 4182 y Fn(3.4.1)136 b(Classi\014cation)39 b(of)e(p)t(oin)l(ted)g(Hopf)g(algebras)h(of)f(dimen-)668 4332 y(sion)46 b Fm(p)1018 4288 y Fl(3)257 4516 y FL(In)29 b([AS1])f(the)g(authors)g(classi\014ed)g(all)e(p)s(oin)m(ted)h (non-cosemisimple)f(Hopf)i(algebras)f Fv(H)257 4637 y FL(of)32 b(dimension)e FI(p)877 4601 y FH(3)917 4637 y FI(;)i(p)g FL(an)f(o)s(dd)h(prime,)f(with)h(the)g(help)g(of)f(their)g (lifting)e(metho)s(d.)43 b(This)257 4757 y(w)m(as)30 b(done)f(indep)s(enden)m(tly)g(in)f([CD])g(and)h([SvO)q(].)42 b(According)28 b(to)g(the)h(Nic)m(hols-Zo)s(eller)257 4878 y(theorem)d([Mon1)q(,)h(Theorem)g(3.1.5],)g(the)g(dimension)d(of)i (the)h(coradical,)f(b)s(eing)f(a)h(Hopf)257 4998 y(subalgebra,)34 b(has)f(to)g(divide)g FI(p)1408 4962 y FH(3)1447 4998 y FL(.)46 b(Hence)35 b(for)d(the)i(algebra)e(to)h(b)s(e)h (non-cosemisimple,)257 5118 y(the)25 b(coradical)e(m)m(ust)i(ha)m(v)m (e)h(order)f FI(p)g FL(or)f FI(p)1753 5082 y FH(2)1792 5118 y FL(.)41 b(So)25 b(the)g(diagram)d Fv(R)j FL(m)m(ust)g(ha)m(v)m (e)h(dimension)257 5239 y FI(p)306 5203 y FH(2)382 5239 y FL(or)35 b FI(p)p FL(.)54 b(The)37 b(authors)f(pro)m(v)m(ed)h(that)f (in)f(these)i(cases)h Fv(R)e FL(is)f(a)h(Nic)m(hols)f(algebra)g(of)g(a) 257 5359 y(Y)-8 b(etter-Drinfeld)35 b(mo)s(dule)g FI(V)21 b FL(,)37 b(and)g(the)f(braiding)f(matrix)g(is)g(of)h(\014nite)g (Cartan)g(t)m(yp)s(e)1828 5637 y(23)p eop %%Page: 24 26 24 25 bop 257 573 a FL(with)39 b(Dynkin)h(diagram)d FI(A)1298 588 y FH(1)1377 573 y FL(or)i FI(A)1576 588 y FH(1)1642 573 y FC([)27 b FI(A)1808 588 y FH(1)1848 573 y FI(:)39 b FL(They)i(determined)e(all)f(p)s(ossible)g(linking)257 693 y(and)g(ro)s(ot)f(v)m(ector)h(parameters)g(and)g(ga)m(v)m(e)g(a)f (complete)g(list)f(of)h(suc)m(h)i(Hopf)f(algebras)257 814 y(of)45 b(dimension)e FI(p)903 777 y FH(3)943 814 y FL(.)80 b(As)45 b(a)g(b)s(on)m(us)g(they)h(considered)g(the)f (coradical)e FF(Z)p FI(=)p FL(\()p FI(p)3125 777 y FH(2)3162 814 y FL(\))i(and)f(a)257 934 y(t)m(w)m(o)g(dimensional)d(mo)s(dule)h FI(V)65 b FL(with)43 b(braiding)e(of)i(t)m(yp)s(e)h FI(A)2530 949 y FH(1)2599 934 y FC([)30 b FI(A)2768 949 y FH(1)2808 934 y FL(.)75 b(The)44 b(lifting)d(of)257 1054 y(the)f(corresp)s (onding)g(graded)f(Hopf)h(algebra)e(pro)s(duces)j(an)e(in\014nite)g (family)e(of)i(non-)257 1175 y(isomorphic)31 b(p)s(oin)m(ted)i(Hopf)g (algebras)f(of)h(dimension)e FI(p)2345 1139 y FH(4)2385 1175 y FL(.)44 b(This)34 b(w)m(as)g(one)f(of)f(the)i(\014rst)257 1295 y(coun)m(terexamples)g(to)e(a)g(conjecture)i(of)e(Kaplansky)-8 b(.)257 1584 y Fn(3.4.2)136 b(Classi\014cation)39 b(of)e(p)t(oin)l(ted) g(Hopf)g(algebras)h(of)f(dimen-)668 1733 y(sion)46 b Fm(p)1018 1690 y Fk(n)257 1918 y FL(P)m(oin)m(ted)38 b(Hopf)f(algebras)f(of)g(dimension)g FI(p)h FL(or)f FI(p)2087 1882 y FH(2)2164 1918 y FL(are)g(just)i(group)f(algebras)f(or)g(T)-8 b(aft)257 2039 y(algebras.)77 b(The)45 b(case)f FI(n)k FL(=)e(3)e(w)m(as)h(explained)e(in)g(the)h(previous)h(subsection.)78 b(F)-8 b(or)257 2159 y FI(n)28 b FL(=)g(4)i(in)h([AS4])g(and)g FI(n)d FL(=)f(5)k(in)f([Gr1)o(],)i(similar)27 b(strategies)k(w)m(ere)h (used)g(to)f(obtain)f(the)257 2279 y(classi\014cation.)40 b(Again,)26 b(the)f(coradical)f(can)h(ha)m(v)m(e)h(only)f(sp)s(ecial)f (orders.)42 b(The)26 b(p)s(ossible)257 2400 y(Dynkin)38 b(diagrams)e(app)s(earing)h(in)g(these)i(cases)h(are)d FI(A)2354 2415 y FH(2)2394 2400 y FI(;)h(B)2533 2415 y FH(2)2610 2400 y FL(or)g(copies)g(of)f FI(A)3217 2415 y FH(1)3257 2400 y FI(:)h FL(One)257 2520 y(could)h(go)f(on)h(lik)m(e)f (that)h(for)f FI(n)h(>)f FL(5)p FI(;)h FL(but)g(the)g(explicit)f(list)f (of)i(the)g(algebras)f(w)m(ould)257 2640 y(so)s(on)e(b)s(ecome)g (unmanageable.)52 b(W)-8 b(e)36 b(refer)h(to)e(Subsection)i(3.4.4)e (for)g(an)h(imp)s(ortan)m(t)257 2761 y(class)d(in)f(suc)m(h)i(a)e (classi\014cation.)257 3050 y Fn(3.4.3)136 b(Lifting)46 b(of)f(Nic)l(hols)h(algebras)g(of)f(t)l(yp)t(e)h Fm(A)2819 3068 y Fk(n)2927 3050 y Fn(and)e Fm(B)3290 3068 y Fl(2)257 3234 y FL(Here)34 b(the)f(strategy)h(is)f(to)f(start)h(with)g(a)f(Y)-8 b(etter-Drinfeld)32 b(mo)s(dule)f FI(V)50 b FC(2)3016 3198 y Fo(\000)3016 3259 y(\000)3065 3234 y Fv(YD)33 b FL(whose)257 3355 y(braiding)g(is)h(of)g(\014nite)g(Cartan)g(t)m(yp)s (e)h(with)f(Dynkin)h(diagram)d FI(A)2687 3370 y FH(2)2761 3355 y FL(\(see)j([AS4]\))g(or)f FI(B)3456 3370 y FH(2)257 3475 y FL(\(in)46 b([BDR)o(]\))g(or)g FI(A)982 3490 y FG(n)1075 3475 y FL([AS5,)k(Section)c(7].)84 b(Without)46 b(sp)s(ecifying)f(the)i(group)f FI(\000)14 b FL(,)49 b(all)257 3596 y(p)s(ossible)35 b(liftings)e(in)h(suc)m(h)j(a)e (situation)e(are)j(then)f(determined.)52 b(These)37 b(are)e(the)h(few) 257 3716 y(cases)c(where)g(the)f(generalized)f(ro)s(ot)f(v)m(ector)j (relations)d(\(3.27\))h(are)g(kno)m(wn)i(explicitly)-8 b(.)257 3836 y(The)39 b(question)e(of)g(whic)m(h)h(groups)g(actually)d (admit)h(suc)m(h)j(Y)-8 b(etter-Drinfeld)35 b(mo)s(dules)257 3957 y(and)e(in)f(ho)m(w)h(man)m(y)g(w)m(a)m(ys)h(has)f(still)d(to)i(b) s(e)h(addressed.)404 4077 y(Because)k(all)c(the)j(diagrams)e (considered)i(here)h(ha)m(v)m(e)f(only)f(one)h(connected)h(com-)257 4197 y(p)s(onen)m(t,)32 b(the)g(lifted)d(Hopf)i(algebras)f(ha)m(v)m(e)i (no)f(linking)e(parameters.)43 b(Ho)m(w)m(ev)m(er,)33 b(there)257 4318 y(are)27 b(a)f(few)h(exceptional)f(cases)i(where)g (the)e(lifting)e(metho)s(d)i(is)g(not)g(as)h(straigh)m(tforw)m(ard)257 4438 y(as)38 b(describ)s(ed)g(in)e(the)i(general)e(picture)i(ab)s(o)m (v)m(e.)58 b(In)37 b([AS4)q(,)h(Section)f(3])g(for)g(instance,)257 4559 y(the)45 b(authors)g(could)f(not)g(deal)g(with)g(a)g(case)h (called)e FI(p)48 b FL(=)g(3)c(for)g(the)g(diagram)f FI(A)3429 4574 y FH(2)3468 4559 y FL(.)257 4679 y(This)e(w)m(as)g(then) g(done)g(in)e([BDR],)j(but)f(at)f(the)g(same)h(time)d(the)j(authors)g (w)m(ere)g(not)257 4799 y(able)f(to)f(treat)h FI(p)h FL(=)f(5)g(for)f FI(B)1368 4814 y FH(2)1408 4799 y FL(.)65 b(W)-8 b(e)41 b(will)d(giv)m(e)i(an)g(answ)m(er)h(to)f(this)f(in)h (Section)f(4.6.)257 4920 y(An)m(ticipating)c(further)h(dev)m(elopmen)m (ts)h(w)m(e)h(will)c(also)h(pro)m(vide)h(a)g(partial)e(answ)m(er)k(for) 257 5040 y(the)h(exceptional)e(case)i FI(p)e FL(=)g(7)h(of)f(the)i (diagram)d FI(G)2198 5055 y FH(2)2237 5040 y FI(:)i FL(Here)h FI(p)f FL(denotes)h(the)f(order)h(of)257 5161 y(the)33 b(diagonal)e(elemen)m(ts)h(of)h(the)g(braiding)d(matrix.)1828 5637 y(24)p eop %%Page: 25 27 25 26 bop 257 573 a Fn(3.4.4)136 b(Classi\014cation)97 b(of)d(p)t(oin)l(ted)h(Hopf)g(algebras)h(with)668 722 y(coradical)46 b(\()p Fj(Z)s Fm(=)p Fn(\()p Fm(p)p Fn(\)\))1664 679 y Fk(s)257 907 y FL(In)29 b([AS3])f(the)h(authors)f(are)g(able)f (to)h(giv)m(e)g(a)g(complete)f(classi\014cation)g(of)g FE(al)5 b(l)38 b FL(\(and)29 b(this)257 1027 y(time)e(there)i(really)e (are)h FE(no)34 b FL(exceptions\))29 b(p)s(oin)m(ted)f(\014nite)f (dimensional)f(Hopf)i(algebras)257 1148 y(whose)36 b(coradical)c (consists)j(of)f(an)g(arbitrary)f(n)m(um)m(b)s(er)h(of)g(copies)g(of)g (the)h(group)f(with)257 1268 y FI(p)f FL(elemen)m(ts,)g(where)h FI(p)e FL(is)g(a)g(prime)g(bigger)g(than)g(17.)404 1389 y(By)j(ha)m(ving)f(the)g(group)g(consisting)g(of)g(cyclic)g(groups)g (of)g(prime)f(order,)i(the)g(ro)s(ot)257 1509 y(v)m(ector)29 b(parameters)e(can)h(only)e(b)s(e)i(zero.)42 b(And)28 b FI(p)f(>)h FL(17)f(ensures)i(that)e(the)h(exceptional)257 1629 y(cases)h(for)e(the)g(lifting)d(pro)s(cedure)29 b(and)e(the)h(ones)g(men)m(tioned)e(in)h(Theorem)g(3.1)g(do)g(not)257 1750 y(in)m(terfere.)257 1978 y FJ(Theorem)37 b(3.4)98 b FE([AS3,)35 b(The)-5 b(or)g(em)34 b(1.1.])501 2098 y(\(a\).)60 b(L)-5 b(et)41 b FI(p)c(>)h FL(17)h FE(b)-5 b(e)40 b(a)g(prime)g(and)f Fv(H)i FE(a)f(p)-5 b(ointe)g(d)39 b(\014nite)h(dimensional)e(Hopf)501 2219 y(algebr)-5 b(a)39 b(such)g(that)g FI(G)p FL(\()p Fv(H)q FL(\))c FC(')i FI(\000)49 b FL(:=)36 b(\()p FF(Z)p FI(=)p FL(\()p FI(p)p FL(\)\))2224 2183 y FG(s)2258 2219 y FE(.)58 b(Then)38 b(ther)-5 b(e)39 b(exists)g(a)g(linking)501 2339 y(datum)g FC(D)h FE(of)e(\014nite)g(Cartan)g(typ)-5 b(e)39 b(with)f(gr)-5 b(oup)38 b FI(\000)52 b FE(and)38 b(no)g(self-linkings)e(such)501 2460 y(that)f Fv(H)29 b FC(')f Fs(u)p FL(\()p FC(D)s FI(;)17 b FJ(0)p FL(\))p FE(.)501 2621 y(\(b\).)71 b(Conversely,)45 b(given)e(a)g(linking)g(datum)h FC(D)i FE(of)e(\014nite)f(Cartan)g(typ) -5 b(e)44 b(with)501 2742 y(gr)-5 b(oup)35 b FI(\000)s(;)g FE(the)h(algebr)-5 b(a)34 b Fv(H)28 b FL(:=)g Fs(u)p FL(\()p FC(D)s FI(;)17 b FJ(0)p FL(\))34 b FE(is)h(p)-5 b(ointe)g(d,)34 b FI(G)p FL(\()p Fv(H)q FL(\))28 b FC(')g FI(\000)49 b FE(and)35 b FL(dim)15 b Fv(H)28 b FL(=)501 2862 y FI(p)550 2826 y FG(s)p FH(+)p Fx(j)p FH(\010)709 2803 y Fy(+)759 2826 y Fx(j)783 2862 y FI(:)404 3090 y FL(Although)d(this)i(result)f(pro)m(vides)h(a)g(go)s(o)s(d)e(answ)m (er)j(to)e(the)h(classi\014cation)e(problem,)257 3211 y(there)39 b(are)e(still)e(a)i(few)h(di\016culties)f(when)i(w)m(e)f(w)m (an)m(t)g(to)g(kno)m(w)g(all)e(Hopf)h(algebras)g(of)257 3331 y(this)c(kind)f(explicitly)-8 b(.)42 b(This)32 b(is)g(the)h (starting)f(p)s(oin)m(t)g(of)g(this)g(Ph.D.)h(thesis.)404 3452 y(One)i(asp)s(ect)h(needing)f(clari\014cation)e(is)i(the)g (linking)e(parameters.)51 b(Ha)m(ving)35 b(\014xed)257 3572 y(the)d(Dynkin)f(diagram,)f(the)h(group)g(and)h(c)m(haracter)g (elemen)m(ts,)g(what)f(p)s(ossible)g FI(\025)g FL(can)257 3692 y(app)s(ear?)87 b(It)48 b(is)e(not)h(at)g(all)e(ob)m(vious)i(whic) m(h)h(v)m(ertices)g(can)g(b)s(e)f(link)m(ed.)87 b(\\Exotic")257 3813 y(linkings)42 b(lik)m(e)g([AS3,)k(Example)c(5.13.],)j(where)f(4)f (copies)g(of)f FI(A)2685 3828 y FH(3)2768 3813 y FL(are)h(link)m(ed)f (in)m(to)g(a)257 3933 y(circle)36 b(are)h(p)s(ossible.)54 b(The)38 b(general)e(picture)h(w)m(as)g(presen)m(ted)i(in)d([D1)o(])h (and)f(the)h(next)257 4054 y(c)m(hapter)d(is)e(dev)m(oted)i(to)e(this)h (problem.)404 4174 y(Giv)m(en)28 b(a)h(\014xed)h(prime)e FI(p)g FL(and)h(an)g FI(s;)g FL(what)g(Dynkin)g(diagrams)e(are)i (realizable?)40 b(In)257 4294 y(other)35 b(w)m(ords,)g(for)f(whic)m(h)g (diagrams)f(can)h(w)m(e)h(\014nd)f(group)g(elemen)m(ts)h(and)f(c)m (haracters)257 4415 y(suc)m(h)42 b(that)e(\(3.19\))g(can)h(b)s(e)f (ful\014lled?)65 b(This)41 b(question)g(has)g(b)s(een)g(addressed)h(so) f(far)257 4535 y(only)32 b(for)g FI(s)c FL(=)g(1)k(in)g([AS2].)43 b(W)-8 b(e)33 b(will)e(presen)m(t)j(the)f(answ)m(ers)h(for)e FI(s)c FL(=)g(2)k(in)g(Chapter)h(5.)404 4655 y(In)g(the)g(last)f(c)m (hapter)i(w)m(e)f(will)e(b)s(e)i(concerned)h(with)e(analyzing)g(ho)m(w) h(di\013eren)m(t)g(all)257 4776 y(these)h(new)g(Hopf)e(algebras)g (actually)f(are.)1828 5637 y(25)p eop %%Page: 26 28 26 27 bop 257 1237 a FK(Chapter)78 b(4)257 1652 y(The)g(structure)g(of) f(link)-13 b(able)257 1901 y(Dynkin)77 b(diagrams)257 2354 y FL(In)38 b(this)f(c)m(hapter)h(w)m(e)h(w)m(an)m(t)f(to)f (address)h(the)g(problem)e(of)h(determining)f(all)f(p)s(ossible)257 2474 y(linkings.)42 b(W)-8 b(e)33 b(will)d(b)s(e)j(mainly)d(concerned)k (with)e(a)g(detailed)g(in)m(v)m(estigation)f(of)h(when)257 2594 y(a)j(link)-5 b(able)32 b(braiding)g(matrix)h(of)h(a)g(giv)m(en)h (Cartan)f(t)m(yp)s(e)i(do)s(es)f(exist.)49 b(This)35 b(will)d(lead)257 2715 y(to)44 b(a)f(c)m(haracterization)g(of)g(the)h (corresp)s(onding)g(link)-5 b(able)41 b(Dynkin)j(diagrams.)75 b(W)-8 b(e)257 2835 y(sho)m(w)47 b(ho)m(w)f(these)h(ideas)f(are)g (related)f(to)g(the)h(usual)g(quan)m(tized)g(en)m(v)m(eloping)g(alge-) 257 2956 y(bras)30 b(and)g(to)f(the)h(\014nite)g(dimensional)d(Hopf)i (algebras)g(constructed)i(in)e([AS3],)i(whic)m(h)257 3076 y(are)42 b(themselv)m(es)g(v)-5 b(ariations)40 b(of)g(the)i (\014nite)f(dimensional)e(Quan)m(tum)i(groups)g(called)257 3196 y(F)-8 b(rob)s(enius-Lusztig)32 b(k)m(ernels)h([Lus3)q(].)404 3317 y(T)-8 b(o)32 b(get)g(a)g(nice)g(result,)g(w)m(e)h(sligh)m(tly)e (sp)s(ecialize)g(some)g(of)h(our)g(earlier)f(de\014nitions.)257 3437 y(W)-8 b(e)33 b(will)e(discuss)i(generalisations)e(later.)501 3615 y(F)-8 b(rom)22 b(no)m(w)i(on)f(all)e(link)-5 b(able)21 b(Dynkin)j(diagrams)d(are)j(assumed)g(to)e(b)s(e)i(link-)501 3736 y(connected,)34 b(i.e.)43 b(when)32 b(view)m(ed)h(as)f(a)g(graph)f (they)i(are)e(connected.)45 b(F)-8 b(ur-)501 3856 y(thermore,)40 b(w)m(e)f(will)d(restrict)i(our)g(considerations)g(to)g(diagrams)e (where)501 3976 y(t)m(w)m(o)45 b(v)m(ertices)g(are)g(link)-5 b(able)42 b(only)h(if)g(they)i(lie)e(in)g(di\013eren)m(t)i(connected) 501 4097 y(comp)s(onen)m(ts)25 b(of)f(the)h(original)c(diagram,)j(i.e.) 40 b(there)25 b(are)f(no)h(self-linkings.)501 4217 y(Finally)-8 b(,)37 b(all)f(diagonal)g(elemen)m(ts)j(of)e(the)i(braiding)d(matrix)h (ha)m(v)m(e)j(\014nite)501 4338 y(order)26 b(and)g(the)g(base)g (\014eld)f FF(|)11 b FL(is)25 b(required)h(to)g(con)m(tain)f(a)g FI(p)2627 4301 y FH(th)2723 4338 y FL(ro)s(ot)g(of)g(unit)m(y)501 4458 y(for)32 b(a)h(prime)e FI(p)d(>)f FL(3)p FI(:)257 4636 y FL(F)-8 b(or)38 b(t)m(w)m(o)h(v)m(ertices)h FI(i;)17 b(j)44 b FL(of)38 b(the)h(Dynkin)f(diagram)f(with)h FI(a)2455 4651 y FG(ij)2553 4636 y FC(6)p FL(=)g(0)p FI(;)g FL(the)h(symmetry)g (of)257 4757 y(\(3.19\))32 b(implies)1659 4877 y FI(b)1700 4823 y FG(a)1737 4833 y Fo(ij)1700 4902 y FG(ii)1825 4877 y FL(=)27 b FI(b)1969 4823 y FG(a)2006 4833 y Fo(j)s(i)1969 4902 y FG(j)t(j)2066 4877 y FI(:)1202 b FL(\(4.1\))257 5039 y(F)-8 b(or)44 b FI(i)17 b FC(\001)g(\001)g(\001)e FI(j)50 b FL(w)m(e)c(ha)m(v)m(e)g FI(a)1161 5054 y FG(ij)1270 5039 y FL(=)i(0,)f(as)e(w)m(e)h(required)f(the)g(v)m(ertices)h(to)e (lie)f(in)h(di\013eren)m(t)257 5159 y(connection)33 b(comp)s(onen)m (ts.)44 b(Using)32 b(\(3.20\))g(and)h(\(3.19\))f(alternately)-8 b(,)31 b(w)m(e)j(arriv)m(e)e(at)1432 5350 y FI(b)1473 5365 y FG(ii)1554 5350 y FL(=)27 b FI(b)1698 5308 y Fx(\000)p FH(1)1698 5375 y FG(ij)1821 5350 y FL(=)g FI(b)1965 5365 y FG(j)t(i)2054 5350 y FL(=)g FI(b)2198 5308 y Fx(\000)p FH(1)2198 5375 y FG(j)t(j)2293 5350 y FI(:)975 b FL(\(4.2\))1828 5637 y(26)p eop %%Page: 27 29 27 28 bop 257 573 a FD(4.1)161 b(The)53 b(\014nite)h(case)257 792 y FL(First)41 b(w)m(e)i(will)c(only)i(consider)h(Dynkin)f(diagrams) f(of)h(\014nite)h(t)m(yp)s(e,)i(i.e.)70 b(the)42 b(corre-)257 912 y(sp)s(onding)48 b(Lie)f(algebras)h(are)g(\014nite)g(dimensional.) 87 b(In)49 b(order)f(to)g(get)g(in)m(teresting)257 1033 y(applications)40 b(in)h(regard)g(of)g([AS3)q(])g(w)m(e)i(further)f (require)g(that)f(a)h(link)-5 b(able)39 b(braiding)257 1153 y(matrix)31 b(has)i(the)g(follo)m(wing)d(prop)s(ert)m(y:)538 1351 y FE(The)39 b(or)-5 b(der)39 b(of)g(the)h(diagonal)e(elements)g FI(b)2128 1366 y FG(ii)2220 1351 y FE(is)i(gr)-5 b(e)g(ater)39 b(than)g(2)h(and)538 1471 y(not)i(divisible)f(by)h(3)g(if)g(the)g (linkable)f(Dynkin)g(diagr)-5 b(am)41 b(c)-5 b(ontains)41 b(a)538 1592 y(c)-5 b(omp)g(onent)33 b(of)i(typ)-5 b(e)35 b FI(G)1419 1607 y FH(2)1459 1592 y FE(.)3295 1471 y FL(\(4.3\))404 1740 y(The)27 b(\014rst)g(prop)s(erties)g(are)f(presen)m (ted)j(in)d(a)g(lemma,)g(whic)m(h)h(is)f(essen)m(tially)h(Lemma)257 1860 y(5.6.)43 b(in)32 b([AS3].)44 b(Ho)m(w)m(ev)m(er,)35 b(w)m(e)f(form)m(ulate)d(it)g(on)i(the)g(lev)m(el)f(of)g(the)h (braiding)e(matrix.)257 2069 y FJ(Lemma)37 b(4.1)98 b FE(We)32 b(ar)-5 b(e)32 b(given)f(a)h(linkable)f(Dynkin)g(diagr)-5 b(am)31 b FI(D)k FE(and)d(a)g(c)-5 b(orr)g(esp)g(ond-)501 2189 y(ing)45 b(linkable)e(br)-5 b(aiding)44 b(matrix)h Fq(b)p FI(:)g FE(Supp)-5 b(ose)44 b(that)h(the)g(vertic)-5 b(es)45 b FI(i)g FE(and)g FI(j)50 b FE(ar)-5 b(e)501 2309 y(linkable)34 b(to)h FI(k)j FE(and)c FI(l)r FE(,)h(r)-5 b(esp)g(e)g(ctively.)44 b(Then)34 b FI(a)2200 2324 y FG(ij)2289 2309 y FL(=)27 b FI(a)2443 2324 y FG(k)r(l)2508 2309 y FI(:)257 2518 y FJ(Pro)s(of:)49 b FL(If)33 b FI(a)758 2533 y FG(il)836 2518 y FC(6)p FL(=)28 b(0)33 b(or)f FI(a)1192 2533 y FG(j)t(k)1296 2518 y FC(6)p FL(=)c(0)k(then)i(w)m(e)g (immediately)29 b(get)k FI(a)2617 2533 y FG(ij)2706 2518 y FL(=)28 b FI(a)2861 2533 y FG(k)r(l)2954 2518 y FL(=)g(0,)33 b(b)s(ecause)501 2638 y(link)-5 b(able)23 b(v)m(ertices)j(m)m(ust)g (lie)d(in)h(di\013eren)m(t)i(connected)g(comp)s(onen)m(ts)g(of)e FI(D)s(:)h FL(So)g(w)m(e)501 2759 y(no)m(w)31 b(tak)m(e)f FI(a)961 2774 y FG(il)1039 2759 y FL(=)d FI(a)1193 2774 y FG(j)t(k)1296 2759 y FL(=)h(0)p FI(:)h FL(Without)g(loss)h(of)f (generalit)m(y)g(w)m(e)i(assume)f FI(a)3159 2774 y FG(ij)3247 2759 y FC(\024)e FI(a)3403 2774 y FG(k)r(l)3468 2759 y FI(:)501 2879 y FL(Using)k(\(3.19\))g(and)h(\(3.20\))f(alternately)-8 b(,)31 b(w)m(e)j(get)876 3082 y FI(b)917 3028 y FG(a)954 3038 y Fo(ij)917 3107 y FG(ii)1041 3082 y FL(=)28 b FI(b)1186 3097 y FG(ij)1247 3082 y FI(b)1288 3097 y FG(j)t(i)1377 3082 y FL(=)f FI(b)1521 3041 y Fx(\000)p FH(1)1521 3110 y FG(il)1616 3082 y FI(b)1657 3041 y Fx(\000)p FH(1)1657 3110 y FG(j)t(k)1779 3082 y FL(=)h FI(b)1924 3097 y FG(l)q(i)1974 3082 y FI(b)2015 3097 y FG(k)r(j)2119 3082 y FL(=)f FI(b)2263 3041 y Fx(\000)p FH(1)2263 3110 y FG(l)q(k)2358 3082 y FI(b)2399 3041 y Fx(\000)p FH(1)2399 3110 y FG(k)r(l)2521 3082 y FL(=)h FI(b)2666 3036 y Fx(\000)p FG(a)2758 3048 y Fo(k)q(l)2666 3110 y FG(k)r(k)2849 3082 y FL(=)f FI(b)2993 3036 y FG(a)3030 3048 y Fo(k)q(l)2993 3107 y FG(ii)3094 3082 y FI(:)501 3285 y FL(In)32 b(the)h(last)e(step)h(w)m(e)h(used)g (\(4.2\).)43 b(Hence)33 b FI(a)2155 3300 y FG(ij)2243 3285 y FL(=)28 b FI(a)2398 3300 y FG(k)r(l)2494 3285 y FL(mo)s(dulo)i(the)i(order)g(of)f FI(b)3415 3300 y FG(ii)3468 3285 y FI(:)501 3405 y FL(As)40 b FI(b)693 3420 y FG(ii)785 3405 y FC(6)p FL(=)f FC(\006)p FL(1)p FI(;)g FL(w)m(e)h(either)f(get)h FI(a)1746 3420 y FG(ij)1845 3405 y FL(=)f FI(a)2011 3420 y FG(k)r(l)2115 3405 y FL(or)g(that)g(the) g(order)h(of)f FI(b)3054 3420 y FG(ii)3145 3405 y FL(is)g(3)g(and)501 3525 y FI(a)552 3540 y FG(ij)647 3525 y FL(=)34 b FC(\000)p FL(3)p FI(;)17 b(a)978 3540 y FG(k)r(l)1077 3525 y FL(=)34 b(0)p FI(:)i FL(But)h(in)e(the)i(last)f(case)h FI(i)f FL(and)h FI(j)42 b FL(form)35 b(a)h FI(G)2926 3540 y FH(2)3002 3525 y FL(comp)s(onen)m(t.)501 3646 y(So)44 b FI(b)689 3661 y FG(ii)788 3646 y FL(=)j(3)c(is)g(a)h(con)m (tradiction)e(to)i(the)g(assumption)f(on)h(the)g(order)g(of)f(the)501 3766 y(diagonal)30 b(elemen)m(ts.)2008 b FJ(qed.)404 3975 y FL(Before)39 b(w)m(e)h(can)g(state)f(our)g(result)h(on)f(the)g (structure)i(of)e(link)-5 b(able)37 b(Dynkin)i(dia-)257 4095 y(grams)25 b(that)g(admit)f(a)h(corresp)s(onding)g(braiding)e (matrix)h(with)h(the)h(ab)s(o)m(v)m(e)g(prop)s(erties,)257 4216 y(w)m(e)34 b(ha)m(v)m(e)g(to)e(in)m(tro)s(duce)h(some)f (terminology)-8 b(.)257 4404 y FJ(Def)10 b(inition)36 b(4.1)98 b FE(F)-7 b(or)34 b(every)i(cycle)1683 4368 y FH(1)1758 4404 y FI(c)f FE(in)h FI(D)i FE(we)d(cho)-5 b(ose)35 b(an)g(orientation)h(and)f(de-)501 4524 y(note)27 b(by)g(the)35 b FL(w)m(eigh)m(t)27 b FI(w)1364 4539 y FG(c)1426 4524 y FE(the)g(absolute)g(value)f(of)h(the)g(di\013er)-5 b(enc)g(e)26 b(of)h(the)g(numb)-5 b(ers)501 4645 y(of)26 b(double)g(e)-5 b(dges)25 b(in)h(that)g(cycle)g(with)g(the)g(arr)-5 b(ow)25 b(p)-5 b(ointing)26 b(with)g(the)g(orientation)501 4765 y(and)38 b(against)h(it.)57 b(The)45 b FL(length)39 b FI(l)1728 4780 y FG(c)1801 4765 y FE(of)g(the)f(cycle)h(is)g (de\014ne)-5 b(d)37 b(to)i(b)-5 b(e)39 b(the)g(numb)-5 b(er)501 4886 y(of)35 b(dotte)-5 b(d)35 b(e)-5 b(dges)34 b(in)g(that)i(cycle.)501 5006 y(The)42 b FL(gen)m(us)36 b FI(g)1026 5021 y FG(c)1095 5006 y FE(of)f(the)g(cycle)f(is)h(now)f (de\014ne)-5 b(d)34 b(by)h(the)g(fol)5 b(lowing)33 b(formula:)1606 5209 y FI(g)1653 5224 y FG(c)1716 5209 y FL(:=)27 b(2)1895 5168 y FG(w)1946 5176 y Fo(c)2004 5209 y FC(\000)c FL(\()p FC(\000)p FL(1\))2306 5168 y FG(l)2327 5176 y Fo(c)2363 5209 y FI(:)905 b FL(\(4.4\))p 257 5297 1296 4 v 370 5358 a FB(1)407 5388 y FA(A)28 b(cycle)f(is)g(a)h(closed,)f(non)g (self-in)n(tersecting)g(path)g(in)h(the)g(diagram.)1828 5637 y FL(27)p eop %%Page: 28 30 28 29 bop 257 573 a FL(In)35 b(preparation)e(for)h(some)g(tec)m (hnicalities)e(in)h(the)i(second)g(part)f(of)g(the)g(pro)s(of)g(of)f (our)257 693 y(result)g(w)m(e)g(also)f(need)i(the)f(follo)m(wing)d (concept.)257 894 y FJ(Def)10 b(inition)36 b(4.2)98 b FE(F)-7 b(or)34 b(two)i(vertic)-5 b(es)35 b FI(i)h FE(and)f FI(j)41 b FE(of)36 b FI(D)i FE(we)d(de\014ne)g(for)g(every)h(dir)-5 b(e)g(cte)g(d)501 1014 y(p)g(ath)39 b FI(P)53 b FE(fr)-5 b(om)39 b FI(j)45 b FE(to)40 b FI(i)f FE(a)g(numb)-5 b(er)39 b FI(h)1844 978 y FG(i)1844 1039 y(j)1881 1014 y FL(\()p FI(P)14 b FL(\))35 b FC(\025)i FL(0)p FE(,)j(c)-5 b(al)5 b(le)-5 b(d)38 b(the)47 b FL(heigh)m(t)37 b(of)g FI(i)h FL(o)m(v)m(er)g FI(j)501 1135 y FL(along)31 b FI(P)14 b FE(,)35 b(by)g(the)f(fol)5 b(lowing)34 b(algorithm.)501 1296 y(First)i(we)f(set)h FI(h)30 b FL(=)f(0)p FE(.)47 b(Then)35 b(we)g(fol)5 b(low)35 b(the)h(p)-5 b(ath)36 b FI(P)49 b FE(starting)36 b(at)g FI(j)6 b FE(.)47 b(A)n(t)36 b(every)501 1416 y(vertex)f(we)f(get)h(to,)g(we)1500 1598 y Fi(incr)l(e)l(ase)30 b(the)g(value)g(of)h Fh(h)e Fi(by)h(1)1720 1698 y(de)l(cr)l(e)l(ase)g(it)g(by)g(1)1601 1818 y(or)g(le)l(ave)h(it)f(unchange)l(d,)501 2021 y FE(dep)-5 b(ending)34 b(on)g(if)h(the)g(e)-5 b(dge)34 b(we)g(just)i(p)-5 b(asse)g(d)33 b(was)i(a)f(double)h(e)-5 b(dge)34 b(p)-5 b(ointing)1543 2202 y Fi(with)30 b(the)g(orientation)h (of)g Fh(P)1829 2302 y Fi(against)f(it)1537 2422 y(or)g(was)h(not)e(a)h (double)h(e)l(dge.)501 2625 y FE(The)43 b(only)g(exc)-5 b(eption)42 b(is)h(that)h(the)f(value)g(of)g FI(h)g FE(is)g(not)h(de)-5 b(cr)g(e)g(ase)g(d)42 b(when)g(it)h(is)501 2745 y(0.)51 b FI(h)688 2709 y FG(i)688 2770 y(j)724 2745 y FL(\()p FI(P)14 b FL(\))36 b FE(is)h(then)f(set)h(to)g(b)-5 b(e)37 b(the)g(value)f(of)h FI(h)g FE(after)f(we)h(fol)5 b(lowe)-5 b(d)35 b(thr)-5 b(ough)37 b(the)501 2866 y(whole)d(p)-5 b(ath)35 b FI(P)48 b FE(arriving)34 b(at)h FI(i:)501 3027 y FE(F)-7 b(or)33 b(a)h(cycle)g FI(c)f FE(we)h(de\014ne)f(the)41 b FL(natural)31 b(orien)m(tation)h FE(to)i(b)-5 b(e)34 b(the)g(one)f(wher)-5 b(e)33 b(the)501 3147 y(numb)-5 b(er)33 b(of)f(double)g(e)-5 b(dges)32 b(in)h FI(c)f FE(p)-5 b(ointing)32 b(with)h(this)f(orientation)h(is)f(not)h(bigger) 501 3268 y(than)i(the)g(numb)-5 b(er)34 b(of)h(double)f(e)-5 b(dges)34 b(p)-5 b(ointing)34 b(against)h(it)2677 3232 y FH(2)2716 3268 y FE(.)501 3429 y(F)-7 b(or)40 b(every)i(vertex)f FI(i)g FE(of)g FI(c)g FE(we)g(de\014ne)f(the)49 b FL(absolute)39 b(heigh)m(t)i FI(h)2895 3444 y FG(i)2923 3429 y FL(\()p FI(c)p FL(\))e FC(\025)h FL(0)h FE(to)h(b)-5 b(e)501 3550 y(the)40 b(height)g(of)g FI(i)g FE(over)g(itself)g(along)f FI(c)h FE(fol)5 b(lowing)39 b(its)h(natur)-5 b(al)40 b(orientation.)60 b(A)501 3670 y(vertex)37 b(of)f(absolute)g(height)g FL(0)h FE(in)f(a)h(cycle)f(of)g(genus)g FI(g)2543 3685 y FG(c)2609 3670 y FI(>)30 b FL(0)37 b FE(is)f(c)-5 b(al)5 b(le)-5 b(d)36 b(a)44 b FL(Lev)m(el)501 3790 y(0)33 b(v)m(ertex.)257 3991 y(This)22 b(seems)h(to)e(b)s(e)h(the)h(righ)m(t)e(p)s(oin)m(t)g (to)g(illustrate)f(all)f(the)j(notions)g(in)f(an)g(example.)40 b(W)-8 b(e)257 4111 y(consider)34 b(the)f(Dynkin)g(diagram)e(in)h (Figure)h(4.1,)f(where)j(the)e(v)m(ertices)i(are)e(supp)s(osed)257 4232 y(to)h(b)s(e)g(link)-5 b(able)32 b(in)h(the)i(indicated)e(w)m(a)m (y)-8 b(.)49 b(F)-8 b(or)33 b(the)i(four)f(cycles)h(denoted)g(b)m(y)g (I,)f(I)s(I,)g(I)s(I)s(I)257 4352 y(and)j(IV)f(\(where)i(I)e(is)g(the)h (outside)f(cycle\))h(the)f(v)-5 b(alues)37 b(for)e FI(w)s FL(,)i FI(l)h FL(and)f FI(g)i FL(are)e(giv)m(en)f(in)257 4472 y(this)d(table:)p 1692 4681 4 121 v 1744 4645 a FI(w)1814 4660 y FG(c)1948 4645 y FI(l)1977 4660 y FG(c)2111 4645 y FI(g)2158 4660 y FG(c)p 1483 4685 760 4 v 1571 4769 a FL(I)p 1692 4805 4 121 v 165 w(2)135 b(5)123 b(5)1552 4889 y(I)s(I)p 1692 4925 V 146 w(2)135 b(7)123 b(5)1533 5010 y(I)s(I)s(I)p 1692 5046 V 127 w(0)135 b(4)123 b(0)1534 5130 y(IV)p 1692 5166 V 129 w(0)135 b(2)123 b(0)66 b(.)p 257 5197 1296 4 v 370 5258 a FB(2)407 5289 y FA(If)23 b(the)g(w)n(eigh)n(t)f Fh(w)940 5301 y Fg(c)997 5289 y FA(=)h(0)f(then)i(the)f(natural)f(orien)n(tation)f(is)i(am)n (biguous.)33 b(In)23 b(that)g(case)f(w)n(e)h(c)n(ho)r(ose)257 5388 y(one)28 b(of)f(the)h(p)r(ossible)f(t)n(w)n(o)g(orien)n(tations.) 35 b(This)28 b(will)g(not)f(lead)h(to)f(an)n(y)g(problems.)1828 5637 y FL(28)p eop %%Page: 29 31 29 30 bop 664 2007 a @beginspecial 0 @llx 0 @lly 291 @urx 184 @ury 2910 @rwi @setspecial %%BeginDocument: fig1.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: fig1.eps %%Creator: fig2dev Version 3.2 Patchlevel 0-beta3 %%CreationDate: Thu Nov 7 12:32:39 2002 %%For: didt@math12 (D. Didt) %%Orientation: Portrait %%BoundingBox: 0 0 291 184 %%Pages: 0 %%BeginSetup %%EndSetup %%Magnification: 0.6000 %%EndComments /$F2psDict 200 dict def $F2psDict begin $F2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save -56.0 248.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def %%EndProlog $F2psBegin 10 setmiterlimit n -1000 7871 m -1000 -1000 l 10634 -1000 l 10634 7871 l cp clip 0.03600 0.03600 sc % Polyline 30.000 slw [15 120] 120 sd n 8865 3405 m 8866 3407 l 8869 3410 l 8874 3418 l 8883 3429 l 8894 3444 l 8909 3465 l 8928 3490 l 8950 3520 l 8975 3554 l 9003 3592 l 9032 3633 l 9064 3677 l 9096 3722 l 9129 3768 l 9161 3814 l 9193 3859 l 9224 3904 l 9254 3947 l 9282 3989 l 9309 4030 l 9334 4069 l 9358 4106 l 9380 4141 l 9401 4175 l 9420 4208 l 9438 4239 l 9454 4269 l 9469 4298 l 9483 4326 l 9496 4354 l 9508 4381 l 9520 4408 l 9530 4435 l 9540 4463 l 9550 4492 l 9559 4520 l 9567 4549 l 9574 4578 l 9581 4608 l 9587 4637 l 9591 4668 l 9595 4698 l 9598 4730 l 9600 4761 l 9601 4793 l 9601 4826 l 9600 4858 l 9598 4891 l 9594 4925 l 9590 4958 l 9584 4991 l 9577 5024 l 9570 5057 l 9561 5090 l 9551 5123 l 9539 5155 l 9527 5188 l 9514 5219 l 9500 5251 l 9485 5282 l 9469 5314 l 9452 5345 l 9434 5376 l 9415 5406 l 9395 5438 l 9378 5463 l 9360 5488 l 9342 5513 l 9322 5539 l 9302 5565 l 9281 5592 l 9258 5619 l 9235 5646 l 9210 5674 l 9184 5702 l 9157 5730 l 9129 5759 l 9100 5788 l 9070 5817 l 9038 5846 l 9006 5875 l 8972 5905 l 8937 5934 l 8902 5964 l 8865 5993 l 8828 6022 l 8790 6051 l 8751 6079 l 8712 6107 l 8672 6135 l 8631 6162 l 8590 6188 l 8548 6214 l 8506 6239 l 8464 6264 l 8422 6288 l 8379 6311 l 8336 6334 l 8292 6355 l 8249 6377 l 8205 6397 l 8161 6417 l 8116 6436 l 8071 6455 l 8025 6473 l 7986 6487 l 7947 6501 l 7907 6515 l 7867 6529 l 7825 6542 l 7783 6555 l 7740 6568 l 7697 6581 l 7652 6593 l 7606 6605 l 7560 6617 l 7513 6628 l 7464 6640 l 7415 6651 l 7365 6662 l 7314 6672 l 7262 6682 l 7210 6692 l 7157 6702 l 7103 6711 l 7048 6720 l 6993 6729 l 6938 6737 l 6882 6745 l 6826 6753 l 6769 6760 l 6713 6767 l 6656 6774 l 6599 6780 l 6543 6786 l 6486 6792 l 6430 6797 l 6373 6802 l 6317 6806 l 6261 6810 l 6206 6814 l 6151 6818 l 6096 6821 l 6042 6824 l 5988 6826 l 5935 6829 l 5881 6831 l 5828 6832 l 5776 6834 l 5724 6835 l 5671 6836 l 5619 6837 l 5568 6838 l 5515 6838 l 5463 6838 l 5411 6838 l 5358 6838 l 5305 6837 l 5252 6836 l 5198 6835 l 5144 6834 l 5089 6833 l 5034 6831 l 4978 6829 l 4922 6827 l 4866 6825 l 4809 6822 l 4752 6820 l 4695 6817 l 4637 6814 l 4580 6810 l 4522 6807 l 4465 6803 l 4407 6799 l 4350 6795 l 4293 6791 l 4237 6786 l 4180 6782 l 4125 6777 l 4070 6772 l 4015 6767 l 3961 6762 l 3909 6756 l 3857 6751 l 3806 6745 l 3756 6740 l 3707 6734 l 3659 6728 l 3612 6723 l 3566 6717 l 3521 6711 l 3478 6705 l 3436 6699 l 3394 6693 l 3354 6687 l 3315 6681 l 3277 6675 l 3240 6669 l 3204 6662 l 3169 6656 l 3135 6650 l 3085 6640 l 3037 6631 l 2991 6621 l 2946 6611 l 2902 6600 l 2859 6589 l 2817 6577 l 2775 6565 l 2733 6552 l 2692 6539 l 2650 6525 l 2607 6510 l 2565 6494 l 2522 6477 l 2478 6460 l 2435 6442 l 2391 6424 l 2348 6406 l 2307 6387 l 2266 6369 l 2228 6352 l 2193 6336 l 2161 6321 l 2133 6308 l 2110 6297 l 2091 6288 l 2077 6281 l 2067 6276 l 2060 6273 l 2057 6271 l 2055 6270 l gs col0 s gr [] 0 sd % Rotated Ellipse gs 6253 5772 tr -198.003 rot n 0 0 75 75 0 360 DrawEllipse 198.003 rot gs 0.00 setgray ef gr gs col0 s gr gr % Rotated Ellipse gs 6824 5586 tr -198.003 rot n 0 0 75 75 0 360 DrawEllipse 198.003 rot gs 0.00 setgray ef gr gs col0 s gr gr % Polyline n 7414 5410 m 6843 5595 l gs col0 s gr % Polyline n 6847 5657 m 6276 5843 l gs col0 s gr % Polyline n 6814 5558 m 6244 5742 l gs col0 s gr % Polyline n 6708 5813 m 6448 5739 l 6615 5527 l gs col0 s gr % Ellipse n 4530 1980 75 75 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 5130 1980 75 75 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 5730 1980 75 75 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 6330 1980 75 75 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 7545 1995 75 75 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 6945 1995 75 75 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 6465 3405 75 75 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 7065 3405 75 75 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 7665 3405 75 75 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 8265 3405 75 75 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 8865 3405 75 75 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 7665 2805 75 75 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 7050 4380 75 75 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Rotated Ellipse gs 7414 5410 tr -198.003 rot n 0 0 75 75 0 360 DrawEllipse 198.003 rot gs 0.00 setgray ef gr gs col0 s gr gr % Ellipse n 6495 4350 75 75 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 8880 4380 75 75 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 8280 4380 75 75 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 2040 5625 75 75 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 2640 5925 75 75 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3240 5925 75 75 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3840 5925 75 75 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 4440 5925 75 75 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 2040 6225 75 75 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Rotated Ellipse gs 2925 3691 tr -45.000 rot n 0 0 75 75 0 360 DrawEllipse 45.000 rot gs 0.00 setgray ef gr gs col0 s gr gr % Rotated Ellipse gs 2506 4116 tr -45.000 rot n 0 0 75 75 0 360 DrawEllipse 45.000 rot gs 0.00 setgray ef gr gs col0 s gr gr % Rotated Ellipse gs 2088 4531 tr -45.000 rot n 0 0 75 75 0 360 DrawEllipse 45.000 rot gs 0.00 setgray ef gr gs col0 s gr gr % Rotated Ellipse gs 1662 4953 tr -45.000 rot n 0 0 75 75 0 360 DrawEllipse 45.000 rot gs 0.00 setgray ef gr gs col0 s gr gr % Ellipse n 3615 4365 75 75 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 5415 4365 75 75 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 4830 4380 75 75 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 4230 4380 75 75 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Rotated Ellipse gs 3347 3294 tr -225.001 rot n 0 0 75 75 0 360 DrawEllipse 225.001 rot gs 0.00 setgray ef gr gs col0 s gr gr % Rotated Ellipse gs 1802 3078 tr -45.000 rot n 0 0 75 75 0 360 DrawEllipse 45.000 rot gs 0.00 setgray ef gr gs col0 s gr gr % Ellipse n 7665 4365 75 75 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline [15 90] 90 sd n 2520 4140 m 3630 4380 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 3375 3315 m 2295 2595 l gs col0 s gr [] 0 sd % Rotated Ellipse gs 2273 2591 tr -45.000 rot n 0 0 75 75 0 360 DrawEllipse 45.000 rot gs 0.00 setgray ef gr gs col0 s gr gr % Polyline [15 90] 90 sd n 4530 2010 m 4845 4395 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 5145 1995 m 5415 4365 l gs col0 s gr [] 0 sd % Polyline n 6930 1995 m 6960 1995 l gs col0 s gr % Polyline [15 90] 90 sd n 6960 1995 m 7665 2835 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 6495 3420 m 6495 4380 l gs col0 s gr [] 0 sd % Polyline n 5130 1980 m 4530 1980 l gs col0 s gr % Polyline n 5130 1980 m 5730 1980 l 6330 1980 l 6930 1980 l gs col0 s gr % Polyline n 6945 1920 m 7545 1920 l gs col0 s gr % Polyline n 6945 2025 m 7545 2025 l gs col0 s gr % Polyline n 7125 1815 m 7350 1965 l 7125 2115 l gs col0 s gr % Polyline n 6465 3405 m 7065 3405 l 7665 3405 l 8265 3405 l 8865 3405 l gs col0 s gr % Polyline n 7665 3405 m 7665 2805 l gs col0 s gr % Polyline n 7680 4380 m 7050 4380 l gs col0 s gr % Polyline n 7665 4365 m 8265 4365 l gs col0 s gr % Polyline n 8280 4305 m 8880 4305 l gs col0 s gr % Polyline n 8280 4410 m 8880 4410 l gs col0 s gr % Polyline n 2040 5625 m 2640 5925 l 3240 5925 l 3840 5925 l 4440 5925 l gs col0 s gr % Polyline n 2640 5925 m 2040 6225 l gs col0 s gr % Polyline n 2077 4539 m 2506 4116 l 2925 3691 l gs col0 s gr % Polyline n 1685 4975 m 2110 4550 l gs col0 s gr % Polyline n 3615 4365 m 4215 4365 l gs col0 s gr % Polyline n 4815 4365 m 5415 4365 l gs col0 s gr % Polyline n 4230 4305 m 4830 4305 l gs col0 s gr % Polyline n 4230 4410 m 4830 4410 l gs col0 s gr % Polyline n 1846 3035 m 2270 2611 l gs col0 s gr % Polyline n 1867 2781 m 2132 2728 l 2079 2993 l gs col0 s gr % Polyline n 1899 3088 m 2323 2664 l gs col0 s gr % Polyline n 1761 3014 m 2185 2590 l gs col0 s gr % Polyline n 1611 4900 m 2036 4477 l gs col0 s gr % Polyline n 2067 4751 m 1800 4800 l 1853 4537 l gs col0 s gr % Polyline n 4650 4200 m 4425 4350 l 4650 4500 l gs col0 s gr % Polyline n 8700 4200 m 8475 4350 l 8700 4500 l gs col0 s gr % Polyline [15 90] 90 sd n 4440 5910 m 6240 5775 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 7410 5385 m 8910 4395 l gs col0 s gr [] 0 sd % Polyline n 6510 4365 m 7095 4365 l gs col0 s gr % Polyline n 3325 3294 m 2912 3707 l gs col0 s gr % Polyline [15 90] 90 sd n 1635 4950 m 2040 5625 l gs col0 s gr [] 0 sd /Times-Roman ff 360.00 scf sf 4050 3450 m gs 1 -1 sc (I) col0 sh gr /Times-Roman ff 360.00 scf sf 5775 4875 m gs 1 -1 sc (II) col0 sh gr /Times-Roman ff 360.00 scf sf 4800 3300 m gs 1 -1 sc (IV) col0 sh gr /Times-Roman ff 360.00 scf sf 6975 6300 m gs 1 -1 sc (III) col0 sh gr /Times-Roman ff 360.00 scf sf 2145 5460 m gs 1 -1 sc (A) col0 sh gr /Times-Roman ff 360.00 scf sf 6105 3315 m gs 1 -1 sc (B) col0 sh gr $F2psEnd rs %%EndDocument @endspecial 800 2210 a FL(Figure)31 b(4.1:)44 b(Example)32 b(of)g(a)g(link)-5 b(able)30 b(Dynkin)j(diagram)257 2495 y(The)38 b(natural)d(orien)m(tation)g(of)h(cycles)i(I)f(and)f(I)s(I)h (is)f(clo)s(c)m(kwise,)i(whereas)g(the)f(natural)257 2615 y(orien)m(tation)f(in)g(cycles)i(I)s(I)s(I)f(and)h(IV)f(is)f(am)m (biguous.)57 b(The)38 b(v)m(ertex)g(indicated)f(b)m(y)h(the)257 2736 y(letter)f(\\A")h(is)f(a)g(v)m(ertex)i(of)e(absolute)g(heigh)m(t)h (1)f(in)g(cycle)h(I)s(I,)f(but)h(a)f(Lev)m(el)h(0)f(v)m(ertex)257 2856 y(for)g(cycle)i(I.)f(And)g(V)-8 b(ertex)38 b(\\B")g(is)f(a)g(Lev)m (el)h(0)g(v)m(ertex)h(for)e(cycle)h(I)s(I)g(but)g(a)f(v)m(ertex)j(of) 257 2977 y(absolute)30 b(heigh)m(t)f(1)g(for)g(cycle)h(I)s(I)s(I,)g (indep)s(enden)m(t)g(of)f(the)h(natural)f(orien)m(tation)f(c)m(hosen) 257 3097 y(for)k(that)h(cycle.)404 3217 y(W)-8 b(e)33 b(are)f(no)m(w)h(able)f(to)h(come)f(to)g(our)h(\014rst)g(main)e (result.)257 3421 y FJ(Theorem)37 b(4.2)98 b FE(We)42 b(ar)-5 b(e)42 b(given)g(a)g(link-c)-5 b(onne)g(cte)g(d)40 b(linkable)h(Dynkin)g(diagr)-5 b(am)42 b FI(D)501 3541 y FE(and)35 b(explicitly)f(exclude)g(the)h(c)-5 b(ase)34 b FI(G)1888 3556 y FH(2)1950 3541 y FC([)22 b FI(G)2115 3556 y FH(2)2155 3541 y FE(.)45 b(It)34 b(wil)5 b(l)35 b(b)-5 b(e)34 b(tr)-5 b(e)g(ate)g(d)35 b(later.)501 3703 y(A)h(linkable)d(br)-5 b(aiding)34 b(matrix)h(of)f FI(D)s FE(-Cartan)g(typ)-5 b(e)36 b(exists,)e(i\013)587 3906 y(1.)49 b(In)41 b(c)-5 b(omp)g(onents)40 b(of)h(typ)-5 b(e)41 b FI(G)1790 3921 y FH(2)1871 3906 y FE(not)g(b)-5 b(oth)42 b(vertic)-5 b(es)40 b(ar)-5 b(e)42 b(linkable)e(to)h(other)716 4027 y(vertic)-5 b(es.)587 4189 y(2.)49 b FI(D)37 b FE(do)-5 b(es)35 b(not)f(c)-5 b(ontain)35 b(any)f(induc)-5 b(e)g(d)35 b(sub)-5 b(gr)g(aphs)2508 4152 y FH(3)2581 4189 y FE(of)35 b(the)g(form:)985 4895 y @beginspecial 0 @llx 0 @lly 269 @urx 74 @ury 2690 @rwi @setspecial %%BeginDocument: fig2.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: a2b2g2.eps %%Creator: fig2dev Version 3.2 Patchlevel 0-beta3 %%CreationDate: Thu Mar 22 20:38:37 2001 %%For: didt@math12 (D. Didt) %%Orientation: Portrait %%BoundingBox: 0 0 269 74 %%Pages: 0 %%BeginSetup %%EndSetup %%Magnification: 0.6000 %%EndComments /$F2psDict 200 dict def $F2psDict begin $F2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save -45.0 110.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def %%EndProlog $F2psBegin 10 setmiterlimit n -1000 4033 m -1000 -1000 l 9718 -1000 l 9718 4033 l cp clip 0.03600 0.03600 sc 30.000 slw % Ellipse n 8625 1275 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 7125 1275 70 70 0 360 DrawEllipse gs col0 s gr % Ellipse n 7125 1270 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 7125 2775 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 8625 2775 70 70 0 360 DrawEllipse gs col0 s gr % Ellipse n 8625 2770 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline [15 90] 90 sd n 7125 1275 m 7125 2775 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 8625 1275 m 8625 2775 l gs col0 s gr [] 0 sd % Polyline n 7125 1200 m 8625 1200 l gs col0 s gr % Polyline n 7125 1350 m 8625 1350 l gs col0 s gr % Polyline n 7725 1050 m 8100 1275 l 7725 1500 l gs col0 s gr % Polyline n 8625 2700 m 7125 2700 l gs col0 s gr % Polyline n 8625 2850 m 7125 2850 l gs col0 s gr % Polyline n 8025 2550 m 7650 2775 l 8025 3000 l gs col0 s gr % Ellipse n 4200 2775 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 5700 2775 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 5700 1275 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 4200 1275 70 70 0 360 DrawEllipse gs col0 s gr % Ellipse n 4200 1270 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline [15 90] 90 sd n 5700 1275 m 5700 2775 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 4200 1275 m 4200 2775 l gs col0 s gr [] 0 sd % Polyline n 4200 1200 m 5700 1200 l gs col0 s gr % Polyline n 4200 1350 m 5700 1350 l gs col0 s gr % Polyline n 4800 1050 m 5175 1275 l 4800 1500 l gs col0 s gr % Ellipse n 1350 1275 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 2850 1275 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 2850 2775 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 1350 2775 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1350 1275 m 2850 1275 l gs col0 s gr % Polyline [15 90] 90 sd n 1350 1275 m 1350 2775 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 2850 1275 m 2850 2775 l gs col0 s gr [] 0 sd $F2psEnd rs %%EndDocument @endspecial 587 5078 a(3.)49 b(One)34 b(of)h(the)g(fol)5 b(lowing)33 b(c)-5 b(onditions)34 b(is)g(true:)p 257 5146 1296 4 v 370 5207 a FB(3)407 5237 y FA(An)h(induced)f(subgraph)f (consists)h(of)g(a)g(subset)g(of)g(the)h(original)d(v)n(ertices)i(and)g (all)g(the)g(corre-)257 5337 y(sp)r(onding)28 b(edges.)1828 5637 y FL(29)p eop %%Page: 30 32 30 31 bop 898 573 a FI(D)38 b FE(c)-5 b(ontains)34 b(no)g(cycles)h(or)g (the)f(gener)-5 b(a)35 b(of)f(al)5 b(l)35 b(cycles)f(ar)-5 b(e)35 b(zer)-5 b(o.)724 714 y(or)83 b FI(D)48 b FE(do)-5 b(es)44 b(not)h(c)-5 b(ontain)44 b(a)g(c)-5 b(omp)g(onent)44 b(of)h(typ)-5 b(e)45 b FI(G)2795 729 y FH(2)2879 714 y FE(and)f(ther)-5 b(e)45 b(is)f(a)898 834 y(c)-5 b(ommon)49 b(divisor)f FI(d)55 b(>)g FL(2)49 b FE(of)g(al)5 b(l)49 b(cycle)h(gener)-5 b(a)48 b(and)h(the)h(\014eld)f FF(|)898 955 y FE(c)-5 b(ontains)34 b(a)h(primitive)f FI(d)1837 919 y Ff(th)1936 955 y FE(r)-5 b(o)g(ot)35 b(of)g(unity.)724 1096 y(or)83 b FI(D)30 b FE(do)-5 b(es)26 b(c)-5 b(ontain)26 b(a)g(c)-5 b(omp)g(onent)26 b(of)g(typ)-5 b(e)28 b FI(G)2487 1111 y FH(2)2553 1096 y FE(and)e(ther)-5 b(e)27 b(is)f(a)h(c)-5 b(ommon)898 1216 y(divisor)39 b FI(d)d(>)g FL(2)j FE(of)h(al)5 b(l)39 b(cycle)g(gener)-5 b(a,)40 b FI(d)f FE(is)g(not)h(divisible)e (by)h(3)h(and)898 1337 y(the)35 b(\014eld)f FF(|)21 b FE(c)-5 b(ontains)34 b(a)g(primitive)h FI(d)2299 1301 y Ff(th)2397 1337 y FE(r)-5 b(o)g(ot)35 b(of)g(unity.)257 1565 y FJ(Pro)s(of:)49 b FL(W)-8 b(e)33 b(\014rst)g(pro)m(v)m(e)h(the)f (\\if)7 b(")31 b(part,)h(i.e.)43 b(w)m(e)34 b(assume)f(conditions)f (1-3.)501 1727 y(W)-8 b(e)26 b(will)d(construct)k(the)f(braiding)e (matrix)g(explicitly)f(and)j(sho)m(w)g(that)g(it)e(ful\014lls)501 1847 y(the)33 b(required)g(iden)m(tities.)501 2009 y(The)e(main)c (observ)-5 b(ation)29 b(is)g(that)h(once)g(an)f(elemen)m(t)h(of)f(the)g (diagonal)f(has)h(b)s(een)501 2130 y(c)m(hosen,)53 b(the)48 b(other)g(diagonal)d(elemen)m(ts)j(are)f(determined)h(\(up)g(to)f(p)s (ossible)501 2250 y(signs\))33 b(b)m(y)g(\(4.1\))f(and)h(\(4.2\).)501 2412 y(W)-8 b(e)32 b(tak)m(e)g FI(d)c(>)f FL(2)k(as)h(giv)m(en)f(b)m(y) i(condition)d(3.)43 b(In)31 b(the)h(case)h(that)e FI(D)j FL(con)m(tains)d(no)501 2532 y(cycles)37 b(or)f(the)g(genera)g(of)f (all)f(cycles)j(are)f(zero)g(w)m(e)h(set)g FI(d)c(>)g FL(2)i(to)h(b)s(e)g(a)f(prime,)501 2653 y(suc)m(h)i(that)f FF(|)20 b FL(con)m(tains)36 b(a)f(primitiv)m(e)f FI(d)1971 2616 y FH(th)2076 2653 y FL(ro)s(ot)h(of)g(unit)m(y)-8 b(.)53 b(This)35 b(is)g(p)s(ossible)g(b)m(y)501 2773 y(the)g(general)f(assumption)f(on)h(the)h(\014eld)f FF(|)-9 b FL(.)43 b(W)-8 b(e)34 b(note)h(in)e(particular)g(that)h FI(d)g FL(is)501 2893 y(alw)m(a)m(ys)f(o)s(dd.)501 3055 y(No)m(w)26 b(w)m(e)g(c)m(ho)s(ose)g(a)e(v)m(ertex)j FI(i)e FL(and)h(set)f FI(b)1941 3070 y FG(ii)2022 3055 y FL(:=)i FI(q)t FL(,)g(where)f FI(q)j FL(is)24 b(a)h(primitiv)m(e)e FI(d)3224 3019 y FH(th)3319 3055 y FL(ro)s(ot)501 3176 y(of)38 b(unit)m(y)-8 b(.)60 b(As)39 b(the)f(Dynkin)g(diagram)e FI(D)41 b FL(is)c(link-connected,)j(w)m(e)f(can)f(c)m(ho)s(ose)501 3296 y(for)32 b(ev)m(ery)h(v)m(ertex)h FI(j)g FC(6)p FL(=)27 b FI(i)32 b FL(a)g(path)1719 3260 y FH(4)1790 3296 y FI(P)1853 3311 y FG(ij)1946 3296 y FL(connecting)g FI(i)g FL(and)g FI(j)6 b FL(,)32 b(whic)m(h)g(w)m(e)h(denote)501 3416 y(b)m(y)38 b(the)g(sequence)i(of)c(its)h(v)m(ertices)h(\()p FI(i)e FL(=)f FI(p)2103 3431 y FH(0)2143 3416 y FI(;)17 b(p)2236 3431 y FH(1)2275 3416 y FI(;)g(:)g(:)g(:)e(;)i(p)2542 3431 y FG(t)2607 3416 y FL(=)35 b FI(j)6 b FL(\))p FI(:)37 b FL(F)-8 b(or)37 b(ev)m(ery)i(suc)m(h)501 3537 y(path)33 b FI(P)792 3552 y FG(ij)885 3537 y FL(w)m(e)g(no)m(w)h(de\014ne)f(the)g FI(b)1722 3552 y FG(p)1758 3564 y Fo(k)1797 3552 y FG(p)1833 3564 y Fo(k)1874 3537 y FI(;)45 b(k)30 b FL(=)e(1)p FI(;)17 b(:)g(:)g(:)f(;)h(t;)32 b FL(recursiv)m(ely:)1064 3850 y FI(b)1105 3865 y FG(p)1141 3877 y Fo(k)q Fy(+1)1256 3865 y FG(p)1292 3877 y Fo(k)q Fy(+1)1439 3850 y FL(=)1542 3679 y Fw(\()1623 3774 y FI(b)1664 3737 y Fx(\000)p FH(1)1664 3798 y FG(p)1700 3810 y Fo(k)1738 3798 y FG(p)1774 3810 y Fo(k)1816 3774 y FI(;)503 b FL(if)31 b FI(a)2486 3789 y FG(p)2522 3801 y Fo(k)2560 3789 y FG(p)2596 3801 y Fo(k)q Fy(+1)2743 3774 y FL(=)c(0)p FI(;)1623 3934 y(b)1664 3867 y FG(a)1701 3875 y Fo(p)1733 3893 y(k)1772 3875 y(p)1804 3893 y(k)q Fy(+1)1923 3867 y FG(=a)1995 3875 y Fo(p)2027 3893 y(k)q Fy(+1)2143 3875 y Fo(p)2175 3893 y(k)1664 3944 y FG(p)1700 3956 y Fo(k)1738 3944 y FG(p)1774 3956 y Fo(k)2221 3934 y FI(;)98 b FL(otherwise.)3295 3850 y(\(4.5\))501 4167 y(When)44 b(taking)e(the)h(square)g(ro)s(ot)f (w)m(e)i(c)m(ho)s(ose)f(it)f(to)g(b)s(e)h(again)e(a)h FI(d)3085 4131 y FH(th)3198 4167 y FL(ro)s(ot)g(of)501 4288 y(unit)m(y)-8 b(.)79 b(As)45 b FI(d)f FL(is)g(o)s(dd,)j(this)d (determines)h(exactly)f(one)h(of)f(the)h(t)m(w)m(o)g(p)s(ossible)501 4408 y(ro)s(ots.)59 b(When)38 b(taking)f(third)g(ro)s(ots)g(w)m(e)i(c)m (ho)s(ose)g(them)e(to)h(b)s(e)f(the)i(unique)f FI(d)3425 4372 y FH(th)501 4528 y FL(ro)s(ot)c(of)g(unit)m(y)h(as)g(w)m(ell.)50 b(This)35 b(is)f(alw)m(a)m(ys)i(p)s(ossible,)f(as)g(w)m(e)g(only)g(ha)m (v)m(e)h(to)e(tak)m(e)501 4649 y(third)40 b(ro)s(ots)g(when)h(w)m(e)g (are)g(dealing)d(with)i(v)m(ertices)i(of)e(comp)s(onen)m(ts)g(of)g(t)m (yp)s(e)501 4769 y FI(G)578 4784 y FH(2)618 4769 y FI(:)32 b FL(Then)i(ho)m(w)m(ev)m(er,)h FI(d)d FL(is)g(not)h(divisible)d(b)m(y) k(3.)501 4931 y(W)-8 b(e)33 b(no)m(w)g(sho)m(w)h(that)f(this)f(pro)s (cess)i(is)e(w)m(ell)f(de\014ned.)501 5093 y(The)49 b(only)e(time)g(a)g (problem)g(could)g(arise,)k(w)m(ould)d(b)s(e)g(when)h(a)e(v)m(ertex)j (can)501 5213 y(b)s(e)38 b(reac)m(hed)g(from)e(the)i(starting)e(v)m (ertex)j(b)m(y)f(t)m(w)m(o)g(di\013eren)m(t)f(paths,)i(i.e.)57 b(when)p 257 5281 1296 4 v 370 5343 a FB(4)407 5373 y FA(Again)27 b(w)n(e)g(demand)h(that)g(a)f(path)h(do)r(es)f(not)g (include)h(a)g(v)n(ertex)e(more)h(than)h(once.)1828 5637 y FL(30)p eop %%Page: 31 33 31 32 bop 501 573 a FI(D)48 b FL(con)m(tains)d(a)f(cycle.)81 b(Supp)s(ose)46 b(w)m(e)g(are)f(giv)m(en)g(t)m(w)m(o)h(di\013eren)m(t)f (paths)g(\()p FI(i)k FL(=)501 693 y FI(p)550 708 y FH(0)590 693 y FI(;)17 b(p)683 708 y FH(1)722 693 y FI(;)g(:)g(:)g(:)f(;)h(p)990 708 y FG(t)1060 693 y FL(=)41 b FI(j)6 b FL(\))41 b(and)f(\()p FI(i)i FL(=)f FI(q)1772 708 y FH(0)1812 693 y FI(;)17 b(q)1899 708 y FH(1)1938 693 y FI(;)g(:)g(:)g(:)f(;)h(q)2200 708 y FG(u)2286 693 y FL(=)41 b FI(j)6 b FL(\))p FI(:)41 b FL(Let)f FI(n)h FL(b)s(e)g(the)g(smallest)501 814 y(in)m(teger)d (with)g FI(p)1106 829 y FG(n)p FH(+1)1281 814 y FC(6)p FL(=)f FI(q)1437 829 y FG(n)p FH(+1)1613 814 y FL(and)h FI(m)1893 829 y FH(1)1970 814 y FI(>)f(n)i FL(the)f(smallest)f(in)m (teger,)j(suc)m(h)f(that)501 934 y(there)45 b(is)e(a)h FI(m)1049 949 y FH(2)1136 934 y FI(>)i(n)e FL(with)g FI(p)1643 949 y FG(m)1705 958 y Fy(1)1791 934 y FL(=)j FI(q)1957 949 y FG(m)2019 958 y Fy(2)2058 934 y FL(.)77 b(Then)45 b FI(c)i FL(=)g(\()p FI(p)2727 949 y FG(n)2774 934 y FI(;)17 b(p)2867 949 y FG(n)p FH(+1)3004 934 y FI(;)g(:)g(:)g(:)f(;)h(p)3272 949 y FG(m)3334 958 y Fy(1)3419 934 y FL(=)501 1054 y FI(q)544 1069 y FG(m)606 1078 y Fy(2)646 1054 y FI(;)g(q)733 1069 y FG(m)795 1078 y Fy(2)830 1069 y Fx(\000)p FH(1)924 1054 y FI(;)g(:)g(:)g(:)f(;)h(q)1186 1069 y FG(n)1260 1054 y FL(=)28 b FI(p)1413 1069 y FG(n)1460 1054 y FL(\))j(is)f(a)g(cycle.)44 b(It)31 b(is)f(no)m(w)i(su\016cien)m (t)g(to)e(sho)m(w)i(that)f(the)501 1175 y(recursiv)m(e)37 b(pro)s(cedure)f(\(4.5\))e(for)g(the)i(paths)f FI(P)2254 1190 y FH(1)2325 1175 y FL(:=)d FI(P)2523 1190 y FG(p)2559 1198 y Fo(n)2601 1190 y FG(p)2637 1198 y Fo(m)2691 1213 y Fy(1)2769 1175 y FL(and)j FI(P)3024 1190 y FH(2)3095 1175 y FL(:=)c FI(P)3292 1190 y FG(q)3324 1198 y Fo(n)3366 1190 y FG(q)3398 1198 y Fo(m)3452 1213 y Fy(2)501 1295 y FL(leads)i(to)f(the)h(same)f(v)-5 b(alue)1620 1509 y FI(b)1661 1524 y FG(p)1697 1532 y Fo(m)1751 1547 y Fy(1)1790 1524 y FG(p)1826 1532 y Fo(m)1880 1547 y Fy(1)1951 1509 y FL(=)27 b FI(b)2095 1524 y FG(q)2127 1532 y Fo(m)2181 1547 y Fy(2)2221 1524 y FG(q)2253 1532 y Fo(m)2307 1547 y Fy(2)2349 1509 y FI(:)919 b FL(\(4.6\))501 1722 y(As)30 b(triple)d(edges)j(are)f(not)g(part)g(of)f(cycles,)j(w)m(e)f(easily)e (obtain)g(a)h(closed)g(form)m(ula)501 1842 y(for)j(the)h(desired)g(v)-5 b(alues:)777 2056 y FI(b)818 2071 y FG(p)854 2079 y Fo(m)908 2094 y Fy(1)947 2071 y FG(p)983 2079 y Fo(m)1037 2094 y Fy(1)1107 2056 y FL(=)28 b FI(Q)1288 2014 y FH(\()p Fx(\000)p FH(1\))1432 1991 y Fo(l)1452 2006 y Fy(1)1492 2014 y FH(2)1527 1991 y Fo(w)1571 2006 y Fy(1)1810 2056 y FL(and)195 b FI(b)2203 2071 y FG(q)2235 2079 y Fo(m)2289 2094 y Fy(2)2328 2071 y FG(q)2360 2079 y Fo(m)2414 2094 y Fy(2)2485 2056 y FL(=)27 b FI(Q)2665 2014 y FH(\()p Fx(\000)p FH(1\))2809 1991 y Fo(l)2829 2006 y Fy(2)2870 2014 y FH(2)2905 1991 y Fo(w)2949 2006 y Fy(2)2992 2056 y FI(:)276 b FL(\(4.7\))501 2269 y(Here)30 b FI(Q)e FL(:=)g FI(b)1005 2284 y FG(p)1041 2292 y Fo(n)1083 2284 y FG(p)1119 2292 y Fo(n)1165 2269 y FL(,)i FI(l)1251 2284 y FG(i)1307 2269 y FC(\025)e FL(0)h(denotes)h(the)g(n)m(um)m(b)s(er)f(of)g(dotted)g (edges)h(in)f(the)g(path)501 2389 y FI(P)564 2404 y FG(i)631 2389 y FL(and)38 b FI(w)896 2404 y FG(i)962 2389 y FC(2)g FF(Z)e FL(is)i(the)h(di\013erence)g(of)f(the)g(n)m(um)m(b)s(ers)i(of)e (double)g(edges)h(in)f FI(P)3467 2404 y FG(i)501 2510 y FL(that)27 b(ha)m(v)m(e)g(the)g(arro)m(w)g(p)s(oin)m(ting)e(against)g (the)i(path's)g(orien)m(tation)e(and)i(with)f(it.)501 2630 y(Without)32 b(loss)g(of)h(generalit)m(y)e(w)m(e)j(assume)f FI(w)2191 2645 y FH(1)2258 2630 y FC(\025)28 b FI(w)2433 2645 y FH(2)2505 2630 y FL(and)33 b(ha)m(v)m(e)g FI(w)2989 2645 y FG(c)3052 2630 y FL(=)27 b FI(w)3225 2645 y FH(1)3286 2630 y FC(\000)c FI(w)3456 2645 y FH(2)501 2751 y FL(and)33 b FI(l)720 2766 y FG(c)782 2751 y FL(=)28 b FI(l)915 2766 y FH(1)977 2751 y FL(+)22 b FI(l)1104 2766 y FH(2)1143 2751 y FL(.)501 2911 y(As)28 b FI(Q)f FL(is)g(a)g FI(d)964 2875 y FH(th)1061 2911 y FL(ro)s(ot)f(of)h(unit)m(y)g(and)g FI(d)g FL(divides)g(all)e(cycle)j(genera)f(w)m(e)h(get)f FI(Q)3245 2875 y FG(g)3279 2883 y Fo(c)3343 2911 y FL(=)g(1)501 3032 y(or)1514 3152 y FI(Q)1591 3111 y FH(2)1626 3088 y Fy(\()p Fo(w)1694 3103 y Fy(1)1730 3088 y Fu(\000)p Fo(w)1822 3103 y Fy(2)1857 3088 y(\))1917 3152 y FL(=)h FI(Q)2098 3111 y FH(\()p Fx(\000)p FH(1\))2242 3088 y Fy(\()p Fo(l)2286 3103 y Fy(1)2321 3088 y(+)p Fo(l)2388 3103 y Fy(2)2423 3088 y(\))2455 3152 y FI(:)501 3324 y FL(T)-8 b(aking)36 b(b)s(oth)g(sides)h(to)f(the)h(p)s(o)m(w)m(er)h (of)e(\()p FC(\000)p FL(1\))2203 3288 y FG(l)2224 3297 y Fy(1)2263 3324 y FL(2)2312 3288 y FG(w)2363 3297 y Fy(2)2401 3324 y FI(;)g FL(w)m(e)i(arriv)m(e)e(at)g(\(4.6\).)54 b(Here)501 3444 y(w)m(e)29 b(w)m(ould)f(lik)m(e)g(to)f(remind)g(the)i (reader)f(that)g(all)e(v)-5 b(alues)28 b(are)g FI(d)2825 3408 y FH(th)2924 3444 y FL(ro)s(ots)f(of)h(unit)m(y)501 3564 y(and)33 b(hence)h(there)f(is)f(no)h(am)m(biguit)m(y)e(regarding)g (signs.)501 3725 y(The)55 b(so)e(sp)s(eci\014ed)i(diagonal)c(en)m (tries)j(of)f(the)h(braiding)e(matrix)g(ful\014ll)f(the)501 3846 y(requiremen)m(ts)40 b(for)e(their)g(orders)h(b)s(ecause)i FI(d)d FL(is)g(o)s(dd)h(and)g(not)f(divisible)f(b)m(y)i(3)501 3966 y(when)34 b(there)f(are)g(comp)s(onen)m(ts)g(of)f(t)m(yp)s(e)h FI(G)2112 3981 y FH(2)2184 3966 y FL(in)f FI(D)s(:)501 4248 y FL(W)-8 b(e)29 b(no)m(w)g(giv)m(e)g(the)g(remaining)d(en)m (tries)j(for)f(the)h(link)-5 b(able)26 b(braiding)h(matrix,)h(i.e.)501 4368 y(w)m(e)41 b(sp)s(ecify)f FI(b)1023 4383 y FG(ij)1124 4368 y FL(for)f FI(i)h FC(6)p FL(=)g FI(j:)g FL(F)-8 b(or)39 b(this)g(w)m(e)i(divide)e(the)h(set)g FC(f)p FL(\()p FI(i;)17 b(j)6 b FL(\))40 b(:)g FI(i)g FC(6)p FL(=)f FI(j)6 b FC(g)40 b FL(of)501 4488 y(pairs)32 b(of)g(v)m(ertices) i(in)m(to)e(4)g(classes:)501 4690 y FJ(None)38 b(of)f(the)h(t)m(w)m(o)e (v)m(ertices)h(is)f(link)-6 b(able)36 b(to)h(an)m(y)h(other)f(one.)50 b FL(W)-8 b(e)33 b(set)1546 4903 y FI(b)1587 4918 y FG(j)t(i)1676 4903 y FL(:=)28 b FI(z)t(;)212 b(b)2136 4918 y FG(ij)2225 4903 y FL(:=)28 b FI(b)2397 4849 y FG(a)2434 4859 y Fo(ij)2397 4929 y FG(ii)2493 4903 y FI(z)2542 4862 y Fx(\000)p FH(1)2638 4903 y FI(:)501 5136 y FJ(The)38 b(t)m(w)m(o)f(v)m(ertices)f(are)i (link)-6 b(able)35 b(to)i(eac)m(h)h(other.)49 b FL(W)-8 b(e)33 b(set)1576 5350 y FI(b)1617 5365 y FG(ij)1706 5350 y FL(:=)28 b FI(b)1878 5308 y Fx(\000)p FH(1)1878 5375 y FG(ii)1973 5350 y FI(;)211 b(b)2252 5365 y FG(j)t(i)2341 5350 y FL(:=)28 b FI(b)2513 5308 y Fx(\000)p FH(1)2513 5375 y FG(j)t(j)2608 5350 y FI(:)1828 5637 y FL(31)p eop %%Page: 32 34 32 33 bop 501 573 a FJ(Only)37 b(one)h(of)g(the)f(t)m(w)m(o)g(v)m (ertices)f(is)h(link)-6 b(able)36 b(to)h(another)g(v)m(ertex.)716 693 y FL(W)-8 b(e)33 b(assume)g FI(i)g FL(is)f(link)-5 b(able)30 b(to)i FI(k)s FL(.)44 b(W)-8 b(e)33 b(set)1248 908 y FI(b)1289 923 y FG(j)t(i)1378 908 y FL(:=)28 b FI(z)t(;)823 b(b)2449 923 y FG(ij)2537 908 y FL(:=)28 b FI(b)2709 854 y FG(a)2746 864 y Fo(ij)2709 934 y FG(ii)2806 908 y FI(z)2855 867 y Fx(\000)p FH(1)2950 908 y FI(;)1234 1062 y(b)1275 1077 y FG(j)t(k)1378 1062 y FL(:=)g FI(z)1558 1021 y Fx(\000)p FH(1)1653 1062 y FI(;)713 b(b)2434 1077 y FG(k)r(j)2537 1062 y FL(:=)28 b FI(b)2709 1006 y FG(a)2746 1018 y Fo(k)q(j)2709 1089 y FG(k)r(k)2818 1062 y FI(z)t(:)501 1297 y FJ(Both)37 b(v)m(ertices)f(are)i(link)-6 b(able)36 b(to)h(other)g(v)m(ertices.)48 b FL(W)-8 b(e)93 b(assume)g FI(i)g FL(is)716 1417 y(link)-5 b(able)42 b(to)i FI(k)k FL(and)d FI(j)50 b FL(is)44 b(link)-5 b(able)43 b(to)h FI(l)r(:)h FL(F)-8 b(or)43 b FI(i)i FL(and)g FI(k)i FL(to)e(b)s(e)f (link)-5 b(able)716 1537 y(w)m(e)31 b(can)f(not)f(ha)m(v)m(e)i FI(a)1476 1552 y FG(ij)1565 1537 y FC(6)p FL(=)c(0)j(and)g FI(a)1985 1552 y FG(j)t(k)2088 1537 y FC(6)p FL(=)d(0)p FI(:)j FL(So)f(after)h(a)g(p)s(ossible)f(renaming)716 1658 y(of)34 b(the)i(indices)f FI(i)g FL(and)g FI(k)s(;)g FL(w)m(e)i(can)e(assume)g(that)g FI(a)2631 1673 y FG(j)t(k)2739 1658 y FL(=)c(0)p FI(:)k FL(By)h(the)f(same)716 1778 y(reasoning)d(w)m(e)i(tak)m(e)f FI(a)1556 1793 y FG(il)1634 1778 y FL(=)27 b(0)p FI(:)33 b FL(No)m(w)g(w)m(e)h(set)1082 1993 y FI(b)1123 2008 y FG(j)t(i)1212 1993 y FL(:=)27 b FI(b)1383 2008 y FG(k)r(j)1486 1993 y FL(:=)h FI(z)t(;)631 b(b)2365 2008 y FG(ij)2454 1993 y FL(:=)28 b FI(b)2626 2008 y FG(l)q(i)2704 1993 y FL(:=)g FI(b)2876 1939 y FG(a)2913 1949 y Fo(ij)2876 2019 y FG(ii)2972 1993 y FI(z)3021 1952 y Fx(\000)p FH(1)3117 1993 y FI(;)1067 2157 y(b)1108 2172 y FG(j)t(k)1212 2157 y FL(:=)f FI(b)1383 2172 y FG(k)r(l)1476 2157 y FL(:=)h FI(z)1656 2116 y Fx(\000)p FH(1)1751 2157 y FI(;)557 b(b)2376 2172 y FG(il)2454 2157 y FL(:=)28 b FI(b)2626 2172 y FG(l)q(k)2718 2157 y FL(:=)g FI(b)2890 2103 y Fx(\000)p FG(a)2982 2113 y Fo(ij)2890 2182 y FG(ii)3042 2157 y FI(z)t(:)501 2392 y FL(In)k(all)d(the)i(cases,)i FI(z)g FC(6)p FL(=)27 b(0)k(can)g(b)s(e)h(c)m(hosen)g(freely)g(from)d(the)j(\014eld)f FF(|)16 b FL(and)32 b(can)f(b)s(e)501 2512 y(di\013eren)m(t)i(for)f(ev) m(ery)i(class)f(and)g(pair)e(of)h(v)m(ertices.)501 2673 y(W)-8 b(e)28 b(w)m(ould)f(lik)m(e)g(to)g(p)s(oin)m(t)g(out)g(that)g (all)e(pairs)i(of)g(indices)g(fall)e(in)m(to)i(one)h(of)e(those)501 2793 y(classes)38 b(and)g(that)f(there)h(are)f(no)g(o)m(v)m(erlapping)g (cases,)i(i.e.)57 b(eac)m(h)38 b(o\013-diagonal)501 2914 y(elemen)m(t)33 b(is)f(only)g(set)h(in)f(one)h(of)f(these.)501 3075 y(In)41 b(this)e(w)m(a)m(y)j(w)m(e)f(ha)m(v)m(e)g(explicitly)d (constructed)k(the)e(matrix)f Fq(b)h FL(=)g(\()p FI(b)3168 3090 y FG(ij)3229 3075 y FL(\).)66 b(W)-8 b(e)501 3195 y(are)39 b(left)f(to)g(sho)m(w)i(that)e(\(3.19\))g(and)h(\(3.20\))e (are)i(ful\014lled.)60 b(F)-8 b(or)37 b(the)j(diagonal)501 3316 y(en)m(tries)29 b(this)g(has)g(already)f(b)s(een)i(done.)42 b(F)-8 b(or)28 b(the)h(en)m(tries)g(b)s(eing)f(set)i(in)e(the)h (\014rst)501 3436 y(three)34 b(classes)f(it)f(is)g(immediately)d(clear) j(from)g(the)h(de\014nition.)501 3597 y(In)g(the)g(last)f(class)h(only) f(the)h(relation)d FI(b)1985 3612 y FG(k)r(l)2050 3597 y FI(b)2091 3612 y FG(l)q(k)2184 3597 y FL(=)e FI(b)2329 3551 y FG(a)2366 3563 y Fo(k)q(l)2329 3625 y FG(k)r(k)2461 3597 y FL(m)m(ust)33 b(still)d(b)s(e)j(c)m(hec)m(k)m(ed.)501 3758 y(W)-8 b(e)43 b(note)g(that)g(neither)g FI(i)f FL(and)h FI(j)49 b FL(nor)43 b FI(k)i FL(and)e FI(l)i FL(can)e(form)e(a)i(comp)s (onen)m(t)g(of)501 3879 y(t)m(yp)s(e)35 b FI(G)799 3894 y FH(2)839 3879 y FL(,)f(as)h(this)f(w)m(ould)g(con)m(tradict)g(part)g (1)g(of)g(the)g(assumption.)48 b(F)-8 b(rom)33 b(the)501 3999 y(construction)g(w)m(e)g(get)g FI(b)1407 4014 y FG(k)r(l)1472 3999 y FI(b)1513 4014 y FG(l)q(k)1605 3999 y FL(=)28 b FI(b)1750 3945 y Fx(\000)p FG(a)1842 3955 y Fo(ij)1750 4025 y FG(ii)1902 3999 y FI(:)k FL(As)h(v)m(ertex)h FI(i)f FL(is)f(link)-5 b(able)30 b(to)i FI(k)k FL(w)m(e)d(kno)m(w)501 4120 y FI(b)542 4135 y FG(k)r(k)652 4120 y FL(=)27 b FI(b)796 4078 y Fx(\000)p FH(1)796 4145 y FG(ii)891 4120 y FI(:)33 b FL(W)-8 b(e)32 b(will)f(sho)m(w)i(that)g FI(a)1807 4135 y FG(k)r(l)1899 4120 y FL(=)28 b FI(a)2054 4135 y FG(ij)2115 4120 y FI(:)501 4281 y FL(If)41 b FI(a)658 4296 y FG(ij)759 4281 y FL(=)g(0)f(then)h(w)m(e)h(immediately)37 b(get)j FI(a)2131 4296 y FG(k)r(l)2237 4281 y FL(=)h(0,)h(b)s(ecause)g FI(a)2892 4296 y FG(k)r(l)2957 4281 y FI(a)3008 4296 y FG(l)q(k)3113 4281 y FL(=)f(1)f(or)g(2)501 4401 y(is)33 b(not)h(p)s(ermitted)e(b)m(y)j(part)e(2)g(of)g(the)h(assumption.)46 b(Analogously)33 b(w)m(e)h(get)g(the)501 4522 y(result)f(if)e(w)m(e)j (assume)f FI(a)1394 4537 y FG(k)r(l)1486 4522 y FL(=)28 b(0)p FI(:)501 4683 y FL(The)34 b(case)f(where)h(the)f(4)f(indices)h (form)e(a)h(sub-diagram)f(of)h(the)h(kind)1744 5388 y @beginspecial 0 @llx 0 @lly 61 @urx 67 @ury 610 @rwi @setspecial %%BeginDocument: fig3.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: a2b2.eps %%Creator: fig2dev Version 3.2 Patchlevel 0-beta3 %%CreationDate: Wed Jan 17 15:24:41 2001 %%For: didt@math12 (D. Didt) %%Orientation: Portrait %%BoundingBox: 0 0 61 67 %%Pages: 0 %%BeginSetup %%EndSetup %%Magnification: 0.6000 %%EndComments /$F2psDict 200 dict def $F2psDict begin $F2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save -72.0 150.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def %%EndProlog $F2psBegin 10 setmiterlimit n -1000 5158 m -1000 -1000 l 4693 -1000 l 4693 5158 l cp clip 0.03600 0.03600 sc 30.000 slw % Ellipse n 3600 3900 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 2100 3900 70 70 0 360 DrawEllipse gs col0 s gr % Ellipse n 2100 3895 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 2100 3825 m 3600 3825 l gs col0 s gr % Polyline n 2100 3975 m 3600 3975 l gs col0 s gr % Polyline n 2700 3675 m 3075 3900 l 2700 4125 l gs col0 s gr % Ellipse n 2100 2400 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3600 2400 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 2100 2400 m 3600 2400 l gs col0 s gr % Polyline [15 90] 90 sd n 2100 2400 m 2100 3900 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 3600 2400 m 3600 3900 l gs col0 s gr [] 0 sd $F2psEnd rs %%EndDocument @endspecial 1828 5637 a(32)p eop %%Page: 33 35 33 34 bop 501 573 a FL(is)36 b(excluded,)i(as)e(the)h(cycle)g(gen)m(us) g(for)f(this)f(diagram)f(is)i(1)d(=)h(2)2922 537 y FH(1)2986 573 y FC(\000)25 b FL(\()p FC(\000)p FL(1\))3290 537 y FH(2)3329 573 y FI(:)36 b FL(So)501 693 y(the)d(only)f(other)h(p)s (ossible)f(diagrams)f(these)j(four)e(v)m(ertices)i(can)e(form)g(are) 1202 1454 y @beginspecial 0 @llx 0 @lly 191 @urx 73 @ury 1910 @rwi @setspecial %%BeginDocument: fig4.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: a2a2b2b2.eps %%Creator: fig2dev Version 3.2 Patchlevel 0-beta3 %%CreationDate: Wed Jan 17 15:25:11 2001 %%For: didt@math12 (D. Didt) %%Orientation: Portrait %%BoundingBox: 0 0 191 73 %%Pages: 0 %%BeginSetup %%EndSetup %%Magnification: 0.6000 %%EndComments /$F2psDict 200 dict def $F2psDict begin $F2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save -72.0 150.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def %%EndProlog $F2psBegin 10 setmiterlimit n -1000 5158 m -1000 -1000 l 8293 -1000 l 8293 5158 l cp clip 0.03600 0.03600 sc 30.000 slw % Ellipse n 7200 2400 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 5700 2400 70 70 0 360 DrawEllipse gs col0 s gr % Ellipse n 5700 2395 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 5700 2325 m 7200 2325 l gs col0 s gr % Polyline n 5700 2475 m 7200 2475 l gs col0 s gr % Polyline n 6300 2175 m 6675 2400 l 6300 2625 l gs col0 s gr % Ellipse n 7200 3900 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 5700 3900 70 70 0 360 DrawEllipse gs col0 s gr % Ellipse n 5700 3895 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 5700 3825 m 7200 3825 l gs col0 s gr % Polyline n 5700 3975 m 7200 3975 l gs col0 s gr % Polyline n 6300 3675 m 6675 3900 l 6300 4125 l gs col0 s gr % Ellipse n 2100 2400 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3600 2400 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3600 3900 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 2100 3900 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 2100 2400 m 3600 2400 l gs col0 s gr % Polyline [15 90] 90 sd n 2100 2400 m 2100 3900 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 3600 2400 m 3600 3900 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 7200 2400 m 7200 3900 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 5700 2400 m 5700 3900 l gs col0 s gr [] 0 sd % Polyline n 2100 3900 m 3600 3900 l gs col0 s gr $F2psEnd rs %%EndDocument @endspecial 501 1699 a(whic)m(h)e(all)e(ha)m(v)m(e)j FI(a)1183 1714 y FG(ij)1272 1699 y FL(=)c FI(a)1426 1714 y FG(k)r(l)1491 1699 y FI(:)j FL(W)-8 b(e)30 b(w)m(ould)f(lik)m(e)g(to) h(note)g(that)f(the)h(cycle)h(gen)m(us)g(for)501 1819 y(the)i(last)f(diagram)e(is)j(0)27 b(=)g(2)1560 1783 y FH(0)1622 1819 y FC(\000)22 b FL(\()p FC(\000)p FL(1\))1923 1783 y FH(2)1963 1819 y FI(:)501 1981 y FL(This)33 b(concludes)g(the)h (\\if)7 b(")30 b(part)j(of)f(the)h(pro)s(of.)501 2263 y(Before)d(w)m(e)g(come)g(to)f(the)h(\\only)e(if)7 b(")28 b(part)h(w)m(e)i(pro)m(v)m(e)g(a)e(lemma)e(to)i(enable)g(us)i(to)501 2384 y(deal)h(with)g(some)h(arising)e(tec)m(hnicalities.)501 2629 y FJ(Lemma)37 b(4.3)98 b FE(We)35 b(ar)-5 b(e)35 b(given)f(a)h(linkable)e(Dynkin)h(diagr)-5 b(am)34 b FI(D)s FE(.)770 2790 y(1.)48 b(In)30 b(every)g(cycle)g FI(c)g FE(of)g FI(D)j FE(with)e FI(g)2062 2805 y FG(c)2124 2790 y FI(>)c FL(0)j FE(ther)-5 b(e)31 b(exists)e(a)i(L)-5 b(evel)29 b(0)i(vertex.)770 2932 y(2.)48 b(Given)34 b(a)h(linkable)e (br)-5 b(aiding)34 b(matrix)g Fq(b)g FE(of)g FI(D)s FE(-Cartan)g(typ)-5 b(e)35 b(we)f(have)898 3052 y(for)h(every)g(L)-5 b(evel)34 b(0)h(vertex)f FI(i)i FE(of)e FI(c)p FE(:)145 b FI(b)2375 3005 y FG(g)2409 3013 y Fo(c)2375 3077 y FG(ii)2472 3052 y FL(=)28 b(1)p FI(:)770 3193 y FE(3.)48 b(L)-5 b(et)40 b FI(G)f FE(b)-5 b(e)39 b(the)h(gr)-5 b(e)g(atest)39 b(c)-5 b(ommon)38 b(divisor)h(of)g(al)5 b(l)39 b(cycle)g(gener)-5 b(a.)58 b(If)898 3313 y(ther)-5 b(e)35 b(ar)-5 b(e)35 b(no)f(cycles)h(with)g(cycle)f(genus)h(1)f(or)h(2)g(we)f(have)h(for)f (every)898 3434 y(L)-5 b(evel)35 b(0)f(vertex)h FI(i)p FE(:)100 b FI(b)1725 3398 y FG(G)1725 3458 y(ii)1812 3434 y FL(=)28 b(1)p FI(:)501 3662 y FJ(Pro)s(of)37 b(of)h(Lemma:)106 b FL(1.)49 b(Pic)m(k)e(a)f(v)m(ertex)i FI(i)f FL(in)f FI(c)g FL(and)h(calculate)e FI(h)3172 3677 y FG(i)3200 3662 y FL(\()p FI(c)p FL(\).)85 b(If)898 3783 y FI(h)954 3798 y FG(i)983 3783 y FL(\()p FI(c)p FL(\))55 b FI(>)f FL(0)49 b(then)g(tak)m(e)h(the)f(v)m(ertex)h FI(j)6 b FL(,)53 b(where)d(\(in)e(the)h(recursiv)m(e)898 3903 y(de\014nition\))32 b FI(h)g FL(w)m(as)i(0)e(for)g(the)h(last)f(time.) 898 4023 y(Then)i FI(j)k FL(is)33 b(a)f(Lev)m(el)h(0)f(v)m(ertex,)j(b)s (ecause:)966 4164 y FC(\017)48 b FL(In)32 b(the)h(recursiv)m(e)g (calculation)c(of)j FI(h)2418 4179 y FG(j)2454 4164 y FL(\()p FI(c)p FL(\))g(the)g(v)-5 b(alue)32 b(of)f FI(h)h FL(is)g(p)s(os-)1064 4285 y(itiv)m(e)h(at)g(least)g(un)m(til)f(w)m(e)j (pass)f(v)m(ertex)h FI(i)p FL(.)47 b(\(Choice)33 b(of)g FI(j)39 b FL(and)34 b FI(i)g FL(is)1064 4405 y(not)f(a)f(Lev)m(el)h(0)f (v)m(ertex.\))966 4546 y FC(\017)48 b FL(Assume)36 b FI(h)f FL(sta)m(ys)h(p)s(ositiv)m(e)e(un)m(til)g(it)g(reac)m(hes)i FI(j)41 b FL(again,)34 b(i.e.)50 b FI(j)41 b FL(is)1064 4667 y(not)c(Lev)m(el)g(0.)57 b(Then)38 b(ho)m(w)m(ev)m(er,)j(the)c(n)m (um)m(b)s(er)h(of)e(double)h(edges)1064 4787 y(along)32 b(the)i(cycle)h FI(c)e FL(p)s(oin)m(ting)f(with)h(the)h(natural)f (orien)m(tation)f(is)1064 4907 y(greater)e(than)f(the)h(n)m(um)m(b)s (er)g(of)f(double)g(edges)i(p)s(oin)m(ting)c(against)1064 5028 y(it,)47 b(whic)m(h)f(is)e(a)h(con)m(tradiction)e(to)i(the)g (de\014nition)f(of)g(natural)1064 5148 y(orien)m(tation.)1828 5637 y(33)p eop %%Page: 34 36 34 35 bop 966 573 a FC(\017)48 b FL(So)28 b(there)h(is)e(a)h(v)m(ertex) i FI(k)h FL(b)s(et)m(w)m(een)f FI(i)e FL(and)g FI(j)34 b FL(where)29 b FI(h)f FL(b)s(ecomes)g(0.)1064 693 y(But)i(this)g (means)g(that)g(the)g(v)-5 b(alue)30 b(of)f FI(h)h FL(at)g FI(k)j FL(in)c(the)i(calculation)1064 814 y(of)46 b FI(h)1245 829 y FG(i)1273 814 y FL(\()p FI(c)p FL(\))g(w)m(as)h(0)f(as)g(w)m (ell.)84 b(\(This)46 b(v)-5 b(alue)45 b(can)i(not)f(b)s(e)g(bigger,) 1064 934 y(ha)m(ving)32 b(started)i(out)e(smaller)f(at)h(v)m(ertex)i FI(i:)p FL(\))966 1072 y FC(\017)48 b FL(No)m(w,)30 b(the)f (calculation)d(of)i FI(h)h FL(from)e FI(k)32 b FL(un)m(til)27 b FI(j)35 b FL(is)28 b(the)h(same)f(as)h(for)1064 1193 y FI(h)1120 1208 y FG(i)1148 1193 y FL(\()p FI(c)p FL(\))p FI(:)k FL(So)f FI(h)c FL(=)g(0)k(when)i(it)d(reac)m(hes)k FI(j:)774 1331 y FL(2.)48 b(Set)d FI(Q)k FL(:=)f FI(b)1396 1346 y FG(ii)1449 1331 y FI(:)d FL(F)-8 b(ollo)m(wing)42 b(the)j(cycle)g(in)f(its)g(natural)g(orien)m(tation)898 1451 y(starting)32 b(at)g FI(i)h FL(and)g(using)f(\(4.1\))g(and)h (\(4.2\))f(w)m(e)h(arriv)m(e)g(at)1880 1664 y FI(Q)28 b FL(=)f FI(Q)2165 1622 y FH(\()p Fx(\000)p FH(1\))2309 1599 y Fo(l)2329 1607 y(c)2367 1622 y FH(2)2402 1599 y Fo(w)2446 1607 y(c)2487 1664 y FI(:)898 1864 y FL(That)41 b(there)h(are)f(no)f(extra)h(signs)g(from)f(p)s(ossible)g(square)i(ro)s (ots)e(in)898 1984 y(the)f(ab)s(o)m(v)m(e)h(form)m(ula)c(is)i(ensured)i (b)m(y)g(the)f(assumption)f(that)g FI(i)h FL(is)f(of)898 2114 y(Lev)m(el)27 b(0.)41 b(Raising)24 b(b)s(oth)i(sides)h(to)f(the)g (\()p FC(\000)p FL(1\))2535 2078 y FG(l)2556 2086 y Fo(c)2593 2058 y FH(th)2690 2114 y FL(p)s(o)m(w)m(er)h(and)f(dividing)898 2234 y(b)m(y)34 b(the)f(new)g(left)f(hand)h(side)g(w)m(e)g(get)g(1)27 b(=)h FI(Q)2576 2198 y FG(g)2610 2206 y Fo(c)2646 2234 y FI(:)774 2373 y FL(3.)48 b(If)34 b(there)h(are)f(no)g(cycles)h FI(c)f FL(with)f FI(g)2176 2388 y FG(c)2241 2373 y FI(>)c FL(0)34 b(there)h(is)e(nothing)g(to)h(sho)m(w.)898 2493 y(When)e(there)f(is)f(only)h(one)g(suc)m(h)h(cycle)f FI(c)g FL(w)m(e)g(ha)m(v)m(e)h FI(G)c FL(=)g FI(g)3064 2508 y FG(c)3129 2493 y FL(and)i(part)898 2613 y(2)j(of)f(this)g(Lemma) f(establishes)i(the)g(claim.)898 2734 y(W)-8 b(e)35 b(no)m(w)f(tak)m(e) h(t)m(w)m(o)f(cycles)h FI(c)1993 2749 y FH(1)2067 2734 y FL(and)f FI(c)2300 2749 y FH(2)2373 2734 y FL(with)g FI(g)2644 2749 y FG(c)2675 2758 y Fy(1)2743 2734 y FC(\025)c FI(g)2897 2749 y FG(c)2928 2758 y Fy(2)2996 2734 y FI(>)g FL(2)j(and)h(set)898 2854 y FI(g)42 b FL(:=)d(gcd\()p FI(g)1360 2869 y FG(c)1391 2878 y Fy(1)1429 2854 y FI(;)17 b(g)1520 2869 y FG(c)1551 2878 y Fy(2)1589 2854 y FL(\))p FI(:)39 b FL(W)-8 b(e)39 b(pic)m(k)h(in)e FI(c)2242 2869 y FH(1)2321 2854 y FL(a)g(v)m(ertex)j FI(i)e FL(of)g(Lev)m(el)h(0)e (and)h(a)898 2974 y(v)m(ertex)k FI(j)48 b FL(of)40 b(Lev)m(el)i(0)f(in) g FI(c)1929 2989 y FH(2)1968 2974 y FI(:)h FL(F)-8 b(ollo)m(wing)38 b(a)j(path)g(from)f FI(i)i FL(to)f FI(j)47 b FL(and)898 3111 y(applying)32 b(\(4.1\))g(and)h(\(4.2\))g(appropriately)e(w)m(e)j (get)f FI(b)2906 3075 y FH(2)2941 3051 y Fo(w)2985 3066 y Fy(1)2906 3136 y FG(j)t(j)3058 3111 y FL(=)28 b FI(b)3203 3060 y FH(\()p Fx(\000)p FH(1\))3347 3037 y Fo(l)3373 3060 y FH(2)3408 3037 y Fo(w)3452 3052 y Fy(2)3203 3137 y FG(ii)898 3231 y FL(for)43 b(some)g(v)-5 b(alues)44 b FI(w)1685 3246 y FH(1)1724 3231 y FI(;)17 b(w)1838 3246 y FH(2)1920 3231 y FL(and)44 b FI(l)r(:)f(b)2263 3246 y FG(ii)2360 3231 y FL(is)f(a)i FI(g)2612 3195 y FH(th)2608 3256 y FG(c)2639 3265 y Fy(1)2725 3231 y FL(ro)s(ot)f(of)g (unit)m(y)g(\(see)898 3352 y(previous)37 b(part)e(of)g(this)h(Lemma\))e (and)i(so)g FI(b)2558 3367 y FG(j)t(j)2663 3352 y FL(is)g(also)e(a)i FI(g)3099 3316 y FH(th)3095 3376 y FG(c)3126 3385 y Fy(1)3205 3352 y FL(ro)s(ot)f(of)898 3472 y(unit)m(y)-8 b(.)48 b(Ho)m(w)m(ev)m(er,)36 b(using)e(the)g(previous)h(part)e(again,)g FI(b)2966 3487 y FG(j)t(j)3069 3472 y FL(m)m(ust)h(b)s(e)g(a)898 3593 y FI(g)949 3556 y FH(th)945 3617 y FG(c)976 3626 y Fy(2)1057 3593 y FL(ro)s(ot)j(of)g(unit)m(y)-8 b(.)60 b(As)38 b(the)h(cycle)f(genera)g(are)g(not)g(divisible)e(b)m(y)i(2)898 3713 y(w)m(e)c(conclude)f(that)f FI(b)1695 3728 y FG(j)t(j)1797 3713 y FL(is)g(a)h FI(g)2028 3677 y FH(th)2130 3713 y FL(ro)s(ot)f(of)g(unit)m(y)-8 b(.)898 3833 y(Rep)s(eating)44 b(the)h(argumen)m(t)g(for)f(all)f(the)i(other)g(cycles)h(with)f(cycle) 898 3954 y(gen)m(us)28 b(bigger)e(than)h(2,)h(w)m(e)f(conclude)g(that)g (for)f(ev)m(ery)j(Lev)m(el)e(0)f(v)m(ertex)898 4074 y FI(i;)32 b FL(the)g(corresp)s(onding)f(diagonal)e(en)m(try)k FI(b)2466 4089 y FG(ii)2550 4074 y FL(of)e(the)h(braiding)e(matrix)898 4195 y(is)i(a)h FI(G)1155 4158 y FH(th)1258 4195 y FL(ro)s(ot)f(of)g (unit)m(y)-8 b(.)3292 4333 y FJ(qed.)501 4550 y FL(No)m(w)23 b(w)m(e)g(\014nish)f(the)g(pro)s(of)f(of)h(the)g(theorem.)40 b(W)-8 b(e)22 b(are)g(giv)m(en)g(a)g(link)-5 b(able)20 b(braiding)501 4670 y(matrix)65 b(and)33 b(a)g(corresp)s(onding)g(link) -5 b(able)31 b(Dynkin)i(diagram)e FI(D)36 b FL(and)e(set)f FI(G)h FL(to)501 4791 y(b)s(e)h(the)g(greatest)g(common)e(divisor)g(of) h(all)e(cycle)j(genera.)49 b FI(G)31 b FL(:=)g(0)j(if)f(all)g(cycle)501 4911 y(genera)g(are)g(0.)501 5070 y(Assume)h(no)m(w:)617 5268 y FC(\017)49 b FL(there)43 b(is)f(a)g FI(G)1251 5283 y FH(2)1332 5268 y FL(comp)s(onen)m(t)h(with)f(b)s(oth)g(v)m (ertices)h FI(i)g FL(and)f FI(j)48 b FL(link)-5 b(able)41 b(to)716 5388 y(other)33 b(v)m(ertices)g FI(k)j FL(and)d FI(l)r FL(,)g(resp)s(ectiv)m(ely)-8 b(.)1828 5637 y(34)p eop %%Page: 35 37 35 36 bop 716 573 a FL(F)-8 b(rom)28 b(Lemma)g(4.1)h(w)m(e)h (immediately)c(get)j FI(a)2370 588 y FG(k)r(l)2463 573 y FL(=)e FI(a)2617 588 y FG(ij)2707 573 y FL(and)j FI(a)2945 588 y FG(l)q(k)3037 573 y FL(=)e FI(a)3192 588 y FG(j)t(i)3253 573 y FI(:)h FL(So)g FI(k)716 693 y FL(and)g FI(l)i FL(form)d(another)h FI(G)1620 708 y FH(2)1688 693 y FL(comp)s(onen)m(t.)42 b(Th)m(us,)32 b(the)d(giv)m(en)g(diagram)e(m)m(ust)716 814 y(b)s(e)33 b FI(G)926 829 y FH(2)987 814 y FC([)23 b FI(G)1153 829 y FH(2)1192 814 y FI(;)33 b FL(whic)m(h)g(w)m(e)g(do)g (not)f(w)m(an)m(t)i(to)e(consider)h(here.)617 974 y FC(\017)49 b FL(one)33 b(induced)g(subgraph)g(is)f(of)g(the)h(kind)g(as)g(in)e (condition)g(2.)716 1114 y(This)i(con)m(tradicts)f(Lemma)g(4.1.)617 1274 y FC(\017)49 b FL(there)33 b(is)f(a)h(cycle)g FI(c)f FL(with)g(cycle)i(gen)m(us)f FI(g)2239 1289 y FG(c)2301 1274 y FL(=)28 b(1)k(or)h(2.)716 1415 y(Using)j(Lemma)e(4.3)i(2)g(w)m (e)h(get)g(that)f(a)f(diagonal)f(en)m(try)k(of)d(the)i(braiding)716 1535 y(matrix)31 b(m)m(ust)i(b)s(e)f(1)h(or)f FC(\000)p FL(1.)617 1695 y FC(\017)49 b FI(G)27 b FL(=)h(1)k(and)h(there)g(is)f (no)h(cycle)g(with)f(gen)m(us)i(1)e(or)h(2.)716 1836 y(Lemma)h(4.3)i(3)g(then)g(sho)m(ws)i(that)e FI(b)2078 1851 y FG(ii)2164 1836 y FL(=)d(1)j(for)f(all)f(Lev)m(el)i(0)g(v)m (ertices)h FI(i)p FL(,)g(a)716 1956 y(con)m(tradiction)31 b(to)i(our)f(assumption)g(\(4.3\))g(ab)s(out)g(the)h(order.)617 2116 y FC(\017)49 b FI(G)33 b(>)g FL(2)i(and)h(the)h(base)f(\014eld)g FF(|)21 b FL(do)s(es)36 b(not)g(con)m(tain)f(a)g(primitiv)m(e)f FI(d)3213 2080 y FH(th)3319 2116 y FL(ro)s(ot)716 2237 y(of)e(unit)m(y)h(for)f(an)m(y)h FI(d)27 b(>)h FL(2)k(dividing)f FI(G)p FL(.)716 2377 y(Lemma)39 b(4.3)g(3)h(sho)m(ws)i(that)e(the)h (\014eld)f FF(|)25 b FL(m)m(ust)41 b(con)m(tain)f(a)f FI(G)3089 2341 y FH(th)3200 2377 y FL(ro)s(ot)h(of)716 2497 y(unit)m(y)-8 b(.)82 b(This)46 b(means)g(there)g(m)m(ust)g(b)s(e)g (a)f FI(d)g FL(dividing)f FI(G)p FL(,)k(suc)m(h)g(that)d FF(|)716 2618 y FL(con)m(tains)39 b(a)g(primitiv)m(e)e FI(d)1668 2582 y FH(th)1778 2618 y FL(ro)s(ot)h(of)h(unit)m(y)-8 b(.)64 b(By)40 b(the)f(order)h(assumption)716 2738 y(\(4.3\))32 b(there)h(is)f(ev)m(en)i(a)f FI(d)f FL(bigger)g(than)g(2.)617 2898 y FC(\017)49 b FI(G)31 b(>)h FL(2,)j(there)g(is)g(a)f(comp)s(onen) m(t)h(of)f(t)m(yp)s(e)i FI(G)2391 2913 y FH(2)2465 2898 y FL(and)f(the)g(only)f FI(d)e(>)f FL(2)j(that)716 3019 y(divide)k FI(G)p FL(,)i(suc)m(h)g(that)e FF(|)24 b FL(con)m(tains)39 b(a)f(primitiv)m(e)e FI(d)2643 2983 y FH(th)2752 3019 y FL(ro)s(ot)i(of)g(unit)m(y)-8 b(,)40 b(are)716 3139 y(divisible)30 b(b)m(y)k(3.)716 3279 y(There)44 b(is)f(a)g(cycle)h FI(c)f FL(with)g FI(g)1826 3294 y FG(c)1907 3279 y FI(>)i FL(2)p FI(:)f FL(According)f(to)g(Lemma)f(4.3)g(there)716 3400 y(is)g(a)g(Lev)m(el)i(0)e(v)m(ertex)i FI(i)f FL(in)f FI(c)h FL(with)f FI(b)2136 3415 y FG(ii)2231 3400 y FL(a)h(primitiv)m (e)d FI(d)2801 3364 y FH(th)2914 3400 y FL(ro)s(ot)i(of)g(unit)m(y)-8 b(,)716 3520 y(where)37 b FI(d)d(>)g FL(2)i(and)g FI(d)g FL(divides)g FI(G)p FL(.)55 b(F)-8 b(rom)34 b(the)j(assumption)f(w)m(e) h(get)f(that)716 3641 y FI(d)31 b FL(m)m(ust)h(b)s(e)g(divisible)e(b)m (y)j(3,)f(so)g(the)g(order)g(of)g FI(b)2488 3656 y FG(ii)2572 3641 y FL(is)f(divisible)f(b)m(y)j(3.)43 b(This)716 3761 y(con)m(tradicts)33 b(\(4.3\).)3292 3963 y FJ(qed.)404 4184 y FL(This)28 b(result)g(allo)m(ws)f(us)i(to)f(decide)h(quic)m(kly) f(whic)m(h)h(v)m(ertices)g(in)f(Dynkin)g(diagrams)257 4305 y(can)39 b(b)s(e)f(link)m(ed)g(to)f(pro)s(duce)i(new)g(Hopf)f (algebras.)59 b(This)38 b(also)f(giv)m(es)i(a)e(m)m(uc)m(h)i(more)257 4425 y(explicit)46 b(description)g(of)h(the)g(algebras)g(presen)m(ted)i (in)d(Section)h(3.4.4.)86 b(F)-8 b(or)46 b(ev)m(ery)257 4545 y(Dynkin)24 b(diagram)e(w)m(e)k(can)e(c)m(ho)s(ose)h(sev)m(eral)g (pairs)e(of)h(v)m(ertices)i(whic)m(h)e(w)m(e)h(w)m(an)m(t)g(to)f(link.) 257 4666 y(W)-8 b(e)38 b(then)h(apply)e(Theorem)h(4.2)f(to)g(determine) g(if)g(suc)m(h)i(a)e(setup)i(is)e(at)g(all)f(p)s(ossible.)257 4786 y(If)f(it)e(is)h(p)s(ossible,)g(then)h(w)m(e)h(set)f FI(s)f FL(to)g(the)h(n)m(um)m(b)s(er)g(of)f(v)m(ertices)h(in)f(the)h (diagram)d(and)257 4907 y(c)m(ho)s(ose)f(a)f(prime)f FI(p)h FL(whic)m(h)g(divides)g(all)e(cycle)i(genera.)43 b(Then)32 b(the)e(braiding)e(matrix)h(is)257 5027 y(realizable)34 b(o)m(v)m(er)j(the)g(group)e(\()p FF(Z)p FI(=)p FL(\()p FI(p)p FL(\)\))1676 4991 y FG(s)1710 5027 y FI(:)h FL(It)g(migh)m(t)f (b)s(e)h(p)s(ossible)f(to)h(c)m(ho)s(ose)h(a)e(smaller)257 5147 y FI(s;)29 b FL(but)g(this)g(kind)g(of)f(question)i(is)e(closely)h (related)f(to)h(the)g(general)f(problem)g(of)h(whic)m(h)257 5268 y(diagrams)d(can)h(feature)h(at)f(all)e(for)i(a)g(giv)m(en)g (group.)42 b(W)-8 b(e)28 b(will)c(discuss)29 b(this)e(in)f(Chapter)257 5388 y(5)33 b(for)f(the)h(sp)s(ecial)e(case)j FI(s)27 b FL(=)h(2)p FI(:)1828 5637 y FL(35)p eop %%Page: 36 38 36 37 bop 257 573 a FD(4.2)161 b(The)53 b(a\016ne)h(case)257 792 y FL(No)m(w)39 b(w)m(e)f(turn)g(to)g(the)g(a\016ne)g(case,)i(i.e.) 58 b(w)m(e)39 b(consider)f(Dynkin)g(diagrams)e(that)h(are)257 912 y(unions)h(of)f(diagrams)f(of)i(\014nite)f(and)h(a\016ne)g(t)m(yp)s (e.)60 b(F)-8 b(or)37 b(notations)g(regarding)g(a\016ne)257 1033 y(algebras)32 b(w)m(e)i(refer)f(to)g([Kac,)g(Chapter)g(4].)44 b(In)33 b(order)g(to)g(get)g(a)f(similar)e(result)i(to)h(the)257 1153 y(previous)i(one)g(w)m(e)h(ha)m(v)m(e)g(to)e(consider)h(an)g(ev)m (en)h(more)e(sp)s(ecialized)g(st)m(yle)h(of)f(braiding)257 1273 y(matrix.)538 1471 y FE(We)k(r)-5 b(e)g(quir)g(e)37 b(that)h(the)g(or)-5 b(der)37 b(of)h(al)5 b(l)37 b(diagonal)f(entries)i (is)f(the)h(same)538 1592 y(and)45 b(e)-5 b(qual)46 b(to)h(a)f(prime)g (bigger)f(than)h(3.)79 b(This)46 b(kind)f(of)h(br)-5 b(aiding)538 1712 y(matrix)34 b(we)h(wil)5 b(l)34 b(c)-5 b(al)5 b(l)45 b FL(homogeneous)p FE(.)3295 1592 y FL(\(4.8\))404 1860 y(W)-8 b(e)33 b(ha)m(v)m(e)h(the)f(analogue)e(of)h(Lemma)f(4.1)h (for)h(this)f(situation.)257 2064 y FJ(Lemma)37 b(4.4)98 b FE(We)32 b(ar)-5 b(e)32 b(given)f(a)h(linkable)f(Dynkin)g(diagr)-5 b(am)31 b FI(D)k FE(and)d(a)g(c)-5 b(orr)g(esp)g(ond-)501 2184 y(ing)32 b(homo)-5 b(gene)g(ous)30 b(linkable)h(br)-5 b(aiding)31 b(matrix)h Fq(b)p FI(:)g FE(Supp)-5 b(ose)31 b(that)h(the)g(vertic)-5 b(es)32 b FI(i)501 2304 y FE(and)j FI(j)40 b FE(ar)-5 b(e)35 b(linkable)f(to)h FI(k)j FE(and)c FI(l)r FE(,)h(r)-5 b(esp)g(e)g(ctively.)44 b(Then)34 b FI(a)2636 2319 y FG(ij)2725 2304 y FL(=)27 b FI(a)2879 2319 y FG(k)r(l)2944 2304 y FI(:)404 2508 y FL(The)g(pro)s(of)e(is)g (the)h(same)g(as)g(b)s(efore)g(and)g(the)h(last)e(conclusion)g(is)h (straigh)m(tforw)m(ard,)257 2628 y(as)33 b FI(b)418 2643 y FG(ii)503 2628 y FL(has)g(to)g(ha)m(v)m(e)g(at)g(least)f(order)h(5,)f (according)g(to)g(the)h(assumptions.)404 2748 y(As)44 b(b)s(efore,)j(w)m(e)e(de\014ne)h(the)e(notions)f(of)h(w)m(eigh)m(t)g (and)h(natural)d(orien)m(tation)h(for)257 2869 y(ev)m(ery)e(cycle)f FI(c)p FL(.)63 b(This)39 b(time)f(ho)m(w)m(ev)m(er,)43 b(w)m(e)d(do)f(this)g(as)g(w)m(ell)f(for)h(triple)e(edges.)64 b(The)257 2989 y(former)30 b(notions)f(will)f(no)m(w)j(b)s(e)f(denoted) h(b)m(y)h FE(natur)-5 b(al)32 b(2-orientation)37 b FL(and)30 b FI(w)3103 2953 y FH(2)3100 3014 y FG(c)3172 2989 y FL(and)h(the)257 3110 y(corresp)s(onding)e(ones)h(for)f(the)g(triple)f (edges)i(b)m(y)g FE(natur)-5 b(al)32 b(3-orientation)k FL(and)29 b FI(w)3232 3073 y FH(3)3229 3134 y FG(c)3271 3110 y FI(:)g FL(The)257 3230 y(length)j(of)h(the)g(cycle)g(is)f (exactly)h(as)g(b)s(efore.)404 3350 y(If)h(the)h(t)m(w)m(o)f(natural)g (orien)m(tations)f(coincide)g(w)m(e)i(de\014ne)h(the)e(gen)m(us)i(of)e (this)g(cycle)257 3471 y(as)1412 3591 y FI(g)1459 3606 y FG(c)1521 3591 y FL(:=)28 b(3)1701 3550 y FG(w)1754 3527 y Fy(3)1752 3567 y Fo(c)1792 3591 y FL(2)1841 3550 y FG(w)1894 3527 y Fy(2)1892 3567 y Fo(c)1954 3591 y FC(\000)23 b FL(\()p FC(\000)p FL(1\))2256 3550 y FG(l)2277 3558 y Fo(c)2313 3591 y FI(:)257 3765 y FL(In)33 b(the)g(other)g(case)g (w)m(e)h(tak)m(e)1385 3985 y FI(g)1432 4000 y FG(c)1494 3985 y FL(:=)27 b FC(j)p FL(3)1701 3944 y FG(w)1754 3921 y Fy(3)1752 3961 y Fo(c)1814 3985 y FC(\000)c FL(2)1963 3944 y FG(w)2016 3921 y Fy(2)2014 3961 y Fo(c)2054 3985 y FL(\()p FC(\000)p FL(1\))2256 3944 y FG(l)2277 3952 y Fo(c)2313 3985 y FC(j)p FI(:)257 4205 y FL(No)m(w)34 b(the)f(theorem)f(can)h(b)s(e)g(form)m(ulated)e(in)g(the)i(same)g (spirit.)257 4409 y FJ(Theorem)k(4.5)98 b FE(We)45 b(ar)-5 b(e)45 b(given)g(a)g(link-c)-5 b(onne)g(cte)g(d)43 b(linkable)h (a\016ne)h(Dynkin)f(dia-)501 4529 y(gr)-5 b(am)46 b FI(D)j FE(and)c(explicitly)h(exclude)g(the)g(c)-5 b(ases)45 b FI(A)2367 4478 y FH(\(1\))2367 4554 y(1)2492 4529 y FC([)31 b FI(A)2662 4478 y FH(\(1\))2662 4554 y(1)2802 4529 y FE(and)46 b FI(A)3076 4478 y FH(\(2\))3076 4554 y(2)3201 4529 y FC([)31 b FI(A)3371 4478 y FH(\(2\))3371 4554 y(2)3465 4529 y FE(.)501 4650 y(These)j(wil)5 b(l)34 b(b)-5 b(e)35 b(tr)-5 b(e)g(ate)g(d)35 b(later.)501 4770 y(A)h(homo)-5 b(gene)g(ous)33 b(linkable)h(br)-5 b(aiding)33 b(matrix)i(of)g FI(D)s FE(-Cartan)f(typ)-5 b(e)35 b(exists,)f(i\013)587 4973 y(1.)49 b(In)34 b(c)-5 b(omp)g(onents)33 b(of)i(typ)-5 b(e)35 b FI(A)1760 4923 y FH(\(1\))1760 4998 y(1)1889 4973 y FE(and)f FI(A)2151 4923 y FH(\(2\))2151 4998 y(2)2280 4973 y FE(not)h(b)-5 b(oth)35 b(vertic)-5 b(es)34 b(ar)-5 b(e)34 b(linkable)716 5094 y(to)h(other)g(vertic)-5 b(es.)587 5256 y(2.)49 b FI(D)37 b FE(do)-5 b(es)35 b(not)f(c)-5 b(ontain)35 b(any)f(induc)-5 b(e)g(d)35 b(sub)-5 b(gr)g(aphs)34 b(of)g(the)h(form:)1828 5637 y FL(36)p eop %%Page: 37 39 37 38 bop 1082 960 a @beginspecial 0 @llx 0 @lly 307 @urx 73 @ury 2456 @rwi @setspecial %%BeginDocument: fig5.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: affineexcept.eps %%Creator: fig2dev Version 3.2 Patchlevel 0-beta3 %%CreationDate: Fri Mar 23 11:02:12 2001 %%For: didt@math12 (D. Didt) %%Orientation: Portrait %%BoundingBox: 0 0 307 73 %%Pages: 0 %%BeginSetup %%EndSetup %%Magnification: 0.6000 %%EndComments /$F2psDict 200 dict def $F2psDict begin $F2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save -34.0 112.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def %%EndProlog $F2psBegin 10 setmiterlimit n -1000 4108 m -1000 -1000 l 10468 -1000 l 10468 4108 l cp clip 0.03600 0.03600 sc 30.000 slw % Ellipse n 1050 1350 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 2550 1350 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 2550 2850 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 1050 2850 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1050 1350 m 2550 1350 l gs col0 s gr % Polyline [15 90] 90 sd n 1050 1350 m 1050 2850 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 2550 1350 m 2550 2850 l gs col0 s gr [] 0 sd % Ellipse n 3225 2850 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 4725 2850 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 4725 1350 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3225 1350 70 70 0 360 DrawEllipse gs col0 s gr % Ellipse n 3225 1345 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline [15 90] 90 sd n 4725 1350 m 4725 2850 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 3225 1350 m 3225 2850 l gs col0 s gr [] 0 sd % Polyline n 3225 1275 m 4725 1275 l gs col0 s gr % Polyline n 3225 1425 m 4725 1425 l gs col0 s gr % Polyline n 3825 1125 m 4200 1350 l 3825 1575 l gs col0 s gr % Polyline n 6300 1125 m 6750 1350 l 6300 1575 l gs col0 s gr % Polyline n 5550 1275 m 7050 1275 l gs col0 s gr % Polyline n 5550 1350 m 7050 1350 l gs col0 s gr % Polyline n 5550 1425 m 7050 1425 l gs col0 s gr % Ellipse n 9375 1350 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 7875 1350 70 70 0 360 DrawEllipse gs col0 s gr % Ellipse n 7875 1345 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 7875 2850 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 9375 2850 70 70 0 360 DrawEllipse gs col0 s gr % Ellipse n 9375 2845 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline [15 90] 90 sd n 7875 1350 m 7875 2850 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 9375 1350 m 9375 2850 l gs col0 s gr [] 0 sd % Polyline n 9375 2775 m 7875 2775 l gs col0 s gr % Polyline n 9375 2925 m 7875 2925 l gs col0 s gr % Polyline n 8775 2625 m 8400 2850 l 8775 3075 l gs col0 s gr % Polyline n 8625 1125 m 9075 1350 l 8625 1575 l gs col0 s gr % Polyline n 7875 1275 m 9375 1275 l gs col0 s gr % Polyline n 7875 1350 m 9375 1350 l gs col0 s gr % Polyline n 7875 1425 m 9375 1425 l gs col0 s gr % Ellipse n 5550 1350 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 7050 1350 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 7050 2850 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 5550 2850 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline [15 90] 90 sd n 5550 1350 m 5550 2850 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 7050 1350 m 7050 2850 l gs col0 s gr [] 0 sd $F2psEnd rs %%EndDocument @endspecial 587 1143 a FE(3.)49 b(Ther)-5 b(e)38 b(is)g(a)h(prime)f FI(p)d(>)g FL(3)j FE(that)h(do)-5 b(es)38 b(divide)g(al)5 b(l)39 b(cycle)f(gener)-5 b(a)38 b(and)g(the)716 1263 y(\014eld)c FF(|)20 b FE(c)-5 b(ontains)34 b(a)h FI(p)1535 1227 y Ff(th)1634 1263 y FE(r)-5 b(o)g(ot)35 b(of)g(unity.)257 1491 y FJ(Pro)s(of)j(\(Sk)m(etc)m(h\):)48 b FL(W)-8 b(e)32 b(start)f(again)g(with)g(the)h(\\if)7 b(")30 b(part.)43 b(Supp)s(ose)33 b(all)c(conditions)501 1612 y(are)k(ful\014lled.)501 1774 y(W)-8 b(e)45 b(pic)m(k)g(an)m(y)h(v)m(ertex)g FI(i)f FL(and)g(set)g FI(b)1888 1789 y FG(ii)1986 1774 y FL(to)f(b)s(e)h(a)f FI(p)2404 1737 y FH(th)2520 1774 y FL(ro)s(ot)f(of)i(unit)m(y)-8 b(,)47 b(where)f FI(p)501 1894 y FL(is)37 b(giv)m(en)g(b)m(y)h (condition)e(3.)56 b(As)38 b(b)s(efore,)g(w)m(e)g(can)g(no)m(w)g(set)f (all)e(other)j(diagonal)501 2014 y(elemen)m(ts)28 b(of)e(the)i (braiding)d(matrix)h(inductiv)m(ely)-8 b(.)41 b(Dotted,)28 b(single,)f(double)g(and)501 2135 y(triple)39 b(edges)i(are)e(treated)i (as)f(in)f(the)h(\014nite)g(case,)i(the)f(edge)f(of)g(t)m(yp)s(e)g FI(A)3295 2084 y FH(\(1\))3295 2159 y(1)3430 2135 y FL(is)501 2255 y(treated)28 b(as)f(a)f(single)g(edge,)j(and)e(when)h(w)m(e)f (pass)h(quadruple)f(edges)h(w)m(e)g(tak)m(e)g(the)501 2375 y(4)550 2339 y FH(th)655 2375 y FL(ro)s(ot)33 b(or)g(p)s(o)m(w)m (er)i(according)f(to)f(if)g(w)m(e)i(go)f(along)e FE(with)41 b FL(the)35 b(arro)m(w)f(or)g(in)f(the)501 2496 y(opp)s(osite)i (direction.)52 b(This)35 b(time)g(w)m(e)h(only)f(require)h(that)g(all)d (diagonal)g(v)-5 b(alues)501 2616 y(are)28 b FI(p)708 2580 y FH(th)806 2616 y FL(ro)s(ots)f(of)g(unit)m(y)h(and)g(as)f FI(p)h(>)f FL(3)h(is)f(a)g(prime)f(this)i(determines)f(the)h(v)-5 b(alues)501 2737 y(uniquely)d(.)61 b(The)39 b(indep)s(endence)h(from)d (the)i(paths)g(c)m(hosen)h(in)d(this)h(pro)s(cedure)501 2857 y(is)33 b(ensured)i(again)c(b)m(y)j(the)g(condition)d(on)i(the)h (genera,)f(and)g(can)h(b)s(e)f(sho)m(wn)h(b)m(y)501 2977 y(elab)s(orating)c(on)j(the)g(tec)m(hnique)h(used)g(in)d(the)i (\014nite)g(case.)501 3139 y(The)e(o\013-diagonal)c(elemen)m(ts)j(are)g (set)g(completely)f(in)g(the)i(same)e(w)m(a)m(y)j(as)e(in)f(the)501 3260 y(\014nite)k(case,)g(so)g(w)m(e)g(will)e(not)h(rep)s(eat)h(the)g (argumen)m(ts)g(here.)501 3542 y(The)23 b(\\only)f(if)7 b(")20 b(part)i(again)f(follo)m(ws)g(the)h(same)g(strategy)h(as)f(b)s (efore.)40 b(W)-8 b(e)23 b(assume)501 3662 y(to)33 b(b)s(e)h(giv)m(en)f (a)h(link)-5 b(able)31 b(Dynkin)i(diagram)e FI(D)36 b FL(and)e(a)f(homogeneous)g(link)-5 b(able)501 3783 y(braiding)28 b(matrix)f(of)i FI(D)s FL(-Cartan)g(t)m(yp)s(e.)43 b(Supp)s(ose)30 b(condition)e(1)h(is)g(not)g(ful\014lled.)501 3903 y(Then)36 b(Lemma)c(4.4)i(immediately)d(giv)m(es)k(that)f(the)g(diagram)e(is)i FI(A)3000 3852 y FH(\(1\))3000 3927 y(1)3117 3903 y FC([)24 b FI(A)3280 3852 y FH(\(1\))3280 3927 y(1)3409 3903 y FL(or)501 4036 y FI(A)574 3986 y FH(\(2\))574 4061 y(2)691 4036 y FC([)e FI(A)852 3986 y FH(\(2\))852 4061 y(2)947 4036 y FI(:)501 4198 y FL(The)34 b(negation)d(of)h(condition)g(2)g(con) m(tradicts)h(Lemma)e(4.4.)501 4360 y(Supp)s(ose)23 b(no)m(w)g(that)f (the)h(biggest)f(prime)f FI(p)h FL(dividing)e(all)g(cycle)j(genera)f (is)g(smaller)501 4481 y(than)41 b(5,)i(or)e(that)f(the)i(greatest)f (common)f(divisor)g FI(G)h FL(of)f(all)f(cycle)i(genera)h(is)501 4601 y(1.)76 b(Here)44 b(the)f(analogue)f(of)h(Lemma)f(4.3)h(3)g(giv)m (es)h(the)f(con)m(tradiction.)75 b(One)501 4721 y(do)s(es)43 b(not)g(need)h(to)e(use)i(the)f(concept)h(of)e(Lev)m(el)h(0)g(v)m (ertices)h(ho)m(w)m(ev)m(er,)j(as)c(all)501 4842 y(diagonal)g(en)m (tries)j(ha)m(v)m(e)g(to)f(ha)m(v)m(e)h(the)g(same)f(order.)81 b(Still,)46 b(the)f(result)g(that)501 4962 y(ev)m(ery)35 b FI(b)800 4977 y FG(ii)886 4962 y FL(is)e(a)g FI(G)1144 4926 y FH(th)1248 4962 y FL(ro)s(ot)f(of)h(unit)m(y)g(can)g(b)s(e)h (deduced)h(b)m(y)f(the)g(same)f(reasoning.)3292 5083 y FJ(qed.)1828 5637 y FL(37)p eop %%Page: 38 40 38 39 bop 257 573 a FD(4.3)161 b(The)53 b(excluded)g(cases)257 792 y FL(Supp)s(ose)36 b(the)f(giv)m(en)g(diagram)e(is)h(one)h(of)f (the)i(ab)s(o)m(v)m(e)f(excluded)h(ones,)g(i.e.)50 b FI(G)3199 807 y FH(2)3262 792 y FC([)24 b FI(G)3429 807 y FH(2)3468 792 y FI(;)257 912 y(A)330 861 y FH(\(1\))330 937 y(1)448 912 y FC([)g FI(A)611 861 y FH(\(1\))611 937 y(1)741 912 y FL(or)34 b FI(A)935 861 y FH(\(2\))935 937 y(2)1053 912 y FC([)24 b FI(A)1216 861 y FH(\(2\))1216 937 y(2)1310 912 y FI(:)35 b FL(W)-8 b(e)35 b(lab)s(el)e(the)i(v)m (ertices)h(at)f(whic)m(h)g(the)g(arro)m(ws)g(in)f(eac)m(h)257 1033 y(cop)m(y)j(p)s(oin)m(t)d(as)i(v)m(ertices)g(1)f(and)h(3)f(and)g (the)h(others)g(as)g(2)f(and)g(4,)h(so)g(that)f(v)m(ertices)h(1)257 1153 y(and)i(2)g(form)f(one)h(of)g(the)g(copies)g(of)g FI(G)1736 1168 y FH(2)1775 1153 y FI(;)g(A)1913 1102 y FH(\(1\))1913 1177 y(1)2046 1153 y FL(or)f FI(A)2243 1102 y FH(\(2\))2243 1177 y(2)2376 1153 y FL(and)h(v)m(ertices)h(3)f (and)g(4)f(form)257 1273 y(the)c(other.)404 1394 y(When)26 b(the)f(link)-5 b(able)23 b(Dynkin)i(diagram)e(has)j(a)e(cycle,)k(a)c (link)-5 b(able)23 b(braiding)h(matrix)257 1514 y(exists,)40 b(according)d(to)h(Lemma)e(4.4,)j(only)e(if)g(v)m(ertices)i(1)e(and)h (3)f(as)h(w)m(ell)f(as)h(2)g(and)f(4)257 1635 y(are)c(link)-5 b(able.)41 b(In)33 b(this)f(case)i(the)f(follo)m(wing)d(link)-5 b(able)30 b(braiding)h(matrices)h(exist)1184 1768 y Fw(0)1184 1943 y(B)1184 2003 y(B)1184 2066 y(@)1404 1846 y FI(q)269 b(z)186 b(q)135 b(z)2174 1810 y Fx(\000)p FH(1)2269 1846 y FI(q)2316 1810 y Fx(\000)p FG(m)1271 1967 y FI(z)1320 1930 y Fx(\000)p FH(1)1415 1967 y FI(q)1462 1930 y Fx(\000)p FG(m)1694 1967 y FI(q)1741 1930 y FG(n)1945 1967 y FI(z)245 b(q)2282 1930 y FG(n)1357 2087 y FI(q)1404 2051 y Fx(\000)p FH(1)1669 2087 y FI(z)1718 2051 y Fx(\000)p FH(1)1900 2087 y FI(q)1947 2051 y Fx(\000)p FH(1)2200 2087 y FI(z)t(q)2296 2051 y FG(m)1346 2207 y FI(z)t(q)1442 2171 y FG(m)1667 2207 y FI(q)1714 2171 y Fx(\000)p FG(n)1898 2207 y FI(z)1947 2171 y Fx(\000)p FH(1)2207 2207 y FI(q)2254 2171 y Fx(\000)p FG(n)2438 1768 y Fw(1)2438 1943 y(C)2438 2003 y(C)2438 2066 y(A)2542 2028 y FI(:)257 2421 y FL(Here)37 b FI(n)d FL(=)f FI(m)h FL(=)f(3;)k FI(n)d FL(=)f(1)p FI(;)17 b(m)33 b FL(=)h(2)h(or)h FI(n)e FL(=)f FI(m)h FL(=)f(4)j(for)f(the)h(\014rst,) i(second)f(and)f(last)257 2541 y(diagram)31 b(resp)s(ectiv)m(ely)-8 b(,)33 b(and)g FI(z)f FC(6)p FL(=)c(0)p FI(:)404 2661 y FL(When)40 b(there)h(is)e(no)g(cycle,)j(the)e(situation)e(is)i (simpler,)f(and)h(braiding)e(matrices)257 2782 y(similar)30 b(to)i(the)h(one)g(ab)s(o)m(v)m(e)g(can)g(b)s(e)g(written)f(do)m(wn.) 257 3114 y FD(4.4)161 b(Examples)257 3333 y FL(If)48 b(w)m(e)g(start)f(with)g(t)m(w)m(o)h(copies)f(of)g(a)g(Dynkin)g (diagram)e(and)i(link)f(corresp)s(onding)257 3454 y(v)m(ertices,)27 b(all)21 b(cycles)j(ha)m(v)m(e)h(gen)m(us)g(0,)f(so)g(there)g(are)f(no) g(obstructions.)41 b(This)24 b(sho)m(ws)h(once)257 3574 y(more)36 b(that)h(braiding)e(matrices)g(necessary)40 b(for)c(the)h(construction)g(of)f(the)h(quan)m(tum)257 3695 y(univ)m(ersal)24 b(en)m(v)m(eloping)h(algebras)e FI(U)1570 3710 y FG(q)1608 3695 y FL(\()p Fs(g)p FL(\))h(and)h(quan)m (tized)g(Kac-Mo)s(o)s(dy)e(algebras)h(exist.)404 3815 y(If)j(w)m(e)h(tak)m(e)f FI(n)g FL(copies)h(of)e FI(A)1385 3830 y FH(3)1451 3815 y FL(and)h(link)f(them)h(in)m(to)f(a)h(circle)f ([AS3,)i(Example)f(5.13.],)257 3935 y(then)h(w)m(e)g(ha)m(v)m(e)g(one)f (cycle)h(of)e(w)m(eigh)m(t)h(0)g(and)g(length)f FI(n)p FL(.)42 b(So)27 b(the)g(gen)m(us)h(is)e(0)h(for)f FI(n)h FL(ev)m(en,)257 4056 y(and)f(there)f(are)g(no)g(restrictions.)41 b(F)-8 b(or)24 b FI(n)h FL(o)s(dd,)i(ho)m(w)m(ev)m(er,)i(the)c(gen)m (us)i(is)d(2,)j(so)e(under)h(the)257 4176 y(conditions)f(w)m(e)i(imp)s (osed)e(there)i(are)f(no)g(corresp)s(onding)g(link)-5 b(able)24 b(braiding)g(matrices.)404 4297 y(F)-8 b(or)29 b(the)h(case)g(of)g FI(n)g FL(copies)g(of)f FI(B)1608 4312 y FH(3)1677 4297 y FL(link)m(ed)g(in)m(to)g(a)h(circle)f(the)h (gen)m(us)h(is)e(2)3062 4260 y FG(n)3125 4297 y FC(\000)16 b FL(\()p FC(\000)p FL(1\))3420 4260 y FG(n)3468 4297 y FI(:)404 4417 y FL(In)26 b(Figure)g(4.1)f(whic)m(h)i(w)m(e)h(used)f (to)f(demonstrate)g(the)h(v)-5 b(arious)26 b(notions,)h(w)m(e)g(found) 257 4537 y(that)d(all)e(cycle)j(genera)f(w)m(ere)h(divisible)d(b)m(y)j (5.)40 b(So)24 b(w)m(e)h(kno)m(w)h(that)d(all)f(link)-5 b(able)22 b(braiding)257 4658 y(matrices)47 b(of)g(that)h(t)m(yp)s(e)g (ha)m(v)m(e)h(diagonal)c(elemen)m(ts)j(whose)h(order)f(is)f(divisible)e (b)m(y)257 4778 y(5.)64 b(This)39 b(giv)m(es)h(a)f(limitation)34 b(on)39 b(the)h(groups)f(o)m(v)m(er)i(whic)m(h)f(these)g(matrices)e (can)i(b)s(e)257 4898 y(realized.)404 5019 y(In)e(Figure)f(4.2)h(w)m(e) h(giv)m(e)f(a)g(few)h(more)e(\\exotic")h(linkings,)f(that)h(do)g(not)g (imp)s(ose)257 5139 y(restrictions)45 b(on)h(the)f(p)s(ossible)g (braiding)f(matrices.)81 b(The)46 b(original)d(example)i(of)f(4)257 5260 y(copies)c(of)g FI(A)744 5275 y FH(3)823 5260 y FL(link)m(ed)f(in)m(to)h(a)f(circle)g(is)g(also)g(depicted)i(there.)66 b(Some)39 b(\\imp)s(ossible")257 5380 y(link)-5 b(able)36 b(Dynkin)h(diagrams,)g(that)h(is)f(diagrams)f(for)h(whic)m(h)h(there)g (are)g(no)f(link)-5 b(able)1828 5637 y(38)p eop %%Page: 39 41 39 40 bop 257 573 a FL(braiding)33 b(matrices)h(with)h(diagonal)d (elemen)m(ts)j(not)g(equal)g(to)f(one,)i(are)f(displa)m(y)m(ed)g(in)257 693 y(Figure)d(4.3.)257 1026 y FD(4.5)161 b(Generalisations)257 1245 y FL(Here)27 b(w)m(e)h(w)m(an)m(t)f(to)f(discuss)h(some)f(p)s (ossible)g(generalisations)e(to)i(restrictions)g(imp)s(osed)257 1365 y(so)39 b(far.)59 b(W)-8 b(e)39 b(only)e(considered)i(a\016ne)g (and)f(\014nite)g(Cartan)g(matrices,)h(as)f(w)m(e)h(do)f(not)257 1486 y(kno)m(w)25 b(of)e(an)m(y)g(further)h(sp)s(ecial)e(classes)j (within)d(generalized)g(Cartan)i(matrices.)39 b(Apart)257 1606 y(from)c(that,)j(the)e(com)m(binatorics)f(in)m(v)m(olv)m(ed)i(in)f (the)h(classi\014cation)d(b)s(ecome)j(more)e(in-)257 1727 y(v)m(olv)m(ed)k(with)d(increasing)h(v)-5 b(alues)37 b(of)g(the)h(en)m(tries)g(of)e(the)i(Cartan)f(matrix.)56 b(In)38 b(order)257 1847 y(to)c(get)g(a)g(nice)f(presen)m(tation,)i (one)f(w)m(ould)g(ha)m(v)m(e)i(to)d(imp)s(ose)g(ev)m(en)i(more)f (restrictions)257 1967 y(on)f(the)g(braiding)e(matrix.)404 2088 y(Ho)m(w)m(ev)m(er,)d(the)d(results)f(from)f(Section)i(4.2)e(can)i (b)s(e)f(extended)j(easily)c(to)h(all)e(Dynkin)257 2208 y(diagrams)29 b(with)h(only)f(single,)h(double)g(and)g(triple)f(edges.) 44 b(One)30 b(p)s(ossible)g(application)257 2328 y(of)41 b(this)f(is)g(for)h(the)g(Cartan)g(matrices)f(giv)m(en)g(in)g([AS2)q(,) j(\(4.9\)-\(4.17\)].)66 b(As)41 b(link)-5 b(able)257 2449 y(Dynkin)33 b(diagrams)f(they)i(all)d(ha)m(v)m(e)j(one)g(cycle)g (of)e(length)h(zero.)46 b(W)-8 b(e)33 b(giv)m(e)g(the)h(genera)257 2569 y(of)25 b(these)i(cycles)f(in)e(T)-8 b(able)25 b(4.1,)i(and)e(see) h(that)f(the)h(primes)e(listed)h(with)g(these)h(matrices)257 2690 y(in)j(the)g(original)d(pap)s(er)j(are)f(just)i(the)f(o)s(dd)g (divisors)f(of)h(these)h(cycle)f(genera.)43 b(It)29 b(is)g(still)257 2810 y(an)c(op)s(en)g(question)h(if)e(\014nite)g(dimensional)f(Nic)m (hols)h(algebras)g(whose)j(braiding)c(matrix)257 2930 y(is)32 b(of)h(suc)m(h)h(Cartan)e(t)m(yp)s(es)i(exist.)257 3219 y Fn(4.5.1)136 b(The)45 b(order)g(of)g(the)g(diagonal)h(elemen)l (ts)257 3404 y FL(W)-8 b(e)32 b(w)m(ould)f(lik)m(e)g(to)g(mak)m(e)h (some)f(commen)m(ts)g(on)g(wh)m(y)i(w)m(e)f(made)f(the)h(v)-5 b(arious)31 b(restric-)257 3524 y(tions)h(ab)s(o)m(v)m(e)i(on)e(the)h (orders)g(of)g(the)g(diagonal)d(elemen)m(ts.)404 3645 y(First,)25 b(if)f FI(b)785 3660 y FG(ii)865 3645 y FL(=)k(1)p FI(;)c FL(then)i FI(g)1331 3660 y FG(i)1383 3645 y FL(comm)m(utes)f (with)f FI(x)2103 3660 y FG(i)2132 3645 y FL(;)h(a)f(case)i(of)e(no)h (in)m(terest.)42 b(Moreo)m(v)m(er,)257 3765 y([AS1)q(,)33 b(Lemma)f(3.1.])45 b(sho)m(ws)35 b(that)e(this)g(can)h(not)f(emerge)g (when)i(dealing)d(with)g(\014nite)257 3885 y(dimensional)e(Hopf)j (algebras.)404 4006 y(When)c(the)g(order)f(of)g FI(b)1246 4021 y FG(ii)1327 4006 y FL(can)g(b)s(e)h(t)m(w)m(o,)g(w)m(e)h(do)e (not)g(get)g(Lemma)f(4.1.)42 b(So)28 b(w)m(e)h(w)m(ould)257 4126 y(ha)m(v)m(e)34 b(to)f(deal)e(with)i(a)f(m)m(uc)m(h)h(more)f (di\016cult)g(structure)h(of)g(p)s(ossible)e(diagrams.)404 4247 y(Actually)-8 b(,)31 b(if)h(one)h(disregards)f(the)h(sub-diagram) 1622 4866 y @beginspecial 0 @llx 0 @lly 61 @urx 61 @ury 610 @rwi @setspecial %%BeginDocument: fig6.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: a1dbla2.eps %%Creator: fig2dev Version 3.2 Patchlevel 0-beta3 %%CreationDate: Thu Mar 22 19:01:37 2001 %%For: didt@math12 (D. Didt) %%Orientation: Portrait %%BoundingBox: 0 0 61 61 %%Pages: 0 %%BeginSetup %%EndSetup %%Magnification: 0.6000 %%EndComments /$F2psDict 200 dict def $F2psDict begin $F2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save -72.0 90.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def %%EndProlog $F2psBegin 10 setmiterlimit n -1000 3492 m -1000 -1000 l 4693 -1000 l 4693 3492 l cp clip 0.03600 0.03600 sc 30.000 slw % Ellipse n 2100 2400 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3600 2400 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 2850 900 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 2100 2400 m 3600 2400 l gs col0 s gr % Polyline [15 90] 90 sd n 2100 2400 m 2850 900 l 3600 2400 l gs col0 s gr [] 0 sd $F2psEnd rs %%EndDocument @endspecial 257 5069 a(then)41 b(Lemma)e(4.1)g(already)h(giv)m(es)g (us)h(that)f(a)g(v)m(ertex)h(can)g(b)s(e)f(link)-5 b(able)38 b(to)i FE(at)h(most)257 5189 y FL(one)c(other)f(v)m(ertex.)55 b(One)36 b(just)g(tak)m(es)i FI(i)33 b FL(=)g FI(j)42 b FL(and)36 b(\014nds)h FI(a)2438 5204 y FG(k)r(l)2536 5189 y FL(=)c(2)j(or)f FI(a)2903 5204 y FG(k)r(l)3002 5189 y FL(=)e FI(a)3162 5204 y FG(l)q(k)3260 5189 y FL(=)g FC(\000)p FL(1)257 5310 y(and)38 b(the)g(order)g(of)f FI(b)1042 5325 y FG(ii)1132 5310 y FL(is)g(3.)58 b(If)37 b(the)h(order)g(of)f FI(b)2061 5325 y FG(ii)2151 5310 y FL(is)g(t)m(w)m(o,)j(then)e(one)g(could)f(consider)1828 5637 y(39)p eop %%Page: 40 42 40 41 bop 325 3448 a @beginspecial 0 @llx 0 @lly 532 @urx 510 @ury 3724 @rwi @setspecial %%BeginDocument: exotics.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: exotics.eps %%Creator: fig2dev Version 3.2 Patchlevel 1 %%CreationDate: Tue Oct 29 13:27:25 2002 %%For: didt@milab82 (Daniel Didt) %%Orientation: Portrait %%BoundingBox: 0 0 532 510 %%Pages: 0 %%BeginSetup %%EndSetup %%Magnification: 0.6000 %%EndComments /$F2psDict 200 dict def $F2psDict begin $F2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save -36.0 525.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def %%EndProlog $F2psBegin 10 setmiterlimit n -1000 15570 m -1000 -1000 l 16771 -1000 l 16771 15570 l cp clip 0.03600 0.03600 sc 30.000 slw % Rotated Ellipse gs 13199 5401 tr -180.000 rot n 0 0 149 149 0 360 DrawEllipse 180.000 rot gs 0.00 setgray ef gr gs col0 s gr gr % Rotated Ellipse gs 11999 5401 tr -180.000 rot n 0 0 149 149 0 360 DrawEllipse 180.000 rot gs 0.00 setgray ef gr gs col0 s gr gr % Rotated Ellipse gs 10799 5401 tr -180.000 rot n 0 0 149 149 0 360 DrawEllipse 180.000 rot gs 0.00 setgray ef gr gs col0 s gr gr % Rotated Ellipse gs 9599 5401 tr -180.000 rot n 0 0 149 149 0 360 DrawEllipse 180.000 rot gs 0.00 setgray ef gr gs col0 s gr gr % Polyline n 13199 5401 m 11999 5401 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 10799 5401 m 9599 5401 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 11999 5476 m 10799 5476 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 11999 5326 m 10799 5326 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 11700 5701 m 11250 5401 l 11700 5101 l gs col0 s gr % Ellipse n 11999 4201 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 10799 4201 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 13199 4201 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 14399 4201 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 15599 4201 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 11999 4126 m 10799 4126 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 11999 4276 m 10799 4276 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 11250 3901 m 11700 4201 l 11250 4501 l gs col0 s gr % Polyline n 11999 4201 m 15599 4201 l gs col0 s gr % Ellipse n 13201 12001 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 14401 12001 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 12001 12001 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 10801 12001 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 9601 12001 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 13201 11926 m 14401 11926 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 13201 12076 m 14401 12076 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 13950 11701 m 13500 12001 l 13950 12301 l gs col0 s gr % Polyline n 13201 12001 m 9601 12001 l gs col0 s gr % Ellipse n 3001 601 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 4201 601 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 5401 601 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 3001 601 m 5401 601 l gs col0 s gr % Rotated Ellipse gs 1801 4201 tr -90.000 rot n 0 0 149 149 0 360 DrawEllipse 90.000 rot gs 0.00 setgray ef gr gs col0 s gr gr % Rotated Ellipse gs 1801 3001 tr -90.000 rot n 0 0 149 149 0 360 DrawEllipse 90.000 rot gs 0.00 setgray ef gr gs col0 s gr gr % Rotated Ellipse gs 1801 1801 tr -90.000 rot n 0 0 149 149 0 360 DrawEllipse 90.000 rot gs 0.00 setgray ef gr gs col0 s gr gr % Polyline n 1801 4201 m 1801 1801 l gs col0 s gr % Rotated Ellipse gs 6601 4201 tr -90.000 rot n 0 0 149 149 0 360 DrawEllipse 90.000 rot gs 0.00 setgray ef gr gs col0 s gr gr % Rotated Ellipse gs 6601 3001 tr -90.000 rot n 0 0 149 149 0 360 DrawEllipse 90.000 rot gs 0.00 setgray ef gr gs col0 s gr gr % Rotated Ellipse gs 6601 1801 tr -90.000 rot n 0 0 149 149 0 360 DrawEllipse 90.000 rot gs 0.00 setgray ef gr gs col0 s gr gr % Polyline n 6601 4201 m 6601 1801 l gs col0 s gr % Ellipse n 3001 5401 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 4201 5401 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 5401 5401 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 3001 5401 m 5401 5401 l gs col0 s gr % Ellipse n 2399 9000 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3599 8401 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3599 9601 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 1199 9000 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 2399 9000 m 3599 8401 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 2399 9000 m 3599 9601 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 2399 9000 m 1199 9000 l gs col0 s gr % Ellipse n 6600 9000 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 5400 8401 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 5400 9601 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 7800 9000 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 6600 9000 m 5400 8401 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 6600 9000 m 5400 9601 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 6600 9000 m 7800 9000 l gs col0 s gr % Rotated Ellipse gs 14401 7201 tr -270.001 rot n 0 0 149 149 0 360 DrawEllipse 270.001 rot gs 0.00 setgray ef gr gs col0 s gr gr % Rotated Ellipse gs 14401 8401 tr -270.001 rot n 0 0 149 149 0 360 DrawEllipse 270.001 rot gs 0.00 setgray ef gr gs col0 s gr gr % Rotated Ellipse gs 14401 9601 tr -270.001 rot n 0 0 149 149 0 360 DrawEllipse 270.001 rot gs 0.00 setgray ef gr gs col0 s gr gr % Rotated Ellipse gs 14401 10801 tr -270.001 rot n 0 0 149 149 0 360 DrawEllipse 270.001 rot gs 0.00 setgray ef gr gs col0 s gr gr % Rotated Ellipse gs 12001 7800 tr -270.001 rot n 0 0 149 149 0 360 DrawEllipse 270.001 rot gs 0.00 setgray ef gr gs col0 s gr gr % Rotated Ellipse gs 12600 6600 tr -270.001 rot n 0 0 149 149 0 360 DrawEllipse 270.001 rot gs 0.00 setgray ef gr gs col0 s gr gr % Rotated Ellipse gs 11400 6600 tr -270.001 rot n 0 0 149 149 0 360 DrawEllipse 270.001 rot gs 0.00 setgray ef gr gs col0 s gr gr % Rotated Ellipse gs 12001 9000 tr -270.001 rot n 0 0 149 149 0 360 DrawEllipse 270.001 rot gs 0.00 setgray ef gr gs col0 s gr gr % Rotated Ellipse gs 9601 7201 tr -270.001 rot n 0 0 149 149 0 360 DrawEllipse 270.001 rot gs 0.00 setgray ef gr gs col0 s gr gr % Rotated Ellipse gs 9601 8401 tr -270.001 rot n 0 0 149 149 0 360 DrawEllipse 270.001 rot gs 0.00 setgray ef gr gs col0 s gr gr % Rotated Ellipse gs 9601 9601 tr -270.001 rot n 0 0 149 149 0 360 DrawEllipse 270.001 rot gs 0.00 setgray ef gr gs col0 s gr gr % Rotated Ellipse gs 9601 10801 tr -270.001 rot n 0 0 149 149 0 360 DrawEllipse 270.001 rot gs 0.00 setgray ef gr gs col0 s gr gr % Ellipse n 8399 603 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 9599 603 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 10799 603 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 11999 603 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 13199 603 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 10799 1801 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 10799 3001 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 11999 3001 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 13199 3001 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 14399 3001 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 15599 3001 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 13199 1801 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 10798 13198 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 4199 13198 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 5399 13198 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 5998 13198 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 6599 13198 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 7198 13198 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 7799 13198 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 8398 13198 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 5399 11998 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 5998 11998 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 6599 11998 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 9598 13198 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 4199 14398 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 4798 14398 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 5399 14398 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3598 13198 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 2398 13799 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 2398 12599 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 4798 13198 149 149 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Rotated Ellipse gs 14400 6000 tr -270.001 rot n 0 0 149 149 0 360 DrawEllipse 270.001 rot gs 0.00 setgray ef gr gs col0 s gr gr % Polyline n 14401 7201 m 14401 8401 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 14401 9601 m 14401 10801 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 14476 8401 m 14476 9601 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 14326 8401 m 14326 9601 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 14701 8701 m 14401 9151 l 14101 8701 l gs col0 s gr % Polyline n 12001 7800 m 12600 6600 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 12001 7800 m 11400 6600 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 12001 7800 m 12001 9000 l gs col0 s gr % Polyline n 9601 7201 m 9601 8401 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 9601 9601 m 9601 10801 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 9676 8401 m 9676 9601 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 9526 8401 m 9526 9601 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 9901 8701 m 9601 9151 l 9301 8701 l gs col0 s gr % Polyline [15 90] 90 sd n 13199 603 m 13199 1801 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 10799 1801 m 10799 3001 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 10799 603 m 11999 3001 l gs col0 s gr [] 0 sd % Polyline n 8399 603 m 13199 603 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 10799 1801 m 10799 603 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 10799 3001 m 15599 3001 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 13199 1801 m 13199 3001 l gs 0.00 setgray ef gr gs col0 s gr % Polyline [15 90] 90 sd n 11999 603 m 13199 3001 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 8399 603 m 9599 5401 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 10799 4201 m 11999 5401 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 15599 3001 m 15599 4201 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 9600 10800 m 10800 12000 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 14400 9600 m 13200 12000 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 3599 8401 m 5400 8401 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 3599 9601 m 5400 9601 l gs col0 s gr [] 0 sd % Polyline n 9598 13198 m 10798 13198 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 9674 13124 m 10874 13124 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 9674 13274 m 10874 13274 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 9899 13499 m 10349 13198 l 9899 12899 l gs col0 s gr % Polyline n 4798 13198 m 8398 13198 l gs col0 s gr % Polyline n 5399 11998 m 6599 11998 l gs col0 s gr % Polyline [15 90] 90 sd n 8398 13198 m 9598 13198 l gs col0 s gr [] 0 sd % Polyline n 4199 14398 m 4798 14398 l 5399 14398 l gs col0 s gr % Polyline n 3598 13198 m 2398 13799 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 3598 13198 m 2398 12599 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 3598 13198 m 4798 13198 l gs col0 s gr % Polyline n 14400 7200 m 14400 6000 l gs col0 s gr % Polyline [15 90] 90 sd n 12600 6600 m 14400 6000 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 9601 7201 m 9602 7200 l 9604 7196 l 9608 7191 l 9615 7182 l 9624 7169 l 9636 7153 l 9651 7133 l 9668 7109 l 9689 7082 l 9711 7052 l 9736 7020 l 9763 6986 l 9791 6951 l 9819 6915 l 9849 6880 l 9878 6846 l 9908 6813 l 9937 6782 l 9966 6752 l 9995 6725 l 10023 6700 l 10052 6678 l 10080 6658 l 10109 6640 l 10138 6625 l 10169 6612 l 10200 6600 l 10227 6592 l 10255 6584 l 10286 6578 l 10318 6573 l 10352 6568 l 10388 6565 l 10427 6562 l 10468 6560 l 10512 6559 l 10559 6559 l 10607 6559 l 10658 6560 l 10710 6561 l 10764 6563 l 10819 6565 l 10875 6567 l 10930 6570 l 10985 6573 l 11038 6576 l 11090 6579 l 11138 6582 l 11184 6585 l 11226 6588 l 11263 6590 l 11296 6592 l 11324 6594 l 11347 6596 l 11365 6597 l 11379 6598 l 11389 6599 l 11395 6600 l 11399 6600 l 11400 6600 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 14400 8400 m 14402 8402 l 14407 8407 l 14415 8415 l 14427 8428 l 14444 8446 l 14466 8469 l 14491 8496 l 14519 8526 l 14550 8558 l 14581 8592 l 14613 8627 l 14644 8661 l 14674 8695 l 14703 8728 l 14730 8759 l 14754 8788 l 14777 8816 l 14798 8842 l 14817 8867 l 14834 8891 l 14850 8914 l 14864 8936 l 14877 8958 l 14889 8979 l 14900 9000 l 14909 9020 l 14918 9040 l 14927 9060 l 14934 9080 l 14942 9101 l 14948 9123 l 14955 9146 l 14961 9169 l 14966 9193 l 14971 9219 l 14975 9245 l 14979 9271 l 14983 9299 l 14986 9328 l 14989 9357 l 14991 9387 l 14993 9418 l 14995 9450 l 14996 9482 l 14997 9515 l 14998 9548 l 14999 9582 l 14999 9616 l 15000 9651 l 15000 9687 l 15000 9724 l 15000 9761 l 15000 9800 l 15000 9831 l 15000 9863 l 15000 9896 l 15000 9930 l 15000 9964 l 15000 10000 l 14999 10037 l 14999 10076 l 14998 10115 l 14998 10155 l 14997 10196 l 14996 10237 l 14995 10280 l 14994 10323 l 14992 10367 l 14990 10411 l 14988 10455 l 14986 10500 l 14984 10545 l 14981 10589 l 14978 10633 l 14975 10677 l 14971 10720 l 14968 10763 l 14964 10804 l 14959 10845 l 14955 10885 l 14950 10924 l 14945 10963 l 14939 11000 l 14934 11036 l 14928 11070 l 14921 11104 l 14914 11137 l 14907 11169 l 14900 11200 l 14891 11236 l 14880 11271 l 14869 11305 l 14858 11338 l 14845 11371 l 14831 11403 l 14816 11435 l 14799 11467 l 14781 11499 l 14762 11532 l 14741 11565 l 14719 11599 l 14695 11634 l 14670 11669 l 14644 11704 l 14617 11740 l 14590 11775 l 14562 11809 l 14535 11842 l 14510 11873 l 14486 11902 l 14464 11927 l 14446 11948 l 14430 11966 l 14418 11979 l 14410 11989 l 14404 11995 l 14401 11999 l 14400 12000 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 9600 9600 m 9598 9602 l 9595 9606 l 9588 9613 l 9578 9624 l 9563 9640 l 9545 9660 l 9524 9683 l 9499 9711 l 9472 9742 l 9444 9775 l 9414 9809 l 9385 9844 l 9356 9879 l 9328 9913 l 9301 9947 l 9276 9980 l 9252 10012 l 9231 10043 l 9211 10073 l 9192 10102 l 9175 10130 l 9160 10159 l 9146 10186 l 9133 10214 l 9121 10242 l 9110 10271 l 9100 10300 l 9091 10328 l 9083 10356 l 9075 10386 l 9068 10416 l 9061 10447 l 9055 10479 l 9049 10512 l 9044 10546 l 9040 10580 l 9036 10616 l 9033 10652 l 9031 10688 l 9029 10725 l 9028 10763 l 9028 10800 l 9028 10837 l 9029 10875 l 9031 10912 l 9033 10948 l 9036 10984 l 9040 11020 l 9044 11054 l 9049 11088 l 9055 11121 l 9061 11153 l 9068 11184 l 9075 11214 l 9083 11244 l 9091 11272 l 9100 11300 l 9110 11329 l 9121 11358 l 9133 11386 l 9146 11414 l 9160 11441 l 9175 11470 l 9192 11498 l 9211 11527 l 9231 11557 l 9252 11588 l 9276 11620 l 9301 11653 l 9328 11687 l 9356 11721 l 9385 11756 l 9414 11791 l 9444 11825 l 9472 11858 l 9499 11889 l 9524 11917 l 9545 11940 l 9563 11960 l 9578 11976 l 9588 11987 l 9595 11994 l 9598 11998 l 9600 12000 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 1800 1800 m 1800 1797 l 1800 1791 l 1801 1781 l 1801 1765 l 1802 1743 l 1804 1716 l 1806 1685 l 1808 1650 l 1811 1613 l 1814 1576 l 1817 1539 l 1821 1502 l 1825 1467 l 1830 1434 l 1835 1402 l 1841 1373 l 1847 1345 l 1854 1319 l 1862 1294 l 1870 1270 l 1879 1246 l 1889 1223 l 1900 1200 l 1911 1179 l 1923 1158 l 1936 1136 l 1949 1114 l 1964 1092 l 1980 1070 l 1996 1048 l 2014 1025 l 2032 1003 l 2052 980 l 2072 958 l 2092 936 l 2114 914 l 2136 892 l 2158 872 l 2180 852 l 2203 832 l 2225 814 l 2248 796 l 2270 780 l 2292 764 l 2314 749 l 2336 736 l 2358 723 l 2379 711 l 2400 700 l 2423 689 l 2446 679 l 2470 670 l 2494 662 l 2519 654 l 2545 647 l 2573 641 l 2602 635 l 2634 630 l 2667 625 l 2702 621 l 2739 617 l 2776 614 l 2813 611 l 2850 608 l 2885 606 l 2916 604 l 2943 602 l 2965 601 l 2981 601 l 2991 600 l 2997 600 l 3000 600 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 5400 600 m 5403 600 l 5409 600 l 5419 601 l 5435 601 l 5457 602 l 5484 604 l 5515 606 l 5550 608 l 5587 611 l 5624 614 l 5661 617 l 5698 621 l 5733 625 l 5766 630 l 5798 635 l 5827 641 l 5855 647 l 5881 654 l 5906 662 l 5930 670 l 5954 679 l 5977 689 l 6000 700 l 6021 711 l 6042 723 l 6064 736 l 6086 749 l 6108 764 l 6130 780 l 6152 796 l 6175 814 l 6197 832 l 6220 852 l 6242 872 l 6264 892 l 6286 914 l 6308 936 l 6328 958 l 6348 980 l 6368 1003 l 6386 1025 l 6404 1048 l 6420 1070 l 6436 1092 l 6451 1114 l 6464 1136 l 6477 1158 l 6489 1179 l 6500 1200 l 6511 1223 l 6521 1246 l 6530 1270 l 6538 1294 l 6546 1319 l 6553 1345 l 6559 1373 l 6565 1402 l 6570 1434 l 6575 1467 l 6579 1502 l 6583 1539 l 6586 1576 l 6589 1613 l 6592 1650 l 6594 1685 l 6596 1716 l 6598 1743 l 6599 1765 l 6599 1781 l 6600 1791 l 6600 1797 l 6600 1800 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 1800 4200 m 1800 4203 l 1800 4209 l 1801 4219 l 1801 4235 l 1802 4257 l 1804 4284 l 1806 4315 l 1808 4350 l 1811 4387 l 1814 4424 l 1817 4461 l 1821 4498 l 1825 4533 l 1830 4566 l 1835 4598 l 1841 4627 l 1847 4655 l 1854 4681 l 1862 4706 l 1870 4730 l 1879 4754 l 1889 4777 l 1900 4800 l 1911 4821 l 1923 4842 l 1936 4864 l 1949 4886 l 1964 4908 l 1980 4930 l 1996 4952 l 2014 4975 l 2032 4997 l 2052 5020 l 2072 5042 l 2092 5064 l 2114 5086 l 2136 5108 l 2158 5128 l 2180 5148 l 2203 5168 l 2225 5186 l 2248 5204 l 2270 5220 l 2292 5236 l 2314 5251 l 2336 5264 l 2358 5277 l 2379 5289 l 2400 5300 l 2423 5311 l 2446 5321 l 2470 5330 l 2494 5338 l 2519 5346 l 2545 5353 l 2573 5359 l 2602 5365 l 2634 5370 l 2667 5375 l 2702 5379 l 2739 5383 l 2776 5386 l 2813 5389 l 2850 5392 l 2885 5394 l 2916 5396 l 2943 5398 l 2965 5399 l 2981 5399 l 2991 5400 l 2997 5400 l 3000 5400 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 5400 5400 m 5403 5400 l 5409 5400 l 5419 5399 l 5435 5399 l 5457 5398 l 5484 5396 l 5515 5394 l 5550 5392 l 5587 5389 l 5624 5386 l 5661 5383 l 5698 5379 l 5733 5375 l 5766 5370 l 5798 5365 l 5827 5359 l 5855 5353 l 5881 5346 l 5906 5338 l 5930 5330 l 5954 5321 l 5977 5311 l 6000 5300 l 6021 5289 l 6042 5277 l 6064 5264 l 6086 5251 l 6108 5236 l 6130 5220 l 6152 5204 l 6175 5186 l 6197 5168 l 6220 5148 l 6242 5128 l 6264 5108 l 6286 5086 l 6308 5064 l 6328 5042 l 6348 5020 l 6368 4997 l 6386 4975 l 6404 4952 l 6420 4930 l 6436 4908 l 6451 4886 l 6464 4864 l 6477 4842 l 6489 4821 l 6500 4800 l 6511 4777 l 6521 4754 l 6530 4730 l 6538 4706 l 6546 4681 l 6553 4655 l 6559 4627 l 6565 4598 l 6570 4566 l 6575 4533 l 6579 4498 l 6583 4461 l 6586 4424 l 6589 4387 l 6592 4350 l 6594 4315 l 6596 4284 l 6598 4257 l 6599 4235 l 6599 4219 l 6600 4209 l 6600 4203 l 6600 4200 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 1200 9000 m 1201 8998 l 1203 8995 l 1206 8988 l 1212 8977 l 1220 8962 l 1230 8943 l 1244 8918 l 1260 8888 l 1278 8854 l 1298 8817 l 1321 8775 l 1345 8731 l 1371 8685 l 1397 8638 l 1424 8590 l 1451 8542 l 1479 8494 l 1506 8448 l 1532 8403 l 1558 8360 l 1584 8318 l 1609 8278 l 1633 8240 l 1656 8204 l 1679 8170 l 1702 8137 l 1724 8107 l 1746 8077 l 1768 8049 l 1789 8022 l 1811 7996 l 1833 7971 l 1855 7947 l 1877 7923 l 1900 7900 l 1922 7878 l 1944 7857 l 1967 7836 l 1991 7816 l 2015 7795 l 2040 7775 l 2066 7754 l 2093 7734 l 2121 7714 l 2150 7695 l 2180 7675 l 2211 7656 l 2242 7636 l 2275 7617 l 2309 7599 l 2345 7581 l 2381 7563 l 2418 7545 l 2455 7528 l 2494 7511 l 2534 7495 l 2574 7479 l 2615 7464 l 2657 7449 l 2700 7435 l 2743 7421 l 2786 7408 l 2830 7395 l 2875 7384 l 2920 7372 l 2965 7361 l 3011 7351 l 3058 7341 l 3105 7332 l 3152 7324 l 3201 7315 l 3250 7307 l 3300 7300 l 3340 7294 l 3382 7289 l 3424 7284 l 3467 7279 l 3510 7274 l 3555 7270 l 3601 7265 l 3647 7261 l 3695 7257 l 3743 7254 l 3793 7250 l 3843 7247 l 3894 7244 l 3946 7241 l 3999 7239 l 4053 7236 l 4107 7234 l 4162 7233 l 4218 7231 l 4274 7230 l 4330 7229 l 4386 7228 l 4443 7228 l 4500 7228 l 4557 7228 l 4614 7228 l 4670 7229 l 4726 7230 l 4782 7231 l 4838 7233 l 4893 7234 l 4947 7236 l 5001 7239 l 5054 7241 l 5106 7244 l 5157 7247 l 5207 7250 l 5257 7254 l 5305 7257 l 5353 7261 l 5399 7265 l 5445 7270 l 5490 7274 l 5533 7279 l 5576 7284 l 5618 7289 l 5660 7294 l 5700 7300 l 5750 7307 l 5799 7315 l 5848 7324 l 5895 7332 l 5942 7341 l 5989 7351 l 6035 7361 l 6080 7372 l 6125 7384 l 6170 7395 l 6214 7408 l 6257 7421 l 6300 7435 l 6343 7449 l 6385 7464 l 6426 7479 l 6466 7495 l 6506 7511 l 6545 7528 l 6582 7545 l 6619 7563 l 6655 7581 l 6691 7599 l 6725 7617 l 6758 7636 l 6789 7656 l 6820 7675 l 6850 7695 l 6879 7714 l 6907 7734 l 6934 7754 l 6960 7775 l 6985 7795 l 7009 7816 l 7033 7836 l 7056 7857 l 7078 7878 l 7100 7900 l 7123 7923 l 7145 7947 l 7167 7971 l 7189 7996 l 7211 8022 l 7232 8049 l 7254 8077 l 7276 8107 l 7298 8137 l 7321 8170 l 7344 8204 l 7367 8240 l 7391 8278 l 7416 8318 l 7442 8360 l 7468 8403 l 7494 8448 l 7521 8494 l 7549 8542 l 7576 8590 l 7603 8638 l 7629 8685 l 7655 8731 l 7679 8775 l 7702 8817 l 7722 8854 l 7740 8888 l 7756 8918 l 7770 8943 l 7780 8962 l 7788 8977 l 7794 8988 l 7797 8995 l 7799 8998 l 7800 9000 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 2400 9000 m 2401 9002 l 2403 9005 l 2406 9012 l 2412 9023 l 2420 9038 l 2430 9057 l 2444 9082 l 2460 9112 l 2478 9146 l 2498 9183 l 2521 9225 l 2545 9269 l 2571 9315 l 2597 9362 l 2624 9410 l 2651 9458 l 2679 9506 l 2706 9552 l 2732 9597 l 2758 9640 l 2784 9682 l 2809 9722 l 2833 9760 l 2856 9796 l 2879 9830 l 2902 9863 l 2924 9893 l 2946 9923 l 2968 9951 l 2989 9978 l 3011 10004 l 3033 10029 l 3055 10053 l 3077 10077 l 3100 10100 l 3125 10124 l 3150 10148 l 3175 10171 l 3202 10194 l 3229 10217 l 3256 10240 l 3285 10262 l 3314 10285 l 3344 10307 l 3374 10328 l 3405 10350 l 3437 10371 l 3469 10392 l 3501 10413 l 3534 10433 l 3567 10453 l 3600 10472 l 3633 10491 l 3666 10509 l 3699 10527 l 3731 10543 l 3763 10560 l 3795 10575 l 3826 10590 l 3856 10604 l 3886 10617 l 3915 10630 l 3944 10642 l 3971 10653 l 3998 10663 l 4025 10673 l 4050 10683 l 4075 10692 l 4100 10700 l 4129 10709 l 4158 10718 l 4186 10727 l 4214 10734 l 4243 10741 l 4271 10747 l 4299 10753 l 4327 10758 l 4356 10762 l 4384 10766 l 4413 10769 l 4442 10771 l 4471 10772 l 4500 10772 l 4529 10772 l 4558 10771 l 4587 10769 l 4616 10766 l 4644 10762 l 4673 10758 l 4701 10753 l 4729 10747 l 4757 10741 l 4786 10734 l 4814 10727 l 4842 10718 l 4871 10709 l 4900 10700 l 4925 10692 l 4950 10683 l 4975 10673 l 5002 10663 l 5029 10653 l 5056 10642 l 5085 10630 l 5114 10617 l 5144 10604 l 5174 10590 l 5205 10575 l 5237 10560 l 5269 10543 l 5301 10527 l 5334 10509 l 5367 10491 l 5400 10472 l 5433 10453 l 5466 10433 l 5499 10413 l 5531 10392 l 5563 10371 l 5595 10350 l 5626 10328 l 5656 10307 l 5686 10285 l 5715 10262 l 5744 10240 l 5771 10217 l 5798 10194 l 5825 10171 l 5850 10148 l 5875 10124 l 5900 10100 l 5923 10077 l 5945 10053 l 5967 10029 l 5989 10004 l 6011 9978 l 6032 9951 l 6054 9923 l 6076 9893 l 6098 9863 l 6121 9830 l 6144 9796 l 6167 9760 l 6191 9722 l 6216 9682 l 6242 9640 l 6268 9597 l 6294 9552 l 6321 9506 l 6349 9458 l 6376 9410 l 6403 9362 l 6429 9315 l 6455 9269 l 6479 9225 l 6502 9183 l 6522 9146 l 6540 9112 l 6556 9082 l 6570 9057 l 6580 9038 l 6588 9023 l 6594 9012 l 6597 9005 l 6599 9002 l 6600 9000 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 4800 13200 m 4800 13197 l 4800 13191 l 4801 13181 l 4801 13165 l 4802 13143 l 4804 13116 l 4806 13085 l 4808 13050 l 4811 13013 l 4814 12976 l 4817 12939 l 4821 12902 l 4825 12867 l 4830 12834 l 4835 12802 l 4841 12773 l 4847 12745 l 4854 12719 l 4862 12694 l 4870 12670 l 4879 12646 l 4889 12623 l 4900 12600 l 4911 12579 l 4923 12558 l 4936 12536 l 4950 12514 l 4966 12491 l 4983 12467 l 5002 12442 l 5023 12416 l 5046 12388 l 5070 12359 l 5097 12328 l 5126 12295 l 5156 12261 l 5187 12227 l 5219 12192 l 5250 12158 l 5281 12126 l 5309 12096 l 5334 12069 l 5356 12046 l 5373 12028 l 5385 12015 l 5393 12007 l 5398 12002 l 5400 12000 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 7200 13200 m 7200 13197 l 7200 13191 l 7199 13181 l 7199 13165 l 7198 13143 l 7196 13116 l 7194 13085 l 7192 13050 l 7189 13013 l 7186 12976 l 7183 12939 l 7179 12902 l 7175 12867 l 7170 12834 l 7165 12802 l 7159 12773 l 7153 12745 l 7146 12719 l 7138 12694 l 7130 12670 l 7121 12646 l 7111 12623 l 7100 12600 l 7089 12579 l 7077 12558 l 7064 12536 l 7050 12514 l 7034 12491 l 7017 12467 l 6998 12442 l 6977 12416 l 6954 12388 l 6930 12359 l 6903 12328 l 6874 12295 l 6844 12261 l 6813 12227 l 6781 12192 l 6750 12158 l 6719 12126 l 6691 12096 l 6666 12069 l 6644 12046 l 6627 12028 l 6615 12015 l 6607 12007 l 6602 12002 l 6600 12000 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 3600 13200 m 3600 13203 l 3600 13209 l 3601 13219 l 3601 13235 l 3602 13257 l 3604 13284 l 3606 13315 l 3608 13350 l 3611 13387 l 3614 13424 l 3617 13461 l 3621 13498 l 3625 13533 l 3630 13566 l 3635 13598 l 3641 13627 l 3647 13655 l 3654 13681 l 3662 13706 l 3670 13730 l 3679 13754 l 3689 13777 l 3700 13800 l 3711 13821 l 3723 13842 l 3736 13864 l 3750 13886 l 3766 13909 l 3783 13933 l 3802 13958 l 3823 13984 l 3846 14012 l 3870 14041 l 3897 14072 l 3926 14105 l 3956 14139 l 3987 14173 l 4019 14208 l 4050 14242 l 4081 14274 l 4109 14304 l 4134 14331 l 4156 14354 l 4173 14372 l 4185 14385 l 4193 14393 l 4198 14398 l 4200 14400 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 5400 14400 m 5402 14398 l 5407 14393 l 5415 14385 l 5427 14372 l 5444 14354 l 5466 14331 l 5491 14304 l 5519 14274 l 5550 14242 l 5581 14208 l 5613 14173 l 5644 14139 l 5674 14105 l 5703 14072 l 5730 14041 l 5754 14012 l 5777 13984 l 5798 13958 l 5817 13933 l 5834 13909 l 5850 13886 l 5864 13864 l 5877 13842 l 5889 13821 l 5900 13800 l 5911 13777 l 5921 13754 l 5930 13730 l 5938 13706 l 5946 13681 l 5953 13655 l 5959 13627 l 5965 13598 l 5970 13566 l 5975 13533 l 5979 13498 l 5983 13461 l 5986 13424 l 5989 13387 l 5992 13350 l 5994 13315 l 5996 13284 l 5998 13257 l 5999 13235 l 5999 13219 l 6000 13209 l 6000 13203 l 6000 13200 l gs col0 s gr [] 0 sd $F2psEnd rs %%EndDocument @endspecial 1132 3652 a FL(Figure)31 b(4.2:)43 b(P)m(ossible)33 b(exotic)f(linkings)450 5222 y @beginspecial 0 @llx 0 @lly 489 @urx 235 @ury 3423 @rwi @setspecial %%BeginDocument: noways.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: noways.eps %%Creator: fig2dev Version 3.2 Patchlevel 3c %%CreationDate: Fri Oct 18 17:25:15 2002 %%For: dani@marvin (Daniel Didt) %%BoundingBox: 0 0 489 235 %%Magnification: 0.6000 %%EndComments /$F2psDict 200 dict def $F2psDict begin $F2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save newpath 0 235 moveto 0 0 lineto 489 0 lineto 489 235 lineto closepath clip newpath -15.0 272.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def $F2psBegin %%Page: 1 1 10 setmiterlimit 0.03600 0.03600 sc % % Fig objects follow % 30.000 slw % Ellipse n 1800 1200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 1200 2400 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 600 3600 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 600 3600 m 1800 1200 l gs col0 s gr % Ellipse n 3000 1200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3600 2400 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 4200 3600 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 4200 3600 m 3000 1200 l gs col0 s gr % Ellipse n 1200 4800 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 2400 4800 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3600 4800 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1200 4800 m 3600 4800 l gs col0 s gr % Polyline [15 90] 90 sd n 600 3600 m 1200 4800 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 3600 4800 m 4200 3600 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 1800 1200 m 3000 1200 l gs col0 s gr [] 0 sd % Ellipse n 6000 7200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 7200 7200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 6075 7125 m 7275 7125 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 6075 7275 m 7275 7275 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 6300 6900 m 6750 7200 l 6300 7500 l gs col0 s gr % Ellipse n 3600 6000 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 4800 6000 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 6000 6000 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 7200 6000 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 4800 7200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3600 7200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 3600 6000 m 4800 6000 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 6000 6000 m 7200 6000 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 4800 5925 m 6000 5925 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 4800 6075 m 6000 6075 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 5100 5700 m 5550 6000 l 5100 6300 l gs col0 s gr % Polyline n 3600 7200 m 6000 7200 l gs col0 s gr % Polyline [15 90] 90 sd n 6000 6000 m 7200 7200 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 4800 6000 m 6000 7200 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 3600 6000 m 3600 7200 l gs col0 s gr [] 0 sd % Ellipse n 11400 3000 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 11400 4200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 9000 6600 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 10200 6600 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 11400 6600 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 12600 6600 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 13800 6600 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 11400 5400 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 12000 1800 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 10800 1800 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 11400 4200 m 11400 3000 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 9000 6600 m 13800 6600 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 11400 5400 m 11400 6600 l gs 0.00 setgray ef gr gs col0 s gr % Polyline [15 90] 90 sd n 11400 4200 m 11400 5400 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 10800 1800 m 9000 6600 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 12000 1800 m 13800 6600 l gs col0 s gr [] 0 sd % Polyline n 10800 1800 m 11400 3000 l gs col0 s gr % Polyline n 12000 1800 m 11400 3000 l gs col0 s gr % Polyline 2 slj [15 90] 90 sd n 11400 3000 m 11401 3001 l 11402 3003 l 11404 3006 l 11408 3011 l 11414 3018 l 11421 3028 l 11430 3041 l 11441 3056 l 11453 3074 l 11468 3094 l 11484 3117 l 11502 3143 l 11521 3171 l 11541 3200 l 11562 3232 l 11584 3265 l 11606 3300 l 11629 3336 l 11652 3373 l 11675 3412 l 11698 3452 l 11721 3493 l 11744 3535 l 11767 3579 l 11790 3625 l 11813 3672 l 11835 3722 l 11857 3774 l 11880 3827 l 11901 3884 l 11923 3943 l 11944 4004 l 11964 4068 l 11982 4134 l 12000 4200 l 12017 4270 l 12031 4339 l 12044 4403 l 12055 4463 l 12064 4518 l 12072 4567 l 12078 4610 l 12083 4648 l 12087 4679 l 12091 4706 l 12094 4728 l 12096 4747 l 12097 4761 l 12099 4773 l 12099 4783 l 12100 4792 l 12100 4800 l 12100 4808 l 12099 4817 l 12099 4827 l 12097 4839 l 12096 4853 l 12094 4872 l 12091 4894 l 12087 4921 l 12083 4952 l 12078 4990 l 12072 5033 l 12064 5082 l 12055 5137 l 12044 5197 l 12031 5261 l 12017 5330 l 12000 5400 l 11982 5466 l 11964 5532 l 11944 5596 l 11923 5657 l 11901 5716 l 11880 5773 l 11857 5826 l 11835 5878 l 11813 5928 l 11790 5975 l 11767 6021 l 11744 6065 l 11721 6107 l 11698 6148 l 11675 6188 l 11652 6227 l 11629 6264 l 11606 6300 l 11584 6335 l 11562 6368 l 11541 6400 l 11521 6429 l 11502 6457 l 11484 6483 l 11468 6506 l 11453 6526 l 11441 6544 l 11430 6559 l 11421 6572 l 11414 6582 l 11408 6589 l 11404 6594 l 11402 6597 l 11401 6599 l 11400 6600 l gs col0 s gr [] 0 sd % Ellipse n 6600 3600 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 7800 3600 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline 0 slj n 6675 3525 m 7875 3525 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 6675 3675 m 7875 3675 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 6900 3300 m 7350 3600 l 6900 3900 l gs col0 s gr % Ellipse n 6600 1800 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 7800 1800 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline [15 90] 90 sd n 6600 1800 m 6600 3600 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 7800 1800 m 7800 3600 l gs col0 s gr [] 0 sd % Polyline n 6600 1800 m 7800 1800 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 6675 1875 m 7875 1875 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 6675 1725 m 7875 1725 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 6900 1500 m 7350 1800 l 6900 2100 l gs col0 s gr $F2psEnd rs %%EndDocument @endspecial 1077 5425 a(Figure)f(4.3:)43 b(Imp)s(ossible)32 b(exotic)g(linkings)1828 5637 y(40)p eop %%Page: 41 43 41 42 bop 416 557 a FL(Equation)32 b(Num)m(b)s(er)h(in)f([AS2])p 1606 594 4 121 v 239 w(Dynkin)h(diagram)p 2677 594 V 409 w(Gen)m(us)p 366 597 3021 4 v 887 880 a(\(4.9\))p 1606 1114 4 517 v 1906 1114 a @beginspecial 0 @llx 0 @lly 57 @urx 62 @ury 570 @rwi @setspecial %%BeginDocument: pic49.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: pic49.eps %%Creator: fig2dev Version 3.2 Patchlevel 3c %%CreationDate: Fri Oct 18 12:41:24 2002 %%For: dani@marvin (Daniel Didt) %%BoundingBox: 0 0 57 62 %%Magnification: 0.6000 %%EndComments /$F2psDict 200 dict def $F2psDict begin $F2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save newpath 0 62 moveto 0 0 lineto 57 0 lineto 57 62 lineto closepath clip newpath -58.0 93.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def $F2psBegin %%Page: 1 1 10 setmiterlimit 0.03600 0.03600 sc % % Fig objects follow % 30.000 slw % Ellipse n 2400 2400 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 1800 1200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3000 1200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 3000 1200 m 2400 2400 l gs col0 s gr % Polyline n 2346 2427 m 1746 1227 l gs col0 s gr % Polyline n 2454 2433 m 1854 1233 l gs col0 s gr % Polyline n 1845 1155 m 3045 1155 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1845 1275 m 3045 1275 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 2010 2115 m 2010 1665 l 2460 1815 l gs col0 s gr % Polyline n 2250 915 m 2550 1215 l 2250 1515 l gs col0 s gr $F2psEnd rs %%EndDocument @endspecial 2677 1114 V 2813 880 a(2)2862 844 y FH(2)2924 880 y FC(\000)22 b FL(1)28 b(=)f(3)862 1422 y(\(4.10\))p 1606 1680 4 567 v 1906 1680 a @beginspecial 0 @llx 0 @lly 57 @urx 68 @ury 570 @rwi @setspecial %%BeginDocument: pic410.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: pic410.eps %%Creator: fig2dev Version 3.2 Patchlevel 3c %%CreationDate: Fri Oct 18 13:12:38 2002 %%For: dani@marvin (Daniel Didt) %%BoundingBox: 0 0 57 68 %%Magnification: 0.6000 %%EndComments /$F2psDict 200 dict def $F2psDict begin $F2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save newpath 0 68 moveto 0 0 lineto 57 0 lineto 57 68 lineto closepath clip newpath -58.0 99.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def $F2psBegin %%Page: 1 1 10 setmiterlimit 0.03600 0.03600 sc % % Fig objects follow % 30.000 slw % Ellipse n 1800 1200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3000 1200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1845 1155 m 3045 1155 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1845 1275 m 3045 1275 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 2250 915 m 2550 1215 l 2250 1515 l gs col0 s gr % Ellipse n 3000 2400 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 1800 2400 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 2955 2355 m 1755 2355 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 2955 2475 m 1755 2475 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 2550 2115 m 2250 2415 l 2550 2715 l gs col0 s gr % Polyline n 1800 1200 m 1800 2400 l gs col0 s gr % Polyline n 3000 1200 m 3000 2400 l gs col0 s gr $F2psEnd rs %%EndDocument @endspecial 2677 1680 V 2813 1422 a(2)2862 1386 y FH(2)2924 1422 y FC(\000)22 b FL(1)28 b(=)f(3)862 1964 y(\(4.11\))p 1606 2197 4 517 v 1906 2197 a @beginspecial 0 @llx 0 @lly 57 @urx 62 @ury 570 @rwi @setspecial %%BeginDocument: pic411.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: pic411.eps %%Creator: fig2dev Version 3.2 Patchlevel 3c %%CreationDate: Fri Oct 18 13:14:45 2002 %%For: dani@marvin (Daniel Didt) %%BoundingBox: 0 0 57 62 %%Magnification: 0.6000 %%EndComments /$F2psDict 200 dict def $F2psDict begin $F2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save newpath 0 62 moveto 0 0 lineto 57 0 lineto 57 62 lineto closepath clip newpath -58.0 93.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def $F2psBegin %%Page: 1 1 10 setmiterlimit 0.03600 0.03600 sc % % Fig objects follow % 30.000 slw % Ellipse n 1800 1200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3000 1200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1800 1200 m 3000 1200 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1875 1275 m 3075 1275 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1875 1125 m 3075 1125 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 2100 900 m 2550 1200 l 2100 1500 l gs col0 s gr % Ellipse n 2400 2400 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 3000 1200 m 2400 2400 l gs col0 s gr % Polyline n 2346 2427 m 1746 1227 l gs col0 s gr % Polyline n 2454 2433 m 1854 1233 l gs col0 s gr % Polyline n 2010 2115 m 2010 1665 l 2460 1815 l gs col0 s gr $F2psEnd rs %%EndDocument @endspecial 2677 2197 V 2773 1964 a(3)22 b FC(\001)f FL(2)h FC(\000)h FL(1)k(=)h(5)862 2480 y(\(4.12\))p 1606 2714 V 1906 2714 a @beginspecial 0 @llx 0 @lly 57 @urx 62 @ury 570 @rwi @setspecial %%BeginDocument: pic412.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: pic412.eps %%Creator: fig2dev Version 3.2 Patchlevel 3c %%CreationDate: Fri Oct 18 13:19:17 2002 %%For: dani@marvin (Daniel Didt) %%BoundingBox: 0 0 57 62 %%Magnification: 0.6000 %%EndComments /$F2psDict 200 dict def $F2psDict begin $F2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save newpath 0 62 moveto 0 0 lineto 57 0 lineto 57 62 lineto closepath clip newpath -58.0 93.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def $F2psBegin %%Page: 1 1 10 setmiterlimit 0.03600 0.03600 sc % % Fig objects follow % 30.000 slw % Ellipse n 1800 1200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3000 1200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 2400 2400 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1800 1200 m 3000 1200 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1875 1275 m 3075 1275 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1875 1125 m 3075 1125 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 2100 900 m 2550 1200 l 2100 1500 l gs col0 s gr % Polyline n 1800 1200 m 2400 2400 l gs col0 s gr % Polyline n 2454 2427 m 3054 1227 l gs col0 s gr % Polyline n 2346 2433 m 2946 1233 l gs col0 s gr % Polyline n 2610 1545 m 2610 1995 l 3060 1845 l gs col0 s gr $F2psEnd rs %%EndDocument @endspecial 2677 2714 V 2773 2480 a(3)22 b FC(\001)f FL(2)h FC(\000)h FL(1)k(=)h(5)862 3001 y(\(4.13\))p 1606 3239 4 525 v 1906 3239 a @beginspecial 0 @llx 0 @lly 57 @urx 63 @ury 570 @rwi @setspecial %%BeginDocument: pic413.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: pic413.eps %%Creator: fig2dev Version 3.2 Patchlevel 3c %%CreationDate: Fri Oct 18 13:23:02 2002 %%For: dani@marvin (Daniel Didt) %%BoundingBox: 0 0 57 63 %%Magnification: 0.6000 %%EndComments /$F2psDict 200 dict def $F2psDict begin $F2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save newpath 0 63 moveto 0 0 lineto 57 0 lineto 57 63 lineto closepath clip newpath -58.0 93.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def $F2psBegin %%Page: 1 1 10 setmiterlimit 0.03600 0.03600 sc % % Fig objects follow % 30.000 slw % Ellipse n 2400 2400 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 1800 1200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3000 1200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1800 1200 m 2400 2400 l gs col0 s gr % Polyline n 2454 2427 m 3054 1227 l gs col0 s gr % Polyline n 2346 2433 m 2946 1233 l gs col0 s gr % Polyline n 1800 1200 m 3000 1200 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1875 1275 m 3075 1275 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1875 1125 m 3075 1125 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1722 1209 m 2322 2409 l gs col0 s gr % Polyline n 1860 1155 m 2460 2355 l gs col0 s gr % Polyline n 1890 1965 m 1925 1425 l 2410 1665 l gs col0 s gr % Polyline n 2250 885 m 2700 1185 l 2250 1485 l gs col0 s gr % Polyline n 2760 2175 m 2760 1725 l 2310 1875 l gs col0 s gr $F2psEnd rs %%EndDocument @endspecial 2677 3239 V 2813 3001 a(3)2862 2965 y FH(2)2924 3001 y FC(\000)22 b FL(2)28 b(=)f(7)862 3522 y(\(4.14\))p 1606 3755 4 517 v 1906 3755 a @beginspecial 0 @llx 0 @lly 57 @urx 62 @ury 570 @rwi @setspecial %%BeginDocument: pic414.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: pic414.eps %%Creator: fig2dev Version 3.2 Patchlevel 3c %%CreationDate: Fri Oct 18 13:25:27 2002 %%For: dani@marvin (Daniel Didt) %%BoundingBox: 0 0 57 62 %%Magnification: 0.6000 %%EndComments /$F2psDict 200 dict def $F2psDict begin $F2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save newpath 0 62 moveto 0 0 lineto 57 0 lineto 57 62 lineto closepath clip newpath -58.0 93.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def $F2psBegin %%Page: 1 1 10 setmiterlimit 0.03600 0.03600 sc % % Fig objects follow % 30.000 slw % Ellipse n 2400 2400 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 1800 1200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3000 1200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 2346 2427 m 1746 1227 l gs col0 s gr % Polyline n 2454 2433 m 1854 1233 l gs col0 s gr % Polyline n 1845 1155 m 3045 1155 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1845 1275 m 3045 1275 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 2010 2115 m 2010 1665 l 2460 1815 l gs col0 s gr % Polyline n 2250 915 m 2550 1215 l 2250 1515 l gs col0 s gr % Polyline n 2952 1191 m 2352 2391 l gs col0 s gr % Polyline n 3030 1245 m 2430 2445 l gs col0 s gr % Polyline n 3095 1725 m 2610 1965 l 2575 1425 l gs col0 s gr $F2psEnd rs %%EndDocument @endspecial 2677 3755 V 2813 3522 a(2)2862 3486 y FH(3)2924 3522 y FC(\000)22 b FL(1)28 b(=)f(7)862 4039 y(\(4.15\))p 1606 4272 V 1906 4272 a @beginspecial 0 @llx 0 @lly 57 @urx 62 @ury 570 @rwi @setspecial %%BeginDocument: pic415.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: pic415.eps %%Creator: fig2dev Version 3.2 Patchlevel 3c %%CreationDate: Fri Oct 18 13:29:49 2002 %%For: dani@marvin (Daniel Didt) %%BoundingBox: 0 0 57 62 %%Magnification: 0.6000 %%EndComments /$F2psDict 200 dict def $F2psDict begin $F2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save newpath 0 62 moveto 0 0 lineto 57 0 lineto 57 62 lineto closepath clip newpath -58.0 93.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def $F2psBegin %%Page: 1 1 10 setmiterlimit 0.03600 0.03600 sc % % Fig objects follow % 30.000 slw % Ellipse n 1800 1200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3000 1200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1800 1200 m 3000 1200 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1875 1275 m 3075 1275 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1875 1125 m 3075 1125 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 2100 900 m 2550 1200 l 2100 1500 l gs col0 s gr % Ellipse n 2400 2400 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 2346 2427 m 1746 1227 l gs col0 s gr % Polyline n 2454 2433 m 1854 1233 l gs col0 s gr % Polyline n 2010 2115 m 2010 1665 l 2460 1815 l gs col0 s gr % Polyline n 3060 1215 m 2460 2415 l gs col0 s gr % Polyline n 2970 1155 m 2370 2355 l gs col0 s gr % Polyline n 3065 1665 m 2675 1890 l 2580 1425 l gs col0 s gr $F2psEnd rs %%EndDocument @endspecial 2677 4272 V 2729 4039 a(3)21 b FC(\001)h FL(2)2898 4002 y FH(2)2960 4039 y FC(\000)g FL(1)28 b(=)f(11)862 4559 y(\(4.16\))p 1606 4797 4 525 v 1906 4797 a @beginspecial 0 @llx 0 @lly 57 @urx 63 @ury 570 @rwi @setspecial %%BeginDocument: pic416.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: pic416.eps %%Creator: fig2dev Version 3.2 Patchlevel 3c %%CreationDate: Fri Oct 18 13:34:20 2002 %%For: dani@marvin (Daniel Didt) %%BoundingBox: 0 0 57 63 %%Magnification: 0.6000 %%EndComments /$F2psDict 200 dict def $F2psDict begin $F2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save newpath 0 63 moveto 0 0 lineto 57 0 lineto 57 63 lineto closepath clip newpath -58.0 93.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def $F2psBegin %%Page: 1 1 10 setmiterlimit 0.03600 0.03600 sc % % Fig objects follow % 30.000 slw % Ellipse n 2400 2400 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 1800 1200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3000 1200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1800 1200 m 2400 2400 l gs col0 s gr % Polyline n 1800 1200 m 3000 1200 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1875 1275 m 3075 1275 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1875 1125 m 3075 1125 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1722 1209 m 2322 2409 l gs col0 s gr % Polyline n 1860 1155 m 2460 2355 l gs col0 s gr % Polyline n 1890 1965 m 1925 1425 l 2410 1665 l gs col0 s gr % Polyline n 2250 885 m 2700 1185 l 2250 1485 l gs col0 s gr % Polyline n 2490 2385 m 3090 1185 l gs col0 s gr % Polyline n 2412 2391 m 3012 1191 l gs col0 s gr % Polyline n 2340 2355 m 2940 1155 l gs col0 s gr % Polyline n 2610 1485 m 2610 1935 l 3060 1785 l gs col0 s gr $F2psEnd rs %%EndDocument @endspecial 2677 4797 V 2729 4559 a(3)2778 4523 y FH(3)2839 4559 y FC(\000)22 b FL(1)28 b(=)f(2)22 b FC(\001)g FL(13)862 5084 y(\(4.17\))p 1606 5322 V 1906 5322 a @beginspecial 0 @llx 0 @lly 57 @urx 63 @ury 570 @rwi @setspecial %%BeginDocument: pic417.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: pic417.eps %%Creator: fig2dev Version 3.2 Patchlevel 3c %%CreationDate: Fri Oct 18 13:32:51 2002 %%For: dani@marvin (Daniel Didt) %%BoundingBox: 0 0 57 63 %%Magnification: 0.6000 %%EndComments /$F2psDict 200 dict def $F2psDict begin $F2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save newpath 0 63 moveto 0 0 lineto 57 0 lineto 57 63 lineto closepath clip newpath -58.0 93.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def $F2psBegin %%Page: 1 1 10 setmiterlimit 0.03600 0.03600 sc % % Fig objects follow % 30.000 slw % Ellipse n 2400 2400 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 1800 1200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3000 1200 150 150 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1800 1200 m 2400 2400 l gs col0 s gr % Polyline n 2454 2427 m 3054 1227 l gs col0 s gr % Polyline n 2346 2433 m 2946 1233 l gs col0 s gr % Polyline n 1800 1200 m 3000 1200 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1875 1275 m 3075 1275 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1875 1125 m 3075 1125 l gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1722 1209 m 2322 2409 l gs col0 s gr % Polyline n 1860 1155 m 2460 2355 l gs col0 s gr % Polyline n 1890 1965 m 1925 1425 l 2410 1665 l gs col0 s gr % Polyline n 2250 885 m 2700 1185 l 2250 1485 l gs col0 s gr % Polyline n 2640 1515 m 2640 1965 l 3090 1815 l gs col0 s gr $F2psEnd rs %%EndDocument @endspecial 2677 5322 V 2729 5084 a(3)2778 5048 y FH(2)2839 5084 y FC(\001)g FL(2)g FC(\000)g FL(1)28 b(=)f(17)p 366 5325 3021 4 v 545 5491 a(T)-8 b(able)32 b(4.1:)43 b(Equations)33 b(\(4.9\)-\(4.17\))e(of)h([AS2])h(as)g(Dynkin)f (diagrams)1828 5637 y(41)p eop %%Page: 42 44 42 43 bop 257 573 a FL(a)39 b(great)f(n)m(um)m(b)s(er)h(of)g(diagrams)e (with)h(v)m(ertex)i FI(i)f FL(b)s(eing)f(link)-5 b(able)37 b(to)h(more)g(than)h(one)257 693 y(v)m(ertex,)c(th)m(us)e(making)f(a)g (classi\014cation)f(ev)m(en)j(harder.)404 814 y(The)44 b(in\014nite)f(families)e(of)i(32-dimensional)e(p)s(oin)m(ted)i(Hopf)h (algebras)f(found)h(in)257 934 y([Gr2])32 b(all)f(arise)h(from)f(the)j (link)-5 b(able)30 b(Dynkin)i(diagram)f(where)j(t)m(w)m(o)f(copies)g (of)f FI(A)3293 949 y FH(1)3365 934 y FL(are)257 1054 y(link)m(ed)h(to)f(eac)m(h)h(other,)g(and)g(all)d(the)j(en)m(tries)g (of)g(the)g(braiding)d(matrix)h(are)i FC(\000)p FL(1.)404 1175 y(T)-8 b(o)29 b(simplify)e(the)j(presen)m(tation)f(of)g(the)h (theorems)f(w)m(e)i(excluded)f(orders)g(divisible)257 1295 y(b)m(y)f(3)f(when)h(there)g(are)f(comp)s(onen)m(ts)h(of)e(t)m(yp) s(e)i FI(G)2049 1310 y FH(2)2088 1295 y FI(:)g FL(Without)e(this)h (limitation,)c(a)k(m)m(uc)m(h)257 1416 y(more)41 b(thorough)g (examination)e(of)h(the)i(diagrams)d(\(with)i(hea)m(vy)h(use)g(of)f (the)g(ab)s(o)m(v)m(e)257 1536 y(de\014ned)29 b(heigh)m(ts\))f(is)f (needed)i(to)e(establish)g(a)h(necessary)i(condition)c(for)h(the)h (existence)257 1656 y(of)47 b(a)f(braiding)f(matrix.)84 b(The)48 b(problems)e(come)g(from)g(trying)g(to)g(a)m(v)m(oid)h (diagonal)257 1777 y(elemen)m(ts)33 b(of)f(order)h(1)f(and)h(2.)404 1897 y(F)-8 b(or)30 b(the)i(a\016ne)g(diagrams)e(this)h(problem)f(is)h (ev)m(en)j(more)c(sev)m(ere,)k(and)e(the)g(easiest)257 2017 y(w)m(a)m(y)27 b(to)e(a)m(v)m(oid)h(it)e(is)i(to)f(consider)h (only)f(homogeneous)h(braiding)d(matrices)i(with)g(prime)257 2138 y(order)47 b(of)f(diagonal)e(elemen)m(ts)j(greater)g(than)f(3.)85 b(This)47 b(w)m(a)m(y)-8 b(,)51 b(there)d(are)e(no)h(extra)257 2258 y(di\016culties)32 b(stemming)f(from)g(triple)g(arro)m(ws)j (either.)404 2379 y(If)45 b(w)m(e)i(are)e(dealing)f(with)i(a)f (situation)f(where)j(the)f(diagonal)d(elemen)m(ts)j(of)f(the)257 2499 y(braiding)c(matrix)f(are)i(required)g FE(not)52 b FL(to)41 b(b)s(e)h(ro)s(ots)g(of)f(unit)m(y)-8 b(,)45 b(e.g.)72 b(in)41 b([AS6],)k(then)257 2619 y(Lemma)40 b(4.3)h(forces)h(us)g(to)f(consider)h(only)e(diagrams)g(where)i(all)e (cycle)i(genera)f(are)257 2740 y(zero.)75 b(Hence,)46 b(in)c(this)h(case)g(Theorem)g(4.2)g(simpli\014es)e(in)h(the)h(follo)m (wing)d(w)m(a)m(y:)65 b(In)257 2860 y(condition)33 b(2)g(w)m(e)i(do)f (not)f(need)i(the)f(last)f(diagram)f(as)i(it)e(has)j(gen)m(us)g(3,)e (and)h(w)m(e)h(need)257 2980 y(only)23 b(the)h(\014rst)g(part)f(of)f (condition)g(3.)40 b(Actually)-8 b(,)24 b(this)f(\014rst)h(part)f(can)h (b)s(e)f(reform)m(ulated,)257 3101 y(th)m(us)42 b(a)m(v)m(oiding)d(the) i(use)g(of)f(cycle)h(genera,)i(lengths)d(and)h(w)m(eigh)m(ts)g (altogether.)66 b(W)-8 b(e)257 3221 y(get)33 b(the)g(follo)m(wing)d (description.)257 3425 y FJ(Theorem)37 b(4.6)98 b FE(We)42 b(ar)-5 b(e)42 b(given)g(a)g(link-c)-5 b(onne)g(cte)g(d)40 b(linkable)h(Dynkin)g(diagr)-5 b(am)42 b FI(D)501 3545 y FE(of)34 b(\014nite)g(Cartan)g(typ)-5 b(e,)35 b(which)e(is)h(not)h FI(G)2058 3560 y FH(2)2118 3545 y FC([)21 b FI(G)2282 3560 y FH(2)2322 3545 y FI(:)34 b FE(A)h(linkable)e(br)-5 b(aiding)34 b(matrix)501 3665 y(of)39 b FI(D)s FE(-Cartan)f(typ)-5 b(e)40 b(in)f(which)f(the)h(diagonal)f(entries)h(ar)-5 b(e)39 b(not)g(r)-5 b(o)g(ots)39 b(of)g(unity)501 3786 y(exists,)c(i\013)587 3989 y(1.)49 b(In)41 b(c)-5 b(omp)g(onents)40 b(of)h(typ)-5 b(e)41 b FI(G)1790 4004 y FH(2)1871 3989 y FE(not)g(b)-5 b(oth)42 b(vertic)-5 b(es)40 b(ar)-5 b(e)42 b(linkable)e(to)h(other)716 4110 y(vertic)-5 b(es.)587 4271 y(2.)49 b FI(D)37 b FE(do)-5 b(es)35 b(not)f(c)-5 b(ontain)35 b(any)f(induc)-5 b(e)g(d)35 b(sub)-5 b(gr)g(aphs)34 b(of)g(the)h(form:)1422 4928 y @beginspecial 0 @llx 0 @lly 164 @urx 68 @ury 1640 @rwi @setspecial %%BeginDocument: fig7.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: fig7.eps %%Creator: fig2dev Version 3.2 Patchlevel 0-beta3 %%CreationDate: Wed Apr 24 16:24:51 2002 %%For: didt@math12 (D. Didt) %%Orientation: Portrait %%BoundingBox: 0 0 164 68 %%Pages: 0 %%BeginSetup %%EndSetup %%Magnification: 0.6000 %%EndComments /$F2psDict 200 dict def $F2psDict begin $F2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save -45.0 104.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def %%EndProlog $F2psBegin 10 setmiterlimit n -1000 3867 m -1000 -1000 l 6793 -1000 l 6793 3867 l cp clip 0.03600 0.03600 sc 30.000 slw % Ellipse n 4200 2775 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 5700 2775 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 5700 1275 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 4200 1275 70 70 0 360 DrawEllipse gs col0 s gr % Ellipse n 4200 1270 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline [15 90] 90 sd n 5700 1275 m 5700 2775 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 4200 1275 m 4200 2775 l gs col0 s gr [] 0 sd % Polyline n 4200 1200 m 5700 1200 l gs col0 s gr % Polyline n 4200 1350 m 5700 1350 l gs col0 s gr % Polyline n 4800 1050 m 5175 1275 l 4800 1500 l gs col0 s gr % Ellipse n 1350 1275 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 2850 1275 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 2850 2775 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 1350 2775 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1350 1275 m 2850 1275 l gs col0 s gr % Polyline [15 90] 90 sd n 1350 1275 m 1350 2775 l gs col0 s gr [] 0 sd % Polyline [15 90] 90 sd n 2850 1275 m 2850 2775 l gs col0 s gr [] 0 sd $F2psEnd rs %%EndDocument @endspecial 587 5111 a(3.)49 b(F)-7 b(or)34 b(every)h(cycle)f(in)h FI(D)i FE(we)e(have:)800 5273 y FC(\017)48 b FE(The)35 b(numb)-5 b(er)34 b(of)h(dotte)-5 b(d)34 b(e)-5 b(dges)35 b(is)f(even.)1828 5637 y FL(42)p eop %%Page: 43 45 43 44 bop 800 573 a FC(\017)48 b FE(The)h(numb)-5 b(er)49 b(of)f(clo)-5 b(ckwise)48 b(and)h(anticlo)-5 b(ckwise)47 b(p)-5 b(ointing)49 b(double)898 693 y(e)-5 b(dges)34 b(is)h(the)g(same.)257 982 y Fn(4.5.2)136 b(Self-linkings)257 1167 y FL(So)23 b(far)f(w)m(e)i(ha)m(v)m(e)g(alw)m(a)m(ys)f(required)h (that)e(link)-5 b(able)21 b(v)m(ertices)j(are)f(in)f(di\013eren)m(t)h (connected)257 1287 y(comp)s(onen)m(ts.)60 b(This)38 b(is)f(part)h(of)f(the)h(original)d(de\014nition)h(of)i(Andruskiewitsc) m(h)h(and)257 1408 y(Sc)m(hneider.)69 b(But)41 b(the)g(generalization)d (is)i(straigh)m(tforw)m(ard)g(and)h(giv)m(es)g(us)g(a)g(b)s(etter)257 1528 y(understanding)31 b(of)e(the)h(nature)g(of)f(some)h(limitations) 25 b(required)30 b(for)g(the)g(order)g(of)f(the)257 1648 y(diagonal)i(elemen)m(ts.)404 1769 y(W)-8 b(e)43 b(\014rst)g(consider)g (the)g(case)h(where)g(t)m(w)m(o)f(v)m(ertices)h FI(i)f FL(and)g FI(j)49 b FL(within)41 b(the)i(same)257 1889 y(connected)i(comp)s(onen)m(t)f(are)f(link)-5 b(able,)44 b(but)g(not)f(neigh)m(b)s(ouring,)i(i.e.)75 b FI(a)3058 1904 y FG(ij)3165 1889 y FL(=)46 b(0)p FI(:)d FL(In)257 2009 y(this)35 b(case)g(w)m(e)h(can)f(actually)e(still)g(apply)h(all)f (considerations.)49 b(In)35 b(Dynkin)g(diagrams)257 2130 y(of)41 b(a\016ne)g(and)g(\014nite)g(t)m(yp)s(e)h(the)f(p)s(ossible)f (v)-5 b(alues)41 b(of)g(the)g(genera)g(of)g(cycles)h(formed)257 2250 y(b)m(y)34 b(this)f(sp)s(ecial)f(linking)g(can)h(b)s(e)g(easily)g (calculated.)44 b(The)34 b(cycle)g(con)m(tains)f(only)g(one)257 2371 y(dotted)g(edge)g(and)g(w)m(e)h(\014nd)f(as)g(p)s(ossible)f(v)-5 b(alues)32 b(for)g(the)h(genera)400 2773 y FI(g)447 2788 y FG(c)509 2773 y FL(=)613 2509 y Fw(8)613 2598 y(>)613 2628 y(>)613 2658 y(<)613 2837 y(>)613 2867 y(>)613 2897 y(:)743 2591 y FL(2)743 2712 y(3)743 2832 y(4)743 2952 y(5)860 2773 y(if)e(the)i(diagram)d(b)s(et)m(w)m(een)35 b FI(i)e FL(and)g FI(j)2249 2584 y FL(is)f(of)g(t)m(yp)s(e)h FI(A;)g(C)2887 2548 y FH(\(1\))3014 2584 y FL(or)f FI(D)3217 2548 y FH(\(2\))2249 2704 y FL(has)h(one)f(double)h(edge)2249 2825 y(has)g(one)f(triple)f(edge)2249 2962 y(is)h(of)g(t)m(yp)s(e)h FI(A)2750 2911 y FH(\(2\))2750 2989 y(2)p FG(k)2845 2962 y FI(;)44 b(k)31 b FC(\025)d FL(2)p FI(:)3295 3081 y FL(\(4.9\))404 3201 y(If)37 b FI(a)557 3216 y FG(ij)653 3201 y FC(6)p FL(=)f(0)h(and)g(w)m(e)i(link)d FI(i)h FL(and)h FI(j)43 b FL(w)m(e)38 b(get)f(from)f(\(3.20\))h(b)m(y)h (setting)f FI(k)j FL(\014rst)e(to)f FI(i)257 3321 y FL(then)d FI(j)k FL(and)33 b(exc)m(hanging)g FI(i)g FL(and)f FI(j)39 b FL(the)33 b(follo)m(wing)d(iden)m(tit)m(y)1511 3541 y FI(b)1552 3487 y FG(a)1589 3497 y Fo(ij)1644 3487 y FG(a)1681 3497 y Fo(j)s(i)1737 3487 y Fx(\000)p FG(a)1829 3497 y Fo(ij)1884 3487 y Fx(\000)p FG(a)1976 3497 y Fo(j)s(i)1552 3567 y FG(ii)2063 3541 y FL(=)d(1)p FI(:)1004 b FL(\(4.10\))257 3761 y(F)-8 b(or)32 b(the)h(p)s(ossible)f(sub-diagrams)500 4210 y @beginspecial 0 @llx 0 @lly 367 @urx 45 @ury 3303 @rwi @setspecial %%BeginDocument: fig8.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: selflink.eps %%Creator: fig2dev Version 3.2 Patchlevel 0-beta3 %%CreationDate: Fri Mar 23 11:05:36 2001 %%For: didt@math12 (D. Didt) %%Orientation: Portrait %%BoundingBox: 0 0 367 45 %%Pages: 0 %%BeginSetup %%EndSetup %%Magnification: 0.6000 %%EndComments /$F2psDict 200 dict def $F2psDict begin $F2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save -42.0 57.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def %%EndProlog $F2psBegin 10 setmiterlimit n -1000 2581 m -1000 -1000 l 12353 -1000 l 12353 2581 l cp clip 0.03600 0.03600 sc 30.000 slw % Ellipse n 1270 595 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 2770 595 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 1270 595 m 2770 595 l gs col0 s gr % Arc gs [15 90] 90 sd n 2018.4 700.1 778.1 -173.7 -7.4 arcn gs col0 s gr gr [] 0 sd % Ellipse n 4945 600 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3445 600 70 70 0 360 DrawEllipse gs col0 s gr % Ellipse n 3445 595 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 3445 525 m 4945 525 l gs col0 s gr % Polyline n 3445 675 m 4945 675 l gs col0 s gr % Polyline n 4045 375 m 4420 600 l 4045 825 l gs col0 s gr % Arc gs [15 90] 90 sd n 4209.4 792.5 765.2 -166.6 -14.6 arcn gs col0 s gr gr [] 0 sd % Polyline n 6295 375 m 6745 600 l 6295 825 l gs col0 s gr % Polyline n 5545 525 m 7045 525 l gs col0 s gr % Polyline n 5545 600 m 7045 600 l gs col0 s gr % Polyline n 5545 675 m 7045 675 l gs col0 s gr % Ellipse n 5545 600 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 7045 600 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Arc gs [15 90] 90 sd n 6285.0 762.0 767.3 -167.8 -12.2 arcn gs col0 s gr gr [] 0 sd % Polyline n 8595 375 m 8970 600 l 8595 825 l gs col0 s gr % Polyline n 8130 390 m 7755 615 l 8130 840 l gs col0 s gr % Ellipse n 9115 600 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 7615 600 70 70 0 360 DrawEllipse gs col0 s gr % Ellipse n 7615 595 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 7615 525 m 9115 525 l gs col0 s gr % Polyline n 7615 675 m 9115 675 l gs col0 s gr % Arc gs [15 90] 90 sd n 8371.6 767.7 752.3 -168.3 -12.9 arcn gs col0 s gr gr [] 0 sd % Ellipse n 11260 615 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 9760 615 70 70 0 360 DrawEllipse gs col0 s gr % Ellipse n 9760 610 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 10360 390 m 10735 615 l 10360 840 l gs col0 s gr % Polyline n 9745 525 m 11245 525 l gs col0 s gr % Polyline n 9760 645 m 11260 645 l gs col0 s gr % Polyline n 9700 585 m 11200 585 l gs col0 s gr % Polyline n 9750 705 m 11240 705 l gs col0 s gr % Arc gs [15 90] 90 sd n 10525.7 784.6 743.9 -169.2 -13.2 arcn gs col0 s gr gr [] 0 sd $F2psEnd rs %%EndDocument @endspecial 257 4413 a(the)h(condition)d(\(4.10\))i(giv)m(es)g(us)h (that)f(the)g(order)g(of)g FI(b)2281 4428 y FG(ii)2365 4413 y FL(m)m(ust)h(divide)e(3,)h(5,)g(7,)g(8)g(or)f(9,)257 4533 y(resp)s(ectiv)m(ely)-8 b(.)404 4654 y(So)33 b(w)m(e)h(see)g(that) e(admitting)f(self-linkings)f(restricts)k(the)f(p)s(ossible)f(braiding) g(ma-)257 4774 y(trices)h(drastically)-8 b(,)31 b(esp)s(ecially)g(if)h (w)m(e)h(are)g(in)m(terested)h(in)d(homogeneous)i(ones.)404 4895 y(The)49 b(v)-5 b(alues)49 b(of)f(3)h(and)g(5)f(that)h(w)m(e)g (get)g(when)h(w)m(e)g(link)d(the)j(t)m(w)m(o)f(v)m(ertices)h(in)257 5015 y(diagrams)41 b FI(A)758 5030 y FH(2)839 5015 y FL(and)i FI(B)1113 5030 y FH(2)1194 5015 y FL(resp)s(ectiv)m(ely)-8 b(,)46 b(are)c(also)f(the)i(problematic)d(ones)j(when)g(one)257 5135 y(tries)33 b(to)f(\014nd)h(all)e(liftings)e(of)k(the)g(Nic)m(hols) f(algebras)f(of)i(this)f(t)m(yp)s(e,)h(cf.)44 b([AS4,)33 b(BDR)o(].)1828 5637 y(43)p eop %%Page: 44 46 44 45 bop 257 573 a Fn(4.5.3)136 b(Link-disconnected)45 b(diagrams)257 758 y FL(The)37 b(results)f(on)f(link-connected)h (diagrams)e(can)i(easily)f(b)s(e)g(extended)j(to)d(arbitrary)257 878 y(diagrams.)90 b(F)-8 b(or)48 b(eac)m(h)h(link-connected)g(comp)s (onen)m(t)f(the)h(considerations)f(can)h(b)s(e)257 998 y(carried)38 b(out)g(and)h(a)f(p)s(ossible)f(braiding)g(matrix)f (constructed.)62 b(The)39 b(direct)g(sum)f(of)257 1119 y(these)43 b(matrices,)g(with)d(the)i(zeros)g(in)f(the)g (o\013-diagonal)d(blo)s(c)m(ks)k(replaced)f(b)m(y)h(ones,)257 1239 y(is)d(then)g(a)f(braiding)f(matrix)g(for)h(the)h(whole)g (diagram.)59 b(If)39 b(w)m(e)g(are)g(in)m(terested)h(only)257 1359 y(in)32 b(homogeneous)g(braiding)e(matrices,)i(w)m(e)h(ha)m(v)m(e) h(to)e(c)m(hec)m(k)i(that)e(w)m(e)h(can)g(c)m(ho)s(ose)g(the)257 1480 y(orders)f(of)f(the)g(diagonal)e(elemen)m(ts)i(in)g(all)e (matrices)h(\(corresp)s(onding)h(to)f(the)i(v)-5 b(arious)257 1600 y(link-connected)33 b(comp)s(onen)m(ts\))g(to)f(b)s(e)h(the)g (same.)257 1933 y FD(4.6)161 b(Self-linkings)55 b(in)g(the)e(rank)h(2)f (diagrams)257 2152 y FL(W)-8 b(e)32 b(w)m(ould)e(lik)m(e)h(to)f(presen) m(t)j(some)d(results)i(ab)s(out)e(Hopf)h(algebras)f(arising)f(from)h (self-)257 2272 y(linking)h(the)i(t)m(w)m(o)h(v)m(ertices)g(in)e(the)i (diagrams)d FI(A)2060 2287 y FH(2)2099 2272 y FI(;)i(B)2233 2287 y FH(2)2306 2272 y FL(and)g FI(G)2573 2287 y FH(2)2612 2272 y FL(.)44 b(As)34 b(the)f(calculations)257 2393 y(are)g(v)m(ery)h(in)m(v)m(olv)m(ed)f(and)g(w)m(e)h(ha)m(v)m(e)g(no)e (insigh)m(t)g(in)m(to)g(an)m(y)h(simplifying)c(structure)34 b(the-)257 2513 y(ory)-8 b(,)46 b(most)c(of)g(the)h(assertions)g(rely)f (on)h(results)g(deriv)m(ed)g(with)g(Computer)f(algebra)257 2634 y(programs.)61 b(The)39 b(explicit)e(examples)h(w)m(e)i(construct) f(can)g(b)s(e)g(used)g(to)f(generate)h(in-)257 2754 y(\014nitely)f(man) m(y)g(Hopf)g(algebras)f(of)g(the)i(same)f(dimension)e(with)i(man)m(y)g (parameters.)257 2874 y(As)43 b(w)m(e)g(ha)m(v)m(e)g(seen)g(in)f(the)g (subsection)h(discussing)f(self-linkings)e(in)h(general,)j(suc)m(h)257 2995 y(linkings)35 b(are)h(only)g(p)s(ossible)f(for)h(v)m(ery)h(sp)s (ecial)e(orders)i FI(p)f FL(of)g(the)g(diagonal)e(elemen)m(ts)257 3115 y(of)e(the)h(braiding)e(matrix.)257 3404 y Fn(4.6.1)136 b Fm(A)772 3422 y Fl(2)869 3404 y Fn(for)45 b Fm(p)33 b Fn(=)g(3)257 3589 y FL(This)h(is)g(the)g(case)h(that)f(w)m(as)h(left) e(op)s(en)h(in)f([AS4])h(and)g(fully)f(treated)h(in)g([BDR)o(].)48 b(W)-8 b(e)257 3709 y(will)29 b(deriv)m(e)j(the)f(results)h(from)d (this)i(pap)s(er)g(in)f(this)h(relativ)m(ely)f(simple)f(case)j(again,)e (so)257 3829 y(w)m(e)k(can)f(sho)m(w)h(ho)m(w)f(our)f(metho)s(d)g(w)m (orks.)45 b(The)34 b(notations)d(are)i(lik)m(e)f(in)f([BDR].)404 3950 y(So)23 b(w)m(e)i(are)f(giv)m(en)g(the)g(Cartan)g(matrix)e(\()p FI(a)1943 3965 y FG(ij)2004 3950 y FL(\))28 b(=)f(\()2255 3911 y FH(2)55 b Fx(\000)p FH(1)2228 3975 y Fx(\000)p FH(1)g(2)2452 3950 y FL(\))24 b(and)f(tak)m(e)i(as)f(the)g(link)-5 b(able)257 4070 y(Dynkin)43 b(diagram)d FI(A)1075 4085 y FH(2)1157 4070 y FL(with)i(the)h(t)m(w)m(o)g(v)m(ertices)h(link)-5 b(able)40 b(to)i(eac)m(h)i(other.)73 b(F)-8 b(or)42 b(the)257 4191 y(corresp)s(onding)37 b(braiding)e(matrix)h(w)m(e)i(set)g FI(b)1945 4206 y FH(11)2055 4191 y FL(:=)d FI(q)41 b FL(and)c(get)g FI(b)2679 4206 y FH(22)2789 4191 y FL(=)e FI(q)41 b FL(from)36 b(\(3.19\).)257 4311 y(Using)d(\(3.20\))e(w)m(e)j (\014nd)1111 4531 y FI(b)1152 4490 y FH(2)1152 4556 y(11)1227 4531 y FI(b)1268 4546 y FH(12)1371 4531 y FL(=)28 b FI(b)1516 4490 y FH(2)1516 4556 y(21)1591 4531 y FI(b)1632 4546 y FH(22)1735 4531 y FL(=)f FI(b)1879 4490 y FH(2)1879 4556 y(12)1955 4531 y FI(b)1996 4546 y FH(11)2098 4531 y FL(=)h FI(b)2243 4490 y FH(2)2243 4556 y(22)2318 4531 y FI(b)2359 4546 y FH(21)2462 4531 y FL(=)g(1)p FI(:)257 4751 y FL(Th)m(us)45 b FI(b)556 4766 y FH(12)677 4751 y FL(=)h FI(b)840 4766 y FH(21)961 4751 y FL(=)f FI(q)1129 4715 y Fx(\000)p FH(2)1266 4751 y FL(and)f FI(q)1514 4715 y FH(3)1599 4751 y FL(=)h(1)p FI(:)e FL(Therefore,)k(the)d(only)f (p)s(ossible)f(matrix)g(is)257 4871 y(\()p FI(b)336 4886 y FG(ij)397 4871 y FL(\))37 b(=)g(\()640 4827 y FG(q)28 b(q)640 4882 y(q)g(q)751 4871 y FL(\))p FI(;)38 b FL(where)h FI(q)j FL(is)c(a)f(primitiv)m(e)f(ro)s(ot)h(of)h(unit)m(y)g(of)f(order) h(3.)60 b(In)38 b([AS4])h(this)257 4992 y(order)e(w)m(as)h(denoted)f(b) m(y)h FI(p)f FL(and)f(that)h(is)f(the)h(reason)g(for)f(us)i(to)e(call)f (this)h(the)h FI(p)e FL(=)f(3)257 5112 y(case.)404 5233 y(Assume)i(no)m(w,)h(that)f(there)g(is)g(an)f(ab)s(elian)f(group)h FI(\000)50 b FL(with)35 b(elemen)m(ts)h FI(g)3114 5248 y FH(1)3154 5233 y FI(;)f(g)3263 5248 y FH(2)3338 5233 y FL(and)257 5353 y(c)m(haracters)f FI(\037)782 5368 y FH(1)822 5353 y FI(;)f(\037)943 5368 y FH(2)1015 5353 y FL(suc)m(h)h(that)f FI(b)1488 5368 y FG(ij)1577 5353 y FL(=)28 b FI(\037)1742 5368 y FG(j)1778 5353 y FL(\()p FI(g)1863 5368 y FG(i)1891 5353 y FL(\))33 b(and)g FI(\037)2213 5317 y FH(2)2213 5378 y(1)2252 5353 y FI(\037)2313 5368 y FH(2)2381 5353 y FL(=)28 b FI(\037)2546 5317 y FH(2)2546 5378 y(2)2585 5353 y FI(\037)2646 5368 y FH(1)2714 5353 y FL(=)g(1.)44 b(T)-8 b(ak)m(e)34 b FI(\025)3231 5368 y FH(12)3338 5353 y FL(and)1828 5637 y(44)p eop %%Page: 45 47 45 46 bop 257 573 a FI(\025)314 588 y FH(21)425 573 y FL(arbitrary)35 b(and)i(consider)f(the)h(Hopf)f(algebra)f Fs(U)p FL(\()p FI(A)2354 588 y FH(2)2394 573 y FL(\))f(:=)g Fs(U)p FL(\()p FC(D)s FL(\))i(for)f(this)h(linking)257 693 y(datum)30 b FC(D)k FL(as)d(in)f(De\014nition)f(3.7.)42 b(As)31 b(in)f([BDR,)h(Section)f(3],)h(w)m(e)h(in)m(tro)s(duce)f(the)g (ro)s(ot)257 814 y(v)m(ector)36 b FI(z)f FL(:=)30 b FI(x)820 829 y FH(1)860 814 y FI(x)915 829 y FH(2)978 814 y FC(\000)24 b FI(b)1120 829 y FH(12)1195 814 y FI(x)1250 829 y FH(2)1290 814 y FI(x)1345 829 y FH(1)1419 814 y FL(and)34 b(see)i(that)d(the)i FI(\015)2203 829 y FG(i)2265 814 y FL(used)g(there)g(are)f(related)g (to)g FE(our)257 934 y FI(\025)314 949 y FG(ij)403 934 y FL(b)m(y)29 b FI(\015)585 949 y FH(1)652 934 y FL(=)f FI(q)t(\025)860 949 y FH(12)962 934 y FL(and)h FI(\015)1199 949 y FH(2)1266 934 y FL(=)e FC(\000)p FI(\025)1503 949 y FH(21)1578 934 y FI(:)i FL(Plugging)d(the)j(quan)m(tum)g(Serre)g (relations)e(\(3.25\))1846 1274 y FI(x)1901 1289 y FH(1)1941 1274 y FI(z)f FC(\000)d FI(q)2159 1233 y FH(2)2198 1274 y FI(z)t(x)2302 1289 y FH(1)2371 1274 y FL(=)k FI(\025)2531 1289 y FH(12)2606 1274 y FL(\(1)22 b FC(\000)g FI(g)2865 1233 y FH(2)2861 1299 y(1)2904 1274 y FI(g)2951 1289 y FH(2)2990 1274 y FL(\))p FI(;)697 1420 y(x)752 1435 y FH(2)792 1420 y FL(\()p FI(x)885 1435 y FH(2)925 1420 y FI(x)980 1435 y FH(1)1042 1420 y FC(\000)h FI(q)t(x)1244 1435 y FH(1)1283 1420 y FI(x)1338 1435 y FH(2)1378 1420 y FL(\))f FC(\000)h FI(q)1585 1379 y FH(2)1624 1420 y FL(\()p FI(x)1717 1435 y FH(2)1757 1420 y FI(x)1812 1435 y FH(1)1874 1420 y FC(\000)g FI(q)t(x)2076 1435 y FH(1)2115 1420 y FI(x)2170 1435 y FH(2)2210 1420 y FL(\))p FI(x)2303 1435 y FH(2)2371 1420 y FL(=)k FI(\025)2531 1435 y FH(21)2606 1420 y FL(\(1)22 b FC(\000)g FI(g)2865 1379 y FH(2)2861 1444 y(2)2904 1420 y FI(g)2951 1435 y FH(1)2990 1420 y FL(\))p FI(;)257 1640 y FL(in)m(to)34 b(a)h(computer)f(algebra)g (program)f(w)m(e)j(get)f(bac)m(k)h(a)e(PBW-basis)h(of)f Fs(U)p FL(\()p FI(A)3134 1655 y FH(2)3174 1640 y FL(\))h(of)f(the)257 1760 y(form)e FI(z)537 1724 y FG(i)566 1760 y FI(x)621 1713 y FG(j)621 1784 y FH(1)660 1760 y FI(x)715 1724 y FG(k)715 1785 y FH(2)759 1760 y FI(g)j FL(with)e FI(i;)17 b(j;)g(k)31 b FC(\025)d FL(0)k(and)h FI(g)e FC(2)d FI(\000)s(:)404 1880 y FL(F)-8 b(or)39 b(this)g(calculation)f(w)m(e)j(use)g FJ(felix)e FL([AK],)j(a)d(program)g(capable)h(of)f(computa-)257 2001 y(tions)g(with)f(non-comm)m(utativ)m(e)f(structures.)64 b(The)40 b(program)d(is)i(freely)f(a)m(v)-5 b(ailable)37 b(at)257 2121 y Fe(http://felix.hgb-leipzig)q(.de)q(/)h FL(for)32 b(v)-5 b(arious)32 b(platforms.)41 b(Unfortunately)-8 b(,)32 b(it)g(is)257 2242 y(not)h(b)s(eing)f(dev)m(elop)s(ed)h(an)m(y)h (further)f(and)f(the)h(do)s(cumen)m(tation)f(is)g(rather)h(sparse.)45 b(In)257 2362 y(App)s(endix)33 b(A.1)g(w)m(e)h(giv)m(e)e(a)g(listing)f (of)h(the)h(co)s(de)g(w)m(e)g(used.)404 2482 y(Using)45 b(the)h(quan)m(tum)h(binomial)42 b(form)m(ula)i(\(2.6\))h(with)h FI(x)51 b FL(=)f FI(x)2852 2497 y FG(i)2912 2482 y FC(\012)31 b FL(1)46 b(and)g FI(y)53 b FL(=)257 2603 y FI(g)304 2618 y FG(i)355 2603 y FC(\012)23 b FI(x)510 2618 y FG(i)539 2603 y FI(;)33 b FL(w)m(e)h(see)h(immediately)30 b(that)j FI(x)1725 2567 y FH(3)1725 2627 y FG(i)1798 2603 y FL(is)g(\()p FI(g)1986 2567 y FH(3)1982 2627 y FG(i)2025 2603 y FI(;)17 b FL(1\)-primitiv)m(e.)42 b(Hence,)35 b(the)f(relations)257 2723 y FI(x)312 2687 y FH(3)312 2748 y FG(i)402 2723 y FL(=)49 b FI(\026)586 2738 y FG(i)614 2723 y FL(\(1)31 b FC(\000)g FI(g)891 2687 y FH(3)887 2748 y FG(i)930 2723 y FL(\))45 b(form)f(a)i(Hopf)f(ideal.)80 b(In)46 b(order)g(to)f(turn)g Fs(U)p FL(\()p FI(A)2850 2738 y FH(2)2890 2723 y FL(\))h(in)m(to)e(a)h(\014nite)257 2844 y(dimensional)34 b(Hopf)i(algebra,)g(w)m(e)h(w)m(ould)f(lik)m(e)g(to)f (divide)h(out)g(the)g(third)g(p)s(o)m(w)m(er)h(of)e FI(z)257 2964 y FL(as)i(w)m(ell.)56 b(W)-8 b(e)37 b(ha)m(v)m(e)h(to)f(ensure)h (that)e(the)i(new)f(relation)e(will)g(lead)h(to)g(a)h(Hopf)g(ideal.)257 3084 y(By)c(adding)f(appropriate)g(elemen)m(ts)h(to)f FI(z)1823 3048 y FH(3)1896 3084 y FL(w)m(e)h(\014nd)g(that)662 3304 y FI(v)e FL(:=)d FI(z)920 3263 y FH(3)982 3304 y FL(+)22 b(\(1)g FC(\000)h FI(q)t FL(\))1374 3263 y FH(3)1413 3304 y FI(\026)1472 3319 y FH(1)1511 3304 y FI(\026)1570 3319 y FH(2)1609 3304 y FL(\(1)f FC(\000)g FI(g)1868 3263 y FH(3)1864 3329 y(2)1907 3304 y FL(\))g(+)g(\(1)g FC(\000)h FI(q)t FL(\))p FI(q)t(\025)2463 3319 y FH(12)2537 3304 y FI(\025)2594 3319 y FH(21)2669 3304 y FL(\(1)e FC(\000)i FI(g)2928 3263 y FH(2)2924 3329 y(2)2967 3304 y FI(g)3014 3319 y FH(1)3053 3304 y FL(\))257 3524 y(is)32 b(\()p FI(g)444 3488 y FH(3)440 3549 y(1)483 3524 y FI(g)534 3488 y FH(3)530 3549 y(2)573 3524 y FI(;)17 b FL(1\)-primitiv)m(e,)29 b(and)k(hence)h(requiring)d(the)i(relations)1100 3744 y FI(v)e FL(=)d FI(\025)p FL(\(1)22 b FC(\000)g FI(g)1598 3703 y FH(3)1594 3769 y(1)1637 3744 y FI(g)1688 3703 y FH(3)1684 3769 y(2)1727 3744 y FL(\))p FI(;)212 b(x)2059 3703 y FH(3)2059 3769 y FG(i)2126 3744 y FL(=)28 b FI(\026)2289 3759 y FG(i)2316 3744 y FL(\(1)22 b FC(\000)h FI(g)2576 3703 y FH(3)2572 3769 y FG(i)2615 3744 y FL(\))257 3964 y(in)37 b Fs(U)p FL(\()p FI(A)551 3979 y FH(2)591 3964 y FL(\))p FI(;)g FL(w)m(e)h(get)g(a)f(Hopf)g(algebra)f Fs(u)p FL(\()p FI(A)1847 3979 y FH(2)1886 3964 y FL(\))h(of)g (dimension)f(27)25 b FC(\001)g FL(ord\()p FI(\000)14 b FL(\))37 b(with)g(5)g(pa-)257 4085 y(rameters)h FI(\025;)17 b(\026)824 4100 y FH(1)862 4085 y FI(;)g(\026)965 4100 y FH(2)1004 4085 y FI(;)g(\025)1105 4100 y FH(12)1217 4085 y FL(and)37 b FI(\025)1468 4100 y FH(21)1543 4085 y FI(:)g FL(Ho)m(w)m(ev)m(er,)k(b)m(y)d(rescaling)e FI(x)2634 4100 y FG(i)2663 4085 y FI(;)h(\025;)17 b(\025)2885 4100 y FH(12)2997 4085 y FL(and)37 b FI(\025)3248 4100 y FH(21)3360 4085 y FL(ap-)257 4205 y(propriately)-8 b(,)36 b(w)m(e)h(can)f(alw)m(a) m(ys)h(set)g FI(\026)1642 4220 y FG(i)1706 4205 y FL(equal)f(to)f(1)h (or)g(0.)53 b(So)36 b(e\013ectiv)m(ely)-8 b(,)38 b(w)m(e)f(are)f(left) 257 4325 y(with)d(3)f(free)h(parameters)f(when)i FI(\026)1566 4340 y FG(i)1622 4325 y FC(6)p FL(=)27 b(0.)404 4446 y(W)-8 b(e)35 b(see)i(that)e(the)g(ro)s(ot)g(v)m(ector)h(parameters)f FI(u)2189 4461 y FG(\013)2234 4471 y Fo(i)2297 4446 y FL(:=)d FI(\026)2491 4461 y FG(i)2519 4446 y FL(\(1)23 b FC(\000)i FI(g)2782 4410 y FH(3)2778 4470 y FG(i)2820 4446 y FL(\))35 b(and)h FI(u)3142 4461 y FG(\013)3187 4470 y Fy(1)3221 4461 y FH(+)p FG(\013)3321 4470 y Fy(2)3392 4446 y FL(:=)257 4566 y(\(1)29 b FC(\000)g FI(q)t FL(\))564 4530 y FH(3)603 4566 y FI(\026)662 4581 y FH(1)701 4566 y FI(\026)760 4581 y FH(2)799 4566 y FL(\(1)f FC(\000)h FI(g)1071 4530 y FH(3)1067 4591 y(2)1110 4566 y FL(\))f(+)h(\(1)f FC(\000)h FI(q)t FL(\))p FI(q)t(\025)1691 4581 y FH(12)1765 4566 y FI(\025)1822 4581 y FH(21)1897 4566 y FL(\(1)f FC(\000)h FI(g)2169 4530 y FH(2)2165 4591 y(2)2208 4566 y FI(g)2255 4581 y FH(1)2294 4566 y FL(\))42 b(are)f(elemen)m(ts)i(of)e (the)h(group)257 4687 y(algebra)31 b(and)i(b)s(ecause)g(the)g FI(g)1363 4702 y FG(i)1423 4687 y FI(q)t FL(-comm)m(ute)e(with)g(the)i (generators)g FI(x)2838 4702 y FG(i)2866 4687 y FI(;)f FL(all)e(the)j FI(u)3284 4702 y FG(\013)3365 4687 y FL(are)257 4807 y(cen)m(tral.)404 4927 y(If)22 b(w)m(e)i(tak)m(e)g FI(\000)41 b FL(=)28 b FF(Z)p FI(=)p FL(\(9\))19 b(and)k(a)g(generator) f(of)h FI(\000)36 b FL(as)23 b FI(g)2324 4942 y FH(1)2391 4927 y FL(=)k FI(g)2541 4942 y FH(2)2581 4927 y FL(,)d(w)m(e)g(get)f(a) f(3)h(parameter)257 5048 y(family)37 b(of)h(3)728 5012 y FH(5)767 5048 y FL(-dimensional)e(Hopf)i(algebras.)61 b(F)-8 b(or)38 b FI(\000)52 b FL(=)38 b(\()p FF(Z)p FI(=)p FL(\(3\)\))2749 5012 y FH(2)2824 5048 y FL(w)m(e)i(ha)m(v)m(e)g FI(g)3256 5012 y FH(3)3252 5072 y FG(i)3333 5048 y FL(=)d(1)257 5168 y(and)32 b(all)d(parameters)i(app)s(ear)g(in)f(a)h(pro)s(duct)g (with)g(one)g(factor)g(equal)g(to)g(zero,)g(so)h(the)257 5289 y(resulting)g(Hopf)g(algebras)g(are)h(indep)s(enden)m(t)h(of)e (the)h(parameters.)1828 5637 y(45)p eop %%Page: 46 48 46 47 bop 257 573 a Fn(4.6.2)136 b Fm(B)772 591 y Fl(2)869 573 y Fn(for)45 b Fm(p)33 b Fn(=)g(5)257 758 y FL(W)-8 b(e)27 b(w)m(an)m(t)h(to)e(treat)g(the)h(Dynkin)g(diagram)d FI(B)1946 773 y FH(2)2012 758 y FL(with)i(its)g(t)m(w)m(o)i(v)m (ertices)f(b)s(eing)f(link)-5 b(able.)257 878 y(This)36 b(is)f(the)h(missing)e(case)i(in)f([BDR)o(,)i(Theorem)e(2.7].)52 b(W)-8 b(e)36 b(will)e(k)m(eep)j(the)f(notation)257 998 y(as)45 b(close)g(as)g(p)s(ossible)f(to)g(theirs.)80 b(The)45 b(Cartan)g(matrix)e(is)h(\()p FI(a)2706 1013 y FG(ij)2767 998 y FL(\))k(=)g(\()3059 960 y FH(2)55 b Fx(\000)p FH(1)3032 1023 y Fx(\000)p FH(2)f(2)3256 998 y FL(\))44 b(and)257 1119 y(w)m(e)37 b(set)f FI(q)h FL(:=)32 b FI(b)815 1134 y FH(22)890 1119 y FI(:)k FL(Using)f(\(3.19\)) g(and)g(\(3.20\))g(w)m(e)i(\014nd)f(that)f(the)h(braiding)e(matrix)g (is)257 1252 y(\()p FI(b)336 1267 y FG(ij)397 1252 y FL(\))28 b(=)f(\()621 1207 y FG(q)655 1184 y Fy(2)717 1207 y FG(q)621 1290 y(q)655 1266 y Fy(2)717 1290 y FG(q)767 1252 y FL(\))g(and)h FI(q)j FL(is)c(a)g(primitiv)m(e)e(5)1721 1216 y FH(th)1819 1252 y FL(ro)s(ot)i(of)g(unit)m(y)-8 b(.)42 b FI(\025)2469 1267 y FH(12)2571 1252 y FL(and)27 b FI(\025)2812 1267 y FH(21)2914 1252 y FL(can)h(b)s(e)g(c)m(hosen)257 1386 y(arbitrarily)-8 b(,)37 b(and)h(w)m(e)i(consider)e Fs(U)p FL(\()p FI(B)1658 1401 y FH(2)1698 1386 y FL(\))f(:=)g Fs(U)p FL(\()p FC(D)s FL(\))h(for)g(this)g(linking)e(datum)h(with)h(an) 257 1506 y(appropriately)32 b(c)m(hosen)i(group)e FI(\000)47 b FL(and)32 b(elemen)m(ts)h FI(g)2192 1521 y FG(i)2220 1506 y FL(.)404 1627 y(Using)d(the)i(script)f(in)f(App)s(endix)h(A.2,)g (w)m(e)h(compute)f(all)e(the)j(comm)m(utation)d(rela-)257 1747 y(tions)c(b)s(et)m(w)m(een)h(the)g(ro)s(ot)d(v)m(ectors)k FI(x)1597 1762 y FH(1)1637 1747 y FI(;)17 b(x)1736 1762 y FH(2)1775 1747 y FI(;)g(z)32 b FL(:=)c FI(x)2082 1762 y FH(2)2122 1747 y FI(x)2177 1762 y FH(1)2223 1747 y FC(\000)6 b FI(q)2353 1711 y FH(2)2393 1747 y FI(x)2448 1762 y FH(1)2488 1747 y FI(x)2543 1762 y FH(2)2607 1747 y FL(and)25 b FI(u)i FL(:=)h FI(x)3058 1762 y FH(2)3098 1747 y FI(z)11 b FC(\000)6 b FI(q)3284 1711 y FH(3)3324 1747 y FI(z)t(x)3428 1762 y FH(2)3468 1747 y FI(:)257 1867 y FL(This)36 b(sho)m(ws)h(that)f FC(f)p FI(u)1087 1831 y FG(i)1114 1867 y FI(z)1163 1831 y FG(j)1201 1867 y FI(x)1256 1831 y FG(k)1256 1892 y FH(1)1299 1867 y FI(x)1354 1831 y FG(l)1354 1892 y FH(2)1393 1867 y FI(g)h FL(:)c FI(i;)17 b(j;)g(k)s(;)g(l)35 b FC(\025)e FL(0)p FI(;)17 b(g)35 b FC(2)f FI(\000)14 b FC(g)35 b FL(is)g(a)g(PBW-basis)h (of)f Fs(U)p FL(\()p FI(B)3390 1882 y FH(2)3430 1867 y FL(\).)257 1988 y FI(x)312 1952 y FH(5)312 2012 y FG(i)389 1988 y FL(is)i(clearly)f(\()p FI(g)897 1952 y FH(5)893 2012 y FG(i)936 1988 y FI(;)17 b FL(1\)-primitiv)m(e.)54 b(Using)36 b(felix)g(and)i(a)e(separate)i(mo)s(dule)e(for)h(tensor)257 2108 y(op)s(erations)e(whic)m(h)h(w)m(as)h(kindly)e(pro)m(vided)h(b)m (y)g(Istv\023)-49 b(an)37 b(Hec)m(k)m(en)m(b)s(erger,)i(w)m(e)e (compute)257 2228 y(the)d(5)475 2192 y FH(th)578 2228 y FL(p)s(o)m(w)m(ers)h(of)d(\001\()p FI(z)t FL(\))i(and)f(\001\()p FI(u)p FL(\).)45 b(The)33 b(expressions)i(returned)f(b)m(y)g(the)g (program)257 2349 y(are)k(starting)g(to)f(b)s(e)i(sligh)m(tly)d (unmanageable.)59 b(After)38 b(some)g(reordering)g(w)m(e)h(get)f(18)257 2469 y(and)31 b(87)e(terms)i(resp)s(ectiv)m(ely)-8 b(.)43 b(Using)30 b(Equation)g(\(14\))g(in)f([BDR])h(and)g(all)e(the)j (expres-)257 2590 y(sions)37 b(from)f(the)h(felix-output)f(ending)h(on) g(\\)p FC(\012)p FL(1")f(w)m(e)i(arriv)m(e)f(at)g(an)g(educated)h (guess)257 2710 y(for)f(the)g(righ)m(t)f(hand)h(sides)g(of)f(the)i(ro)s (ot)d(v)m(ector)j(relations)e(for)g FI(z)2709 2674 y FH(5)2786 2710 y FL(and)g FI(u)3035 2674 y FH(5)3074 2710 y FI(;)h FL(see)h(page)257 2830 y(47.)63 b(F)-8 b(elix)37 b(v)-5 b(alidates)38 b(these)i(guesses)h(b)m(y)f(sho)m(wing)f (that)g(the)g(resulting)f(expressions)257 2951 y FI(v)h FL(and)34 b FI(w)j FL(are)e(indeed)g(sk)m(ew-primitiv)m(e.)49 b(Dividing)32 b(out)j(the)g(5)2606 2915 y FH(th)2711 2951 y FL(p)s(o)m(w)m(ers)h(of)e(the)h(ro)s(ot)257 3071 y(v)m(ectors)43 b(with)e(the)h(appropriate)e(righ)m(t)g(hand)i(side)f (w)m(e)h(kno)m(w)h(that)e(w)m(e)h(get)f(a)g(Hopf)257 3191 y(algebra)32 b Fs(u)p FL(\()p FI(B)763 3206 y FH(2)802 3191 y FL(\))g(of)g(dimension)g(5)1494 3155 y FH(4)1555 3191 y FC(\001)22 b FL(ord\()p FI(\000)14 b FL(\))p FI(:)32 b FL(It)h(is)f(giv)m(en)h(explicitly)d(in)i(Figure)g(4.4.)404 3312 y(As)k(b)s(efore,)g(w)m(e)h(can)f(rescale)g(the)g FI(x)1747 3327 y FG(i)1811 3312 y FL(and)f(all)f(the)i(6)f(parameters)h (appropriately)-8 b(,)257 3432 y(so)35 b(that)f FI(\026)651 3447 y FG(i)714 3432 y FL(is)g(either)g(1)g(or)h(0.)49 b(T)-8 b(aking,)34 b(for)g(instance,)i FI(\000)45 b FL(=)31 b FF(Z)p FI(=)p FL(\(20\))g(and)j FI(g)3110 3447 y FH(1)3180 3432 y FL(=)d FI(g)3334 3447 y FH(2)3408 3432 y FL(as)257 3553 y(a)38 b(generator)f(of)g FI(\000)14 b FL(,)39 b(w)m(e)f(get)g(a)f (family)e(of)i(12500-dimensional)c(Hopf)38 b(algebras)f(with)257 3673 y(4)44 b(parameters.)79 b(Again,)47 b(for)c(some)i(sp)s(ecial)e(v) -5 b(alues)44 b(of)g(the)h(orders)g(of)f(the)g FI(g)3260 3688 y FG(i)3288 3673 y FI(;)h FL(the)257 3793 y(resulting)32 b(Hopf)g(algebras)g(can)h(b)s(ecome)g(indep)s(enden)m(t)g(of)g(some)f (of)g(the)h(parameters.)404 3914 y(As)g(a)g(\014nal)f(remark)g(w)m(e)i (note)f(that)g(the)g(ro)s(ot)f(v)m(ector)i(parameters,)f(i.e.)44 b(the)33 b(righ)m(t)257 4034 y(hand)f(sides,)g(for)f FI(z)957 3998 y FH(5)1028 4034 y FL(and)g FI(u)1272 3998 y FH(5)1342 4034 y FL(are)g(not)h(in)e(the)i(group)f(algebra.)41 b(Moreo)m(v)m(er,)34 b(using)c(felix)257 4155 y(w)m(e)39 b(see)f(that)f FI(v)k FL(and)c FI(w)i FL(are)f(cen)m(tral)f(and)g FI(z)1913 4118 y FH(5)1990 4155 y FL(comm)m(utes)g(with)g FI(x)2735 4170 y FH(1)2812 4155 y FL(but)h(not)f(with)f FI(x)3455 4170 y FH(2)257 4275 y FL(and)31 b FI(u)501 4239 y FH(5)571 4275 y FL(comm)m(utes)f(with)h FI(x)1303 4290 y FH(2)1373 4275 y FL(but)g(not)g(with)f FI(x)1997 4290 y FH(1)2037 4275 y FI(:)h FL(Hence,)h(the)f(coun)m(ter)h(terms)f (are)f(not)257 4395 y(cen)m(tral)j(either)f(if)g FI(\025)1003 4410 y FH(12)1077 4395 y FI(\025)1134 4410 y FH(21)1237 4395 y FC(6)p FL(=)27 b(0)p FI(:)257 4684 y Fn(4.6.3)136 b Fm(G)774 4702 y Fl(2)871 4684 y Fn(for)45 b Fm(p)33 b Fn(=)g(7)257 4869 y FL(Here)44 b(w)m(e)g(w)m(an)m(t)g(to)e(treat)h (the)g(remaining)e(rank)i(2)g(case)g(of)g(the)g(\014nite)g(Dynkin)f (di-)257 4989 y(agrams.)74 b(Starting)41 b(from)h(the)h(diagram)e FI(G)1938 5004 y FH(2)2020 4989 y FL(with)h(\()p FI(a)2341 5004 y FG(ij)2402 4989 y FL(\))j(=)g(\()2688 4950 y FH(2)55 b Fx(\000)p FH(3)2661 5014 y Fx(\000)p FH(1)f(2)2885 4989 y FL(\))42 b(and)h(the)g(t)m(w)m(o)257 5110 y(v)m(ertices)57 b(link)-5 b(able,)59 b(w)m(e)e(\014nd,)62 b(as)55 b(b)s(efore,)62 b(that)55 b(the)h(braiding)d(matrix)h(m)m(ust)i(b)s(e)257 5230 y(\()p FI(b)336 5245 y FG(ij)397 5230 y FL(\))28 b(=)f(\()621 5185 y FG(q)i(q)716 5162 y Fy(3)621 5268 y FG(q)g(q)716 5244 y Fy(3)767 5230 y FL(\))g(where)h FI(q)i FL(is)d(a)f(primitiv)m(e)e(7)1821 5194 y FH(th)1921 5230 y FL(ro)s(ot)i(of)g(unit)m(y)-8 b(.)42 b(W)-8 b(e)29 b(de\014ne)h(the)f(ro)s(ot)f(v)m(ec-)257 5368 y(tors)e FI(z)32 b FL(:=)c FI(x)709 5383 y FH(2)748 5368 y FI(x)803 5383 y FH(1)850 5368 y FC(\000)7 b FI(q)t(x)1036 5383 y FH(1)1076 5368 y FI(x)1131 5383 y FH(2)1171 5368 y FI(;)25 b(u)j FL(:=)f FI(z)t(x)1541 5383 y FH(1)1589 5368 y FC(\000)7 b FI(q)1720 5332 y FH(2)1759 5368 y FI(x)1814 5383 y FH(1)1854 5368 y FI(z)t(;)26 b(v)32 b FL(:=)27 b FI(ux)2276 5383 y FH(1)2323 5368 y FC(\000)7 b FI(q)2454 5332 y FH(3)2493 5368 y FI(x)2548 5383 y FH(1)2588 5368 y FI(u)25 b FL(and)g FI(w)30 b FL(:=)e FI(z)t(u)7 b FL(+)g FI(q)3324 5332 y FH(3)3363 5368 y FI(uz)t(;)1828 5637 y FL(46)p eop %%Page: 47 49 47 48 bop 485 940 a @beginspecial 0 @llx 0 @lly 62 @urx 45 @ury 620 @rwi @setspecial %%BeginDocument: b2selflink.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: b2selflink.eps %%Creator: fig2dev Version 3.2 Patchlevel 0-beta3 %%CreationDate: Thu Nov 7 12:17:47 2002 %%For: didt@math12 (D. Didt) %%Orientation: Portrait %%BoundingBox: 0 0 62 45 %%Pages: 0 %%BeginSetup %%EndSetup %%Magnification: 0.6000 %%EndComments /$F2psDict 200 dict def $F2psDict begin $F2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save -120.0 57.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def %%EndProlog $F2psBegin 10 setmiterlimit n -1000 2581 m -1000 -1000 l 6038 -1000 l 6038 2581 l cp clip 0.03600 0.03600 sc 30.000 slw % Ellipse n 4945 600 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3445 600 70 70 0 360 DrawEllipse gs col0 s gr % Ellipse n 3445 595 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Polyline n 3445 525 m 4945 525 l gs col0 s gr % Polyline n 3445 675 m 4945 675 l gs col0 s gr % Polyline n 4045 375 m 4420 600 l 4045 825 l gs col0 s gr % Arc gs [15 90] 90 sd n 4209.4 792.5 765.2 -166.6 -14.6 arcn gs col0 s gr gr [] 0 sd $F2psEnd rs %%EndDocument @endspecial 1300 778 a FI(a)1351 793 y FG(ij)1439 778 y FL(=)1543 637 y Fw(\022)1655 716 y FL(2)121 b FC(\000)p FL(1)1616 837 y FC(\000)p FL(2)h(2)1952 637 y Fw(\023)2139 778 y FI(b)2180 793 y FG(ij)2269 778 y FL(=)27 b FI(\037)2433 793 y FG(j)2470 778 y FL(\()p FI(g)2555 793 y FG(i)2583 778 y FL(\))g(=)2752 637 y Fw(\022)2825 716 y FI(q)2872 680 y FH(2)2995 716 y FI(q)2825 837 y(q)2872 801 y FH(2)2995 837 y FI(q)3041 637 y Fw(\023)3229 778 y FI(q)3276 741 y FH(5)3343 778 y FL(=)g(1)257 1069 y FJ(Generators:)51 b FI(x)936 1084 y FH(1)976 1069 y FI(;)17 b(x)1075 1084 y FH(2)1114 1069 y FI(;)g(z)t(;)g(u)257 1189 y FJ(Group)38 b(elemen)m(ts:)49 b FI(g)1162 1204 y FH(1)1201 1189 y FI(;)17 b(g)1292 1204 y FH(2)1331 1189 y FI(;)212 b(G)1647 1204 y FH(1)1714 1189 y FL(:=)28 b FI(g)1896 1153 y FH(2)1892 1214 y(1)1934 1189 y FI(g)1981 1204 y FH(2)2020 1189 y FI(;)17 b(G)2141 1204 y FH(2)2208 1189 y FL(:=)28 b FI(g)2390 1153 y FH(3)2386 1214 y(2)2429 1189 y FI(g)2476 1204 y FH(1)257 1310 y FJ(P)m(arameters:)50 b FI(\025)953 1325 y FH(12)1027 1310 y FI(;)17 b(\025)1128 1325 y FH(21)1203 1310 y FI(;)g(\026)1306 1325 y FH(1)1345 1310 y FI(;)g(\026)1448 1325 y FH(2)1486 1310 y FI(;)g(\015)1581 1325 y FH(1)1620 1310 y FI(;)g(\015)1715 1325 y FH(2)257 1430 y FJ(Relations:)337 1650 y FI(x)392 1665 y FH(2)432 1650 y FI(x)487 1665 y FH(1)555 1650 y FL(=)27 b FI(q)705 1609 y FH(2)744 1650 y FI(x)799 1665 y FH(1)839 1650 y FI(x)894 1665 y FH(2)956 1650 y FL(+)22 b FI(z)382 1795 y(x)437 1810 y FH(2)477 1795 y FI(z)33 b FL(=)27 b FI(q)705 1754 y FH(3)744 1795 y FI(z)t(x)848 1810 y FH(2)911 1795 y FL(+)22 b FI(u)382 1941 y(x)437 1956 y FH(1)477 1941 y FI(z)33 b FL(=)27 b FI(q)t(z)t(x)809 1956 y FH(1)872 1941 y FC(\000)22 b FI(q)1018 1899 y FH(2)1058 1941 y FI(\025)1115 1956 y FH(12)1189 1941 y FL(\(1)g FC(\000)h FI(G)1475 1956 y FH(1)1514 1941 y FL(\))377 2086 y FI(x)432 2101 y FH(2)471 2086 y FI(u)28 b FL(=)f FI(q)705 2045 y FH(4)744 2086 y FI(ux)855 2101 y FH(2)917 2086 y FL(+)22 b FI(\025)1072 2101 y FH(21)1147 2086 y FL(\(1)f FC(\000)i FI(G)1432 2101 y FH(2)1472 2086 y FL(\))377 2231 y FI(x)432 2246 y FH(1)471 2231 y FI(u)28 b FL(=)f FI(q)705 2190 y FH(4)744 2231 y FI(ux)855 2246 y FH(1)917 2231 y FL(+)22 b FI(q)1062 2190 y FH(2)1101 2231 y FL(\(1)g FC(\000)h FI(q)t FL(\))p FI(z)1444 2190 y FH(2)1506 2231 y FL(+)f(\(1)g FC(\000)g FI(q)1859 2190 y FH(3)1899 2231 y FL(\))p FI(\025)1994 2246 y FH(12)2068 2231 y FI(x)2123 2246 y FH(2)2163 2231 y FI(G)2240 2246 y FH(1)422 2376 y FI(z)t(u)28 b FL(=)f FI(q)t(uz)f FL(+)c FI(q)t FL(\(1)g FC(\000)h FI(q)t FL(\)\(1)e FC(\000)i FI(q)1526 2335 y FH(2)1565 2376 y FL(\))p FI(\025)1660 2391 y FH(12)1735 2376 y FI(x)1790 2335 y FH(2)1790 2401 y(2)1830 2376 y FI(G)1907 2391 y FH(1)1968 2376 y FC(\000)g FI(q)t FL(\(1)f FC(\000)g FI(q)2370 2335 y FH(2)2409 2376 y FL(\))p FI(\025)2504 2391 y FH(21)2579 2376 y FI(x)2634 2391 y FH(1)432 2522 y FI(x)487 2481 y FH(5)487 2546 y FG(i)555 2522 y FL(=)27 b FI(\026)717 2537 y FG(i)745 2522 y FL(\(1)22 b FC(\000)h FI(g)1005 2481 y FH(5)1001 2546 y FG(i)1043 2522 y FL(\))421 2667 y FI(v)32 b FL(:)c(=)f FI(z)707 2626 y FH(5)770 2667 y FL(+)22 b FI(\026)927 2682 y FH(1)966 2667 y FI(\026)1025 2682 y FH(2)1064 2667 y FL(\(1)g FC(\000)g FI(q)1319 2626 y FH(2)1359 2667 y FL(\))1397 2626 y FH(5)1436 2667 y FL(\(1)g FC(\000)g FI(g)1695 2626 y FH(5)1691 2692 y(1)1734 2667 y FL(\))647 2812 y FC(\000)g FL(\()p FI(q)831 2771 y FH(3)893 2812 y FC(\000)g FI(q)1039 2771 y FH(2)1101 2812 y FC(\000)g FI(q)k FL(+)c(1\))p FI(\025)1511 2771 y FH(2)1511 2837 y(12)1586 2812 y FI(\025)1643 2827 y FH(21)1717 2812 y FI(G)1794 2771 y FH(2)1794 2837 y(1)1834 2812 y FI(G)1911 2827 y FH(2)1972 2812 y FL(+)g(\(2)p FI(q)2204 2771 y FH(3)2265 2812 y FL(+)g(2)p FI(q)2459 2771 y FH(2)2520 2812 y FL(+)g(1\))p FI(\025)2762 2771 y FH(2)2762 2837 y(12)2837 2812 y FI(\025)2894 2827 y FH(21)2968 2812 y FI(G)3045 2771 y FH(2)3045 2837 y(1)647 2958 y FC(\000)g FI(q)t FL(\()p FI(q)878 2916 y FH(2)939 2958 y FL(+)g(3)p FI(q)k FL(+)c(1\))p FI(\025)1397 2916 y FH(2)1397 2982 y(12)1472 2958 y FI(\025)1529 2973 y FH(21)1603 2958 y FI(G)1680 2973 y FH(1)1742 2958 y FL(+)g(\()p FI(q)1925 2916 y FH(3)1986 2958 y FL(+)g(2)p FI(q)2180 2916 y FH(2)2241 2958 y FL(+)g(3)p FI(q)k FC(\000)d FL(1\))p FI(\025)2701 2973 y FH(12)2775 2958 y FI(\025)2832 2973 y FH(21)2907 2958 y FI(z)t(x)3011 2973 y FH(1)3051 2958 y FI(G)3128 2973 y FH(1)555 3103 y FL(=)k FI(\015)709 3118 y FH(1)748 3103 y FL(\(1)22 b FC(\000)h FL(\()p FI(g)1042 3118 y FH(1)1081 3103 y FI(g)1128 3118 y FH(2)1167 3103 y FL(\))1205 3062 y FH(5)1244 3103 y FL(\))400 3248 y FI(w)30 b FL(:)e(=)f FI(u)714 3207 y FH(5)775 3248 y FL(+)22 b(2\(1)g FC(\000)h FI(q)t FL(\))1216 3207 y FH(5)1255 3248 y FI(\026)1314 3263 y FH(2)1353 3248 y FI(v)j FC(\000)c FL(\(1)g FC(\000)h FI(q)1781 3207 y FH(2)1820 3248 y FL(\))1858 3207 y FH(5)1898 3248 y FL(\(1)e FC(\000)i FI(q)t FL(\))2191 3207 y FH(5)2230 3248 y FI(\026)2289 3207 y FH(2)2289 3273 y(2)2328 3248 y FI(x)2383 3207 y FH(5)2383 3273 y(1)647 3393 y FC(\000)f FL(\(3)p FI(q)880 3352 y FH(3)941 3393 y FL(+)g FI(q)1086 3352 y FH(2)1148 3393 y FC(\000)g FI(q)k FL(+)c(2\))p FI(\025)1558 3408 y FH(12)1633 3393 y FI(\025)1690 3352 y FH(3)1690 3418 y(21)1764 3393 y FI(G)1841 3408 y FH(1)1881 3393 y FI(G)1958 3352 y FH(3)1958 3418 y(2)2019 3393 y FL(+)g(\(3)p FI(q)2251 3352 y FH(3)2312 3393 y FL(+)g FI(q)2457 3352 y FH(2)2519 3393 y FL(+)g(4)p FI(q)k FL(+)c(2\))p FI(\025)2977 3408 y FH(12)3051 3393 y FI(\025)3108 3352 y FH(3)3108 3418 y(21)3183 3393 y FI(G)3260 3408 y FH(1)3299 3393 y FI(G)3376 3352 y FH(2)3376 3418 y(2)647 3539 y FC(\000)g FL(2\()p FI(q)880 3498 y FH(3)941 3539 y FL(+)g(2)p FI(q)1135 3498 y FH(2)1197 3539 y FL(+)g(3)p FI(q)j FC(\000)e FL(1\))p FI(\025)1656 3554 y FH(12)1730 3539 y FI(\025)1787 3498 y FH(3)1787 3563 y(21)1862 3539 y FI(G)1939 3554 y FH(1)1978 3539 y FI(G)2055 3554 y FH(2)2117 3539 y FL(+)f(\(2)p FI(q)2349 3498 y FH(3)2410 3539 y FL(+)g(4)p FI(q)2604 3498 y FH(2)2665 3539 y FL(+)g FI(q)k FC(\000)d FL(2\))p FI(\025)3076 3554 y FH(12)3150 3539 y FI(\025)3207 3498 y FH(3)3207 3563 y(21)3282 3539 y FI(G)3359 3554 y FH(1)647 3684 y FC(\000)f FL(5\()p FI(q)880 3643 y FH(3)941 3684 y FL(+)g(1\))p FI(\025)1183 3699 y FH(12)1258 3684 y FI(\025)1315 3643 y FH(2)1315 3709 y(21)1389 3684 y FI(ux)1500 3699 y FH(2)1540 3684 y FI(G)1617 3699 y FH(1)1656 3684 y FI(G)1733 3699 y FH(2)1795 3684 y FC(\000)g FL(5\()p FI(q)2028 3643 y FH(3)2089 3684 y FL(+)g FI(q)2234 3643 y FH(2)2296 3684 y FC(\000)g FL(1\))p FI(\025)2539 3699 y FH(12)2614 3684 y FI(\025)2671 3643 y FH(2)2671 3709 y(21)2745 3684 y FI(ux)2856 3699 y FH(2)2896 3684 y FI(G)2973 3699 y FH(1)647 3829 y FL(+)g(5\()p FI(q)879 3788 y FH(3)940 3829 y FC(\000)g FL(1\))p FI(\025)1183 3844 y FH(12)1258 3829 y FI(\025)1315 3844 y FH(21)1389 3829 y FI(u)1445 3788 y FH(2)1484 3829 y FI(x)1539 3788 y FH(2)1539 3854 y(2)1579 3829 y FI(G)1656 3844 y FH(1)1718 3829 y FC(\000)g FL(5\(2)p FI(q)2000 3788 y FH(3)2061 3829 y FC(\000)h FI(q)2208 3788 y FH(2)2269 3829 y FL(+)f FI(q)k FC(\000)d FL(2\))p FI(\025)2680 3788 y FH(2)2680 3854 y(12)2754 3829 y FI(\025)2811 3844 y FH(21)2886 3829 y FI(x)2941 3788 y FH(5)2941 3854 y(2)2981 3829 y FI(G)3058 3788 y FH(2)3058 3854 y(1)3097 3829 y FI(G)3174 3844 y FH(2)555 3975 y FL(=)k FI(\015)709 3990 y FH(2)748 3975 y FL(\(1)22 b FC(\000)h FL(\()p FI(g)1042 3990 y FH(1)1081 3975 y FI(g)1132 3933 y FH(2)1128 3999 y(2)1171 3975 y FL(\))1209 3933 y FH(5)1248 3975 y FL(\))2696 1636 y FI(g)2743 1651 y FG(i)2771 1636 y FI(x)2826 1651 y FH(2)2894 1636 y FL(=)k FI(q)t(x)3099 1651 y FH(2)3139 1636 y FI(g)3186 1651 y FG(i)2696 1782 y FI(g)2743 1797 y FG(i)2771 1782 y FI(x)2826 1797 y FH(1)2894 1782 y FL(=)g FI(q)3044 1740 y FH(2)3084 1782 y FI(x)3139 1797 y FH(1)3179 1782 y FI(g)3226 1797 y FG(i)2742 1927 y FI(g)2789 1942 y FG(i)2816 1927 y FI(z)33 b FL(=)27 b FI(q)3044 1886 y FH(3)3084 1927 y FI(z)t(g)3180 1942 y FG(i)2736 2072 y FI(g)2783 2087 y FG(i)2811 2072 y FI(u)g FL(=)g FI(q)3044 2031 y FH(4)3084 2072 y FI(ug)3187 2087 y FG(i)257 4173 y FJ(Com)m(ultiplication:)310 4393 y FL(\001)16 b FI(x)462 4408 y FG(i)519 4393 y FL(=)27 b FI(g)669 4408 y FG(i)719 4393 y FC(\012)c FI(x)874 4408 y FG(i)925 4393 y FL(+)f FI(x)1078 4408 y FG(i)1128 4393 y FC(\012)h FL(1)343 4538 y(\001)17 b FI(z)33 b FL(=)27 b FI(g)669 4553 y FH(1)708 4538 y FI(g)755 4553 y FH(2)817 4538 y FC(\012)22 b FI(z)27 b FL(+)22 b FI(z)27 b FC(\012)c FL(1)f(+)g(\(1)f FC(\000)i FI(q)1682 4497 y FH(3)1721 4538 y FL(\))p FI(x)1814 4553 y FH(2)1854 4538 y FI(g)1901 4553 y FH(1)1962 4538 y FC(\012)g FI(x)2117 4553 y FH(1)338 4683 y FL(\001)16 b FI(u)28 b FL(=)f FI(g)669 4698 y FH(1)708 4683 y FI(g)759 4642 y FH(2)755 4708 y(2)820 4683 y FC(\012)c FI(u)f FL(+)g FI(u)f FC(\012)i FL(1)f(+)g(\(1)g FC(\000)g FI(q)1697 4642 y FH(3)1736 4683 y FL(\)\(1)g FC(\000)h FI(q)2030 4642 y FH(4)2069 4683 y FL(\))p FI(x)2162 4642 y FH(2)2162 4708 y(2)2202 4683 y FI(g)2249 4698 y FH(1)2310 4683 y FC(\012)g FI(x)2465 4698 y FH(1)2527 4683 y FL(+)f FI(q)t FL(\(1)g FC(\000)g FI(q)2927 4642 y FH(3)2966 4683 y FL(\))p FI(x)3059 4698 y FH(2)3099 4683 y FI(g)3146 4698 y FH(1)3185 4683 y FI(g)3232 4698 y FH(2)3294 4683 y FC(\012)g FI(z)342 4829 y FL(\001)17 b FI(v)32 b FL(=)27 b(\()p FI(g)707 4844 y FH(1)746 4829 y FI(g)793 4844 y FH(2)832 4829 y FL(\))870 4787 y FH(5)932 4829 y FC(\012)c FI(v)i FL(+)d FI(v)k FC(\012)d FL(1)321 4974 y(\001)17 b FI(w)30 b FL(=)d(\()p FI(g)707 4989 y FH(1)746 4974 y FI(g)797 4933 y FH(2)793 4998 y(2)836 4974 y FL(\))874 4933 y FH(5)936 4974 y FC(\012)22 b FI(w)j FL(+)d FI(w)i FC(\012)f FL(1)1279 5277 y(Figure)31 b(4.4:)43 b(Relations)31 b(for)h FI(B)2434 5292 y FH(2)1828 5637 y FL(47)p eop %%Page: 48 50 48 49 bop 257 573 a FL(cf.)42 b(Equations)28 b(\(3.6\)-\(3.9\).)40 b(The)28 b(quan)m(tum)f(Serre)h(relations)e(can)h(no)m(w)h(b)s(e)f (expressed)257 693 y(as)49 b FI(x)448 708 y FH(1)488 693 y FI(v)37 b FC(\000)d FI(q)730 657 y FH(3)769 693 y FI(v)t(x)875 708 y FH(1)970 693 y FL(=)55 b FC(\000)p FI(q)1225 657 y FH(6)1264 693 y FI(\025)1321 708 y FH(12)1396 693 y FL(\(1)33 b FC(\000)g FI(G)1703 708 y FH(1)1743 693 y FL(\))48 b(and)h FI(x)2090 708 y FH(2)2130 693 y FI(z)38 b FC(\000)c FI(q)2371 657 y FH(4)2410 693 y FI(z)t(x)2514 708 y FH(2)2610 693 y FL(=)55 b FI(\025)2798 708 y FH(21)2872 693 y FL(\(1)33 b FC(\000)h FI(G)3180 708 y FH(2)3219 693 y FL(\))49 b(with)257 814 y FI(G)334 829 y FH(1)406 814 y FL(:=)32 b FI(g)592 777 y FH(4)588 838 y(1)631 814 y FI(g)678 829 y FH(2)752 814 y FL(and)j FI(G)1021 829 y FH(2)1093 814 y FL(:=)d FI(g)1279 777 y FH(2)1275 838 y(2)1318 814 y FI(g)1365 829 y FH(1)1404 814 y FI(:)j FL(Plugging)e(this)i(in)m(to)g(felix)f(as)h(in)g(App)s (endix)g(A.3,)h(w)m(e)257 934 y(get)29 b(all)e(comm)m(utation)g (relations)g(and)i(hence)h(a)f(PBW-basis.)42 b(The)30 b(results)f(are)g(listed)257 1054 y(in)j(Figure)g(4.5.)404 1175 y(T)-8 b(o)34 b(b)s(e)h(able)f(to)g(divide)g(out)h(the)g(7)1700 1139 y FH(th)1805 1175 y FL(p)s(o)m(w)m(ers)h(of)e(all)f(the)i(ro)s(ot) e(v)m(ectors,)k(w)m(e)f(again)257 1295 y(ha)m(v)m(e)j(to)f(\014nd)g (appropriate)f(coun)m(ter)h(terms)g(\014rst.)59 b(Using)37 b(felix)g(to)g(compute)h(\001\()p FI(z)3417 1259 y FH(7)3457 1295 y FL(\))257 1416 y(and)27 b(trying)e(the)i(analogous)e(treatmen)m (t)h(as)g(for)g FI(B)2106 1431 y FH(2)2171 1416 y FL(w)m(e)i(indeed)e (immediately)d(get)j(that)724 1636 y FI(Z)34 b FL(:=)28 b FI(z)1005 1594 y FH(7)1067 1636 y FL(+)22 b(\(1)g FC(\000)h FI(q)1421 1594 y FH(3)1460 1636 y FL(\))1498 1594 y FH(7)1537 1636 y FI(\026)1596 1651 y FH(1)1636 1636 y FI(\026)1695 1651 y FH(2)1734 1636 y FL(\(1)e FC(\000)i FI(g)1993 1594 y FH(7)1989 1660 y(1)2032 1636 y FL(\))1067 1781 y FC(\000)g FL(\(2)p FI(q)1301 1740 y FH(5)1362 1781 y FL(+)f(4)p FI(q)1556 1740 y FH(4)1617 1781 y FC(\000)h FI(q)1764 1740 y FH(3)1825 1781 y FL(+)f FI(q)1970 1740 y FH(2)2032 1781 y FC(\000)g FL(4)p FI(q)k FC(\000)d FL(2\))p FI(\025)2493 1796 y FH(12)2567 1781 y FI(\025)2624 1796 y FH(21)2699 1781 y FI(z)2748 1740 y FH(2)2788 1781 y FI(x)2843 1740 y FH(2)2843 1805 y(2)2883 1781 y FI(G)2960 1796 y FH(1)1067 1926 y FL(+)f(\(6)p FI(q)1299 1885 y FH(5)1360 1926 y FL(+)g(8)p FI(q)1554 1885 y FH(4)1616 1926 y FL(+)g(6)p FI(q)1810 1885 y FH(3)1871 1926 y FC(\000)g FL(3)p FI(q)k FC(\000)d FL(3\))p FI(\025)2332 1941 y FH(12)2406 1926 y FI(\025)2463 1885 y FH(2)2463 1951 y(21)2538 1926 y FI(z)t(x)2642 1941 y FH(2)2682 1926 y FI(G)2759 1941 y FH(1)2799 1926 y FI(G)2876 1941 y FH(2)1067 2071 y FC(\000)g FL(\()p FI(q)1252 2030 y FH(4)1313 2071 y FL(+)f(3)p FI(q)1507 2030 y FH(3)1568 2071 y FC(\000)h FI(q)1715 2030 y FH(2)1776 2071 y FL(+)f(3)p FI(q)k FL(+)c(1\))p FI(\025)2234 2086 y FH(12)2309 2071 y FI(\025)2366 2030 y FH(2)2366 2096 y(21)2440 2071 y FI(z)t(x)2544 2086 y FH(2)2585 2071 y FI(G)2662 2086 y FH(1)1067 2217 y FL(+)g(\(2)p FI(q)1299 2176 y FH(5)1360 2217 y FL(+)g(2)p FI(q)1554 2176 y FH(4)1616 2217 y FL(+)g(4)p FI(q)1810 2176 y FH(3)1871 2217 y FL(+)g(5)p FI(q)2065 2176 y FH(2)2126 2217 y FL(+)g(2)p FI(q)k FC(\000)c FL(1\))p FI(\025)2585 2232 y FH(12)2660 2217 y FI(\025)2717 2176 y FH(3)2717 2241 y(21)2791 2217 y FI(G)2868 2232 y FH(1)2908 2217 y FI(G)2985 2176 y FH(3)2985 2241 y(2)1067 2362 y FL(+)g(\()p FI(q)1250 2321 y FH(5)1312 2362 y FC(\000)g FL(2)p FI(q)1507 2321 y FH(4)1568 2362 y FC(\000)h FL(4)p FI(q)1764 2321 y FH(3)1825 2362 y FC(\000)g FL(7)p FI(q)2021 2321 y FH(2)2082 2362 y FC(\000)g FL(6)p FI(q)i FC(\000)e FL(3\))p FI(\025)2543 2377 y FH(12)2617 2362 y FI(\025)2674 2321 y FH(3)2674 2387 y(21)2749 2362 y FI(G)2826 2377 y FH(1)2865 2362 y FI(G)2942 2321 y FH(2)2942 2387 y(2)1067 2507 y FC(\000)g FL(\(4)p FI(q)1301 2466 y FH(5)1362 2507 y FL(+)f(2)p FI(q)1556 2466 y FH(4)1617 2507 y FL(+)g(2)p FI(q)1811 2466 y FH(3)1872 2507 y FC(\000)h FL(2)p FI(q)2068 2466 y FH(2)2129 2507 y FC(\000)g FL(2)p FI(q)j FC(\000)c FL(4\))p FI(\025)2590 2522 y FH(12)2665 2507 y FI(\025)2722 2466 y FH(3)2722 2532 y(21)2796 2507 y FI(G)2873 2522 y FH(1)2913 2507 y FI(G)2990 2522 y FH(2)1067 2653 y FL(+)g(\()p FI(q)1250 2611 y FH(5)1312 2653 y FL(+)g(2)p FI(q)1506 2611 y FH(4)1567 2653 y FL(+)g(2)p FI(q)1761 2611 y FH(3)1822 2653 y FL(+)g(2)p FI(q)t FL(\))p FI(\025)2111 2668 y FH(12)2185 2653 y FI(\025)2242 2611 y FH(3)2242 2677 y(21)2317 2653 y FI(G)2394 2668 y FH(1)257 2873 y FL(is)35 b(\()p FI(g)447 2836 y FH(7)443 2897 y(1)486 2873 y FI(g)537 2836 y FH(7)533 2897 y(2)575 2873 y FI(;)17 b FL(1\)-primitiv)m(e)32 b(and)j(hence)h(w)m(e)g(can)g(divide)e(out)h FI(Z)k FL(=)31 b FI(\015)2683 2888 y FH(1)2722 2873 y FL(\(1)24 b FC(\000)g FI(g)2985 2836 y FH(7)2981 2897 y(1)3024 2873 y FI(g)3075 2836 y FH(7)3071 2897 y(2)3113 2873 y FL(\))p FI(:)35 b FL(T)-8 b(rying)257 2993 y(to)31 b(do)f(the)i(same)e(for)h(the)g(ro)s(ot)f(v)m(ector)h FI(u)g FL(w)m(e)g(\014nd)h(that)e(the)i(calculation)c(p)s(o)m(w)m(ers)k (and)257 3113 y(memory)c(space)h(needed)h(are)f(immense.)41 b(The)29 b(expression)h(for)d(\001)q(\()p FI(u)2786 3077 y FH(7)2825 3113 y FL(\))h(has)g(more)g(than)257 3234 y(a)35 b(thousand)h(terms)f(and)g(needs)i(some)e(tric)m(ks)g(in)g (order)g(for)f(felix)g(to)h(b)s(e)g(able)g(to)f(cal-)257 3354 y(culate)c(it)f(at)h(all.)41 b(Based)30 b(on)g(the)h(exp)s (erience)g(gained)f(so)g(far,)g(w)m(e)h(can)g(conclude)f(from)257 3474 y(the)45 b(felix-output)d(that)h FI(u)1257 3438 y FH(7)1340 3474 y FL(needs)i(46)f(coun)m(terterms)h(to)e(b)s(ecome)h (sk)m(ew-primitiv)m(e.)257 3595 y(W)-8 b(e)29 b(do)f(not)g(list)f (these)i(here.)43 b(F)-8 b(or)28 b FI(v)1595 3559 y FH(7)1662 3595 y FL(and)g FI(w)1920 3559 y FH(7)1987 3595 y FL(w)m(e)h(did)f(not) g(ev)m(en)i(attempt)e(an)g(answ)m(er.)257 3715 y(As)33 b(b)s(efore)g FI(z)743 3679 y FH(7)816 3715 y FL(is)f(not)g(cen)m(tral) h(and)f(so)h(neither)g(are)f(the)h(coun)m(ter)h(terms.)1828 5637 y(48)p eop %%Page: 49 51 49 50 bop 489 951 a @beginspecial 0 @llx 0 @lly 61 @urx 44 @ury 610 @rwi @setspecial %%BeginDocument: g2selflink.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: g2selflink.eps %%Creator: fig2dev Version 3.2 Patchlevel 0-beta3 %%CreationDate: Thu Nov 7 12:18:48 2002 %%For: didt@math12 (D. Didt) %%Orientation: Portrait %%BoundingBox: 0 0 61 44 %%Pages: 0 %%BeginSetup %%EndSetup %%Magnification: 0.6000 %%EndComments /$F2psDict 200 dict def $F2psDict begin $F2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save -136.0 56.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def %%EndProlog $F2psBegin 10 setmiterlimit n -1000 2553 m -1000 -1000 l 6468 -1000 l 6468 2553 l cp clip 0.03600 0.03600 sc % Polyline 30.000 slw n 4625 375 m 4175 600 l 4625 825 l gs col0 s gr % Polyline n 5375 525 m 3875 525 l gs col0 s gr % Polyline n 5375 600 m 3875 600 l gs col0 s gr % Polyline n 5375 675 m 3875 675 l gs col0 s gr % Ellipse n 5375 600 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 3875 600 70 70 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Arc gs [15 90] 90 sd n 4635.0 762.0 767.3 -12.2 -167.8 arc gs col0 s gr gr [] 0 sd $F2psEnd rs %%EndDocument @endspecial 1300 793 a FI(a)1351 808 y FG(ij)1439 793 y FL(=)1543 652 y Fw(\022)1655 732 y FL(2)121 b FC(\000)p FL(3)1616 852 y FC(\000)p FL(1)h(2)1952 652 y Fw(\023)2139 793 y FI(b)2180 808 y FG(ij)2269 793 y FL(=)27 b FI(\037)2433 808 y FG(j)2470 793 y FL(\()p FI(g)2555 808 y FG(i)2583 793 y FL(\))g(=)2752 652 y Fw(\022)2825 732 y FI(q)87 b(q)3002 696 y FH(3)2825 852 y FI(q)g(q)3002 816 y FH(3)3041 652 y Fw(\023)3229 793 y FI(q)3276 757 y FH(7)3343 793 y FL(=)27 b(1)257 1080 y FJ(Generators:)51 b FI(x)936 1095 y FH(1)976 1080 y FI(;)17 b(x)1075 1095 y FH(2)1114 1080 y FI(;)g(z)t(;)g(u;)g(v)t(;)g(w)257 1200 y FJ(Group)38 b(elemen)m(ts:)49 b FI(g)1162 1215 y FH(1)1201 1200 y FI(;)17 b(g)1292 1215 y FH(2)1331 1200 y FI(;)212 b(G)1647 1215 y FH(1)1714 1200 y FL(:=)28 b FI(g)1896 1164 y FH(4)1892 1225 y(1)1934 1200 y FI(g)1981 1215 y FH(2)2020 1200 y FI(;)17 b(G)2141 1215 y FH(2)2208 1200 y FL(:=)28 b FI(g)2390 1164 y FH(2)2386 1225 y(2)2429 1200 y FI(g)2476 1215 y FH(1)257 1321 y FJ(P)m(arameters:)50 b FI(\025)953 1336 y FH(12)1027 1321 y FI(;)17 b(\025)1128 1336 y FH(21)257 1441 y FJ(Relations:)257 1661 y FI(x)312 1676 y FH(2)352 1661 y FI(x)407 1676 y FH(1)475 1661 y FL(=)27 b FI(q)t(x)680 1676 y FH(1)720 1661 y FI(x)775 1676 y FH(2)837 1661 y FL(+)22 b FI(z)302 1806 y(x)357 1821 y FH(2)397 1806 y FI(z)33 b FL(=)27 b FI(q)625 1765 y FH(4)665 1806 y FI(z)t(x)769 1821 y FH(2)831 1806 y FL(+)22 b FI(\025)986 1821 y FH(21)1061 1806 y FL(\(1)g FC(\000)g FI(G)1346 1821 y FH(2)1386 1806 y FL(\))302 1952 y FI(x)357 1967 y FH(1)397 1952 y FI(z)33 b FL(=)27 b FI(q)625 1910 y FH(5)665 1952 y FI(z)t(x)769 1967 y FH(1)831 1952 y FC(\000)c FI(q)978 1910 y FH(5)1017 1952 y FI(u)297 2097 y(x)352 2112 y FH(2)392 2097 y FI(u)k FL(=)g FI(q)625 2056 y FH(5)665 2097 y FI(ux)776 2112 y FH(2)837 2097 y FL(+)22 b(\()p FI(q)1020 2056 y FH(4)1081 2097 y FC(\000)h FI(q)1228 2056 y FH(2)1267 2097 y FL(\))p FI(z)1354 2056 y FH(2)1417 2097 y FC(\000)f FL(\()p FI(q)1601 2056 y FH(3)1663 2097 y FC(\000)g FL(1\))p FI(\025)1906 2112 y FH(21)1981 2097 y FI(x)2036 2112 y FH(1)297 2242 y FI(x)352 2257 y FH(1)392 2242 y FI(u)27 b FL(=)g FI(q)625 2201 y FH(4)665 2242 y FI(ux)776 2257 y FH(1)837 2242 y FC(\000)c FI(q)984 2201 y FH(4)1023 2242 y FI(v)342 2387 y(z)t(u)28 b FL(=)f FI(q)625 2346 y FH(3)665 2387 y FI(uz)f FL(+)c FI(w)302 2533 y(x)357 2548 y FH(2)396 2533 y FI(v)32 b FL(=)27 b FI(q)625 2492 y FH(6)665 2533 y FI(v)t(x)771 2548 y FH(2)832 2533 y FC(\000)c FL(\()p FI(q)1017 2492 y FH(4)1078 2533 y FC(\000)g FL(1\))p FI(uz)j FL(+)c(\()p FI(q)1575 2492 y FH(4)1636 2533 y FC(\000)h FI(q)1783 2492 y FH(3)1844 2533 y FC(\000)g FI(q)1991 2492 y FH(2)2030 2533 y FL(\))p FI(w)i FC(\000)d FL(\()p FI(q)2347 2492 y FH(4)2409 2533 y FL(+)g FI(q)2554 2492 y FH(3)2615 2533 y FC(\000)h FL(2\))p FI(\025)2859 2548 y FH(21)2933 2533 y FI(x)2988 2492 y FH(2)2988 2557 y(1)302 2678 y FI(x)357 2693 y FH(1)396 2678 y FI(v)32 b FL(=)27 b FI(q)625 2637 y FH(3)665 2678 y FI(v)t(x)771 2693 y FH(1)832 2678 y FC(\000)c FI(q)979 2637 y FH(6)1018 2678 y FI(\025)1075 2693 y FH(12)1150 2678 y FL(\(1)f FC(\000)g FI(G)1435 2693 y FH(1)1475 2678 y FL(\))347 2823 y FI(z)t(v)32 b FL(=)27 b FI(q)625 2782 y FH(5)665 2823 y FI(v)t(z)f FL(+)c(\(2)p FI(q)1019 2782 y FH(5)1080 2823 y FL(+)g FI(q)1225 2782 y FH(4)1287 2823 y FL(+)g FI(q)1432 2782 y FH(3)1493 2823 y FL(+)g FI(q)1638 2782 y FH(2)1700 2823 y FL(+)g(1\))p FI(u)1941 2782 y FH(2)2001 2823 y FC(\000)h FL(\()p FI(q)2186 2782 y FH(5)2247 2823 y FC(\000)g FI(q)2394 2782 y FH(4)2455 2823 y FL(+)f(3)p FI(q)2649 2782 y FH(3)2711 2823 y FL(+)g FI(q)2856 2782 y FH(2)2917 2823 y FL(+)g(2)p FI(q)k FL(+)c(1\))p FI(\025)3375 2838 y FH(21)3449 2823 y FI(x)3504 2782 y FH(3)3504 2848 y(1)567 2969 y FL(+)g(\(2)p FI(q)799 2927 y FH(5)860 2969 y FL(+)g(2)p FI(q)1054 2927 y FH(3)1115 2969 y FL(+)g FI(q)k FL(+)c(2\))p FI(\025)1524 2984 y FH(12)1598 2969 y FI(x)1653 2984 y FH(2)1693 2969 y FI(G)1770 2984 y FH(1)280 3114 y FI(x)335 3129 y FH(2)375 3114 y FI(w)30 b FL(=)d FI(q)625 3073 y FH(2)665 3114 y FI(w)s(x)793 3129 y FH(2)854 3114 y FL(+)22 b(\(2)p FI(q)1086 3073 y FH(5)1147 3114 y FL(+)g FI(q)1292 3073 y FH(4)1354 3114 y FL(+)g FI(q)1499 3073 y FH(3)1560 3114 y FL(+)g FI(q)1705 3073 y FH(2)1766 3114 y FL(+)g(2)p FI(q)t FL(\))p FI(z)2047 3073 y FH(3)2109 3114 y FL(+)g(\(2)p FI(q)2341 3073 y FH(4)2402 3114 y FC(\000)h FI(q)j FC(\000)d FL(1\))p FI(\025)2815 3129 y FH(21)2889 3114 y FI(z)t(x)2993 3129 y FH(1)3056 3114 y FC(\000)f FL(\()p FI(q)3240 3073 y FH(4)3302 3114 y FC(\000)g FL(1\))p FI(\025)3545 3129 y FH(21)3620 3114 y FI(u)280 3259 y(x)335 3274 y FH(1)375 3259 y FI(w)30 b FL(=)d FI(q)625 3218 y FH(2)665 3259 y FI(w)s(x)793 3274 y FH(1)854 3259 y FL(+)22 b(\()p FI(q)1037 3218 y FH(3)1098 3259 y FC(\000)h FI(q)1245 3218 y FH(2)1306 3259 y FL(+)f FI(q)k FC(\000)d FL(1\))p FI(u)1716 3218 y FH(2)1777 3259 y FL(+)f(\(4)p FI(q)2009 3218 y FH(5)2070 3259 y FL(+)g(2)p FI(q)2264 3218 y FH(4)2325 3259 y FL(+)g(3)p FI(q)2519 3218 y FH(3)2580 3259 y FL(+)g(2)p FI(q)2774 3218 y FH(2)2835 3259 y FL(+)g FI(q)k FL(+)c(2\))p FI(\025)3244 3274 y FH(21)3319 3259 y FI(x)3374 3218 y FH(3)3374 3284 y(1)567 3404 y FC(\000)g FL(\(2)p FI(q)800 3363 y FH(5)862 3404 y FL(+)g FI(q)1007 3363 y FH(3)1068 3404 y FL(+)g(2)p FI(q)1262 3363 y FH(2)1323 3404 y FL(+)g(2\))p FI(\025)1565 3419 y FH(12)1639 3404 y FI(x)1694 3419 y FH(2)1734 3404 y FI(G)1811 3419 y FH(1)341 3550 y FI(uv)31 b FL(=)c FI(q)625 3509 y FH(4)665 3550 y FI(v)t(u)21 b FL(+)h(\(3)p FI(q)1025 3509 y FH(5)1086 3550 y FL(+)g(4)p FI(q)1280 3509 y FH(4)1341 3550 y FL(+)g(3)p FI(q)1535 3509 y FH(3)1596 3550 y FL(+)g(2)p FI(q)k FL(+)c(2\))p FI(\025)2054 3565 y FH(21)2129 3550 y FI(x)2184 3509 y FH(4)2184 3574 y(1)2246 3550 y FC(\000)g FL(\()p FI(q)2430 3509 y FH(5)2492 3550 y FC(\000)g FI(q)2638 3509 y FH(2)2677 3550 y FL(\))p FI(\025)2772 3565 y FH(12)2847 3550 y FI(z)t(G)2973 3565 y FH(1)325 3695 y FI(z)t(w)31 b FL(=)c FI(q)625 3654 y FH(4)665 3695 y FI(w)s(z)f FL(+)c(\(2)p FI(q)1041 3654 y FH(4)1102 3695 y FC(\000)h FI(q)j FC(\000)c FL(1\))p FI(\025)1514 3710 y FH(21)1589 3695 y FI(ux)1700 3710 y FH(1)1761 3695 y FC(\000)h FL(\()p FI(q)1946 3654 y FH(4)2007 3695 y FC(\000)g FL(1\))p FI(\025)2251 3710 y FH(21)2325 3695 y FI(v)j FL(+)c(\(2)p FI(q)2630 3654 y FH(5)2691 3695 y FC(\000)h FI(q)2838 3654 y FH(2)2899 3695 y FC(\000)g FI(q)t FL(\))p FI(\025)3141 3710 y FH(12)3215 3695 y FI(x)3270 3654 y FH(2)3270 3720 y(2)3310 3695 y FI(G)3387 3710 y FH(1)319 3840 y FI(uw)30 b FL(=)d FI(q)625 3799 y FH(3)665 3840 y FI(w)s(u)21 b FL(+)h(\()p FI(q)998 3799 y FH(5)1059 3840 y FL(+)g(2)p FI(q)1253 3799 y FH(4)1314 3840 y FL(+)g(4)p FI(q)1508 3799 y FH(3)1569 3840 y FL(+)g(4)p FI(q)1763 3799 y FH(2)1825 3840 y FL(+)g(2)p FI(q)j FL(+)d(1\))p FI(\025)2282 3855 y FH(21)2357 3840 y FI(v)t(x)2463 3855 y FH(1)2524 3840 y FL(+)g(\()p FI(q)2707 3799 y FH(4)2769 3840 y FC(\000)g FI(q)2915 3799 y FH(3)2977 3840 y FC(\000)g FI(q)3123 3799 y FH(2)3185 3840 y FL(+)g FI(q)t FL(\))p FI(\025)3425 3855 y FH(12)3499 3840 y FI(z)t(x)3603 3855 y FH(2)3644 3840 y FI(G)3721 3855 y FH(1)567 3986 y FC(\000)g FL(\(3)p FI(q)800 3944 y FH(5)862 3986 y FL(+)g(4)p FI(q)1056 3944 y FH(4)1117 3986 y FL(+)g(3)p FI(q)1311 3944 y FH(3)1372 3986 y FL(+)g(2)p FI(q)1566 3944 y FH(2)1627 3986 y FL(+)g FI(q)k FL(+)c(1\))p FI(\025)2036 4001 y FH(12)2110 3986 y FI(\025)2167 4001 y FH(21)2242 3986 y FI(G)2319 4001 y FH(1)2358 3986 y FI(G)2435 4001 y FH(2)567 4131 y FL(+)g(\()p FI(q)750 4090 y FH(5)811 4131 y FL(+)g(2)p FI(q)1005 4090 y FH(4)1066 4131 y FL(+)g(2)p FI(q)1260 4090 y FH(3)1322 4131 y FC(\000)g FI(q)1468 4090 y FH(2)1530 4131 y FC(\000)g FL(3)p FI(q)k FC(\000)d FL(1\))p FI(\025)1991 4146 y FH(12)2065 4131 y FI(\025)2122 4146 y FH(21)2196 4131 y FI(G)2273 4146 y FH(1)567 4276 y FL(+)f(\(2)p FI(q)799 4235 y FH(5)860 4276 y FL(+)g(2)p FI(q)1054 4235 y FH(4)1115 4276 y FL(+)g FI(q)1260 4235 y FH(3)1322 4276 y FL(+)g(3)p FI(q)1516 4235 y FH(2)1577 4276 y FL(+)g(4)p FI(q)j FL(+)d(2\))p FI(\025)2034 4291 y FH(12)2109 4276 y FI(\025)2166 4291 y FH(21)324 4421 y FI(v)t(w)30 b FL(=)d FI(q)625 4380 y FH(5)665 4421 y FI(w)s(v)e FC(\000)e FL(\()p FI(q)995 4380 y FH(5)1056 4421 y FL(+)f FI(q)1201 4380 y FH(4)1262 4421 y FL(+)g(3)p FI(q)1456 4380 y FH(2)1517 4421 y FC(\000)h FI(q)j FL(+)c(3\))p FI(u)1927 4380 y FH(3)1988 4421 y FL(+)g(\(5)p FI(q)2220 4380 y FH(5)2281 4421 y FL(+)g(2)p FI(q)2475 4380 y FH(4)2536 4421 y FL(+)g(5)p FI(q)2730 4380 y FH(3)2791 4421 y FL(+)g FI(q)k FL(+)c(1\))p FI(\025)3200 4436 y FH(21)3275 4421 y FI(ux)3386 4380 y FH(3)3386 4446 y(1)567 4567 y FL(+)g(\(2)p FI(q)799 4526 y FH(5)860 4567 y FC(\000)h FL(5)p FI(q)1056 4526 y FH(3)1117 4567 y FC(\000)f FL(5)p FI(q)1312 4526 y FH(2)1374 4567 y FC(\000)g FL(6)p FI(q)t FL(\))p FI(\025)1664 4582 y FH(21)1738 4567 y FI(v)t(x)1844 4526 y FH(2)1844 4591 y(1)1906 4567 y FC(\000)h FL(\(3)p FI(q)2140 4526 y FH(5)2201 4567 y FL(+)f(2)p FI(q)2395 4526 y FH(4)2456 4567 y FL(+)g(2)p FI(q)2650 4526 y FH(3)2711 4567 y FL(+)g(3)p FI(q)2905 4526 y FH(2)2966 4567 y FL(+)g(4\))p FI(\025)3208 4582 y FH(12)3283 4567 y FI(ux)3394 4582 y FH(2)3433 4567 y FI(G)3510 4582 y FH(1)567 4712 y FL(+)g(\()p FI(q)750 4671 y FH(4)811 4712 y FC(\000)h FL(2)p FI(q)1007 4671 y FH(3)1068 4712 y FL(+)f FI(q)1213 4671 y FH(2)1252 4712 y FL(\))p FI(\025)1347 4727 y FH(12)1422 4712 y FI(z)1471 4671 y FH(2)1511 4712 y FI(G)1588 4727 y FH(1)1649 4712 y FL(+)h(\(5)p FI(q)1882 4671 y FH(5)1943 4712 y FL(+)f(2)p FI(q)2137 4671 y FH(4)2198 4712 y FC(\000)g FL(4)p FI(q)2393 4671 y FH(2)2455 4712 y FC(\000)g FL(4)p FI(q)k FL(+)c(1\))p FI(\025)2914 4727 y FH(12)2988 4712 y FI(\025)3045 4727 y FH(21)3120 4712 y FI(x)3175 4727 y FH(1)3215 4712 y FI(G)3292 4727 y FH(1)567 4857 y FC(\000)g FL(\()p FI(q)751 4816 y FH(5)813 4857 y FL(+)g FI(q)958 4816 y FH(4)1019 4857 y FL(+)g FI(q)1164 4816 y FH(3)1226 4857 y FL(+)g(2)p FI(q)1420 4816 y FH(2)1481 4857 y FL(+)g(5)p FI(q)k FL(+)c(4\))p FI(\025)1939 4872 y FH(12)2013 4857 y FI(\025)2070 4872 y FH(21)2144 4857 y FI(x)2199 4872 y FH(1)2696 1661 y FI(g)2743 1676 y FG(i)2771 1661 y FI(x)2826 1676 y FH(1)2894 1661 y FL(=)27 b FI(q)t(x)3099 1676 y FH(1)3139 1661 y FI(g)3186 1676 y FG(i)2696 1806 y FI(g)2743 1821 y FG(i)2771 1806 y FI(x)2826 1821 y FH(2)2894 1806 y FL(=)g FI(q)3044 1765 y FH(3)3084 1806 y FI(x)3139 1821 y FH(2)3179 1806 y FI(g)3226 1821 y FG(i)2742 1952 y FI(g)2789 1967 y FG(i)2816 1952 y FI(z)33 b FL(=)27 b FI(q)3044 1911 y FH(4)3084 1952 y FI(z)t(g)3180 1967 y FG(i)2736 2097 y FI(g)2783 2112 y FG(i)2811 2097 y FI(u)g FL(=)g FI(q)3044 2056 y FH(5)3084 2097 y FI(ug)3187 2112 y FG(i)2741 2242 y FI(g)2788 2257 y FG(i)2815 2242 y FI(v)32 b FL(=)27 b FI(q)3044 2201 y FH(6)3084 2242 y FI(v)t(g)3182 2257 y FG(i)2719 2388 y FI(g)2766 2403 y FG(i)2794 2388 y FI(w)j FL(=)d FI(q)3044 2346 y FH(2)3084 2388 y FI(w)s(g)3204 2403 y FG(i)1277 5257 y FL(Figure)32 b(4.5:)43 b(Relations)31 b(for)h FI(G)2436 5272 y FH(2)1828 5637 y FL(49)p eop %%Page: 50 52 50 51 bop 257 1237 a FK(Chapter)78 b(5)257 1652 y(Group)g(realization) 257 2105 y FL(In)41 b(this)f(c)m(hapter)h(w)m(e)g(w)m(an)m(t)g(to)f (address)i(the)e(problem)f(of)h(deciding)g(whic)m(h)g(Dynkin)257 2225 y(diagrams)27 b(of)i(\014nite)f(dimensional)e(semisimple)h(Lie)h (algebras)g(can)h(b)s(e)g(realized)f(o)m(v)m(er)h(a)257 2345 y(giv)m(en)g(group.)42 b(This)29 b(means)g(that)g(w)m(e)g(ha)m(v)m (e)i(to)d(\014nd)h(group)g(elemen)m(ts)g(and)g(c)m(haracters)257 2466 y(so)42 b(that)f(the)g(braiding)e(matrix)h(asso)s(ciated)h(with)g (these)h(elemen)m(ts)f(is)g(of)g(the)g(giv)m(en)257 2586 y(Cartan)46 b(t)m(yp)s(e.)82 b(W)-8 b(e)46 b(are)f(still)e(a)i(long)f (w)m(a)m(y)j(from)d(dealing)f(with)i(this)g(question)h(in)257 2707 y(the)34 b(general)f(case)i(and)e(this)g(c)m(hapter)i(is)e(mean)m (t)g(more)g(as)h(a)f(\014rst)h(step)g(and)g(example)257 2827 y(to)m(w)m(ards)g(a)e(deep)s(er)i(theory)-8 b(.)404 2947 y(W)g(e)38 b(will)e(presen)m(t)j(results)g(only)e(for)g(the)i (groups)f(\()p FF(Z)p FI(=)p FL(\()p FI(p)p FL(\)\))2613 2911 y FH(2)2687 2947 y FL(where)h FI(p)f FL(is)g(a)f(prime)257 3068 y(bigger)g(than)i(3.)59 b(This)38 b(will)e(help)i(us)g(to)g (describ)s(e)h(the)f(Hopf)g(algebras)f(of)h(Theorem)257 3188 y(3.4)31 b(ev)m(en)h(more)e(explicitly)f(in)i(the)g(case)h FI(s)27 b FL(=)h(2.)42 b(The)32 b(case)g FI(s)c FL(=)f(1)k(w)m(as)h (done)f(in)f([AS2,)257 3308 y(Section)e(5].)41 b(One)28 b(of)f(the)h(results)f(established)h(there)g(w)m(as)g(that)f(the)h (diagrams)e FI(A)3288 3323 y FH(2)3327 3308 y FI(;)i(B)3456 3323 y FH(2)257 3429 y FL(and)d FI(G)516 3444 y FH(2)581 3429 y FL(are)f(only)h(realizable)e(o)m(v)m(er)j FF(Z)p FI(=)p FL(\()p FI(p)p FL(\))c(with)i FI(p)k FC(\025)g FL(5)c(if)g FC(\000)p FL(3)p FI(;)h FC(\000)p FL(1)g(or)g FC(\000)p FL(3)g(resp)s(ectiv)m(ely)-8 b(,)257 3549 y(is)28 b(a)f(square)i(mo)s(dulo)d FI(p)p FL(.)42 b(In)28 b(Section)g(8)f(of)h (that)g(pap)s(er)f(the)i(authors)f(pro)m(v)m(e)h(some)f(v)m(ery)257 3670 y(nice)36 b(results)f(that)g(place)g(b)s(ounds)h(on)f(the)h(n)m (um)m(b)s(er)f(of)g(v)m(ertices)h(a)f(Dynkin)g(diagram)257 3790 y(can)29 b(ha)m(v)m(e)h(if)d(it)g(is)h(realizable)f(o)m(v)m(er)i (a)f(group.)42 b(F)-8 b(or)28 b(instance,)h(for)f(the)h(groups)g(\()p FF(Z)p FI(=)p FL(\()p FI(p)p FL(\)\))3462 3754 y FG(s)257 3910 y FL(the)37 b(maximal)c(n)m(um)m(b)s(er)j(of)g(v)m(ertices)h(is)f (b)s(ound)g(b)m(y)h(2)p FI(s)f FL(unless)h(the)f(Dynkin)g(diagram)257 4031 y(has)i(comp)s(onen)m(ts)f(of)g(t)m(yp)s(e)h FI(A)1390 4046 y FG(p)p Fx(\000)p FH(1)1520 4031 y FL(.)56 b(In)38 b(this)e(case)i(the)f(b)s(ound)h(can)f(b)s(e)g(raised)g(b)m(y)h(the)257 4151 y(n)m(um)m(b)s(er)i(of)f(suc)m(h)h(comp)s(onen)m(ts.)64 b(This)40 b(estimate)e(uses)j(just)e(simple)f(linear)f(algebra)257 4271 y(and)c(the)g(explicit)e(v)-5 b(alues)33 b(of)f(the)h(determinan)m (ts)f(of)g(the)h(Cartan)g(matrices.)404 4392 y(The)28 b(results)g(in)f(this)g(c)m(hapter)h(will)e(sho)m(w)i(that)g(the)f(b)s (ounds)i(established)e(in)g([AS2,)257 4512 y(Prop)s(ositon)h(8.3])g (are)g(not)h(only)f(necessary)-8 b(,)31 b(but)e(also)e(su\016cien)m(t)j (in)d(most)h(cases)i(when)257 4633 y FI(s)e FL(=)g(2.)41 b(This)26 b(raises)h(the)g(hop)s(e)g(that)f(there)h(is)f(an)h FI(s)2137 4648 y FH(0)2204 4633 y FI(>)g FL(2)g(suc)m(h)h(that)e(for)g (all)f FI(s)i FC(\025)h FI(s)3299 4648 y FH(0)3339 4633 y FI(;)e FL(all)257 4753 y(Dynkin)31 b(diagrams)e(with)i(no)f(more)g (than)h(2)p FI(s)g FL(v)m(ertices)h(are)f(realizable)e(o)m(v)m(er)i(\() p FF(Z)p FI(=)p FL(\()p FI(p)p FL(\)\))3434 4717 y FG(s)3468 4753 y FI(:)404 4873 y FL(W)-8 b(e)35 b(consider)g(from)f(no)m(w)h(on)g FI(\000)45 b FL(:=)32 b(\()p FF(Z)p FI(=)p FL(\()p FI(p)p FL(\)\))2091 4837 y FH(2)2162 4873 y FL(with)i FI(p)e FC(\025)g FL(5)i(a)h(prime)e(and)i(denote)257 4994 y(the)f(group)f(op)s (eration)f(m)m(ultiplicativ)m(ely)-8 b(.)42 b(F)-8 b(rom)32 b(the)i(b)s(ounds)g(men)m(tioned)f(ab)s(o)m(v)m(e)h(w)m(e)257 5114 y(kno)m(w)27 b(that)e(all)e(diagrams)h(realizable)f(o)m(v)m(er)k FI(\000)39 b FL(ha)m(v)m(e)27 b(at)e(most)g(4)g(v)m(ertices,)j(unless)e FI(p)i FL(=)f(5)257 5235 y(when)32 b(the)f(diagram)d(could)i(as)g(w)m (ell)g(b)s(e)g FI(A)1827 5250 y FH(4)1885 5235 y FC([)18 b FI(A)2042 5250 y FH(1)2081 5235 y FL(.)43 b(W)-8 b(e)31 b(pro)m(v)m(e)g(that)f(apart)g(from)g(a)g(few)257 5355 y(exceptions)k(the)f(con)m(v)m(erse)i(is)d(also)g(true.)1828 5637 y(50)p eop %%Page: 51 53 51 52 bop 257 573 a FJ(Theorem)37 b(5.1)98 b FE(A)n(l)5 b(l)42 b(Dynkin)f(diagr)-5 b(ams)40 b(of)i(\014nite)g(typ)-5 b(e)42 b(with)f(at)h(most)g(4)g(vertic)-5 b(es)501 693 y(ar)g(e)35 b(r)-5 b(e)g(alizable)34 b(over)g FI(\000)42 b FL(=)27 b(\()p FF(Z)p FI(=)p FL(\()p FI(p)p FL(\)\))1826 657 y FH(2)1897 693 y FE(for)35 b(al)5 b(l)35 b FI(p)27 b FC(\025)h FL(5)p FI(;)35 b FE(exc)-5 b(ept)617 892 y FC(\017)49 b FI(A)789 907 y FH(4)863 892 y FE(is)35 b(only)g(r)-5 b(e)g(alizable)33 b(when)h FI(p)28 b FC(\021)g FL(1)35 b FE(or)g FL(9)66 b(mo)s(d)32 b(10)p FI(;)617 1050 y FC(\017)49 b FI(A)789 1065 y FH(2)850 1050 y FC([)22 b FI(B)1012 1065 y FH(2)1086 1050 y FE(and)34 b FI(B)1349 1065 y FH(2)1410 1050 y FC([)22 b FI(G)1575 1065 y FH(2)1649 1050 y FE(ar)-5 b(e)35 b(only)f(r)-5 b(e)g(alizable)34 b(when)f FI(p)28 b FL(=)f(12)p FI(d)21 b FC(\006)h FL(1)p FI(;)17 b(d)27 b FC(\025)h FL(1)p FI(:)257 1261 y FJ(Pro)s(of:)49 b FL(W)-8 b(e)31 b(will)d(pro)m(v)m(e)k(this)e(theorem)h(b)m(y)g (giving)e(a)h(nearly)g(explicit)g(description)g(of)501 1381 y(the)23 b(realization,)f(i.e.)39 b(w)m(e)23 b(presen)m(t)h(a)e(w) m(a)m(y)i(of)e(determining)e(the)j(necessary)h(group)501 1501 y(elemen)m(ts)g(and)g(c)m(haracters.)42 b(The)25 b(idea)e(is)h(the)g(same)g(as)g(in)f([AS2,)j(Section)d(5])h(but)501 1622 y(the)38 b(calculations)d(are)i(m)m(uc)m(h)g(more)g(in)m(v)m(olv)m (ed.)57 b(First,)37 b(w)m(e)i(will)34 b(sho)m(w)k(that)f(all)501 1742 y(diagrams)28 b(with)h(4)h(v)m(ertices)g(except)h FI(A)1939 1757 y FH(4)1979 1742 y FL(,)f FI(A)2109 1757 y FH(2)2165 1742 y FC([)16 b FI(B)2321 1757 y FH(2)2390 1742 y FL(and)30 b FI(B)2651 1757 y FH(2)2706 1742 y FC([)16 b FI(G)2865 1757 y FH(2)2935 1742 y FL(are)29 b(realizable)501 1862 y(o)m(v)m(er)34 b FI(\000)14 b FL(.)45 b(All)31 b(diagrams)g(with)i(less)g(than)g(4)g(v)m(ertices)h (are)f(then)g(realizable)e(o)m(v)m(er)501 1983 y FI(\000)46 b FL(as)33 b(w)m(ell,)f(b)s(ecause)h(they)g(are)g(sub)s(diagrams)e(of)g (the)i(diagrams)e(for)g(whic)m(h)i(w)m(e)501 2103 y(established)g(the)g (result)f(already)-8 b(.)501 2263 y(T)g(o)40 b(k)m(eep)h(the)e(presen)m (tation)h(short)g(w)m(e)g(will)d(not)j(deal)e(with)h(eac)m(h)i(case)f (sepa-)501 2383 y(rately)f(but)g(consider)g(man)m(y)g(diagrams)e(sim)m (ultaneously)-8 b(.)62 b(Ho)m(w)m(ev)m(er,)42 b(w)m(e)e(will)501 2504 y(not)33 b(b)s(e)f(to)s(o)g(general,)g(so)h(that)f(readabilit)m(y) f(is)h(still)e(preserv)m(ed.)501 2663 y FJ(P)m(art)37 b(\(a\))224 b FL(The)33 b(\014rst)g(and)g(biggest)f(class)h(of)f (diagrams)f(w)m(e)i(consider)g(is)835 2868 y FI(A)908 2883 y FH(4)948 2868 y FI(;)17 b(B)1066 2883 y FH(4)1105 2868 y FI(;)g(C)1219 2883 y FH(4)1258 2868 y FI(;)g(F)1365 2883 y FH(4)1404 2868 y FI(;)q(A)1505 2883 y FH(3)1566 2868 y FC([)23 b FI(A)1728 2883 y FH(1)1767 2868 y FI(;)17 b(B)1885 2883 y FH(3)1947 2868 y FC([)22 b FI(A)2108 2883 y FH(1)2148 2868 y FI(;)17 b(C)2262 2883 y FH(3)2323 2868 y FC([)22 b FI(A)2484 2883 y FH(1)2524 2868 y FI(;)1432 3013 y(A)1505 3028 y FH(2)1566 3013 y FC([)h FI(A)1728 3028 y FH(2)1767 3013 y FI(;)17 b(A)1884 3028 y FH(2)1946 3013 y FC([)22 b FI(B)2108 3028 y FH(2)2148 3013 y FI(;)17 b(A)2265 3028 y FH(2)2326 3013 y FC([)23 b FI(G)2492 3028 y FH(2)2531 3013 y FI(;)17 b(A)2648 3028 y FH(2)2710 3013 y FC([)22 b FI(A)2871 3028 y FH(1)2933 3013 y FC([)g FI(A)3094 3028 y FH(1)3134 3013 y FI(:)501 3218 y FL(W)-8 b(e)41 b(\014x)g(the)g(en)m(umeration)e(of)h(the)h(v)m(ertices)h(so)e (that)g(it)g(follo)m(ws)f(the)i(w)m(a)m(y)g(w)m(e)501 3338 y(wrote)31 b(the)f(diagrams)e(in)m(tuitiv)m(ely)-8 b(.)41 b(With)30 b(this)g(w)m(e)h(mean)e(that)h(the)h(arro)m(ws)f(are) 501 3459 y(dra)m(wn)35 b(in)e(the)i(directions)e(giv)m(en)h(b)m(y)h (Figure)e(2.1,)i(and)f(the)g(order)g(of)g(the)g(con-)501 3579 y(nected)f(comp)s(onen)m(ts)e(is)g(the)g(same)g(as)g(in)f(the)i (written)f(notation.)41 b(The)32 b(double)501 3700 y(and)f(triple)f (edges)i(are)f(alw)m(a)m(ys)g(last)f(in)h(eac)m(h)g(comp)s(onen)m(t.)43 b(As)32 b(an)f(example)f(w)m(e)501 3820 y(mak)m(e)i(this)g(precise)h (for)f(the)g(diagram)e FI(C)2030 3835 y FH(3)2090 3820 y FC([)22 b FI(A)2251 3835 y FH(1)2290 3820 y FL(.)44 b(The)33 b(\014rst)f(t)m(w)m(o)h(v)m(ertices)g(form)501 3940 y(an)41 b FI(A)718 3955 y FH(2)799 3940 y FL(sub)s(diagram.)67 b(The)42 b(arro)m(w)f(p)s(oin)m(ts)g(from)f(v)m(ertex)j(3)e(to)f(v)m (ertex)j(2)e(and)501 4061 y(v)m(ertex)36 b(4)e(corresp)s(onds)i(to)e (the)g FI(A)1781 4076 y FH(1)1855 4061 y FL(comp)s(onen)m(t.)49 b(The)35 b(c)m(haracteristic)f(feature)501 4181 y(of)k(this)g(class)g (of)g(diagrams)f(is)g(that)h(the)h(\014rst)g(t)m(w)m(o)g(v)m(ertices)g (alw)m(a)m(ys)g(form)e(an)501 4301 y FI(A)574 4316 y FH(2)646 4301 y FL(sub)s(diagram)31 b(and)i FI(a)1416 4316 y FH(24)1519 4301 y FL(=)27 b(0.)501 4461 y(No)m(w,)46 b(assume)e(that)e(the)h(diagrams)e(are)i(realizable)e(o)m(v)m(er)j FI(\000)s(;)f FL(i.e.)74 b(there)43 b(are)501 4582 y FI(g)548 4597 y FH(1)587 4582 y FI(;)17 b(:)g(:)g(:)f(g)809 4597 y FH(4)876 4582 y FC(2)28 b FI(\000)46 b FL(and)31 b(c)m(haracters)i FI(\037)1788 4597 y FH(1)1828 4582 y FI(;)17 b(:)g(:)g(:)f(\037)2064 4597 y FH(4)2131 4582 y FC(2)2246 4556 y FL(^)2225 4582 y FI(\000)46 b FL(so)31 b(that)h(the)g(braiding)e(matrix)501 4702 y(\()p FI(\037)600 4717 y FG(j)637 4702 y FL(\()p FI(g)722 4717 y FG(i)750 4702 y FL(\)\))826 4717 y FG(ij)923 4702 y FL(is)36 b(of)h(the)g (corresp)s(onding)g(\014nite)f(Cartan)h(t)m(yp)s(e.)58 b(W)-8 b(e)37 b(assume)g(that)501 4822 y FI(g)548 4837 y FH(1)627 4822 y FL(and)i FI(g)870 4837 y FH(2)949 4822 y FL(generate)h FI(\000)14 b FL(.)64 b(Then)40 b FI(g)1819 4837 y FH(3)1898 4822 y FL(=)f FI(g)2064 4786 y FG(n)2060 4847 y FH(1)2110 4822 y FI(g)2161 4786 y FG(m)2157 4847 y FH(2)2267 4822 y FL(and)g FI(g)2510 4837 y FH(4)2589 4822 y FL(=)g FI(g)2755 4786 y FG(k)2751 4847 y FH(1)2797 4822 y FI(g)2848 4786 y FG(l)2844 4847 y FH(2)2922 4822 y FL(for)g(some)h(0)f FC(\024)501 4943 y FI(n;)17 b(m;)g(k)s(;)g(l)30 b(<)d(p:)c FL(W)-8 b(e)22 b(set)h FI(q)32 b FL(:=)27 b FI(\037)1656 4958 y FH(1)1696 4943 y FL(\()p FI(g)1781 4958 y FH(1)1820 4943 y FL(\))22 b(and)g(kno)m(w)i(that)e FI(q)2552 4907 y FG(p)2619 4943 y FL(=)27 b(1)p FI(:)22 b FL(Hence,)k FI(\037)3190 4958 y FH(1)3230 4943 y FL(\()p FI(g)3315 4958 y FH(2)3354 4943 y FL(\))h(=)501 5063 y FI(q)548 5027 y FG(t)611 5063 y FL(for)33 b(some)g(0)28 b FC(\024)i FI(t)f(<)f(p:)33 b FL(W)-8 b(e)34 b(can)g(no)m(w)f(express) j FI(\037)2421 5078 y FH(1)2460 5063 y FL(\()p FI(g)2545 5078 y FH(3)2585 5063 y FL(\))d(and)g FI(\037)2907 5078 y FH(1)2947 5063 y FL(\()p FI(g)3032 5078 y FH(4)3071 5063 y FL(\))g(in)f(terms)501 5183 y(of)g FI(q)t(;)17 b(t;)g(m;)g(n;)g(k)35 b FL(and)e FI(l)r FL(.)44 b(Using)32 b(the)h(Cartan)g(condition)e(\(3.3\))1274 5388 y FI(\037)1335 5403 y FG(i)1363 5388 y FL(\()p FI(g)1448 5403 y FG(j)1484 5388 y FL(\))p FI(\037)1583 5403 y FG(j)1620 5388 y FL(\()p FI(g)1705 5403 y FG(i)1733 5388 y FL(\))c(=)h FI(\037)1963 5403 y FG(i)1991 5388 y FL(\()p FI(g)2076 5403 y FG(i)2104 5388 y FL(\))2142 5347 y FG(a)2179 5357 y Fo(ij)2266 5388 y FL(=)g FI(\037)2431 5403 y FG(j)2467 5388 y FL(\()p FI(g)2552 5403 y FG(j)2588 5388 y FL(\))2626 5347 y FG(a)2663 5357 y Fo(j)s(i)3295 5388 y FL(\(5.1\))1828 5637 y(51)p eop %%Page: 52 54 52 53 bop 501 573 a FL(w)m(e)44 b(can)f(also)f(write)h(do)m(wn)h FI(\037)1639 588 y FH(2)1679 573 y FL(\()p FI(g)1764 588 y FH(1)1803 573 y FL(\))p FI(;)f(\037)1972 588 y FH(3)2011 573 y FL(\()p FI(g)2096 588 y FH(1)2135 573 y FL(\))g(and)g FI(\037)2477 588 y FH(4)2517 573 y FL(\()p FI(g)2602 588 y FH(1)2641 573 y FL(\))g(explicitly)-8 b(.)72 b(As)44 b(the)501 693 y(\014rst)35 b(t)m(w)m(o)f(v)m(ertices)h (form)e(an)h FI(A)1685 708 y FH(2)1758 693 y FL(diagram)e(and)i(the)g (third)g(and)g(fourth)f(v)m(ertex)501 814 y(are)e(not)g(connected)h(to) f(the)g(\014rst)g(v)m(ertex)i(directly)d(in)g(all)f(the)i(diagrams)e (of)h(our)501 934 y(class,)44 b(all)c(the)h(braiding)f(matrix)g(en)m (tries)i(determined)f(so)h(far)f(are)g(the)h(same)501 1054 y(for)36 b(all)e(diagrams.)52 b FI(\037)1320 1069 y FH(2)1359 1054 y FL(\()p FI(g)1444 1069 y FH(2)1483 1054 y FL(\))34 b(=)f FI(q)40 b FL(b)s(ecause)d(of)e(\(5.1\),)i(and)f (this)g(lets)f(us)i(express)501 1175 y FI(\037)562 1190 y FH(2)602 1175 y FL(\()p FI(g)687 1190 y FH(3)726 1175 y FL(\))g(and)h FI(\037)1057 1190 y FH(2)1096 1175 y FL(\()p FI(g)1181 1190 y FH(4)1221 1175 y FL(\).)58 b(Using)37 b(\(5.1\))g(again,)g(w)m(e)i(no)m(w)f(\014nd)g FI(\037)2772 1190 y FH(3)2811 1175 y FL(\()p FI(g)2896 1190 y FH(2)2936 1175 y FL(\))f(and)h FI(\037)3267 1190 y FH(4)3306 1175 y FL(\()p FI(g)3391 1190 y FH(2)3430 1175 y FL(\).)501 1295 y(With)33 b(those)h(v)-5 b(alues,)33 b(all)e(remaining)g(en)m (tries)i(of)g(the)h(braiding)d(matrix)h(can)h(b)s(e)501 1416 y(calculated.)43 b(As)33 b(a)f(\014nal)g(result)h(w)m(e)g(get)g (\()p FI(b)2099 1431 y FG(ij)2160 1416 y FL(\))27 b(=)h(\()p FI(\037)2428 1431 y FG(j)2464 1416 y FL(\()p FI(g)2549 1431 y FG(i)2577 1416 y FL(\)\))g(=)572 1543 y Fw(0)572 1718 y(B)572 1778 y(B)572 1842 y(@)754 1614 y FI(q)265 b(q)1109 1578 y Fx(\000)p FG(t)p Fx(\000)p FH(1)1781 1614 y FI(q)1828 1578 y Fx(\000)p FG(n)p Fx(\000)p FG(tm)2766 1614 y FI(q)2813 1578 y Fx(\000)p FG(k)r Fx(\000)p FG(tl)739 1734 y FI(q)786 1698 y FG(t)1150 1734 y FI(q)488 b(q)1728 1698 y FG(tn)p FH(+)p FG(n)p Fx(\000)p FG(m)p FH(+)p FG(a)2103 1707 y Fy(23)2747 1734 y FI(q)2794 1698 y FG(tk)r FH(+)p FG(k)r Fx(\000)p FG(l)659 1862 y FI(q)706 1826 y FG(n)p FH(+)p FG(tm)979 1862 y FI(q)1026 1826 y Fx(\000)p FG(tn)p Fx(\000)p FG(n)p FH(+)p FG(m)1569 1862 y FI(q)1616 1826 y Fx(\000)p FG(n)1714 1803 y Fy(2)1748 1826 y FH(+)p FG(nm)p Fx(\000)p FG(m)2025 1803 y Fy(2)2060 1826 y FH(+)p FG(a)2152 1835 y Fy(23)2218 1826 y FG(m)2485 1862 y FI(q)2532 1826 y Fx(\000)p FG(k)r(n)p Fx(\000)p FG(tl)q(n)p FH(+)p FG(tk)r(m)p FH(+)p FG(k)r(m)p Fx(\000)p FG(l)q(m)681 1990 y FI(q)728 1954 y FG(k)r FH(+)p FG(tl)1003 1990 y FI(q)1050 1954 y Fx(\000)p FG(tk)r Fx(\000)p FG(k)r Fx(\000)p FG(l)1451 1990 y FI(q)1498 1954 y Fx(\000)p FG(nk)r Fx(\000)p FG(tmk)r FH(+)p FG(tnl)q FH(+)p FG(nl)q Fx(\000)p FG(ml)q FH(+)p FG(a)2312 1963 y Fy(23)2376 1954 y FG(l)2687 1990 y FI(q)2734 1954 y Fx(\000)p FG(k)2828 1930 y Fy(2)2862 1954 y FH(+)p FG(k)r(l)q Fx(\000)p FG(l)3055 1930 y Fy(2)3294 1543 y Fw(1)3294 1718 y(C)3294 1778 y(C)3294 1842 y(A)3398 1803 y FI(:)501 2182 y FL(W)-8 b(e)42 b(note)g(that)f(the)h(parameter)f FI(t)g FL(is)g(cancelled)g(in) g(the)h(expressions)h(for)e(the)501 2302 y(diagonal)28 b(elemen)m(ts.)43 b(Some)29 b(of)h(the)g(en)m(tries)h(can)f(b)s(e)h (calculated)e(using)g(\(5.1\))h(in)501 2423 y(a)24 b(di\013eren)m(t)g (w)m(a)m(y)g(whic)m(h)h(leads)e(to)h(three)g(imp)s(ortan)m(t)e (compatibilit)m(y)e(conditions.)501 2581 y(First,)39 b FI(\037)834 2596 y FH(3)874 2581 y FL(\()p FI(g)959 2596 y FH(3)998 2581 y FL(\))f(can)h(b)s(e)f(determined)h(from)e FI(\037)2210 2596 y FH(2)2249 2581 y FL(\()p FI(g)2334 2596 y FH(2)2374 2581 y FL(\))h(directly)g(b)m(y)h(the)g(last)e(part) 501 2702 y(of)46 b(\(5.1\).)85 b(W)-8 b(e)47 b(\014nd)g FI(\037)1391 2717 y FH(3)1431 2702 y FL(\()p FI(g)1516 2717 y FH(3)1555 2702 y FL(\))k(=)g FI(q)1818 2666 y FG(x)1908 2702 y FL(where)d FI(x)k FL(:=)f FI(a)2516 2717 y FH(23)2591 2702 y FI(=a)2691 2717 y FH(32)2812 2702 y FL(unless)d FI(a)3166 2717 y FH(32)3292 2702 y FL(=)j(0)p FI(;)501 2822 y FL(as)42 b(is)e(the)i(case)g(for)f(the)g (last)g(four)f(diagrams)g(of)g(our)h(class.)70 b(Then)42 b FI(x)g FL(is)e(not)501 2943 y(further)c(determined.)50 b(Comparing)34 b(this)h(with)f(the)i(expression)g(found)f(so)h(far,)501 3063 y(w)m(e)27 b(get)f(the)g(condition)e(\(5.2\).)40 b(Next,)28 b(w)m(e)f(can)f(determine)f FI(\037)2722 3078 y FH(4)2762 3063 y FL(\()p FI(g)2847 3078 y FH(4)2886 3063 y FL(\))g(directly)g(from)501 3183 y FI(\037)562 3198 y FH(3)602 3183 y FL(\()p FI(g)687 3198 y FH(3)726 3183 y FL(\),)37 b(when)g(v)m(ertices)g(3)f(and)g(4)g(are)g(connected.) 55 b(In)37 b(this)e(case)i FI(\037)3064 3198 y FH(4)3104 3183 y FL(\()p FI(g)3189 3198 y FH(4)3228 3183 y FL(\))c(=)h FI(q)3456 3147 y FG(z)501 3304 y FL(with)23 b FI(z)33 b FL(:=)27 b FI(xa)1028 3319 y FH(34)1104 3304 y FI(=a)1204 3319 y FH(43)1278 3304 y FI(:)d FL(When)g FI(a)1655 3319 y FH(43)1758 3304 y FL(=)j(0)d(w)m(e)g(again)e(lea)m(v)m(e)i FI(z)k FL(not)23 b(further)h(sp)s(eci\014ed.)501 3424 y(This)38 b(time)f(the)h(compatibilit)m(y)c(b)s(et)m(w)m(een)40 b(the)f(di\013eren)m(t)f(w)m(a)m(ys)h(of)f(calculating)501 3544 y(the)24 b(matrix)f(elemen)m(ts)h(leads)g(us)g(to)f(\(5.3\).)41 b(Finally)-8 b(,)22 b(w)m(e)j(can)f(apply)g(\(5.1\))f(to)h(\014nd)501 3665 y(that)33 b FI(\037)774 3680 y FH(3)814 3665 y FL(\()p FI(g)899 3680 y FH(3)938 3665 y FL(\))p FI(\037)1037 3680 y FH(4)1077 3665 y FL(\()p FI(g)1162 3680 y FH(4)1201 3665 y FL(\))c(=)g FI(q)1420 3629 y FG(xa)1497 3638 y Fy(34)1566 3665 y FL(.)46 b(Comparing)32 b(this)h(to)g(the)h (expressions)h(found)f(so)501 3785 y(far)e(giv)m(es)h(us)g(\(5.4\).)43 b(These)35 b(are)d FE(al)5 b(l)43 b FL(relations.)501 3944 y(W)-8 b(e)35 b(list)f(the)h(p)s(ossible)f(v)-5 b(alues)35 b(for)f(the)h(ab)s(o)m(v)m(e)h(parameters)e(for)h(eac)m(h)g (diagram)501 4064 y(explicitly)d(in)g(T)-8 b(able)33 b(5.1.)45 b(Let)33 b(us)h(no)m(w)g(lo)s(ok)e(at)h(the)h(system)g(of)f (equations)g(w)m(e)501 4185 y(ha)m(v)m(e)h(found.)1208 4383 y FC(\000)p FI(n)1343 4342 y FH(2)1405 4383 y FL(+)22 b FI(nm)h FC(\000)f FI(m)1853 4342 y FH(2)1915 4383 y FL(+)g FI(a)2064 4398 y FH(23)2139 4383 y FI(m)28 b FL(=)g FI(x)197 b FL(mo)s(d)33 b FI(p)417 b FL(\(5.2\))1656 4529 y FC(\000)p FI(k)1787 4487 y FH(2)1849 4529 y FL(+)22 b FI(k)s(l)i FC(\000)f FI(l)2185 4487 y FH(2)2252 4529 y FL(=)28 b FI(z)202 b FL(mo)s(d)32 b FI(p)423 b FL(\(5.3\))993 4674 y FI(k)s FL(\()p FI(m)23 b FC(\000)f FL(2)p FI(n)p FL(\))g(+)g FI(l)r FL(\()p FI(n)h FC(\000)f FL(2)p FI(m)h FL(+)f FI(a)2112 4689 y FH(23)2187 4674 y FL(\))27 b(=)h FI(xa)2462 4689 y FH(34)2734 4674 y FL(mo)s(d)k FI(p)292 b FL(\(5.4\))501 4872 y(F)-8 b(rom)31 b(no)m(w)j(on)e(all)e (calculations)h(will)f(b)s(e)j(made)f(mo)s(dulo)f FI(p)p FL(.)501 5031 y(A)f(linear)d(transformation)g(helps)j(to)e(bring)h(the) g(ab)s(o)m(v)m(e)h(equations)g(in)m(to)e(a)h(nicer)501 5152 y(form.)43 b(W)-8 b(e)32 b(set)623 5370 y FI(a)c FL(:=)842 5302 y FI(m)23 b FL(+)f FI(n)g FC(\000)h FI(a)1279 5317 y FH(23)p 842 5347 512 4 v 1074 5438 a FL(2)1364 5370 y FI(;)212 b(b)28 b FL(:=)1812 5302 y(3)p FI(m)23 b FC(\000)f FL(3)p FI(n)g FC(\000)h FI(a)2348 5317 y FH(23)p 1812 5347 611 4 v 2093 5438 a FL(2)2530 5370 y(and)98 b FI(y)31 b FL(:=)d(3)p FI(x)22 b FC(\000)h FI(a)3272 5328 y FH(2)3272 5394 y(23)3346 5370 y FI(:)1828 5637 y FL(52)p eop %%Page: 53 55 53 54 bop 501 573 a FL(Then)34 b(\(5.2\)-\(5.4\))d(can)i(b)s(e)g (rewritten)f(as)1926 793 y(3)p FI(a)2026 752 y FH(2)2087 793 y FL(+)22 b FI(b)2226 752 y FH(2)2289 793 y FL(+)g FI(y)30 b FL(=)e(0)p FI(;)650 b FL(\(5.5\))1776 938 y FI(k)1830 897 y FH(2)1892 938 y FC(\000)23 b FI(k)s(l)h FL(+)e FI(l)2228 897 y FH(2)2290 938 y FL(+)g FI(z)32 b FL(=)c(0)p FI(;)650 b FL(\(5.6\))1352 1083 y FI(k)s FL(\()p FI(a)22 b FC(\000)h FI(b)p FL(\))f(+)g FI(l)r FL(\()p FI(a)h FL(+)f FI(b)p FL(\))g(+)g FI(xa)2362 1098 y FH(34)2465 1083 y FL(=)28 b(0)p FI(:)650 b FL(\(5.7\))501 1303 y(The)44 b(\014rst)f(thing)f(to)g(notice)h(is)f(that)g(\(5.5\))h (alw)m(a)m(ys)g(has)g(a)f(solution)3123 1267 y FH(1)3204 1303 y FL(.)74 b(This)501 1424 y(can)38 b(easily)e(b)s(e)h(seen)i(b)m (y)f(the)f(follo)m(wing)d(argumen)m(t.)57 b(As)38 b FI(a)f FL(runs)h(through)f(the)501 1544 y(n)m(um)m(b)s(ers)32 b(0)e(till)d FI(p)18 b FC(\000)g FL(1)p FI(;)31 b FL(the)g(expression)g (3)p FI(a)2123 1508 y FH(2)2193 1544 y FL(tak)m(es)2451 1500 y FG(p)p FH(+1)p 2451 1521 126 4 v 2496 1579 a(2)2617 1544 y FL(di\013eren)m(t)g(v)-5 b(alues.)42 b(The)501 1673 y(expression)47 b FC(\000)p FI(b)1102 1637 y FH(2)1174 1673 y FC(\000)32 b FI(y)48 b FL(has)f(also)1785 1630 y FG(p)p FH(+1)p 1785 1651 V 1831 1708 a(2)1967 1673 y FL(di\013eren)m(t)f(v)-5 b(alues)46 b(for)f(all)f(the)i(p)s(ossible) 501 1794 y(v)-5 b(alues)30 b(for)g FI(b)p FL(.)43 b(Assume)32 b(that)e(all)e(these)k(v)-5 b(alues)30 b(are)g(di\013eren)m(t.)43 b(This)31 b(means)f(w)m(e)501 1914 y(ha)m(v)m(e)40 b(altogether)e(2) 1258 1870 y FG(p)p FH(+1)p 1258 1891 V 1303 1949 a(2)1432 1914 y FL(=)g FI(p)26 b FL(+)h(1)38 b(v)-5 b(alues.)62 b(But)39 b(mo)s(dulo)e FI(p)i FL(there)g(are)g(only)f FI(p)501 2035 y FL(n)m(um)m(b)s(ers.)44 b(Hence)31 b(there)g(is)e(at)h (least)g(one)g(solution.)41 b(Actually)-8 b(,)30 b(there)h(are)f(ev)m (en)501 2155 y(6)p FI(d)f FL(solutions)f(for)h(ev)m(ery)i(prime)d FI(p)h FL(of)g(the)h(form)e FI(p)g FL(=)f(6)p FI(d)15 b FC(\006)g FL(1.)43 b(This)30 b(can)f(b)s(e)h(seen)501 2275 y(b)m(y)k(considering)e(the)h(homogeneous)f(equation)1598 2495 y(3)q(~)-50 b FI(a)1698 2454 y FH(2)1760 2495 y FL(+)1854 2469 y(~)1858 2495 y FI(b)1899 2454 y FH(2)1961 2495 y FL(+)22 b FI(y)t(c)2153 2454 y FH(2)2219 2495 y FL(=)28 b(0)p FI(;)896 b FL(\(5.8\))501 2715 y(whic)m(h)32 b(w)m(e)g(get)e(b)m(y)i(m)m(ultiplying)c(\(5.5\))i(b)m(y)i FI(c)2141 2679 y FH(2)2211 2715 y FL(and)f(setting)h(~)-50 b FI(a)27 b FL(=)h FI(ac)j FL(and)3208 2689 y(~)3212 2715 y FI(b)d FL(=)g FI(bc:)501 2836 y FL(F)-8 b(or)27 b(suc)m(h)i(equations)f(there)g(is)f(a)h(nice)f(theory)-8 b(,)30 b(and)d(w)m(e)i(can)f(get)g(the)g(n)m(um)m(b)s(er)g(of)501 2956 y(solutions)37 b(from)g([BS)q(,)i(Theorem)g(2,)g(p.25].)61 b(The)39 b(Gaussian)f(sums)g(app)s(earing)501 3077 y(there)29 b(are)e(zero)i(in)e(our)g(case)i(and)f(the)g(n)m(um)m(b)s(er)g(of)f (solutions)g(of)g(\(5.8\))g(is)h(just)g FI(p)3456 3040 y FH(2)501 3197 y FL(for)i(all)f(primes)h FI(p)p FL(.)43 b(If)30 b FC(\000)p FL(3)h(is)g(not)f(a)h(square)g(mo)s(dulo)e FI(p;)i FL(then)g(there)g(is)g(only)f(one)501 3317 y(solution)k(\(the)h (trivial)d(one\))j(with)f FI(c)e FL(=)f(0.)50 b(This)35 b(solution)e(do)s(es)i(not)g(lead)f(to)g(a)501 3438 y(solution)g(of)h (the)h(original)c(problem)i(\(5.5\),)h(and)h(all)d(other)i(solutions)g (pro)s(duce)501 3558 y FI(p)26 b FC(\000)f FL(1)37 b(times)g(the)g (same)g(solution)f(for)h(the)g(original)d(equation,)39 b(as)e FI(c)g FL(acts)h(lik)m(e)501 3678 y(a)45 b(scaling.)80 b(Hence,)50 b(when)d FC(\000)p FL(3)e(is)g(not)g(a)g(square)h(\(5.5\))f (has)2916 3635 y FG(p)2952 3611 y Fy(2)2986 3635 y Fx(\000)p FH(1)p 2916 3656 161 4 v 2933 3713 a FG(p)p Fx(\000)p FH(1)3135 3678 y FL(=)k FI(p)31 b FL(+)f(1)501 3809 y(solutions.)41 b(When)29 b FC(\000)p FL(3)f(is)g(a)f(square,)j(there)f(are)f(2\()p FI(p)13 b FC(\000)g FL(1\))g(+)g(1)26 b(solutions)h(of)h(\(5.8\))501 3929 y(with)h FI(c)f FL(=)f(0)p FI(;)i FL(and)g(therefore,)i FI(p)1667 3893 y FH(2)1722 3929 y FC(\000)15 b FL(2)p FI(p)g FL(+)g(1)29 b(solutions)f(whic)m(h)i(giv)m(e)f(a)g(solution)f (of)501 4050 y(\(5.5\).)42 b(Again,)29 b(due)h(to)f(the)h(scaling,)f FI(p)16 b FC(\000)g FL(1)29 b(of)g(the)g(solutions)g(lead)f(to)i(the)f (same)501 4182 y(v)-5 b(alues)35 b(for)g FI(a)h FL(and)f FI(b)p FL(.)52 b(Hence,)37 b(if)e FC(\000)p FL(3)g(is)g(a)g(square)h (\(5.5\))f(has)2836 4138 y FG(p)2872 4115 y Fy(2)2906 4138 y Fx(\000)p FH(2)p FG(p)p FH(+1)p 2836 4159 286 4 v 2916 4216 a FG(p)p Fx(\000)p FH(1)3164 4182 y FL(=)d FI(p)24 b FC(\000)g FL(1)501 4302 y(solutions.)78 b(Using)44 b(the)h(quadratic)f(recipro)s(cit)m(y)g(la)m(w)g(w)m(e)h(\014nd)g(that) f FC(\000)p FL(3)h(is)e(a)501 4423 y(square)34 b(only)e(for)g(primes)g FI(p)g FL(of)h(the)g(form)e FI(p)c FL(=)h(6)p FI(d)22 b FL(+)g(1)p FI(:)501 4585 y FL(As)28 b FI(p)g FC(\025)g FL(5)f(w)m(e)i(kno)m(w)f(that)f(\(5.5\))g(has)h(at)f(least)g(6)g (solutions.)41 b(Therefore,)29 b(w)m(e)g(can)501 4705 y(alw)m(a)m(ys)j(pic)m(k)f(a)g(solution)e(with)h FI(a)e FC(6)p FL(=)g FI(b)p FL(,)k(as)f(this)f(corresp)s(onds)i(to)f(2)g (solutions)f(at)501 4825 y(most.)44 b(Then)34 b(w)m(e)g(can)f(solv)m(e) h(\(5.7\))e(for)h FI(k)j FL(and)d(substitute)g(the)h(result)e(in)h (\(5.6\).)p 257 4894 1296 4 v 370 4955 a FB(1)407 4985 y FA(W)-7 b(e)29 b(thank)f(Ric)n(hard)g(Pink,)h(Bernd)f(Herzog)f(and)h (Istv\023)-42 b(an)29 b(Hec)n(k)n(en)n(b)r(erger)d(for)i(some)g(useful) h(tips)257 5085 y(concerning)e(this)h(equation.)1828 5637 y FL(53)p eop %%Page: 54 56 54 55 bop 640 557 a FL(Diagram)p 1152 594 4 121 v 193 w FI(a)1254 572 y FH(23)1429 557 y FI(a)1480 572 y FH(34)1700 557 y FI(x)194 b(y)202 b(z)p 2348 594 V 182 w(D)30 b FL(=)e(4)p FI(y)t(z)e FC(\000)c FL(3)p FI(x)3016 521 y FH(2)3056 557 y FI(a)3107 521 y FH(2)3107 582 y(34)p 495 597 2764 4 v 768 681 a FI(A)841 696 y FH(4)p 1152 717 4 121 v 1203 681 a FC(\000)p FL(1)100 b FC(\000)p FL(1)149 b(1)197 b(2)j(1)p 2348 717 V 356 w(8)22 b FC(\000)h FL(3)k(=)h(5)767 802 y FI(B)841 817 y FH(4)p 1152 838 V 1203 802 a FC(\000)p FL(1)100 b FC(\000)p FL(1)149 b(1)197 b(2)151 b(1)p FI(=)p FL(2)p 2348 838 V 287 w(4)22 b FC(\000)h FL(3)k(=)h(1)2984 765 y FH(2)769 922 y FI(C)839 937 y FH(4)p 1152 958 V 1203 922 a FC(\000)p FL(1)100 b FC(\000)p FL(2)149 b(1)197 b(2)j(2)p 2348 958 V 288 w(16)21 b FC(\000)i FL(12)k(=)h(2)3033 886 y FH(2)773 1042 y FI(F)836 1057 y FH(4)p 1152 1078 V 1203 1042 a FC(\000)p FL(2)100 b FC(\000)p FL(1)149 b(2)197 b(2)j(2)p 2348 1078 V 288 w(16)21 b FC(\000)i FL(12)k(=)h(2)3033 1006 y FH(2)656 1163 y FI(A)729 1178 y FH(3)791 1163 y FC([)22 b FI(A)952 1178 y FH(1)p 1152 1199 V 1203 1163 a FC(\000)p FL(1)139 b(0)187 b(1)197 b(2)j FI(z)p 2348 1199 V 511 w FL(8)p FI(z)656 1283 y(B)730 1298 y FH(3)791 1283 y FC([)23 b FI(A)953 1298 y FH(1)p 1152 1319 V 1203 1283 a FC(\000)p FL(1)139 b(0)f(1)p FI(=)p FL(2)99 b(1)p FI(=)p FL(2)151 b FI(z)p 2348 1319 V 511 w FL(2)p FI(z)658 1403 y(C)728 1418 y FH(3)789 1403 y FC([)23 b FI(A)951 1418 y FH(1)p 1152 1440 V 1203 1403 a FC(\000)p FL(2)139 b(0)187 b(2)197 b(2)j FI(z)p 2348 1440 V 511 w FL(8)p FI(z)656 1524 y(A)729 1539 y FH(2)791 1524 y FC([)22 b FI(A)952 1539 y FH(2)p 1152 1560 V 1242 1524 a FL(0)138 b FC(\000)p FL(1)145 b FI(x)167 b FL(3)p FI(x)j(x)p 2348 1560 V 149 w FL(12)p FI(x)2553 1488 y FH(2)2614 1524 y FC(\000)23 b FL(3)p FI(x)2818 1488 y FH(2)2885 1524 y FL(=)28 b(\(3)p FI(x)p FL(\))3169 1488 y FH(2)656 1644 y FI(A)729 1659 y FH(2)790 1644 y FC([)23 b FI(B)953 1659 y FH(2)p 1152 1680 V 1242 1644 a FL(0)138 b FC(\000)p FL(1)145 b FI(x)167 b FL(3)p FI(x)121 b(x=)p FL(2)p 2348 1680 V 162 w(6)p FI(x)2566 1608 y FH(2)2628 1644 y FC(\000)22 b FL(3)p FI(x)2831 1608 y FH(2)2899 1644 y FL(=)27 b(3)p FI(x)3106 1608 y FH(2)654 1765 y FI(A)727 1780 y FH(2)789 1765 y FC([)22 b FI(G)954 1780 y FH(2)p 1152 1801 V 1242 1765 a FL(0)138 b FC(\000)p FL(1)145 b FI(x)167 b FL(3)p FI(x)121 b(x=)p FL(3)p 2348 1801 V 186 w(4)p FI(x)2590 1728 y FH(2)2652 1765 y FC(\000)23 b FL(3)p FI(x)2856 1728 y FH(2)2923 1765 y FL(=)k FI(x)3081 1728 y FH(2)545 1885 y FI(A)618 1900 y FH(2)679 1885 y FC([)c FI(A)841 1900 y FH(1)902 1885 y FC([)g FI(A)1064 1900 y FH(1)p 1152 1921 V 1242 1885 a FL(0)177 b(0)183 b FI(x)167 b FL(3)p FI(x)173 b(z)p 2348 1921 V 458 w FL(12)p FI(xz)p 495 1924 2764 4 v 948 2193 a FL(T)-8 b(able)32 b(5.1:)43 b(P)m(arameters)33 b(for)f(Dynkin)h(diagrams)501 2478 y(After)g(some)f(reordering)g(w)m(e)i(get)803 2609 y Fw(")861 2639 y(\022)946 2712 y FI(a)22 b FL(+)g FI(b)p 945 2757 215 4 v 945 2848 a(a)g FC(\000)h FI(b)1169 2639 y Fw(\023)1243 2661 y FH(2)1304 2780 y FL(+)1413 2712 y FI(a)f FL(+)g FI(b)p 1412 2757 V 1412 2848 a(a)g FC(\000)h FI(b)1659 2780 y FL(+)f(1)1806 2609 y Fw(#)1880 2780 y FI(l)1911 2738 y FH(2)1973 2780 y FL(+)2071 2639 y Fw(\024)2133 2712 y FL(2\()p FI(a)h FL(+)f FI(b)p FL(\))p FI(xa)2577 2727 y FH(34)p 2133 2757 519 4 v 2228 2848 a FL(\()p FI(a)g FC(\000)h FI(b)p FL(\))2518 2819 y FH(2)2684 2780 y FL(+)2809 2712 y FI(xa)2915 2727 y FH(34)p 2792 2757 215 4 v 2792 2848 a FI(a)g FC(\000)f FI(b)3017 2639 y Fw(\025)3086 2780 y FI(l)r FL(+)1973 3112 y(+)2071 2941 y Fw(")2129 2971 y(\022)2229 3044 y FI(xa)2335 3059 y FH(34)p 2212 3089 V 2212 3180 a FI(a)h FC(\000)f FI(b)2437 2971 y Fw(\023)2510 2993 y FH(2)2572 3112 y FL(+)g FI(z)2719 2941 y Fw(#)2805 3112 y FL(=)28 b(0)p FI(:)501 3419 y FL(Multiplying)34 b(b)m(y)j(the)f(common)f(denominator,)g(simplifying)e (and)j(using)g(\(5.5\))501 3539 y(w)m(e)e(arriv)m(e)e(at)1039 3759 y FI(y)t(l)1122 3718 y FH(2)1183 3759 y FC(\000)22 b FL(\(3)p FI(a)g FL(+)g FI(b)p FL(\))p FI(xa)1725 3774 y FH(34)1801 3759 y FI(l)j FC(\000)d FL(\()p FI(x)2047 3718 y FH(2)2087 3759 y FI(a)2138 3718 y FH(2)2138 3784 y(34)2235 3759 y FL(+)g FI(z)t FL(\()p FI(a)h FC(\000)g FI(b)p FL(\))2673 3718 y FH(2)2713 3759 y FL(\))k(=)h(0)p FI(:)501 3979 y FL(F)-8 b(or)32 b(the)h(discriminan)m(t)d(of)j(this)f (quadratic)g(equation)g(w)m(e)i(calculate)588 4127 y Fw(\022)671 4200 y FL(\(3)p FI(a)22 b FL(+)g FI(b)p FL(\))p FI(xa)1114 4215 y FH(34)p 671 4245 519 4 v 880 4336 a FL(2)p FI(y)1200 4127 y Fw(\023)1273 4149 y FH(2)1335 4268 y FL(+)1442 4200 y FI(x)1497 4164 y FH(2)1537 4200 y FI(a)1588 4164 y FH(2)1588 4225 y(34)1685 4200 y FL(+)g FI(z)t FL(\()p FI(a)h FC(\000)g FI(b)p FL(\))2123 4164 y FH(2)p 1442 4245 721 4 v 1777 4336 a FI(y)2201 4268 y FL(=)2304 4127 y Fw(\022)2387 4200 y FI(a)g FC(\000)f FI(b)p 2387 4245 215 4 v 2445 4336 a FL(2)p FI(y)2612 4127 y Fw(\023)2685 4149 y FH(2)2741 4187 y Fw(\002)2783 4268 y FL(4)p FI(y)t(z)k FC(\000)c FL(3)p FI(x)3158 4226 y FH(2)3198 4268 y FI(a)3249 4226 y FH(2)3249 4292 y(34)3324 4187 y Fw(\003)3382 4268 y FI(:)501 4539 y FL(Hence,)37 b(our)d(system)i(of)e(equations)h(has)g(a)f(solution)f(mo)s(dulo)g FI(p)h FL(if)g(and)g(only)g(if)501 4660 y FI(D)f FL(:=)d(4)p FI(y)t(z)c FC(\000)e FL(3)p FI(x)1125 4624 y FH(2)1164 4660 y FI(a)1215 4624 y FH(2)1215 4684 y(34)1324 4660 y FL(is)33 b(a)h(square)h(mo)s(dulo)d FI(p)p FL(.)47 b(All)32 b(the)i(v)-5 b(alues)34 b(of)f(the)i(param-)501 4780 y(eters)k(for)f(our)g(class)g(of)g(Dynkin)g(diagrams)e(are)i(giv)m (en)g(in)g(T)-8 b(able)38 b(5.1.)59 b(In)39 b(the)501 4900 y(cases)j(where)g FI(a)1095 4915 y FH(23)1211 4900 y FL(=)f(0)f(or)g FI(a)1595 4915 y FH(34)1711 4900 y FL(=)h(0)f(w)m(e)i(can)f(freely)f(c)m(ho)s(ose)i(the)e(v)-5 b(alues)41 b(of)f FI(x)501 5021 y FL(or)35 b FI(z)k FL(resp)s(ectiv)m (ely)-8 b(.)51 b(So)34 b(w)m(e)i(see)g(that)e FI(D)j FL(is)e(or)f(can)h(b)s(e)g(made)f(a)g(square)i(for)e(all)501 5141 y(diagrams)d(except)k(for)d FI(A)1448 5156 y FH(4)1521 5141 y FL(and)h FI(A)1784 5156 y FH(2)1846 5141 y FC([)22 b FI(B)2008 5156 y FH(2)2048 5141 y FL(.)44 b(F)-8 b(or)32 b(these)j(w)m(e)f(need)g(5)e(or)h(3)f(resp)s(ec-)501 5262 y(tiv)m(ely)e(to)g(b)s(e)h(a)f(square)i(mo)s(dulo)c FI(p)p FL(.)43 b(According)30 b(to)g(the)h(quadratic)f(recipro)s(cit)m (y)501 5382 y(la)m(w)g(this)g(happ)s(ens)h(if)d FI(p)g FL(=)g FC(\006)p FL(1)66 b(mo)s(d)33 b(10)c(or)h FI(p)d FL(=)h(12)p FI(d)16 b FC(\006)i FL(1)p FI(;)29 b FL(resp)s(ectiv)m(ely) -8 b(.)44 b(After)1828 5637 y(54)p eop %%Page: 55 57 55 56 bop 501 573 a FL(c)m(ho)s(osing)35 b(a)h(solution)e(of)h(\(5.5\)) g(with)g FI(a)e FC(6)p FL(=)g FI(b)j FL(w)m(e)h(can)f(determine)f FI(k)k FL(and)c FI(l)j FL(and)501 693 y(th)m(us)c(\014nd)f(an)f (explicit)g(realization)d(of)k(these)g(diagrams)e(o)m(v)m(er)j FI(\000)14 b FL(.)501 855 y(One)39 b(could)f(argue)h(that)f(the)h (assumptions)f(made)g(at)h(the)f(b)s(eginning)f(of)i(this)501 976 y(calculation)f(are)j(to)s(o)e(sp)s(ecial)h(and)h(other)f(c)m (hoices)h(will)e(mak)m(e)h(it)g(p)s(ossible)g(to)501 1096 y(realize)32 b FI(A)878 1111 y FH(4)950 1096 y FL(and)g FI(A)1212 1111 y FH(2)1274 1096 y FC([)23 b FI(B)1437 1111 y FH(2)1509 1096 y FL(as)33 b(w)m(ell.)42 b(So)33 b(let)f(us)h(consider)g(this)f(more)g(closely)-8 b(.)501 1258 y(First)30 b(w)m(e)h(see)h(that)e(w)m(e)h(can)g(not)f(ha)m(v)m(e)i FI(a)c FL(=)f FI(b)k FL(and)g FI(a)d FL(=)f FC(\000)p FI(b)k FL(sim)m(ultaneously)-8 b(,)30 b(as)501 1378 y(\(5.5\))d(w)m (ould)h(giv)m(e)g FI(y)j FL(=)c(0.)42 b(Ho)m(w)m(ev)m(er,)31 b(T)-8 b(able)27 b(5.1)h(sho)m(ws)h(that)f FI(y)i FC(6)p FL(=)e(0)p FI(:)f FL(W)-8 b(e)29 b(recall)501 1499 y(that)j FI(x)g FL(and)g FI(z)37 b FL(are)32 b(not)f(zero,)i(b)s(ecause)g(the)f (diagonal)e(elemen)m(ts)i(of)f(a)h(braiding)501 1619 y(matrix)38 b(of)h(Cartan)h(t)m(yp)s(e)g(are)g(di\013eren)m(t)g(from)e (1)h(\(3.2\).)64 b(No)m(w)40 b(w)m(e)h(notice)e(the)501 1739 y(follo)m(wing)29 b(symmetry)-8 b(.)43 b(\(5.6\))31 b(do)s(es)g(not)h(c)m(hange)g(if)e FI(k)k FL(and)d FI(l)j FL(are)d(in)m(terc)m(hanged.)501 1860 y(If)26 b(w)m(e)h(also)e(send)i FI(b)g FL(to)e FC(\000)p FI(b;)i FL(w)m(e)g(see)h(that)d(the)i(whole)f (system)g(of)g(equations)g(\(5.5\)-)501 1980 y(\(5.7\))35 b(is)f(unc)m(hanged.)53 b(So)35 b(the)g(case)h FI(a)c FL(=)g FI(b)g FC(6)p FL(=)g(0)j(leads)g(to)f(basically)g(the)h FE(same)501 2100 y FL(solution)e(as)h FI(a)c FC(6)p FL(=)g FI(b)k FL(if)f(w)m(e)i(set)f FI(a)c FL(=)g FC(\000)p FI(b:)35 b FL(Therefore,)g(the)g(crucial)d(discriminan)m(t)501 2221 y(is)g(the)h(same)g(to)s(o)e(and)i(w)m(e)h(get)e(the)h(same)g (conditions.)501 2383 y(W)-8 b(e)35 b(no)m(w)g(only)f(consider)h FI(A)1547 2398 y FH(4)1586 2383 y FI(:)g FL(W)-8 b(e)34 b(will)e(come)j(bac)m(k)g(to)f(the)h(diagram)d FI(A)3229 2398 y FH(2)3292 2383 y FC([)24 b FI(B)3456 2398 y FH(2)501 2503 y FL(when)36 b(w)m(e)g(deal)f(with)f FI(B)1411 2518 y FH(2)1475 2503 y FC([)24 b FI(G)1642 2518 y FH(2)1681 2503 y FL(.)51 b(So)35 b(what)g(if)f FI(g)2282 2518 y FH(1)2356 2503 y FL(and)h FI(g)2595 2518 y FH(2)2669 2503 y FL(do)g(not)g(generate)g FI(\000)14 b FL(?)501 2623 y(Then)25 b FI(g)794 2638 y FH(2)861 2623 y FL(=)i FI(g)1015 2587 y FG(a)1011 2648 y FH(1)1080 2623 y FL(for)c(some)g FI(a)28 b FC(2)g FF(Z)p FI(=)p FL(\()p FI(p)p FL(\))p FI(:)21 b FL(W)-8 b(e)24 b(kno)m(w)h(from)d([AS2,)k(Prop)s(osition)21 b(5.1.])501 2744 y(that)30 b FI(g)757 2759 y FH(3)825 2744 y FL(can)g(not)g(b)s(e)g(a)f(p)s(o)m(w)m(er)i(of)e FI(g)1817 2759 y FH(1)1886 2744 y FL(as)g(w)m(ell,)h(b)s(ecause)h(then) f(w)m(e)h(w)m(ould)e(ha)m(v)m(e)i(a)501 2864 y(diagram)f(with)i(3)g(v)m (ertices)h(realizable)d(o)m(v)m(er)k FF(Z)p FI(=)p FL(\()p FI(p)p FL(\))29 b(with)j FI(p)27 b FC(\025)h FL(5)p FI(:)k FL(If)g FI(g)3104 2879 y FH(4)3176 2864 y FL(is)f(not)h(a)501 2985 y(p)s(o)m(w)m(er)25 b(of)e FI(g)926 3000 y FH(3)988 2985 y FL(then)i FI(g)1249 3000 y FH(3)1311 2985 y FL(and)f FI(g)1539 3000 y FH(4)1602 2985 y FL(generate)g FI(\000)14 b FL(.)40 b(In)24 b(this)f(case)i(w)m(e)f(simply)f(en)m(umerate)501 3105 y(the)39 b(v)m(ertices)h(of)e FI(A)1224 3120 y FH(4)1302 3105 y FL(from)g(the)h(other)g(end)g(and)g(get)f(bac)m(k)i(the)f (original)c(case,)501 3225 y(b)s(ecause)49 b FI(A)950 3240 y FH(4)1038 3225 y FL(is)e(symmetric.)89 b(But)47 b(if)g FI(g)2070 3240 y FH(4)2163 3225 y FL(=)53 b FI(g)2343 3189 y FG(b)2339 3250 y FH(3)2426 3225 y FL(for)48 b(some)f FI(b)54 b FC(2)g FF(Z)p FI(=)p FL(\()p FI(p)p FL(\),)49 b(w)m(e)501 3346 y(argue)44 b(in)f(the)h(follo)m(wing)d(w)m(a)m(y)-8 b(.)78 b(Set)44 b FI(q)50 b FL(:=)d FI(\037)2249 3361 y FH(1)2288 3346 y FL(\()p FI(g)2373 3361 y FH(1)2412 3346 y FL(\))p FI(:)d FL(Then)h FI(\037)2848 3361 y FH(1)2887 3346 y FL(\()p FI(g)2972 3361 y FH(3)3011 3346 y FL(\))i(=)f FI(q)3265 3310 y FG(t)3338 3346 y FL(and)501 3466 y FI(\037)562 3481 y FH(1)602 3466 y FL(\()p FI(g)687 3481 y FH(4)726 3466 y FL(\))27 b(=)h FI(q)942 3430 y FG(tb)1031 3466 y FL(for)g(some)h FI(t)f FC(2)g FF(Z)p FI(=)p FL(\()p FI(p)p FL(\))p FI(:)e FL(Using)j(\(5.1\))g(w)m(e)h(kno)m(w)g(that)f FI(\037)3031 3481 y FH(3)3071 3466 y FL(\()p FI(g)3156 3481 y FH(1)3195 3466 y FL(\))e(=)h FI(q)3411 3430 y Fx(\000)p FG(t)501 3587 y FL(and)37 b FI(\037)756 3602 y FH(4)795 3587 y FL(\()p FI(g)880 3602 y FH(1)919 3587 y FL(\))e(=)f FI(q)1149 3550 y Fx(\000)p FG(tb)1300 3587 y FL(and)i(hence)i FI(\037)1829 3602 y FH(3)1869 3587 y FL(\()p FI(g)1954 3602 y FH(2)1993 3587 y FL(\))c(=)g FI(q)2222 3550 y Fx(\000)p FG(at)2380 3587 y FL(and)j FI(\037)2635 3602 y FH(4)2674 3587 y FL(\()p FI(g)2759 3602 y FH(2)2798 3587 y FL(\))e(=)f FI(q)3028 3550 y Fx(\000)p FG(atb)3180 3587 y FI(:)i FL(Again)501 3707 y(w)m(e)46 b(use)f(\(5.1\))f(to)h(calculate)e FI(\037)1693 3722 y FH(2)1733 3707 y FL(\()p FI(g)1818 3722 y FH(3)1857 3707 y FL(\))48 b(=)g FI(q)2114 3671 y FG(at)p Fx(\000)p FH(1)2315 3707 y FL(and)d FI(\037)2578 3722 y FH(2)2618 3707 y FL(\()p FI(g)2703 3722 y FH(4)2742 3707 y FL(\))j(=)g FI(q)2999 3671 y FG(atb)3096 3707 y FL(.)79 b(But)45 b(as)501 3827 y FI(g)548 3842 y FH(4)623 3827 y FL(=)36 b FI(g)786 3791 y FG(b)782 3852 y FH(3)858 3827 y FL(w)m(e)i(see)h (that)e FI(b)h FL(m)m(ust)f(b)s(e)g(zero.)58 b(On)38 b(the)f(other)h(hand,)h(w)m(e)f(ha)m(v)m(e)h(the)501 3948 y(condition)31 b FI(b)970 3912 y FH(2)1031 3948 y FL(+)21 b FI(b)h FL(+)f(1)27 b(=)h(0)j(b)s(ecause)j(v)m(ertices)f(3)f (and)g(4)g(form)f(an)h FI(A)3050 3963 y FH(2)3121 3948 y FL(diagram,)501 4068 y(cf.)64 b([AS2,)41 b(page)e(25].)63 b(This)39 b(is)g(a)g(con)m(tradiction.)62 b(So)39 b(w)m(e)h(ha)m(v)m(e) h(fully)d(pro)m(v)m(ed)501 4188 y(that)33 b FI(A)786 4203 y FH(4)858 4188 y FL(can)g(b)s(e)f(realized)g(o)m(v)m(er)i FI(\000)46 b FL(only)32 b(if)g(5)g(is)g(a)g(square)i(mo)s(dulo)d FI(p)p FL(.)501 4350 y FJ(P)m(art)37 b(\(b\))256 b FL(W)-8 b(e)33 b(consider)g(most)f(of)g(the)h(remaining)d(4-v)m(ertex)k (diagrams:)501 4570 y FI(B)575 4585 y FH(2)628 4570 y FC([)13 b FI(B)781 4585 y FH(2)821 4570 y FI(;)k(B)939 4585 y FH(2)992 4570 y FC([)c FI(G)1148 4585 y FH(2)1188 4570 y FI(;)k(G)1309 4585 y FH(2)1361 4570 y FC([)c FI(G)1517 4585 y FH(2)1557 4570 y FI(;)k(B)1675 4585 y FH(2)1727 4570 y FC([)c FI(A)1879 4585 y FH(1)1933 4570 y FC([)g FI(A)2085 4585 y FH(1)2125 4570 y FI(;)k(G)2246 4585 y FH(2)2298 4570 y FC([)c FI(A)2450 4585 y FH(1)2504 4570 y FC([)g FI(A)2656 4585 y FH(1)2696 4570 y FI(;)k(A)2813 4585 y FH(1)2865 4570 y FC([)c FI(A)3017 4585 y FH(1)3071 4570 y FC([)g FI(A)3223 4585 y FH(1)3276 4570 y FC([)g FI(A)3428 4585 y FH(1)3468 4570 y FI(:)501 4790 y FL(These)40 b(diagrams)35 b(are)j(c)m(haracterized)g(b)m(y)h FI(a)2169 4805 y FH(23)2280 4790 y FL(=)d(0)p FI(;)h FL(the)h(en)m(umeration)f (of)g(the)501 4911 y(v)m(ertices)32 b(is)e(lik)m(e)g(b)s(efore,)h(but)f (all)f(the)i(arro)m(ws)g(are)f(assumed)h(to)f(b)s(e)h(p)s(oin)m(ting)e (at)501 5031 y(v)m(ertices)34 b(1)e(or)h(3.)501 5193 y(Again)28 b(w)m(e)h(assume)g(that)g(these)g(diagrams)e(are)i (realizable)d(o)m(v)m(er)k FI(\000)42 b FL(and)29 b(that)f FI(g)3456 5208 y FH(1)501 5313 y FL(and)34 b FI(g)739 5328 y FH(2)812 5313 y FL(generate)g FI(\000)14 b FL(.)47 b(W)-8 b(e)34 b(then)g(carry)g(out)g(the)g(completely)e(analogous)h (steps)1828 5637 y(55)p eop %%Page: 56 58 56 57 bop 501 573 a FL(as)37 b(in)e(part)h(\(a\).)55 b(W)-8 b(e)36 b(in)m(tro)s(duce)h(the)f(parameters)h FI(x;)17 b(y)39 b FL(and)e FI(z)k FL(to)36 b(denote)h(the)501 693 y(exp)s(onen)m(ts)e(of)d(the)h(diagonal)d(braiding)h(matrix)g (elemen)m(ts,)i(so)g(that)829 912 y FI(\037)890 927 y FH(1)930 912 y FL(\()p FI(g)1015 927 y FH(1)1054 912 y FL(\))27 b(=)h FI(q)t(;)114 b(\037)1472 927 y FH(2)1511 912 y FL(\()p FI(g)1596 927 y FH(2)1636 912 y FL(\))27 b(=)h FI(q)1852 871 y FG(x)1895 912 y FI(;)115 b(\037)2098 927 y FH(3)2137 912 y FL(\()p FI(g)2222 927 y FH(3)2261 912 y FL(\))28 b(=)f FI(q)2477 871 y FG(y)2519 912 y FI(;)114 b(\037)2721 927 y FH(4)2760 912 y FL(\()p FI(g)2845 927 y FH(4)2885 912 y FL(\))27 b(=)h FI(q)3101 871 y FG(z)3140 912 y FI(:)501 1132 y FL(With)g FI(g)796 1147 y FH(3)862 1132 y FL(=)g FI(g)1017 1096 y FG(n)1013 1156 y FH(1)1063 1132 y FI(g)1114 1096 y FG(m)1110 1156 y FH(2)1208 1132 y FL(and)g FI(g)1440 1147 y FH(4)1507 1132 y FL(=)f FI(g)1661 1096 y FG(k)1657 1156 y FH(1)1703 1132 y FI(g)1754 1096 y FG(l)1750 1156 y FH(2)1817 1132 y FL(the)h(three)h(compatibilit)m(y)c(conditions)h(come)501 1252 y(out)33 b(as)1729 1471 y FI(n)1787 1430 y FH(2)1849 1471 y FL(+)22 b FI(a)1998 1486 y FH(12)2073 1471 y FI(nm)h FL(+)f FI(xm)2477 1430 y FH(2)2539 1471 y FL(+)g FI(y)31 b FL(=)c(0)p FI(;)400 b FL(\(5.9\))1847 1617 y FI(k)1901 1576 y FH(2)1963 1617 y FL(+)22 b FI(a)2112 1632 y FH(12)2187 1617 y FI(k)s(l)i FL(+)e FI(xl)2478 1576 y FH(2)2540 1617 y FL(+)g FI(z)33 b FL(=)27 b(0)p FI(;)351 b FL(\(5.10\))1101 1762 y FI(k)s FL(\(2)p FI(n)23 b FL(+)f FI(a)1472 1777 y FH(12)1546 1762 y FI(m)p FL(\))h(+)f FI(l)r FL(\(2)p FI(xm)h FL(+)f FI(a)2220 1777 y FH(12)2295 1762 y FI(n)p FL(\))g(+)g FI(a)2562 1777 y FH(34)2637 1762 y FI(y)31 b FL(=)c(0)p FI(:)351 b FL(\(5.11\))501 1981 y(As)31 b(v)m(ertex)h(2)e(and)h(3)f(are)g(not)g(directly)g(connected)i(in)e (all)e(the)j(diagrams)d(of)i(our)501 2102 y(class,)38 b(w)m(e)f(can)g(c)m(ho)s(ose)g FI(y)g FC(6)p FL(=)e(0)h(freely)-8 b(.)54 b(Hence,)39 b(w)m(e)f(can)e(alw)m(a)m(ys)h(arrange)f(that)501 2222 y(\(5.9\))f(has)h(a)f(solution.)51 b(Assume)36 b(that)f(2)p FI(n)24 b FL(+)g FI(a)2274 2237 y FH(12)2349 2222 y FI(m)33 b FC(6)p FL(=)f(0.)52 b(Then)37 b(w)m(e)f(can)g(solv)m(e)501 2342 y(\(5.11\))31 b(for)g FI(k)k FL(and)d(plug)f(the)h(result)g(in)m (to)f(\(5.10\).)42 b(After)32 b(some)g(reordering)f(and)501 2463 y(simplifying)e(w)m(e)34 b(see)g(that)e(w)m(e)i(can)f(apply)f (\(5.9\))g(to)g(get)629 2682 y(\(4)p FI(x)23 b FC(\000)f FI(a)944 2641 y FH(2)944 2707 y(12)1019 2682 y FL(\))p FI(y)t(l)1140 2641 y FH(2)1201 2682 y FC(\000)h FI(ma)1437 2697 y FH(34)1512 2682 y FL(\(4)p FI(x)f FC(\000)h FI(a)1827 2641 y FH(2)1827 2707 y(12)1902 2682 y FL(\))p FI(y)t(l)g FC(\000)g FL(\()p FI(a)2233 2641 y FH(2)2233 2707 y(34)2308 2682 y FI(y)2360 2641 y FH(2)2421 2682 y FL(+)f FI(z)t FL(\(2)p FI(n)g FL(+)g FI(a)2884 2697 y FH(12)2959 2682 y FI(m)p FL(\))3082 2641 y FH(2)3122 2682 y FL(\))28 b(=)f(0)p FI(:)501 2901 y FL(F)-8 b(or)32 b(solving)f(this)i(quadratic) f(equation)g(w)m(e)i(consider)f(the)g(discriminan)m(t)565 3078 y Fw(\020)635 3121 y FI(ma)771 3136 y FH(34)p 635 3166 212 4 v 716 3257 a FL(2)856 3078 y Fw(\021)915 3101 y FH(2)977 3189 y FL(+)1085 3121 y FI(a)1136 3085 y FH(2)1136 3146 y(34)1211 3121 y FI(y)1263 3085 y FH(2)1324 3121 y FL(+)22 b FI(z)t FL(\(2)p FI(n)g FL(+)g FI(a)1787 3136 y FH(12)1862 3121 y FI(m)p FL(\))1985 3085 y FH(2)p 1085 3166 941 4 v 1316 3257 a FL(\(4)p FI(x)g FC(\000)g FI(a)1630 3223 y FH(2)1630 3282 y(12)1705 3257 y FL(\))p FI(y)2063 3189 y FL(=)2166 3048 y Fw(\022)2250 3121 y FL(2)p FI(n)g FL(+)g FI(a)2528 3136 y FH(12)2603 3121 y FI(m)p 2250 3166 439 4 v 2444 3257 a FL(2)2698 3048 y Fw(\023)2771 3071 y FH(2)2827 3048 y Fw(\024)2931 3121 y FL(4)p FI(z)k FC(\000)d FI(a)3202 3085 y FH(2)3202 3146 y(34)3277 3121 y FI(y)p 2890 3166 479 4 v 2890 3257 a FL(\(4)p FI(x)f FC(\000)h FI(a)3205 3223 y FH(2)3205 3282 y(12)3280 3257 y FL(\))p FI(y)3379 3048 y Fw(\025)501 3465 y FL(and)31 b(see)h(that)e(w)m(e)h(ha)m(v)m(e)h(a)e(solution)f(to)i(the)g(system)g (of)f(equations)h(\(5.9\)-\(5.11\))501 3606 y(if)g FI(D)f FL(:=)872 3554 y FH(4)p FG(z)s Fx(\000)p FG(a)1035 3531 y Fy(2)1035 3575 y(34)1100 3554 y FG(y)p 842 3583 325 4 v 842 3642 a FH(\(4)p FG(x)p Fx(\000)p FG(a)1036 3619 y Fy(2)1036 3663 y(12)1102 3642 y FH(\))p FG(y)1209 3606 y FL(is)h(a)h(square)h(mo)s(dulo)d FI(p)p FL(.)43 b(All)30 b(the)j(parameters)f(are)g(listed)f(in)501 3740 y(T)-8 b(able)34 b(5.2.)48 b(When)35 b FI(x)f FL(and)h FI(z)j FL(can)d(b)s(e)f(c)m(hosen)i(freely)-8 b(,)34 b(w)m(e)h(can)g(alw)m(a)m (ys)f(arrange)501 3861 y(for)39 b FI(D)k FL(to)c(b)s(e)h(a)g(square.)66 b(And)40 b(so)g(w)m(e)h(see)g(that)e(all)f(these)j(diagrams)d(can)i(b)s (e)501 3981 y(realized)27 b(o)m(v)m(er)i FI(\000)42 b FL(except)30 b FI(B)1536 3996 y FH(2)1589 3981 y FC([)13 b FI(G)1745 3996 y FH(2)1784 3981 y FL(,)29 b(where)g(w)m(e)g(need)h(3) d(to)h(b)s(e)g(a)g(square)h(mo)s(dulo)501 4101 y FI(p)p FL(.)501 4263 y(Again)45 b(w)m(e)i(sho)m(w)g(that)f(our)f(assumptions)h (are)g(not)g(to)s(o)f(sp)s(ecial.)82 b(W)-8 b(e)47 b(only)501 4384 y(consider)28 b(the)g(problematic)d(diagram)g FI(B)2018 4399 y FH(2)2069 4384 y FC([)11 b FI(G)2223 4399 y FH(2)2263 4384 y FI(:)28 b FL(If)f(2)p FI(n)11 b FL(+)g FI(a)2666 4399 y FH(12)2741 4384 y FI(m)28 b FL(=)g(0)f(and)g(2)p FI(xm)11 b FL(+)501 4504 y FI(a)552 4519 y FH(12)627 4504 y FI(n)28 b FL(=)g(0,)j(w)m(e)h(\014nd)g(that)f(4)p FI(x)20 b FC(\000)f FI(a)1741 4468 y FH(2)1741 4529 y(12)1844 4504 y FL(=)28 b(0.)42 b(But)32 b(that)f(is)f(not)i(the)f(case)h(as)g (w)m(e)g(see)501 4624 y(from)38 b(T)-8 b(able)39 b(5.2.)62 b(So)39 b(w)m(e)h(assume)g(2)p FI(n)27 b FL(+)f FI(a)2150 4639 y FH(12)2225 4624 y FI(m)39 b FL(=)g(0)f(and)i(solv)m(e)f (\(5.11\))f(for)h FI(l)r FL(.)501 4745 y(F)-8 b(rom)32 b(\(5.9\))g(w)m(e)i(\014nd)g FI(y)e FL(=)c FC(\000)p FL(\(4)p FI(x)23 b FC(\000)g FI(a)1908 4709 y FH(2)1908 4769 y(12)1983 4745 y FL(\))p FI(m)2106 4709 y FH(2)2146 4745 y FI(=)p FL(4)32 b(and)i(so)f FI(l)e FL(=)d FI(a)2802 4760 y FH(34)2877 4745 y FI(m=)p FL(2)p FI(:)33 b FL(Plugging)501 4865 y(this)h(in)m(to)g(\(5.10\))f(w)m(e)j(solv)m(e)e(the)h(quadratic)f (equation)g(and)h(\014nd)f(that)g(it)g(has)g(a)501 4986 y(solution)j(if)h(3)g(is)g(a)h(square)h(mo)s(dulo)c FI(p)p FL(.)62 b(Note)39 b(that)f FI(z)43 b FL(=)38 b(3)p FI(y)t(;)g(x)g FL(=)g(2)g(=)g FC(\000)p FI(a)3420 5001 y FH(12)501 5106 y FL(and)33 b FI(a)742 5121 y FH(34)845 5106 y FL(=)27 b FC(\000)p FL(3)p FI(:)501 5268 y FL(No)m(w)44 b(w)m(e)h(will)c(sho)m (w)j(that)f(the)h(case)g(where)h FI(g)2294 5283 y FH(2)2376 5268 y FL(is)e(a)g(p)s(o)m(w)m(er)h(of)f FI(g)3041 5283 y FH(1)3124 5268 y FL(do)s(es)g(not)501 5388 y(lead)i(to)g(an)m(y)h (simpli\014cation)c(of)i(the)i(condition)e(that)h(3)g(m)m(ust)h(b)s(e)f (a)g(square)1828 5637 y(56)p eop %%Page: 57 59 57 58 bop 960 580 a FL(Diagram)p 1583 658 4 186 v 305 w FI(a)1686 595 y FH(12)1860 580 y FI(a)1911 595 y FH(34)2086 580 y FI(x)125 b(z)p 2389 658 V 130 w(D)30 b FL(=)2695 529 y FH(4)p FG(z)s Fx(\000)p FG(a)2858 505 y Fy(2)2858 549 y(34)2923 529 y FG(y)p 2666 557 325 4 v 2666 616 a FH(\(4)p FG(x)p Fx(\000)p FG(a)2860 593 y Fy(2)2860 637 y(12)2926 616 y FH(\))p FG(y)p 703 662 2348 4 v 975 748 a FI(B)1049 763 y FH(2)1110 748 y FC([)23 b FI(B)1273 763 y FH(2)p 1583 826 4 165 v 1634 748 a FC(\000)p FL(2)100 b FC(\000)p FL(2)j(2)g(2)p FI(y)p 2389 826 V 2594 704 a FH(4)p FG(y)p 2594 725 73 4 v 2594 783 a FH(4)p FG(y)2704 748 y FL(=)28 b(1)973 913 y FI(B)1047 928 y FH(2)1109 913 y FC([)23 b FI(G)1275 928 y FH(2)p 1583 991 4 165 v 1634 913 a FC(\000)p FL(2)100 b FC(\000)p FL(3)j(2)g(3)p FI(y)p 2389 991 V 2574 869 a FH(3)p FG(y)p 2574 890 73 4 v 2574 947 a FH(4)p FG(y)2684 913 y FL(=)2815 874 y FH(3)p 2797 890 70 4 v 2797 947 a(2)2832 928 y Fy(2)972 1078 y FI(G)1049 1093 y FH(2)1110 1078 y FC([)23 b FI(G)1276 1093 y FH(2)p 1583 1156 4 165 v 1634 1078 a FC(\000)p FL(3)100 b FC(\000)p FL(3)j(3)g(3)p FI(y)p 2389 1156 V 2594 1034 a FH(3)p FG(y)p 2594 1055 73 4 v 2594 1112 a FH(3)p FG(y)2704 1078 y FL(=)28 b(1)864 1240 y FI(B)938 1255 y FH(2)999 1240 y FC([)23 b FI(A)1161 1255 y FH(1)1222 1240 y FC([)g FI(A)1384 1255 y FH(1)p 1583 1318 4 163 v 1634 1240 a FC(\000)p FL(2)139 b(0)i(2)128 b FI(z)p 2389 1318 V 2591 1201 a FH(4)p FG(z)p 2590 1217 73 4 v 2590 1274 a FH(4)p FG(y)2700 1240 y FL(=)2815 1201 y FG(z)p 2814 1217 38 4 v 2814 1274 a(y)862 1402 y FI(G)939 1417 y FH(2)1001 1402 y FC([)22 b FI(A)1162 1417 y FH(1)1224 1402 y FC([)g FI(A)1385 1417 y FH(1)p 1583 1480 4 163 v 1634 1402 a FC(\000)p FL(3)139 b(0)i(3)128 b FI(z)p 2389 1480 V 2529 1363 a FH(4)p FG(z)p 2528 1379 73 4 v 2528 1436 a FH(3)p FG(y)2638 1402 y FL(=)28 b(2)2791 1366 y FH(2)2859 1363 y FG(z)p 2840 1379 V 2840 1436 a FH(3)p FG(y)752 1564 y FI(A)825 1579 y FH(1)887 1564 y FC([)23 b FI(A)1049 1579 y FH(1)1110 1564 y FC([)g FI(A)1272 1579 y FH(1)1334 1564 y FC([)f FI(A)1495 1579 y FH(1)p 1583 1642 4 163 v 1673 1564 a FL(0)177 b(0)138 b FI(x)125 b(z)p 2389 1642 V 2571 1525 a FH(4)p FG(z)p 2550 1542 113 4 v 2550 1599 a FH(4)p FG(xy)2700 1564 y FL(=)2834 1525 y FG(z)p 2814 1542 77 4 v 2814 1599 a(xy)p 703 1646 2348 4 v 826 1914 a FL(T)-8 b(able)33 b(5.2:)43 b(More)33 b(parameters)f(for)g(Dynkin)h(diagrams)501 2199 y(for)j FI(B)728 2214 y FH(2)793 2199 y FC([)25 b FI(G)961 2214 y FH(2)1037 2199 y FL(and)36 b FI(A)1303 2214 y FH(2)1368 2199 y FC([)25 b FI(B)1533 2214 y FH(2)1573 2199 y FI(:)36 b FL(If)h FI(g)1785 2214 y FH(3)1860 2199 y FL(and)g FI(g)2101 2214 y FH(4)2176 2199 y FL(generate)h FI(\000)14 b FL(,)37 b(w)m(e)h(just)f(en)m(umerate)501 2320 y(the)d(v)m(ertices,)g(so)f(they)h(corresp)s(ond)g(to)f(the)h (notation)d FI(G)2643 2335 y FH(2)2705 2320 y FC([)23 b FI(B)2868 2335 y FH(2)2941 2320 y FL(and)33 b FI(B)3205 2335 y FH(2)3267 2320 y FC([)23 b FI(A)3429 2335 y FH(2)3468 2320 y FI(;)501 2440 y FL(resp)s(ectiv)m(ely)-8 b(.)44 b(No)m(w)30 b(all)d(considerations)i(still)e(apply)i(and)h(w)m(e)g (\014nd)g(for)f(the)h(\014rst)501 2560 y(diagram)37 b FI(D)j FL(=)e(4)p FI(=)p FL(3)g(and)g(the)h(second)h FI(D)g FL(=)e(3)p FI(=)p FL(4)p FI(:)g FL(If)g(ho)m(w)m(ev)m(er)j FI(g)2974 2575 y FH(4)3052 2560 y FL(is)d(a)g(p)s(o)m(w)m(er)501 2681 y(of)h FI(g)666 2696 y FH(3)705 2681 y FI(;)f FL(w)m(e)i(ha)m(v)m (e)g(the)g(case)f(that)g(one)g(cop)m(y)h(of)e FF(Z)p FI(=)p FL(\()p FI(p)p FL(\))e(has)j(to)f(realize)g FI(B)3260 2696 y FH(2)3338 2681 y FL(and)501 2801 y(the)e(other)f(one)h(has)f(to) g(realize)f FI(A)1788 2816 y FH(2)1863 2801 y FL(or)h FI(G)2062 2816 y FH(2)2101 2801 y FL(.)52 b(This)35 b(is)g(only)g(p)s (ossible)f(if)g FC(\000)p FL(1)i(is)e(a)501 2922 y(square)e(\()p FI(B)918 2937 y FH(2)957 2922 y FL(\))e(and)h FC(\000)p FL(3)f(is)g(square)i(\()p FI(A)1881 2937 y FH(2)1950 2922 y FL(and)f FI(G)2215 2937 y FH(2)2254 2922 y FL(\),)g(but)g(then)g (3)f(is)f(also)h(a)g(square.)501 3083 y FJ(P)m(art)37 b(\(c\))223 b FL(The)34 b(only)f(diagram)e(left)h(is)g FI(D)2263 3098 y FH(4)2303 3083 y FI(:)h FL(W)-8 b(e)33 b(n)m(um)m(b)s(er)g(the)h(v)m(ertices)g(so)501 3204 y(that)g FI(a)765 3219 y FH(12)871 3204 y FL(=)d FI(a)1029 3219 y FH(23)1135 3204 y FL(=)f FI(a)1292 3219 y FH(24)1398 3204 y FL(=)h FC(\000)p FL(1.)49 b(Then)35 b(w)m(e)h(pro)s(ceed)f(as)g (in)e(the)i(last)f(t)m(w)m(o)h(parts.)501 3324 y(W)-8 b(e)33 b(get)g(the)g(three)g(compatibilit)m(y)c(conditions)1594 3544 y FI(n)1652 3503 y FH(2)1714 3544 y FC(\000)22 b FI(nm)h FL(+)f FI(m)2162 3503 y FH(2)2224 3544 y FL(+)g FI(m)g FL(+)g(1)28 b(=)f(0)p FI(;)1764 3690 y(k)1818 3648 y FH(2)1880 3690 y FC(\000)c FI(k)s(l)h FL(+)e FI(l)2216 3648 y FH(2)2278 3690 y FL(+)g FI(l)i FL(+)e(1)28 b(=)f(0)p FI(;)1213 3835 y(k)s FL(\()p FI(m)c FC(\000)f FL(2)p FI(n)p FL(\))g(+)g FI(l)r FL(\()p FI(n)h FC(\000)g FL(2)p FI(m)f FC(\000)g FL(1\))g FC(\000)h FI(m)28 b FL(=)f(0)p FI(:)501 4055 y FL(The)j(\014rst)f(t)m(w)m(o)g(equations)g(are)f(the)h (same)g(and)f(can)h(b)s(e)g(transformed)f(in)m(to)g(\(5.5\))501 4175 y(in)43 b(the)i(same)e(w)m(a)m(y)i(as)f(b)s(efore.)78 b(So)43 b(w)m(e)i(kno)m(w)g(that)f(w)m(e)h(can)f(\014nd)g FI(n)g FL(and)g FI(m)501 4296 y FL(ful\014lling)35 b(the)j(\014rst)h (equation,)g(suc)m(h)h(that)e FI(m)f FC(6)p FL(=)g(2)p FI(n:)h FL(Solving)f(the)i(last)e(equa-)501 4416 y(tion)44 b(for)h FI(k)j FL(and)d(plugging)e(this)i(in)m(to)g(the)g(middle)e (equation,)49 b(w)m(e)d(\014nd)f(that)501 4536 y FI(l)34 b FL(=)e FC(\000)759 4489 y FG(m)p FH(+2)p Fx(\006)p FH(\()p FG(m)p Fx(\000)p FH(2)p FG(n)p FH(\))p 759 4513 458 4 v 971 4571 a(2)1227 4536 y FI(:)j FL(No)g(square)i(ro)s(ots)d (are)h(necessary)j(and)d(w)m(e)h(ha)m(v)m(e)g(found)f(a)501 4657 y(realization.)2317 b FJ(qed.)404 4885 y FL(This)39 b(pro)s(of)f(w)m(as)h(rather)g(direct)g(and)g(do)s(es)g(not)f(explain)g (in)g(an)m(y)i(w)m(a)m(y)-8 b(,)41 b FE(why)48 b FL(the)257 5005 y(quadratic)32 b(systems)h(of)f(3)g(equations)g(and)g(4)g (indeterminates)f(can)h(alw)m(a)m(ys)g(b)s(e)h(solv)m(ed)257 5126 y(indep)s(enden)m(tly)f(of)f(the)g(c)m(hoices)h(of)e(the)h(n)m (umerous)h(parameters.)43 b(It)31 b(seems)h(that)f(this)257 5246 y(pro)s(of)26 b(is)g(just)g(a)g(shado)m(w)i(of)d(a)h(m)m(uc)m(h)h (deep)s(er)h(principle.)40 b(Esp)s(ecially)25 b(when)i(one)g(w)m(an)m (ts)257 5367 y(to)32 b(generalize)e(this)h(kind)h(of)f(result)g(to)h (groups)f(with)g(more)g(copies)h(of)f FF(Z)p FI(=)p FL(\()p FI(p)p FL(\))p FI(;)e FL(a)i(more)1828 5637 y(57)p eop %%Page: 58 60 58 59 bop 257 573 a FL(fundamen)m(tal)24 b(understanding)h(migh)m(t)e (b)s(e)h(necessary)-8 b(.)43 b(F)-8 b(or)24 b(instance,)j(w)m(e)e(b)s (eliev)m(e)f(that)257 693 y(follo)m(wing)h(the)k(same)e(strategy)i(as)f (w)m(e)g(ha)m(v)m(e)h(just)g(displa)m(y)m(ed,)g(w)m(e)g(can)f(get)f(a)h (system)h(of)257 733 y Fw(\000)303 769 y FG(t)p FH(+1)343 848 y(2)419 733 y Fw(\001)499 814 y FL(compatibilit)m(y)i(equations)k (with)f FI(st)g FL(indeterminates)g(when)i(w)m(e)f(try)g(to)f(realize) 257 934 y(a)c(diagram)e(with)h FI(s)17 b FL(+)f FI(t)30 b FL(v)m(ertices)h(o)m(v)m(er)g FI(\000)14 b FL(\()p FI(s)p FL(\))28 b(:=)f(\()p FF(Z)p FI(=)p FL(\()p FI(p)p FL(\)\))2381 898 y FG(s)2415 934 y FI(:)j FL(As)g(far)g(as)g(w)m(e)h (understand)257 1054 y(this)43 b(general)g(case,)k(the)d(equations)g (should)f(remain)f(quadratic.)75 b(This)44 b(should)f(b)s(e)257 1175 y(fairly)35 b(easy)i(to)f(pro)m(v)m(e.)56 b(So)36 b(judging)f(from)g(the)h(case)i FI(s)33 b FL(=)h(2)i(presen)m(ted)j (here,)f(things)257 1295 y(should)29 b(get)h(simpler,)e(as)h(the)h (quotien)m(t)f(of)g(indeterminates)f(to)h(equations)h(rises)f(quite)257 1416 y(comfortably)-8 b(.)63 b(W)-8 b(e)40 b(could)f(exp)s(ect)i(more)e (freedom)g(in)g(the)h(c)m(hoice)g(of)f(the)h(v)-5 b(ariables)257 1536 y(and)33 b(hence)h(hop)s(e)e(that)h(all)d(diagrams)h(with)h(at)g (most)g(2)p FI(s)g FL(v)m(ertices)h(will)e(b)s(e)h(realizable)257 1656 y(o)m(v)m(er)48 b FI(\000)14 b FL(\()p FI(s)p FL(\))p FI(:)46 b FL(Ho)m(w)m(ev)m(er,)52 b(this)45 b(reasoning,)k(of)d (course,)51 b(completely)45 b(fails)f(to)i(explain)257 1777 y(wh)m(y)39 b(w)m(e)g(can)e(not)g(realize)g(diagrams)e(with)i(2)p FI(s)25 b FL(+)h(1)37 b(v)m(ertices)h(in)f(general.)57 b(The)39 b(only)257 1897 y(observ)-5 b(ation)31 b(w)m(e)g(can)g(mak)m (e)g(is)f(that)h(at)f(this)g(step)i(\(from)d FI(s)18 b FL(+)g FI(s)31 b FL(v)m(ertices)h(to)e FI(s)18 b FL(+)g FI(s)g FL(+)g(1)257 2017 y(v)m(ertices\),)39 b(the)d(n)m(um)m(b)s(er)g (of)g(new)h(equations)f(b)s(ecomes)h(bigger)e(than)h(the)g(n)m(um)m(b)s (er)h(of)257 2138 y(new)28 b(v)-5 b(ariables.)40 b(But)27 b(ev)m(en)h(if)d(all)f(this)i(can)h(b)s(e)g(made)f(rigorous,)h(what)f (guaran)m(tees)i(the)257 2258 y(solv)-5 b(abilit)m(y)33 b(of)j(the)g(system)h(of)e(equations)h(for)f(all)f FI(p)p FL(?)52 b(One)37 b(last)d(remark)i(is)f(that)h(for)257 2379 y(Lusztig's)j(\014nite)e(dimensional)f(Hopf)h(algebras,)i(t)m(w)m (o)g(copies)f(of)f(the)i(same)e(diagram)257 2499 y(with)32 b FI(s)g FL(v)m(ertices)h(eac)m(h)g(is)f(alw)m(a)m(ys)h(realizable)d(o) m(v)m(er)j FI(\000)14 b FL(\()p FI(s)p FL(\))p FI(:)32 b FL(Moreo)m(v)m(er,)i(the)e(t)m(w)m(o)h(copies)257 2619 y(can)g(ev)m(en)h(b)s(e)f(link)m(ed.)404 2740 y(W)-8 b(e)36 b(w)m(an)m(t)g(to)g(discuss)h(p)s(ossible)e(linkings)f(in)h(the) h(diagrams)e(for)h FI(\000)14 b FL(\(2\).)53 b(W)-8 b(e)36 b(only)257 2860 y(consider)25 b(linking)d(v)m(ertices)j(in)f (di\013eren)m(t)g(connected)i(comp)s(onen)m(ts.)41 b(So)25 b FI(i)f FL(and)g FI(j)30 b FL(can)25 b(b)s(e)257 2980 y(link)m(ed)f(only)e(if)h FI(a)872 2995 y FG(ij)960 2980 y FL(=)28 b(0)23 b(and)h FI(\037)1378 2995 y FG(i)1406 2980 y FI(\037)1467 2995 y FG(j)1531 2980 y FL(=)k(1)p FI(:)23 b FL(Using)g(\(5.1\))g(w)m(e)i(\014nd)f(that)f FI(\037)2807 2995 y FG(i)2835 2980 y FL(\()p FI(g)2920 2995 y FG(i)2948 2980 y FL(\))28 b(=)f FI(\037)3178 2995 y FG(j)3215 2980 y FL(\()p FI(g)3300 2995 y FG(j)3336 2980 y FL(\))3374 2944 y Fx(\000)p FH(1)3468 2980 y FI(:)257 3101 y FL(Hence,)36 b(when)f(w)m(e)f(link)f(v)m(ertices,)i(one)f(of)f (the)h(free)g(parameters)g(\(the)g(exp)s(onen)m(t)h(of)e(a)257 3221 y(diagonal)j(elemen)m(t\))h(b)s(ecomes)h(\014xed.)61 b(F)-8 b(rom)36 b(T)-8 b(ables)38 b(5.1)f(and)h(5.2)f(w)m(e)i(see)g (that)f(the)257 3342 y(only)24 b(problematic)f(linkings)g(are)i(the)g (cases)h(where)g(the)f(diagram)d(is)i FI(A)2865 3357 y FH(2)2905 3342 y FI(=B)3028 3357 y FH(2)3067 3342 y FI(=G)3193 3357 y FH(2)3238 3342 y FC([)6 b FI(A)3383 3357 y FH(1)3429 3342 y FC([)257 3462 y FI(A)330 3477 y FH(1)402 3462 y FL(and)33 b(w)m(e)h(link)d(the)i FI(A)1169 3477 y FH(1)1241 3462 y FL(comp)s(onen)m(ts)g(or)f FI(A)1970 3477 y FH(3)2010 3462 y FI(=B)2133 3477 y FH(3)2172 3462 y FI(=C)2291 3477 y FH(3)2352 3462 y FC([)23 b FI(A)2514 3477 y FH(1)2553 3462 y FL(.)44 b(In)33 b(the)g(\014rst)g(cases)h(the) 257 3582 y(crucial)e(discriminan)m(t)f FI(D)36 b FL(is)d(only)g(a)g (square)h(if)e FC(\000)p FL(3)p FI(;)h FC(\000)p FL(1)h(or)f FC(\000)p FL(3)g(are)g(squares)i(mo)s(dulo)257 3703 y FI(p;)f FL(resp)s(ectiv)m(ely)-8 b(.)49 b(These)36 b(are)e FE(exactly)42 b FL(the)34 b(conditions)f(necessary)k(to)c(realize)g FI(A)3281 3718 y FH(2)3321 3703 y FI(;)h(B)3456 3718 y FH(2)257 3823 y FL(and)e FI(G)523 3838 y FH(2)594 3823 y FL(o)m(v)m(er)h FF(Z)p FI(=)p FL(\()p FI(p)p FL(\).)40 b(So)31 b(assuming)g FI(g)1716 3838 y FH(1)1787 3823 y FL(and)h FI(g)2023 3838 y FH(2)2093 3823 y FL(to)g(generate)g FI(\000)45 b FL(is)31 b(not)h(limiting)27 b(and)257 3944 y(w)m(e)34 b(can)f(link)e FI(A)845 3959 y FH(1)917 3944 y FL(to)h FI(A)1109 3959 y FH(1)1181 3944 y FL(in)g FI(A)1368 3959 y FH(2)1407 3944 y FI(=G)1533 3959 y FH(2)1594 3944 y FC([)23 b FI(A)1756 3959 y FH(1)1817 3944 y FC([)f FI(A)1978 3959 y FH(1)2050 3944 y FL(or)32 b FI(B)2243 3959 y FH(2)2305 3944 y FC([)22 b FI(A)2466 3959 y FH(1)2528 3944 y FC([)g FI(A)2689 3959 y FH(1)2761 3944 y FL(only)32 b(if)f FC(\000)p FL(3)i(or)f FC(\000)p FL(1)p FI(;)257 4064 y FL(resp)s(ectiv)m(ely)-8 b(,)41 b(is)c(a)h(square.)61 b(This)38 b(is)g(only)f(a)h(necessary)i(condition)d(and)h(migh)m(t)e (not)257 4184 y(b)s(e)d(su\016cien)m(t,)h(as)f(w)m(e)g(still)e(ha)m(v)m (e)i(to)g(c)m(hec)m(k)i FI(\037)1949 4199 y FG(i)1977 4184 y FI(\037)2038 4199 y FG(j)2102 4184 y FL(=)28 b(1)k(on)g(the)h (group)g(elemen)m(ts.)404 4305 y(In)38 b(the)h(diagrams)e FI(A)1202 4320 y FH(3)1242 4305 y FI(=B)1365 4320 y FH(3)1404 4305 y FI(=C)1523 4320 y FH(3)1588 4305 y FC([)27 b FI(A)1754 4320 y FH(1)1831 4305 y FL(w)m(e)40 b(ha)m(v)m(e)g FI(z)i FL(=)c FC(\000)p FL(1)g(if)f(w)m(e)j(link)d(v)m(ertex)j(4)f(to)257 4425 y(v)m(ertex)f(1)d(or)h(2.)53 b(If)36 b(w)m(e)g(link)f(it)g(to)g(v) m(ertex)j(3,)e(then)h FI(z)h FL(=)33 b FC(\000)p FL(1)p FI(;)j(z)i FL(=)33 b FC(\000)p FL(1)p FI(=)p FL(2)i(or)h FI(z)i FL(=)33 b FC(\000)p FL(2)p FI(;)257 4545 y FL(resp)s(ectiv)m (ely)-8 b(.)42 b(F)-8 b(rom)22 b(T)-8 b(able)24 b(5.1)g(w)m(e)h(see)g (that)f(2)p FI(z)k FL(needs)e(to)d(b)s(e)h(a)g(square.)42 b(This)24 b(means,)257 4666 y(w)m(e)32 b(need)g FC(\000)p FL(2)f(to)g(b)s(e)g(a)g(square)h(if)e FI(z)i FL(=)27 b FC(\000)p FL(1)p FI(;)32 b FL(or)e FC(\000)p FL(1)h(to)g(b)s(e)g(a)g (square)h(for)e(the)h(other)g(t)m(w)m(o)257 4786 y(cases.)45 b(This)31 b(do)s(es)g(not)g(c)m(hange)h(if)e(w)m(e)i(assume)f(that)g FI(g)2294 4801 y FH(2)2364 4786 y FL(is)g(a)f(p)s(o)m(w)m(er)i(of)f FI(g)2980 4801 y FH(1)3019 4786 y FI(:)g FL(W)-8 b(e)31 b(w)m(ould)257 4907 y(only)38 b(get)g(the)g(added)h(condition)d(that)i FC(\000)p FL(3)g(has)g(to)g(b)s(e)g(a)g(square,)i(to)s(o.)59 b(Again,)39 b(this)257 5027 y(migh)m(t)27 b(not)h(b)s(e)g(su\016cien)m (t,)j(and)d(the)h(t)m(w)m(o)g(extra)f(conditions)f(coming)g(from)g(ev) -5 b(aluating)257 5147 y FI(\037)318 5162 y FG(i)347 5147 y FI(\037)408 5162 y FG(j)472 5147 y FL(=)28 b(1)k(on)g(the)h (group)g(generators)g(ha)m(v)m(e)h(to)e(b)s(e)h(tak)m(en)g(in)m(to)f (consideration.)404 5268 y(Finally)-8 b(,)34 b(let)i(us)h(men)m(tion)f (that)g(for)g FI(p)e FL(=)g(5)i(the)h(diagram)d FI(A)2688 5283 y FH(4)2752 5268 y FC([)25 b FI(A)2916 5283 y FH(1)2992 5268 y FL(is)36 b(realizable)257 5388 y(o)m(v)m(er)43 b(\()p FF(Z)p FI(=)p FL(\()p FI(p)p FL(\)\))794 5352 y FH(2)830 5388 y FL(.)70 b(5)41 b(is)g(of)g(course)h(a)f(square)i(mo)s (dulo)c FI(p)k FL(=)f(5.)70 b(Therefore,)44 b(part)e(\(a\))1828 5637 y(58)p eop %%Page: 59 61 59 60 bop 257 573 a FL(of)37 b(the)h(pro)s(of)e(giv)m(es)h(us)h(a)f (realization)d(of)j FI(A)1934 588 y FH(4)1973 573 y FI(:)h FL(W)-8 b(e)37 b(c)m(ho)s(ose)h(a)f(sp)s(ecial)f(solution)g(with)257 693 y FI(n)28 b FL(=)g(4)p FI(;)k(m)c FL(=)g(2)k(and)h FI(k)e FL(=)c FI(l)j FL(=)e(3)p FI(:)k FL(Setting)g FI(g)1882 708 y FH(5)1949 693 y FL(:=)c FI(g)2127 708 y FH(1)2166 693 y FI(g)2217 657 y FH(4)2213 718 y(2)2288 693 y FL(and)33 b FI(q)j FL(a)d(primitiv)m(e)d(5)3105 657 y FH(th)3208 693 y FL(ro)s(ot)i(of)257 814 y(unit)m(y)-8 b(,)33 b(w)m(e)h(ha)m(v)m (e)g(this)e(sp)s(ecial)f(realization)f(of)i FI(A)2068 829 y FH(4)2130 814 y FC([)23 b FI(A)2292 829 y FH(1)2359 814 y FL(:)806 1267 y(\()p FI(\037)905 1282 y FG(j)941 1267 y FL(\()p FI(g)1026 1282 y FG(i)1054 1267 y FL(\)\))28 b(=)1261 947 y Fw(0)1261 1122 y(B)1261 1182 y(B)1261 1242 y(B)1261 1302 y(B)1261 1365 y(@)1368 1025 y FI(q)107 b(q)1565 989 y FH(4)1688 1025 y FI(q)88 b(q)1866 989 y FH(2)1988 1025 y FI(q)2035 989 y FH(4)1367 1146 y FL(1)122 b FI(q)107 b(q)g FL(1)101 b FI(q)2035 1109 y FH(2)1349 1266 y FI(q)1396 1230 y FH(4)1518 1266 y FI(q)1565 1230 y FH(3)1688 1266 y FI(q)88 b(q)1866 1230 y FH(3)2007 1266 y FL(1)1349 1386 y FI(q)1396 1350 y FH(3)1537 1386 y FL(1)102 b FI(q)108 b(q)e(q)2035 1350 y FH(3)1368 1507 y FI(q)h(q)1565 1471 y FH(3)1687 1507 y FL(1)83 b FI(q)1866 1471 y FH(2)1988 1507 y FI(q)2035 1471 y FH(2)2074 947 y Fw(1)2074 1122 y(C)2074 1182 y(C)2074 1242 y(C)2074 1302 y(C)2074 1365 y(A)2178 1267 y FI(:)2417 947 y Fw(2)2417 1122 y(6)2417 1182 y(6)2417 1242 y(6)2417 1302 y(6)2417 1365 y(4)2639 1025 y FI(g)2686 1040 y FH(1)2639 1146 y FI(g)2686 1161 y FH(2)2483 1266 y FI(g)2534 1230 y FH(4)2530 1291 y(1)2573 1266 y FI(g)2624 1230 y FH(2)2620 1291 y(2)2691 1266 y FL(=)27 b FI(g)2841 1281 y FH(3)2483 1386 y FI(g)2534 1350 y FH(3)2530 1411 y(1)2573 1386 y FI(g)2624 1350 y FH(3)2620 1411 y(2)2691 1386 y FL(=)g FI(g)2841 1401 y FH(4)2485 1507 y FI(g)2532 1522 y FH(1)2571 1507 y FI(g)2622 1471 y FH(4)2618 1531 y(2)2689 1507 y FL(=)g FI(g)2839 1522 y FH(5)2880 947 y Fw(3)2880 1122 y(7)2880 1182 y(7)2880 1242 y(7)2880 1302 y(7)2880 1365 y(5)1828 5637 y FL(59)p eop %%Page: 60 62 60 61 bop 257 1237 a FK(Chapter)78 b(6)257 1652 y(Quasi-isomorphisms) 257 2105 y FL(W)-8 b(e)30 b(will)c(sho)m(w)k(that)e(a)h(large)f(class)g (of)h(\014nite)f(dimensional)e(p)s(oin)m(ted)j(Hopf)g(algebras)f(is)257 2225 y(quasi-isomorphic)21 b(to)h(their)g(asso)s(ciated)g(graded)h(v)m (ersion)g(coming)e(from)h(the)h(coradical)257 2345 y(\014ltration,)32 b(i.e.)h(they)h(are)g(2-co)s(cycle)f(deformations)f(of)h(the)h(latter.) 45 b(This)33 b(supp)s(orts)h(a)257 2466 y(sligh)m(tly)i(sp)s(ecialized) g(form)g(of)g(a)h(conjecture)h(in)f([Mas1].)57 b(Most)38 b(of)e(the)i(material)c(in)257 2586 y(this)f(c)m(hapter)g(will)d(b)s(e) j(published)g(as)f([D2].)404 2707 y(Recen)m(tly)43 b(there)g(has)g(b)s (een)g(a)f(lot)f(of)h(progress)h(in)e(determining)g(the)i(structure)257 2827 y(of)37 b(p)s(oin)m(ted)h(Hopf)f(algebras.)58 b(This)38 b(has)f(led)h(to)f(a)g(disco)m(v)m(ery)i(of)e(whole)h(new)g(classes)257 2947 y(of)43 b(suc)m(h)i(Hopf)e(algebras)f(and)h(to)g(some)g(imp)s (ortan)m(t)e(classi\014cation)h(results.)75 b(A)43 b(lot)257 3068 y(of)32 b(these)i(classes)g(con)m(tain)e(in\014nitely)f(man)m(y)h (non-isomorphic)f(Hopf)h(algebras)g(of)g(the)257 3188 y(same)38 b(dimension,)f(th)m(us)h(dispro)m(ving)f(an)g(old)f (conjecture)j(of)e(Kaplansky)-8 b(.)58 b(Masuok)-5 b(a)257 3308 y(sho)m(w)m(ed)49 b(in)e([Mas1])g(and)h(in)e(a)h(priv)-5 b(ate)46 b(note)i([Mas2],)j(that)c(for)g(certain)f(of)h(these)257 3429 y(new)35 b(families)d(the)i(Hopf)g(algebras)g(are)g(all)e(2-co)s (cycle)i(deformations)e(of)i(eac)m(h)h(other.)257 3549 y(This)43 b(led)f(him)f(to)h(w)m(eak)m(en)j(Kaplansky's)e(conjecture,)j (stating)c(that)g(up)h(to)f(quasi-)257 3670 y(isomorphisms)h(there)j (should)f(only)f(b)s(e)i(a)e(\014nite)h(n)m(um)m(b)s(er)g(of)g(Hopf)g (algebras)f(of)g(a)257 3790 y(giv)m(en)31 b(dimension.)42 b(This)31 b(w)m(as)h(dispro)m(v)m(ed)g(in)e([EG])h(for)f(families)e(of) j(Hopf)f(algebras)h(of)257 3910 y(dimension)e(32.)42 b(Ho)m(w)m(ev)m(er,)32 b(our)d(results)h(supp)s(ort)g(Masuok)-5 b(a's)31 b(conjecture)f(in)f(a)g(really)257 4031 y(big)i(class)i(of)e (examples.)43 b(So)32 b(w)m(e)h(suggest)g(that)f(the)h(conjecture)g (could)e(still)f(b)s(e)i(sa)m(v)m(ed)257 4151 y(b)m(y)39 b(sp)s(ecializing)d(it)h(sligh)m(tly)-8 b(.)58 b(W)-8 b(e)39 b(ha)m(v)m(e)g(the)f(feeling)f(that)h(there)h(is)e(a)h(fundamen) m(tal)257 4271 y(di\013erence)27 b(b)s(et)m(w)m(een)h(the)f(ev)m(en)h (and)e(o)s(dd)g(dimensional)e(case.)42 b(W)-8 b(e)26 b(prop)s(ose)h(for)f(a)f(base)257 4392 y(\014eld)33 b(of)f(c)m (haracteristic)g(zero:)501 4589 y(In)f(a)f(giv)m(en)h(o)s(dd)f (dimension)f(there)i(are)g(only)f(\014nitely)g(man)m(y)g(non)h(quasi-) 501 4709 y(isomorphic)g(p)s(oin)m(ted)h(Hopf)h(algebras)f(whose)h (coradical)e(is)h(ab)s(elian.)257 4907 y(Tw)m(o)56 b(Hopf)e(algebras)f (are)i(called)e FE(quasi-isomorphic)58 b FL(or)c FE(monoidal)5 b(ly)53 b(c)-5 b(o-Morita)257 5027 y(e)g(quivalent)57 b FL(if)46 b(their)h(categories)g(of)g(como)s(dules)g(are)h(monoidally) c(equiv)-5 b(alen)m(t.)88 b(In)257 5147 y([Sc)m(h)q(])40 b(Sc)m(hauen)m(burg)i(sho)m(w)m(ed)f(that)f(for)f(\014nite)g (dimensional)e(Hopf)i(algebras)g(this)h(is)257 5268 y(equiv)-5 b(alen)m(t)35 b(to)g(the)h(Hopf)f(algebras)f(b)s(eing)h(2-co)s(cycle)f (deformations)g(of)h(eac)m(h)h(other,)257 5388 y(cf.)44 b(Section)32 b(2.5.)1828 5637 y(60)p eop %%Page: 61 63 61 62 bop 404 573 a FL(W)-8 b(e)31 b(\014x)h(a)f(linking)e(datum)h FC(D)j FL(of)e(\014nite)g(Cartan)g(t)m(yp)s(e)h(with)f(ab)s(elian)e (group)i FI(\000)14 b FL(,)31 b(cf.)257 693 y(De\014nition)39 b(3.6)h(and)h(the)g(commen)m(ts)f(thereafter.)68 b(W)-8 b(e)41 b(require)g(that)f(there)i(are)e(no)257 814 y(self-linkings.)49 b(Consider)36 b(no)m(w)g(a)f(family)e Fq(u)h FL(of)h(ro)s(ot)g(v)m (ector)h(parameters,)g(suc)m(h)g(that)257 934 y Fs(u)p FL(\()p FC(D)s FI(;)17 b Fq(u)p FL(\))29 b(is)g(a)h(p)s(oin)m(ted)f (\014nite)h(dimensional)d(Hopf)j(algebra.)42 b(The)30 b(ultimate)e(goal)g(is)i(to)257 1054 y(sho)m(w)39 b(that)d(all)f(Hopf)i (algebras)g(whic)m(h)g(di\013er)g(only)f(in)h(their)f(c)m(hoice)i(of)e (linking)f(and)257 1175 y(ro)s(ot)c(v)m(ector)i(parameters)f(are)g(co)s (cycle)g(deformations)f(of)g(eac)m(h)i(other.)43 b(Hence,)33 b(there)257 1295 y(is)j(only)f(one)h(quasi-isomorphism)e(class.)53 b(W)-8 b(e)37 b(presen)m(t)g(three)g(ma)5 b(jor)35 b(steps)i(to)m(w)m (ards)257 1416 y(this)c(goal.)404 1536 y(First,)40 b(w)m(e)h(pro)m(v)m (e)g(the)f(statemen)m(t)g(in)f(the)h(case)h(with)e(only)h(linking)d (parameters)257 1656 y(and)i(no)f(ro)s(ot)f(v)m(ector)j(parameters,)g (i.e.)60 b(all)36 b FI(u)2028 1671 y FG(\013)2115 1656 y FL(are)j(zero.)61 b(In)39 b(the)f(second)i(part)e(w)m(e)257 1777 y(sho)m(w)32 b(the)f(result)f(for)g(the)g(case)i(where)f(the)g (Cartan)f(matrix)f(is)h(of)g(t)m(yp)s(e)h FI(A)3032 1792 y FG(n)3079 1777 y FI(:)g FL(Here,)g(all)257 1897 y(the)38 b(ro)s(ot)f(v)m(ector)i(parameters)e(are)h(kno)m(wn)h(explicitly)d(and) h(linking)f(parameters)h(do)257 2017 y(not)e(app)s(ear.)49 b(In)35 b(the)f(last)g(part)g(w)m(e)i(com)m(bine)e(all)e(results)j(to)f (treat)g(the)h(mixed)f(case,)257 2138 y(where)g(the)f(Dynkin)g(diagram) d(is)i(a)g(union)g(of)g FI(A)2066 2153 y FG(n)2114 2138 y FL('s.)404 2258 y(Once)37 b(the)h(ro)s(ot)e(v)m(ector)i(parameters)e (for)h(the)g(other)g(Cartan)g(matrices)f(of)g(\014nite)257 2379 y(t)m(yp)s(e)28 b(ha)m(v)m(e)g(b)s(een)g(determined)f(explicitly) -8 b(,)26 b(an)h(analogous)e(treatmen)m(t)i(should)g(pro)m(vide)257 2499 y(the)33 b(same)g(result)f(as)h(for)f(the)h FI(A)1451 2514 y FG(n)1531 2499 y FL(case.)257 2832 y FD(6.1)161 b(The)53 b(linking)j(case)257 3051 y FL(W)-8 b(e)29 b(assume)g(that)f (w)m(e)h(ha)m(v)m(e)h(no)e(ro)s(ot)g(v)m(ector)h(parameters,)g(i.e.)42 b(all)26 b FI(u)2827 3066 y FG(\013)2904 3051 y FL(are)j(zero.)42 b(This)257 3171 y(is)d(the)h(case,)i(for)d(instance,)j(for)c(the)i (Hopf)f(algebras)g(of)g(Theorem)h(3.4.)63 b(Instead)41 b(of)257 3292 y Fs(u)p FL(\()p FC(D)s FI(;)17 b FJ(0)p FL(\))32 b(w)m(e)h(simply)e(write)i Fs(u)p FL(\()p FC(D)s FL(\).)257 3520 y FJ(Theorem)k(6.1)98 b FE(F)-7 b(or)38 b(two)g(linking)f(data)i FC(D)i FE(and)d FC(D)2278 3484 y Fx(0)2339 3520 y FE(of)g(\014nite)g(Cartan)g(typ)-5 b(e)39 b(which)501 3640 y(only)g(di\013er)f(in)g(their)g(choic)-5 b(e)38 b(of)g(the)h FI(\025)1979 3655 y FG(ij)2078 3640 y FE(we)f(have)g(that)h Fs(u)p FL(\()p FC(D)s FL(\))f FE(and)g Fs(u)p FL(\()p FC(D)3266 3604 y Fx(0)3288 3640 y FL(\))g FE(ar)-5 b(e)501 3761 y(quasi-isomorphic.)257 3989 y FJ(Pro)s(of:)49 b FL(The)33 b(strategy)g(of)f(the)g(pro)s(of)f (is)h(as)g(follo)m(ws.)42 b(W)-8 b(e)33 b(will)d(pro)m(v)m(e)j(the)g (statemen)m(t)501 4109 y(for)43 b(an)h(arbitrary)e(linking)g(datum)h (and)g(the)h(datum)f(where)i(all)c(the)j FI(\025)3261 4124 y FG(ij)3365 4109 y FL(are)501 4230 y(0.)62 b(This)39 b(will)d(b)s(e)j(ac)m(hiev)m(ed)h(inductiv)m(ely)f(b)m(y)g(pro)m(ving)g (the)g(statemen)m(t)g(for)f(an)501 4350 y(arbitrary)i(linking)f(datum)h (with)g(at)h(least)f(one)h(pair)f(of)h(link)m(ed)f(v)m(ertices)i(and) 501 4470 y(one)37 b(datum)g(with)f(the)h(same)g(data,)h(except)g(that)f (the)g(n)m(um)m(b)s(er)g(of)g(connected)501 4591 y(comp)s(onen)m(ts)28 b(that)f(are)h(not)f(link)m(ed)g(to)g(an)m(y)i(other)e(v)m(ertex)i(is)e (increased)h(b)m(y)h(one.)501 4711 y(This)g(means,)h(if)e(in)g(the)i (original)c(datum)i(w)m(e)i(ha)m(v)m(e)g FI(\025)2476 4726 y FG(ij)2564 4711 y FC(6)p FL(=)e(0)h(for)f(some)h FI(i;)17 b(j;)30 b FL(then)501 4832 y(w)m(e)i(tak)m(e)f(for)g(the)g (other)g(datum)f FI(\025)1783 4847 y FG(k)r(l)1875 4832 y FL(=)d(0)k(for)f(all)f(1)e FC(\024)h FI(l)i FC(\024)e FI(\022)34 b FL(and)d(for)f(all)f FI(k)k FL(that)501 4952 y(are)39 b(in)g(the)g(same)g(connected)h(comp)s(onen)m(t)f FI(I)47 b FL(as)40 b FI(i)p FL(.)63 b(The)40 b(transitivit)m(y)d(of)i (the)501 5072 y(quasi-isomorphism)30 b(relation)h(will)f(then)j(yield)f (the)h(result.)501 5234 y(So)22 b(let)g FC(D)30 b FL(=)d FC(f)p FI(\000)s(;)17 b FL(\()p FI(a)1213 5249 y FG(ij)1274 5234 y FL(\))1312 5249 y FH(1)p Fx(\024)p FG(i;j)t Fx(\024)p FG(\022)1572 5234 y FI(;)g FL(\()p FI(g)1701 5249 y FG(i)1728 5234 y FL(\))1766 5249 y FH(1)p Fx(\024)p FG(i)p Fx(\024)p FG(\022)1974 5234 y FI(;)g FL(\()p FI(\037)2117 5249 y FG(j)2154 5234 y FL(\))2192 5249 y FH(1)p Fx(\024)p FG(j)t Fx(\024)p FG(\022)2408 5234 y FI(;)g FL(\()p FI(\025)2547 5249 y FG(ij)2607 5234 y FL(\))2645 5249 y FH(1)p Fx(\024)p FG(i)24 b FC(\010)501 1731 y(\001)17 b(\001)g(\001)28 b(\010)h FI(<)11 b(Z)913 1741 y FH(~)907 1759 y FG(\022)957 1731 y FI(>;)43 b FL(where)h(the)g(order)f(of)f FI(Z)2027 1746 y FG(i)2098 1731 y FL(is)h(the)g(least)g(common)e(m)m(ultiple)g(of)501 1851 y(ord)17 b FI(g)706 1866 y FG(i)758 1851 y FL(and)24 b(ord)16 b FI(\037)1157 1866 y FG(i)1185 1851 y FI(:)24 b FL(Let)h FI(\021)1451 1866 y FG(j)1511 1851 y FL(b)s(e)f(the)h (unique)f(c)m(haracter)h(of)e(\007)h(suc)m(h)h(that)f FI(\021)3184 1866 y FG(j)3221 1851 y FL(\()p FI(Z)3326 1866 y FG(i)3354 1851 y FL(\))j(=)501 1972 y FI(\037)562 1987 y FG(j)599 1972 y FL(\()p FI(g)684 1987 y FG(i)712 1972 y FL(\))p FI(;)37 b FL(1)f FC(\024)h FI(i;)17 b(j)42 b FC(\024)1294 1945 y FL(~)1286 1972 y FI(\022)s(:)c FL(This)f(is)h(w)m(ell)e(de\014ned)j(b)s(ecause)g(ord)17 b FI(g)2844 1987 y FG(i)2909 1972 y FL(divides)38 b(ord)16 b FI(Z)3467 1987 y FG(i)501 2092 y FL(for)32 b(all)f FI(i:)501 2250 y FL(No)m(w)i(tak)m(e)h(as)f(linking)d(datum)i FC(D)1763 2265 y FH(1)1835 2250 y FL(with)g(the)h(original)c(group)k FI(\000)850 2440 y FC(D)927 2455 y FH(1)994 2440 y FL(=)28 b FC(f)p FI(\000)s(;)17 b FL(\()p FI(a)1344 2455 y FG(ij)1404 2440 y FL(\))1448 2450 y FH(~)1442 2467 y FG(\022)r()f FL(1)35 b(where)g FI(j)i FC(2)31 b FI(Z)41 b FL(and)35 b(elemen)m(ts)g FI(x)1806 1509 y FG(i)1865 1494 y FC(2)c FI(H)2043 1509 y FH(0)2082 1494 y FI(;)k(h)2200 1509 y FG(i)2259 1494 y FC(2)c FI(\000)s(;)k(\021) 2529 1509 y FG(i)2588 1494 y FC(2)2706 1469 y FL(^)2685 1494 y FI(\000)14 b(;)35 b FL(1)30 b FC(\024)h FI(i)g FC(\024)h FI(P)s(;)i FL(suc)m(h)257 1615 y(that)594 1830 y FI(g)t(x)700 1845 y FG(i)756 1830 y FL(=)27 b FI(\021)907 1845 y FG(i)936 1830 y FL(\()p FI(g)t FL(\))p FI(x)1118 1845 y FG(i)1145 1830 y FI(g)101 b FL(for)32 b(all)f FI(g)g FC(2)d FI(\000)s(;)44 b FL(1)28 b FC(\024)g FI(i)g FC(\024)g FI(P)s(:)496 1998 y(x)551 2013 y FG(i)580 1998 y FI(x)635 1944 y FG(N)691 1954 y Fo(j)635 2024 y FG(j)756 1998 y FL(=)f FI(\021)911 1944 y FG(N)967 1954 y Fo(j)907 2024 y FG(j)1004 1998 y FL(\()p FI(h)1098 2013 y FG(i)1126 1998 y FL(\))p FI(x)1219 1944 y FG(N)1275 1954 y Fo(j)1219 2024 y FG(j)1312 1998 y FI(x)1367 2013 y FG(i)1493 1998 y FL(for)32 b(all)f(1)c FC(\024)h FI(i)g FC(\024)g FI(P)s(;)44 b(j)34 b FC(2)28 b FI(Z)r(:)414 2154 y FL(The)33 b(elemen)m(ts)g FI(x)1068 2111 y FG(a)1105 2120 y Fy(1)1068 2179 y FH(1)1161 2154 y FI(:)17 b(:)g(:)f(x)1347 2109 y FG(a)1384 2120 y Fo(P)1347 2181 y FG(P)1441 2154 y FI(g)t(;)43 b(a)1613 2169 y FH(1)1653 2154 y FI(;)17 b(:)g(:)g(:)f(a)1879 2169 y FG(P)1965 2154 y FC(\025)28 b FL(0)p FI(;)17 b(g)31 b FC(2)d FI(\000)46 b FL(form)32 b(a)g FF(|)-9 b FL(-basi)o(s)27 b(of)33 b FI(H)3273 2169 y FH(0)3312 2154 y FI(:)257 2568 y FJ(Theorem)k(6.3)98 b FE(L)-5 b(et)31 b FI(u)1193 2583 y FG(j)1229 2568 y FI(;)44 b(j)34 b FC(2)28 b FI(Z)r(;)i FE(b)-5 b(e)30 b(a)g(family)g(of)g(elements)f(in)h FF(|)-9 b FI(\000)s(;)25 b FE(and)30 b FI(I)38 b FE(the)30 b(ide)-5 b(al)501 2704 y(in)37 b FI(H)704 2719 y FH(0)781 2704 y FE(gener)-5 b(ate)g(d)36 b(by)i(al)5 b(l)37 b FI(x)1542 2650 y FG(N)1598 2660 y Fo(j)1542 2730 y FG(j)1659 2704 y FC(\000)24 b FI(u)1816 2719 y FG(j)1852 2704 y FI(;)38 b(j)g FC(2)33 b FI(Z)r(:)j FE(L)-5 b(et)38 b FI(A)32 b FL(=)g FI(H)2691 2719 y FH(0)2731 2704 y FI(=I)45 b FE(b)-5 b(e)37 b(the)g(quotient)501 2824 y(algebr)-5 b(a.)501 2986 y(If)35 b FI(u)660 3001 y FG(j)730 2986 y FE(is)g(c)-5 b(entr)g(al)35 b(in)f FI(H)1353 3001 y FH(0)1427 2986 y FE(for)h(al)5 b(l)34 b FI(j)g FC(2)28 b FI(Z)42 b FE(and)34 b FI(u)2244 3001 y FG(j)2308 2986 y FL(=)28 b(0)34 b FE(if)h FI(\021)2642 2932 y FG(N)2698 2942 y Fo(j)2638 3011 y FG(j)2762 2986 y FC(6)p FL(=)27 b FI(")p FE(,)501 3106 y(then)k(the)g(r)-5 b(esidue)31 b(classes)f(of)h FI(x)1682 3062 y FG(a)1719 3071 y Fy(1)1682 3130 y FH(1)1776 3106 y FI(:)17 b(:)g(:)f(x)1962 3061 y FG(a)1999 3072 y Fo(P)1962 3133 y FG(P)2055 3106 y FI(g)t(;)30 b(a)2214 3121 y FG(i)2270 3106 y FC(\025)f FL(0)p FI(;)i(a)2534 3121 y FG(j)2598 3106 y FI(<)d(N)2780 3121 y FG(j)2847 3106 y FE(if)j FI(j)j FC(2)28 b FI(Z)r(;)j(g)g FC(2)d FI(\000)s(;)501 3226 y FE(form)35 b(a)f FF(|)-8 b FE(-b)i(asis)29 b(of)34 b FI(A:)257 3425 y FL(The)c(pro)s(of)f(of)f (this)h(theorem)g(is)f(exactly)i(the)f(same)g(as)g(in)g(the)g(original) d(pap)s(er,)k(where)257 3546 y FI(Z)40 b FL(included)32 b(all)e(indices)j(from)e(1)h(to)h FI(P)s(:)404 3787 y FL(T)-8 b(o)38 b(see)h(ho)m(w)f(this)g(can)g(b)s(e)g(applied)f(in)g (our)h(situation,)g(w)m(e)h(recall)e(t)m(w)m(o)h(more)f(re-)257 3907 y(sults)45 b(\(Theorem)h(7.21.)e(and)h(Lemma)f(7.22.\))80 b(from)43 b([AS5)q(].)80 b(First,)47 b(the)f(elemen)m(ts)257 4037 y FI(e)302 3993 y FG(b)332 4002 y Fy(12)302 4061 y FH(1)p FG(;)p FH(2)402 4037 y FI(e)447 3993 y FG(b)477 4002 y Fy(13)447 4061 y FH(1)p FG(;)p FH(3)563 4037 y FI(:)17 b(:)g(:)f(e)739 3986 y FG(b)769 3995 y Fo(nn)p Fy(+1)739 4061 y FG(n;n)p FH(+1)939 4037 y FI(g)t(;)32 b(g)f FC(2)d FI(\000)s(;)33 b(b)1385 4052 y FG(ij)1474 4037 y FC(\025)28 b FL(0)p FI(;)k FL(where)i(the)f(ro)s(ot)f(v)m (ectors)i(are)e(arranged)h(in)f(the)257 4157 y(lexicographic)25 b(order,)i(form)e(a)h FF(|)-9 b FL(-basi)o(s)21 b(of)k FI(H)1920 4172 y FH(0)1959 4157 y FI(:)h FL(F)-8 b(urthermore,)27 b(w)m(e)g(ha)m(v)m(e)g(the)g(follo)m(wing)257 4278 y(crucial)32 b(comm)m(utation)e(rule)i(for)g(all)f(1)c FC(\024)h FI(i)g(<)g(j)33 b FC(\024)c FI(n)22 b FL(+)g(1)p FI(;)32 b FL(1)c FC(\024)g FI(s)g(<)f(t)h FC(\024)g FI(N)33 b FL(+)22 b(1)p FI(;)1372 4493 y(e)1417 4508 y FG(i;j)1497 4493 y FI(e)1542 4451 y FG(N)1542 4517 y(s;t)1652 4493 y FL(=)28 b FI(\037)1817 4451 y FG(N)1817 4517 y(s;t)1898 4493 y FL(\()p FI(g)1983 4508 y FG(i;j)2063 4493 y FL(\))p FI(e)2146 4451 y FG(N)2146 4517 y(s;t)2228 4493 y FI(e)2273 4508 y FG(i;j)2354 4493 y FI(:)914 b FL(\(6.8\))257 4708 y(W)-8 b(e)41 b(set)h(no)m(w)f FI(H)886 4723 y FH(0)966 4708 y FL(:=)h Fs(U)p FL(\()p FC(D)s FL(\))e(and)h(kno)m(w)g(that)g(the)g(coradical)e(is)h(a)g (subalgebra.)67 b(So)257 4828 y(the)37 b(last)e(theorem)h(giv)m(es)g (us,)i(for)d(instance,)j(a)e(basis)g(of)f FI(A)p FL(\()p FI(\015)5 b FL(\))p FI(;)36 b FL(as)g(w)m(e)i(get)e Fs(u)f FL(from)g Fs(U)257 4948 y FL(exactly)e(b)m(y)h(dividing)d(out)h(the)h (ro)s(ot)f(v)m(ector)h(relations.)404 5069 y(W)-8 b(e)33 b(are)f(no)m(w)h(ready)h(to)e(giv)m(e)g(the)h(pro)s(of)f(of)g(our)h (Theorem.)257 5268 y FJ(Pro)s(of)38 b(of)f(Theorem)g(6.2:)49 b FL(As)36 b(in)f(the)h(linking)d(case,)k(it)d(is)h(enough)h(to)f(pro)m (v)m(e)h(that)501 5388 y(for)h(an)m(y)i(admissible)c(family)h FI(\015)5 b FL(,)39 b FI(A)p FL(\()p FI(\015)5 b FL(\))37 b(is)h(quasi-isomorphic)d(to)i FI(A)p FL(\()p FI(\015)3131 5403 y FH(0)3170 5388 y FL(\))h(where)1828 5637 y(66)p eop %%Page: 67 69 67 68 bop 501 573 a FI(\015)552 588 y FH(0)624 573 y FL(denotes)34 b(the)f(family)d(in)i(whic)m(h)h(all)d(the)j FI(\015)2190 588 y FG(i;j)2302 573 y FL(are)g(zero.)44 b(Again,)31 b(this)i(will)d(b)s(e)501 693 y(ac)m(hiev)m(ed)k(b)m(y)g (follo)m(wing)c(a)i(step)m(wise)i(pro)s(cedure.)501 852 y FC(\017)29 b FL(Fix)g FI(i)785 867 y FH(0)854 852 y FL(with)g(1)e FC(\024)h FI(i)1287 867 y FH(0)1355 852 y FC(\024)g FI(n)i FL(suc)m(h)g(that)g(for)e(the)i(giv)m(en)g (admissible)d(family)g FI(\015)34 b FL(w)m(e)501 973 y(ha)m(v)m(e)1065 1093 y FI(\015)1116 1108 y FG(i;j)1223 1093 y FL(=)28 b(0)k(for)g(all)f(1)c FC(\024)h FI(i)g(<)g(i)2072 1108 y FH(0)2144 1093 y FL(and)33 b FI(i)28 b(<)f(j)34 b FC(\024)28 b FI(n)23 b FL(+)f(1)p FI(:)501 1260 y FL(Set)42 b(~)-52 b FI(\015)726 1275 y FG(i;j)842 1260 y FL(:=)37 b FI(\015)1033 1275 y FG(i;j)1151 1260 y FL(if)g FI(i)g FC(6)p FL(=)g FI(i)1462 1275 y FH(0)1540 1260 y FL(and)42 b(~)-53 b FI(\015)1786 1275 y FG(i)1810 1284 y Fy(0)1844 1275 y FG(;j)1937 1260 y FL(:=)37 b(0)h(for)f(all)f FI(i)2492 1275 y FH(0)2569 1260 y FI(<)h(j)43 b FC(\024)37 b FI(n)26 b FL(+)g(1)p FI(:)38 b FL(Then)43 b(~)-53 b FI(\015)501 1380 y FL(is)37 b(again)f(admissible.)57 b(It)38 b(is)f(no)m(w)h (su\016cien)m(t)h(to)e(pro)m(v)m(e)i(that)e FC(A)p FL(\()p FI(\015)5 b FL(\))37 b(and)h FC(A)p FL(\()t(~)-53 b FI(\015)t FL(\))501 1500 y(are)41 b(quasi-isomorphic)d(and)i(then)h(to)g(rep)s (eat)f(this)g(step)i(with)e(increasing)f FI(i)3428 1515 y FH(0)3468 1500 y FI(;)501 1621 y FL(replacing)32 b FI(\015)37 b FL(b)m(y)g(~)-52 b FI(\015)5 b(:)32 b FL(Set)572 1822 y FI(H)j FL(=)28 b FI(H)873 1837 y FH(0)912 1822 y FI(=I)8 b(;)44 b(I)36 b FL(:=)27 b(\()p FI(e)1375 1781 y FG(N)1375 1847 y(i;j)1478 1822 y FC(\000)22 b FI(u)1633 1837 y FG(i;j)1757 1822 y FL(:)45 b(1)27 b FC(\024)h FI(i)g(<)g(j)33 b FC(\024)c FI(n)22 b FL(+)g(1)p FI(;)44 b(i)28 b FC(6)p FL(=)g FI(i)2850 1837 y FH(0)2922 1822 y FL(or)k FI(\037)3102 1781 y FG(N)3102 1847 y(i;j)3210 1822 y FC(6)p FL(=)c FI(")o FL(\))p FI(:)501 2024 y FL(Note)33 b(that)f FI(u)1004 2039 y FG(i;j)1084 2024 y FL(\()p FI(\015)5 b FL(\))28 b(=)f FI(u)1403 2039 y FG(i;j)1483 2024 y FL(\()t(~)-53 b FI(\015)5 b FL(\))32 b(for)g(all)f(the)i FI(u)2156 2039 y FG(i;j)2268 2024 y FL(app)s(earing)e(in)h(the)h(ideal) e FI(I)8 b(:)501 2183 y FC(\017)33 b FI(H)40 b FL(is)32 b(a)g(Hopf)g(algebra.)501 2304 y(T)-8 b(o)33 b(see)h(this,)e(w)m(e)h (recall)f(the)h(com)m(ultiplication)28 b(on)k(the)h(ro)s(ot)f(v)m (ectors)629 2499 y(\001\()p FI(e)793 2458 y FG(N)793 2523 y(i;j)896 2499 y FC(\000)22 b FI(u)1051 2514 y FG(i;j)1131 2499 y FL(\))28 b(=)f(\()p FI(e)1383 2458 y FG(N)1383 2523 y(i;j)1486 2499 y FC(\000)22 b FI(u)1641 2514 y FG(i;j)1721 2499 y FL(\))g FC(\012)h FL(1)f(+)g FI(h)2106 2514 y FG(i;j)2208 2499 y FC(\012)h FL(\()p FI(e)2391 2458 y FG(N)2391 2523 y(i;j)2493 2499 y FC(\000)g FI(u)2649 2514 y FG(i;j)2728 2499 y FL(\)+)635 2674 y(+)761 2580 y Fw(X)733 2790 y FG(i)g(i)1086 3347 y FH(0)1148 3332 y FL(is)22 b(ob)m(vious.)40 b(When)23 b FI(i)28 b FL(=)g FI(i)2095 3347 y FH(0)2157 3332 y FL(then,)d(according)d(to)g(the)h(de\014nition) 501 3453 y(of)i FI(I)8 b FL(,)27 b FI(e)755 3416 y FG(N)755 3477 y(i)779 3486 y Fy(0)814 3477 y FG(;j)878 3453 y FC(\000)8 b FI(u)1019 3468 y FG(i)1043 3477 y Fy(0)1078 3468 y FG(;j)1160 3453 y FL(is)25 b(in)g FI(I)33 b FL(only)25 b(if)g FI(\037)1785 3416 y FG(N)1785 3477 y(i)1809 3486 y Fy(0)1844 3477 y FG(;j)1927 3453 y FC(6)p FL(=)j FI(")16 b(:)26 b FL(F)-8 b(rom)24 b(\(6.7\))h(follo)m(ws)g(then)h FI(\015)3201 3468 y FG(i)3225 3477 y Fy(0)3259 3468 y FG(;j)3343 3453 y FL(=)h(0)501 3573 y(and)33 b FI(u)747 3588 y FG(i)771 3597 y Fy(0)805 3588 y FG(;j)889 3573 y FL(=)27 b(0)p FI(:)33 b FL(W)-8 b(e)33 b(ha)m(v)m(e)1213 3774 y FI(\037)1274 3733 y FG(N)1274 3799 y(i)1298 3808 y Fy(0)1333 3799 y FG(;j)1417 3774 y FL(=)27 b FI(\037)1581 3733 y FG(N)1581 3799 y(i)1605 3808 y Fy(0)1640 3799 y FG(;p)1699 3774 y FI(\037)1760 3733 y FG(N)1760 3799 y(p;j)2047 3774 y FL(for)32 b(all)f FI(i)2365 3789 y FH(0)2432 3774 y FI(<)d(p)f(<)h(j:)501 3976 y FL(And)33 b(hence)g FI(\037)1046 3940 y FG(N)1046 4001 y(i)1070 4010 y Fy(0)1105 4001 y FG(;p)1192 3976 y FC(6)p FL(=)28 b FI(")j FL(and)i FI(u)1619 3991 y FG(i)1643 4000 y Fy(0)1677 3991 y FG(;p)1764 3976 y FL(=)27 b(0)32 b(or)g FI(\037)2128 3940 y FG(N)2128 4001 y(p;j)2247 3976 y FC(6)p FL(=)c FI(")k FL(and)g FI(u)2674 3991 y FG(p;j)2793 3976 y FL(=)27 b(0)p FI(:)32 b FL(This)g(pro)m(v)m(es)501 4096 y(that)1461 4217 y(\001)q(\()p FI(I)8 b FL(\))27 b FC(\032)h FI(H)1883 4232 y FH(0)1945 4217 y FC(\012)22 b FI(I)30 b FL(+)22 b FI(I)30 b FC(\012)23 b FI(H)2469 4232 y FH(0)2508 4217 y FI(:)501 4383 y FL(A)34 b(simple)e(calculation)f(sho)m(ws)k FI(")p FL(\()p FI(e)1817 4398 y FG(i;j)1897 4383 y FL(\))30 b(=)f(0)g(=)h FI(")o FL(\()p FI(u)2393 4398 y FG(i;j)2473 4383 y FL(\))p FI(:)j FL(So)h(w)m(e)h(can)e(get)h(t)m(w)m(o)g(re-)501 4504 y(cursion)27 b(form)m(ulas)f(for)h(the)h(an)m(tip)s(o)s(de)e(of)h FI(e)2079 4467 y FG(N)2079 4528 y(i;j)2170 4504 y FC(\000)11 b FI(u)2314 4519 y FG(i;j)2422 4504 y FL(from)26 b(the)i(com)m (ultiplication)501 4624 y(form)m(ula,)40 b(as)f Fv(S)p FL(\()p FI(a)1164 4639 y Fy(\(1\))1247 4624 y FL(\))p FI(a)1336 4639 y Fy(\(2\))1458 4624 y FL(=)h FI(")o FL(\()p FI(a)p FL(\))g(=)f FI(a)1952 4639 y Fy(\(1\))2052 4624 y Fv(S)p FL(\()p FI(a)2195 4639 y Fy(\(2\))2277 4624 y FL(\))p FI(:)h FL(Using)f(the)h(second)h(of)e(these)501 4744 y(form)m(ulas)h(for)h(the)h(case)h FI(i)g(<)g(i)1685 4759 y FH(0)1766 4744 y FL(w)m(e)f(immediately)d(ha)m(v)m(e)j Fv(S)p FL(\()p FI(e)2853 4708 y FG(N)2853 4769 y(i;j)2934 4744 y FL(\))h FC(2)g FI(I)8 b(:)41 b FL(When)501 4865 y FI(i)28 b(>)g(i)699 4880 y FH(0)738 4865 y FI(;)33 b FL(an)g(inductiv)m(e)f(argumen)m(t)h(using)f(the)h(\014rst)g(form)m (ula)e(and)1158 5066 y Fv(S)p FL(\()p FI(e)1295 5025 y FG(N)1295 5091 y(i;i)p FH(+1)1480 5066 y FC(\000)22 b FI(u)1635 5081 y FG(i;i)p FH(+1)1797 5066 y FL(\))27 b(=)h FC(\000)p FI(g)2094 5025 y Fx(\000)p FG(N)2090 5092 y(i)2216 5066 y FL(\()p FI(e)2299 5025 y FG(N)2299 5091 y(i;i)p FH(+1)2483 5066 y FC(\000)23 b FI(u)2639 5081 y FG(i;i)p FH(+1)2800 5066 y FL(\))501 5268 y(giv)m(es)32 b(again)e Fv(S)p FL(\()p FI(e)1135 5232 y FG(N)1135 5292 y(i;j)1215 5268 y FL(\))e FC(2)g FI(I)8 b(:)31 b FL(F)-8 b(or)31 b FI(i)d FL(=)f FI(i)1855 5283 y FH(0)1895 5268 y FI(;)k FL(a)h(com)m(bination)d(of)i(the)h(reasoning)e(from)501 5388 y(the)f(discussion)f(of)f(the)h(com)m(ultiplication)c(and)k(the)g (inductiv)m(e)g(argumen)m(t)f(from)1828 5637 y(67)p eop %%Page: 68 70 68 69 bop 501 573 a FL(the)36 b(last)f(case)h(giv)m(e)f(the)h(desired)g (result,)g(establishing)e Fv(S)p FL(\()p FI(I)8 b FL(\))32 b FC(\032)h FI(I)8 b(:)36 b FL(Hence)g FI(I)44 b FL(is)501 693 y(a)33 b(Hopf)f(ideal.)501 855 y FC(\017)48 b FL(Next)g(w)m(e)h (tak)m(e)f(as)g FI(K)55 b FL(the)48 b(subalgebra)f(of)g FI(H)55 b FL(generated)49 b(b)m(y)f(the)g(group)501 976 y FI(\000)56 b FL(and)43 b(the)g(remaining)d FI(e)1505 939 y FG(N)1505 1000 y(i)1529 1009 y Fy(0)1563 1000 y FG(;j)1620 976 y FI(;)i FL(i.e.)g FI(i)1889 991 y FH(0)1973 976 y FI(<)i(j)50 b FC(\024)45 b FI(n)29 b FL(+)g(1)p FI(;)42 b FL(suc)m(h)i(that)e FI(\037)3127 939 y FG(N)3127 1000 y(i)3151 1009 y Fy(0)3185 1000 y FG(;j)3286 976 y FL(=)i FI(")16 b(:)501 1096 y FL(A)46 b(similar)d(calculation)g(to)j (the)g(one)g(ab)s(o)m(v)m(e)h(rev)m(eals)g(that)e FI(K)53 b FL(is)46 b(actually)e(a)501 1216 y(Hopf)49 b(subalgebra)f(of)g FI(H)r(:)h FL(This)g(time,)i(one)e(has)g(to)f(use)i(the)f(fact)f(that)h (for)501 1337 y(an)m(y)43 b FI(p)e FL(b)s(et)m(w)m(een)j FI(i)1204 1352 y FH(0)1285 1337 y FL(and)e FI(j;)g FL(either)g FI(\037)1940 1301 y FG(N)1940 1361 y(i)1964 1370 y Fy(0)1998 1361 y FG(;p)2101 1337 y FL(=)h FI(")e FL(or)g(that)h FI(\037)2717 1301 y FG(N)2717 1361 y(p;j)2852 1337 y FC(6)p FL(=)h FI(")e FL(and)h(hence)501 1457 y FI(u)557 1472 y FG(p;j)676 1457 y FL(=)28 b(0)f(=)h FI(e)1005 1421 y FG(N)1005 1482 y(p;j)1129 1457 y FL(in)k FI(H)r(:)501 1619 y FL(As)g(all)d(the)i FI(u)1000 1634 y FG(i;j)1111 1619 y FL(ful\014ll)e(the)i(conditions)f(of)h(Theorem)g(6.3)g(w)m(e)h (immediately)c(get)501 1739 y(a)40 b(basis)f(of)h FI(H)r(:)f FL(The)i(comm)m(utation)d(relations)g(\(6.8\))h(for)g(the)i FI(N)2976 1703 y FH(th)3087 1739 y FL(p)s(o)m(w)m(ers)g(of)501 1860 y(the)33 b(ro)s(ot)e(v)m(ectors)j(sho)m(w)f(that)f(the)g (generators)h(of)f FI(K)39 b FL(all)30 b(comm)m(ute)i(with)f(eac)m(h) 501 1980 y(other,)42 b(b)s(ecause)e(the)g(factor)f(is)g(1)p FI(;)g FL(as)h FI(\037)2028 1944 y FG(N)2028 2005 y(i)2052 2014 y Fy(0)2087 2005 y FG(;j)2182 1980 y FL(=)f FI(")g FL(for)g(all)e(generators.)65 b(Hence,)501 2100 y(an)m(y)31 b(monomial)26 b(in)k FI(K)37 b FL(can)30 b(b)s(e)h(reordered)g(and)f (is)g(then)g(a)g(basis)g(elemen)m(t)g(of)g FI(H)r(:)501 2221 y FL(So)j FI(K)39 b FL(is)32 b(just)h(the)g(p)s(olynomial)c (algebra)j(on)g(its)g(generators.)501 2383 y FC(\017)h FL(W)-8 b(e)33 b(de\014ne)g(an)g(algebra)e(map)h FI(f)38 b FL(:)28 b FI(K)35 b FC(!)27 b FF(|)18 b FL(b)m(y)34 b(setting)561 2603 y FI(f)11 b FL(\()p FI(e)703 2562 y FG(N)703 2627 y(i)727 2636 y Fy(0)762 2627 y FG(;j)818 2603 y FL(\))28 b(:=)f FI(\015)1065 2618 y FG(i)1089 2627 y Fy(0)1124 2618 y FG(;j)1180 2603 y FI(;)211 b(f)11 b FL(\()p FI(g)t FL(\))27 b(:=)h(1)195 b(on)32 b(all)f(the)i (generators)g(of)f FI(K)r(;)h(g)e FC(2)d FI(\000)s(:)501 2823 y FL(Algebra)34 b(maps,)i(from)e(a)g(Hopf)h(algebra)f FI(K)42 b FL(to)35 b(the)g(base)h(\014eld,)g(form)e(a)g(group)501 2943 y(under)i(the)f(con)m(v)m(olution)g(pro)s(duct)g(where)h(the)f(in) m(v)m(erse)i(is)d(giv)m(en)h(b)m(y)h(the)f(com-)501 3064 y(p)s(osition)40 b(with)h(the)h(an)m(tip)s(o)s(de.)70 b(This)41 b(group)h(acts)g(on)f(the)h(Hopf)g(algebra)e FI(K)501 3184 y FL(from)32 b(the)h(left)e(and)i(the)g(righ)m(t)f(b)m(y) 1185 3404 y FI(f)5 b(:x)28 b FL(=)g FI(x)1507 3419 y Fy(\(1\))1590 3404 y FI(f)11 b FL(\()p FI(x)1742 3419 y Fy(\(2\))1825 3404 y FL(\))p FI(;)211 b(x:f)39 b FL(=)28 b FI(f)11 b FL(\()p FI(x)2526 3419 y Fy(\(1\))2608 3404 y FL(\))p FI(x)2701 3419 y Fy(\(2\))2784 3404 y FI(:)501 3624 y FC(\017)43 b FL(T)-8 b(o)43 b(b)s(e)g(able)f(to)h(apply)f (Theorem)h(2.)g(of)f([Mas1)q(],)j(whic)m(h)f(will)c(giv)m(e)j(us)h(the) 501 3744 y(desired)27 b(quasi-isomorphism,)d(w)m(e)j(ha)m(v)m(e)h(to)d (calculate)g FI(f)5 b(:e)2663 3708 y FG(N)2663 3769 y(i)2687 3778 y Fy(0)2723 3769 y FG(;j)2779 3744 y FI(:f)2865 3708 y Fx(\000)p FH(1)2959 3744 y FI(:)26 b FL(As)h(a)e(prepa-)501 3865 y(ration)32 b(for)h(this)g(w)m(e)h(\014rst)g(calculate)e FI(f)11 b FL(\()p FI(u)2036 3880 y FG(i;i)p FH(+1)2197 3865 y FL(\))29 b(=)f(0)33 b(for)g(all)e(1)e FC(\024)g FI(i)g FC(\024)g FI(n)34 b FL(and)f(see)501 3985 y(then)38 b(from)d(the)j(inductiv)m(e)f(de\014nition)f(\(6.6\))g(that)h FI(f)11 b FL(\()p FI(u)2606 4000 y FG(i;j)2685 3985 y FL(\))35 b(=)g(0)i(for)f(all)f FI(i)h(<)f(j:)501 4105 y FL(So)e(for)f(the)h(generators)g(of)f FI(K)40 b FL(w)m(e)33 b(ha)m(v)m(e)776 4337 y FI(f)5 b(:e)901 4296 y FG(N)901 4362 y(i)925 4371 y Fy(0)961 4362 y FG(;j)1044 4337 y FL(=)28 b FI(e)1193 4296 y FG(N)1193 4362 y(i)1217 4371 y Fy(0)1252 4362 y FG(;j)1308 4337 y FI(f)11 b FL(\(1\))21 b(+)h FI(h)1667 4352 y FG(i)1691 4361 y Fy(0)1726 4352 y FG(;j)1782 4337 y FI(f)11 b FL(\()p FI(e)1924 4296 y FG(N)1924 4362 y(i)1948 4371 y Fy(0)1983 4362 y FG(;j)2039 4337 y FL(\))22 b(+)2243 4243 y Fw(X)2197 4453 y FG(i)2221 4462 y Fy(0)2256 4453 y FG()28 b(i)3144 3113 y FH(0)3213 3098 y FL(is)h(suc)m(h)501 3218 y(that)h FI(\037)771 3182 y FG(N)771 3243 y(i)795 3252 y Fy(0)830 3243 y FG(;j)914 3218 y FC(6)p FL(=)e FI(")o(;)j FL(then)g FI(e)1386 3182 y FG(N)1386 3243 y(i)1410 3252 y Fy(0)1445 3243 y FG(;j)1531 3218 y FL(is)f(not)g(a)h(generator)f(of)g FI(K)38 b FL(and)30 b(w)m(e)i(can)e(not)h(simply)501 3338 y(apply)38 b(the)g(de\014nition)f (of)h FI(f)5 b(:)38 b FL(But)g(in)f(this)h(case,)i FI(u)2432 3353 y FG(i)2456 3362 y Fy(0)2490 3353 y FG(;j)2583 3338 y FL(=)d(0)g(=)g FI(e)2940 3302 y FG(N)2940 3363 y(i)2964 3372 y Fy(0)2998 3363 y FG(;j)3092 3338 y FL(in)h FI(H)45 b FL(and)501 3459 y FI(\015)552 3474 y FG(i)576 3483 y Fy(0)610 3474 y FG(;j)701 3459 y FL(is)33 b(zero)i(as)f(w)m(ell,)g (as)g(this)g(is)g(required)h(for)e(an)h(admissible)e(family)-8 b(.)46 b(So)34 b(w)m(e)501 3579 y(still)c(ha)m(v)m(e)k FI(f)11 b FL(\()p FI(e)1058 3543 y FG(N)1058 3604 y(i)1082 3613 y Fy(0)1117 3604 y FG(;j)1173 3579 y FL(\))28 b(=)f FI(\015)1393 3594 y FG(i)1417 3603 y Fy(0)1451 3594 y FG(;j)1507 3579 y FI(:)501 3741 y FC(\017)67 b FL(Let)f FI(J)76 b FL(b)s(e)67 b(the)g(Hopf)g(ideal)e(of)h FI(K)74 b FL(generated)67 b(b)m(y)h(all)c(the)j(genera-)501 3861 y(tors)58 b FI(e)767 3825 y FG(N)767 3886 y(i)791 3895 y Fy(0)826 3886 y FG(;j)940 3861 y FL(of)g FI(K)r(:)f FL(Then,)66 b(according)57 b(to)h([Mas1,)64 b(Theorem)59 b(2.],)64 b FI(H)r(=)p FL(\()p FI(f)5 b(:J)k FL(\))501 3982 y(is)59 b(an)g(\()p FI(H)r(=)p FL(\()p FI(J)9 b FL(\))p FI(;)17 b(H)r(=)p FL(\()p FI(f)5 b(:J)n(:f)1529 3946 y Fx(\000)p FH(1)1623 3982 y FL(\)\)-bi-Galois)56 b(ob)5 b(ject)60 b(and)f(hence)i FI(H)r(=)p FL(\()p FI(J)9 b FL(\))59 b(and)501 4102 y FI(H)r(=)p FL(\()p FI(f)5 b(:J)n(:f)889 4066 y Fx(\000)p FH(1)984 4102 y FL(\))23 b(are)h(quasi-isomorphic)d(if)h(the)i(bi-Galois)c(ob)5 b(ject)25 b(is)e(not)g(zero.)41 b(W)-8 b(e)501 4223 y(see)36 b(that)e FI(u)930 4238 y FG(i)954 4247 y Fy(0)988 4238 y FG(;j)1044 4223 y FL(\()t(~)-53 b FI(\015)5 b FL(\))31 b(=)g(0)j(and)h(so)f FI(A)p FL(\()t(~)-53 b FI(\015)5 b FL(\))31 b(=)g FI(H)r(=)p FL(\()p FI(J)9 b FL(\))p FI(:)34 b FL(Calculation)e(\(6.10\))i(sho)m(w)m(ed)501 4343 y(that)39 b FI(A)p FL(\()p FI(\015)5 b FL(\))39 b(=)g FI(H)r(=)p FL(\()p FI(f)5 b(:J)n(:f)1466 4307 y Fx(\000)p FH(1)1561 4343 y FL(\))p FI(:)39 b FL(W)-8 b(e)40 b(are)f(left)g(to)f(sho)m(w)j(that)e FI(B)44 b FL(:=)39 b FI(H)r(=)p FL(\()p FI(f)5 b(:J)k FL(\))40 b(is)501 4463 y(not)33 b(zero.)501 4625 y FC(\017)42 b FI(B)50 b FL(=)44 b FI(H)918 4640 y FH(0)957 4625 y FI(=)p FL(\()p FI(I)8 b(;)17 b(f)5 b(:J)k FL(\))43 b(b)m(y)g (construction.)73 b(W)-8 b(e)43 b(ha)m(v)m(e)h(a)e(basis)g(of)g FI(H)3089 4640 y FH(0)3171 4625 y FL(and)g(see)501 4746 y(that)28 b(w)m(e)g(could)g(apply)f(Theorem)h(6.3)f(to)g(get)h(a)f (basis)h(of)f FI(B)5 b FL(.)42 b(It)28 b(just)g(remains)f(to)501 4866 y(c)m(hec)m(k)i(that)c(the)i(elemen)m(ts)f FI(\015)1567 4881 y FG(i)1591 4890 y Fy(0)1626 4881 y FG(;j)1682 4866 y FI(h)1738 4881 y FG(i)1762 4890 y Fy(0)1796 4881 y FG(;j)1879 4866 y FL(app)s(earing)f(in)g FI(f)5 b(:J)36 b FL(satisfy)26 b(the)g(conditions)501 4986 y(of)32 b(the)h(theorem.) 501 5148 y(If)40 b FI(\037)667 5112 y FG(N)667 5173 y(i)691 5182 y Fy(0)725 5173 y FG(;j)821 5148 y FC(6)p FL(=)g FI(")f FL(then)h FI(\015)1302 5163 y FG(i)1326 5172 y Fy(0)1360 5163 y FG(;j)1456 5148 y FL(=)f(0,)i(b)s(ecause)g FI(\015)k FL(is)39 b(admissible.)62 b FI(h)2844 5163 y FG(i)2868 5172 y Fy(0)2903 5163 y FG(;j)2999 5148 y FL(is)39 b(in)g FI(\000)53 b FL(and)501 5269 y(so)46 b(comm)m(utes)f(with)g(all)e(group)i(elemen)m(ts.)82 b(W)-8 b(e)46 b(will)d(sho)m(w)j(no)m(w)g(that)f FI(h)3380 5284 y FG(i)3404 5293 y Fy(0)3439 5284 y FG(;j)1828 5637 y FL(69)p eop %%Page: 70 72 70 71 bop 501 573 a FL(comm)m(utes)33 b(also)e(with)i(all)d(the)j (generators)g(of)f FI(H)2345 588 y FH(0)2384 573 y FI(:)h FL(F)-8 b(or)32 b(this)g(w)m(e)i(calculate)1171 779 y FI(h)1227 794 y FG(i)1251 803 y Fy(0)1285 794 y FG(;j)1342 779 y FI(x)1397 794 y FG(k)1467 779 y FL(=)28 b FI(\037)1632 794 y FG(k)1675 779 y FL(\()p FI(h)1769 794 y FG(i)1793 803 y Fy(0)1827 794 y FG(;j)1884 779 y FL(\))p FI(x)1977 794 y FG(k)2020 779 y FI(h)2076 794 y FG(i)2100 803 y Fy(0)2134 794 y FG(;j)2190 779 y FI(;)1089 953 y(\037)1150 968 y FG(k)1193 953 y FL(\()p FI(h)1287 968 y FG(i)1311 977 y Fy(0)1346 968 y FG(;j)1402 953 y FL(\))f(=)h FI(\037)1632 968 y FG(k)1675 953 y FL(\()1767 858 y Fw(Y)1713 1069 y FG(i)1737 1078 y Fy(0)1771 1069 y Fx(\024)p FG(p)g FL(0)p FI(;)i FL(with)g(a)257 2939 y(\014xed)27 b(\014nite)e(ab)s(elian)f(group)h FI(\000)s(:)h FL(The)h(algebra)d Fs(U)p FL(\()p FC(D)s FL(\))h(is)g(a)h(Hopf)f (algebra.W)-8 b(e)25 b(order)h(the)257 3059 y(v)m(ertices)j(in)e(the)h (Dynkin)g(diagram)e(so)h(that)h(the)g(ro)s(ot)f(v)m(ectors)i(of)e(the)i FI(k)2931 3023 y FH(th)3029 3059 y FL(comp)s(onen)m(t)257 3180 y(are)40 b FI(e)472 3195 y FG(S)515 3207 y Fo(k)553 3195 y FH(+)p FG(i;S)695 3207 y Fo(k)733 3195 y FH(+)p FG(j)824 3180 y FI(;)g FL(1)f FC(\024)h FI(i)g(<)g(j)46 b FC(\024)40 b FI(n)1546 3195 y FG(k)1615 3180 y FL(+)27 b(1)p FI(;)40 b FL(where)h FI(S)2183 3195 y FG(k)2265 3180 y FL(=)e FI(n)2438 3195 y FH(1)2505 3180 y FL(+)27 b FC(\001)17 b(\001)g(\001)25 b FL(+)i FI(n)2912 3195 y FG(k)r Fx(\000)p FH(1)3045 3180 y FI(:)40 b FL(The)g(ro)s(ot)257 3300 y(v)m(ectors)30 b(within)e(one)g(comp)s(onen)m(t)h(are)f (de\014ned)i(in)e(the)h(same)f(w)m(a)m(y)i(as)e(in)g(the)h(previous)257 3420 y(section.)44 b(Then)34 b(the)f(monomials)610 3635 y FI(e)655 3582 y FG(b)685 3591 y Fy(1)p Fo(;)p Fy(2)655 3659 y FH(1)p FG(;)p FH(2)790 3635 y FC(\001)17 b(\001)g(\001)d FI(e)967 3576 y FG(b)997 3585 y Fy(1)p Fo(;n)1084 3600 y Fy(1)1120 3585 y(+1)967 3659 y FH(1)p FG(;n)1065 3668 y Fy(1)1100 3659 y FH(+1)1206 3635 y FI(e)1251 3582 y FG(b)1281 3591 y Fy(2)p Fo(;)p Fy(3)1251 3659 y FH(2)p FG(;)p FH(3)1386 3635 y FC(\001)j(\001)g(\001)d FI(e)1563 3576 y FG(b)1593 3587 y Fo(S)1631 3600 y(t)1659 3587 y Fy(+)p Fo(n)1744 3600 y(t)1772 3587 y(;S)1829 3600 y(t)1857 3587 y Fy(+)p Fo(n)1942 3600 y(t)1970 3587 y Fy(+1)1563 3662 y FG(S)1606 3670 y Fo(t)1634 3662 y FH(+)p FG(n)1732 3670 y Fo(t)1760 3662 y FG(;S)1823 3670 y Fo(t)1851 3662 y FH(+)p FG(n)1949 3670 y Fo(t)1976 3662 y FH(+1)2070 3635 y FI(g)t(;)114 b FL(0)27 b FC(\024)i FI(b)2485 3650 y FG(S)2528 3662 y Fo(k)2566 3650 y FH(+)p FG(i;S)2708 3662 y Fo(k)2746 3650 y FH(+)p FG(j)2837 3635 y FI(;)17 b(g)31 b FC(2)d FI(\000)s(;)257 3849 y FL(form)38 b(a)h(PBW-basis)h(of) e Fs(U)p FL(\()p FC(D)s FL(\))p FI(:)h FL(A)h(pro)s(of)e(can)i(b)s(e)f (found)g(in)g([AS6,)i(Theorem)e(4.2.].)257 3970 y(The)e(idea)e(is)g (that)h(a)f(PBW-basis)h(is)f(kno)m(wn)i(for)f(the)g(linking)d(datum)i FC(D)3032 3985 y FH(0)3107 3970 y FL(where)i(all)257 4090 y(the)i FI(\025)488 4105 y FG(ij)586 4090 y FL(are)f(zero.)60 b(Using,)39 b(for)e(instance,)i(the)g(considerations)e(in)g(the)i (\014rst)f(section)257 4211 y(of)d(this)f(c)m(hapter)i(one)f(kno)m(ws)h (explicitly)d(the)i(2-co)s(cycle)f(relating)f Fs(U)p FL(\()p FC(D)s FL(\))i(and)g Fs(U)p FL(\()p FC(D)3391 4226 y FH(0)3430 4211 y FL(\))p FI(:)257 4331 y FL(Expressing)g(no)m(w) e(the)g(ab)s(o)m(v)m(e)h(monomials)c(in)i Fs(U)p FL(\()p FC(D)2181 4346 y FH(0)2220 4331 y FL(\))p FI(;)h FL(one)g(sees)i(that)e (they)g(are)g(basis)257 4451 y(elemen)m(ts)g(of)f(the)h(common)f (underlying)g(v)m(ector)h(space.)404 4572 y(As)42 b(in)e(the)i (previous)g(section,)i(w)m(e)f(in)m(tro)s(duce)e(for)g(ev)m(ery)j(comp) s(onen)m(t)d FI(k)k FL(of)c(the)257 4692 y(diagram)k(an)h(admissible)f (parameter)h(family)f FI(\015)2131 4707 y FG(k)2219 4692 y FL(and)i(de\014ne)h(the)f(corresp)s(onding)257 4812 y(elemen)m(ts)37 b FI(u)716 4827 y FG(S)759 4839 y Fo(k)797 4827 y FH(+)p FG(i;S)939 4839 y Fo(k)977 4827 y FH(+)p FG(j)1068 4812 y FL(\()p FI(\015)1157 4827 y FG(k)1199 4812 y FL(\))e FC(2)g FF(|)-9 b FI(\000)s(;)31 b FL(1)k FC(\024)g FI(i)g(<)g(j)41 b FC(\024)35 b FI(n)2181 4827 y FG(k)2249 4812 y FL(+)25 b(1)p FI(:)36 b FL(The)i(collection)d(of)h (all)f(the)257 4933 y(parameters)e FI(\015)813 4948 y FG(k)888 4933 y FL(will)d(b)s(e)j(denoted)g(b)m(y)h FI(\015)5 b(:)404 5053 y FC(A)p FL(\()p FC(D)s FI(;)17 b(\015)5 b FL(\))28 b(is)i(no)m(w)h(de\014ned)g(as)f(the)h(quotien)m(t)f(of)g Fs(U)p FL(\()p FC(D)s FL(\))f(b)m(y)i(the)g(ideal)d(generated)j(b)m(y) 257 5174 y(the)i(ro)s(ot)f(v)m(ector)i(relations)561 5388 y FI(e)606 5342 y FG(N)662 5354 y Fo(k)606 5415 y FG(S)649 5427 y Fo(k)688 5415 y FH(+)p FG(i;S)830 5427 y Fo(k)867 5415 y FH(+)p FG(j)986 5388 y FL(=)28 b FI(u)1146 5403 y FG(S)1189 5415 y Fo(k)1226 5403 y FH(+)p FG(i;S)1368 5415 y Fo(k)1406 5403 y FH(+)p FG(j)1497 5388 y FL(\()p FI(\015)1586 5403 y FG(k)1629 5388 y FL(\))p FI(;)211 b FL(1)28 b FC(\024)g FI(k)j FC(\024)d FI(t;)33 b FL(1)28 b FC(\024)g FI(i)g(<)f(j)34 b FC(\024)28 b FI(n)2952 5403 y FG(k)3017 5388 y FL(+)22 b(1)p FI(:)1828 5637 y FL(70)p eop %%Page: 71 73 71 72 bop 257 573 a FL(Here)32 b FI(N)564 588 y FG(k)637 573 y FL(is)e(again)f(the)j(common)d(order)i(of)f(the)h(diagonal)d (elemen)m(ts)j FI(\037)2920 588 y FG(i)2948 573 y FL(\()p FI(g)3033 588 y FG(i)3061 573 y FL(\))g(with)f FI(i)h FL(in)257 693 y(the)i FI(k)479 657 y FH(th)583 693 y FL(comp)s(onen)m(t)f(of)g(the)h(diagram.)42 b(Hence)34 b FC(A)p FL(\()p FC(D)s FI(;)17 b(\015)5 b FL(\))26 b(=)i Fs(u)p FL(\()p FC(D)s FI(;)17 b FL(\()p FI(u)2842 708 y FG(i;j)2920 693 y FL(\()p FI(\015)5 b FL(\)\)\))p FI(:)257 889 y FJ(Theorem)37 b(6.4)98 b FE(The)35 b(so)g(de\014ne)-5 b(d)34 b(algebr)-5 b(a)35 b FC(A)p FL(\()p FC(D)s FI(;)17 b(\015)5 b FL(\))34 b FE(is)h(a)g(Hopf)h(algebr)-5 b(a)34 b(of)h(dimen-)501 1056 y(sion)f FI(N)798 996 y FL(\()837 958 y Fo(n)875 973 y Fy(1)910 958 y(+1)897 1014 y(2)987 996 y FL(\))788 1080 y FH(1)1046 1056 y FC(\001)17 b(\001)g(\001)d FI(N)1266 996 y FL(\()1305 958 y Fo(n)1343 971 y(t)1371 958 y Fy(+1)1361 1014 y(2)1448 996 y FL(\))1256 1078 y FG(t)1490 1056 y FI(;)35 b FE(whose)f(b)-5 b(asis)34 b(c)-5 b(onsists)34 b(of)h(the)g(monomials)604 1284 y FI(e)649 1231 y FG(b)679 1240 y Fy(1)p Fo(;)p Fy(2)649 1308 y FH(1)p FG(;)p FH(2)785 1284 y FC(\001)17 b(\001)g(\001)d FI(e)962 1225 y FG(b)992 1234 y Fy(1)p Fo(;n)1079 1249 y Fy(1)1115 1234 y(+1)962 1308 y FH(1)p FG(;n)1060 1317 y Fy(1)1095 1308 y FH(+1)1200 1284 y FI(e)1245 1231 y FG(b)1275 1240 y Fy(2)p Fo(;)p Fy(3)1245 1308 y FH(2)p FG(;)p FH(3)1381 1284 y FC(\001)j(\001)g(\001)d FI(e)1558 1225 y FG(b)1588 1236 y Fo(S)1626 1249 y(t)1654 1236 y Fy(+)p Fo(n)1739 1249 y(t)1767 1236 y(;S)1824 1249 y(t)1852 1236 y Fy(+)p Fo(n)1937 1249 y(t)1964 1236 y Fy(+1)1558 1311 y FG(S)1601 1319 y Fo(t)1629 1311 y FH(+)p FG(n)1727 1319 y Fo(t)1755 1311 y FG(;S)1818 1319 y Fo(t)1845 1311 y FH(+)p FG(n)1943 1319 y Fo(t)1971 1311 y FH(+1)2065 1284 y FI(g)t(;)116 b FL(0)27 b FC(\024)i FI(b)2482 1299 y FG(S)2525 1311 y Fo(k)2563 1299 y FH(+)p FG(i;S)2705 1311 y Fo(k)2743 1299 y FH(+)p FG(j)2862 1284 y FI(<)e(N)3043 1299 y FG(k)3086 1284 y FI(;)17 b(g)31 b FC(2)d FI(\000)s(:)3246 1404 y FL(\(6.11\))257 1622 y FJ(Pro)s(of:)49 b FL(The)39 b(statemen)m(t)g(ab)s(out)f(the)h(Hopf)f(algebra)g(is)g(clear)f(b)s (ecause)j(w)m(e)g(already)501 1742 y(kno)m(w)34 b(from)d(earlier)h (considerations)g(in)g(ev)m(ery)i(comp)s(onen)m(t,)f(that)f(the)i (ideal)d(is)501 1863 y(a)40 b(Hopf)h(ideal.)65 b(F)-8 b(or)40 b(the)h(dimension)e(and)h(basis)h(w)m(e)g(will)d(use)k(Theorem) e(6.3.)501 1983 y(W)-8 b(e)33 b(ha)m(v)m(e)h(to)e(c)m(hec)m(k)j(all)c (the)i(conditions.)501 2144 y(W)-8 b(e)24 b(\014rst)g(need)h(to)e(pro)m (v)m(e)i(the)f(comm)m(utation)d(relation)h(b)s(et)m(w)m(een)k(ro)s(ot)d (v)m(ectors)i(of)501 2264 y(one)f(comp)s(onen)m(t)f(and)g FI(N)1428 2228 y FH(th)1522 2264 y FL(p)s(o)m(w)m(ers)i(of)d(ro)s(ot)h (v)m(ectors)h(of)f(the)g(other)h(comp)s(onen)m(ts.)501 2384 y(Secondly)-8 b(,)39 b(w)m(e)e(ha)m(v)m(e)i(to)d(sho)m(w)i(that)f (the)g FI(u)2125 2399 y FG(i;j)2241 2384 y FL(are)g(cen)m(tral)g(with)f (regard)h(to)f(all)501 2505 y(generators)d FI(x)1028 2520 y FG(a)1103 2505 y FL(of)f Fs(U)p FL(\()p FC(D)s FL(\):)589 2715 y FI(e)634 2742 y FG(S)677 2754 y Fo(k)715 2742 y FH(+)p FG(i;S)857 2754 y Fo(k)895 2742 y FH(+)p FG(j)986 2715 y FI(e)1031 2669 y FG(N)1087 2681 y Fo(l)1031 2742 y FG(S)1074 2754 y Fo(l)1098 2742 y FH(+)p FG(r)n(;S)1246 2754 y Fo(l)1270 2742 y FH(+)p FG(s)1389 2715 y FL(=)c FI(\037)1554 2669 y FG(N)1610 2681 y Fo(l)1554 2742 y FG(S)1597 2754 y Fo(l)1621 2742 y FH(+)p FG(r)n(;S)1769 2754 y Fo(l)1792 2742 y FH(+)p FG(s)1884 2715 y FL(\()p FI(g)1969 2730 y FG(S)2012 2742 y Fo(k)2050 2730 y FH(+)p FG(i;S)2192 2742 y Fo(k)2229 2730 y FH(+)p FG(j)2321 2715 y FL(\))p FI(e)2404 2669 y FG(N)2460 2681 y Fo(l)2404 2742 y FG(S)2447 2754 y Fo(l)2471 2742 y FH(+)p FG(r)n(;S)2619 2754 y Fo(l)2642 2742 y FH(+)p FG(s)2734 2715 y FI(e)2779 2742 y FG(S)2822 2754 y Fo(k)2860 2742 y FH(+)p FG(i;S)3002 2754 y Fo(k)3040 2742 y FH(+)p FG(j)3131 2715 y FI(;)88 b FL(\(6.12\))857 2873 y FI(u)913 2888 y FG(S)956 2900 y Fo(k)993 2888 y FH(+)p FG(i;S)1135 2900 y Fo(k)1173 2888 y FH(+)p FG(j)1264 2873 y FI(x)1319 2888 y FG(a)1389 2873 y FL(=)28 b FI(x)1548 2888 y FG(a)1590 2873 y FI(u)1646 2888 y FG(S)1689 2900 y Fo(k)1726 2888 y FH(+)p FG(i;S)1868 2900 y Fo(k)1906 2888 y FH(+)p FG(j)1997 2873 y FI(;)1222 b FL(\(6.13\))501 3084 y(where)38 b(1)33 b FC(\024)h FI(k)s(;)17 b(l)36 b FC(\024)e FI(t;)g FL(1)f FC(\024)i FI(i)f(<)f(j)40 b FC(\024)34 b FI(n)1969 3099 y FG(k)2037 3084 y FL(+)24 b(1)p FI(;)33 b FL(1)h FC(\024)g FI(r)i(<)e(s)g FC(\024)g FI(n)2879 3099 y FG(l)2930 3084 y FL(+)24 b(1)p FI(;)33 b FL(1)h FC(\024)g FI(a)g FC(\024)501 3204 y FI(S)561 3219 y FG(t)613 3204 y FL(+)22 b FI(n)769 3219 y FG(t)799 3204 y FI(:)501 3364 y FL(When)36 b(w)m(e)g(are)f(within)f (one)h(comp)s(onen)m(t,)h(i.e.)50 b FI(k)35 b FL(=)c FI(l)37 b FL(or)e FI(S)2731 3379 y FG(k)2805 3364 y FI(<)d(a)g FC(\024)g FI(S)3165 3379 y FG(k)r FH(+1)3298 3364 y FI(;)j FL(the)501 3485 y(ab)s(o)m(v)m(e)f(equations)e(follo)m(w)f(already)h (from)g(the)h(original)c(pap)s(er)k([AS5].)501 3605 y(The)28 b(ro)s(ot)e(v)m(ectors)i(are)f(linear)f(com)m(binations)f(of)h (homogeneous)h(monomials)d(in)501 3726 y(the)30 b(generators)f FI(x)1189 3741 y FG(a)1261 3726 y FL(of)f Fs(U)p FL(\()p FC(D)s FL(\).)42 b(Hence)31 b(w)m(e)f(see)g(that)f(Lemma)f(6.5)h(will)e (establish)501 3846 y(\(6.12\))32 b(for)g FI(k)f FC(6)p FL(=)c FI(l)r FL(.)501 4007 y(\(6.13\))e(is)g(sho)m(wn)i(b)m(y)f (induction)f(on)g FI(j)13 b FC(\000)8 b FI(i:)26 b FL(Because)h(of)e (the)h(recursiv)m(e)h(de\014nition)501 4127 y(\(6.6\))32 b(of)g(the)h FI(u)1069 4142 y FG(i;j)1149 4127 y FL(,)g(the)g(crucial)e (part)h(is:)699 4338 y FI(\015)750 4353 y FG(k)787 4363 y Fo(i;j)864 4338 y FL(\(1)22 b FC(\000)h FI(h)1129 4353 y FG(S)1172 4365 y Fo(k)1210 4353 y FH(+)p FG(i;S)1352 4365 y Fo(k)1389 4353 y FH(+)p FG(j)1481 4338 y FL(\))p FI(x)1574 4353 y FG(a)1644 4338 y FL(=)k FI(\015)1798 4353 y FG(k)1835 4363 y Fo(i;j)1912 4338 y FI(x)1967 4353 y FG(a)2009 4338 y FL(\(1)22 b FC(\000)h FI(\037)2279 4353 y FG(a)2320 4338 y FL(\()p FI(h)2414 4353 y FG(S)2457 4365 y Fo(k)2496 4353 y FH(+)p FG(i;S)2638 4365 y Fo(k)2675 4353 y FH(+)p FG(j)2767 4338 y FL(\))p FI(h)2861 4353 y FG(S)2904 4365 y Fo(k)2942 4353 y FH(+)p FG(i;S)3084 4365 y Fo(k)3121 4353 y FH(+)p FG(j)3213 4338 y FL(\))1644 4498 y(=)k FI(\015)1798 4513 y FG(k)1835 4523 y Fo(i;j)1912 4498 y FI(x)1967 4513 y FG(a)2009 4498 y FL(\(1)22 b FC(\000)h FI(\037)2279 4452 y FG(N)2335 4464 y Fo(k)2279 4525 y FG(S)2322 4537 y Fo(k)2360 4525 y FH(+)p FG(i;S)2502 4537 y Fo(k)2539 4525 y FH(+)p FG(j)2631 4498 y FL(\()p FI(g)2720 4457 y Fx(\000)p FH(1)2716 4523 y FG(a)2813 4498 y FL(\))p FI(h)2907 4513 y FG(S)2950 4525 y Fo(k)2988 4513 y FH(+)p FG(i;S)3130 4525 y Fo(k)3168 4513 y FH(+)p FG(j)3259 4498 y FL(\))1644 4656 y(=)k FI(x)1802 4671 y FG(a)1844 4656 y FI(\015)1895 4671 y FG(k)1932 4681 y Fo(i;j)2009 4656 y FL(\(1)22 b FC(\000)h FI(h)2274 4671 y FG(S)2317 4683 y Fo(k)2355 4671 y FH(+)p FG(i;S)2497 4683 y Fo(k)2534 4671 y FH(+)p FG(j)2626 4656 y FL(\))p FI(:)501 4866 y FL(In)29 b(the)g(second)h(step)f(w)m(e)g(used)h (\(3.19\))d(and)i(as)g FI(a)f FL(is)g(not)g(in)g(the)h FI(k)2903 4830 y FH(th)3002 4866 y FL(comp)s(onen)m(t,)501 4987 y(all)i(the)j(corresp)s(onding)f(en)m(tries)g(of)g(the)h(Cartan)f (matrix)e(are)i(zero.)46 b(The)34 b(third)501 5107 y(step)g(uses)g(the) f(premise)f(that)g FI(\015)38 b FL(is)32 b(admissible.)501 5268 y(No)m(w)88 b(w)m(e)h(can)e(apply)h(Theorem)f(6.3)g(and)h(the)g (pro)s(of)e(is)h(\014nished.)3292 5388 y FJ(qed.)1828 5637 y FL(71)p eop %%Page: 72 74 72 73 bop 257 573 a FJ(Lemma)37 b(6.5)98 b FE(F)-7 b(or)33 b(al)5 b(l)34 b(indic)-5 b(es)33 b FI(i)h FE(not)g(in)f(the)h FI(k)2109 537 y Ff(th)2208 573 y FE(c)-5 b(omp)g(onent)32 b(of)i(the)g(diagr)-5 b(am)33 b(and)501 693 y FI(S)561 708 y FG(k)632 693 y FI(<)27 b(j)34 b FC(\024)28 b FI(l)i FC(\024)e FI(S)1138 708 y FG(k)1203 693 y FL(+)22 b FI(n)1359 708 y FG(k)1437 693 y FE(we)34 b(have)g(with)h FI(q)c FL(=)d FI(\037)2256 708 y FG(j)2293 693 y FL(\()p FI(g)2378 708 y FG(j)2414 693 y FL(\))f(=)h FI(\037)2644 708 y FG(l)2670 693 y FL(\()p FI(g)2755 708 y FG(l)2781 693 y FL(\))501 976 y FI(i)p FL(\))100 b FI(x)727 991 y FG(i)756 976 y FI(e)801 991 y FG(j;l)q FH(+1)993 976 y FL(=)528 1333 y(=)649 1129 y Fw(8)649 1218 y(<)649 1398 y(:)748 1186 y FI(\037)809 1201 y FG(j)846 1186 y FL(\()p FI(g)931 1201 y FG(i)959 1186 y FL(\))p FI(x)1052 1201 y FG(j)1089 1186 y FI(x)1144 1201 y FG(i)1194 1186 y FL(+)22 b FI(\025)1349 1201 y FG(ij)1410 1186 y FL(\(1)g FC(\000)g FI(g)1665 1201 y FG(i)1693 1186 y FI(g)1740 1201 y FG(j)1776 1186 y FL(\))p FI(;)440 b FE(if)35 b FI(j)f FL(=)27 b FI(l)r(;)586 b FL(\(6.14a\))748 1331 y FI(\037)809 1346 y FG(j;l)q FH(+1)974 1331 y FL(\()p FI(g)1059 1346 y FG(i)1086 1331 y FL(\))p FI(e)1169 1346 y FG(j;l)q FH(+1)1334 1331 y FI(x)1389 1346 y FG(i)1440 1331 y FL(+)22 b FI(\025)1595 1346 y FG(ij)1655 1331 y FL(\(1)g FC(\000)g FI(q)1910 1290 y Fx(\000)p FH(1)2005 1331 y FL(\))p FI(e)2088 1346 y FG(j)t FH(+1)p FG(;l)q FH(+1)2346 1331 y FI(;)108 b FE(if)34 b FI(\025)2632 1346 y FG(il)2710 1331 y FL(=)27 b(0)p FI(;)45 b(j)33 b(<)28 b(l)r(;)23 b FL(\(6.14b\))748 1477 y FI(\037)809 1492 y FG(j;l)q FH(+1)974 1477 y FL(\()p FI(g)1059 1492 y FG(i)1086 1477 y FL(\))p FI(e)1169 1492 y FG(j;l)q FH(+1)1334 1477 y FI(x)1389 1492 y FG(i)1440 1477 y FC(\000)f FI(\025)1596 1492 y FG(il)1646 1477 y FL(\(1)g FC(\000)h FI(q)1902 1435 y Fx(\000)p FH(1)1996 1477 y FL(\))p FI(\037)2095 1492 y FG(j;l)2169 1477 y FL(\()p FI(g)2254 1492 y FG(i)2282 1477 y FL(\))p FI(e)2365 1492 y FG(j;l)2439 1477 y FI(g)2486 1492 y FG(i)2514 1477 y FI(g)2561 1492 y FG(l)2586 1477 y FI(;)67 b FE(otherwise.)95 b FL(\(6.14c\))501 1704 y FI(ii)p FL(\))100 b FI(x)760 1719 y FG(i)789 1704 y FI(e)834 1658 y FG(N)890 1670 y Fo(k)834 1732 y FG(j;l)q FH(+1)1026 1704 y FL(=)28 b FI(\037)1191 1658 y FG(N)1247 1670 y Fo(k)1191 1732 y FG(j;l)q FH(+1)1355 1704 y FL(\()p FI(g)1440 1719 y FG(i)1468 1704 y FL(\))p FI(e)1551 1658 y FG(N)1607 1670 y Fo(k)1551 1732 y FG(j;l)q FH(+1)1715 1704 y FI(x)1770 1719 y FG(i)1799 1704 y FI(:)257 1932 y FJ(Pro)s(of:)49 b FI(i)p FL(\))33 b FC(\017)f FL(The)i(case)f FI(j)h FL(=)27 b FI(l)35 b FL(is)d(simply)f(the)i(de\014ning)g(relation)e (\(3.28\).)501 2094 y(F)-8 b(rom)31 b(no)m(w)j(on)e FI(j)i(<)27 b(l)r FL(.)44 b(W)-8 b(e)33 b(consider)g(all)d(p)s(ossible)i(linkings.) 501 2256 y FC(\017)j FL(If)h FI(i)g FL(is)f(not)g(link)m(ed)g(to)g(an)m (y)h(v)m(ertex)i FI(p)d FL(with)g FI(j)k FC(\024)33 b FI(p)f FC(\024)h FI(l)r FL(,)k(then)f FI(\025)2997 2271 y FG(ij)3090 2256 y FL(=)c FI(\025)3255 2271 y FG(il)3338 2256 y FL(=)g(0)501 2376 y(and)h(a)f(rep)s(eated)i(use)f(of)f(\(3.28\)) g(giv)m(es)h(\(6.14b\).)501 2538 y FC(\017)c FL(If)f FI(i)h FL(is)f(link)m(ed)g(to)g FI(j)6 b FL(,)30 b(then)f(it)e(can)i (not)f(b)s(e)h(link)m(ed)f(to)h FI(l)h FL(as)f(w)m(ell.)41 b(Hence)30 b FI(\025)3265 2553 y FG(il)3343 2538 y FL(=)d(0)501 2659 y(and)h(w)m(e)g(ha)m(v)m(e)h(to)e(sho)m(w)i(the)f(second)g(case.) 43 b(W)-8 b(e)28 b(pro)s(ceed)g(b)m(y)g(induction)f(on)g FI(l)14 b FC(\000)e FI(j)501 2779 y FL(and)33 b(use)g(the)g(recursiv)m (e)h(de\014nition)e(\(6.5\))g(of)g(the)h(ro)s(ot)f(v)m(ectors.)501 2941 y(F)-8 b(or)32 b FI(l)24 b FC(\000)f FI(j)34 b FL(=)27 b(1)32 b(w)m(e)i(ha)m(v)m(e)643 3161 y FI(x)698 3176 y FG(i)726 3161 y FI(e)771 3176 y FG(j;l)q FH(+1)963 3161 y FL(=)28 b FI(x)1122 3176 y FG(i)1151 3161 y FL([)p FI(x)1233 3176 y FG(j)1270 3161 y FI(x)1325 3176 y FG(l)1373 3161 y FC(\000)23 b FI(\037)1534 3176 y FG(l)1560 3161 y FL(\()p FI(g)1645 3176 y FG(j)1681 3161 y FL(\))p FI(x)1774 3176 y FG(l)1800 3161 y FI(x)1855 3176 y FG(j)1892 3161 y FL(])963 3306 y(=)28 b FI(\037)1128 3321 y FG(j)1165 3306 y FL(\()p FI(g)1250 3321 y FG(i)1277 3306 y FL(\))p FI(x)1370 3321 y FG(j)1407 3306 y FI(x)1462 3321 y FG(i)1491 3306 y FI(x)1546 3321 y FG(l)1594 3306 y FL(+)22 b FI(\025)1749 3321 y FG(ij)1810 3306 y FL(\(1)g FC(\000)g FI(g)2065 3321 y FG(i)2093 3306 y FI(g)2140 3321 y FG(j)2177 3306 y FL(\))p FI(x)2270 3321 y FG(l)2318 3306 y FC(\000)h FI(\037)2479 3321 y FG(l)2505 3306 y FL(\()p FI(g)2590 3321 y FG(j)2626 3306 y FL(\))p FI(\037)2725 3321 y FG(l)2751 3306 y FL(\()p FI(g)2836 3321 y FG(i)2864 3306 y FL(\))p FI(x)2957 3321 y FG(l)2983 3306 y FI(x)3038 3321 y FG(i)3067 3306 y FI(x)3122 3321 y FG(j)963 3451 y FL(=)28 b FI(\037)1128 3466 y FG(j)1165 3451 y FL(\()p FI(g)1250 3466 y FG(i)1277 3451 y FL(\))p FI(\037)1376 3466 y FG(l)1402 3451 y FL(\()p FI(g)1487 3466 y FG(i)1515 3451 y FL(\))p FI(x)1608 3466 y FG(j)1645 3451 y FI(x)1700 3466 y FG(l)1727 3451 y FI(x)1782 3466 y FG(i)1832 3451 y FL(+)22 b FI(\025)1987 3466 y FG(ij)2048 3451 y FI(x)2103 3466 y FG(l)2151 3451 y FC(\000)h FI(\025)2308 3466 y FG(ij)2368 3451 y FI(\037)2429 3466 y FG(l)2456 3451 y FL(\()p FI(g)2541 3466 y FG(i)2568 3451 y FI(g)2615 3466 y FG(j)2652 3451 y FL(\))p FI(x)2745 3466 y FG(l)2771 3451 y FI(g)2818 3466 y FG(i)2846 3451 y FI(g)2893 3466 y FG(j)1055 3597 y FC(\000)g FI(\037)1216 3612 y FG(l)1242 3597 y FL(\()p FI(g)1327 3612 y FG(j)1363 3597 y FL(\))p FI(\037)1462 3612 y FG(l)1488 3597 y FL(\()p FI(g)1573 3612 y FG(i)1601 3597 y FL(\))p FI(\037)1700 3612 y FG(j)1737 3597 y FL(\()p FI(g)1822 3612 y FG(i)1850 3597 y FL(\))p FI(x)1943 3612 y FG(l)1969 3597 y FI(x)2024 3612 y FG(j)2061 3597 y FI(x)2116 3612 y FG(i)2167 3597 y FC(\000)f FI(\037)2327 3612 y FG(l)2353 3597 y FL(\()p FI(g)2438 3612 y FG(j)2475 3597 y FL(\))p FI(\037)2574 3612 y FG(l)2600 3597 y FL(\()p FI(g)2685 3612 y FG(i)2712 3597 y FL(\))p FI(x)2805 3612 y FG(l)2832 3597 y FI(\025)2889 3612 y FG(ij)2949 3597 y FL(\(1)g FC(\000)h FI(g)3205 3612 y FG(i)3233 3597 y FI(g)3280 3612 y FG(j)3316 3597 y FL(\))963 3742 y(=)28 b FI(\037)1128 3757 y FG(j;l)q FH(+1)1292 3742 y FL(\()p FI(g)1377 3757 y FG(i)1405 3742 y FL(\)[)p FI(x)1525 3757 y FG(j)1562 3742 y FI(x)1617 3757 y FG(l)1666 3742 y FC(\000)22 b FI(\037)1826 3757 y FG(l)1852 3742 y FL(\()p FI(g)1937 3757 y FG(j)1974 3742 y FL(\))p FI(x)2067 3757 y FG(l)2093 3742 y FI(x)2148 3757 y FG(j)2185 3742 y FL(])p FI(x)2267 3757 y FG(i)2318 3742 y FL(+)g FI(\025)2473 3757 y FG(ij)2533 3742 y FL(\(1)g FC(\000)h FI(\037)2803 3757 y FG(l)2829 3742 y FL(\()p FI(g)2914 3757 y FG(i)2942 3742 y FL(\))p FI(\037)3041 3757 y FG(l)3067 3742 y FL(\()p FI(g)3152 3757 y FG(j)3188 3742 y FL(\)\))p FI(x)3319 3757 y FG(l)963 3896 y FL(=)28 b FI(\037)1128 3911 y FG(j;l)q FH(+1)1292 3896 y FL(\()p FI(g)1377 3911 y FG(i)1405 3896 y FL(\))p FI(e)1488 3911 y FG(j;l)q FH(+1)1652 3896 y FI(x)1707 3911 y FG(i)1758 3896 y FL(+)22 b FI(\025)1913 3911 y FG(ij)1974 3896 y FL(\(1)g FC(\000)g FI(\037)2243 3911 y FG(i)2271 3896 y FL(\()p FI(g)2360 3854 y Fx(\000)p FH(1)2356 3923 y FG(l)2454 3896 y FL(\))p FI(\037)2553 3911 y FG(j)2590 3896 y FL(\()p FI(g)2679 3854 y Fx(\000)p FH(1)2675 3923 y FG(l)2772 3896 y FL(\))2182 3960 y Fw(|)p 2227 3960 225 12 v 225 w({z)p 2542 3960 V 225 w(})2451 4045 y FH(=1)2827 3896 y FI(\037)2888 3840 y FG(x)2928 3852 y Fo(j)s(l)2888 3921 y FG(j)2984 3896 y FL(\()p FI(g)3069 3911 y FG(j)3105 3896 y FL(\))2827 3971 y Fw(|)p 2872 3971 69 12 v 69 w({z)p 3031 3971 V 69 w(})2899 4063 y FH(=)p FG(q)2988 4045 y Fu(\000)p Fy(1)3143 3896 y FL(\))p FI(x)3236 3911 y FG(l)3263 3896 y FI(:)501 4269 y FL(W)-8 b(e)26 b(used)g(\(3.19\))e (and)h(the)g(condition)f FI(\037)1975 4284 y FG(i)2003 4269 y FI(\037)2064 4284 y FG(j)2128 4269 y FL(=)k(1)c(as)h FI(\025)2474 4284 y FG(ij)2563 4269 y FC(6)p FL(=)i(0)p FI(:)e FL(F)-8 b(or)24 b(the)h(induction)501 4389 y(step)34 b(w)m(e)f(use)h(an)e(analogue)g(calculation.)41 b(The)33 b(last)f(steps)i(are)f(as)g(follo)m(ws)501 4609 y FI(x)556 4624 y FG(i)585 4609 y FI(e)630 4624 y FG(j;l)q FH(+1)822 4609 y FL(=)28 b FI(\037)987 4624 y FG(j;l)q FH(+1)1151 4609 y FL(\()p FI(g)1236 4624 y FG(i)1264 4609 y FL(\))p FI(e)1347 4624 y FG(j;l)q FH(+1)1511 4609 y FI(x)1566 4624 y FG(i)1617 4609 y FL(+)22 b FI(\025)1772 4624 y FG(ij)1832 4609 y FL(\(1)g FC(\000)h FI(q)2088 4568 y Fx(\000)p FH(1)2182 4609 y FL(\)[)p FI(e)2292 4624 y FG(j)t FH(+1)p FG(;l)2460 4609 y FI(x)2515 4624 y FG(l)2564 4609 y FC(\000)f FI(\037)2724 4624 y FG(l)2751 4609 y FL(\()p FI(g)2836 4624 y FG(j;l)2909 4609 y FL(\))p FI(\037)3008 4624 y FG(l)3034 4609 y FL(\()p FI(g)3119 4624 y FG(i)3147 4609 y FL(\))p FI(x)3240 4624 y FG(l)3267 4609 y FI(e)3312 4624 y FG(j)t FH(+1)p FG(;l)3480 4609 y FL(])822 4755 y(=)28 b FI(\037)987 4770 y FG(j;l)q FH(+1)1151 4755 y FL(\()p FI(g)1236 4770 y FG(i)1264 4755 y FL(\))p FI(e)1347 4770 y FG(j;l)q FH(+1)1511 4755 y FI(x)1566 4770 y FG(i)1595 4755 y FL(+)1012 4900 y(+)22 b FI(\025)1167 4915 y FG(ij)1227 4900 y FL(\(1)g FC(\000)g FI(q)1482 4859 y Fx(\000)p FH(1)1577 4900 y FL(\)[)p FI(e)1687 4915 y FG(j)t FH(+1)p FG(;l)1855 4900 y FI(x)1910 4915 y FG(l)1959 4900 y FC(\000)g FI(\037)2119 4915 y FG(l)2145 4900 y FL(\()p FI(g)2230 4915 y FG(j)t FH(+1)p FG(;l)2398 4900 y FL(\))f FI(\037)2518 4915 y FG(l)2544 4900 y FL(\()p FI(g)2629 4915 y FG(j)2666 4900 y FL(\))p FI(\037)2765 4915 y FG(l)2791 4900 y FL(\()p FI(g)2876 4915 y FG(i)2903 4900 y FL(\))2457 4965 y Fw(|)p 2502 4965 153 12 v 153 w({z)p 2745 4965 V 153 w(})2453 5068 y FG(\037)2497 5078 y Fo(j)2529 5068 y FH(\()p FG(g)2592 5038 y Fu(\000)p Fy(1)2590 5092 y Fo(l)2675 5068 y FH(\))p FG(\037)2746 5078 y Fo(i)2773 5068 y FH(\()p FG(g)2836 5038 y Fu(\000)p Fy(1)2834 5092 y Fo(l)2919 5068 y FH(\))2963 4900 y FI(x)3018 4915 y FG(l)3044 4900 y FI(e)3089 4915 y FG(j)t FH(+1)p FG(;l)3257 4900 y FL(])822 5219 y(=)28 b FI(\037)987 5234 y FG(j;l)q FH(+1)1151 5219 y FL(\()p FI(g)1236 5234 y FG(i)1264 5219 y FL(\))p FI(e)1347 5234 y FG(j;l)q FH(+1)1511 5219 y FI(x)1566 5234 y FG(i)1617 5219 y FL(+)22 b FI(\025)1772 5234 y FG(ij)1832 5219 y FL(\(1)g FC(\000)h FI(q)2088 5178 y Fx(\000)p FH(1)2182 5219 y FL(\))p FI(e)2265 5234 y FG(j)t FH(+1)p FG(;l)q FH(+1)2523 5219 y FI(:)1828 5637 y FL(72)p eop %%Page: 73 75 73 74 bop 501 573 a FC(\017)30 b FL(If)g FI(i)g FL(is)g(link)m(ed)f(to) h FI(l)i FL(w)m(e)f(ha)m(v)m(e)g FI(\025)1717 588 y FG(il)1795 573 y FC(6)p FL(=)c(0)j(and)g(hence)i(w)m(e)f(need)g(to)e(pro)m(v)m(e)i (\(6.14c\).)501 693 y(A)d(direct)g(calculation)e(using)h(the)i (de\014nition)e(of)g(the)i(ro)s(ot)e(v)m(ectors)j(and)e(\(6.14b\))501 814 y(giv)m(es)524 1003 y FI(x)579 1018 y FG(i)608 1003 y FI(e)653 1018 y FG(j;l)q FH(+1)845 1003 y FL(=)g FI(x)1004 1018 y FG(i)1032 1003 y FL([)p FI(e)1104 1018 y FG(j;l)1179 1003 y FI(x)1234 1018 y FG(l)1282 1003 y FC(\000)23 b FI(\037)1443 1018 y FG(l)1469 1003 y FL(\()p FI(g)1554 1018 y FG(j;l)1628 1003 y FL(\))p FI(x)1721 1018 y FG(l)1747 1003 y FI(e)1792 1018 y FG(j;l)1866 1003 y FL(])845 1148 y(=)28 b FI(\037)1010 1163 y FG(j;l)1084 1148 y FL(\()p FI(g)1169 1163 y FG(i)1197 1148 y FL(\))p FI(e)1280 1163 y FG(j;l)1354 1148 y FI(x)1409 1163 y FG(i)1437 1148 y FI(x)1492 1163 y FG(l)1541 1148 y FC(\000)23 b FI(\037)1702 1163 y FG(l)1728 1148 y FL(\()p FI(g)1813 1163 y FG(j;l)1886 1148 y FL(\))p FI(\037)1985 1163 y FG(l)2011 1148 y FL(\()p FI(g)2096 1163 y FG(i)2124 1148 y FL(\))p FI(x)2217 1163 y FG(l)2244 1148 y FI(x)2299 1163 y FG(i)2327 1148 y FI(e)2372 1163 y FG(j;l)2469 1148 y FC(\000)f FI(\037)2629 1163 y FG(l)2655 1148 y FL(\()p FI(g)2740 1163 y FG(j;l)2814 1148 y FL(\))p FI(\025)2909 1163 y FG(il)2959 1148 y FL(\(1)g FC(\000)g FI(g)3214 1163 y FG(i)3242 1148 y FI(g)3289 1163 y FG(l)3315 1148 y FL(\))p FI(e)3398 1163 y FG(j;l)845 1294 y FL(=)28 b FI(\037)1010 1309 y FG(j;l)1084 1294 y FL(\()p FI(g)1169 1309 y FG(i)1197 1294 y FL(\))p FI(e)1280 1309 y FG(j;l)1354 1294 y FI(\037)1415 1309 y FG(l)1441 1294 y FL(\()p FI(g)1526 1309 y FG(i)1554 1294 y FL(\))p FI(x)1647 1309 y FG(l)1673 1294 y FI(x)1728 1309 y FG(i)1779 1294 y FL(+)22 b FI(\037)1938 1309 y FG(j;l)2012 1294 y FL(\()p FI(g)2097 1309 y FG(i)2125 1294 y FL(\))p FI(e)2208 1309 y FG(j;l)2282 1294 y FI(\025)2339 1309 y FG(il)2389 1294 y FL(\(1)g FC(\000)g FI(g)2644 1309 y FG(i)2672 1294 y FI(g)2719 1309 y FG(l)2745 1294 y FL(\))937 1439 y FC(\000)h FI(\037)1098 1454 y FG(l)1124 1439 y FL(\()p FI(g)1209 1454 y FG(j;l)1282 1439 y FL(\))p FI(\037)1381 1454 y FG(l)1407 1439 y FL(\()p FI(g)1492 1454 y FG(i)1520 1439 y FL(\))p FI(x)1613 1454 y FG(l)1640 1439 y FI(\037)1701 1454 y FG(j;l)1775 1439 y FL(\()p FI(g)1860 1454 y FG(i)1888 1439 y FL(\))p FI(e)1971 1454 y FG(j;l)2045 1439 y FI(x)2100 1454 y FG(i)2151 1439 y FC(\000)f FI(\037)2311 1454 y FG(l)2337 1439 y FL(\()p FI(g)2422 1454 y FG(j;l)2496 1439 y FL(\))p FI(\025)2591 1454 y FG(il)2641 1439 y FI(e)2686 1454 y FG(j;l)937 1584 y FL(+)g FI(\037)1096 1599 y FG(l)1122 1584 y FL(\()p FI(g)1207 1599 y FG(j;l)1281 1584 y FL(\))p FI(\025)1376 1599 y FG(il)1426 1584 y FI(\037)1487 1599 y FG(j;l)1561 1584 y FL(\()p FI(g)1646 1599 y FG(i)1674 1584 y FI(g)1721 1599 y FG(l)1746 1584 y FL(\))p FI(e)1829 1599 y FG(j;l)1904 1584 y FI(g)1951 1599 y FG(i)1978 1584 y FI(g)2025 1599 y FG(l)845 1729 y FL(=)28 b FI(\037)1010 1744 y FG(j;l)q FH(+1)1174 1729 y FL(\()p FI(g)1259 1744 y FG(i)1287 1729 y FL(\)[)p FI(e)1397 1744 y FG(j;l)1471 1729 y FI(x)1526 1744 y FG(l)1575 1729 y FC(\000)22 b FI(\037)1735 1744 y FG(l)1761 1729 y FL(\()p FI(g)1846 1744 y FG(j;l)1920 1729 y FL(\))p FI(x)2013 1744 y FG(l)2039 1729 y FI(e)2084 1744 y FG(j;l)2159 1729 y FL(])p FI(x)2241 1744 y FG(i)2291 1729 y FL(+)h([)p FI(\037)2478 1744 y FG(j;l)2552 1729 y FL(\()p FI(g)2637 1744 y FG(i)2665 1729 y FL(\))f FC(\000)g FI(\037)2885 1744 y FG(l)2911 1729 y FL(\()p FI(g)2996 1744 y FG(j;l)3070 1729 y FL(\)])p FI(\025)3192 1744 y FG(il)3242 1729 y FI(e)3287 1744 y FG(j;l)937 1875 y FL(+)g([)p FI(\037)1123 1890 y FG(l)1149 1875 y FL(\()p FI(g)1234 1890 y FG(j;l)1308 1875 y FL(\))p FI(\037)1407 1890 y FG(j;l)1481 1875 y FL(\()p FI(g)1566 1890 y FG(i)1594 1875 y FI(g)1641 1890 y FG(l)1667 1875 y FL(\))g FC(\000)g FI(\037)1887 1890 y FG(j;l)1961 1875 y FL(\()p FI(g)2046 1890 y FG(i)2074 1875 y FL(\)])p FI(\025)2196 1890 y FG(il)2246 1875 y FI(e)2291 1890 y FG(j;l)2365 1875 y FI(g)2412 1890 y FG(i)2440 1875 y FI(g)2487 1890 y FG(l)2513 1875 y FI(:)501 2064 y FL(As)33 b FI(i)g FL(is)f(not)h(in)e(the)i FI(k)1318 2028 y FH(th)1422 2064 y FL(comp)s(onen)m(t)f(w)m(e)i(ha)m(v) m(e)g(b)m(y)f(\(3.19\))f(and)h FI(\037)2957 2079 y FG(i)2985 2064 y FI(\037)3046 2079 y FG(l)3100 2064 y FL(=)28 b(1)1393 2254 y FI(\037)1454 2269 y FG(j;l)1528 2254 y FL(\()p FI(g)1613 2269 y FG(i)1641 2254 y FL(\))f(=)h FI(\037)1871 2212 y Fx(\000)p FH(1)1871 2279 y FG(i)1965 2254 y FL(\()p FI(g)2050 2269 y FG(j;l)2124 2254 y FL(\))f(=)h FI(\037)2354 2269 y FG(l)2380 2254 y FL(\()p FI(g)2465 2269 y FG(j;l)2539 2254 y FL(\))p FI(:)501 2443 y FL(Hence)d(the)f(second)g(term)f(in)f (the)i(last)f(step)h(of)f(the)g(ab)s(o)m(v)m(e)i(calculation)20 b(v)-5 b(anishes,)501 2563 y(and)33 b(for)f(the)h(brac)m(k)m(et)h(of)e (the)h(third)f(term)g(w)m(e)i(calculate)858 2753 y FI(\037)919 2768 y FG(l)945 2753 y FL(\()p FI(g)1030 2768 y FG(j;l)1103 2753 y FL(\))p FI(\037)1202 2768 y FG(j;l)1277 2753 y FL(\()p FI(g)1362 2768 y FG(i)1389 2753 y FI(g)1436 2768 y FG(l)1462 2753 y FL(\))22 b FC(\000)h FI(\037)1683 2768 y FG(j;l)1757 2753 y FL(\()p FI(g)1842 2768 y FG(i)1870 2753 y FL(\))k(=)h FI(\037)2100 2768 y FG(j;l)2174 2753 y FL(\()p FI(g)2259 2768 y FG(i)2287 2753 y FL(\)\()p FI(\037)2424 2768 y FG(l)2450 2753 y FL(\()p FI(g)2535 2768 y FG(j;l)2609 2753 y FL(\))p FI(\037)2708 2768 y FG(j;l)2782 2753 y FL(\()p FI(g)2867 2768 y FG(l)2892 2753 y FL(\))22 b FC(\000)h FL(1\))1340 2898 y FI(\037)1401 2913 y FG(l)1427 2898 y FL(\()p FI(g)1512 2913 y FG(j;l)1586 2898 y FL(\))p FI(\037)1685 2913 y FG(j;l)1759 2898 y FL(\()p FI(g)1844 2913 y FG(l)1870 2898 y FL(\))k(=)h FI(\037)2100 2913 y FG(l)2126 2898 y FL(\()p FI(g)2211 2913 y FG(j)2247 2898 y FL(\))p FI(\037)2346 2913 y FG(l)2372 2898 y FL(\()p FI(g)2457 2913 y FG(j)t FH(+1)2584 2898 y FL(\))17 b FC(\001)g(\001)g(\001)d FI(\037)2832 2913 y FG(l)2858 2898 y FL(\()p FI(g)2943 2913 y FG(l)q Fx(\000)p FH(1)3059 2898 y FL(\))2027 3043 y FC(\001)22 b FI(\037)2138 3058 y FG(j)2175 3043 y FL(\()p FI(g)2260 3058 y FG(l)2286 3043 y FL(\))p FI(\037)2385 3058 y FG(j)t FH(+1)2511 3043 y FL(\()p FI(g)2596 3058 y FG(l)2622 3043 y FL(\))17 b FC(\001)g(\001)g(\001)d FI(\037)2870 3058 y FG(l)q Fx(\000)p FH(1)2987 3043 y FL(\()p FI(g)3072 3058 y FG(l)3097 3043 y FL(\))1935 3189 y(=)28 b(1)22 b FC(\001)g FL(1)17 b FC(\001)g(\001)g(\001)d FL(1)22 b FC(\001)g FI(\037)2540 3204 y FG(l)2566 3189 y FL(\()p FI(g)2651 3204 y FG(l)2676 3189 y FL(\))2714 3148 y Fx(\000)p FH(1)2809 3189 y FI(:)501 3378 y FC(\017)37 b FL(F)-8 b(or)35 b(the)i(last)f(case)h(where)h FI(i)f FL(is)f(link)m(ed)g(to)g(a)g(v)m(ertex)j FI(p)d FL(with)g FI(j)41 b(<)34 b(p)g(<)g(l)r(;)j FL(w)m(e)501 3499 y(again)31 b(pro)s(ceed)h(b)m(y)h(induction)e(on)h FI(l)23 b FC(\000)e FI(p:)32 b FL(As)h FI(\025)2282 3514 y FG(ij)2370 3499 y FL(=)27 b FI(\025)2530 3514 y FG(j)t(l)2616 3499 y FL(=)h(0)j(w)m(e)i(ha)m(v)m(e)g(to)f(sho)m(w)501 3619 y(\(6.14b\).)501 3776 y(If)e FI(l)20 b FC(\000)e FI(p)28 b FL(=)f(1)j(w)m(e)i(use)f(the)g(recursiv)m(e)g(de\014nition)e (of)h(the)h(ro)s(ot)e(v)m(ectors)j(and)f(then)501 3897 y(\(6.14c\).)43 b(W)-8 b(e)33 b(set)h FI(F)41 b FL(:=)28 b FI(\025)1477 3912 y FG(i)p FH(\()p FG(l)q Fx(\000)p FH(1\))1672 3897 y FL(\(1)21 b FC(\000)i FI(q)1927 3861 y Fx(\000)p FH(1)2021 3897 y FL(\))p FI(\037)2120 3912 y FG(j;l)q Fx(\000)p FH(1)2285 3897 y FL(\()p FI(g)2370 3912 y FG(i)2397 3897 y FL(\))33 b(and)f(ha)m(v)m(e)546 4086 y FI(x)601 4101 y FG(i)629 4086 y FI(e)674 4101 y FG(j;l)q FH(+1)866 4086 y FL(=)c FI(x)1025 4101 y FG(i)1054 4086 y FL([)p FI(e)1126 4101 y FG(j;l)1200 4086 y FI(x)1255 4101 y FG(l)1304 4086 y FC(\000)22 b FI(\037)1464 4101 y FG(l)1490 4086 y FL(\()p FI(g)1575 4101 y FG(i;l)1645 4086 y FL(\))p FI(x)1738 4101 y FG(l)1764 4086 y FI(e)1809 4101 y FG(j;l)1883 4086 y FL(])866 4232 y(=)28 b([)p FI(\037)1058 4247 y FG(j;l)1132 4232 y FL(\()p FI(g)1217 4247 y FG(i)1245 4232 y FL(\))p FI(e)1328 4247 y FG(j;l)1402 4232 y FI(x)1457 4247 y FG(i)1508 4232 y FL(+)22 b FI(F)36 b FC(\001)22 b FI(e)1800 4247 y FG(j;l)q Fx(\000)p FH(1)1964 4232 y FI(g)2011 4247 y FG(i)2039 4232 y FI(g)2086 4247 y FG(l)q Fx(\000)p FH(1)2202 4232 y FL(])p FI(x)2284 4247 y FG(l)958 4377 y FC(\000)h FI(\037)1119 4392 y FG(l)1145 4377 y FL(\()p FI(g)1230 4392 y FG(i;l)1299 4377 y FL(\))p FI(\037)1398 4392 y FG(l)1425 4377 y FL(\()p FI(g)1510 4392 y FG(i)1537 4377 y FL(\))p FI(x)1630 4392 y FG(l)1657 4377 y FL([)p FI(\037)1745 4392 y FG(j;l)1819 4377 y FL(\()p FI(g)1904 4392 y FG(i)1932 4377 y FL(\))p FI(e)2015 4392 y FG(j;l)2089 4377 y FI(x)2144 4392 y FG(i)2195 4377 y FL(+)f FI(F)36 b FC(\001)21 b FI(e)2486 4392 y FG(j;l)q Fx(\000)p FH(1)2651 4377 y FI(g)2698 4392 y FG(i)2726 4377 y FI(g)2773 4392 y FG(l)q Fx(\000)p FH(1)2889 4377 y FL(])866 4522 y(=)28 b FI(\037)1031 4537 y FG(j;l)1105 4522 y FL(\()p FI(g)1190 4537 y FG(i)1218 4522 y FL(\))p FI(e)1301 4537 y FG(j;l)1375 4522 y FI(\037)1436 4537 y FG(l)1462 4522 y FL(\()p FI(g)1547 4537 y FG(i)1575 4522 y FL(\))p FI(x)1668 4537 y FG(l)1694 4522 y FI(x)1749 4537 y FG(i)1800 4522 y FC(\000)23 b FI(\037)1961 4537 y FG(l)1987 4522 y FL(\()p FI(g)2072 4537 y FG(i;l)2141 4522 y FL(\))p FI(\037)2240 4537 y FG(l)2266 4522 y FL(\()p FI(g)2351 4537 y FG(i)2379 4522 y FL(\))p FI(\037)2478 4537 y FG(j;l)2552 4522 y FL(\()p FI(g)2637 4537 y FG(i)2665 4522 y FL(\))p FI(x)2758 4537 y FG(l)2784 4522 y FI(e)2829 4537 y FG(j;l)2904 4522 y FI(x)2959 4537 y FG(i)958 4667 y FL(+)f FI(F)36 b FC(\001)22 b FI(\037)1266 4682 y FG(l)1292 4667 y FL(\()p FI(g)1377 4682 y FG(i)1405 4667 y FI(g)1452 4682 y FG(l)q Fx(\000)p FH(1)1568 4667 y FL(\))p FI(e)1651 4682 y FG(j;l)q Fx(\000)p FH(1)1815 4667 y FI(x)1870 4682 y FG(l)1897 4667 y FI(g)1944 4682 y FG(i)1972 4667 y FI(g)2019 4682 y FG(l)q Fx(\000)p FH(1)2157 4667 y FC(\000)g FI(F)36 b FC(\001)22 b FI(\037)2466 4682 y FG(l)2492 4667 y FL(\()p FI(g)2577 4682 y FG(i;l)2646 4667 y FL(\))p FI(\037)2745 4682 y FG(l)2771 4667 y FL(\()p FI(g)2856 4682 y FG(i)2884 4667 y FL(\))p FI(x)2977 4682 y FG(l)3004 4667 y FI(e)3049 4682 y FG(j;l)q Fx(\000)p FH(1)3213 4667 y FI(g)3260 4682 y FG(i)3288 4667 y FI(g)3335 4682 y FG(l)q Fx(\000)p FH(1)866 4813 y FL(=)28 b FI(\037)1031 4828 y FG(j;l)q FH(+1)1195 4813 y FL(\()p FI(g)1280 4828 y FG(i)1308 4813 y FL(\))p FI(e)1391 4828 y FG(j;l)q FH(+1)1556 4813 y FI(x)1611 4828 y FG(i)958 4958 y FL(+)22 b FI(F)36 b FC(\001)22 b FI(\037)1266 4973 y FG(l)1292 4958 y FL(\()p FI(g)1377 4973 y FG(i)1405 4958 y FI(g)1452 4973 y FG(l)q Fx(\000)p FH(1)1568 4958 y FL(\)[)p FI(e)1678 4973 y FG(j;l)q Fx(\000)p FH(1)1842 4958 y FI(x)1897 4973 y FG(l)1946 4958 y FC(\000)h FI(\037)2107 4973 y FG(l)2133 4958 y FL(\()p FI(g)2218 4973 y FG(i;l)q Fx(\000)p FH(1)2377 4958 y FL(\))p FI(x)2470 4973 y FG(l)2497 4958 y FI(e)2542 4973 y FG(j;l)q Fx(\000)p FH(1)2706 4958 y FL(])p FI(g)2780 4973 y FG(i)2808 4958 y FI(g)2855 4973 y FG(l)q Fx(\000)p FH(1)2971 4958 y FI(:)501 5147 y FL(Ho)m(w)m(ev)m(er,)52 b(the)47 b(last)e(square)i(brac)m(k)m(et)h (is)d(zero)i(according)e(to)h([AS5,)k(\(7.17\)].)501 5268 y(The)34 b(induction)d(step)j(is)e(no)m(w)h(simple.)1828 5637 y(73)p eop %%Page: 74 76 74 75 bop 501 573 a FI(ii)p FL(\))33 b FC(\017)g FL(The)g(case)h FI(\025)1185 588 y FG(ij)1273 573 y FL(=)27 b FI(\025)1433 588 y FG(il)1511 573 y FL(=)g(0)33 b(is)f(trivial.)501 735 y FC(\017)37 b FL(So)g(let)f(no)m(w)i FI(j)j FL(=)35 b FI(l)k FL(and)e FI(\025)1592 750 y FG(ij)1688 735 y FC(6)p FL(=)e(0.)56 b(Then)38 b FI(\037)2251 750 y FG(j)2288 735 y FL(\()p FI(g)2373 750 y FG(i)2401 735 y FL(\))d(=)g FI(\037)2646 694 y Fx(\000)p FH(1)2646 760 y FG(i)2740 735 y FL(\()p FI(g)2825 750 y FG(j)2861 735 y FL(\))g(=)h FI(\037)3107 750 y FG(j)3143 735 y FL(\()p FI(g)3228 750 y FG(j)3264 735 y FL(\))f(=)g FI(q)501 855 y FL(and)e(using)f (\(6.14a\))g(w)m(e)h(ha)m(v)m(e)517 1075 y FI(x)572 1090 y FG(i)601 1075 y FI(x)656 1029 y FG(N)712 1041 y Fo(k)656 1101 y FG(j)782 1075 y FL(=)28 b FI(q)933 1034 y FG(N)989 1046 y Fo(k)1031 1075 y FI(x)1086 1029 y FG(N)1142 1041 y Fo(k)1086 1101 y FG(j)1185 1075 y FI(x)1240 1090 y FG(i)1290 1075 y FL(+)22 b FI(\025)1445 1090 y FG(ij)1506 1075 y FL(\(1)g(+)g FI(q)k FL(+)c FI(q)1927 1034 y FH(2)1988 1075 y FL(+)g FC(\001)17 b(\001)g(\001)j FL(+)i FI(q)2369 1034 y FG(N)2425 1046 y Fo(k)2463 1034 y Fx(\000)p FH(1)2558 1075 y FL(\))p FI(x)2651 1029 y FG(N)2707 1041 y Fo(k)2745 1029 y Fx(\000)p FH(1)2651 1101 y FG(j)2839 1075 y FL(\(1)g FC(\000)h FI(q)3095 1034 y FG(N)3151 1046 y Fo(k)3189 1034 y Fx(\000)p FH(1)3283 1075 y FI(g)3330 1090 y FG(i)3358 1075 y FI(g)3405 1090 y FG(j)3441 1075 y FL(\))782 1238 y(=)28 b FI(x)941 1192 y FG(N)997 1204 y Fo(k)941 1264 y FG(j)1039 1238 y FI(x)1094 1253 y FG(i)1123 1238 y FI(:)501 1458 y FL(Here)34 b(w)m(e)f(used)h(the)f(fact)f(that)h FI(N)1748 1473 y FG(k)1823 1458 y FL(is)f(the)h(order)g(of)f FI(q)t FL(.)501 1579 y(F)-8 b(rom)31 b(no)m(w)j(on)e(again)f FI(j)j(<)27 b(l)r(:)501 1740 y FC(\017)39 b FL(If)g FI(\025)751 1755 y FG(ij)851 1740 y FC(6)p FL(=)g(0)p FI(;)g FL(w)m(e)h(set)g FI(x)g FL(=)e FI(e)1644 1755 y FG(j;l)q FH(+1)1809 1740 y FI(;)h(y)j FL(=)d FI(x)2135 1755 y FG(i)2164 1740 y FI(;)g(z)44 b FL(=)39 b FI(\025)2491 1755 y FG(ij)2551 1740 y FL(\(1)27 b FC(\000)g FI(q)2816 1704 y Fx(\000)p FH(1)2910 1740 y FL(\))p FI(e)2993 1755 y FG(j)t FH(+1)p FG(;l)q FH(+1)3251 1740 y FI(;)40 b(\013)f FL(=)501 1861 y FI(\037)562 1876 y FG(j;l)q FH(+1)727 1861 y FL(\()p FI(g)812 1876 y FG(i)839 1861 y FL(\))33 b(and)g FI(\014)h FL(=)28 b FI(\037)1354 1820 y Fx(\000)p FH(1)1354 1889 y FG(j)t FH(+1)p FG(;l)q FH(+1)1612 1861 y FL(\()p FI(g)1697 1876 y FG(j;l)q FH(+1)1861 1861 y FL(\))p FI(:)33 b FL(Then,)h(b)s (ecause)g(of)f([AS5,)g(\(7.24\)])f FI(z)t(x)d FL(=)501 1981 y FI(\014)6 b(xz)t(:)34 b FL(Hence,)g(cf.)43 b([AS4,)33 b(Lemma)e(3.4)h(\(1\)],)991 2297 y FI(y)t(x)1098 2256 y FG(N)1154 2268 y Fo(k)1224 2297 y FL(=)c FI(\013)1391 2256 y FG(N)1447 2268 y Fo(k)1488 2297 y FI(x)1543 2256 y FG(N)1599 2268 y Fo(k)1642 2297 y FI(y)d FL(+)1813 2126 y Fw( )1892 2169 y FG(N)1948 2181 y Fo(k)1986 2169 y Fx(\000)p FH(1)1913 2202 y Fw(X)1908 2411 y FG(m)p FH(=0)2093 2297 y FI(\013)2156 2256 y FG(m)2222 2297 y FI(\014)2283 2256 y FG(N)2339 2268 y Fo(k)2377 2256 y Fx(\000)p FH(1)p Fx(\000)p FG(m)2589 2126 y Fw(!)2684 2297 y FI(x)2739 2256 y FG(N)2795 2268 y Fo(k)2834 2256 y Fx(\000)p FH(1)2928 2297 y FI(z)t(:)501 2613 y FL(Using)32 b FI(\037)836 2628 y FG(i)864 2613 y FI(\037)925 2628 y FG(j)989 2613 y FL(=)c(1)k(and)g(\(3.19\))f(w)m(e)i(see)g(that)e FI(\013)e FL(=)e FI(\037)2409 2572 y Fx(\000)p FH(1)2409 2639 y FG(i)2504 2613 y FL(\()p FI(g)2589 2628 y FG(j;l)q FH(+1)2753 2613 y FL(\))g(=)h FI(\037)2983 2628 y FG(j)3019 2613 y FL(\()p FI(g)3104 2628 y FG(j;l)q FH(+1)3268 2613 y FL(\))k(and)501 2734 y(so)661 2954 y FI(\013)724 2913 y FG(m)790 2954 y FI(\014)851 2913 y FG(N)907 2925 y Fo(k)945 2913 y Fx(\000)p FH(1)p Fx(\000)p FG(m)1184 2954 y FL(=)c FI(\014)1349 2913 y FG(N)1405 2925 y Fo(k)1442 2913 y Fx(\000)p FH(1)1537 2954 y FI(\037)1598 2913 y FG(m)1598 2978 y(j)1664 2954 y FL(\()p FI(g)1749 2969 y FG(j;l)q FH(+1)1913 2954 y FL(\))p FI(\037)2012 2913 y FG(m)2012 2978 y(j)t FH(+1)p FG(;l)q FH(+1)2271 2954 y FL(\()p FI(g)2356 2969 y FG(j;l)q FH(+1)2519 2954 y FL(\))1184 3118 y(=)g FI(\014)1349 3077 y FG(N)1405 3089 y Fo(k)1442 3077 y Fx(\000)p FH(1)1537 3118 y FI(\037)1598 3077 y FG(m)1598 3142 y(j;l)q FH(+1)1762 3118 y FL(\()p FI(g)1847 3133 y FG(j;l)q FH(+1)2011 3118 y FL(\))g(=)f FI(\014)2241 3077 y FG(N)2297 3089 y Fo(k)2335 3077 y Fx(\000)p FH(1)2429 3118 y FL(\()p FI(B)2546 3071 y FG(j;l)q FH(+1)2541 3146 y FG(j;l)q FH(+1)2710 3118 y FL(\))2748 3077 y FG(m)2843 3118 y FL(=)g FI(\014)3007 3077 y FG(N)3063 3089 y Fo(k)3101 3077 y Fx(\000)p FH(1)3195 3118 y FI(q)3242 3077 y FG(m)3309 3118 y FI(:)501 3338 y FL(The)39 b(last)f(equalit)m(y) f(follo)m(ws)g(from)g([AS5,)j(\(7.5\)].)60 b(The)39 b(geometric)e(sum)h (giv)m(es)501 3458 y(zero)33 b(again.)501 3620 y FC(\017)j FL(The)g(\014nal)f(case)i FI(\025)1277 3635 y FG(il)1359 3620 y FC(6)p FL(=)c(0)i(is)h(treated)g(similarly)c(to)j(the)h (previous)g(one.)53 b(This)501 3740 y(time)45 b FI(z)56 b FL(=)51 b FC(\000)p FI(\025)1099 3755 y FG(il)1150 3740 y FL(\(1)31 b FC(\000)h FI(q)1424 3704 y Fx(\000)p FH(1)1518 3740 y FL(\))p FI(\037)1617 3755 y FG(j;l)1691 3740 y FL(\()p FI(g)1776 3755 y FG(i)1804 3740 y FL(\))p FI(e)1887 3755 y FG(j;l)1961 3740 y FI(g)2008 3755 y FG(i)2036 3740 y FI(g)2083 3755 y FG(l)2155 3740 y FL(and)47 b FI(\014)56 b FL(=)51 b FI(\037)2658 3755 y FG(j;l)q FH(+1)2823 3740 y FL(\()p FI(g)2908 3755 y FG(i)2936 3740 y FI(g)2983 3755 y FG(l)3008 3740 y FL(\))p FI(\037)3107 3755 y FG(j;l)q FH(+1)3271 3740 y FL(\()p FI(g)3356 3755 y FG(j;l)3430 3740 y FL(\))p FI(;)501 3861 y FL(b)s(ecause)34 b(of)e([AS5,)h(\(7.23\)].)43 b(So)32 b(w)m(e)i(ha)m(v)m(e)928 4081 y FI(\013)991 4040 y FG(m)1057 4081 y FI(\014)1118 4040 y FG(N)1174 4052 y Fo(k)1212 4040 y Fx(\000)p FH(1)p Fx(\000)p FG(m)1451 4081 y FL(=)28 b FI(\014)1616 4040 y FG(N)1672 4052 y Fo(k)1710 4040 y Fx(\000)p FH(1)1804 4081 y FI(\037)1865 4040 y FG(m)1865 4106 y(j;l)q FH(+1)2029 4081 y FL(\()p FI(g)2114 4096 y FG(i)2142 4081 y FL(\))p FI(\037)2241 4040 y Fx(\000)p FG(m)2241 4109 y(j;l)q FH(+1)2405 4081 y FL(\()p FI(g)2490 4096 y FG(i)2518 4081 y FL(\))p FI(\037)2617 4040 y Fx(\000)p FG(m)2617 4109 y(j;l)q FH(+1)2782 4081 y FL(\()p FI(g)2867 4096 y FG(j;l)q FH(+1)3030 4081 y FL(\))1451 4248 y(=)g FI(\014)1616 4207 y FG(N)1672 4219 y Fo(k)1710 4207 y Fx(\000)p FH(1)1804 4248 y FL(\()p FI(B)1921 4201 y FG(j;l)q FH(+1)1916 4276 y FG(j;l)q FH(+1)2085 4248 y FL(\))2123 4207 y Fx(\000)p FG(m)2272 4248 y FL(=)g FI(\014)2437 4207 y FG(N)2493 4219 y Fo(k)2531 4207 y Fx(\000)p FH(1)2625 4248 y FI(q)2672 4207 y Fx(\000)p FG(m)2793 4248 y FI(:)3292 4468 y FJ(qed.)257 4696 y FL(Here)34 b(is)e(the)h(\014nal)f(result.)257 4900 y FJ(Theorem)37 b(6.6)98 b FE(L)-5 b(et)46 b FC(D)i FE(and)d FC(D)1557 4864 y Fx(0)1625 4900 y FE(b)-5 b(e)46 b(two)f(linking)f(data)i(as)f(ab)-5 b(ove)45 b(and)f FI(\015)51 b FE(and)45 b FI(\015)3472 4864 y Fx(0)501 5020 y FE(two)i(admissible)f(p)-5 b(ar)g(ameter)46 b(families.)80 b(Then)47 b FC(A)p FL(\()p FC(D)s FI(;)17 b(\015)5 b FL(\))46 b FE(and)g FC(A)p FL(\()p FC(D)3134 4984 y Fx(0)3156 5020 y FI(;)17 b(\015)3256 4984 y Fx(0)3279 5020 y FL(\))47 b FE(ar)-5 b(e)501 5141 y(quasi-isomorphic.)1828 5637 y FL(74)p eop %%Page: 75 77 75 76 bop 257 573 a FJ(Pro)s(of:)49 b FL(The)23 b(pro)s(of)f(is)f(just) i(a)f(com)m(bination)e(of)i(the)g(results)h(obtained)f(in)f(the)i (previous)501 693 y(sections.)43 b(First)30 b(w)m(e)h(sho)m(w)g(that)e (the)i(Hopf)f(algebras)f(are)h(quasi-isomorphic)e(to)501 814 y(ones)35 b(where)h(all)c(the)j(parameters)f FI(\015)39 b FL(are)c(zero.)49 b(Hence,)36 b FC(A)p FL(\()p FC(D)s FI(;)17 b(\015)5 b FL(\))33 b(is)h(a)g(co)s(cycle)501 934 y(deformation)k(of)g Fs(u)p FL(\()p FC(D)s FL(\))h(and)g FC(A)p FL(\()p FC(D)1811 898 y Fx(0)1833 934 y FI(;)17 b(\015)1933 898 y Fx(0)1956 934 y FL(\))39 b(is)g(a)g(co)s(cycle)h (deformation)d(of)i Fs(u)p FL(\()p FC(D)3408 898 y Fx(0)3430 934 y FL(\).)501 1054 y(Then)d(w)m(e)f(can)f(use)i(Theorem)e(6.1)g(to)g (see)h(that)g Fs(u)p FL(\()p FC(D)s FL(\))e(is)h(quasi-isomorphic)e(to) 501 1175 y Fs(u)p FL(\()p FC(D)671 1139 y Fx(0)694 1175 y FL(\).)67 b(Because)42 b(of)e(the)h(transitivit)m(y)e(of)h(the)h (quasi-isomorphism)d(relation,)501 1295 y(this)32 b(is)h(the)g(desired) g(result.)501 1450 y(T)-8 b(o)31 b(sho)m(w)i(that)e(the)g FI(\015)36 b FL(can)c(all)d(b)s(e)i(set)h(zero,)g(w)m(e)g(pro)s(ceed)g (again)d(step)m(wise.)45 b(Let)501 1570 y(1)35 b FC(\024)h FI(i)731 1585 y FH(0)806 1570 y FC(\024)g FI(S)979 1585 y FG(t)1033 1570 y FL(+)25 b FI(n)1192 1585 y FG(t)1259 1570 y FL(b)s(e)37 b(suc)m(h)i(that)e FI(\015)1888 1585 y FG(i;j)2003 1570 y FL(=)e(0)i(for)f(all)f FI(i)g(<)g(i)2705 1585 y FH(0)2782 1570 y FL(and)i(all)e FI(j)41 b(>)35 b(i)j FL(for)501 1691 y(whic)m(h)i(there)g(is)e(a)h(ro)s(ot)f(v)m (ector)i FI(e)1794 1706 y FG(i;j)1875 1691 y FL(.)62 b(W)-8 b(e)40 b(set)j(~)-52 b FI(\015)2349 1706 y FG(i;j)2467 1691 y FL(:=)39 b FI(\015)2660 1706 y FG(i;j)2779 1691 y FL(when)h FI(i)f FC(6)p FL(=)f FI(i)3259 1706 y FH(0)3338 1691 y FL(and)501 1811 y(zero)33 b(otherwise.)45 b(It)33 b(is)g(enough)g(to)g(pro)m(v)m(e)h(that)e FC(A)p FL(\()p FC(D)s FI(;)17 b(\015)5 b FL(\))32 b(is)g(quasi-isomorphic)501 1932 y(to)d FC(A)p FL(\()p FC(D)s FI(;)20 b FL(~)-52 b FI(\015)t FL(\).)42 b(Rep)s(eating)29 b(the)h(last)e(step)j(with)e (increased)h FI(i)2705 1947 y FH(0)2774 1932 y FL(and)j(~)-53 b FI(\015)35 b FL(as)29 b(the)h(new)501 2052 y FI(\015)5 b(;)36 b FL(w)m(e)i(\014nd)e(that)g FC(A)p FL(\()p FC(D)s FI(;)17 b(\015)5 b FL(\))35 b(is)g(quasi-isomorphic)f(to)i FC(A)p FL(\()p FC(D)s FI(;)17 b FL(0\))32 b(=)i Fs(u)p FL(\()p FC(D)s FL(\))h(for)g(all)501 2172 y(admissible)c FI(\015)5 b FL(.)501 2327 y(W)-8 b(e)33 b(set)g FI(H)902 2342 y FH(0)969 2327 y FL(:=)28 b Fs(U)p FL(\()p FC(D)s FL(\))k(and)h(consider)g(for)f(1)27 b FC(\024)i FI(k)h FC(\024)f FI(t)j FL(its)g(ideals)699 2498 y FI(I)742 2513 y FG(k)812 2498 y FL(:=)c(\()p FI(e)1026 2452 y FG(N)1082 2464 y Fo(k)1026 2523 y FG(i;j)1146 2498 y FC(\000)23 b FI(u)1302 2513 y FG(i;j)1426 2498 y FL(:)44 b FI(S)1557 2513 y FG(k)1628 2498 y FI(<)27 b(i)h(<)g(j)33 b FC(\024)28 b FI(S)2134 2513 y FG(k)r FH(+1)2289 2498 y FL(+)22 b(1)p FI(;)45 b(i)27 b FC(6)p FL(=)h FI(i)2705 2513 y FH(0)2777 2498 y FL(or)k FI(\037)2957 2452 y FG(N)3013 2464 y Fo(k)2957 2523 y FG(i;j)3084 2498 y FC(6)p FL(=)27 b FI(")p FL(\))p FI(:)501 2677 y FL(When)42 b FI(i)827 2692 y FH(0)907 2677 y FL(is)e(not)h(in)f(the)h FI(k)1547 2641 y FH(th)1658 2677 y FL(comp)s(onen)m(t,)i(i.e.)67 b FI(i)2419 2692 y FH(0)2501 2677 y FC(\024)41 b FI(S)2679 2692 y FG(k)2763 2677 y FL(or)f FI(i)2923 2692 y FH(0)3004 2677 y FI(>)i(S)3182 2692 y FG(k)r FH(+1)3314 2677 y FL(,)h(w)m(e)501 2798 y(kno)m(w)k(that)e FI(I)1036 2813 y FG(k)1124 2798 y FL(is)g(a)g(Hopf)g(ideal)f(from)g(the)h(pro)s(of)g (of)g(Theorem)g(7.25.\(i\))f(in)501 2918 y([AS5].)53 b(F)-8 b(or)35 b FI(S)1049 2933 y FG(k)1086 2942 y Fy(0)1158 2918 y FI(<)e(i)1300 2933 y FH(0)1372 2918 y FC(\024)h FI(S)1543 2933 y FG(k)1580 2942 y Fy(0)1614 2933 y FH(+1)1744 2918 y FL(the)i(considerations)g(that)f(pro)m(v)m(e)i FI(I)3077 2933 y FG(k)3114 2942 y Fy(0)3188 2918 y FL(to)f(b)s(e)f(a) 501 3038 y(Hopf)28 b(ideal)f(ha)m(v)m(e)i(b)s(een)g(carried)e(out)h (explicitly)e(in)i(the)g(pro)s(of)f(of)h(our)g(Theorem)501 3159 y(6.2.)41 b(Hence)27 b FI(H)35 b FL(:=)28 b FI(H)1305 3174 y FH(0)1344 3159 y FI(=I)34 b FL(is)25 b(a)g(Hopf)h(algebra,)g (where)h FI(I)33 b FL(denotes)27 b(the)f(sum)g(of)f(all)501 3279 y(the)30 b(ideals)d FI(I)976 3294 y FG(k)1019 3279 y FI(:)i FL(As)h(b)s(efore,)f(de\014ne)i FI(K)36 b FL(as)29 b(the)g(Hopf)g(subalgebra)f(of)h FI(H)36 b FL(whic)m(h)30 b(is)501 3413 y(generated)h(b)m(y)f FI(\000)44 b FL(and)30 b(the)g(remaining)d FI(e)2028 3352 y FG(N)2084 3364 y Fo(k)2117 3379 y Fy(0)2028 3439 y FG(i)2052 3448 y Fy(0)2087 3439 y FG(;j)2160 3413 y FI(;)j(S)2277 3428 y FG(k)2314 3437 y Fy(0)2380 3413 y FI(<)d(i)2516 3428 y FH(0)2584 3413 y FI(<)g(j)34 b FC(\024)28 b FI(S)2926 3428 y FG(k)2963 3437 y Fy(0)2998 3428 y FH(+1)3108 3413 y FL(+)16 b(1)p FI(;)30 b FL(with)501 3566 y FI(\037)562 3505 y FG(N)618 3517 y Fo(k)651 3532 y Fy(0)562 3592 y FG(i;j)722 3566 y FL(=)d FI(")17 b(:)32 b FL(Using)g(\(6.8\))g(w)m(e)h(see)h(that)e FI(K)39 b FL(is)32 b(comm)m(utativ)m(e.)43 b(Because)34 b(Lemma)501 3687 y(6.5)i(establishes)h(\(6.12\),)f(w)m(e)i(can)e(apply) g(Theorem)h(6.3)f(to)g(\014nd)h(a)f(basis)g(of)g FI(H)501 3807 y FL(and)28 b(see)g(that)g FI(K)34 b FL(is)27 b(just)h(the)g(p)s (olynomial)c(algebra)i(on)i(its)e(generators.)43 b(Hence,)501 3941 y(the)37 b(algebra)e(map)g FI(f)45 b FL(:)34 b FI(K)41 b FC(!)34 b FF(|)21 b FL(is)36 b(w)m(ell)g(de\014ned)h(b)m(y)g(setting) f FI(f)11 b FL(\()p FI(e)2989 3880 y FG(N)3045 3892 y Fo(k)3078 3907 y Fy(0)2989 3967 y FG(i)3013 3976 y Fy(0)3048 3967 y FG(;j)3121 3941 y FL(\))34 b(:=)g FI(\015)3381 3956 y FG(i)3405 3965 y Fy(0)3439 3956 y FG(;j)501 4062 y FL(on)k(all)d(the)j(generators)h(of)e(K)g(and)h FI(f)11 b FL(\()p FI(g)t FL(\))35 b(:=)h(1)i(for)f(all)e FI(g)40 b FC(2)d FI(\000)s(:)h FL(The)g(analogue)501 4201 y(of)d(computation)g (\(6.10\))f(establishes)j FI(f)5 b(:e)2085 4140 y FG(N)2141 4152 y Fo(k)2174 4167 y Fy(0)2085 4227 y FG(i)2109 4236 y Fy(0)2144 4227 y FG(;j)2217 4201 y FI(:f)2303 4165 y Fx(\000)p FH(1)2430 4201 y FL(=)33 b FI(e)2584 4140 y FG(N)2640 4152 y Fo(k)2673 4167 y Fy(0)2584 4227 y FG(i)2608 4236 y Fy(0)2643 4227 y FG(;j)2740 4201 y FC(\000)25 b FI(u)2898 4216 y FG(i)2922 4225 y Fy(0)2956 4216 y FG(;j)3012 4201 y FI(:)36 b FL(W)-8 b(e)36 b(de\014ne)501 4354 y FI(J)43 b FL(as)35 b(the)f(Hopf)g(ideal)e(of)i FI(K)41 b FL(generated)35 b(b)m(y)g(all)d(the)i FI(e)2534 4293 y FG(N)2590 4305 y Fo(k)2623 4320 y Fy(0)2534 4380 y FG(i)2558 4389 y Fy(0)2593 4380 y FG(;j)2700 4354 y FL(in)f FI(K)7 b FL(.)48 b(No)m(w)35 b(w)m(e)g(can)501 4475 y(apply)43 b([Mas1)q(,)j(Theorem)d(2])g(to)g(pro)m(v)m(e)h(that)f FC(A)p FL(\()p FC(D)s FI(;)17 b(\015)5 b FL(\))45 b(=)g FI(H)r(=)p FL(\()p FI(f)5 b(:J)n(:f)3162 4438 y Fx(\000)p FH(1)3257 4475 y FL(\))43 b(and)501 4595 y FC(A)p FL(\()p FC(D)s FI(;)20 b FL(~)-52 b FI(\015)t FL(\))35 b(=)f FI(H)r(=)p FL(\()p FI(J)9 b FL(\))36 b(are)h(quasi-isomorphic)d(if)i FI(B)k FL(:=)34 b FI(H)r(=)p FL(\()p FI(f)5 b(:J)k FL(\))35 b FC(6)p FL(=)f(0)p FI(:)j FL(F)-8 b(or)36 b(this)501 4735 y(last)e(step)i(w)m(e)f(calculate)f FI(f)5 b(:e)1576 4674 y FG(N)1632 4686 y Fo(k)1665 4701 y Fy(0)1576 4760 y FG(i)1600 4769 y Fy(0)1635 4760 y FG(;j)1739 4735 y FL(=)31 b FI(e)1891 4674 y FG(N)1947 4686 y Fo(k)1980 4701 y Fy(0)1891 4760 y FG(i)1915 4769 y Fy(0)1950 4760 y FG(;j)2047 4735 y FL(+)23 b FI(\015)2197 4750 y FG(i)2221 4759 y Fy(0)2255 4750 y FG(;j)2311 4735 y FI(h)2367 4750 y FG(i)2391 4759 y Fy(0)2426 4750 y FG(;j)2482 4735 y FI(:)35 b FL(As)g FI(\015)k FL(is)34 b(assumed)i(to)e(b)s(e)501 4855 y(admissible,)28 b(w)m(e)i(see)g(from)e(Lemma)g(6.5)g(that)h(w)m (e)h(can)g(use)g(Theorem)f(6.3)g(again)501 4975 y(to)34 b(\014nd)i(a)e(basis)h(of)f FI(B)i FL(=)31 b FI(H)1556 4990 y FH(0)1595 4975 y FI(=)p FL(\()p FI(I)8 b(;)17 b(f)5 b(:J)k FL(\))34 b(consisting)g(of)g(the)i(monomials)31 b(\(6.11\).)501 5096 y(So)i FI(B)k FL(is)32 b(not)h(zero)g(and)g(ev)m (erything)g(is)f(pro)m(v)m(ed.)989 b FJ(qed.)404 5268 y FL(The)33 b(theorem)f(extends)i(the)e(original)d(results)k(of)e ([Mas1)q(],)h(whic)m(h)h(dealt)e(with)h(the)257 5388 y(case)38 b(of)f(copies)h(of)e FI(A)1065 5403 y FH(1)1142 5388 y FL(only)-8 b(,)38 b(and)f([BDR])g(that)g(includes)g(a)g(pro)s (of)f(for)h(the)g(diagram)1828 5637 y(75)p eop %%Page: 76 78 76 77 bop 257 573 a FI(A)330 588 y FH(2)370 573 y FL(.)42 b(F)-8 b(or)29 b(this)g(pro)s(of)g(the)h(authors)g(need)h(to)e(express) j(the)e(Hopf)f(algebra,)g(ho)m(w)m(ev)m(er,)k(as)257 693 y(an)g(Ore)g(extension.)404 814 y(It)k(should)f(b)s(e)i(p)s (ossible)e(to)g(extend)j(our)e(pro)s(of)f(to)g(arbitrary)g(Dynkin)h (diagrams)257 934 y(of)42 b(\014nite)g(Cartan)g(t)m(yp)s(e.)74 b(The)43 b(only)f(crucial)f(part)h(is)g(the)g(comm)m(utation)f (relations)257 1054 y(b)s(et)m(w)m(een)c(the)f(ro)s(ot)e(v)m(ectors)i (and)f(their)g(p)s(o)m(w)m(ers.)52 b(They)36 b(should)f(b)s(e)g(c)m (hec)m(k)m(ed)j(for)d(the)257 1175 y(other)k(diagrams.)59 b(An)39 b(analogue)e(of)h(Lemma)f(6.5)h(for)g(the)h(comm)m(utation)e (relations)257 1295 y(b)s(et)m(w)m(een)31 b(ro)s(ot)d(v)m(ectors)j(b)s (elonging)c(to)h(di\013eren)m(t)h(Cartan)g(t)m(yp)s(es)h(w)m(ould)f(b)s (e)g(esp)s(ecially)257 1416 y(useful.)257 1644 y FJ(Remark:)49 b FL(The)25 b(Hopf)f(algebras)g(in)g(Section)g(4.6)g(coming)f(from)g (self-linkings)f(pro)m(vide)501 1764 y(a)34 b(nice)f(class)h(of)f (exceptional)g(examples,)h(where)h(most)e(of)g(the)h(considerations)501 1885 y(of)h(this)g(c)m(hapter)h(are)f(not)g(applicable.)49 b(The)36 b(step)m(wise)h(approac)m(h)e(used)h(in)f(the)501 2005 y(ab)s(o)m(v)m(e)k(theorems)f(to)f(pro)m(v)m(e)i (quasi-isomorphism)c(is)i(not)h(p)s(ossible)f(there,)i(b)s(e-)501 2125 y(cause)29 b(the)f(linking)e(parameters)i(app)s(ear)f(in)g(the)h (ro)s(ot)f(v)m(ector)i(parameters.)42 b(W)-8 b(e)501 2246 y(can)32 b(not)f(ev)m(en)i(apply)f(Theorem)f(6.3,)h(simply)e(b)s (ecause)j(most)e(of)g(the)h(ro)s(ot)e(v)m(ec-)501 2366 y(tor)36 b(parameters)g(are)g(not)g(in)f(the)i(group)f(algebra)f(and)h (are)g(not)g(cen)m(tral.)54 b(But)501 2487 y(ha)m(ving)37 b(got)g(all)e(relations)g(from)h(felix,)h(w)m(e)h(kno)m(w)g(that)f(the) h(diamond)d(lemma)501 2607 y(giv)m(es)e(us)g(a)g(basis)f(already)-8 b(.)501 2769 y(In)37 b(a)f(priv)-5 b(ate)35 b(note)i([Mas2],)g(ho)m(w)m (ev)m(er,)j(Masuok)-5 b(a)36 b(sho)m(w)m(ed)j(that)d(all)e(the)i(Hopf) 501 2889 y(algebras)47 b(arising)f(from)g(self-linking)f FI(A)2053 2904 y FH(2)2139 2889 y FE(ar)-5 b(e)55 b FL (quasi-isomorphic.)86 b(F)-8 b(or)46 b(ter-)501 3010 y(minology)39 b(and)i(con)m(v)m(en)m(tions)h(w)m(e)g(refer)g(to)e (Section)h(4.6.1.)69 b(His)40 b(approac)m(h)i(is)501 3130 y(as)d(follo)m(ws.)62 b(In)39 b(a)g(\014rst)h(step)g(he)f(deals)g (with)g(the)g(linking)e(relations)h(and)h(the)501 3250 y(ro)s(ot)f(v)m(ector)i(relations)d(for)h(the)h(simple)f(ro)s(ots)g (sim)m(ultaneously)-8 b(.)60 b(F)-8 b(or)38 b(this)h(he)501 3371 y(sets)k FI(I)50 b FL(:=)43 b(\()p FI(x)1033 3335 y FH(3)1033 3395 y FG(i)1073 3371 y FI(;)17 b(z)t(x)1221 3386 y FG(i)1278 3371 y FC(\000)29 b FI(q)1431 3335 y FG(i)1459 3371 y FI(x)1514 3386 y FG(i)1542 3371 y FI(z)t FL(;)17 b FI(i)44 b FL(=)f(1)p FI(;)17 b FL(2\))40 b(and)i FI(H)48 b FL(is)41 b Fs(U)p FL(\()p FI(A)2661 3386 y FH(2)2701 3371 y FL(\),)j(but)e FE(without)51 b FL(the)501 3491 y(Serre)46 b(relations)e(\(3.25\).)81 b(Then)47 b(he)f(sho)m(ws)h(using)e(his)g([Mas1,)k(Theorem)c(2])501 3611 y(that)39 b FI(T)51 b FL(:=)38 b FI(H)r(=)p FL(\()p FI(I)8 b(:f)1275 3575 y Fx(\000)p FH(1)1369 3611 y FL(\))38 b(is)g(a)h(bi-Galois)c(ob)5 b(ject)39 b(for)f FI(L)2578 3575 y Fx(0)2640 3611 y FL(:=)f FI(H)r(=)p FL(\()p FI(f)5 b(:I)j(:f)3167 3575 y Fx(\000)p FH(1)3262 3611 y FL(\))38 b(and)501 3732 y FI(L)30 b FL(:=)g FI(H)r(=)p FL(\()p FI(I)8 b FL(\).)46 b(Here)35 b FI(f)44 b FL(is)34 b(the)g(algebra)e (map)h(sending)h(the)g(generators)h(of)e FI(I)42 b FL(to)501 3852 y FC(\000)p FI(\026)637 3867 y FG(i)698 3852 y FL(and)33 b FC(\000)p FI(\015)1016 3867 y FG(i)1077 3852 y FL(resp)s(ectiv)m(ely) -8 b(.)44 b(De\014ning)899 4072 y FI(u)27 b FL(:=)h FI(z)1162 4031 y FH(3)1224 4072 y FC(\000)23 b FL(\()p FI(q)i FC(\000)e FL(1\))1617 4031 y FH(3)1656 4072 y FI(\026)1715 4087 y FH(1)1754 4072 y FI(\026)1813 4087 y FH(2)1875 4072 y FC(\000)f FL(\(1)g FC(\000)h FI(q)t FL(\))p FI(\015)2319 4087 y FH(1)2357 4072 y FI(\015)2408 4087 y FH(2)2470 4072 y FL(+)f FI(\025)195 b FL(in)31 b FI(T)8 b(;)904 4218 y(v)31 b FL(:=)d FI(z)1162 4176 y FH(3)1224 4218 y FL(+)22 b(\()p FI(q)k FC(\000)c FL(1\))1615 4176 y FH(3)1655 4218 y FI(\026)1714 4233 y FH(1)1753 4218 y FI(\026)1812 4233 y FH(2)1851 4218 y FL(\()p FI(g)1940 4176 y FH(3)1936 4242 y(2)2001 4218 y FC(\000)g FL(1\)+)1074 4363 y(+)g(\(1)g FC(\000)g FI(q)t FL(\))p FI(\015)1516 4378 y FH(1)1555 4363 y FI(\015)1606 4378 y FH(2)1645 4363 y FL(\()p FI(g)1730 4378 y FH(1)1769 4363 y FI(g)1820 4322 y FH(2)1816 4387 y(2)1881 4363 y FC(\000)h FL(1\))f FC(\000)g FI(\025)p FL(\()p FI(g)2335 4322 y FH(3)2331 4387 y(1)2374 4363 y FI(g)2425 4322 y FH(3)2421 4387 y(2)2486 4363 y FC(\000)g FL(1\))195 b(in)32 b FI(L)3047 4322 y Fx(0)3071 4363 y FI(;)501 4583 y FL(giv)m(es)38 b(that)f Fs(u)p FL(\()p FI(A)1124 4598 y FH(2)1163 4583 y FL(\))e(=)h FI(L)1414 4547 y Fx(0)1438 4583 y FI(=)p FL(\()p FI(v)t FL(\))g(and)h Fs(u)p FL(\()p FC(D)2011 4598 y FH(0)2050 4583 y FI(;)17 b FJ(0)p FL(\))35 b(=)h FI(L=)p FL(\()p FI(z)2537 4547 y FH(3)2577 4583 y FL(\))h(with)g FC(D)2956 4598 y FH(0)3033 4583 y FL(the)g(linking)501 4703 y(datum)24 b(with)h(no)g(linking.)39 b(With)24 b(ingenious)g (insigh)m(t)g(and)h(explicit)e(calculations)501 4824 y(he)34 b(then)g(sho)m(ws)g(that)f FI(Q)c FL(:=)g FI(T)11 b(=)p FL(\()p FI(u)p FL(\))32 b(is)h(actually)f(a)h(bi-Galois)c(ob)5 b(ject)34 b(for)f(these)501 4944 y(t)m(w)m(o)k(Hopf)f(algebras)f(and)i (hence)g(they)g(are)f(quasi-isomorphic.)52 b(The)37 b(calcula-)501 5064 y(tions)d(in)g(this)g(case)h(are)g(sligh)m(tly)e(tric)m(kier)h (than)g(for)g([BDR,)h(Prop)s(osition)d(3.3],)501 5185 y(as)d(the)g(structure)h(maps)f(for)f FI(T)42 b FL(map)28 b FI(T)43 b FL(in)m(to)27 b FI(L)2263 5149 y Fx(0)2301 5185 y FC(\012)14 b FI(T)43 b FL(and)29 b FI(T)f FC(\012)14 b FI(L;)30 b FL(resp)s(ectiv)m(ely)-8 b(.)501 5305 y(When)36 b(calculating)d(the)j(image)d(of)i FI(u)f FL(under)i(these)h(maps,)f (one)f(therefore)h(has)1828 5637 y(76)p eop %%Page: 77 79 77 78 bop 501 573 a FL(to)36 b(apply)h(di\013eren)m(t)f(comm)m(utation) f(rules,)i(dep)s(ending)g(on)g(whic)m(h)g(tensor)g(fac-)501 693 y(tor)42 b(one)g(is)f(in.)71 b(All)41 b(tec)m(hnical)g (di\016culties)g(can)h(b)s(e)g(dealt)g(with)f(directly)-8 b(,)44 b(as)501 814 y(the)31 b(comm)m(utation)d(relations)h(are)h (explicit)f(and)i(the)g(diamond)d(lemma)g(can)j(b)s(e)501 934 y(applied.)501 1096 y(The)46 b(pro)s(of)f(for)g FI(A)1217 1111 y FH(2)1301 1096 y FL(should)h(b)s(e)f(easily)g(transferable)g(to) g(the)g(self-linking)e(of)501 1216 y FI(B)575 1231 y FH(2)615 1216 y FL(,)c(as)g(giv)m(en)f(in)g(Figure)f(4.4.)60 b(Ho)m(w)m(ev)m(er,)42 b(the)d(calculations)d(are)i(m)m(uc)m(h)h(more) 501 1337 y(in)m(v)m(olv)m(ed.)62 b(Ev)m(en)41 b(if)c(w)m(e)j(could)e (guess)i(the)f(righ)m(t)f(\\)p FI(u)p FL(",)h(giving)e(us)i(a)g (bi-Galois)501 1457 y(ob)5 b(ject)47 b(for)d(the)i(algebras)f(that)h (incorp)s(orate)e(the)i(ro)s(ot)f(v)m(ector)h(relation)e(for)501 1577 y FI(z)t FL(,)h(pro)m(ving)d(it)f(directly)g(seems)i(hop)s(eless.) 72 b(The)43 b(expressions)h(for)d(\001\()p FI(z)3245 1541 y FH(5)3285 1577 y FL(\))h(are)501 1698 y(just)34 b(to)s(o)f(messy)-8 b(.)46 b(And)34 b(a)f(computer)h(algebra)e(program) g(lik)m(e)h(felix)f(can)i(not)f(b)s(e)501 1818 y(applied)k(directly)-8 b(,)38 b(as)g(the)g(separate)g(tensor)g(factors)g(ha)m(v)m(e)h (di\013eren)m(t)f(comm)m(u-)501 1939 y(tation)33 b(rules.)47 b(Besides,)35 b(after)e(dealing)f(with)i(the)g(relations)e(for)h FI(z)2997 1902 y FH(5)3037 1939 y FL(,)h(w)m(e)h(w)m(ould)501 2059 y(then)k(still)d(ha)m(v)m(e)j(to)f(incorp)s(orate)f(the)i (relations)e(for)g FI(u)2589 2023 y FH(5)2628 2059 y FL(.)61 b(So,)39 b(again)e(w)m(e)i(need)501 2179 y(a)d(deep)s(er)h (insigh)m(t)e(in)m(to)g(the)h(general)f(structure)i(theory)g(for)e (these)i(self-link)m(ed)501 2300 y(algebras)32 b(\014rst,)h(b)s(efore)g (w)m(e)h(attempt)e(a)g(quasi-isomorphism)d(theorem.)1828 5637 y(77)p eop %%Page: 78 80 78 79 bop 257 1237 a FK(App)6 b(endix)78 b(A)257 1652 y(F)-19 b(elix)76 b(programs)257 2105 y FL(Here)37 b(w)m(e)h(giv)m(e)e (the)g(programs)g(used)h(for)f(the)h(calculations)d(in)h(Section)i (4.6.)54 b(T)-8 b(o)36 b(run)257 2225 y(these)43 b(scripts)g(one)f(has) g(to)g(ha)m(v)m(e)h(a)e(w)m(orking)h(cop)m(y)h(of)e FJ(felix)g FL([AK],)j(whic)m(h)f(can)f(b)s(e)257 2345 y(do)m(wnloaded)28 b(at)f Fe(http://felix.hgb-leipzig.de)q(/)p FL(.)48 b(F)-8 b(or)26 b(the)h(results)h(concerning)257 2466 y(the)e(copro)s(duct)f (of)g(higher)g(p)s(o)m(w)m(ers)h(of)f(the)g(ro)s(ot)f(v)m(ectors)j(one) e(needs)i(a)e(tensor)h(mo)s(dule.)257 2586 y(Istv\023)-49 b(an)26 b(Hec)m(k)m(en)m(b)s(erger)h(\(hec)m(k)m(en)m(b)s (e@mathematik.uni-leipzig.de\))c(w)m(as)i(kind)f(enough)257 2707 y(to)41 b(pro)m(vide)g(his)g(extension)g(mo)s(dule)f Fe(tensor.cmp)p FL(,)46 b(of)40 b(whic)m(h)h(w)m(e)h(use)g(the)g Fe(ttimes)257 2827 y FL(function.)75 b(Sa)m(ving)43 b(one)h(of)e(the)i (scripts)f(b)s(elo)m(w)g(in)g(a)g FE(\014le)p FL(,)i(one)f(can)f (execute)i(it)d(b)m(y)257 2947 y(calling)78 b Fe(felix)53 b(<)e FE(\014le)29 b FL(in)f(a)h(Unix-lik)m(e)e(system)j(en)m(vironmen) m(t.)43 b(The)30 b(tensor)g(mo)s(dule)257 3068 y(is)i(compiled)f(in)h (the)h(same)g(w)m(a)m(y)-8 b(.)404 3188 y(W)g(e)33 b(w)m(an)m(t)g(to)f (giv)m(e)h(some)f(commen)m(ts)h(on)f(these)i(scripts.)403 3383 y FC(\017)48 b FL(If)e(the)g(tensor)h(mo)s(dule)d(is)h(not)h(a)m (v)-5 b(ailable,)47 b(then)f(only)f(the)h(Gro)s(ebner)g(basis)501 3503 y(calculation)23 b(is)i(p)s(ossible.)40 b(In)26 b(this)f(case)h(remo)m(v)m(e)g(the)f(\014rst)h(line)e(from)g(the)i (scripts)501 3623 y(and)33 b(the)g(\014rst)g(\045-sign)f(in)g(fron)m(t) g(of)g(the)h(\014rst)g Fe(bye)p FL(.)403 3824 y FC(\017)48 b FL(Eac)m(h)42 b(script)e(starts)h(b)m(y)h(de\014ning)e(a)h(domain)d (with)j(its)f(parameters)g(and)h(the)501 3944 y(v)-5 b(ariables.)50 b(The)36 b(sym)m(b)s(ol)e Fe(ixi)h FL(is)g(de\014ned)h (as)g(a)e(v)-5 b(ariable)33 b(and)i(treated)h(b)m(y)g(the)501 4065 y(tensor)d(mo)s(dule)f(as)g(the)h(tensor)h(sign)e FC(\012)p FL(.)403 4265 y FC(\017)48 b FL(Then)34 b(a)e(matrix)f(is)h (giv)m(en)h(whic)m(h)g(giv)m(es)g(an)g(appropriate)e(term-ordering.)403 4465 y FC(\017)48 b FL(The)37 b(ideal)d(has)h(all)f(the)i(de\014ning)f (relations)f(of)h(the)h(algebra.)51 b(Because)37 b(of)e(the)501 4586 y(sp)s(ecial)f(prop)s(ert)m(y)i FI(q)1269 4550 y FG(p)1340 4586 y FL(=)31 b(1)p FI(;)k FL(w)m(e)h(need)g(to)e(treat)h FI(q)j FL(formally)32 b(as)j(a)g(v)-5 b(ariable)33 b(and)501 4706 y(not)f(as)h(a)f(parameter.)43 b(By)32 b(assigning)f(a)h(zero)h (to)f(its)f(p)s(osition)g(in)g(the)i(ordering)501 4827 y(matrix)e(and)i(giving)e(all)f(the)j(comm)m(utation)e(relations)g(for) h FI(q)t FL(,)g(felix)g(treats)h FI(q)j FL(in)501 4947 y(e\013ect)e(lik)m(e)e(a)g(parameter.)403 5147 y FC(\017)48 b FL(The)e(function)f Fe(standard)j FL(computes)d(the)h(Gro)s(ebner)f (basis.)82 b(As)46 b(the)f(algo-)501 5268 y(rithm)50 b(for)h(the)h(non-comm)m(utativ)m(e)e(case)i(is)f(non-deterministic,)j (the)e(righ)m(t)501 5388 y(term-ordering)43 b(can)i(b)s(e)g(essen)m (tial.)79 b(This)45 b(is)f(esp)s(ecially)g(imp)s(ortan)m(t)f(for)h(the) 1828 5637 y(78)p eop %%Page: 79 81 79 80 bop 501 573 a FI(G)578 588 y FH(2)647 573 y FL(case.)43 b(W)-8 b(e)29 b(w)m(an)m(t)h(to)f(thank)g(Istv\023)-49 b(an)30 b(Hec)m(k)m(en)m(b)s(erger)i(for)d(sho)m(wing)g(us)h(ho)m(w)g (to)501 693 y(determine)i(a)h(useful)f(ordering.)403 897 y FC(\017)48 b FL(The)34 b(copro)s(duct)f(for)f(the)h(v)-5 b(ariables)31 b(is)h(denoted)i(b)m(y)f Fe(del)p FL(.)403 1100 y FC(\017)48 b FL(After)24 b(calculating)e(the)j(higher)e(p)s(o)m (w)m(ers)j(of)d(the)i(copro)s(duct)f(of)g(the)g(ro)s(ot)g(v)m(ectors,) 501 1220 y(the)k(coun)m(ter)f(terms)g(are)g(guessed)i(from)d(the)h (output)g(and)g(the)g(result)g(is)g(already)501 1341 y(incorp)s(orated)c(in)g(the)i(scripts.)41 b(The)24 b(summands)g(are)g (all)e(on)h(separate)i(lines)e(and)501 1461 y(the)33 b(co)s(e\016cien)m(ts)h(are)f(also)e(separately)i(de\014ned.)403 1665 y FC(\017)48 b FL(The)38 b(last)f(part)f(of)h(the)g(calculations)f (is)g(alw)m(a)m(ys)i(a)f(test,)h(c)m(hec)m(king)h(if)d(the)h(new)501 1785 y(expressions)46 b(are)e(sk)m(ew-primitiv)m(e)g(and)g(if)f(the)i (p)s(o)m(w)m(ers)g(of)f(the)g(ro)s(ot)g(v)m(ectors)501 1905 y(are)34 b(cen)m(tral.)46 b(T)-8 b(o)34 b(b)s(e)g(able)e(to)i(see) g(these)h(tests)g(b)s(etter)f(in)f(the)h(output,)g(a)f(short)501 2026 y(message)46 b(is)e(prin)m(ted)i(b)s(efore)f(them.)81 b(This)45 b(causes)i(felix)d(to)g(ev)-5 b(aluate)45 b(these)501 2146 y Fe(print)h FL(commands)d(and)i(pro)s(duces)g Fe(FALSE)g FL(in)f(the)h(output.)78 b(This)45 b(is)e(not)h(a)501 2267 y(problem.)f(Successful)34 b(tests)f(will)e(giv)m(e)h Fe(@)52 b(:=)f(0)33 b FL(as)g(output)g(afterw)m(ards.)257 2599 y FD(A.1)161 b(Listing)54 b(for)g(self-linking)i(of)e Fp(A)2581 2621 y FJ(2)257 2818 y Fe(link\("tensor.mdl"\)$)257 3059 y(select)f(int\(lam12,lam21,mu1,mu2\))q($)257 4143 y(si:=ideal\()257 4263 y(q*x1-x1*q,)h(q*x2-x2*q,)g (q*z-z*q,)257 4383 y(q*g1-g1*q,)g(q*g2-g2*q,)g(q*ixi-ixi*q,)257 4504 y(q^2+q+1,)g(g1*g2-g2*g1,)257 4744 y(g1*x1-q*x1*g1,)h (g2*x1-q*x1*g2,)257 4865 y(g1*x2-q*x2*g1,)g(g2*x2-q*x2*g2,)257 4985 y(g1*z-q^2*z*g1,)g(g2*z-q^2*z*g2,)257 5226 y(x1*x2-q*x2*x1-z,)257 5346 y(x1*z-q^2*z*x1-lam12*\(1-g)q(1^2)q(*g2\))q(,)1828 5637 y FL(79)p eop %%Page: 80 82 80 81 bop 257 573 a Fe(x2*\(x2*x1-q*x1*x2\)-q^2*\()q(x2*)q(x1-q)q(*x1*) q(x2\)*)q(x2-)q(lam2)q(1*\(1)q(-g2^)q(2*g)q(1\),)257 814 y(x1^3-mu1*\(1-g1^3\),)257 934 y(x2^3-mu2*\(1-g2^3\))257 1054 y(\)$)257 1295 y(si:=standard\(si\)$)257 1416 y(\045bye$\045)257 1656 y(delx1:=g1*ixi*x1+x1*ixi$)257 1777 y(delx2:=g2*ixi*x2+x2*ixi$)257 1897 y(delz:=remainder\(ttimes\(d)q(elx)q(1,de)q(lx2\))821 2017 y(-ttimes\(q*ixi,ttimes\(del)q(x2,d)q(elx)q(1\)\),)q(si\)$)257 2138 y(delz2:=remainder\(ttimes\()q(del)q(z,de)q(lz\),)q(si\)$)257 2258 y(delz3:=remainder\(ttimes\()q(del)q(z2,d)q(elz\))q(,si\))q($)257 2499 y(f0:=\(1-q\)^3*mu1*mu2$)257 2619 y(f1:=\(1-q\)*q*lam12*lam21$)257 2860 y(v:=z^3)257 2980 y(+f0*\(1-g2^3\))257 3101 y(+f1*\(1-g2^2*g1\)$) 257 3342 y(delv:=delz3)257 3462 y(+f0*\(ixi-g2^3*ixi*g2^3\))257 3582 y(+f1*\(ixi-g2^2*g1*ixi*g2^)q(2*g)q(1\)$)257 3823 y(print\("TEST)55 b(IF)c(v)h(SKEW-PRIMITIVE"\)$)257 3944 y(remainder\(delv-v*ixi-g1^)q(3*g)q(2^3*)q(ixi*)q(v,si)q(\)$)257 4064 y(print\("TEST)j(IF)c(z^3)h(CENTRAL"\)$)257 4184 y(remainder\(z^3*x1-x1*z^3,)q(si\))q($)257 4305 y (remainder\(z^3*x2-x2*z^3,)q(si\))q($)257 4425 y(bye$)257 4758 y FD(A.2)161 b(Listing)54 b(for)g(self-linking)i(of)e Fp(B)2580 4779 y FJ(2)257 4977 y Fe(link\("tensor.mdl"\)$)257 5218 y(select)f(int\(lam12,lam21,mu1,mu2\))q($)257 1536 y(si:=ideal\()257 1777 y(q*u-u*q,)54 b(q*z-z*q,)f(q*x1-x1*q,)h(q*x2-x2*q,)257 1897 y(q*g1-g1*q,)g (q*g2-g2*q,)g(q*ixi-ixi*q,)257 2017 y(q^4+q^3+q^2+q+1,)i(g1*g2-g2*g1,) 257 2258 y(g1*u-q^4*u*g1,)f(g2*u-q^4*u*g2,)257 2379 y(g1*z-q^3*z*g1,)g (g2*z-q^3*z*g2,)257 2499 y(g1*x2-q*x2*g1,)g(g2*x2-q*x2*g2,)257 2619 y(g1*x1-q^2*x1*g1,)h(g2*x1-q^2*x1*g2,)257 2860 y (x2*x1-q^2*x1*x2-z,)257 2980 y(x2*z-q^3*z*x2-u,)257 3221 y(x1*\(x1*x2-q*x2*x1\)-q^3*\()q(x1*)q(x2-q)q(*x2*)q(x1\)*)q(x1-)q(lam1) q(2*\(1)q(-g1^)q(2*g)q(2\),)257 3342 y(x2*u-q^4*u*x2-lam21*\(1-g)q(2^3) q(*g1\))q(,)257 3582 y(x1^5-mu1*\(1-g1^5\),)257 3703 y(x2^5-mu2*\(1-g2^5\))257 3823 y(\)$)257 4064 y(si:=standard\(si\)$)257 4184 y(\045bye$\045)257 4425 y(delx1:=g1*ixi*x1+x1*ixi*)q(1$)257 4545 y(delx2:=g2*ixi*x2+x2*ixi*)q(1$)257 4666 y (delz:=remainder\(ttimes\(d)q(elx)q(2,de)q(lx1\))873 4786 y(-ttimes\(q^2*ixi,ttimes\(delx)q(1,d)q(elx2)q(\)\),s)q(i\)$)257 4907 y(delz2:=remainder\(ttimes\()q(del)q(z,de)q(lz\),)q(si\)$)257 5027 y(delz3:=remainder\(ttimes\()q(del)q(z2,d)q(elz\))q(,si\))q($)257 5147 y(delz4:=remainder\(ttimes\()q(del)q(z3,d)q(elz\))q(,si\))q($)257 5268 y(delz5:=remainder\(ttimes\()q(del)q(z4,d)q(elz\))q(,si\))q($)1828 5637 y FL(81)p eop %%Page: 82 84 82 83 bop 257 573 a Fe(f0:=-mu1*mu2*\(q^2-1\)^5$)257 693 y(f1:=\(-q^3+q^2+q-1\)*lam12)q(^2*)q(lam2)q(1$)257 814 y(f2:=\(2*q^3+2*q^2+1\)*lam1)q(2^2)q(*lam)q(21$)257 934 y(f3:=\(q^3+2*q^2+3*q-1\)*la)q(m12)q(*lam)q(21$)257 1054 y(f4:=-q*\(q^2+3*q+1\)*lam12)q(^2*)q(lam2)q(1$)257 1295 y(v:=z^5)257 1416 y(+f0*\(1-g1^5\))257 1536 y(+f1*g1^5*g2^5)257 1656 y(+f2*g1^4*g2^2)257 1777 y(+f3*z*x1*g1^2*g2)257 1897 y(+f4*g1^2*g2$)257 2138 y(delv:=remainder\(delz5)257 2258 y(+f0*\(ixi-g1^5*ixi*g1^5\))257 2379 y(+f1*g1^5*g2^5*ixi*g1^5*g)q (2^5)257 2499 y(+f2*g1^4*g2^2*ixi*g1^4*g)q(2^2)257 2619 y(+f3*ttimes\(ttimes\(delz,d)q(elx)q(1\),g)q(1^2*)q(g2*i)q(xi*)q(g1^2)q (*g2\))257 2740 y(+f4*g1^2*g2*ixi*g1^2*g2)257 2860 y(,si\)$)257 3101 y(print\("TEST)55 b(IF)c(v)h(SKEWPRIMITIVE"\)$)257 3221 y(remainder\(delv-v*ixi-g1^)q(5*g)q(2^5*)q(ixi*)q(v,si)q(\)$)257 3342 y(print\("TEST)j(IF)c(z^5)h(CENTRAL"\)$)257 3462 y(remainder\(z^5*x1-x1*z^5,)q(si\))q($)257 3582 y (remainder\(z^5*x2-x2*z^5,)q(si\))q($)257 3703 y(\045bye$\045)257 3944 y(delu:=remainder\(ttimes\(d)q(elx)q(2,de)q(lz\))873 4064 y(-ttimes\(q^3*ixi,ttimes\(delz)q(,de)q(lx2\))q(\),si)q(\)$)257 4184 y(delu2:=remainder\(ttimes\()q(del)q(u,de)q(lu\),)q(si\)$)257 4305 y(delu3:=remainder\(ttimes\()q(del)q(u2,d)q(elu\))q(,si\))q($)257 4425 y(delu4:=remainder\(ttimes\()q(del)q(u3,d)q(elu\))q(,si\))q($)257 4545 y(delu5:=remainder\(ttimes\()q(del)q(u4,d)q(elu\))q(,si\))q($)257 4786 y(k0:=-2*\(q-1\)^5*mu2$)257 4907 y(k1:=-\(q^2-1\)^5*\(q-1\)^5*m)q (u2^)q(2$)257 5027 y(k2:=-5*\(2*q^3-q^2+q-2\)*l)q(am1)q(2^2*)q(lam2)q (1$)257 5147 y(k3:=-\(3*q^3+q^2-q+2\)*lam)q(12*)q(lam2)q(1^3$)257 5268 y(k4:=\(3*q^3+q^2+4*q+2\)*la)q(m12)q(*lam)q(21^3)q($)257 5388 y(k5:=-5*\(q^3+1\)*lam12*lam)q(21^)q(2$)1828 5637 y FL(82)p eop %%Page: 83 85 83 84 bop 257 573 a Fe(k6:=5*\(q^3-1\)*lam12*lam2)q(1$)257 693 y(k7:=-2*\(q^3+2*q^2+3*q-1\))q(*la)q(m12*)q(lam2)q(1^3$)257 814 y(k8:=-5*\(q^3+q^2-1\)*lam12)q(*la)q(m21^)q(2$)257 934 y(k9:=\(2*q^3+4*q^2+q-2\)*la)q(m12)q(*lam)q(21^3)q($)257 1175 y(w:=u^5)257 1295 y(+k0*v)257 1416 y(+k1*x1^5)257 1536 y(+k2*x2^5*g1^5*g2^5)257 1656 y(+k3*g1^5*g2^10)257 1777 y(+k4*g1^4*g2^7)257 1897 y(+k5*u*x2*g1^3*g2^4)257 2017 y(+k6*u^2*x2^2*g1^2*g2)257 2138 y(+k7*g1^3*g2^4)257 2258 y(+k8*u*x2*g1^2*g2)257 2379 y(+k9*g1^2*g2$)257 2619 y(delw:=remainder\(delu5)257 2740 y(+k0*delv)257 2860 y(+k1*\(x1^5*ixi+g1^5*ixi*x)q(1^5)q(\))257 2980 y (+k2*ttimes\(x2^5*ixi+g2^5)q(*ix)q(i*x2)q(^5,g)q(1^5*)q(g2^)q(5*ix)q (i*g1)q(^5*g)q(2^5)q(\))257 3101 y(+k3*g1^5*g2^10*ixi*g1^5*)q(g2^)q(10) 257 3221 y(+k4*g1^4*g2^7*ixi*g1^4*g)q(2^7)257 3342 y (+k5*ttimes\(ttimes\(delu,d)q(elx)q(2\),g)q(1^3*)q(g2^4)q(*ix)q(i*g1)q (^3*g)q(2^4\))257 3462 y(+k6*ttimes\(ttimes\(ttimes)q(\(tt)q(imes)q (\(del)q(u,de)q(lu\))q(,del)q(x2\),)q(delx)q(2\))821 3582 y(,g1^2*g2*ixi*g1^2*g2\))257 3703 y(+k7*g1^3*g2^4*ixi*g1^3*g)q (2^4)257 3823 y(+k8*ttimes\(ttimes\(delu,d)q(elx)q(2\),g)q(1^2*)q(g2*i) q(xi*)q(g1^2)q(*g2\))257 3944 y(+k9*g1^2*g2*ixi*g1^2*g2)257 4064 y(,si\)$)257 4305 y(print\("TEST)55 b(IF)c(w)h(SKEW-PRIMITIVE"\)$) 257 4425 y(remainder\(delw-w*ixi-g1^)q(5*g)q(2^10)q(*ixi)q(*w,s)q(i\)$) 257 4545 y(print\("TEST)j(IF)c(u^5)h(CENTRAL"\)$)257 4666 y(remainder\(u^5*x1-x1*u^5,)q(si\))q($)257 4786 y(remainder\(u^5*x2-x2*u^5,)q(si\))q($)257 4907 y(bye$)1828 5637 y FL(83)p eop %%Page: 84 86 84 85 bop 257 573 a FD(A.3)161 b(Listing)54 b(for)g(self-linking)i(of)e Fp(G)2583 594 y FJ(2)257 792 y Fe(link\("tensor.mdl"\)$)257 1033 y(select)f(int\(lam12,lam21,mu1,mu2\))q($)257 2598 y(si:=ideal\()257 2718 y(q*w-w*q,)h(q*v-v*q,)f(q*u-u*q,)h(q*z-z*q,)257 2838 y(q*x2-x2*q,)g(q*x1-x1*q,)g(q*g2-g2*q,)g(q*g1-g1*q,)257 2959 y(q^6+q^5+q^4+q^3+q^2+q+1,)k(g1*g2-g2*g1,)c(q*ixi-ixi*q,)257 3200 y(g1*w-q^2*w*g1,)h(g2*w-q^2*w*g2,)257 3320 y(g1*v-q^6*v*g1,)g (g2*v-q^6*v*g2,)257 3440 y(g1*u-q^5*u*g1,)g(g2*u-q^5*u*g2,)257 3561 y(g1*z-q^4*z*g1,)g(g2*z-q^4*z*g2,)257 3681 y(g1*x2-q^3*x2*g1,)h (g2*x2-q^3*x2*g2,)257 3801 y(g1*x1-q*x1*g1,)f(g2*x1-q*x1*g2,)257 4042 y(z-x2*x1+q*x1*x2,)257 4163 y(u-z*x1+q^2*x1*z,)257 4283 y(v-u*x1+q^3*x1*u,)257 4403 y(w-z*u+q^3*u*z,)257 4644 y(x1*\(x1*\(x1*\(x1*x2-q^3*x2)q(*x1)q(\))262 b (-q^4*\(x1*x2-q^3*x2*x1\)*x)q(1\))616 4764 y (-q^5*\(x1*\(x1*x2-q^3*x2*x)q(1\)-q)q(^4*\()q(x1*)q(x2-q)q(^3*x)q(2*x1) q(\)*x)q(1\)*x)q(1\))411 4885 y(-q^6*\(x1*\(x1*\(x1*x2-q^3*)q(x2*x)q (1\)-q)q(^4*\()q(x1*)q(x2-q)q(^3*x)q(2*x1)q(\)*x)q(1\))616 5005 y(-q^5*\(x1*\(x1*x2-q^3*x2*x)q(1\)-q)q(^4*\()q(x1*)q(x2-q)q(^3*x)q (2*x1)q(\)*x)q(1\)*x)q(1\)*x)q(1)309 5126 y(-lam12*\(1-g1^4*g2\),)257 5246 y(x2*z-q^4*z*x2-lam21*\(1-g)q(1*g)q(2^2\))q(,)1828 5637 y FL(84)p eop %%Page: 85 87 85 86 bop 257 573 a Fe(x1^7-mu1*\(1-g1^7\),)257 693 y (x2^7-mu2*\(1-g2^7\))257 814 y(\)$)257 1054 y(si:=standard\(si\)$)257 1175 y(\045bye$\045)257 1416 y(delx1:=g1*ixi*x1+x1*ixi*)q(1$)257 1536 y(delx2:=g2*ixi*x2+x2*ixi*)q(1$)257 1777 y (delz:=remainder\(ttimes\(d)q(elx)q(2,de)q(lx1\))873 1897 y(-ttimes\(q*ixi,ttimes\(delx1,)q(del)q(x2\)\))q(,si\))q($)257 2017 y(delz2)53 b(:=remainder\(ttimes\(delz,d)q(elz\))q(,si\))q($)257 2138 y(delz3)g(:=remainder\(ttimes\(delz2,)q(delz)q(\),si)q(\)$)257 2258 y(delz4)g(:=remainder\(ttimes\(delz3,)q(delz)q(\),si)q(\)$)257 2379 y(delz5)g(:=remainder\(ttimes\(delz4,)q(delz)q(\),si)q(\)$)257 2499 y(delz6)g(:=remainder\(ttimes\(delz5,)q(delz)q(\),si)q(\)$)257 2619 y(delz7)g(:=remainder\(ttimes\(delz6,)q(delz)q(\),si)q(\)$)257 2860 y(f0:=\(1-q^3\)^7*mu1*mu2$)257 2980 y(f1:=\(-2*q^5-4*q^4+q^3-q^)q (2+4)q(*q+2)q(\)*la)q(m12*)q(lam)q(21$)257 3101 y (f2:=\(6*q^5+8*q^4+6*q^3-3)q(*q-)q(3\)*l)q(am12)q(*lam)q(21^)q(2$)257 3221 y(f3:=\(-q^4-3*q^3+q^2-3*q-)q(1\)*)q(lam1)q(2*la)q(m21^)q(2$)257 3342 y(f4:=\(2*q^5+2*q^4+4*q^3+5)q(*q^)q(2+2*)q(q-1\))q(*lam)q(12*)q (lam2)q(1^3$)257 3462 y(f5:=\(q^5-2*q^4-4*q^3-7*q)q(^2-)q(6*q-)q(3\)*l) q(am12)q(*la)q(m21^)q(3$)257 3582 y(f6:=\(-4*q^5-2*q^4-2*q^3+)q(2*q)q (^2+2)q(*q+4)q(\)*la)q(m12)q(*lam)q(21^3)q($)257 3703 y(f7:=\(q^5+2*q^4+2*q^3+2*q)q(\)*l)q(am12)q(*lam)q(21^3)q($)257 3944 y(zz:=z^7)257 4064 y(+f0*\(1-g1^7\))257 4184 y (+f1*z^2*x2^2*g1^4*g2)257 4305 y(+f2*z*x2*g1^5*g2^3)257 4425 y(+f3*z*x2*g1^4*g2)257 4545 y(+f4*g1^7*g2^7)257 4666 y(+f5*g1^6*g2^5)257 4786 y(+f6*g1^5*g2^3)257 4907 y(+f7*g1^4*g2$)257 5147 y(delzz:=delz7)257 5268 y (+f0*\(ixi-g1^7*ixi*g1^7\))257 5388 y(+f1*ttimes\(ttimes\(delz2,)q(tti) q(mes\()q(delx)q(2,de)q(lx2)q(\)\),g)q(1^4*)q(g2*i)q(xi*)q(g1^4)q (*g2\))1828 5637 y FL(85)p eop %%Page: 86 88 86 87 bop 257 573 a Fe(+f2*ttimes\(ttimes\(delz,d)q(elx)q(2\),g)q(1^5*) q(g2^3)q(*ix)q(i*g1)q(^5*g)q(2^3\))257 693 y (+f3*ttimes\(ttimes\(delz,d)q(elx)q(2\),g)q(1^4*)q(g2*i)q(xi*)q(g1^4)q (*g2\))257 814 y(+f4*g1^7*g2^7*ixi*g1^7*g)q(2^7)257 934 y(+f5*g1^6*g2^5*ixi*g1^6*g)q(2^5)257 1054 y(+f6*g1^5*g2^3*ixi*g1^5*g)q (2^3)257 1175 y(+f7*g1^4*g2*ixi*g1^4*g2$)257 1416 y(print\("TEST)55 b(IF)c(zz)h(SKEW_PRIMITIVE"\)$)257 1536 y(remainder\(delzz-zz*ixi-g)q (1^7)q(*g2^)q(7*ix)q(i*zz)q(,si)q(\)$)257 1656 y(print\("TEST)j(IF)c (z^7)h(CENTRAL"\)$)257 1777 y(remainder\(z^7*x1-x1*z^7,)q(si\))q($)257 1897 y(remainder\(z^7*x2-x2*z^7,)q(si\))q($)257 2017 y(bye$)1828 5637 y FL(86)p eop %%Page: 87 89 87 88 bop 257 1237 a FK(Bibliograph)-6 b(y)257 1689 y FL([A)m(CM])104 b(G.)35 b(Amelino-Camelia,)e(S.)j(Ma)5 b(jid,)37 b FE(Waves)h(on)g(Nonc)-5 b(ommutative)37 b(Sp)-5 b(ac)g(e-)644 1810 y(time)27 b(and)g(Gamma-R)-5 b(ay)26 b(Bursts)p FL(,)h(In)m(t.)e(J.)f(Mo)s(d.)h(Ph)m(ys.)h(A)e FJ(15)h FL(\(2000\),)g(4301-)644 1930 y(4323.)257 2134 y([A)m(G])186 b(N.)45 b(Andruskiewitsc)m(h,)51 b(M.)46 b(Gra)s(~)-51 b(na,)47 b FE(Br)-5 b(aide)g(d)46 b(Hopf)h(algebr)-5 b(as)46 b(over)g(non-)644 2254 y(ab)-5 b(elian)33 b(gr)-5 b(oups)p FL(,)33 b(Bol.)e(Acad.)i(Ciencias)g(\(C\023)-49 b(ordoba\))32 b FJ(63)h FL(\(1999\),)e(45-78.)257 2457 y([AK])184 b(J.)46 b(Ap)s(el,)j(U.)e(Klaus,)i FE(F)-7 b(elix)p FL(,)48 b(A)e(sp)s(ecial)f(computer)h(algebra)g(system)h(for) 644 2578 y(the)41 b(computation)f(in)g(comm)m(utativ)m(e)g(and)i (non-comm)m(utativ)m(e)d(rings)i(and)644 2698 y(mo)s(dules,)31 b(a)m(v)-5 b(ailable)30 b(at)j Fe(http://felix.hgb-leipzig.d)q(e/)p FL(.)257 2902 y([And])152 b(N.)34 b(Andruskiewitsc)m(h,)i FE(A)n(b)-5 b(out)36 b(\014nite)g(dimensional)e(Hopf)i(algebr)-5 b(as)p FL(,)34 b(Notes)644 3022 y(of)39 b(a)g(course)i(giv)m(en)f(at)f (the)h(CIMP)-8 b(A)41 b(Sc)m(ho)s(ol)e("Quan)m(tum)h(symmetries)f(in) 644 3142 y(theoretical)45 b(ph)m(ysics)j(and)e(mathematics",)j(Barilo)s (c)m(he)c(2000,)k(Con)m(temp.)644 3263 y(Math)32 b FJ(294)h FL(\(2002\),)f(1-57.)257 3466 y([AS1])157 b(N.)47 b(Andruskiewitsc)m (h,)53 b(H.-J.)47 b(Sc)m(hneider,)52 b FE(Lifting)c(of)f(Quantum)i (Line)-5 b(ar)644 3587 y(Sp)g(ac)g(es)53 b(and)g(Pointe)-5 b(d)54 b(Hopf)g(algebr)-5 b(as)53 b(of)g(Or)-5 b(der)54 b FI(p)2685 3550 y FH(3)2724 3587 y FL(,)59 b(J.)54 b(Algebra)e FJ(209)644 3707 y FL(\(1998\),)31 b(658-691.)257 3910 y([AS2])157 b(N.)37 b(Andruskiewitsc)m(h,)j(H.-J.)c(Sc)m(hneider,)k FE(Finite)e(Quantum)h(Gr)-5 b(oups)39 b(and)644 4031 y(Cartan)34 b(Matric)-5 b(es)p FL(,)33 b(Adv.)g(Math.)g FJ(154)g FL(\(2000\),)e(1-45.)257 4234 y([AS3])157 b(N.)41 b(Andruskiewitsc)m(h,)46 b(H.-J.)c(Sc)m(hneider,)j FE(Finite)d(quantum) i(gr)-5 b(oups)43 b(over)644 4355 y(ab)-5 b(elian)40 b(gr)-5 b(oups)42 b(of)g(prime)f(exp)-5 b(onent)p FL(,)41 b(Ann.)g(Sci.)f(Ec.)h(Norm.)e(Sup)s(er.)i FJ(35)644 4475 y FL(\(2002\),)31 b(1-26.)257 4678 y([AS4])157 b(N.)32 b(Andruskiewitsc)m(h,)i(H.-J.)e(Sc)m(hneider,)i FE(Lifting)g(of)g (Nichols)g(A)n(lgebr)-5 b(as)34 b(of)644 4799 y(T)-7 b(yp)i(e)37 b FI(A)954 4814 y FH(2)1031 4799 y FE(and)g(Pointe)-5 b(d)37 b(Hopf)h(A)n(lgebr)-5 b(as)36 b(of)i(or)-5 b(der)37 b FI(p)2641 4763 y FH(4)2680 4799 y FE(,)i(in)e(\\Hopf)g(algebr)-5 b(as)644 4919 y(and)34 b(quantum)g(gr)-5 b(oups",)34 b(Pr)-5 b(o)g(c)g(e)g(e)g(dings)33 b(of)i(the)f(Brussels)g(Confer)-5 b(enc)g(e,)33 b(e)-5 b(ds.)644 5039 y(S.)36 b(Caenep)-5 b(e)g(el,)35 b(F.)h(V)-7 b(an)37 b(Oystaeyen)p FL(,)d(Lecture)i(Notes)f (in)f(Pure)h(and)g(Appl.)644 5160 y(Math.,)e(Marcel)f(Dekk)m(er,)i(New) g(Y)-8 b(ork)32 b FJ(209)h FL(\(2000\),)f(1-14.)1828 5637 y(87)p eop %%Page: 88 90 88 89 bop 257 573 a FL([AS5])157 b(N.)55 b(Andruskiewitsc)m(h,)64 b(H.-J.)55 b(Sc)m(hneider,)63 b FE(Pointe)-5 b(d)56 b(Hopf)g(algebr)-5 b(as)p FL(,)60 b(in)644 693 y("New)36 b(directions)g(in)f(Hopf)h (algebras",)g(MSRI)h(series,)h(Cam)m(bridge)d(Univ.)644 814 y(Press,)f(2002.)257 1017 y([AS6])157 b(N.)42 b(Andruskiewitsc)m (h,)47 b(H.-J.)c(Sc)m(hneider,)j FE(A)e(char)-5 b(acterization)43 b(of)h(quan-)644 1137 y(tum)35 b(gr)-5 b(oups)p FL(,)32 b(preprin)m(t)65 b(\(2002\),)32 b(a)m(v)-5 b(ailable)30 b(at)644 1258 y Fe(www.mathematik.uni-muenche)q(n.de)q(/~ha)q(nss)q (ch/P)q(ubli)q(cati)q(ons)q(.htm)q(l)p FL(.)257 1461 y([BDR])117 b(M.)32 b(Beattie,)g(S.)h(D\025)-49 b(asc\025)g(alescu,)33 b(S.)f(Raian)m(u,)g FE(Lifting)i(of)h(Nichols)f(algebr)-5 b(as)34 b(of)644 1582 y(typ)-5 b(e)35 b FI(B)922 1597 y FH(2)961 1582 y FL(,)e(preprin)m(t)65 b(\(2001\),)32 b(a)m(v)-5 b(ailable)30 b(as)j Fe(math.QA/0204075)p FL(.)257 1785 y([BS])210 b(Z.)26 b(I.)g(Borevic,)i(I.)e(Shafarevic,)i FE(Numb)-5 b(er)29 b(the)-5 b(ory)p FL(,)28 b(Russian)e(edition)f(of)g (\\T)-8 b(eo-)644 1905 y(ria)31 b(Chisel")64 b(\(1964\),)32 b(Izdatelstv)m(o)h(Nauk)-5 b(a,)33 b(Mosco)m(w.)257 2109 y([CD])188 b(S.)27 b(Caenep)s(eel,)h(S.)f(D\025)-49 b(asc\025)g (alescu,)28 b FE(Pointe)-5 b(d)29 b(Hopf)h(algebr)-5 b(as)28 b(of)h(dimension)f FI(p)3429 2073 y FH(3)3468 2109 y FL(,)644 2229 y(J.)k(Algebra)g FJ(209)h FL(\(1998\),)e(622-634.) 257 2433 y([CK])187 b(A.)43 b(Connes,)k(D.)c(Kreimer,)i FE(R)-5 b(enormalization)43 b(in)h(quantum)h(\014eld)f(the)-5 b(ory)644 2553 y(and)42 b(the)i(R)n(iemann-Hilb)-5 b(ert)42 b(pr)-5 b(oblem)42 b(I:)h(the)g(Hopf)h(algebr)-5 b(a)42 b(structur)-5 b(e)45 b(of)644 2673 y(gr)-5 b(aphs)39 b(and)h(the)g(main)f(the)-5 b(or)g(em)p FL(,)39 b(Comm)m(un.)f(Math.)h (Ph)m(ys.)h FJ(210)e FL(\(2000\),)644 2794 y(249-273.)257 2997 y([CP])197 b(V.)31 b(Chari,)g(A.)h(N.)f(Pressley)-8 b(,)33 b FE(A)h(Guide)g(to)g(Quantum)g(Gr)-5 b(oups)p FL(,)32 b(Cam)m(bridge)644 3117 y(Univ.)g(Press,)i(1994.)257 3321 y([CSSW1])50 b(U.)27 b(Caro)m(w-W)-8 b(atam)m(ura,)27 b(M.)g(Sc)m(hliec)m(k)m(er,)j(M.)d(Sc)m(holl,)g(S.)f(W)-8 b(atam)m(ura,)27 b FE(T)-7 b(en-)644 3441 y(sor)52 b(r)-5 b(epr)g(esentation)52 b(of)g(the)h(quantum)g(gr)-5 b(oup)52 b FI(S)6 b(l)2591 3456 y FG(q)2629 3441 y FL(\(2)p FI(;)17 b FF(C)i FL(\))59 b FE(and)52 b(quantum)644 3562 y(Minkowski)34 b(sp)-5 b(ac)g(e)p FL(,)31 b(Z.)i(Ph)m(ys.)h(C)f FJ(48)g FL(\(1990\),)e(159-165.)257 3765 y([CSSW2])50 b(U.)42 b(Caro)m(w-W)-8 b(atam)m(ura,)43 b(M.)f(Sc)m(hliec)m(k)m(er,)k(M.)c(Sc) m(holl,)h(S.)f(W)-8 b(atam)m(ura,)43 b FE(A)644 3885 y(Quantum)35 b(L)-5 b(or)g(entz)34 b(Gr)-5 b(oup)p FL(,)33 b(In)m(t.)h(J.)e(Mo)s(d.)h(Ph)m(ys.)h(A)f FJ(6)g FL(\(1991\),)e(3081.) 257 4089 y([D1])209 b(D.)24 b(Didt,)h FE(Linkable)i(Dynkin)g(diagr)-5 b(ams)p FL(,)25 b(J.)g(Algebra)f FJ(255)h FL(\(2002\),)g(373-391.)257 4292 y([D2])209 b(D.)78 b(Didt,)90 b FE(Pointe)-5 b(d)77 b(Hopf)h(algebr)-5 b(as)76 b(and)h(quasi-isomorphisms)p FL(,)89 b(to)644 4413 y(app)s(ear)81 b(in)f(Algebr.)g(Represen)m(t.)j (Theory)163 b(\(2002\),)93 b(a)m(v)-5 b(ailable)78 b(as)644 4533 y Fe(math.QA/0201276)p FL(.)257 4736 y([Dri])192 b(V.)36 b(G.)f(Drinfeld,)g FE(Hopf)j(algebr)-5 b(as)37 b(and)g(the)h(quantum)g(Y)-7 b(ang-Baxter)37 b(e)-5 b(qua-)644 4857 y(tion)p FL(,)32 b(So)m(viet)h(Math.)g(Dokl.)e FJ(32)i FL(\(1985\),)e(254-258.)257 5060 y([EG])190 b(P)-8 b(.)30 b(Etingof,)f(S.)h(Gelaki,)f FE(On)j(F)-7 b(amilies)30 b(of)j(T)-7 b(riangular)31 b(Hopf)h(algebr)-5 b(as)p FL(,)30 b(In)m(t.)644 5181 y(Math.)j(Res.)g(Not.)f FJ(2002:14)h FL(\(2002\),)f(757-768.)1828 5637 y(88)p eop %%Page: 89 91 89 90 bop 257 573 a FL([EG2])141 b(P)-8 b(.)31 b(Etingof,)f(S.)h (Gelaki,)e FE(The)k(classi\014c)-5 b(ation)32 b(of)h (\014nite-dimensional)d(trian-)644 693 y(gular)25 b(Hopf)g(algebr)-5 b(as)24 b(over)h(an)f(algebr)-5 b(aic)g(al)5 b(ly)24 b(close)-5 b(d)25 b(\014eld)f(of)h(char)-5 b(acteristic)644 814 y(0)p FL(,)32 b(preprin)m(t)65 b(\(2002\),)32 b(a)m(v)-5 b(ailable)30 b(as)j Fe(math.QA/0202258)p FL(.)257 1011 y([FR)-8 b(T])135 b(L.)39 b(D.)g(F)-8 b(addeev,)43 b(N.)d(Y)-8 b(u.)39 b(Reshetikhin,)j(L.)e(A.)f(T)-8 b(akh)m(tadzh)m(y)m(an,)44 b FE(Quanti-)644 1132 y(zation)33 b(of)h(Lie)g(gr)-5 b(oups)34 b(and)f(Lie)h(algebr)-5 b(as)p FL(,)31 b(Leningrad)h(Math)g (J.)f FJ(1)h FL(\(1990\),)644 1252 y(193-225.)257 1450 y([Gr1])169 b(M.)51 b(Gra)s(~)-51 b(na,)53 b FE(On)e(Pointe)-5 b(d)50 b(Hopf)i(algebr)-5 b(as)50 b(of)h(dimension)f FI(p)3018 1414 y FH(5)3057 1450 y FL(,)55 b(Glasgo)m(w)644 1570 y(Math.)33 b(J.)f FJ(42)h FL(\(2000\),)e(405-419.)257 1768 y([Gr2])169 b(M.)38 b(Gra)s(~)-51 b(na,)37 b FE(Pointe)-5 b(d)39 b(Hopf)h(algebr)-5 b(as)39 b(of)g(dimension)f(32)p FL(,)h(Comm)m(un.)e(Alg.)644 1888 y FJ(28)32 b FL(\(2000\),)g (2935-2976.)257 2086 y([Hop])157 b(H.)45 b(Hopf,)1087 2061 y FE(\177)1070 2086 y(Ub)-5 b(er)46 b(die)g(T)-7 b(op)i(olo)g(gie)44 b(der)i(Grupp)-5 b(en-Mannigfaltigkeiten)45 b(und)644 2207 y(ihr)-5 b(er)34 b(V)-7 b(er)i(al)5 b(lgemeinerungen)p FL(,)31 b(Ann.)i(of)f(Math.)h FJ(42)g FL(\(1941\),)e(22-52.)257 2404 y([Hum])124 b(J.)34 b(E.)i(Humphreys,)g FE(Intr)-5 b(o)g(duction)36 b(to)h(Lie)g(A)n(lgebr)-5 b(as)36 b(and)g(R)-5 b(epr)g(esentation)644 2525 y(The)g(ory)p FL(,)32 b(Springer,)g(New)i (Y)-8 b(ork,)32 b(1972.)257 2723 y([Jim])173 b(M.)46 b(Jim)m(b)s(o,)i FE(A)g FI(q)t FE(-di\013er)-5 b(enc)g(e)46 b(analo)-5 b(gue)46 b(of)h FI(U)10 b FL(\()p Fs(g)p FL(\))48 b FE(and)f(the)g(Y)-7 b(ang-Baxter)644 2843 y(e)i(quation)p FL(,)32 b(Lett.)h(Math.)g(Ph)m(ys.)h FJ(10)f FL(\(1985\),)e(63-69.)257 3041 y([JS])229 b(A.)44 b(Jo)m(y)m(al,)i(R.)e(Street,)j FE(Br)-5 b(aide)g(d)44 b(T)-7 b(ensor)44 b(Cate)-5 b(gories)p FL(,)46 b(Adv.)f(Math.)f FJ(102)644 3161 y FL(\(1993\),)31 b(20-78.)257 3359 y([Kac])165 b(V.)33 b(Kac,)h FE(In\014nite)g (dimensional)g(Lie)h(A)n(lgebr)-5 b(as)p FL(,)33 b(Cam)m(bridge)f (Univ.)i(Press,)644 3479 y(1995.)257 3677 y([Kas])170 b(C.)39 b(Kassel,)j FE(Quantum)f(Gr)-5 b(oups)p FL(,)41 b(Springer,)g(Graduate)e(T)-8 b(exts)41 b(in)d(Mathe-)644 3797 y(matics)31 b FJ(155)p FL(,)i(1994.)257 3995 y([KS])203 b(A.)35 b(Klim)m(yk,)g(K.)g(Sc)m(hm)s(\177)-51 b(udgen,)36 b FE(Quantum)i(Gr)-5 b(oups)38 b(and)e(Their)h(R)-5 b(epr)g(esen-)644 4116 y(tation)p FL(,)32 b(Springer,)h(1997.)257 4313 y([Lus1])131 b(G.)26 b(Lusztig,)h FE(Finite)i(dimensional)f(Hopf)h (algebr)-5 b(as)28 b(arising)h(fr)-5 b(om)29 b(quantize)-5 b(d)644 4434 y(universal)29 b(enveloping)f(algebr)-5 b(as)p FL(,)27 b(J.)h(of)e(Amer.)h(Math.)h(So)s(c.)f FJ(3)g FL(\(1990\),)g(257-)644 4554 y(296.)257 4752 y([Lus2])131 b(G.)51 b(Lusztig,)57 b FE(Quantum)52 b(gr)-5 b(oups)53 b(at)g(r)-5 b(o)g(ots)52 b(of)h(1)p FL(,)j(Geom.)51 b(Dedicata)g FJ(35)644 4872 y FL(\(1990\),)31 b(89-114.)257 5070 y([Lus3])131 b(G.)32 b(Lusztig,)g FE(Intr)-5 b(o)g(duction)35 b(to)g(quantum)g(gr)-5 b(oups)p FL(,)32 b(Birkh\177)-49 b(auser,)33 b(1993.)257 5268 y([Ma)5 b(j1])111 b(S.)39 b(Ma)5 b(jid,)41 b FE(Cr)-5 b(osse)g(d)41 b(pr)-5 b(o)g(ducts)41 b(by)g(br)-5 b(aide)g(d)41 b(gr)-5 b(oups)41 b(and)f(b)-5 b(osonisation)p FL(,)40 b(J.)644 5388 y(Algebra)31 b FJ(163)i FL(\(1994\),)f(165-190.)1828 5637 y(89)p eop %%Page: 90 92 90 91 bop 257 573 a FL([Ma)5 b(j2])111 b(S.)24 b(Ma)5 b(jid,)26 b FE(F)-7 b(oundations)25 b(of)i(Quantum)g(Gr)-5 b(oup)28 b(The)-5 b(ory)p FL(,)26 b(Cam)m(bridge)d(Univ.)644 693 y(Press,)34 b(1995.)257 897 y([Mas1])108 b(A.)51 b(Masuok)-5 b(a,)56 b FE(Defending)50 b(the)i(ne)-5 b(gate)g(d)52 b(Kaplansky)f(c)-5 b(onje)g(ctur)g(e)p FL(,)55 b(Pro)s(c.)644 1017 y(Amer.)32 b(Math.)h(So)s(c.)g FJ(129)f FL(\(2001\),)g(3185-3192.) 257 1220 y([Mas2])108 b(A.)32 b(Masuok)-5 b(a,)33 b FE(Some)h(Comments) g(on)h([BDR])p FL(,)c(Priv)-5 b(ate)32 b(note,)h(2001.)257 1424 y([MM])155 b(S.)31 b(Ma)5 b(jid,)32 b(U.)f(Mey)m(er,)i FE(Br)-5 b(aide)g(d)33 b(matrix)g(structur)-5 b(e)35 b(of)f FI(q)t FE(-Minkowski)e(sp)-5 b(ac)g(e)644 1544 y(and)34 b FI(q)t FE(-Poinc)-5 b(ar)n(\023)-47 b(e)33 b(gr)-5 b(oup)p FL(,)32 b(Z.)g(Ph)m(ys.)j(C)e FJ(63)f FL(\(1994\),)g(357-362.)257 1748 y([Mon1])92 b(S.)47 b(Mon)m(tgomery)-8 b(,)50 b FE(Hopf)e(algebr)-5 b(as)47 b(and)h(their)g(action)f(on)h(rings)p FL(,)i(CBMS)644 1868 y(Lecture)33 b(Notes)g FJ(82)g FL(\(1993\),)f(Amer.)g(Math.)h(So)s (c..)257 2071 y([Mon2])92 b(S.)34 b(Mon)m(tgomery)-8 b(,)35 b FE(Classifying)h(\014nite)g(dimensional)e(semisimple)h(Hopf)i (al-)644 2192 y(gebr)-5 b(as)p FL(,)32 b(AMS,)h(Con)m(temp.)g(Math.)g FJ(229)g FL(\(1998\),)e(265-279.)257 2395 y([MSRI])83 b(Editors)42 b(S.)g(Mon)m(tgomery)-8 b(,)44 b(H.)f(J.)f(Sc)m(hneider,)k FE(New)d(Dir)-5 b(e)g(ctions)43 b(in)g(Hopf)644 2516 y(A)n(lgebr)-5 b(as)p FL(,)31 b(Cam)m(bridge)h(Univ.)h(Press,)h(2002.) 257 2719 y([Ng])211 b(S.)25 b(H.)h(Ng,)g FE(Non-semisimple)h(Hopf)h (algebr)-5 b(as)27 b(of)h(dimension)e FI(p)2966 2683 y FH(2)3006 2719 y FL(,)h(J.)e(Algebra)644 2839 y FJ(255)32 b FL(\(2002\),)g(182-197.)257 3043 y([Nic])189 b(W.)32 b(D.)f(Nic)m(hols,)h FE(Bialgebr)-5 b(as)32 b(of)i(typ)-5 b(e)35 b(one)p FL(,)c(Comm)m(un.)g(Algebra)g FJ(6)h FL(\(1978\),)644 3163 y(1521-1552.)257 3367 y([NZ])200 b(W.)49 b(D.)f(Nic)m(hols,)k(M.)d (B.)f(Zo)s(eller,)j FE(A)f(Hopf)f(algebr)-5 b(a)49 b(fr)-5 b(e)g(eness)49 b(the)-5 b(or)g(em)p FL(,)644 3487 y(Amer.)32 b(J.)h(Math.)g FJ(111)f FL(\(1989\),)g(381-385.)257 3690 y([Rad])158 b(D.)42 b(Radford,)k FE(Hopf)f(algebr)-5 b(as)43 b(with)i(pr)-5 b(oje)g(ction)p FL(,)45 b(J.)e(Algebra)g FJ(92)g FL(\(1985\),)644 3811 y(322-347.)257 4014 y([Rin])179 b(C.)37 b(Ringel,)f FE(PBW-b)-5 b(ases)37 b(of)h(quantum)h(gr)-5 b(oups)p FL(,)37 b(J.)g(Reine)f(Angew.)i(Math.)644 4134 y FJ(470)32 b FL(\(1996\),)g(51-88.)257 4338 y([Sc)m(h])185 b(P)-8 b(.)41 b(Sc)m(hauen)m(burg,)k FE(Hopf)d(bi-Galois)g(extensions)p FL(,)g(Comm)m(un.)e(Algebra)g FJ(24)644 4458 y FL(\(1996\),)31 b(3797-3825.)257 4662 y([Som])148 b(Y.)46 b(Sommerh\177)-49 b(auser,)50 b FE(Y)-7 b(etter-Drinfeld)47 b(Hopf)h(A)n(lgebr)-5 b(as)47 b(over)g(Gr)-5 b(oups)49 b(of)644 4782 y(Prime)34 b(Or)-5 b(der)p FL(,)32 b(Springer,)h(2002.)257 4985 y([SvO])152 b(D.)34 b(Stefan,)j(F.)e(v)-5 b(an)35 b(Oystaey)m(en,)j FE(Ho)-5 b(chschild)37 b(c)-5 b(ohomolo)g(gy)36 b(and)g(c)-5 b(or)g(adic)g(al)644 5106 y(\014ltr)g(ation)34 b(of)h(p)-5 b(ointe)g(d)34 b(Hopf)h(algebr)-5 b(as)p FL(,)32 b(J.)g(Algebra)g FJ(210)h FL(\(1998\),)e(535-556.)257 5309 y([Sw)m(e])169 b(M.)33 b(E.)g(Sw)m(eedler,)h FE(Hopf)g(algebr)-5 b(as)p FL(,)32 b(Benjamin,)f(New)j(Y)-8 b(ork,)33 b(1969.)1828 5637 y(90)p eop %%Page: 91 93 91 92 bop 257 573 a FL([T)-8 b(af)7 b(])185 b(E.)38 b(J.)g(T)-8 b(aft,)40 b FE(The)f(or)-5 b(der)40 b(of)f(the)h(antip)-5 b(o)g(de)39 b(of)h(a)g(\014nite)f(dimensional)f(Hopf)644 693 y(algebr)-5 b(a)p FL(,)31 b(Pro)s(c.)i(Natl.)f(Acad.)h(Sc.)g(USA)g FJ(68)g FL(\(1971\),)e(2631-2633.)257 897 y([W)-8 b(ar])154 b(Pro)s(ceedings)39 b(and)h(Lecture)g(notes)g(of)e(the)i(conference)h FE(Nonc)-5 b(ommutative)644 1017 y(Ge)g(ometry)50 b(and)g(Quantum)h(Gr) -5 b(oups)58 b FL(held)49 b(in)g(W)-8 b(arsa)m(w,)54 b(P)m(oland,)g(17-29)644 1137 y(Septem)m(b)s(er)43 b(2001,)i(to)e(b)s (e)g(published)g(b)m(y)h(Stefan)f(Banac)m(h)g(In)m(ternational)644 1258 y(Mathematical)30 b(Cen)m(tre.)257 1461 y([W)-8 b(or])154 b(S.)47 b(L.)h(W)-8 b(orono)m(wicz,)51 b FE(Di\013er)-5 b(ential)47 b(c)-5 b(alculus)49 b(on)f(c)-5 b(omp)g(act)47 b(matrix)i(pseu-)644 1582 y(do)-5 b(gr)g(oups)37 b(\(quantum)h(gr)-5 b(oups\))p FL(,)36 b(Comm.)f(Math.)h(Ph)m(ys.)i FJ(122)e FL(\(1989\),)f(125-)644 1702 y(170.)257 1905 y([Zh)m(u])168 b(Y.)45 b(Zh)m(u,)j FE(Hopf)e(algebr)-5 b(as)45 b(of)h(prime)g (dimension)p FL(,)g(In)m(t.)g(Math.)f(Res.)g(Not.)644 2026 y FJ(1994:1)33 b FL(\(1994\),)e(53-59.)1828 5637 y(91)p eop %%Page: 92 94 92 93 bop 257 573 a FD(Summary)404 814 y FL(In)65 b(this)g(thesis)h(w)m (e)g(w)m(an)m(t)g(to)f(con)m(tribute)g(to)g(some)g(classi\014cation)f (results)257 934 y(for)53 b(p)s(oin)m(ted)g(Hopf)g(algebras)g(with)g (ab)s(elian)f(coradical)f(found)j(recen)m(tly)g(b)m(y)g(An-)257 1054 y(druskiewitsc)m(h)45 b(and)f(Sc)m(hneider)g([AS1,)g(AS3,)f(AS5,)g (AS6].)76 b(Their)44 b(lifting)c(metho)s(d)257 1175 y(pro)s(duces)34 b(new)g(classes)f(of)g(Hopf)f(algebras.)43 b(These)34 b(algebras)e(are)h(constructed)h(from)257 1295 y(a)i(linking)e(datum)h (consisting)h(of)f(a)h(group,)h(a)e(Dynkin)h(diagram,)f(some)h(linking) e(pa-)257 1416 y(rameters)43 b(and)f(a)g(n)m(um)m(b)s(er)g(of)g(group)g (elemen)m(ts)g(and)g(c)m(haracters)i(ful\014lling)39 b(certain)257 1536 y(compatibilit)m(y)31 b(conditions.)45 b(These)36 b(conditions)c(are)i(rather)g(implicit)29 b(and)34 b(hence)h(an)257 1656 y(explicit)c(description)g(of)h(these)h (Hopf)e(algebras)h(is)f(often)h(not)g(easy)-8 b(.)44 b(In)32 b(this)f(w)m(ork)i(w)m(e)257 1777 y(treat)g(v)-5 b(arious)32 b(asp)s(ects)h(of)g(suc)m(h)h(a)e(description)g(in)g (detail.)404 1897 y(One)24 b(of)g(our)g(main)f(con)m(tributions)h(is)g (the)g(clari\014cation)e(of)i(the)h(concept)g(of)f(linking.)257 2017 y(Based)33 b(on)f(the)g(original)c(w)m(ork)33 b([AS3],)f(w)m(e)h (\014rst)f(in)m(tro)s(duce)g(some)f(suitable)g(terminol-)257 2138 y(ogy)-8 b(,)27 b(De\014nitions)d(3.3-3.7.)39 b(Then)26 b(w)m(e)g(giv)m(e)f(an)g(easily)g(applicable)e(criterion,)i(Theorem)257 2258 y(4.2,)h(that)e(helps)h(in)e(deciding)h(whic)m(h)h(linkings)e(can) h(pro)s(duce)h(\014nite)f(dimensional)e(Hopf)257 2379 y(algebras)31 b(and)g(what)g(p)s(ossible)g(restrictions)f(ha)m(v)m(e)i (to)f(b)s(e)g(imp)s(osed)f(on)h(the)h(coradical.)257 2499 y(This)37 b(in)m(v)m(olv)m(es)h(simply)e(coun)m(ting)g(certain)h (ob)5 b(jects)38 b(in)e(graphs)h(and)g(computing)f(the)257 2619 y(so-called)d(gen)m(us)h(from)f(this)g(data.)46 b(W)-8 b(e)34 b(extend)h(this)f(result)f(to)h(treat)f(a\016ne)h(Dynkin) 257 2740 y(diagrams)j(as)h(w)m(ell,)h(Theorem)f(4.5.)59 b(Examples)38 b(of)g(\\exotic")f(linkings)g(are)h(giv)m(en)g(in)257 2860 y(Figure)h(4.2.)65 b(Some)39 b(exceptional)h(cases)h(that)f (usually)f(ha)m(v)m(e)i(to)e(b)s(e)h(excluded)h(from)257 2980 y(classi\014cation)35 b(results)i(come)f(from)f(setups)i(w)m(e)h (call)c(self-linkings.)52 b(W)-8 b(e)37 b(presen)m(t)h(the)257 3101 y(protot)m(yp)s(es)33 b(of)f(Hopf)g(algebras)f(arising)f(from)h (suc)m(h)i(situations)e(in)g(Section)h(4.6.)43 b(The)257 3221 y(new)34 b(Hopf)f(algebras)f(deriv)m(ed)i(from)e(the)h(diagram)e FI(B)2272 3236 y FH(2)2311 3221 y FI(;)i FL(whic)m(h)h(w)m(e)g(compute) f(using)f(a)257 3342 y(Computer)h(algebra)e(program,)h(are)g(giv)m(en)h (in)f(Figure)f(4.4.)404 3462 y(Another)i(op)s(en)h(question)f(concerns) i(the)f(compatibilit)m(y)c(of)i(the)i(groups)f(and)h(the)257 3582 y(Dynkin)g(diagrams)f(in)g(a)h(linking)e(datum.)48 b(Although)33 b(a)h(general)g(answ)m(er)h(seems)g(out)257 3703 y(of)46 b(reac)m(h,)51 b(w)m(e)c(are)g(able)e(to)h(con)m(tribute)h (an)f(answ)m(er)i(for)e(the)h(groups)f(\()p FF(Z)p FI(=)p FL(\()p FI(p)p FL(\)\))3331 3667 y FH(2)3414 3703 y FL(in)257 3823 y(Theorem)33 b(5.1.)43 b(W)-8 b(e)32 b(pro)m(v)m(e)i(that)e(apart) g(from)f(a)h(few)g(exceptions,)i(all)c(diagrams)h(with)257 3944 y(at)37 b(most)f(four)g(v)m(ertices)i(can)f(b)s(e)g(used)g(for)f (the)h(construction)g(of)f(\014nite)h(dimensional)257 4064 y(p)s(oin)m(ted)c(Hopf)f(algebras)g(with)g(these)i(groups)f(as)g (the)g(coradical.)404 4184 y(Finally)-8 b(,)50 b(the)g(last)e(ma)5 b(jor)48 b(topic)g(of)g(this)h(thesis)h(is)e(the)i(in)m(v)m(estigation) d(of)i(the)257 4305 y(relation)36 b(b)s(et)m(w)m(een)k(the)f(new)f (Hopf)g(algebras)f(constructed)j(b)m(y)f(the)f(lifting)d(metho)s(d.)257 4425 y(It)60 b(turns)g(out)f(that)g(di\013eren)m(t)h(linking)d (parameters)j(lead)e(to)h(quasi-isomorphic)257 4545 y(Hopf)42 b(algebras,)h(Theorem)e(6.1.)70 b(All)40 b(Hopf)h(algebras)g(that)g (arise)g(from)f(the)i(lifting)257 4666 y(metho)s(d)30 b(using)g(only)g(Dynkin)h(diagrams)d(of)i(t)m(yp)s(e)i FI(A)2234 4681 y FG(n)2311 4666 y FL(displa)m(y)e(the)h(same)f(b)s(eha) m(viour,)257 4786 y(Theorem)54 b(6.6.)106 b(This)53 b(means)h(that)f (all)e(the)j(\014nite)f(dimensional)e(p)s(oin)m(ted)i(Hopf)257 4907 y(algebras)63 b(constructed)j(in)d(this)g(w)m(a)m(y)-8 b(,)73 b(whic)m(h)64 b(only)f(di\013er)g(in)g(their)h(c)m(hoice)g(of) 257 5027 y(parameters)52 b(are)h(2-co)s(cycle)e(deformations)g(of)h (eac)m(h)h(other.)102 b(Our)52 b(pro)s(of)f(should)257 5147 y(b)s(e)46 b(easily)g(adaptable)f(to)g(the)h(Hopf)g(algebras)f (asso)s(ciated)h(with)f(the)i(other)f(t)m(yp)s(es)257 5268 y(of)g(\014nite)h(Dynkin)f(diagrams,)j(once)e(all)d(parameters)j (ha)m(v)m(e)h(b)s(een)f(determined)g(for)257 5388 y(these)37 b(algebras)d(explicitly)-8 b(.)49 b(This)35 b(raises)g(the)g(hop)s(e)g (that)g(Masuok)-5 b(a's)36 b(conjecture)g(in)1828 5637 y(92)p eop %%Page: 93 95 93 94 bop 257 573 a FL([Mas1)q(])35 b(can)g(b)s(e)g(sa)m(v)m(ed)i(in)d (spite)h(of)f(the)i(coun)m(ter-example)f(in)f([EG])h(b)m(y)h(sp)s (ecializing)257 693 y(it)c(sligh)m(tly)f(\(page)h(60\).)257 934 y FD(Zusammenfassung)404 1175 y FL(In)37 b(dieser)g(Dissertation)e (w)m(ollen)h(wir)g(zu)h(Klassi\014zierungsresultaten)f(f)s(\177)-51 b(ur)36 b(punk-)257 1295 y(tierte)h(Hopfalgebren)f(mit)f(ab)s(elsc)m (hem)h(Koradik)-5 b(al)34 b(b)s(eitragen,)j(die)f(v)m(or)h(kurzer)h (Zeit)257 1416 y(v)m(on)j(Andruskiewitsc)m(h)h(und)f(Sc)m(hneider)h ([AS1,)e(AS3,)h(AS5,)f(AS6])g(gew)m(onnen)i(wur-)257 1536 y(den.)63 b(Deren)39 b(Liftingmetho)s(de)d(erzeugt)j(neue)h (Klassen)f(v)m(on)g(Hopfalgebren.)61 b(Diese)257 1656 y(Algebren)f(w)m(erden)i(ausgehend)g(v)m(on)e(einem)g(V)-8 b(erbindungs-Datum)59 b(k)m(onstruiert,)257 1777 y(w)m(elc)m(hes)26 b(aus)f(einer)f(Grupp)s(e,)i(einem)e(Dynkin-Diagramm,)e(einigen)h(P)m (arametern)i(und)257 1897 y(einer)35 b(Reihe)f(v)m(on)h(Grupp)s (enelemen)m(ten)g(und)g(-c)m(harakteren,)h(die)e(gewisse)i(Kompati-)257 2017 y(bilit\177)-49 b(atsb)s(edingungen)35 b(erf)s(\177)-51 b(ullen,)37 b(b)s(esteh)m(t.)59 b(Diese)37 b(Bedingungen)h(sind)f (ziemlic)m(h)e(im-)257 2138 y(plizit)21 b(gegeb)s(en)j(und)g(erlaub)s (en)f(daher)h(meist)e(k)m(eine)i(einfac)m(he)g(explizite)e(Besc)m (hreibung)257 2258 y(dieser)27 b(Hopfalgebren.)41 b(In)27 b(dieser)f(Arb)s(eit)g(b)s(ehandeln)h(wir)e(ausf)s(\177)-51 b(uhrlic)m(h)25 b(v)m(ersc)m(hiedene)257 2379 y(Asp)s(ekte)35 b(solc)m(h)d(einer)h(Besc)m(hreibung.)404 2499 y(Einer)46 b(unserer)j(w)m(esen)m(tlic)m(hen)f(Beitr\177)-49 b(age)46 b(ist)g(die)h(explizite)f(Ausarb)s(eitung)g(des)257 2619 y(V)-8 b(erbindungsk)m(onzepts.)80 b(Aufbauend)44 b(auf)f(der)h (Originalarb)s(eit)c([AS3])k(f)s(\177)-51 b(uhren)43 b(wir)257 2740 y(zun\177)-49 b(ac)m(hst)28 b(eine)f(passende)h(T)-8 b(erminologie)23 b(ein,)k(De\014nitionen)e(3.3-3.7.)40 b(Danac)m(h)27 b(geb)s(en)257 2860 y(wir)46 b(ein)g(einfac)m(h)g(an)m (w)m(endbares)j(Kriterium)44 b(an,)50 b(Theorem)d(4.2,)i(das)e(en)m (tsc)m(heiden)257 2980 y(hilft,)24 b(w)m(elc)m(he)h(V)-8 b(erbindungen)24 b(zu)h(endlic)m(hdimensionalen)c(Hopfalgebren)i(f)s (\177)-51 b(uhren)24 b(und)257 3101 y(w)m(as)40 b(f)s(\177)-51 b(ur)37 b(Bedingungen)i(an)f(das)h(Koradik)-5 b(al)36 b(gestellt)h(w)m(erden)j(m)s(\177)-51 b(ussen.)61 b(Dazu)39 b(m)m(u\031)257 3221 y(man)c(n)m(ur,)i(gewisse)f(Ob)5 b(jekte)37 b(in)e(Graphen)g(z\177)-49 b(ahlen)36 b(und)g(aus)f(diesen)h (Daten)g(das)f(so-)257 3342 y(genann)m(te)41 b(Gesc)m(hlec)m(h)m(t)g(b) s(erec)m(hnen.)66 b(Wir)39 b(erw)m(eitern)i(unser)f(Resultat)f(in)g (Theorem)257 3462 y(4.5)h(auc)m(h)g(auf)g(a\016ne)g(Dynkin-Diagramme.) 62 b(Beispiele)39 b(exotisc)m(her)i(V)-8 b(erbindungen)257 3582 y(gibt)42 b(Abbildung)g(4.2.)73 b(Einige)41 b(Ausnahmef\177)-49 b(alle,)44 b(w)m(elc)m(he)g(normalerw)m(eise)e(v)m(on)h(den)257 3703 y(Klassi\014zierungsresultaten)38 b(ausgenommen)g(w)m(erden)i(m)s (\177)-51 b(ussen,)40 b(en)m(tstehen)h(in)c(Situ-)257 3823 y(ationen,)48 b(die)c(wir)g(Selbstv)m(erbindungen)i(nennen.)82 b(Wir)44 b(pr\177)-49 b(asen)m(tieren)46 b(die)e(Proto-)257 3944 y(t)m(yp)s(en)32 b(v)m(on)g(Hopfalgebren)e(in)g(solc)m(h)h(einer)f (Situation)f(in)h(Absc)m(hnitt)i(4.6.)42 b(Die)30 b(neuen)257 4064 y(Hopfalgebren,)i(die)g(v)m(om)g(Diagramm)d FI(B)1803 4079 y FH(2)1875 4064 y FL(stammen)i(und)i(w)m(elc)m(he)h(wir)d (mittels)g(eines)257 4184 y(Computeralgebraprogramms)f(b)s(erec)m (hnen,)35 b(sind)e(in)e(Abbildung)h(4.4)g(angegeb)s(en.)404 4305 y(Eine)25 b(w)m(eitere)h(o\013ene)f(F)-8 b(rage)25 b(b)s(etri\013t)f(die)h(Kompatibilit\177)-49 b(at)20 b(der)26 b(Grupp)s(en)f(mit)e(den)257 4425 y(Dynkin-Diagrammen)37 b(in)i(einem)h(V)-8 b(erbindungs-Datum.)64 b(Ob)m(w)m(ohl)41 b(eine)f(generelle)257 4545 y(An)m(t)m(w)m(ort)28 b(au\031er)f(Reic)m (h)m(w)m(eite)g(sc)m(hein)m(t,)i(k\177)-49 b(onnen)28 b(wir)e(mit)e(Theorem)j(5.1)f(eine)h(An)m(t)m(w)m(ort)257 4666 y(f)s(\177)-51 b(ur)30 b(die)g(Grupp)s(en)g(\()p FF(Z)p FI(=)p FL(\()p FI(p)p FL(\)\))1291 4630 y FH(2)1358 4666 y FL(geb)s(en.)43 b(Wir)30 b(b)s(ew)m(eisen,)i(da\031,)f(bis)f (auf)g(w)m(enige)h(Ausnah-)257 4786 y(men,)26 b(alle)c(Diagramme)f(mit) h(maximal)f(vier)i(Ec)m(k)m(en)k(f)s(\177)-51 b(ur)22 b(die)i(Konstruktion)g(endlic)m(hdi-)257 4907 y(mensionaler)29 b(punktierter)j(Hopfalgebren)e(mit)f(diesen)i(Grupp)s(en)g(als)e (Koradik)-5 b(al)28 b(b)s(e-)257 5027 y(n)m(utzt)34 b(w)m(erden)g (k\177)-49 b(onnen.)404 5147 y(Das)28 b(letzte)g(gro\031e)g(Thema)g (dieser)h(Arb)s(eit)e(ist)h(die)g(Un)m(tersuc)m(h)m(ung)j(der)e(Bezieh) m(un-)257 5268 y(gen)e(zwisc)m(hen)h(den,)h(mittels)24 b(der)j(Liftingmetho)s(de)d(k)m(onstruierten,)29 b(neuen)f(Hopfalge-) 257 5388 y(bren.)42 b(Es)26 b(stellt)e(sic)m(h)i(heraus,)i(da\031)c(v)m (ersc)m(hiedene)29 b(V)-8 b(erbindungsparameter)25 b(zu)h(quasi-)1828 5637 y(93)p eop %%Page: 94 96 94 95 bop 257 573 a FL(isomorphen)34 b(Hopfalgebren)g(f)s(\177)-51 b(uhren,)34 b(Theorem)h(6.1.)48 b(Alle)33 b(Hopfalgebren,)h(die)g(mit-) 257 693 y(tels)e(der)f(Liftingmetho)s(de)e(n)m(ur)j(aus)g(Diagrammen)c (des)33 b(T)m(yps)g FI(A)2694 708 y FG(n)2772 693 y FL(en)m(tstehen,)h (zeigen)257 814 y(das)44 b(gleic)m(he)e(V)-8 b(erhalten,)45 b(Theorem)f(6.6.)74 b(Das)42 b(hei\031t,)j(da\031)e(alle)e(so)i(k)m (onstruierten,)257 934 y(endlic)m(hdimensionalen)27 b(punktierten)j (Hopfalgebren,)f(die)g(sic)m(h)g(n)m(ur)g(durc)m(h)i(die)d(W)-8 b(ahl)257 1054 y(ihrer)27 b(P)m(arameter)g(un)m(tersc)m(heiden,)k (2-Kozyklus-Deformationen)24 b(v)m(oneinander)k(sind.)257 1175 y(Unser)d(Bew)m(eis)g(sollte)e(sic)m(h)h(einfac)m(h)g(auf)g (Hopfalgebren,)h(die)f(mit)e(den)j(anderen)g(T)m(yp)s(en)257 1295 y(endlic)m(her)38 b(Dynkin-Diagramme)c(assoziiert)j(sind,)42 b(\177)-51 b(ub)s(ertragen)38 b(lassen,)i(sobald)d(alle)257 1416 y(P)m(arameter)e(f)s(\177)-51 b(ur)34 b(diese)h(Algebren)g (explizit)e(b)s(estimm)m(t)g(w)m(orden)j(sind.)50 b(Dies)34 b(b)s(est\177)-49 b(arkt)257 1536 y(die)37 b(Ho\013n)m(ung,)i(da\031)f (Masuok)-5 b(as)38 b(V)-8 b(erm)m(utung)37 b(in)g([Mas1)q(])g(trotz)g (des)i(Gegen)m(b)s(eispiels)257 1656 y(in)32 b([EG])h(gerettet)g(w)m (erden)h(k)-5 b(ann,)33 b(indem)f(man)f(sie)i(et)m(w)m(as)h(sp)s (ezialisiert)c(\(Seite)j(60\).)1828 5637 y(94)p eop %%Page: 95 97 95 96 bop 1660 593 a Fa(Leb)5 b(enslauf)640 1016 y Fn(P)l(ers\177)-67 b(onlic)l(he)46 b(Daten)737 1220 y FL(Daniel)31 b(Didt)737 1502 y(gebren)j(am)d(3.)i(August)g(1974)f(in)f(Rosto)m(w)i(am)f(Don)g (\(Ru\031land\))737 1622 y(v)m(erheiratet;)i(4)e(Kinder)494 1946 y Fn(Sc)l(h)l(ulausbildung)737 2149 y FJ(1981-1989)87 b FL(Besuc)m(h)30 b(einer)d(P)m(olytec)m(hnisc)m(hen)j(Ob)s(ersc)m(h)m (ule)f(in)e(Leipzig)952 2270 y(und)e(ab)f(1983)f(einer)h(Klasse)g(mit)f (erw)m(eitertem)h(Russisc)m(h)m(un)m(terric)m(h)m(t)737 2432 y FJ(1989-1993)87 b FL(Nac)m(h)59 b(erfolgreic)m(her)f(Aufnahmepr) s(\177)-51 b(ufung)58 b(Besuc)m(h)i(der)952 2552 y(Sp)s(ezialsc)m(h)m (ule)47 b(math.-naturwiss.-tec)m(hn.)85 b(Ric)m(h)m(tung)46 b(\\Wilhelm)952 2672 y(Ost)m(w)m(ald")33 b(in)f(Leipzig)737 2834 y FJ(Juli)k(1993)87 b FL(Abitur)494 3038 y Fn(Ho)t(c)l(hsc)l(h)l (ulausbildung)737 3241 y FJ(Okt.)38 b(1993)86 b FL(Beginn)29 b(eines)g(Dopp)s(elstudiums)f(\(Diplom-Mathematik)952 3362 y(und)33 b(Diplom-Ph)m(ysik\))d(an)j(der)g(Univ)m(ersit\177)-49 b(at)32 b(Leipzig)737 3523 y FJ(Sept.)38 b(1995)87 b FL(V)-8 b(ordiplom)30 b(in)j(Mathematik)f(\(Neb)s(enfac)m(h)j (Informatik\))952 3644 y(und)e(Ph)m(ysik)h(\(Neb)s(enfac)m(h)g (Chemie\))737 3806 y FJ(F)-9 b(eb.)38 b(1996)g(-)g(Jan.)g(1999)86 b FL(Mitglied)111 b(der)h(Studienstiftung)h(des)952 3926 y(Deutsc)m(hen)34 b(V)-8 b(olk)m(es)737 4088 y FJ(Sept.)51 b(1996)37 b(-)h(Juli)e(1998)86 b FL(Leiter)23 b(eines)h(Mathematikzirk) m(els)f(f)s(\177)-51 b(ur)22 b(die)952 4208 y(Klassen)30 b(11/12)e(der)i(\\Leipziger)f(Sc)m(h)s(\177)-51 b(ulergesellsc)m(haft) 29 b(f)s(\177)-51 b(ur)28 b(Mathe-)952 4329 y(matik")737 4491 y FJ(Jan.)39 b(1999)86 b FL(Absc)m(hluss)34 b(des)g(Ph)m (ysikstudiums)g(mit)c(Diplom)737 4653 y FJ(M)o(\177)-55 b(arz)38 b(2000)87 b FL(Absc)m(hluss)34 b(des)f(Mathematikstudiums)f (mit)f(Diplom)737 4814 y FJ(Jan.)39 b(2000)e(-)h(Dez.)f(2002)49 b FL(Promotion)44 b(am)g(Mathematisc)m(hen)i(Insti-)952 4935 y(tut)37 b(der)g(LMU)g(M)s(\177)-51 b(unc)m(hen)38 b(im)d(Graduiertenk)m(olleg)g(\\Mathematik)952 5055 y(im)c(Bereic)m(h)i (ihrer)f(W)-8 b(ec)m(hselwirkung)34 b(mit)d(der)i(Ph)m(ysik")p eop %%Trailer end userdict /end-hook known{end-hook}if %%EOF